]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md/raid5: prepare for allowing reshape to change chunksize.
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
43b2e5d8 51#include "md.h"
bff61975 52#include "raid5.h"
ef740c37 53#include "bitmap.h"
72626685 54
1da177e4
LT
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES 256
60#define STRIPE_SIZE PAGE_SIZE
61#define STRIPE_SHIFT (PAGE_SHIFT - 9)
62#define STRIPE_SECTORS (STRIPE_SIZE>>9)
63#define IO_THRESHOLD 1
8b3e6cdc 64#define BYPASS_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
1da177e4
LT
83#define RAID5_PARANOIA 1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
45b4233c 90#ifdef DEBUG
1da177e4
LT
91#define inline
92#define __inline__
93#endif
94
6be9d494
BS
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
960e739d 97/*
5b99c2ff
JA
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
5b99c2ff 103 return bio->bi_phys_segments & 0xffff;
960e739d
JA
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
5b99c2ff 108 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119 unsigned short val = raid5_bi_hw_segments(bio);
120
121 --val;
5b99c2ff 122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
123 return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
5b99c2ff 128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
129}
130
d0dabf7e
N
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
67cc2b81
N
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
d0dabf7e
N
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
142}
16a53ecc
N
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
147}
a4456856 148
d0dabf7e
N
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
153 */
67cc2b81
N
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
d0dabf7e
N
156{
157 int slot;
67cc2b81 158
d0dabf7e 159 if (idx == sh->pd_idx)
67cc2b81 160 return syndrome_disks;
d0dabf7e 161 if (idx == sh->qd_idx)
67cc2b81 162 return syndrome_disks + 1;
d0dabf7e
N
163 slot = (*count)++;
164 return slot;
165}
166
a4456856
DW
167static void return_io(struct bio *return_bi)
168{
169 struct bio *bi = return_bi;
170 while (bi) {
a4456856
DW
171
172 return_bi = bi->bi_next;
173 bi->bi_next = NULL;
174 bi->bi_size = 0;
0e13fe23 175 bio_endio(bi, 0);
a4456856
DW
176 bi = return_bi;
177 }
178}
179
1da177e4
LT
180static void print_raid5_conf (raid5_conf_t *conf);
181
600aa109
DW
182static int stripe_operations_active(struct stripe_head *sh)
183{
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
858119e1 189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
190{
191 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 196 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 199 sh->bm_seq - conf->seq_write > 0) {
72626685 200 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
201 blk_plug_device(conf->mddev->queue);
202 } else {
72626685 203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 204 list_add_tail(&sh->lru, &conf->handle_list);
72626685 205 }
1da177e4
LT
206 md_wakeup_thread(conf->mddev->thread);
207 } else {
600aa109 208 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
213 }
1da177e4 214 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 217 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 220 }
1da177e4
LT
221 }
222 }
223}
d0dabf7e 224
1da177e4
LT
225static void release_stripe(struct stripe_head *sh)
226{
227 raid5_conf_t *conf = sh->raid_conf;
228 unsigned long flags;
16a53ecc 229
1da177e4
LT
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
fccddba0 235static inline void remove_hash(struct stripe_head *sh)
1da177e4 236{
45b4233c
DW
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
1da177e4 239
fccddba0 240 hlist_del_init(&sh->hash);
1da177e4
LT
241}
242
16a53ecc 243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 244{
fccddba0 245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 246
45b4233c
DW
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
1da177e4
LT
249
250 CHECK_DEVLOCK();
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
261 CHECK_DEVLOCK();
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275 struct page *p;
276 int i;
277
278 for (i=0; i<num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289 int i;
290
291 for (i=0; i<num; i++) {
292 struct page *page;
293
294 if (!(page = alloc_page(GFP_KERNEL))) {
295 return 1;
296 }
297 sh->dev[i].page = page;
298 }
299 return 0;
300}
301
784052ec 302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
1da177e4 305
b5663ba4 306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
307{
308 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 309 int i;
1da177e4 310
78bafebd
ES
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 313 BUG_ON(stripe_operations_active(sh));
d84e0f10 314
1da177e4 315 CHECK_DEVLOCK();
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4
LT
336 test_bit(R5_LOCKED, &dev->flags));
337 BUG();
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
86b42c71
N
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4
LT
350
351 CHECK_DEVLOCK();
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
165125e1 361static void raid5_unplug_device(struct request_queue *q);
1da177e4 362
b5663ba4
N
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
365 int previous, int noblock)
1da177e4
LT
366{
367 struct stripe_head *sh;
368
45b4233c 369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
370
371 spin_lock_irq(&conf->device_lock);
372
373 do {
72626685
N
374 wait_event_lock_irq(conf->wait_for_stripe,
375 conf->quiesce == 0,
376 conf->device_lock, /* nothing */);
86b42c71 377 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
378 if (!sh) {
379 if (!conf->inactive_blocked)
380 sh = get_free_stripe(conf);
381 if (noblock && sh == NULL)
382 break;
383 if (!sh) {
384 conf->inactive_blocked = 1;
385 wait_event_lock_irq(conf->wait_for_stripe,
386 !list_empty(&conf->inactive_list) &&
5036805b
N
387 (atomic_read(&conf->active_stripes)
388 < (conf->max_nr_stripes *3/4)
1da177e4
LT
389 || !conf->inactive_blocked),
390 conf->device_lock,
f4370781 391 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
392 );
393 conf->inactive_blocked = 0;
394 } else
b5663ba4 395 init_stripe(sh, sector, previous);
1da177e4
LT
396 } else {
397 if (atomic_read(&sh->count)) {
78bafebd 398 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
399 } else {
400 if (!test_bit(STRIPE_HANDLE, &sh->state))
401 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
402 if (list_empty(&sh->lru) &&
403 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
404 BUG();
405 list_del_init(&sh->lru);
1da177e4
LT
406 }
407 }
408 } while (sh == NULL);
409
410 if (sh)
411 atomic_inc(&sh->count);
412
413 spin_unlock_irq(&conf->device_lock);
414 return sh;
415}
416
6712ecf8
N
417static void
418raid5_end_read_request(struct bio *bi, int error);
419static void
420raid5_end_write_request(struct bio *bi, int error);
91c00924 421
c4e5ac0a 422static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
423{
424 raid5_conf_t *conf = sh->raid_conf;
425 int i, disks = sh->disks;
426
427 might_sleep();
428
429 for (i = disks; i--; ) {
430 int rw;
431 struct bio *bi;
432 mdk_rdev_t *rdev;
433 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
434 rw = WRITE;
435 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
436 rw = READ;
437 else
438 continue;
439
440 bi = &sh->dev[i].req;
441
442 bi->bi_rw = rw;
443 if (rw == WRITE)
444 bi->bi_end_io = raid5_end_write_request;
445 else
446 bi->bi_end_io = raid5_end_read_request;
447
448 rcu_read_lock();
449 rdev = rcu_dereference(conf->disks[i].rdev);
450 if (rdev && test_bit(Faulty, &rdev->flags))
451 rdev = NULL;
452 if (rdev)
453 atomic_inc(&rdev->nr_pending);
454 rcu_read_unlock();
455
456 if (rdev) {
c4e5ac0a 457 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
458 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459
2b7497f0
DW
460 set_bit(STRIPE_IO_STARTED, &sh->state);
461
91c00924
DW
462 bi->bi_bdev = rdev->bdev;
463 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 464 __func__, (unsigned long long)sh->sector,
91c00924
DW
465 bi->bi_rw, i);
466 atomic_inc(&sh->count);
467 bi->bi_sector = sh->sector + rdev->data_offset;
468 bi->bi_flags = 1 << BIO_UPTODATE;
469 bi->bi_vcnt = 1;
470 bi->bi_max_vecs = 1;
471 bi->bi_idx = 0;
472 bi->bi_io_vec = &sh->dev[i].vec;
473 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
474 bi->bi_io_vec[0].bv_offset = 0;
475 bi->bi_size = STRIPE_SIZE;
476 bi->bi_next = NULL;
477 if (rw == WRITE &&
478 test_bit(R5_ReWrite, &sh->dev[i].flags))
479 atomic_add(STRIPE_SECTORS,
480 &rdev->corrected_errors);
481 generic_make_request(bi);
482 } else {
483 if (rw == WRITE)
484 set_bit(STRIPE_DEGRADED, &sh->state);
485 pr_debug("skip op %ld on disc %d for sector %llu\n",
486 bi->bi_rw, i, (unsigned long long)sh->sector);
487 clear_bit(R5_LOCKED, &sh->dev[i].flags);
488 set_bit(STRIPE_HANDLE, &sh->state);
489 }
490 }
491}
492
493static struct dma_async_tx_descriptor *
494async_copy_data(int frombio, struct bio *bio, struct page *page,
495 sector_t sector, struct dma_async_tx_descriptor *tx)
496{
497 struct bio_vec *bvl;
498 struct page *bio_page;
499 int i;
500 int page_offset;
501
502 if (bio->bi_sector >= sector)
503 page_offset = (signed)(bio->bi_sector - sector) * 512;
504 else
505 page_offset = (signed)(sector - bio->bi_sector) * -512;
506 bio_for_each_segment(bvl, bio, i) {
507 int len = bio_iovec_idx(bio, i)->bv_len;
508 int clen;
509 int b_offset = 0;
510
511 if (page_offset < 0) {
512 b_offset = -page_offset;
513 page_offset += b_offset;
514 len -= b_offset;
515 }
516
517 if (len > 0 && page_offset + len > STRIPE_SIZE)
518 clen = STRIPE_SIZE - page_offset;
519 else
520 clen = len;
521
522 if (clen > 0) {
523 b_offset += bio_iovec_idx(bio, i)->bv_offset;
524 bio_page = bio_iovec_idx(bio, i)->bv_page;
525 if (frombio)
526 tx = async_memcpy(page, bio_page, page_offset,
527 b_offset, clen,
eb0645a8 528 ASYNC_TX_DEP_ACK,
91c00924
DW
529 tx, NULL, NULL);
530 else
531 tx = async_memcpy(bio_page, page, b_offset,
532 page_offset, clen,
eb0645a8 533 ASYNC_TX_DEP_ACK,
91c00924
DW
534 tx, NULL, NULL);
535 }
536 if (clen < len) /* hit end of page */
537 break;
538 page_offset += len;
539 }
540
541 return tx;
542}
543
544static void ops_complete_biofill(void *stripe_head_ref)
545{
546 struct stripe_head *sh = stripe_head_ref;
547 struct bio *return_bi = NULL;
548 raid5_conf_t *conf = sh->raid_conf;
e4d84909 549 int i;
91c00924 550
e46b272b 551 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
552 (unsigned long long)sh->sector);
553
554 /* clear completed biofills */
83de75cc 555 spin_lock_irq(&conf->device_lock);
91c00924
DW
556 for (i = sh->disks; i--; ) {
557 struct r5dev *dev = &sh->dev[i];
91c00924
DW
558
559 /* acknowledge completion of a biofill operation */
e4d84909
DW
560 /* and check if we need to reply to a read request,
561 * new R5_Wantfill requests are held off until
83de75cc 562 * !STRIPE_BIOFILL_RUN
e4d84909
DW
563 */
564 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 565 struct bio *rbi, *rbi2;
91c00924 566
91c00924
DW
567 BUG_ON(!dev->read);
568 rbi = dev->read;
569 dev->read = NULL;
570 while (rbi && rbi->bi_sector <
571 dev->sector + STRIPE_SECTORS) {
572 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 573 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
574 rbi->bi_next = return_bi;
575 return_bi = rbi;
576 }
91c00924
DW
577 rbi = rbi2;
578 }
579 }
580 }
83de75cc
DW
581 spin_unlock_irq(&conf->device_lock);
582 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
583
584 return_io(return_bi);
585
e4d84909 586 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
587 release_stripe(sh);
588}
589
590static void ops_run_biofill(struct stripe_head *sh)
591{
592 struct dma_async_tx_descriptor *tx = NULL;
593 raid5_conf_t *conf = sh->raid_conf;
594 int i;
595
e46b272b 596 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
597 (unsigned long long)sh->sector);
598
599 for (i = sh->disks; i--; ) {
600 struct r5dev *dev = &sh->dev[i];
601 if (test_bit(R5_Wantfill, &dev->flags)) {
602 struct bio *rbi;
603 spin_lock_irq(&conf->device_lock);
604 dev->read = rbi = dev->toread;
605 dev->toread = NULL;
606 spin_unlock_irq(&conf->device_lock);
607 while (rbi && rbi->bi_sector <
608 dev->sector + STRIPE_SECTORS) {
609 tx = async_copy_data(0, rbi, dev->page,
610 dev->sector, tx);
611 rbi = r5_next_bio(rbi, dev->sector);
612 }
613 }
614 }
615
616 atomic_inc(&sh->count);
617 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
618 ops_complete_biofill, sh);
619}
620
621static void ops_complete_compute5(void *stripe_head_ref)
622{
623 struct stripe_head *sh = stripe_head_ref;
624 int target = sh->ops.target;
625 struct r5dev *tgt = &sh->dev[target];
626
e46b272b 627 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
628 (unsigned long long)sh->sector);
629
630 set_bit(R5_UPTODATE, &tgt->flags);
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
633 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
634 if (sh->check_state == check_state_compute_run)
635 sh->check_state = check_state_compute_result;
91c00924
DW
636 set_bit(STRIPE_HANDLE, &sh->state);
637 release_stripe(sh);
638}
639
7b3a871e 640static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
91c00924
DW
641{
642 /* kernel stack size limits the total number of disks */
643 int disks = sh->disks;
644 struct page *xor_srcs[disks];
645 int target = sh->ops.target;
646 struct r5dev *tgt = &sh->dev[target];
647 struct page *xor_dest = tgt->page;
648 int count = 0;
649 struct dma_async_tx_descriptor *tx;
650 int i;
651
652 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 653 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
654 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655
656 for (i = disks; i--; )
657 if (i != target)
658 xor_srcs[count++] = sh->dev[i].page;
659
660 atomic_inc(&sh->count);
661
662 if (unlikely(count == 1))
663 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
664 0, NULL, ops_complete_compute5, sh);
665 else
666 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
667 ASYNC_TX_XOR_ZERO_DST, NULL,
668 ops_complete_compute5, sh);
669
91c00924
DW
670 return tx;
671}
672
673static void ops_complete_prexor(void *stripe_head_ref)
674{
675 struct stripe_head *sh = stripe_head_ref;
676
e46b272b 677 pr_debug("%s: stripe %llu\n", __func__,
91c00924 678 (unsigned long long)sh->sector);
91c00924
DW
679}
680
681static struct dma_async_tx_descriptor *
682ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683{
684 /* kernel stack size limits the total number of disks */
685 int disks = sh->disks;
686 struct page *xor_srcs[disks];
687 int count = 0, pd_idx = sh->pd_idx, i;
688
689 /* existing parity data subtracted */
690 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691
e46b272b 692 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
693 (unsigned long long)sh->sector);
694
695 for (i = disks; i--; ) {
696 struct r5dev *dev = &sh->dev[i];
697 /* Only process blocks that are known to be uptodate */
d8ee0728 698 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
699 xor_srcs[count++] = dev->page;
700 }
701
702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
703 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
704 ops_complete_prexor, sh);
705
706 return tx;
707}
708
709static struct dma_async_tx_descriptor *
d8ee0728 710ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
711{
712 int disks = sh->disks;
d8ee0728 713 int i;
91c00924 714
e46b272b 715 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
716 (unsigned long long)sh->sector);
717
718 for (i = disks; i--; ) {
719 struct r5dev *dev = &sh->dev[i];
720 struct bio *chosen;
91c00924 721
d8ee0728 722 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
723 struct bio *wbi;
724
725 spin_lock(&sh->lock);
726 chosen = dev->towrite;
727 dev->towrite = NULL;
728 BUG_ON(dev->written);
729 wbi = dev->written = chosen;
730 spin_unlock(&sh->lock);
731
732 while (wbi && wbi->bi_sector <
733 dev->sector + STRIPE_SECTORS) {
734 tx = async_copy_data(1, wbi, dev->page,
735 dev->sector, tx);
736 wbi = r5_next_bio(wbi, dev->sector);
737 }
738 }
739 }
740
741 return tx;
742}
743
744static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
745{
746 struct stripe_head *sh = stripe_head_ref;
747 int disks = sh->disks, i, pd_idx = sh->pd_idx;
748
e46b272b 749 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
750 (unsigned long long)sh->sector);
751
752 for (i = disks; i--; ) {
753 struct r5dev *dev = &sh->dev[i];
754 if (dev->written || i == pd_idx)
755 set_bit(R5_UPTODATE, &dev->flags);
756 }
757
d8ee0728
DW
758 if (sh->reconstruct_state == reconstruct_state_drain_run)
759 sh->reconstruct_state = reconstruct_state_drain_result;
760 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
761 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
762 else {
763 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
764 sh->reconstruct_state = reconstruct_state_result;
765 }
91c00924
DW
766
767 set_bit(STRIPE_HANDLE, &sh->state);
768 release_stripe(sh);
769}
770
771static void
d8ee0728 772ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
773{
774 /* kernel stack size limits the total number of disks */
775 int disks = sh->disks;
776 struct page *xor_srcs[disks];
777
778 int count = 0, pd_idx = sh->pd_idx, i;
779 struct page *xor_dest;
d8ee0728 780 int prexor = 0;
91c00924 781 unsigned long flags;
91c00924 782
e46b272b 783 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
784 (unsigned long long)sh->sector);
785
786 /* check if prexor is active which means only process blocks
787 * that are part of a read-modify-write (written)
788 */
d8ee0728
DW
789 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
790 prexor = 1;
91c00924
DW
791 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792 for (i = disks; i--; ) {
793 struct r5dev *dev = &sh->dev[i];
794 if (dev->written)
795 xor_srcs[count++] = dev->page;
796 }
797 } else {
798 xor_dest = sh->dev[pd_idx].page;
799 for (i = disks; i--; ) {
800 struct r5dev *dev = &sh->dev[i];
801 if (i != pd_idx)
802 xor_srcs[count++] = dev->page;
803 }
804 }
805
91c00924
DW
806 /* 1/ if we prexor'd then the dest is reused as a source
807 * 2/ if we did not prexor then we are redoing the parity
808 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
809 * for the synchronous xor case
810 */
811 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
812 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813
814 atomic_inc(&sh->count);
815
816 if (unlikely(count == 1)) {
817 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
818 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
d8ee0728 819 flags, tx, ops_complete_postxor, sh);
91c00924
DW
820 } else
821 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
d8ee0728 822 flags, tx, ops_complete_postxor, sh);
91c00924
DW
823}
824
825static void ops_complete_check(void *stripe_head_ref)
826{
827 struct stripe_head *sh = stripe_head_ref;
91c00924 828
e46b272b 829 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
830 (unsigned long long)sh->sector);
831
ecc65c9b 832 sh->check_state = check_state_check_result;
91c00924
DW
833 set_bit(STRIPE_HANDLE, &sh->state);
834 release_stripe(sh);
835}
836
837static void ops_run_check(struct stripe_head *sh)
838{
839 /* kernel stack size limits the total number of disks */
840 int disks = sh->disks;
841 struct page *xor_srcs[disks];
842 struct dma_async_tx_descriptor *tx;
843
844 int count = 0, pd_idx = sh->pd_idx, i;
845 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846
e46b272b 847 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
848 (unsigned long long)sh->sector);
849
850 for (i = disks; i--; ) {
851 struct r5dev *dev = &sh->dev[i];
852 if (i != pd_idx)
853 xor_srcs[count++] = dev->page;
854 }
855
856 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
857 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858
91c00924
DW
859 atomic_inc(&sh->count);
860 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
861 ops_complete_check, sh);
862}
863
600aa109 864static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
865{
866 int overlap_clear = 0, i, disks = sh->disks;
867 struct dma_async_tx_descriptor *tx = NULL;
868
83de75cc 869 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
870 ops_run_biofill(sh);
871 overlap_clear++;
872 }
873
7b3a871e
DW
874 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
875 tx = ops_run_compute5(sh);
876 /* terminate the chain if postxor is not set to be run */
877 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
878 async_tx_ack(tx);
879 }
91c00924 880
600aa109 881 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
882 tx = ops_run_prexor(sh, tx);
883
600aa109 884 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 885 tx = ops_run_biodrain(sh, tx);
91c00924
DW
886 overlap_clear++;
887 }
888
600aa109 889 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d8ee0728 890 ops_run_postxor(sh, tx);
91c00924 891
ecc65c9b 892 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
893 ops_run_check(sh);
894
91c00924
DW
895 if (overlap_clear)
896 for (i = disks; i--; ) {
897 struct r5dev *dev = &sh->dev[i];
898 if (test_and_clear_bit(R5_Overlap, &dev->flags))
899 wake_up(&sh->raid_conf->wait_for_overlap);
900 }
901}
902
3f294f4f 903static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
904{
905 struct stripe_head *sh;
3f294f4f
N
906 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
907 if (!sh)
908 return 0;
909 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
910 sh->raid_conf = conf;
911 spin_lock_init(&sh->lock);
912
913 if (grow_buffers(sh, conf->raid_disks)) {
914 shrink_buffers(sh, conf->raid_disks);
915 kmem_cache_free(conf->slab_cache, sh);
916 return 0;
917 }
7ecaa1e6 918 sh->disks = conf->raid_disks;
3f294f4f
N
919 /* we just created an active stripe so... */
920 atomic_set(&sh->count, 1);
921 atomic_inc(&conf->active_stripes);
922 INIT_LIST_HEAD(&sh->lru);
923 release_stripe(sh);
924 return 1;
925}
926
927static int grow_stripes(raid5_conf_t *conf, int num)
928{
e18b890b 929 struct kmem_cache *sc;
1da177e4
LT
930 int devs = conf->raid_disks;
931
245f46c2
N
932 sprintf(conf->cache_name[0],
933 "raid%d-%s", conf->level, mdname(conf->mddev));
934 sprintf(conf->cache_name[1],
935 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
936 conf->active_name = 0;
937 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 938 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 939 0, 0, NULL);
1da177e4
LT
940 if (!sc)
941 return 1;
942 conf->slab_cache = sc;
ad01c9e3 943 conf->pool_size = devs;
16a53ecc 944 while (num--)
3f294f4f 945 if (!grow_one_stripe(conf))
1da177e4 946 return 1;
1da177e4
LT
947 return 0;
948}
29269553
N
949
950#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
951static int resize_stripes(raid5_conf_t *conf, int newsize)
952{
953 /* Make all the stripes able to hold 'newsize' devices.
954 * New slots in each stripe get 'page' set to a new page.
955 *
956 * This happens in stages:
957 * 1/ create a new kmem_cache and allocate the required number of
958 * stripe_heads.
959 * 2/ gather all the old stripe_heads and tranfer the pages across
960 * to the new stripe_heads. This will have the side effect of
961 * freezing the array as once all stripe_heads have been collected,
962 * no IO will be possible. Old stripe heads are freed once their
963 * pages have been transferred over, and the old kmem_cache is
964 * freed when all stripes are done.
965 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
966 * we simple return a failre status - no need to clean anything up.
967 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 * If this fails, we don't bother trying the shrink the
969 * stripe_heads down again, we just leave them as they are.
970 * As each stripe_head is processed the new one is released into
971 * active service.
972 *
973 * Once step2 is started, we cannot afford to wait for a write,
974 * so we use GFP_NOIO allocations.
975 */
976 struct stripe_head *osh, *nsh;
977 LIST_HEAD(newstripes);
978 struct disk_info *ndisks;
b5470dc5 979 int err;
e18b890b 980 struct kmem_cache *sc;
ad01c9e3
N
981 int i;
982
983 if (newsize <= conf->pool_size)
984 return 0; /* never bother to shrink */
985
b5470dc5
DW
986 err = md_allow_write(conf->mddev);
987 if (err)
988 return err;
2a2275d6 989
ad01c9e3
N
990 /* Step 1 */
991 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 993 0, 0, NULL);
ad01c9e3
N
994 if (!sc)
995 return -ENOMEM;
996
997 for (i = conf->max_nr_stripes; i; i--) {
998 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999 if (!nsh)
1000 break;
1001
1002 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004 nsh->raid_conf = conf;
1005 spin_lock_init(&nsh->lock);
1006
1007 list_add(&nsh->lru, &newstripes);
1008 }
1009 if (i) {
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes)) {
1012 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013 list_del(&nsh->lru);
1014 kmem_cache_free(sc, nsh);
1015 }
1016 kmem_cache_destroy(sc);
1017 return -ENOMEM;
1018 }
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1022 */
1023 list_for_each_entry(nsh, &newstripes, lru) {
1024 spin_lock_irq(&conf->device_lock);
1025 wait_event_lock_irq(conf->wait_for_stripe,
1026 !list_empty(&conf->inactive_list),
1027 conf->device_lock,
b3b46be3 1028 unplug_slaves(conf->mddev)
ad01c9e3
N
1029 );
1030 osh = get_free_stripe(conf);
1031 spin_unlock_irq(&conf->device_lock);
1032 atomic_set(&nsh->count, 1);
1033 for(i=0; i<conf->pool_size; i++)
1034 nsh->dev[i].page = osh->dev[i].page;
1035 for( ; i<newsize; i++)
1036 nsh->dev[i].page = NULL;
1037 kmem_cache_free(conf->slab_cache, osh);
1038 }
1039 kmem_cache_destroy(conf->slab_cache);
1040
1041 /* Step 3.
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1044 * conf->disks.
1045 */
1046 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 if (ndisks) {
1048 for (i=0; i<conf->raid_disks; i++)
1049 ndisks[i] = conf->disks[i];
1050 kfree(conf->disks);
1051 conf->disks = ndisks;
1052 } else
1053 err = -ENOMEM;
1054
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes)) {
1057 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058 list_del_init(&nsh->lru);
1059 for (i=conf->raid_disks; i < newsize; i++)
1060 if (nsh->dev[i].page == NULL) {
1061 struct page *p = alloc_page(GFP_NOIO);
1062 nsh->dev[i].page = p;
1063 if (!p)
1064 err = -ENOMEM;
1065 }
1066 release_stripe(nsh);
1067 }
1068 /* critical section pass, GFP_NOIO no longer needed */
1069
1070 conf->slab_cache = sc;
1071 conf->active_name = 1-conf->active_name;
1072 conf->pool_size = newsize;
1073 return err;
1074}
29269553 1075#endif
1da177e4 1076
3f294f4f 1077static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1078{
1079 struct stripe_head *sh;
1080
3f294f4f
N
1081 spin_lock_irq(&conf->device_lock);
1082 sh = get_free_stripe(conf);
1083 spin_unlock_irq(&conf->device_lock);
1084 if (!sh)
1085 return 0;
78bafebd 1086 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1087 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1088 kmem_cache_free(conf->slab_cache, sh);
1089 atomic_dec(&conf->active_stripes);
1090 return 1;
1091}
1092
1093static void shrink_stripes(raid5_conf_t *conf)
1094{
1095 while (drop_one_stripe(conf))
1096 ;
1097
29fc7e3e
N
1098 if (conf->slab_cache)
1099 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1100 conf->slab_cache = NULL;
1101}
1102
6712ecf8 1103static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1104{
99c0fb5f 1105 struct stripe_head *sh = bi->bi_private;
1da177e4 1106 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1107 int disks = sh->disks, i;
1da177e4 1108 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1109 char b[BDEVNAME_SIZE];
1110 mdk_rdev_t *rdev;
1da177e4 1111
1da177e4
LT
1112
1113 for (i=0 ; i<disks; i++)
1114 if (bi == &sh->dev[i].req)
1115 break;
1116
45b4233c
DW
1117 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1119 uptodate);
1120 if (i == disks) {
1121 BUG();
6712ecf8 1122 return;
1da177e4
LT
1123 }
1124
1125 if (uptodate) {
1da177e4 1126 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1127 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1128 rdev = conf->disks[i].rdev;
6be9d494
BS
1129 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130 " (%lu sectors at %llu on %s)\n",
1131 mdname(conf->mddev), STRIPE_SECTORS,
1132 (unsigned long long)(sh->sector
1133 + rdev->data_offset),
1134 bdevname(rdev->bdev, b));
4e5314b5
N
1135 clear_bit(R5_ReadError, &sh->dev[i].flags);
1136 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137 }
ba22dcbf
N
1138 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1140 } else {
d6950432 1141 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1142 int retry = 0;
d6950432
N
1143 rdev = conf->disks[i].rdev;
1144
1da177e4 1145 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1146 atomic_inc(&rdev->read_errors);
ba22dcbf 1147 if (conf->mddev->degraded)
6be9d494
BS
1148 printk_rl(KERN_WARNING
1149 "raid5:%s: read error not correctable "
1150 "(sector %llu on %s).\n",
1151 mdname(conf->mddev),
1152 (unsigned long long)(sh->sector
1153 + rdev->data_offset),
1154 bdn);
ba22dcbf 1155 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1156 /* Oh, no!!! */
6be9d494
BS
1157 printk_rl(KERN_WARNING
1158 "raid5:%s: read error NOT corrected!! "
1159 "(sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)(sh->sector
1162 + rdev->data_offset),
1163 bdn);
d6950432 1164 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1165 > conf->max_nr_stripes)
14f8d26b 1166 printk(KERN_WARNING
d6950432
N
1167 "raid5:%s: Too many read errors, failing device %s.\n",
1168 mdname(conf->mddev), bdn);
ba22dcbf
N
1169 else
1170 retry = 1;
1171 if (retry)
1172 set_bit(R5_ReadError, &sh->dev[i].flags);
1173 else {
4e5314b5
N
1174 clear_bit(R5_ReadError, &sh->dev[i].flags);
1175 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1176 md_error(conf->mddev, rdev);
ba22dcbf 1177 }
1da177e4
LT
1178 }
1179 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1180 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181 set_bit(STRIPE_HANDLE, &sh->state);
1182 release_stripe(sh);
1da177e4
LT
1183}
1184
d710e138 1185static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1186{
99c0fb5f 1187 struct stripe_head *sh = bi->bi_private;
1da177e4 1188 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1189 int disks = sh->disks, i;
1da177e4
LT
1190 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1da177e4
LT
1192 for (i=0 ; i<disks; i++)
1193 if (bi == &sh->dev[i].req)
1194 break;
1195
45b4233c 1196 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1197 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198 uptodate);
1199 if (i == disks) {
1200 BUG();
6712ecf8 1201 return;
1da177e4
LT
1202 }
1203
1da177e4
LT
1204 if (!uptodate)
1205 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1211 release_stripe(sh);
1da177e4
LT
1212}
1213
1214
784052ec 1215static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1216
784052ec 1217static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1218{
1219 struct r5dev *dev = &sh->dev[i];
1220
1221 bio_init(&dev->req);
1222 dev->req.bi_io_vec = &dev->vec;
1223 dev->req.bi_vcnt++;
1224 dev->req.bi_max_vecs++;
1225 dev->vec.bv_page = dev->page;
1226 dev->vec.bv_len = STRIPE_SIZE;
1227 dev->vec.bv_offset = 0;
1228
1229 dev->req.bi_sector = sh->sector;
1230 dev->req.bi_private = sh;
1231
1232 dev->flags = 0;
784052ec 1233 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1234}
1235
1236static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237{
1238 char b[BDEVNAME_SIZE];
1239 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1240 pr_debug("raid5: error called\n");
1da177e4 1241
b2d444d7 1242 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1244 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1247 mddev->degraded++;
c04be0aa 1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1249 /*
1250 * if recovery was running, make sure it aborts.
1251 */
dfc70645 1252 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1253 }
b2d444d7 1254 set_bit(Faulty, &rdev->flags);
d710e138
N
1255 printk(KERN_ALERT
1256 "raid5: Disk failure on %s, disabling device.\n"
1257 "raid5: Operation continuing on %d devices.\n",
1258 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1259 }
16a53ecc 1260}
1da177e4
LT
1261
1262/*
1263 * Input: a 'big' sector number,
1264 * Output: index of the data and parity disk, and the sector # in them.
1265 */
112bf897 1266static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1267 int previous, int *dd_idx,
1268 struct stripe_head *sh)
1da177e4
LT
1269{
1270 long stripe;
1271 unsigned long chunk_number;
1272 unsigned int chunk_offset;
911d4ee8 1273 int pd_idx, qd_idx;
67cc2b81 1274 int ddf_layout = 0;
1da177e4 1275 sector_t new_sector;
784052ec
N
1276 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1277 : (conf->chunk_size >> 9);
112bf897
N
1278 int raid_disks = previous ? conf->previous_raid_disks
1279 : conf->raid_disks;
1280 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1281
1282 /* First compute the information on this sector */
1283
1284 /*
1285 * Compute the chunk number and the sector offset inside the chunk
1286 */
1287 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1288 chunk_number = r_sector;
1289 BUG_ON(r_sector != chunk_number);
1290
1291 /*
1292 * Compute the stripe number
1293 */
1294 stripe = chunk_number / data_disks;
1295
1296 /*
1297 * Compute the data disk and parity disk indexes inside the stripe
1298 */
1299 *dd_idx = chunk_number % data_disks;
1300
1301 /*
1302 * Select the parity disk based on the user selected algorithm.
1303 */
911d4ee8 1304 pd_idx = qd_idx = ~0;
16a53ecc
N
1305 switch(conf->level) {
1306 case 4:
911d4ee8 1307 pd_idx = data_disks;
16a53ecc
N
1308 break;
1309 case 5:
1310 switch (conf->algorithm) {
1da177e4 1311 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1312 pd_idx = data_disks - stripe % raid_disks;
1313 if (*dd_idx >= pd_idx)
1da177e4
LT
1314 (*dd_idx)++;
1315 break;
1316 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1317 pd_idx = stripe % raid_disks;
1318 if (*dd_idx >= pd_idx)
1da177e4
LT
1319 (*dd_idx)++;
1320 break;
1321 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1322 pd_idx = data_disks - stripe % raid_disks;
1323 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1324 break;
1325 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1326 pd_idx = stripe % raid_disks;
1327 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1328 break;
99c0fb5f
N
1329 case ALGORITHM_PARITY_0:
1330 pd_idx = 0;
1331 (*dd_idx)++;
1332 break;
1333 case ALGORITHM_PARITY_N:
1334 pd_idx = data_disks;
1335 break;
1da177e4 1336 default:
14f8d26b 1337 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1338 conf->algorithm);
99c0fb5f 1339 BUG();
16a53ecc
N
1340 }
1341 break;
1342 case 6:
1343
16a53ecc
N
1344 switch (conf->algorithm) {
1345 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1346 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 qd_idx = pd_idx + 1;
1348 if (pd_idx == raid_disks-1) {
99c0fb5f 1349 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1350 qd_idx = 0;
1351 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1352 (*dd_idx) += 2; /* D D P Q D */
1353 break;
1354 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1355 pd_idx = stripe % raid_disks;
1356 qd_idx = pd_idx + 1;
1357 if (pd_idx == raid_disks-1) {
99c0fb5f 1358 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1359 qd_idx = 0;
1360 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1361 (*dd_idx) += 2; /* D D P Q D */
1362 break;
1363 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1364 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1365 qd_idx = (pd_idx + 1) % raid_disks;
1366 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1367 break;
1368 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1369 pd_idx = stripe % raid_disks;
1370 qd_idx = (pd_idx + 1) % raid_disks;
1371 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1372 break;
99c0fb5f
N
1373
1374 case ALGORITHM_PARITY_0:
1375 pd_idx = 0;
1376 qd_idx = 1;
1377 (*dd_idx) += 2;
1378 break;
1379 case ALGORITHM_PARITY_N:
1380 pd_idx = data_disks;
1381 qd_idx = data_disks + 1;
1382 break;
1383
1384 case ALGORITHM_ROTATING_ZERO_RESTART:
1385 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1386 * of blocks for computing Q is different.
1387 */
1388 pd_idx = stripe % raid_disks;
1389 qd_idx = pd_idx + 1;
1390 if (pd_idx == raid_disks-1) {
1391 (*dd_idx)++; /* Q D D D P */
1392 qd_idx = 0;
1393 } else if (*dd_idx >= pd_idx)
1394 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1395 ddf_layout = 1;
99c0fb5f
N
1396 break;
1397
1398 case ALGORITHM_ROTATING_N_RESTART:
1399 /* Same a left_asymmetric, by first stripe is
1400 * D D D P Q rather than
1401 * Q D D D P
1402 */
1403 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1404 qd_idx = pd_idx + 1;
1405 if (pd_idx == raid_disks-1) {
1406 (*dd_idx)++; /* Q D D D P */
1407 qd_idx = 0;
1408 } else if (*dd_idx >= pd_idx)
1409 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1410 ddf_layout = 1;
99c0fb5f
N
1411 break;
1412
1413 case ALGORITHM_ROTATING_N_CONTINUE:
1414 /* Same as left_symmetric but Q is before P */
1415 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1416 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1417 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1418 ddf_layout = 1;
99c0fb5f
N
1419 break;
1420
1421 case ALGORITHM_LEFT_ASYMMETRIC_6:
1422 /* RAID5 left_asymmetric, with Q on last device */
1423 pd_idx = data_disks - stripe % (raid_disks-1);
1424 if (*dd_idx >= pd_idx)
1425 (*dd_idx)++;
1426 qd_idx = raid_disks - 1;
1427 break;
1428
1429 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1430 pd_idx = stripe % (raid_disks-1);
1431 if (*dd_idx >= pd_idx)
1432 (*dd_idx)++;
1433 qd_idx = raid_disks - 1;
1434 break;
1435
1436 case ALGORITHM_LEFT_SYMMETRIC_6:
1437 pd_idx = data_disks - stripe % (raid_disks-1);
1438 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1439 qd_idx = raid_disks - 1;
1440 break;
1441
1442 case ALGORITHM_RIGHT_SYMMETRIC_6:
1443 pd_idx = stripe % (raid_disks-1);
1444 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1445 qd_idx = raid_disks - 1;
1446 break;
1447
1448 case ALGORITHM_PARITY_0_6:
1449 pd_idx = 0;
1450 (*dd_idx)++;
1451 qd_idx = raid_disks - 1;
1452 break;
1453
1454
16a53ecc 1455 default:
d710e138
N
1456 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1457 conf->algorithm);
99c0fb5f 1458 BUG();
16a53ecc
N
1459 }
1460 break;
1da177e4
LT
1461 }
1462
911d4ee8
N
1463 if (sh) {
1464 sh->pd_idx = pd_idx;
1465 sh->qd_idx = qd_idx;
67cc2b81 1466 sh->ddf_layout = ddf_layout;
911d4ee8 1467 }
1da177e4
LT
1468 /*
1469 * Finally, compute the new sector number
1470 */
1471 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1472 return new_sector;
1473}
1474
1475
784052ec 1476static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1477{
1478 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1479 int raid_disks = sh->disks;
1480 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1481 sector_t new_sector = sh->sector, check;
784052ec
N
1482 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1483 : (conf->chunk_size >> 9);
1da177e4
LT
1484 sector_t stripe;
1485 int chunk_offset;
911d4ee8 1486 int chunk_number, dummy1, dd_idx = i;
1da177e4 1487 sector_t r_sector;
911d4ee8 1488 struct stripe_head sh2;
1da177e4 1489
16a53ecc 1490
1da177e4
LT
1491 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1492 stripe = new_sector;
1493 BUG_ON(new_sector != stripe);
1494
16a53ecc
N
1495 if (i == sh->pd_idx)
1496 return 0;
1497 switch(conf->level) {
1498 case 4: break;
1499 case 5:
1500 switch (conf->algorithm) {
1da177e4
LT
1501 case ALGORITHM_LEFT_ASYMMETRIC:
1502 case ALGORITHM_RIGHT_ASYMMETRIC:
1503 if (i > sh->pd_idx)
1504 i--;
1505 break;
1506 case ALGORITHM_LEFT_SYMMETRIC:
1507 case ALGORITHM_RIGHT_SYMMETRIC:
1508 if (i < sh->pd_idx)
1509 i += raid_disks;
1510 i -= (sh->pd_idx + 1);
1511 break;
99c0fb5f
N
1512 case ALGORITHM_PARITY_0:
1513 i -= 1;
1514 break;
1515 case ALGORITHM_PARITY_N:
1516 break;
1da177e4 1517 default:
14f8d26b 1518 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc 1519 conf->algorithm);
99c0fb5f 1520 BUG();
16a53ecc
N
1521 }
1522 break;
1523 case 6:
d0dabf7e 1524 if (i == sh->qd_idx)
16a53ecc
N
1525 return 0; /* It is the Q disk */
1526 switch (conf->algorithm) {
1527 case ALGORITHM_LEFT_ASYMMETRIC:
1528 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1529 case ALGORITHM_ROTATING_ZERO_RESTART:
1530 case ALGORITHM_ROTATING_N_RESTART:
1531 if (sh->pd_idx == raid_disks-1)
1532 i--; /* Q D D D P */
16a53ecc
N
1533 else if (i > sh->pd_idx)
1534 i -= 2; /* D D P Q D */
1535 break;
1536 case ALGORITHM_LEFT_SYMMETRIC:
1537 case ALGORITHM_RIGHT_SYMMETRIC:
1538 if (sh->pd_idx == raid_disks-1)
1539 i--; /* Q D D D P */
1540 else {
1541 /* D D P Q D */
1542 if (i < sh->pd_idx)
1543 i += raid_disks;
1544 i -= (sh->pd_idx + 2);
1545 }
1546 break;
99c0fb5f
N
1547 case ALGORITHM_PARITY_0:
1548 i -= 2;
1549 break;
1550 case ALGORITHM_PARITY_N:
1551 break;
1552 case ALGORITHM_ROTATING_N_CONTINUE:
1553 if (sh->pd_idx == 0)
1554 i--; /* P D D D Q */
1555 else if (i > sh->pd_idx)
1556 i -= 2; /* D D Q P D */
1557 break;
1558 case ALGORITHM_LEFT_ASYMMETRIC_6:
1559 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1560 if (i > sh->pd_idx)
1561 i--;
1562 break;
1563 case ALGORITHM_LEFT_SYMMETRIC_6:
1564 case ALGORITHM_RIGHT_SYMMETRIC_6:
1565 if (i < sh->pd_idx)
1566 i += data_disks + 1;
1567 i -= (sh->pd_idx + 1);
1568 break;
1569 case ALGORITHM_PARITY_0_6:
1570 i -= 1;
1571 break;
16a53ecc 1572 default:
d710e138
N
1573 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1574 conf->algorithm);
99c0fb5f 1575 BUG();
16a53ecc
N
1576 }
1577 break;
1da177e4
LT
1578 }
1579
1580 chunk_number = stripe * data_disks + i;
1581 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1582
112bf897 1583 check = raid5_compute_sector(conf, r_sector,
784052ec 1584 previous, &dummy1, &sh2);
911d4ee8
N
1585 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1586 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1587 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1588 return 0;
1589 }
1590 return r_sector;
1591}
1592
1593
1594
1595/*
16a53ecc
N
1596 * Copy data between a page in the stripe cache, and one or more bion
1597 * The page could align with the middle of the bio, or there could be
1598 * several bion, each with several bio_vecs, which cover part of the page
1599 * Multiple bion are linked together on bi_next. There may be extras
1600 * at the end of this list. We ignore them.
1da177e4
LT
1601 */
1602static void copy_data(int frombio, struct bio *bio,
1603 struct page *page,
1604 sector_t sector)
1605{
1606 char *pa = page_address(page);
1607 struct bio_vec *bvl;
1608 int i;
1609 int page_offset;
1610
1611 if (bio->bi_sector >= sector)
1612 page_offset = (signed)(bio->bi_sector - sector) * 512;
1613 else
1614 page_offset = (signed)(sector - bio->bi_sector) * -512;
1615 bio_for_each_segment(bvl, bio, i) {
1616 int len = bio_iovec_idx(bio,i)->bv_len;
1617 int clen;
1618 int b_offset = 0;
1619
1620 if (page_offset < 0) {
1621 b_offset = -page_offset;
1622 page_offset += b_offset;
1623 len -= b_offset;
1624 }
1625
1626 if (len > 0 && page_offset + len > STRIPE_SIZE)
1627 clen = STRIPE_SIZE - page_offset;
1628 else clen = len;
16a53ecc 1629
1da177e4
LT
1630 if (clen > 0) {
1631 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1632 if (frombio)
1633 memcpy(pa+page_offset, ba+b_offset, clen);
1634 else
1635 memcpy(ba+b_offset, pa+page_offset, clen);
1636 __bio_kunmap_atomic(ba, KM_USER0);
1637 }
1638 if (clen < len) /* hit end of page */
1639 break;
1640 page_offset += len;
1641 }
1642}
1643
9bc89cd8
DW
1644#define check_xor() do { \
1645 if (count == MAX_XOR_BLOCKS) { \
1646 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1647 count = 0; \
1648 } \
1da177e4
LT
1649 } while(0)
1650
16a53ecc
N
1651static void compute_parity6(struct stripe_head *sh, int method)
1652{
bff61975 1653 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1654 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1655 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1656 struct bio *chosen;
1657 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1658 void *ptrs[syndrome_disks+2];
16a53ecc 1659
d0dabf7e
N
1660 pd_idx = sh->pd_idx;
1661 qd_idx = sh->qd_idx;
1662 d0_idx = raid6_d0(sh);
16a53ecc 1663
45b4233c 1664 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1665 (unsigned long long)sh->sector, method);
1666
1667 switch(method) {
1668 case READ_MODIFY_WRITE:
1669 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1670 case RECONSTRUCT_WRITE:
1671 for (i= disks; i-- ;)
1672 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1673 chosen = sh->dev[i].towrite;
1674 sh->dev[i].towrite = NULL;
1675
1676 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1677 wake_up(&conf->wait_for_overlap);
1678
52e5f9d1 1679 BUG_ON(sh->dev[i].written);
16a53ecc
N
1680 sh->dev[i].written = chosen;
1681 }
1682 break;
1683 case CHECK_PARITY:
1684 BUG(); /* Not implemented yet */
1685 }
1686
1687 for (i = disks; i--;)
1688 if (sh->dev[i].written) {
1689 sector_t sector = sh->dev[i].sector;
1690 struct bio *wbi = sh->dev[i].written;
1691 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1692 copy_data(1, wbi, sh->dev[i].page, sector);
1693 wbi = r5_next_bio(wbi, sector);
1694 }
1695
1696 set_bit(R5_LOCKED, &sh->dev[i].flags);
1697 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1698 }
1699
d0dabf7e 1700 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
1701
1702 for (i = 0; i < disks; i++)
1703 ptrs[i] = (void *)raid6_empty_zero_page;
1704
d0dabf7e
N
1705 count = 0;
1706 i = d0_idx;
1707 do {
67cc2b81
N
1708 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1709
d0dabf7e 1710 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1711 if (slot < syndrome_disks &&
d0dabf7e
N
1712 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1713 printk(KERN_ERR "block %d/%d not uptodate "
1714 "on parity calc\n", i, count);
1715 BUG();
1716 }
67cc2b81 1717
d0dabf7e
N
1718 i = raid6_next_disk(i, disks);
1719 } while (i != d0_idx);
67cc2b81 1720 BUG_ON(count != syndrome_disks);
16a53ecc 1721
67cc2b81 1722 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
1723
1724 switch(method) {
1725 case RECONSTRUCT_WRITE:
1726 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1727 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1728 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1729 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1730 break;
1731 case UPDATE_PARITY:
1732 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1733 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1734 break;
1735 }
1736}
1737
1738
1739/* Compute one missing block */
1740static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1741{
f416885e 1742 int i, count, disks = sh->disks;
9bc89cd8 1743 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1744 int qd_idx = sh->qd_idx;
16a53ecc 1745
45b4233c 1746 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1747 (unsigned long long)sh->sector, dd_idx);
1748
1749 if ( dd_idx == qd_idx ) {
1750 /* We're actually computing the Q drive */
1751 compute_parity6(sh, UPDATE_PARITY);
1752 } else {
9bc89cd8
DW
1753 dest = page_address(sh->dev[dd_idx].page);
1754 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1755 count = 0;
16a53ecc
N
1756 for (i = disks ; i--; ) {
1757 if (i == dd_idx || i == qd_idx)
1758 continue;
1759 p = page_address(sh->dev[i].page);
1760 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1761 ptr[count++] = p;
1762 else
1763 printk("compute_block() %d, stripe %llu, %d"
1764 " not present\n", dd_idx,
1765 (unsigned long long)sh->sector, i);
1766
1767 check_xor();
1768 }
9bc89cd8
DW
1769 if (count)
1770 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1771 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1772 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1773 }
1774}
1775
1776/* Compute two missing blocks */
1777static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1778{
f416885e 1779 int i, count, disks = sh->disks;
67cc2b81 1780 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
1781 int d0_idx = raid6_d0(sh);
1782 int faila = -1, failb = -1;
1783 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1784 void *ptrs[syndrome_disks+2];
16a53ecc 1785
67cc2b81
N
1786 for (i = 0; i < disks ; i++)
1787 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
1788 count = 0;
1789 i = d0_idx;
1790 do {
67cc2b81
N
1791 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1792
d0dabf7e 1793 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1794
d0dabf7e
N
1795 if (i == dd_idx1)
1796 faila = slot;
1797 if (i == dd_idx2)
1798 failb = slot;
1799 i = raid6_next_disk(i, disks);
1800 } while (i != d0_idx);
67cc2b81 1801 BUG_ON(count != syndrome_disks);
16a53ecc
N
1802
1803 BUG_ON(faila == failb);
1804 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1805
45b4233c 1806 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1807 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1808 faila, failb);
16a53ecc 1809
67cc2b81 1810 if (failb == syndrome_disks+1) {
16a53ecc 1811 /* Q disk is one of the missing disks */
67cc2b81 1812 if (faila == syndrome_disks) {
16a53ecc
N
1813 /* Missing P+Q, just recompute */
1814 compute_parity6(sh, UPDATE_PARITY);
1815 return;
1816 } else {
1817 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1818 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1819 dd_idx2 : dd_idx1),
1820 0);
16a53ecc
N
1821 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1822 return;
1823 }
1824 }
1825
d0dabf7e 1826 /* We're missing D+P or D+D; */
67cc2b81 1827 if (failb == syndrome_disks) {
d0dabf7e 1828 /* We're missing D+P. */
67cc2b81 1829 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
1830 } else {
1831 /* We're missing D+D. */
67cc2b81
N
1832 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1833 ptrs);
16a53ecc 1834 }
d0dabf7e
N
1835
1836 /* Both the above update both missing blocks */
1837 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1838 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1839}
1840
600aa109 1841static void
1fe797e6 1842schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1843 int rcw, int expand)
e33129d8
DW
1844{
1845 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1846
1847 if (rcw) {
1848 /* if we are not expanding this is a proper write request, and
1849 * there will be bios with new data to be drained into the
1850 * stripe cache
1851 */
1852 if (!expand) {
600aa109
DW
1853 sh->reconstruct_state = reconstruct_state_drain_run;
1854 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1855 } else
1856 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1857
600aa109 1858 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1859
1860 for (i = disks; i--; ) {
1861 struct r5dev *dev = &sh->dev[i];
1862
1863 if (dev->towrite) {
1864 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1865 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1866 if (!expand)
1867 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1868 s->locked++;
e33129d8
DW
1869 }
1870 }
600aa109 1871 if (s->locked + 1 == disks)
8b3e6cdc
DW
1872 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1873 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1874 } else {
1875 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1876 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1877
d8ee0728 1878 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1879 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1880 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1881 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1882
1883 for (i = disks; i--; ) {
1884 struct r5dev *dev = &sh->dev[i];
1885 if (i == pd_idx)
1886 continue;
1887
e33129d8
DW
1888 if (dev->towrite &&
1889 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1890 test_bit(R5_Wantcompute, &dev->flags))) {
1891 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1892 set_bit(R5_LOCKED, &dev->flags);
1893 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1894 s->locked++;
e33129d8
DW
1895 }
1896 }
1897 }
1898
1899 /* keep the parity disk locked while asynchronous operations
1900 * are in flight
1901 */
1902 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1903 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1904 s->locked++;
e33129d8 1905
600aa109 1906 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1907 __func__, (unsigned long long)sh->sector,
600aa109 1908 s->locked, s->ops_request);
e33129d8 1909}
16a53ecc 1910
1da177e4
LT
1911/*
1912 * Each stripe/dev can have one or more bion attached.
16a53ecc 1913 * toread/towrite point to the first in a chain.
1da177e4
LT
1914 * The bi_next chain must be in order.
1915 */
1916static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1917{
1918 struct bio **bip;
1919 raid5_conf_t *conf = sh->raid_conf;
72626685 1920 int firstwrite=0;
1da177e4 1921
45b4233c 1922 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1923 (unsigned long long)bi->bi_sector,
1924 (unsigned long long)sh->sector);
1925
1926
1927 spin_lock(&sh->lock);
1928 spin_lock_irq(&conf->device_lock);
72626685 1929 if (forwrite) {
1da177e4 1930 bip = &sh->dev[dd_idx].towrite;
72626685
N
1931 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1932 firstwrite = 1;
1933 } else
1da177e4
LT
1934 bip = &sh->dev[dd_idx].toread;
1935 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1936 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1937 goto overlap;
1938 bip = & (*bip)->bi_next;
1939 }
1940 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1941 goto overlap;
1942
78bafebd 1943 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1944 if (*bip)
1945 bi->bi_next = *bip;
1946 *bip = bi;
960e739d 1947 bi->bi_phys_segments++;
1da177e4
LT
1948 spin_unlock_irq(&conf->device_lock);
1949 spin_unlock(&sh->lock);
1950
45b4233c 1951 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1952 (unsigned long long)bi->bi_sector,
1953 (unsigned long long)sh->sector, dd_idx);
1954
72626685 1955 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1956 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1957 STRIPE_SECTORS, 0);
ae3c20cc 1958 sh->bm_seq = conf->seq_flush+1;
72626685
N
1959 set_bit(STRIPE_BIT_DELAY, &sh->state);
1960 }
1961
1da177e4
LT
1962 if (forwrite) {
1963 /* check if page is covered */
1964 sector_t sector = sh->dev[dd_idx].sector;
1965 for (bi=sh->dev[dd_idx].towrite;
1966 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1967 bi && bi->bi_sector <= sector;
1968 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1969 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1970 sector = bi->bi_sector + (bi->bi_size>>9);
1971 }
1972 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1973 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1974 }
1975 return 1;
1976
1977 overlap:
1978 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1979 spin_unlock_irq(&conf->device_lock);
1980 spin_unlock(&sh->lock);
1981 return 0;
1982}
1983
29269553
N
1984static void end_reshape(raid5_conf_t *conf);
1985
16a53ecc
N
1986static int page_is_zero(struct page *p)
1987{
1988 char *a = page_address(p);
1989 return ((*(u32*)a) == 0 &&
1990 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1991}
1992
911d4ee8
N
1993static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1994 struct stripe_head *sh)
ccfcc3c1 1995{
784052ec
N
1996 int sectors_per_chunk =
1997 previous ? (conf->prev_chunk >> 9)
1998 : (conf->chunk_size >> 9);
911d4ee8 1999 int dd_idx;
2d2063ce 2000 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2001 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2002
112bf897
N
2003 raid5_compute_sector(conf,
2004 stripe * (disks - conf->max_degraded)
b875e531 2005 *sectors_per_chunk + chunk_offset,
112bf897 2006 previous,
911d4ee8 2007 &dd_idx, sh);
ccfcc3c1
N
2008}
2009
a4456856 2010static void
1fe797e6 2011handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2012 struct stripe_head_state *s, int disks,
2013 struct bio **return_bi)
2014{
2015 int i;
2016 for (i = disks; i--; ) {
2017 struct bio *bi;
2018 int bitmap_end = 0;
2019
2020 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2021 mdk_rdev_t *rdev;
2022 rcu_read_lock();
2023 rdev = rcu_dereference(conf->disks[i].rdev);
2024 if (rdev && test_bit(In_sync, &rdev->flags))
2025 /* multiple read failures in one stripe */
2026 md_error(conf->mddev, rdev);
2027 rcu_read_unlock();
2028 }
2029 spin_lock_irq(&conf->device_lock);
2030 /* fail all writes first */
2031 bi = sh->dev[i].towrite;
2032 sh->dev[i].towrite = NULL;
2033 if (bi) {
2034 s->to_write--;
2035 bitmap_end = 1;
2036 }
2037
2038 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2039 wake_up(&conf->wait_for_overlap);
2040
2041 while (bi && bi->bi_sector <
2042 sh->dev[i].sector + STRIPE_SECTORS) {
2043 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2044 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2045 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2046 md_write_end(conf->mddev);
2047 bi->bi_next = *return_bi;
2048 *return_bi = bi;
2049 }
2050 bi = nextbi;
2051 }
2052 /* and fail all 'written' */
2053 bi = sh->dev[i].written;
2054 sh->dev[i].written = NULL;
2055 if (bi) bitmap_end = 1;
2056 while (bi && bi->bi_sector <
2057 sh->dev[i].sector + STRIPE_SECTORS) {
2058 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2059 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2060 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2061 md_write_end(conf->mddev);
2062 bi->bi_next = *return_bi;
2063 *return_bi = bi;
2064 }
2065 bi = bi2;
2066 }
2067
b5e98d65
DW
2068 /* fail any reads if this device is non-operational and
2069 * the data has not reached the cache yet.
2070 */
2071 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2072 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2073 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2074 bi = sh->dev[i].toread;
2075 sh->dev[i].toread = NULL;
2076 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2077 wake_up(&conf->wait_for_overlap);
2078 if (bi) s->to_read--;
2079 while (bi && bi->bi_sector <
2080 sh->dev[i].sector + STRIPE_SECTORS) {
2081 struct bio *nextbi =
2082 r5_next_bio(bi, sh->dev[i].sector);
2083 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2084 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2085 bi->bi_next = *return_bi;
2086 *return_bi = bi;
2087 }
2088 bi = nextbi;
2089 }
2090 }
2091 spin_unlock_irq(&conf->device_lock);
2092 if (bitmap_end)
2093 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2094 STRIPE_SECTORS, 0, 0);
2095 }
2096
8b3e6cdc
DW
2097 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2098 if (atomic_dec_and_test(&conf->pending_full_writes))
2099 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2100}
2101
1fe797e6
DW
2102/* fetch_block5 - checks the given member device to see if its data needs
2103 * to be read or computed to satisfy a request.
2104 *
2105 * Returns 1 when no more member devices need to be checked, otherwise returns
2106 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2107 */
1fe797e6
DW
2108static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2109 int disk_idx, int disks)
f38e1219
DW
2110{
2111 struct r5dev *dev = &sh->dev[disk_idx];
2112 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2113
f38e1219
DW
2114 /* is the data in this block needed, and can we get it? */
2115 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2116 !test_bit(R5_UPTODATE, &dev->flags) &&
2117 (dev->toread ||
2118 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2119 s->syncing || s->expanding ||
2120 (s->failed &&
2121 (failed_dev->toread ||
2122 (failed_dev->towrite &&
2123 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2124 /* We would like to get this block, possibly by computing it,
2125 * otherwise read it if the backing disk is insync
f38e1219
DW
2126 */
2127 if ((s->uptodate == disks - 1) &&
ecc65c9b 2128 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2129 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2130 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2131 set_bit(R5_Wantcompute, &dev->flags);
2132 sh->ops.target = disk_idx;
2133 s->req_compute = 1;
f38e1219
DW
2134 /* Careful: from this point on 'uptodate' is in the eye
2135 * of raid5_run_ops which services 'compute' operations
2136 * before writes. R5_Wantcompute flags a block that will
2137 * be R5_UPTODATE by the time it is needed for a
2138 * subsequent operation.
2139 */
2140 s->uptodate++;
1fe797e6 2141 return 1; /* uptodate + compute == disks */
7a1fc53c 2142 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2143 set_bit(R5_LOCKED, &dev->flags);
2144 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2145 s->locked++;
2146 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2147 s->syncing);
2148 }
2149 }
2150
1fe797e6 2151 return 0;
f38e1219
DW
2152}
2153
1fe797e6
DW
2154/**
2155 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2156 */
2157static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2158 struct stripe_head_state *s, int disks)
2159{
2160 int i;
f38e1219 2161
f38e1219
DW
2162 /* look for blocks to read/compute, skip this if a compute
2163 * is already in flight, or if the stripe contents are in the
2164 * midst of changing due to a write
2165 */
976ea8d4 2166 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2167 !sh->reconstruct_state)
f38e1219 2168 for (i = disks; i--; )
1fe797e6 2169 if (fetch_block5(sh, s, i, disks))
f38e1219 2170 break;
a4456856
DW
2171 set_bit(STRIPE_HANDLE, &sh->state);
2172}
2173
1fe797e6 2174static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2175 struct stripe_head_state *s, struct r6_state *r6s,
2176 int disks)
2177{
2178 int i;
2179 for (i = disks; i--; ) {
2180 struct r5dev *dev = &sh->dev[i];
2181 if (!test_bit(R5_LOCKED, &dev->flags) &&
2182 !test_bit(R5_UPTODATE, &dev->flags) &&
2183 (dev->toread || (dev->towrite &&
2184 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2185 s->syncing || s->expanding ||
2186 (s->failed >= 1 &&
2187 (sh->dev[r6s->failed_num[0]].toread ||
2188 s->to_write)) ||
2189 (s->failed >= 2 &&
2190 (sh->dev[r6s->failed_num[1]].toread ||
2191 s->to_write)))) {
2192 /* we would like to get this block, possibly
2193 * by computing it, but we might not be able to
2194 */
c337869d
DW
2195 if ((s->uptodate == disks - 1) &&
2196 (s->failed && (i == r6s->failed_num[0] ||
2197 i == r6s->failed_num[1]))) {
45b4233c 2198 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2199 (unsigned long long)sh->sector, i);
2200 compute_block_1(sh, i, 0);
2201 s->uptodate++;
2202 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2203 /* Computing 2-failure is *very* expensive; only
2204 * do it if failed >= 2
2205 */
2206 int other;
2207 for (other = disks; other--; ) {
2208 if (other == i)
2209 continue;
2210 if (!test_bit(R5_UPTODATE,
2211 &sh->dev[other].flags))
2212 break;
2213 }
2214 BUG_ON(other < 0);
45b4233c 2215 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2216 (unsigned long long)sh->sector,
2217 i, other);
2218 compute_block_2(sh, i, other);
2219 s->uptodate += 2;
2220 } else if (test_bit(R5_Insync, &dev->flags)) {
2221 set_bit(R5_LOCKED, &dev->flags);
2222 set_bit(R5_Wantread, &dev->flags);
2223 s->locked++;
45b4233c 2224 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2225 i, s->syncing);
2226 }
2227 }
2228 }
2229 set_bit(STRIPE_HANDLE, &sh->state);
2230}
2231
2232
1fe797e6 2233/* handle_stripe_clean_event
a4456856
DW
2234 * any written block on an uptodate or failed drive can be returned.
2235 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2236 * never LOCKED, so we don't need to test 'failed' directly.
2237 */
1fe797e6 2238static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2239 struct stripe_head *sh, int disks, struct bio **return_bi)
2240{
2241 int i;
2242 struct r5dev *dev;
2243
2244 for (i = disks; i--; )
2245 if (sh->dev[i].written) {
2246 dev = &sh->dev[i];
2247 if (!test_bit(R5_LOCKED, &dev->flags) &&
2248 test_bit(R5_UPTODATE, &dev->flags)) {
2249 /* We can return any write requests */
2250 struct bio *wbi, *wbi2;
2251 int bitmap_end = 0;
45b4233c 2252 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2253 spin_lock_irq(&conf->device_lock);
2254 wbi = dev->written;
2255 dev->written = NULL;
2256 while (wbi && wbi->bi_sector <
2257 dev->sector + STRIPE_SECTORS) {
2258 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2259 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2260 md_write_end(conf->mddev);
2261 wbi->bi_next = *return_bi;
2262 *return_bi = wbi;
2263 }
2264 wbi = wbi2;
2265 }
2266 if (dev->towrite == NULL)
2267 bitmap_end = 1;
2268 spin_unlock_irq(&conf->device_lock);
2269 if (bitmap_end)
2270 bitmap_endwrite(conf->mddev->bitmap,
2271 sh->sector,
2272 STRIPE_SECTORS,
2273 !test_bit(STRIPE_DEGRADED, &sh->state),
2274 0);
2275 }
2276 }
8b3e6cdc
DW
2277
2278 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2279 if (atomic_dec_and_test(&conf->pending_full_writes))
2280 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2281}
2282
1fe797e6 2283static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2284 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2285{
2286 int rmw = 0, rcw = 0, i;
2287 for (i = disks; i--; ) {
2288 /* would I have to read this buffer for read_modify_write */
2289 struct r5dev *dev = &sh->dev[i];
2290 if ((dev->towrite || i == sh->pd_idx) &&
2291 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2292 !(test_bit(R5_UPTODATE, &dev->flags) ||
2293 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2294 if (test_bit(R5_Insync, &dev->flags))
2295 rmw++;
2296 else
2297 rmw += 2*disks; /* cannot read it */
2298 }
2299 /* Would I have to read this buffer for reconstruct_write */
2300 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2301 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2302 !(test_bit(R5_UPTODATE, &dev->flags) ||
2303 test_bit(R5_Wantcompute, &dev->flags))) {
2304 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2305 else
2306 rcw += 2*disks;
2307 }
2308 }
45b4233c 2309 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2310 (unsigned long long)sh->sector, rmw, rcw);
2311 set_bit(STRIPE_HANDLE, &sh->state);
2312 if (rmw < rcw && rmw > 0)
2313 /* prefer read-modify-write, but need to get some data */
2314 for (i = disks; i--; ) {
2315 struct r5dev *dev = &sh->dev[i];
2316 if ((dev->towrite || i == sh->pd_idx) &&
2317 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2318 !(test_bit(R5_UPTODATE, &dev->flags) ||
2319 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2320 test_bit(R5_Insync, &dev->flags)) {
2321 if (
2322 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2323 pr_debug("Read_old block "
a4456856
DW
2324 "%d for r-m-w\n", i);
2325 set_bit(R5_LOCKED, &dev->flags);
2326 set_bit(R5_Wantread, &dev->flags);
2327 s->locked++;
2328 } else {
2329 set_bit(STRIPE_DELAYED, &sh->state);
2330 set_bit(STRIPE_HANDLE, &sh->state);
2331 }
2332 }
2333 }
2334 if (rcw <= rmw && rcw > 0)
2335 /* want reconstruct write, but need to get some data */
2336 for (i = disks; i--; ) {
2337 struct r5dev *dev = &sh->dev[i];
2338 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2339 i != sh->pd_idx &&
2340 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2341 !(test_bit(R5_UPTODATE, &dev->flags) ||
2342 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2343 test_bit(R5_Insync, &dev->flags)) {
2344 if (
2345 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2346 pr_debug("Read_old block "
a4456856
DW
2347 "%d for Reconstruct\n", i);
2348 set_bit(R5_LOCKED, &dev->flags);
2349 set_bit(R5_Wantread, &dev->flags);
2350 s->locked++;
2351 } else {
2352 set_bit(STRIPE_DELAYED, &sh->state);
2353 set_bit(STRIPE_HANDLE, &sh->state);
2354 }
2355 }
2356 }
2357 /* now if nothing is locked, and if we have enough data,
2358 * we can start a write request
2359 */
f38e1219
DW
2360 /* since handle_stripe can be called at any time we need to handle the
2361 * case where a compute block operation has been submitted and then a
2362 * subsequent call wants to start a write request. raid5_run_ops only
2363 * handles the case where compute block and postxor are requested
2364 * simultaneously. If this is not the case then new writes need to be
2365 * held off until the compute completes.
2366 */
976ea8d4
DW
2367 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2368 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2369 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2370 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2371}
2372
1fe797e6 2373static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2374 struct stripe_head *sh, struct stripe_head_state *s,
2375 struct r6_state *r6s, int disks)
2376{
2377 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2378 int qd_idx = sh->qd_idx;
a4456856
DW
2379 for (i = disks; i--; ) {
2380 struct r5dev *dev = &sh->dev[i];
2381 /* Would I have to read this buffer for reconstruct_write */
2382 if (!test_bit(R5_OVERWRITE, &dev->flags)
2383 && i != pd_idx && i != qd_idx
2384 && (!test_bit(R5_LOCKED, &dev->flags)
2385 ) &&
2386 !test_bit(R5_UPTODATE, &dev->flags)) {
2387 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2388 else {
45b4233c 2389 pr_debug("raid6: must_compute: "
a4456856
DW
2390 "disk %d flags=%#lx\n", i, dev->flags);
2391 must_compute++;
2392 }
2393 }
2394 }
45b4233c 2395 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2396 (unsigned long long)sh->sector, rcw, must_compute);
2397 set_bit(STRIPE_HANDLE, &sh->state);
2398
2399 if (rcw > 0)
2400 /* want reconstruct write, but need to get some data */
2401 for (i = disks; i--; ) {
2402 struct r5dev *dev = &sh->dev[i];
2403 if (!test_bit(R5_OVERWRITE, &dev->flags)
2404 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2405 && !test_bit(R5_LOCKED, &dev->flags) &&
2406 !test_bit(R5_UPTODATE, &dev->flags) &&
2407 test_bit(R5_Insync, &dev->flags)) {
2408 if (
2409 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2410 pr_debug("Read_old stripe %llu "
a4456856
DW
2411 "block %d for Reconstruct\n",
2412 (unsigned long long)sh->sector, i);
2413 set_bit(R5_LOCKED, &dev->flags);
2414 set_bit(R5_Wantread, &dev->flags);
2415 s->locked++;
2416 } else {
45b4233c 2417 pr_debug("Request delayed stripe %llu "
a4456856
DW
2418 "block %d for Reconstruct\n",
2419 (unsigned long long)sh->sector, i);
2420 set_bit(STRIPE_DELAYED, &sh->state);
2421 set_bit(STRIPE_HANDLE, &sh->state);
2422 }
2423 }
2424 }
2425 /* now if nothing is locked, and if we have enough data, we can start a
2426 * write request
2427 */
2428 if (s->locked == 0 && rcw == 0 &&
2429 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2430 if (must_compute > 0) {
2431 /* We have failed blocks and need to compute them */
2432 switch (s->failed) {
2433 case 0:
2434 BUG();
2435 case 1:
2436 compute_block_1(sh, r6s->failed_num[0], 0);
2437 break;
2438 case 2:
2439 compute_block_2(sh, r6s->failed_num[0],
2440 r6s->failed_num[1]);
2441 break;
2442 default: /* This request should have been failed? */
2443 BUG();
2444 }
2445 }
2446
45b4233c 2447 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2448 (unsigned long long)sh->sector);
2449 compute_parity6(sh, RECONSTRUCT_WRITE);
2450 /* now every locked buffer is ready to be written */
2451 for (i = disks; i--; )
2452 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2453 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2454 (unsigned long long)sh->sector, i);
2455 s->locked++;
2456 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2457 }
8b3e6cdc
DW
2458 if (s->locked == disks)
2459 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2460 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2461 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2462 set_bit(STRIPE_INSYNC, &sh->state);
2463
2464 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2465 atomic_dec(&conf->preread_active_stripes);
2466 if (atomic_read(&conf->preread_active_stripes) <
2467 IO_THRESHOLD)
2468 md_wakeup_thread(conf->mddev->thread);
2469 }
2470 }
2471}
2472
2473static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2474 struct stripe_head_state *s, int disks)
2475{
ecc65c9b 2476 struct r5dev *dev = NULL;
bd2ab670 2477
a4456856 2478 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2479
ecc65c9b
DW
2480 switch (sh->check_state) {
2481 case check_state_idle:
2482 /* start a new check operation if there are no failures */
bd2ab670 2483 if (s->failed == 0) {
bd2ab670 2484 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2485 sh->check_state = check_state_run;
2486 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2487 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2488 s->uptodate--;
ecc65c9b 2489 break;
bd2ab670 2490 }
ecc65c9b
DW
2491 dev = &sh->dev[s->failed_num];
2492 /* fall through */
2493 case check_state_compute_result:
2494 sh->check_state = check_state_idle;
2495 if (!dev)
2496 dev = &sh->dev[sh->pd_idx];
2497
2498 /* check that a write has not made the stripe insync */
2499 if (test_bit(STRIPE_INSYNC, &sh->state))
2500 break;
c8894419 2501
a4456856 2502 /* either failed parity check, or recovery is happening */
a4456856
DW
2503 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2504 BUG_ON(s->uptodate != disks);
2505
2506 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2507 s->locked++;
a4456856 2508 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2509
a4456856 2510 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2511 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2512 break;
2513 case check_state_run:
2514 break; /* we will be called again upon completion */
2515 case check_state_check_result:
2516 sh->check_state = check_state_idle;
2517
2518 /* if a failure occurred during the check operation, leave
2519 * STRIPE_INSYNC not set and let the stripe be handled again
2520 */
2521 if (s->failed)
2522 break;
2523
2524 /* handle a successful check operation, if parity is correct
2525 * we are done. Otherwise update the mismatch count and repair
2526 * parity if !MD_RECOVERY_CHECK
2527 */
2528 if (sh->ops.zero_sum_result == 0)
2529 /* parity is correct (on disc,
2530 * not in buffer any more)
2531 */
2532 set_bit(STRIPE_INSYNC, &sh->state);
2533 else {
2534 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2535 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2536 /* don't try to repair!! */
2537 set_bit(STRIPE_INSYNC, &sh->state);
2538 else {
2539 sh->check_state = check_state_compute_run;
976ea8d4 2540 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2541 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2542 set_bit(R5_Wantcompute,
2543 &sh->dev[sh->pd_idx].flags);
2544 sh->ops.target = sh->pd_idx;
2545 s->uptodate++;
2546 }
2547 }
2548 break;
2549 case check_state_compute_run:
2550 break;
2551 default:
2552 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2553 __func__, sh->check_state,
2554 (unsigned long long) sh->sector);
2555 BUG();
a4456856
DW
2556 }
2557}
2558
2559
2560static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2561 struct stripe_head_state *s,
2562 struct r6_state *r6s, struct page *tmp_page,
2563 int disks)
2564{
2565 int update_p = 0, update_q = 0;
2566 struct r5dev *dev;
2567 int pd_idx = sh->pd_idx;
34e04e87 2568 int qd_idx = sh->qd_idx;
a4456856
DW
2569
2570 set_bit(STRIPE_HANDLE, &sh->state);
2571
2572 BUG_ON(s->failed > 2);
2573 BUG_ON(s->uptodate < disks);
2574 /* Want to check and possibly repair P and Q.
2575 * However there could be one 'failed' device, in which
2576 * case we can only check one of them, possibly using the
2577 * other to generate missing data
2578 */
2579
2580 /* If !tmp_page, we cannot do the calculations,
2581 * but as we have set STRIPE_HANDLE, we will soon be called
2582 * by stripe_handle with a tmp_page - just wait until then.
2583 */
2584 if (tmp_page) {
2585 if (s->failed == r6s->q_failed) {
2586 /* The only possible failed device holds 'Q', so it
2587 * makes sense to check P (If anything else were failed,
2588 * we would have used P to recreate it).
2589 */
2590 compute_block_1(sh, pd_idx, 1);
2591 if (!page_is_zero(sh->dev[pd_idx].page)) {
2592 compute_block_1(sh, pd_idx, 0);
2593 update_p = 1;
2594 }
2595 }
2596 if (!r6s->q_failed && s->failed < 2) {
2597 /* q is not failed, and we didn't use it to generate
2598 * anything, so it makes sense to check it
2599 */
2600 memcpy(page_address(tmp_page),
2601 page_address(sh->dev[qd_idx].page),
2602 STRIPE_SIZE);
2603 compute_parity6(sh, UPDATE_PARITY);
2604 if (memcmp(page_address(tmp_page),
2605 page_address(sh->dev[qd_idx].page),
2606 STRIPE_SIZE) != 0) {
2607 clear_bit(STRIPE_INSYNC, &sh->state);
2608 update_q = 1;
2609 }
2610 }
2611 if (update_p || update_q) {
2612 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2613 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2614 /* don't try to repair!! */
2615 update_p = update_q = 0;
2616 }
2617
2618 /* now write out any block on a failed drive,
2619 * or P or Q if they need it
2620 */
2621
2622 if (s->failed == 2) {
2623 dev = &sh->dev[r6s->failed_num[1]];
2624 s->locked++;
2625 set_bit(R5_LOCKED, &dev->flags);
2626 set_bit(R5_Wantwrite, &dev->flags);
2627 }
2628 if (s->failed >= 1) {
2629 dev = &sh->dev[r6s->failed_num[0]];
2630 s->locked++;
2631 set_bit(R5_LOCKED, &dev->flags);
2632 set_bit(R5_Wantwrite, &dev->flags);
2633 }
2634
2635 if (update_p) {
2636 dev = &sh->dev[pd_idx];
2637 s->locked++;
2638 set_bit(R5_LOCKED, &dev->flags);
2639 set_bit(R5_Wantwrite, &dev->flags);
2640 }
2641 if (update_q) {
2642 dev = &sh->dev[qd_idx];
2643 s->locked++;
2644 set_bit(R5_LOCKED, &dev->flags);
2645 set_bit(R5_Wantwrite, &dev->flags);
2646 }
2647 clear_bit(STRIPE_DEGRADED, &sh->state);
2648
2649 set_bit(STRIPE_INSYNC, &sh->state);
2650 }
2651}
2652
2653static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2654 struct r6_state *r6s)
2655{
2656 int i;
2657
2658 /* We have read all the blocks in this stripe and now we need to
2659 * copy some of them into a target stripe for expand.
2660 */
f0a50d37 2661 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2662 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2663 for (i = 0; i < sh->disks; i++)
34e04e87 2664 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2665 int dd_idx, j;
a4456856
DW
2666 struct stripe_head *sh2;
2667
784052ec 2668 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2669 sector_t s = raid5_compute_sector(conf, bn, 0,
2670 &dd_idx, NULL);
b5663ba4 2671 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
2672 if (sh2 == NULL)
2673 /* so far only the early blocks of this stripe
2674 * have been requested. When later blocks
2675 * get requested, we will try again
2676 */
2677 continue;
2678 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2679 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2680 /* must have already done this block */
2681 release_stripe(sh2);
2682 continue;
2683 }
f0a50d37
DW
2684
2685 /* place all the copies on one channel */
2686 tx = async_memcpy(sh2->dev[dd_idx].page,
2687 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2688 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2689
a4456856
DW
2690 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2691 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2692 for (j = 0; j < conf->raid_disks; j++)
2693 if (j != sh2->pd_idx &&
d0dabf7e 2694 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2695 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2696 break;
2697 if (j == conf->raid_disks) {
2698 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2699 set_bit(STRIPE_HANDLE, &sh2->state);
2700 }
2701 release_stripe(sh2);
f0a50d37 2702
a4456856 2703 }
a2e08551
N
2704 /* done submitting copies, wait for them to complete */
2705 if (tx) {
2706 async_tx_ack(tx);
2707 dma_wait_for_async_tx(tx);
2708 }
a4456856 2709}
1da177e4 2710
6bfe0b49 2711
1da177e4
LT
2712/*
2713 * handle_stripe - do things to a stripe.
2714 *
2715 * We lock the stripe and then examine the state of various bits
2716 * to see what needs to be done.
2717 * Possible results:
2718 * return some read request which now have data
2719 * return some write requests which are safely on disc
2720 * schedule a read on some buffers
2721 * schedule a write of some buffers
2722 * return confirmation of parity correctness
2723 *
1da177e4
LT
2724 * buffers are taken off read_list or write_list, and bh_cache buffers
2725 * get BH_Lock set before the stripe lock is released.
2726 *
2727 */
a4456856 2728
df10cfbc 2729static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2730{
2731 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2732 int disks = sh->disks, i;
2733 struct bio *return_bi = NULL;
2734 struct stripe_head_state s;
1da177e4 2735 struct r5dev *dev;
6bfe0b49 2736 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2737 int prexor;
1da177e4 2738
a4456856 2739 memset(&s, 0, sizeof(s));
600aa109
DW
2740 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2741 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2742 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2743 sh->reconstruct_state);
1da177e4
LT
2744
2745 spin_lock(&sh->lock);
2746 clear_bit(STRIPE_HANDLE, &sh->state);
2747 clear_bit(STRIPE_DELAYED, &sh->state);
2748
a4456856
DW
2749 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2750 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2751 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2752
83de75cc 2753 /* Now to look around and see what can be done */
9910f16a 2754 rcu_read_lock();
1da177e4
LT
2755 for (i=disks; i--; ) {
2756 mdk_rdev_t *rdev;
a4456856 2757 struct r5dev *dev = &sh->dev[i];
1da177e4 2758 clear_bit(R5_Insync, &dev->flags);
1da177e4 2759
b5e98d65
DW
2760 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2761 "written %p\n", i, dev->flags, dev->toread, dev->read,
2762 dev->towrite, dev->written);
2763
2764 /* maybe we can request a biofill operation
2765 *
2766 * new wantfill requests are only permitted while
83de75cc 2767 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2768 */
2769 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2770 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2771 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2772
2773 /* now count some things */
a4456856
DW
2774 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2775 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2776 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2777
b5e98d65
DW
2778 if (test_bit(R5_Wantfill, &dev->flags))
2779 s.to_fill++;
2780 else if (dev->toread)
a4456856 2781 s.to_read++;
1da177e4 2782 if (dev->towrite) {
a4456856 2783 s.to_write++;
1da177e4 2784 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2785 s.non_overwrite++;
1da177e4 2786 }
a4456856
DW
2787 if (dev->written)
2788 s.written++;
9910f16a 2789 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2790 if (blocked_rdev == NULL &&
2791 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2792 blocked_rdev = rdev;
2793 atomic_inc(&rdev->nr_pending);
6bfe0b49 2794 }
b2d444d7 2795 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2796 /* The ReadError flag will just be confusing now */
4e5314b5
N
2797 clear_bit(R5_ReadError, &dev->flags);
2798 clear_bit(R5_ReWrite, &dev->flags);
2799 }
b2d444d7 2800 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2801 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2802 s.failed++;
2803 s.failed_num = i;
1da177e4
LT
2804 } else
2805 set_bit(R5_Insync, &dev->flags);
2806 }
9910f16a 2807 rcu_read_unlock();
b5e98d65 2808
6bfe0b49 2809 if (unlikely(blocked_rdev)) {
ac4090d2
N
2810 if (s.syncing || s.expanding || s.expanded ||
2811 s.to_write || s.written) {
2812 set_bit(STRIPE_HANDLE, &sh->state);
2813 goto unlock;
2814 }
2815 /* There is nothing for the blocked_rdev to block */
2816 rdev_dec_pending(blocked_rdev, conf->mddev);
2817 blocked_rdev = NULL;
6bfe0b49
DW
2818 }
2819
83de75cc
DW
2820 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2821 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2822 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2823 }
b5e98d65 2824
45b4233c 2825 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2826 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2827 s.locked, s.uptodate, s.to_read, s.to_write,
2828 s.failed, s.failed_num);
1da177e4
LT
2829 /* check if the array has lost two devices and, if so, some requests might
2830 * need to be failed
2831 */
a4456856 2832 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2833 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2834 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2835 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2836 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2837 s.syncing = 0;
1da177e4
LT
2838 }
2839
2840 /* might be able to return some write requests if the parity block
2841 * is safe, or on a failed drive
2842 */
2843 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2844 if ( s.written &&
2845 ((test_bit(R5_Insync, &dev->flags) &&
2846 !test_bit(R5_LOCKED, &dev->flags) &&
2847 test_bit(R5_UPTODATE, &dev->flags)) ||
2848 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2849 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2850
2851 /* Now we might consider reading some blocks, either to check/generate
2852 * parity, or to satisfy requests
2853 * or to load a block that is being partially written.
2854 */
a4456856 2855 if (s.to_read || s.non_overwrite ||
976ea8d4 2856 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2857 handle_stripe_fill5(sh, &s, disks);
1da177e4 2858
e33129d8
DW
2859 /* Now we check to see if any write operations have recently
2860 * completed
2861 */
e0a115e5 2862 prexor = 0;
d8ee0728 2863 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2864 prexor = 1;
d8ee0728
DW
2865 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2866 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2867 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2868
2869 /* All the 'written' buffers and the parity block are ready to
2870 * be written back to disk
2871 */
2872 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2873 for (i = disks; i--; ) {
2874 dev = &sh->dev[i];
2875 if (test_bit(R5_LOCKED, &dev->flags) &&
2876 (i == sh->pd_idx || dev->written)) {
2877 pr_debug("Writing block %d\n", i);
2878 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2879 if (prexor)
2880 continue;
e33129d8
DW
2881 if (!test_bit(R5_Insync, &dev->flags) ||
2882 (i == sh->pd_idx && s.failed == 0))
2883 set_bit(STRIPE_INSYNC, &sh->state);
2884 }
2885 }
2886 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2887 atomic_dec(&conf->preread_active_stripes);
2888 if (atomic_read(&conf->preread_active_stripes) <
2889 IO_THRESHOLD)
2890 md_wakeup_thread(conf->mddev->thread);
2891 }
2892 }
2893
2894 /* Now to consider new write requests and what else, if anything
2895 * should be read. We do not handle new writes when:
2896 * 1/ A 'write' operation (copy+xor) is already in flight.
2897 * 2/ A 'check' operation is in flight, as it may clobber the parity
2898 * block.
2899 */
600aa109 2900 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2901 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2902
2903 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2904 * Any reads will already have been scheduled, so we just see if enough
2905 * data is available. The parity check is held off while parity
2906 * dependent operations are in flight.
1da177e4 2907 */
ecc65c9b
DW
2908 if (sh->check_state ||
2909 (s.syncing && s.locked == 0 &&
976ea8d4 2910 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2911 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2912 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2913
a4456856 2914 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2915 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2916 clear_bit(STRIPE_SYNCING, &sh->state);
2917 }
4e5314b5
N
2918
2919 /* If the failed drive is just a ReadError, then we might need to progress
2920 * the repair/check process
2921 */
a4456856
DW
2922 if (s.failed == 1 && !conf->mddev->ro &&
2923 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2924 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2925 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2926 ) {
a4456856 2927 dev = &sh->dev[s.failed_num];
4e5314b5
N
2928 if (!test_bit(R5_ReWrite, &dev->flags)) {
2929 set_bit(R5_Wantwrite, &dev->flags);
2930 set_bit(R5_ReWrite, &dev->flags);
2931 set_bit(R5_LOCKED, &dev->flags);
a4456856 2932 s.locked++;
4e5314b5
N
2933 } else {
2934 /* let's read it back */
2935 set_bit(R5_Wantread, &dev->flags);
2936 set_bit(R5_LOCKED, &dev->flags);
a4456856 2937 s.locked++;
4e5314b5
N
2938 }
2939 }
2940
600aa109
DW
2941 /* Finish reconstruct operations initiated by the expansion process */
2942 if (sh->reconstruct_state == reconstruct_state_result) {
2943 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2944 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 2945 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2946 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 2947 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 2948 s.locked++;
23397883 2949 }
f0a50d37
DW
2950 }
2951
2952 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2953 !sh->reconstruct_state) {
f0a50d37
DW
2954 /* Need to write out all blocks after computing parity */
2955 sh->disks = conf->raid_disks;
911d4ee8 2956 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 2957 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 2958 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2959 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2960 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2961 wake_up(&conf->wait_for_overlap);
2962 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2963 }
2964
0f94e87c 2965 if (s.expanding && s.locked == 0 &&
976ea8d4 2966 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2967 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2968
6bfe0b49 2969 unlock:
1da177e4
LT
2970 spin_unlock(&sh->lock);
2971
6bfe0b49
DW
2972 /* wait for this device to become unblocked */
2973 if (unlikely(blocked_rdev))
2974 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2975
600aa109
DW
2976 if (s.ops_request)
2977 raid5_run_ops(sh, s.ops_request);
d84e0f10 2978
c4e5ac0a 2979 ops_run_io(sh, &s);
1da177e4 2980
a4456856 2981 return_io(return_bi);
df10cfbc
DW
2982
2983 return blocked_rdev == NULL;
1da177e4
LT
2984}
2985
df10cfbc 2986static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2987{
bff61975 2988 raid5_conf_t *conf = sh->raid_conf;
f416885e 2989 int disks = sh->disks;
a4456856 2990 struct bio *return_bi = NULL;
34e04e87 2991 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
2992 struct stripe_head_state s;
2993 struct r6_state r6s;
16a53ecc 2994 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2995 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2996
45b4233c 2997 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2998 "pd_idx=%d, qd_idx=%d\n",
2999 (unsigned long long)sh->sector, sh->state,
34e04e87 3000 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3001 memset(&s, 0, sizeof(s));
72626685 3002
16a53ecc
N
3003 spin_lock(&sh->lock);
3004 clear_bit(STRIPE_HANDLE, &sh->state);
3005 clear_bit(STRIPE_DELAYED, &sh->state);
3006
a4456856
DW
3007 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3008 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3009 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3010 /* Now to look around and see what can be done */
1da177e4
LT
3011
3012 rcu_read_lock();
16a53ecc
N
3013 for (i=disks; i--; ) {
3014 mdk_rdev_t *rdev;
3015 dev = &sh->dev[i];
3016 clear_bit(R5_Insync, &dev->flags);
1da177e4 3017
45b4233c 3018 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3019 i, dev->flags, dev->toread, dev->towrite, dev->written);
3020 /* maybe we can reply to a read */
3021 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3022 struct bio *rbi, *rbi2;
45b4233c 3023 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3024 spin_lock_irq(&conf->device_lock);
3025 rbi = dev->toread;
3026 dev->toread = NULL;
3027 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3028 wake_up(&conf->wait_for_overlap);
3029 spin_unlock_irq(&conf->device_lock);
3030 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3031 copy_data(0, rbi, dev->page, dev->sector);
3032 rbi2 = r5_next_bio(rbi, dev->sector);
3033 spin_lock_irq(&conf->device_lock);
960e739d 3034 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3035 rbi->bi_next = return_bi;
3036 return_bi = rbi;
3037 }
3038 spin_unlock_irq(&conf->device_lock);
3039 rbi = rbi2;
3040 }
3041 }
1da177e4 3042
16a53ecc 3043 /* now count some things */
a4456856
DW
3044 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3045 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3046
16a53ecc 3047
a4456856
DW
3048 if (dev->toread)
3049 s.to_read++;
16a53ecc 3050 if (dev->towrite) {
a4456856 3051 s.to_write++;
16a53ecc 3052 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3053 s.non_overwrite++;
16a53ecc 3054 }
a4456856
DW
3055 if (dev->written)
3056 s.written++;
16a53ecc 3057 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3058 if (blocked_rdev == NULL &&
3059 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3060 blocked_rdev = rdev;
3061 atomic_inc(&rdev->nr_pending);
6bfe0b49 3062 }
16a53ecc
N
3063 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3064 /* The ReadError flag will just be confusing now */
3065 clear_bit(R5_ReadError, &dev->flags);
3066 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3067 }
16a53ecc
N
3068 if (!rdev || !test_bit(In_sync, &rdev->flags)
3069 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3070 if (s.failed < 2)
3071 r6s.failed_num[s.failed] = i;
3072 s.failed++;
16a53ecc
N
3073 } else
3074 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3075 }
3076 rcu_read_unlock();
6bfe0b49
DW
3077
3078 if (unlikely(blocked_rdev)) {
ac4090d2
N
3079 if (s.syncing || s.expanding || s.expanded ||
3080 s.to_write || s.written) {
3081 set_bit(STRIPE_HANDLE, &sh->state);
3082 goto unlock;
3083 }
3084 /* There is nothing for the blocked_rdev to block */
3085 rdev_dec_pending(blocked_rdev, conf->mddev);
3086 blocked_rdev = NULL;
6bfe0b49 3087 }
ac4090d2 3088
45b4233c 3089 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3090 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3091 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3092 r6s.failed_num[0], r6s.failed_num[1]);
3093 /* check if the array has lost >2 devices and, if so, some requests
3094 * might need to be failed
16a53ecc 3095 */
a4456856 3096 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3097 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3098 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3099 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3100 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3101 s.syncing = 0;
16a53ecc
N
3102 }
3103
3104 /*
3105 * might be able to return some write requests if the parity blocks
3106 * are safe, or on a failed drive
3107 */
3108 pdev = &sh->dev[pd_idx];
a4456856
DW
3109 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3110 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3111 qdev = &sh->dev[qd_idx];
3112 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3113 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3114
3115 if ( s.written &&
3116 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3117 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3118 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3119 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3120 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3121 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3122 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3123
3124 /* Now we might consider reading some blocks, either to check/generate
3125 * parity, or to satisfy requests
3126 * or to load a block that is being partially written.
3127 */
a4456856
DW
3128 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3129 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3130 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3131
3132 /* now to consider writing and what else, if anything should be read */
a4456856 3133 if (s.to_write)
1fe797e6 3134 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3135
3136 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3137 * Any reads will already have been scheduled, so we just see if enough
3138 * data is available
16a53ecc 3139 */
a4456856
DW
3140 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3141 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3142
a4456856 3143 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3144 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3145 clear_bit(STRIPE_SYNCING, &sh->state);
3146 }
3147
3148 /* If the failed drives are just a ReadError, then we might need
3149 * to progress the repair/check process
3150 */
a4456856
DW
3151 if (s.failed <= 2 && !conf->mddev->ro)
3152 for (i = 0; i < s.failed; i++) {
3153 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3154 if (test_bit(R5_ReadError, &dev->flags)
3155 && !test_bit(R5_LOCKED, &dev->flags)
3156 && test_bit(R5_UPTODATE, &dev->flags)
3157 ) {
3158 if (!test_bit(R5_ReWrite, &dev->flags)) {
3159 set_bit(R5_Wantwrite, &dev->flags);
3160 set_bit(R5_ReWrite, &dev->flags);
3161 set_bit(R5_LOCKED, &dev->flags);
3162 } else {
3163 /* let's read it back */
3164 set_bit(R5_Wantread, &dev->flags);
3165 set_bit(R5_LOCKED, &dev->flags);
3166 }
3167 }
3168 }
f416885e 3169
a4456856 3170 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3171 /* Need to write out all blocks after computing P&Q */
3172 sh->disks = conf->raid_disks;
911d4ee8 3173 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3174 compute_parity6(sh, RECONSTRUCT_WRITE);
3175 for (i = conf->raid_disks ; i-- ; ) {
3176 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3177 s.locked++;
f416885e
N
3178 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3179 }
3180 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3181 } else if (s.expanded) {
f416885e
N
3182 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183 atomic_dec(&conf->reshape_stripes);
3184 wake_up(&conf->wait_for_overlap);
3185 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186 }
3187
0f94e87c 3188 if (s.expanding && s.locked == 0 &&
976ea8d4 3189 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3190 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3191
6bfe0b49 3192 unlock:
16a53ecc
N
3193 spin_unlock(&sh->lock);
3194
6bfe0b49
DW
3195 /* wait for this device to become unblocked */
3196 if (unlikely(blocked_rdev))
3197 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198
f0e43bcd 3199 ops_run_io(sh, &s);
16a53ecc 3200
f0e43bcd 3201 return_io(return_bi);
df10cfbc
DW
3202
3203 return blocked_rdev == NULL;
16a53ecc
N
3204}
3205
df10cfbc
DW
3206/* returns true if the stripe was handled */
3207static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
16a53ecc
N
3208{
3209 if (sh->raid_conf->level == 6)
df10cfbc 3210 return handle_stripe6(sh, tmp_page);
16a53ecc 3211 else
df10cfbc 3212 return handle_stripe5(sh);
16a53ecc
N
3213}
3214
3215
3216
3217static void raid5_activate_delayed(raid5_conf_t *conf)
3218{
3219 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3220 while (!list_empty(&conf->delayed_list)) {
3221 struct list_head *l = conf->delayed_list.next;
3222 struct stripe_head *sh;
3223 sh = list_entry(l, struct stripe_head, lru);
3224 list_del_init(l);
3225 clear_bit(STRIPE_DELAYED, &sh->state);
3226 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3227 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3228 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3229 }
6ed3003c
N
3230 } else
3231 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3232}
3233
3234static void activate_bit_delay(raid5_conf_t *conf)
3235{
3236 /* device_lock is held */
3237 struct list_head head;
3238 list_add(&head, &conf->bitmap_list);
3239 list_del_init(&conf->bitmap_list);
3240 while (!list_empty(&head)) {
3241 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3242 list_del_init(&sh->lru);
3243 atomic_inc(&sh->count);
3244 __release_stripe(conf, sh);
3245 }
3246}
3247
3248static void unplug_slaves(mddev_t *mddev)
3249{
3250 raid5_conf_t *conf = mddev_to_conf(mddev);
3251 int i;
3252
3253 rcu_read_lock();
3254 for (i=0; i<mddev->raid_disks; i++) {
3255 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3256 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3257 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3258
3259 atomic_inc(&rdev->nr_pending);
3260 rcu_read_unlock();
3261
2ad8b1ef 3262 blk_unplug(r_queue);
16a53ecc
N
3263
3264 rdev_dec_pending(rdev, mddev);
3265 rcu_read_lock();
3266 }
3267 }
3268 rcu_read_unlock();
3269}
3270
165125e1 3271static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3272{
3273 mddev_t *mddev = q->queuedata;
3274 raid5_conf_t *conf = mddev_to_conf(mddev);
3275 unsigned long flags;
3276
3277 spin_lock_irqsave(&conf->device_lock, flags);
3278
3279 if (blk_remove_plug(q)) {
3280 conf->seq_flush++;
3281 raid5_activate_delayed(conf);
72626685 3282 }
1da177e4
LT
3283 md_wakeup_thread(mddev->thread);
3284
3285 spin_unlock_irqrestore(&conf->device_lock, flags);
3286
3287 unplug_slaves(mddev);
3288}
3289
f022b2fd
N
3290static int raid5_congested(void *data, int bits)
3291{
3292 mddev_t *mddev = data;
3293 raid5_conf_t *conf = mddev_to_conf(mddev);
3294
3295 /* No difference between reads and writes. Just check
3296 * how busy the stripe_cache is
3297 */
3298 if (conf->inactive_blocked)
3299 return 1;
3300 if (conf->quiesce)
3301 return 1;
3302 if (list_empty_careful(&conf->inactive_list))
3303 return 1;
3304
3305 return 0;
3306}
3307
23032a0e
RBJ
3308/* We want read requests to align with chunks where possible,
3309 * but write requests don't need to.
3310 */
cc371e66
AK
3311static int raid5_mergeable_bvec(struct request_queue *q,
3312 struct bvec_merge_data *bvm,
3313 struct bio_vec *biovec)
23032a0e
RBJ
3314{
3315 mddev_t *mddev = q->queuedata;
cc371e66 3316 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3317 int max;
3318 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3319 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3320
cc371e66 3321 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3322 return biovec->bv_len; /* always allow writes to be mergeable */
3323
784052ec
N
3324 if (mddev->new_chunk < mddev->chunk_size)
3325 chunk_sectors = mddev->new_chunk >> 9;
23032a0e
RBJ
3326 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3327 if (max < 0) max = 0;
3328 if (max <= biovec->bv_len && bio_sectors == 0)
3329 return biovec->bv_len;
3330 else
3331 return max;
3332}
3333
f679623f
RBJ
3334
3335static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3336{
3337 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3338 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3339 unsigned int bio_sectors = bio->bi_size >> 9;
3340
784052ec
N
3341 if (mddev->new_chunk < mddev->chunk_size)
3342 chunk_sectors = mddev->new_chunk >> 9;
f679623f
RBJ
3343 return chunk_sectors >=
3344 ((sector & (chunk_sectors - 1)) + bio_sectors);
3345}
3346
46031f9a
RBJ
3347/*
3348 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3349 * later sampled by raid5d.
3350 */
3351static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3352{
3353 unsigned long flags;
3354
3355 spin_lock_irqsave(&conf->device_lock, flags);
3356
3357 bi->bi_next = conf->retry_read_aligned_list;
3358 conf->retry_read_aligned_list = bi;
3359
3360 spin_unlock_irqrestore(&conf->device_lock, flags);
3361 md_wakeup_thread(conf->mddev->thread);
3362}
3363
3364
3365static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3366{
3367 struct bio *bi;
3368
3369 bi = conf->retry_read_aligned;
3370 if (bi) {
3371 conf->retry_read_aligned = NULL;
3372 return bi;
3373 }
3374 bi = conf->retry_read_aligned_list;
3375 if(bi) {
387bb173 3376 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3377 bi->bi_next = NULL;
960e739d
JA
3378 /*
3379 * this sets the active strip count to 1 and the processed
3380 * strip count to zero (upper 8 bits)
3381 */
46031f9a 3382 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3383 }
3384
3385 return bi;
3386}
3387
3388
f679623f
RBJ
3389/*
3390 * The "raid5_align_endio" should check if the read succeeded and if it
3391 * did, call bio_endio on the original bio (having bio_put the new bio
3392 * first).
3393 * If the read failed..
3394 */
6712ecf8 3395static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3396{
3397 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3398 mddev_t *mddev;
3399 raid5_conf_t *conf;
3400 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3401 mdk_rdev_t *rdev;
3402
f679623f 3403 bio_put(bi);
46031f9a
RBJ
3404
3405 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3406 conf = mddev_to_conf(mddev);
3407 rdev = (void*)raid_bi->bi_next;
3408 raid_bi->bi_next = NULL;
3409
3410 rdev_dec_pending(rdev, conf->mddev);
3411
3412 if (!error && uptodate) {
6712ecf8 3413 bio_endio(raid_bi, 0);
46031f9a
RBJ
3414 if (atomic_dec_and_test(&conf->active_aligned_reads))
3415 wake_up(&conf->wait_for_stripe);
6712ecf8 3416 return;
46031f9a
RBJ
3417 }
3418
3419
45b4233c 3420 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3421
3422 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3423}
3424
387bb173
NB
3425static int bio_fits_rdev(struct bio *bi)
3426{
165125e1 3427 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3428
3429 if ((bi->bi_size>>9) > q->max_sectors)
3430 return 0;
3431 blk_recount_segments(q, bi);
960e739d 3432 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3433 return 0;
3434
3435 if (q->merge_bvec_fn)
3436 /* it's too hard to apply the merge_bvec_fn at this stage,
3437 * just just give up
3438 */
3439 return 0;
3440
3441 return 1;
3442}
3443
3444
165125e1 3445static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3446{
3447 mddev_t *mddev = q->queuedata;
3448 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3449 unsigned int dd_idx;
f679623f
RBJ
3450 struct bio* align_bi;
3451 mdk_rdev_t *rdev;
3452
3453 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3454 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3455 return 0;
3456 }
3457 /*
99c0fb5f 3458 * use bio_clone to make a copy of the bio
f679623f
RBJ
3459 */
3460 align_bi = bio_clone(raid_bio, GFP_NOIO);
3461 if (!align_bi)
3462 return 0;
3463 /*
3464 * set bi_end_io to a new function, and set bi_private to the
3465 * original bio.
3466 */
3467 align_bi->bi_end_io = raid5_align_endio;
3468 align_bi->bi_private = raid_bio;
3469 /*
3470 * compute position
3471 */
112bf897
N
3472 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3473 0,
911d4ee8 3474 &dd_idx, NULL);
f679623f
RBJ
3475
3476 rcu_read_lock();
3477 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3478 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3479 atomic_inc(&rdev->nr_pending);
3480 rcu_read_unlock();
46031f9a
RBJ
3481 raid_bio->bi_next = (void*)rdev;
3482 align_bi->bi_bdev = rdev->bdev;
3483 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3484 align_bi->bi_sector += rdev->data_offset;
3485
387bb173
NB
3486 if (!bio_fits_rdev(align_bi)) {
3487 /* too big in some way */
3488 bio_put(align_bi);
3489 rdev_dec_pending(rdev, mddev);
3490 return 0;
3491 }
3492
46031f9a
RBJ
3493 spin_lock_irq(&conf->device_lock);
3494 wait_event_lock_irq(conf->wait_for_stripe,
3495 conf->quiesce == 0,
3496 conf->device_lock, /* nothing */);
3497 atomic_inc(&conf->active_aligned_reads);
3498 spin_unlock_irq(&conf->device_lock);
3499
f679623f
RBJ
3500 generic_make_request(align_bi);
3501 return 1;
3502 } else {
3503 rcu_read_unlock();
46031f9a 3504 bio_put(align_bi);
f679623f
RBJ
3505 return 0;
3506 }
3507}
3508
8b3e6cdc
DW
3509/* __get_priority_stripe - get the next stripe to process
3510 *
3511 * Full stripe writes are allowed to pass preread active stripes up until
3512 * the bypass_threshold is exceeded. In general the bypass_count
3513 * increments when the handle_list is handled before the hold_list; however, it
3514 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3515 * stripe with in flight i/o. The bypass_count will be reset when the
3516 * head of the hold_list has changed, i.e. the head was promoted to the
3517 * handle_list.
3518 */
3519static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3520{
3521 struct stripe_head *sh;
3522
3523 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3524 __func__,
3525 list_empty(&conf->handle_list) ? "empty" : "busy",
3526 list_empty(&conf->hold_list) ? "empty" : "busy",
3527 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3528
3529 if (!list_empty(&conf->handle_list)) {
3530 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3531
3532 if (list_empty(&conf->hold_list))
3533 conf->bypass_count = 0;
3534 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3535 if (conf->hold_list.next == conf->last_hold)
3536 conf->bypass_count++;
3537 else {
3538 conf->last_hold = conf->hold_list.next;
3539 conf->bypass_count -= conf->bypass_threshold;
3540 if (conf->bypass_count < 0)
3541 conf->bypass_count = 0;
3542 }
3543 }
3544 } else if (!list_empty(&conf->hold_list) &&
3545 ((conf->bypass_threshold &&
3546 conf->bypass_count > conf->bypass_threshold) ||
3547 atomic_read(&conf->pending_full_writes) == 0)) {
3548 sh = list_entry(conf->hold_list.next,
3549 typeof(*sh), lru);
3550 conf->bypass_count -= conf->bypass_threshold;
3551 if (conf->bypass_count < 0)
3552 conf->bypass_count = 0;
3553 } else
3554 return NULL;
3555
3556 list_del_init(&sh->lru);
3557 atomic_inc(&sh->count);
3558 BUG_ON(atomic_read(&sh->count) != 1);
3559 return sh;
3560}
f679623f 3561
165125e1 3562static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3563{
3564 mddev_t *mddev = q->queuedata;
3565 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3566 int dd_idx;
1da177e4
LT
3567 sector_t new_sector;
3568 sector_t logical_sector, last_sector;
3569 struct stripe_head *sh;
a362357b 3570 const int rw = bio_data_dir(bi);
c9959059 3571 int cpu, remaining;
1da177e4 3572
e5dcdd80 3573 if (unlikely(bio_barrier(bi))) {
6712ecf8 3574 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3575 return 0;
3576 }
3577
3d310eb7 3578 md_write_start(mddev, bi);
06d91a5f 3579
074a7aca
TH
3580 cpu = part_stat_lock();
3581 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3582 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3583 bio_sectors(bi));
3584 part_stat_unlock();
1da177e4 3585
802ba064 3586 if (rw == READ &&
52488615
RBJ
3587 mddev->reshape_position == MaxSector &&
3588 chunk_aligned_read(q,bi))
99c0fb5f 3589 return 0;
52488615 3590
1da177e4
LT
3591 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3592 last_sector = bi->bi_sector + (bi->bi_size>>9);
3593 bi->bi_next = NULL;
3594 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3595
1da177e4
LT
3596 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3597 DEFINE_WAIT(w);
16a53ecc 3598 int disks, data_disks;
b5663ba4 3599 int previous;
b578d55f 3600
7ecaa1e6 3601 retry:
b5663ba4 3602 previous = 0;
b578d55f 3603 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
fef9c61f 3604 if (likely(conf->reshape_progress == MaxSector))
7ecaa1e6
N
3605 disks = conf->raid_disks;
3606 else {
fef9c61f 3607 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3608 * 64bit on a 32bit platform, and so it might be
3609 * possible to see a half-updated value
fef9c61f 3610 * Ofcourse reshape_progress could change after
df8e7f76
N
3611 * the lock is dropped, so once we get a reference
3612 * to the stripe that we think it is, we will have
3613 * to check again.
3614 */
7ecaa1e6
N
3615 spin_lock_irq(&conf->device_lock);
3616 disks = conf->raid_disks;
fef9c61f
N
3617 if (mddev->delta_disks < 0
3618 ? logical_sector < conf->reshape_progress
3619 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3620 disks = conf->previous_raid_disks;
b5663ba4
N
3621 previous = 1;
3622 } else {
fef9c61f
N
3623 if (mddev->delta_disks < 0
3624 ? logical_sector < conf->reshape_safe
3625 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3626 spin_unlock_irq(&conf->device_lock);
3627 schedule();
3628 goto retry;
3629 }
3630 }
7ecaa1e6
N
3631 spin_unlock_irq(&conf->device_lock);
3632 }
16a53ecc
N
3633 data_disks = disks - conf->max_degraded;
3634
112bf897
N
3635 new_sector = raid5_compute_sector(conf, logical_sector,
3636 previous,
911d4ee8 3637 &dd_idx, NULL);
45b4233c 3638 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3639 (unsigned long long)new_sector,
3640 (unsigned long long)logical_sector);
3641
b5663ba4
N
3642 sh = get_active_stripe(conf, new_sector, previous,
3643 (bi->bi_rw&RWA_MASK));
1da177e4 3644 if (sh) {
fef9c61f 3645 if (unlikely(conf->reshape_progress != MaxSector)) {
7ecaa1e6 3646 /* expansion might have moved on while waiting for a
df8e7f76
N
3647 * stripe, so we must do the range check again.
3648 * Expansion could still move past after this
3649 * test, but as we are holding a reference to
3650 * 'sh', we know that if that happens,
3651 * STRIPE_EXPANDING will get set and the expansion
3652 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3653 */
3654 int must_retry = 0;
3655 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3656 if ((mddev->delta_disks < 0
3657 ? logical_sector >= conf->reshape_progress
3658 : logical_sector < conf->reshape_progress)
86b42c71 3659 && previous)
7ecaa1e6
N
3660 /* mismatch, need to try again */
3661 must_retry = 1;
3662 spin_unlock_irq(&conf->device_lock);
3663 if (must_retry) {
3664 release_stripe(sh);
3665 goto retry;
3666 }
3667 }
e464eafd
N
3668 /* FIXME what if we get a false positive because these
3669 * are being updated.
3670 */
3671 if (logical_sector >= mddev->suspend_lo &&
3672 logical_sector < mddev->suspend_hi) {
3673 release_stripe(sh);
3674 schedule();
3675 goto retry;
3676 }
7ecaa1e6
N
3677
3678 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3679 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3680 /* Stripe is busy expanding or
3681 * add failed due to overlap. Flush everything
1da177e4
LT
3682 * and wait a while
3683 */
3684 raid5_unplug_device(mddev->queue);
3685 release_stripe(sh);
3686 schedule();
3687 goto retry;
3688 }
3689 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3690 set_bit(STRIPE_HANDLE, &sh->state);
3691 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3692 release_stripe(sh);
1da177e4
LT
3693 } else {
3694 /* cannot get stripe for read-ahead, just give-up */
3695 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3696 finish_wait(&conf->wait_for_overlap, &w);
3697 break;
3698 }
3699
3700 }
3701 spin_lock_irq(&conf->device_lock);
960e739d 3702 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3703 spin_unlock_irq(&conf->device_lock);
3704 if (remaining == 0) {
1da177e4 3705
16a53ecc 3706 if ( rw == WRITE )
1da177e4 3707 md_write_end(mddev);
6712ecf8 3708
0e13fe23 3709 bio_endio(bi, 0);
1da177e4 3710 }
1da177e4
LT
3711 return 0;
3712}
3713
b522adcd
DW
3714static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3715
52c03291 3716static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3717{
52c03291
N
3718 /* reshaping is quite different to recovery/resync so it is
3719 * handled quite separately ... here.
3720 *
3721 * On each call to sync_request, we gather one chunk worth of
3722 * destination stripes and flag them as expanding.
3723 * Then we find all the source stripes and request reads.
3724 * As the reads complete, handle_stripe will copy the data
3725 * into the destination stripe and release that stripe.
3726 */
1da177e4
LT
3727 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3728 struct stripe_head *sh;
ccfcc3c1 3729 sector_t first_sector, last_sector;
f416885e
N
3730 int raid_disks = conf->previous_raid_disks;
3731 int data_disks = raid_disks - conf->max_degraded;
3732 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3733 int i;
3734 int dd_idx;
3735 sector_t writepos, safepos, gap;
ec32a2bd 3736 sector_t stripe_addr;
52c03291 3737
fef9c61f
N
3738 if (sector_nr == 0) {
3739 /* If restarting in the middle, skip the initial sectors */
3740 if (mddev->delta_disks < 0 &&
3741 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3742 sector_nr = raid5_size(mddev, 0, 0)
3743 - conf->reshape_progress;
3744 } else if (mddev->delta_disks > 0 &&
3745 conf->reshape_progress > 0)
3746 sector_nr = conf->reshape_progress;
f416885e 3747 sector_div(sector_nr, new_data_disks);
fef9c61f
N
3748 if (sector_nr) {
3749 *skipped = 1;
3750 return sector_nr;
3751 }
52c03291
N
3752 }
3753
3754 /* we update the metadata when there is more than 3Meg
3755 * in the block range (that is rather arbitrary, should
3756 * probably be time based) or when the data about to be
3757 * copied would over-write the source of the data at
3758 * the front of the range.
fef9c61f
N
3759 * i.e. one new_stripe along from reshape_progress new_maps
3760 * to after where reshape_safe old_maps to
52c03291 3761 */
fef9c61f 3762 writepos = conf->reshape_progress;
f416885e 3763 sector_div(writepos, new_data_disks);
fef9c61f 3764 safepos = conf->reshape_safe;
f416885e 3765 sector_div(safepos, data_disks);
fef9c61f
N
3766 if (mddev->delta_disks < 0) {
3767 writepos -= conf->chunk_size/512;
3768 safepos += conf->chunk_size/512;
3769 gap = conf->reshape_safe - conf->reshape_progress;
3770 } else {
3771 writepos += conf->chunk_size/512;
3772 safepos -= conf->chunk_size/512;
3773 gap = conf->reshape_progress - conf->reshape_safe;
3774 }
52c03291 3775
fef9c61f
N
3776 if ((mddev->delta_disks < 0
3777 ? writepos < safepos
3778 : writepos > safepos) ||
f416885e 3779 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3780 /* Cannot proceed until we've updated the superblock... */
3781 wait_event(conf->wait_for_overlap,
3782 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3783 mddev->reshape_position = conf->reshape_progress;
850b2b42 3784 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3785 md_wakeup_thread(mddev->thread);
850b2b42 3786 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3787 kthread_should_stop());
3788 spin_lock_irq(&conf->device_lock);
fef9c61f 3789 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3790 spin_unlock_irq(&conf->device_lock);
3791 wake_up(&conf->wait_for_overlap);
3792 }
3793
ec32a2bd
N
3794 if (mddev->delta_disks < 0) {
3795 BUG_ON(conf->reshape_progress == 0);
3796 stripe_addr = writepos;
3797 BUG_ON((mddev->dev_sectors &
784052ec 3798 ~((sector_t)conf->chunk_size / 512 - 1))
ec32a2bd
N
3799 - (conf->chunk_size / 512) - stripe_addr
3800 != sector_nr);
3801 } else {
3802 BUG_ON(writepos != sector_nr + conf->chunk_size / 512);
3803 stripe_addr = sector_nr;
3804 }
52c03291
N
3805 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3806 int j;
3807 int skipped = 0;
ec32a2bd 3808 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
52c03291
N
3809 set_bit(STRIPE_EXPANDING, &sh->state);
3810 atomic_inc(&conf->reshape_stripes);
3811 /* If any of this stripe is beyond the end of the old
3812 * array, then we need to zero those blocks
3813 */
3814 for (j=sh->disks; j--;) {
3815 sector_t s;
3816 if (j == sh->pd_idx)
3817 continue;
f416885e 3818 if (conf->level == 6 &&
d0dabf7e 3819 j == sh->qd_idx)
f416885e 3820 continue;
784052ec 3821 s = compute_blocknr(sh, j, 0);
b522adcd 3822 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
3823 skipped = 1;
3824 continue;
3825 }
3826 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3827 set_bit(R5_Expanded, &sh->dev[j].flags);
3828 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3829 }
3830 if (!skipped) {
3831 set_bit(STRIPE_EXPAND_READY, &sh->state);
3832 set_bit(STRIPE_HANDLE, &sh->state);
3833 }
3834 release_stripe(sh);
3835 }
3836 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3837 if (mddev->delta_disks < 0)
3838 conf->reshape_progress -= i * new_data_disks;
3839 else
3840 conf->reshape_progress += i * new_data_disks;
52c03291
N
3841 spin_unlock_irq(&conf->device_lock);
3842 /* Ok, those stripe are ready. We can start scheduling
3843 * reads on the source stripes.
3844 * The source stripes are determined by mapping the first and last
3845 * block on the destination stripes.
3846 */
52c03291 3847 first_sector =
ec32a2bd 3848 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3849 1, &dd_idx, NULL);
52c03291 3850 last_sector =
ec32a2bd 3851 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
112bf897 3852 *(new_data_disks) - 1),
911d4ee8 3853 1, &dd_idx, NULL);
58c0fed4
AN
3854 if (last_sector >= mddev->dev_sectors)
3855 last_sector = mddev->dev_sectors - 1;
52c03291 3856 while (first_sector <= last_sector) {
b5663ba4 3857 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
3858 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3859 set_bit(STRIPE_HANDLE, &sh->state);
3860 release_stripe(sh);
3861 first_sector += STRIPE_SECTORS;
3862 }
c6207277
N
3863 /* If this takes us to the resync_max point where we have to pause,
3864 * then we need to write out the superblock.
3865 */
3866 sector_nr += conf->chunk_size>>9;
3867 if (sector_nr >= mddev->resync_max) {
3868 /* Cannot proceed until we've updated the superblock... */
3869 wait_event(conf->wait_for_overlap,
3870 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 3871 mddev->reshape_position = conf->reshape_progress;
c6207277
N
3872 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3873 md_wakeup_thread(mddev->thread);
3874 wait_event(mddev->sb_wait,
3875 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3876 || kthread_should_stop());
3877 spin_lock_irq(&conf->device_lock);
fef9c61f 3878 conf->reshape_safe = mddev->reshape_position;
c6207277
N
3879 spin_unlock_irq(&conf->device_lock);
3880 wake_up(&conf->wait_for_overlap);
3881 }
52c03291
N
3882 return conf->chunk_size>>9;
3883}
3884
3885/* FIXME go_faster isn't used */
3886static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3887{
3888 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3889 struct stripe_head *sh;
58c0fed4 3890 sector_t max_sector = mddev->dev_sectors;
72626685 3891 int sync_blocks;
16a53ecc
N
3892 int still_degraded = 0;
3893 int i;
1da177e4 3894
72626685 3895 if (sector_nr >= max_sector) {
1da177e4
LT
3896 /* just being told to finish up .. nothing much to do */
3897 unplug_slaves(mddev);
cea9c228 3898
29269553
N
3899 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3900 end_reshape(conf);
3901 return 0;
3902 }
72626685
N
3903
3904 if (mddev->curr_resync < max_sector) /* aborted */
3905 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3906 &sync_blocks, 1);
16a53ecc 3907 else /* completed sync */
72626685
N
3908 conf->fullsync = 0;
3909 bitmap_close_sync(mddev->bitmap);
3910
1da177e4
LT
3911 return 0;
3912 }
ccfcc3c1 3913
52c03291
N
3914 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3915 return reshape_request(mddev, sector_nr, skipped);
f6705578 3916
c6207277
N
3917 /* No need to check resync_max as we never do more than one
3918 * stripe, and as resync_max will always be on a chunk boundary,
3919 * if the check in md_do_sync didn't fire, there is no chance
3920 * of overstepping resync_max here
3921 */
3922
16a53ecc 3923 /* if there is too many failed drives and we are trying
1da177e4
LT
3924 * to resync, then assert that we are finished, because there is
3925 * nothing we can do.
3926 */
3285edf1 3927 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3928 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 3929 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 3930 *skipped = 1;
1da177e4
LT
3931 return rv;
3932 }
72626685 3933 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3934 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3935 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3936 /* we can skip this block, and probably more */
3937 sync_blocks /= STRIPE_SECTORS;
3938 *skipped = 1;
3939 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3940 }
1da177e4 3941
b47490c9
N
3942
3943 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3944
b5663ba4 3945 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 3946 if (sh == NULL) {
b5663ba4 3947 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 3948 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3949 * is trying to get access
1da177e4 3950 */
66c006a5 3951 schedule_timeout_uninterruptible(1);
1da177e4 3952 }
16a53ecc
N
3953 /* Need to check if array will still be degraded after recovery/resync
3954 * We don't need to check the 'failed' flag as when that gets set,
3955 * recovery aborts.
3956 */
3957 for (i=0; i<mddev->raid_disks; i++)
3958 if (conf->disks[i].rdev == NULL)
3959 still_degraded = 1;
3960
3961 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3962
3963 spin_lock(&sh->lock);
1da177e4
LT
3964 set_bit(STRIPE_SYNCING, &sh->state);
3965 clear_bit(STRIPE_INSYNC, &sh->state);
3966 spin_unlock(&sh->lock);
3967
df10cfbc
DW
3968 /* wait for any blocked device to be handled */
3969 while(unlikely(!handle_stripe(sh, NULL)))
3970 ;
1da177e4
LT
3971 release_stripe(sh);
3972
3973 return STRIPE_SECTORS;
3974}
3975
46031f9a
RBJ
3976static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3977{
3978 /* We may not be able to submit a whole bio at once as there
3979 * may not be enough stripe_heads available.
3980 * We cannot pre-allocate enough stripe_heads as we may need
3981 * more than exist in the cache (if we allow ever large chunks).
3982 * So we do one stripe head at a time and record in
3983 * ->bi_hw_segments how many have been done.
3984 *
3985 * We *know* that this entire raid_bio is in one chunk, so
3986 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3987 */
3988 struct stripe_head *sh;
911d4ee8 3989 int dd_idx;
46031f9a
RBJ
3990 sector_t sector, logical_sector, last_sector;
3991 int scnt = 0;
3992 int remaining;
3993 int handled = 0;
3994
3995 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 3996 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 3997 0, &dd_idx, NULL);
46031f9a
RBJ
3998 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3999
4000 for (; logical_sector < last_sector;
387bb173
NB
4001 logical_sector += STRIPE_SECTORS,
4002 sector += STRIPE_SECTORS,
4003 scnt++) {
46031f9a 4004
960e739d 4005 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4006 /* already done this stripe */
4007 continue;
4008
b5663ba4 4009 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
4010
4011 if (!sh) {
4012 /* failed to get a stripe - must wait */
960e739d 4013 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4014 conf->retry_read_aligned = raid_bio;
4015 return handled;
4016 }
4017
4018 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4019 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4020 release_stripe(sh);
960e739d 4021 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4022 conf->retry_read_aligned = raid_bio;
4023 return handled;
4024 }
4025
46031f9a
RBJ
4026 handle_stripe(sh, NULL);
4027 release_stripe(sh);
4028 handled++;
4029 }
4030 spin_lock_irq(&conf->device_lock);
960e739d 4031 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4032 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4033 if (remaining == 0)
4034 bio_endio(raid_bio, 0);
46031f9a
RBJ
4035 if (atomic_dec_and_test(&conf->active_aligned_reads))
4036 wake_up(&conf->wait_for_stripe);
4037 return handled;
4038}
4039
4040
4041
1da177e4
LT
4042/*
4043 * This is our raid5 kernel thread.
4044 *
4045 * We scan the hash table for stripes which can be handled now.
4046 * During the scan, completed stripes are saved for us by the interrupt
4047 * handler, so that they will not have to wait for our next wakeup.
4048 */
6ed3003c 4049static void raid5d(mddev_t *mddev)
1da177e4
LT
4050{
4051 struct stripe_head *sh;
4052 raid5_conf_t *conf = mddev_to_conf(mddev);
4053 int handled;
4054
45b4233c 4055 pr_debug("+++ raid5d active\n");
1da177e4
LT
4056
4057 md_check_recovery(mddev);
1da177e4
LT
4058
4059 handled = 0;
4060 spin_lock_irq(&conf->device_lock);
4061 while (1) {
46031f9a 4062 struct bio *bio;
1da177e4 4063
ae3c20cc 4064 if (conf->seq_flush != conf->seq_write) {
72626685 4065 int seq = conf->seq_flush;
700e432d 4066 spin_unlock_irq(&conf->device_lock);
72626685 4067 bitmap_unplug(mddev->bitmap);
700e432d 4068 spin_lock_irq(&conf->device_lock);
72626685
N
4069 conf->seq_write = seq;
4070 activate_bit_delay(conf);
4071 }
4072
46031f9a
RBJ
4073 while ((bio = remove_bio_from_retry(conf))) {
4074 int ok;
4075 spin_unlock_irq(&conf->device_lock);
4076 ok = retry_aligned_read(conf, bio);
4077 spin_lock_irq(&conf->device_lock);
4078 if (!ok)
4079 break;
4080 handled++;
4081 }
4082
8b3e6cdc
DW
4083 sh = __get_priority_stripe(conf);
4084
c9f21aaf 4085 if (!sh)
1da177e4 4086 break;
1da177e4
LT
4087 spin_unlock_irq(&conf->device_lock);
4088
4089 handled++;
16a53ecc 4090 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4091 release_stripe(sh);
4092
4093 spin_lock_irq(&conf->device_lock);
4094 }
45b4233c 4095 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4096
4097 spin_unlock_irq(&conf->device_lock);
4098
c9f21aaf 4099 async_tx_issue_pending_all();
1da177e4
LT
4100 unplug_slaves(mddev);
4101
45b4233c 4102 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4103}
4104
3f294f4f 4105static ssize_t
007583c9 4106raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4107{
007583c9 4108 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4109 if (conf)
4110 return sprintf(page, "%d\n", conf->max_nr_stripes);
4111 else
4112 return 0;
3f294f4f
N
4113}
4114
4115static ssize_t
007583c9 4116raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4117{
007583c9 4118 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4119 unsigned long new;
b5470dc5
DW
4120 int err;
4121
3f294f4f
N
4122 if (len >= PAGE_SIZE)
4123 return -EINVAL;
96de1e66
N
4124 if (!conf)
4125 return -ENODEV;
3f294f4f 4126
4ef197d8 4127 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4128 return -EINVAL;
4129 if (new <= 16 || new > 32768)
4130 return -EINVAL;
4131 while (new < conf->max_nr_stripes) {
4132 if (drop_one_stripe(conf))
4133 conf->max_nr_stripes--;
4134 else
4135 break;
4136 }
b5470dc5
DW
4137 err = md_allow_write(mddev);
4138 if (err)
4139 return err;
3f294f4f
N
4140 while (new > conf->max_nr_stripes) {
4141 if (grow_one_stripe(conf))
4142 conf->max_nr_stripes++;
4143 else break;
4144 }
4145 return len;
4146}
007583c9 4147
96de1e66
N
4148static struct md_sysfs_entry
4149raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4150 raid5_show_stripe_cache_size,
4151 raid5_store_stripe_cache_size);
3f294f4f 4152
8b3e6cdc
DW
4153static ssize_t
4154raid5_show_preread_threshold(mddev_t *mddev, char *page)
4155{
4156 raid5_conf_t *conf = mddev_to_conf(mddev);
4157 if (conf)
4158 return sprintf(page, "%d\n", conf->bypass_threshold);
4159 else
4160 return 0;
4161}
4162
4163static ssize_t
4164raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4165{
4166 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4167 unsigned long new;
8b3e6cdc
DW
4168 if (len >= PAGE_SIZE)
4169 return -EINVAL;
4170 if (!conf)
4171 return -ENODEV;
4172
4ef197d8 4173 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4174 return -EINVAL;
4ef197d8 4175 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4176 return -EINVAL;
4177 conf->bypass_threshold = new;
4178 return len;
4179}
4180
4181static struct md_sysfs_entry
4182raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4183 S_IRUGO | S_IWUSR,
4184 raid5_show_preread_threshold,
4185 raid5_store_preread_threshold);
4186
3f294f4f 4187static ssize_t
96de1e66 4188stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4189{
007583c9 4190 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4191 if (conf)
4192 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4193 else
4194 return 0;
3f294f4f
N
4195}
4196
96de1e66
N
4197static struct md_sysfs_entry
4198raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4199
007583c9 4200static struct attribute *raid5_attrs[] = {
3f294f4f
N
4201 &raid5_stripecache_size.attr,
4202 &raid5_stripecache_active.attr,
8b3e6cdc 4203 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4204 NULL,
4205};
007583c9
N
4206static struct attribute_group raid5_attrs_group = {
4207 .name = NULL,
4208 .attrs = raid5_attrs,
3f294f4f
N
4209};
4210
80c3a6ce
DW
4211static sector_t
4212raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4213{
4214 raid5_conf_t *conf = mddev_to_conf(mddev);
4215
4216 if (!sectors)
4217 sectors = mddev->dev_sectors;
7ec05478
N
4218 if (!raid_disks) {
4219 /* size is defined by the smallest of previous and new size */
4220 if (conf->raid_disks < conf->previous_raid_disks)
4221 raid_disks = conf->raid_disks;
4222 else
4223 raid_disks = conf->previous_raid_disks;
4224 }
80c3a6ce
DW
4225
4226 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
784052ec 4227 sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
80c3a6ce
DW
4228 return sectors * (raid_disks - conf->max_degraded);
4229}
4230
91adb564 4231static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4232{
4233 raid5_conf_t *conf;
4234 int raid_disk, memory;
4235 mdk_rdev_t *rdev;
4236 struct disk_info *disk;
1da177e4 4237
91adb564
N
4238 if (mddev->new_level != 5
4239 && mddev->new_level != 4
4240 && mddev->new_level != 6) {
16a53ecc 4241 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4242 mdname(mddev), mddev->new_level);
4243 return ERR_PTR(-EIO);
1da177e4 4244 }
91adb564
N
4245 if ((mddev->new_level == 5
4246 && !algorithm_valid_raid5(mddev->new_layout)) ||
4247 (mddev->new_level == 6
4248 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4249 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4250 mdname(mddev), mddev->new_layout);
4251 return ERR_PTR(-EIO);
99c0fb5f 4252 }
91adb564
N
4253 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4254 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4255 mdname(mddev), mddev->raid_disks);
4256 return ERR_PTR(-EINVAL);
4bbf3771
N
4257 }
4258
91adb564
N
4259 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4260 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4261 mddev->new_chunk, mdname(mddev));
4262 return ERR_PTR(-EINVAL);
f6705578
N
4263 }
4264
91adb564
N
4265 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4266 if (conf == NULL)
1da177e4 4267 goto abort;
91adb564
N
4268
4269 conf->raid_disks = mddev->raid_disks;
4270 if (mddev->reshape_position == MaxSector)
4271 conf->previous_raid_disks = mddev->raid_disks;
4272 else
f6705578 4273 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4274
4275 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4276 GFP_KERNEL);
4277 if (!conf->disks)
4278 goto abort;
9ffae0cf 4279
1da177e4
LT
4280 conf->mddev = mddev;
4281
fccddba0 4282 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4283 goto abort;
1da177e4 4284
91adb564 4285 if (mddev->new_level == 6) {
16a53ecc
N
4286 conf->spare_page = alloc_page(GFP_KERNEL);
4287 if (!conf->spare_page)
4288 goto abort;
4289 }
1da177e4
LT
4290 spin_lock_init(&conf->device_lock);
4291 init_waitqueue_head(&conf->wait_for_stripe);
4292 init_waitqueue_head(&conf->wait_for_overlap);
4293 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4294 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4295 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4296 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4297 INIT_LIST_HEAD(&conf->inactive_list);
4298 atomic_set(&conf->active_stripes, 0);
4299 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4300 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4301 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4302
45b4233c 4303 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4304
159ec1fc 4305 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4306 raid_disk = rdev->raid_disk;
f6705578 4307 if (raid_disk >= conf->raid_disks
1da177e4
LT
4308 || raid_disk < 0)
4309 continue;
4310 disk = conf->disks + raid_disk;
4311
4312 disk->rdev = rdev;
4313
b2d444d7 4314 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4315 char b[BDEVNAME_SIZE];
4316 printk(KERN_INFO "raid5: device %s operational as raid"
4317 " disk %d\n", bdevname(rdev->bdev,b),
4318 raid_disk);
8c2e870a
NB
4319 } else
4320 /* Cannot rely on bitmap to complete recovery */
4321 conf->fullsync = 1;
1da177e4
LT
4322 }
4323
91adb564
N
4324 conf->chunk_size = mddev->new_chunk;
4325 conf->level = mddev->new_level;
16a53ecc
N
4326 if (conf->level == 6)
4327 conf->max_degraded = 2;
4328 else
4329 conf->max_degraded = 1;
91adb564 4330 conf->algorithm = mddev->new_layout;
1da177e4 4331 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4332 conf->reshape_progress = mddev->reshape_position;
784052ec
N
4333 if (conf->reshape_progress != MaxSector)
4334 conf->prev_chunk = mddev->chunk_size;
1da177e4 4335
91adb564
N
4336 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4337 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4338 if (grow_stripes(conf, conf->max_nr_stripes)) {
4339 printk(KERN_ERR
4340 "raid5: couldn't allocate %dkB for buffers\n", memory);
4341 goto abort;
4342 } else
4343 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4344 memory, mdname(mddev));
1da177e4 4345
91adb564
N
4346 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4347 if (!conf->thread) {
4348 printk(KERN_ERR
4349 "raid5: couldn't allocate thread for %s\n",
4350 mdname(mddev));
16a53ecc
N
4351 goto abort;
4352 }
91adb564
N
4353
4354 return conf;
4355
4356 abort:
4357 if (conf) {
4358 shrink_stripes(conf);
4359 safe_put_page(conf->spare_page);
4360 kfree(conf->disks);
4361 kfree(conf->stripe_hashtbl);
4362 kfree(conf);
4363 return ERR_PTR(-EIO);
4364 } else
4365 return ERR_PTR(-ENOMEM);
4366}
4367
4368static int run(mddev_t *mddev)
4369{
4370 raid5_conf_t *conf;
4371 int working_disks = 0;
4372 mdk_rdev_t *rdev;
4373
4374 if (mddev->reshape_position != MaxSector) {
4375 /* Check that we can continue the reshape.
4376 * Currently only disks can change, it must
4377 * increase, and we must be past the point where
4378 * a stripe over-writes itself
4379 */
4380 sector_t here_new, here_old;
4381 int old_disks;
18b00334 4382 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564
N
4383
4384 if (mddev->new_level != mddev->level ||
4385 mddev->new_layout != mddev->layout ||
4386 mddev->new_chunk != mddev->chunk_size) {
4387 printk(KERN_ERR "raid5: %s: unsupported reshape "
4388 "required - aborting.\n",
4389 mdname(mddev));
4390 return -EINVAL;
4391 }
91adb564
N
4392 old_disks = mddev->raid_disks - mddev->delta_disks;
4393 /* reshape_position must be on a new-stripe boundary, and one
4394 * further up in new geometry must map after here in old
4395 * geometry.
4396 */
4397 here_new = mddev->reshape_position;
784052ec 4398 if (sector_div(here_new, (mddev->new_chunk>>9)*
91adb564
N
4399 (mddev->raid_disks - max_degraded))) {
4400 printk(KERN_ERR "raid5: reshape_position not "
4401 "on a stripe boundary\n");
4402 return -EINVAL;
4403 }
4404 /* here_new is the stripe we will write to */
4405 here_old = mddev->reshape_position;
4406 sector_div(here_old, (mddev->chunk_size>>9)*
4407 (old_disks-max_degraded));
4408 /* here_old is the first stripe that we might need to read
4409 * from */
4410 if (here_new >= here_old) {
4411 /* Reading from the same stripe as writing to - bad */
4412 printk(KERN_ERR "raid5: reshape_position too early for "
4413 "auto-recovery - aborting.\n");
4414 return -EINVAL;
4415 }
4416 printk(KERN_INFO "raid5: reshape will continue\n");
4417 /* OK, we should be able to continue; */
4418 } else {
4419 BUG_ON(mddev->level != mddev->new_level);
4420 BUG_ON(mddev->layout != mddev->new_layout);
4421 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4422 BUG_ON(mddev->delta_disks != 0);
1da177e4 4423 }
91adb564 4424
245f46c2
N
4425 if (mddev->private == NULL)
4426 conf = setup_conf(mddev);
4427 else
4428 conf = mddev->private;
4429
91adb564
N
4430 if (IS_ERR(conf))
4431 return PTR_ERR(conf);
4432
4433 mddev->thread = conf->thread;
4434 conf->thread = NULL;
4435 mddev->private = conf;
4436
4437 /*
4438 * 0 for a fully functional array, 1 or 2 for a degraded array.
4439 */
4440 list_for_each_entry(rdev, &mddev->disks, same_set)
4441 if (rdev->raid_disk >= 0 &&
4442 test_bit(In_sync, &rdev->flags))
4443 working_disks++;
4444
4445 mddev->degraded = conf->raid_disks - working_disks;
4446
16a53ecc 4447 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4448 printk(KERN_ERR "raid5: not enough operational devices for %s"
4449 " (%d/%d failed)\n",
02c2de8c 4450 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4451 goto abort;
4452 }
4453
91adb564
N
4454 /* device size must be a multiple of chunk size */
4455 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4456 mddev->resync_max_sectors = mddev->dev_sectors;
4457
16a53ecc 4458 if (mddev->degraded > 0 &&
1da177e4 4459 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4460 if (mddev->ok_start_degraded)
4461 printk(KERN_WARNING
4462 "raid5: starting dirty degraded array: %s"
4463 "- data corruption possible.\n",
4464 mdname(mddev));
4465 else {
4466 printk(KERN_ERR
4467 "raid5: cannot start dirty degraded array for %s\n",
4468 mdname(mddev));
4469 goto abort;
4470 }
1da177e4
LT
4471 }
4472
1da177e4
LT
4473 if (mddev->degraded == 0)
4474 printk("raid5: raid level %d set %s active with %d out of %d"
4475 " devices, algorithm %d\n", conf->level, mdname(mddev),
4476 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4477 conf->algorithm);
4478 else
4479 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4480 " out of %d devices, algorithm %d\n", conf->level,
4481 mdname(mddev), mddev->raid_disks - mddev->degraded,
4482 mddev->raid_disks, conf->algorithm);
4483
4484 print_raid5_conf(conf);
4485
fef9c61f 4486 if (conf->reshape_progress != MaxSector) {
f6705578 4487 printk("...ok start reshape thread\n");
fef9c61f 4488 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4489 atomic_set(&conf->reshape_stripes, 0);
4490 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4491 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4492 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4493 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4494 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4495 "%s_reshape");
f6705578
N
4496 }
4497
1da177e4 4498 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4499 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4500 */
4501 {
16a53ecc
N
4502 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4503 int stripe = data_disks *
8932c2e0 4504 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4505 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4506 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4507 }
4508
4509 /* Ok, everything is just fine now */
5e55e2f5
N
4510 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4511 printk(KERN_WARNING
4512 "raid5: failed to create sysfs attributes for %s\n",
4513 mdname(mddev));
7a5febe9 4514
91adb564
N
4515 mddev->queue->queue_lock = &conf->device_lock;
4516
7a5febe9 4517 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4518 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4519 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4520
1f403624 4521 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4522
23032a0e
RBJ
4523 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4524
1da177e4
LT
4525 return 0;
4526abort:
e0cf8f04 4527 md_unregister_thread(mddev->thread);
91adb564 4528 mddev->thread = NULL;
1da177e4 4529 if (conf) {
91adb564 4530 shrink_stripes(conf);
1da177e4 4531 print_raid5_conf(conf);
16a53ecc 4532 safe_put_page(conf->spare_page);
b55e6bfc 4533 kfree(conf->disks);
fccddba0 4534 kfree(conf->stripe_hashtbl);
1da177e4
LT
4535 kfree(conf);
4536 }
4537 mddev->private = NULL;
4538 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4539 return -EIO;
4540}
4541
4542
4543
3f294f4f 4544static int stop(mddev_t *mddev)
1da177e4
LT
4545{
4546 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4547
4548 md_unregister_thread(mddev->thread);
4549 mddev->thread = NULL;
4550 shrink_stripes(conf);
fccddba0 4551 kfree(conf->stripe_hashtbl);
041ae52e 4552 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4553 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4554 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4555 kfree(conf->disks);
96de1e66 4556 kfree(conf);
1da177e4
LT
4557 mddev->private = NULL;
4558 return 0;
4559}
4560
45b4233c 4561#ifdef DEBUG
d710e138 4562static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4563{
4564 int i;
4565
16a53ecc
N
4566 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4567 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4568 seq_printf(seq, "sh %llu, count %d.\n",
4569 (unsigned long long)sh->sector, atomic_read(&sh->count));
4570 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4571 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4572 seq_printf(seq, "(cache%d: %p %ld) ",
4573 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4574 }
16a53ecc 4575 seq_printf(seq, "\n");
1da177e4
LT
4576}
4577
d710e138 4578static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4579{
4580 struct stripe_head *sh;
fccddba0 4581 struct hlist_node *hn;
1da177e4
LT
4582 int i;
4583
4584 spin_lock_irq(&conf->device_lock);
4585 for (i = 0; i < NR_HASH; i++) {
fccddba0 4586 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4587 if (sh->raid_conf != conf)
4588 continue;
16a53ecc 4589 print_sh(seq, sh);
1da177e4
LT
4590 }
4591 }
4592 spin_unlock_irq(&conf->device_lock);
4593}
4594#endif
4595
d710e138 4596static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4597{
4598 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4599 int i;
4600
4601 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4602 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4603 for (i = 0; i < conf->raid_disks; i++)
4604 seq_printf (seq, "%s",
4605 conf->disks[i].rdev &&
b2d444d7 4606 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4607 seq_printf (seq, "]");
45b4233c 4608#ifdef DEBUG
16a53ecc
N
4609 seq_printf (seq, "\n");
4610 printall(seq, conf);
1da177e4
LT
4611#endif
4612}
4613
4614static void print_raid5_conf (raid5_conf_t *conf)
4615{
4616 int i;
4617 struct disk_info *tmp;
4618
4619 printk("RAID5 conf printout:\n");
4620 if (!conf) {
4621 printk("(conf==NULL)\n");
4622 return;
4623 }
02c2de8c
N
4624 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4625 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4626
4627 for (i = 0; i < conf->raid_disks; i++) {
4628 char b[BDEVNAME_SIZE];
4629 tmp = conf->disks + i;
4630 if (tmp->rdev)
4631 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4632 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4633 bdevname(tmp->rdev->bdev,b));
4634 }
4635}
4636
4637static int raid5_spare_active(mddev_t *mddev)
4638{
4639 int i;
4640 raid5_conf_t *conf = mddev->private;
4641 struct disk_info *tmp;
4642
4643 for (i = 0; i < conf->raid_disks; i++) {
4644 tmp = conf->disks + i;
4645 if (tmp->rdev
b2d444d7 4646 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4647 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4648 unsigned long flags;
4649 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4650 mddev->degraded--;
c04be0aa 4651 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4652 }
4653 }
4654 print_raid5_conf(conf);
4655 return 0;
4656}
4657
4658static int raid5_remove_disk(mddev_t *mddev, int number)
4659{
4660 raid5_conf_t *conf = mddev->private;
4661 int err = 0;
4662 mdk_rdev_t *rdev;
4663 struct disk_info *p = conf->disks + number;
4664
4665 print_raid5_conf(conf);
4666 rdev = p->rdev;
4667 if (rdev) {
ec32a2bd
N
4668 if (number >= conf->raid_disks &&
4669 conf->reshape_progress == MaxSector)
4670 clear_bit(In_sync, &rdev->flags);
4671
b2d444d7 4672 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4673 atomic_read(&rdev->nr_pending)) {
4674 err = -EBUSY;
4675 goto abort;
4676 }
dfc70645
N
4677 /* Only remove non-faulty devices if recovery
4678 * isn't possible.
4679 */
4680 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
4681 mddev->degraded <= conf->max_degraded &&
4682 number < conf->raid_disks) {
dfc70645
N
4683 err = -EBUSY;
4684 goto abort;
4685 }
1da177e4 4686 p->rdev = NULL;
fbd568a3 4687 synchronize_rcu();
1da177e4
LT
4688 if (atomic_read(&rdev->nr_pending)) {
4689 /* lost the race, try later */
4690 err = -EBUSY;
4691 p->rdev = rdev;
4692 }
4693 }
4694abort:
4695
4696 print_raid5_conf(conf);
4697 return err;
4698}
4699
4700static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4701{
4702 raid5_conf_t *conf = mddev->private;
199050ea 4703 int err = -EEXIST;
1da177e4
LT
4704 int disk;
4705 struct disk_info *p;
6c2fce2e
NB
4706 int first = 0;
4707 int last = conf->raid_disks - 1;
1da177e4 4708
16a53ecc 4709 if (mddev->degraded > conf->max_degraded)
1da177e4 4710 /* no point adding a device */
199050ea 4711 return -EINVAL;
1da177e4 4712
6c2fce2e
NB
4713 if (rdev->raid_disk >= 0)
4714 first = last = rdev->raid_disk;
1da177e4
LT
4715
4716 /*
16a53ecc
N
4717 * find the disk ... but prefer rdev->saved_raid_disk
4718 * if possible.
1da177e4 4719 */
16a53ecc 4720 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4721 rdev->saved_raid_disk >= first &&
16a53ecc
N
4722 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4723 disk = rdev->saved_raid_disk;
4724 else
6c2fce2e
NB
4725 disk = first;
4726 for ( ; disk <= last ; disk++)
1da177e4 4727 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4728 clear_bit(In_sync, &rdev->flags);
1da177e4 4729 rdev->raid_disk = disk;
199050ea 4730 err = 0;
72626685
N
4731 if (rdev->saved_raid_disk != disk)
4732 conf->fullsync = 1;
d6065f7b 4733 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4734 break;
4735 }
4736 print_raid5_conf(conf);
199050ea 4737 return err;
1da177e4
LT
4738}
4739
4740static int raid5_resize(mddev_t *mddev, sector_t sectors)
4741{
4742 /* no resync is happening, and there is enough space
4743 * on all devices, so we can resize.
4744 * We need to make sure resync covers any new space.
4745 * If the array is shrinking we should possibly wait until
4746 * any io in the removed space completes, but it hardly seems
4747 * worth it.
4748 */
4749 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
1f403624
DW
4750 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4751 mddev->raid_disks));
b522adcd
DW
4752 if (mddev->array_sectors >
4753 raid5_size(mddev, sectors, mddev->raid_disks))
4754 return -EINVAL;
f233ea5c 4755 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4756 mddev->changed = 1;
58c0fed4
AN
4757 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4758 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4759 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4760 }
58c0fed4 4761 mddev->dev_sectors = sectors;
4b5c7ae8 4762 mddev->resync_max_sectors = sectors;
1da177e4
LT
4763 return 0;
4764}
4765
29269553 4766#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4767static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4768{
4769 raid5_conf_t *conf = mddev_to_conf(mddev);
29269553 4770
63c70c4f 4771 if (mddev->delta_disks == 0)
29269553 4772 return 0; /* nothing to do */
dba034ee
N
4773 if (mddev->bitmap)
4774 /* Cannot grow a bitmap yet */
4775 return -EBUSY;
ec32a2bd
N
4776 if (mddev->degraded > conf->max_degraded)
4777 return -EINVAL;
4778 if (mddev->delta_disks < 0) {
4779 /* We might be able to shrink, but the devices must
4780 * be made bigger first.
4781 * For raid6, 4 is the minimum size.
4782 * Otherwise 2 is the minimum
4783 */
4784 int min = 2;
4785 if (mddev->level == 6)
4786 min = 4;
4787 if (mddev->raid_disks + mddev->delta_disks < min)
4788 return -EINVAL;
4789 }
29269553
N
4790
4791 /* Can only proceed if there are plenty of stripe_heads.
4792 * We need a minimum of one full stripe,, and for sensible progress
4793 * it is best to have about 4 times that.
4794 * If we require 4 times, then the default 256 4K stripe_heads will
4795 * allow for chunk sizes up to 256K, which is probably OK.
4796 * If the chunk size is greater, user-space should request more
4797 * stripe_heads first.
4798 */
63c70c4f
N
4799 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4800 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553 4801 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
784052ec
N
4802 (max(mddev->chunk_size, mddev->new_chunk)
4803 / STRIPE_SIZE)*4);
29269553
N
4804 return -ENOSPC;
4805 }
4806
ec32a2bd 4807 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
4808}
4809
4810static int raid5_start_reshape(mddev_t *mddev)
4811{
4812 raid5_conf_t *conf = mddev_to_conf(mddev);
4813 mdk_rdev_t *rdev;
63c70c4f
N
4814 int spares = 0;
4815 int added_devices = 0;
c04be0aa 4816 unsigned long flags;
63c70c4f 4817
f416885e 4818 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4819 return -EBUSY;
4820
159ec1fc 4821 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4822 if (rdev->raid_disk < 0 &&
4823 !test_bit(Faulty, &rdev->flags))
4824 spares++;
63c70c4f 4825
f416885e 4826 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4827 /* Not enough devices even to make a degraded array
4828 * of that size
4829 */
4830 return -EINVAL;
4831
ec32a2bd
N
4832 /* Refuse to reduce size of the array. Any reductions in
4833 * array size must be through explicit setting of array_size
4834 * attribute.
4835 */
4836 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4837 < mddev->array_sectors) {
4838 printk(KERN_ERR "md: %s: array size must be reduced "
4839 "before number of disks\n", mdname(mddev));
4840 return -EINVAL;
4841 }
4842
f6705578 4843 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4844 spin_lock_irq(&conf->device_lock);
4845 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4846 conf->raid_disks += mddev->delta_disks;
fef9c61f
N
4847 if (mddev->delta_disks < 0)
4848 conf->reshape_progress = raid5_size(mddev, 0, 0);
4849 else
4850 conf->reshape_progress = 0;
4851 conf->reshape_safe = conf->reshape_progress;
86b42c71 4852 conf->generation++;
29269553
N
4853 spin_unlock_irq(&conf->device_lock);
4854
4855 /* Add some new drives, as many as will fit.
4856 * We know there are enough to make the newly sized array work.
4857 */
159ec1fc 4858 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4859 if (rdev->raid_disk < 0 &&
4860 !test_bit(Faulty, &rdev->flags)) {
199050ea 4861 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4862 char nm[20];
4863 set_bit(In_sync, &rdev->flags);
29269553 4864 added_devices++;
5fd6c1dc 4865 rdev->recovery_offset = 0;
29269553 4866 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4867 if (sysfs_create_link(&mddev->kobj,
4868 &rdev->kobj, nm))
4869 printk(KERN_WARNING
4870 "raid5: failed to create "
4871 " link %s for %s\n",
4872 nm, mdname(mddev));
29269553
N
4873 } else
4874 break;
4875 }
4876
ec32a2bd
N
4877 if (mddev->delta_disks > 0) {
4878 spin_lock_irqsave(&conf->device_lock, flags);
4879 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4880 - added_devices;
4881 spin_unlock_irqrestore(&conf->device_lock, flags);
4882 }
63c70c4f 4883 mddev->raid_disks = conf->raid_disks;
f6705578 4884 mddev->reshape_position = 0;
850b2b42 4885 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4886
29269553
N
4887 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4888 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4889 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4890 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4891 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4892 "%s_reshape");
4893 if (!mddev->sync_thread) {
4894 mddev->recovery = 0;
4895 spin_lock_irq(&conf->device_lock);
4896 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 4897 conf->reshape_progress = MaxSector;
29269553
N
4898 spin_unlock_irq(&conf->device_lock);
4899 return -EAGAIN;
4900 }
4901 md_wakeup_thread(mddev->sync_thread);
4902 md_new_event(mddev);
4903 return 0;
4904}
4905#endif
4906
ec32a2bd
N
4907/* This is called from the reshape thread and should make any
4908 * changes needed in 'conf'
4909 */
29269553
N
4910static void end_reshape(raid5_conf_t *conf)
4911{
29269553 4912
f6705578 4913 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 4914
f6705578 4915 spin_lock_irq(&conf->device_lock);
cea9c228 4916 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 4917 conf->reshape_progress = MaxSector;
f6705578 4918 spin_unlock_irq(&conf->device_lock);
16a53ecc
N
4919
4920 /* read-ahead size must cover two whole stripes, which is
4921 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4922 */
4923 {
cea9c228
N
4924 int data_disks = conf->raid_disks - conf->max_degraded;
4925 int stripe = data_disks * (conf->chunk_size
4926 / PAGE_SIZE);
16a53ecc
N
4927 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4928 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4929 }
29269553 4930 }
29269553
N
4931}
4932
ec32a2bd
N
4933/* This is called from the raid5d thread with mddev_lock held.
4934 * It makes config changes to the device.
4935 */
cea9c228
N
4936static void raid5_finish_reshape(mddev_t *mddev)
4937{
4938 struct block_device *bdev;
4939
4940 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4941
ec32a2bd
N
4942 if (mddev->delta_disks > 0) {
4943 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4944 set_capacity(mddev->gendisk, mddev->array_sectors);
4945 mddev->changed = 1;
4946
4947 bdev = bdget_disk(mddev->gendisk, 0);
4948 if (bdev) {
4949 mutex_lock(&bdev->bd_inode->i_mutex);
4950 i_size_write(bdev->bd_inode,
4951 (loff_t)mddev->array_sectors << 9);
4952 mutex_unlock(&bdev->bd_inode->i_mutex);
4953 bdput(bdev);
4954 }
4955 } else {
4956 int d;
4957 raid5_conf_t *conf = mddev_to_conf(mddev);
4958 mddev->degraded = conf->raid_disks;
4959 for (d = 0; d < conf->raid_disks ; d++)
4960 if (conf->disks[d].rdev &&
4961 test_bit(In_sync,
4962 &conf->disks[d].rdev->flags))
4963 mddev->degraded--;
4964 for (d = conf->raid_disks ;
4965 d < conf->raid_disks - mddev->delta_disks;
4966 d++)
4967 raid5_remove_disk(mddev, d);
cea9c228 4968 }
ec32a2bd
N
4969 mddev->reshape_position = MaxSector;
4970 mddev->delta_disks = 0;
cea9c228
N
4971 }
4972}
4973
72626685
N
4974static void raid5_quiesce(mddev_t *mddev, int state)
4975{
4976 raid5_conf_t *conf = mddev_to_conf(mddev);
4977
4978 switch(state) {
e464eafd
N
4979 case 2: /* resume for a suspend */
4980 wake_up(&conf->wait_for_overlap);
4981 break;
4982
72626685
N
4983 case 1: /* stop all writes */
4984 spin_lock_irq(&conf->device_lock);
4985 conf->quiesce = 1;
4986 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4987 atomic_read(&conf->active_stripes) == 0 &&
4988 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4989 conf->device_lock, /* nothing */);
4990 spin_unlock_irq(&conf->device_lock);
4991 break;
4992
4993 case 0: /* re-enable writes */
4994 spin_lock_irq(&conf->device_lock);
4995 conf->quiesce = 0;
4996 wake_up(&conf->wait_for_stripe);
e464eafd 4997 wake_up(&conf->wait_for_overlap);
72626685
N
4998 spin_unlock_irq(&conf->device_lock);
4999 break;
5000 }
72626685 5001}
b15c2e57 5002
d562b0c4
N
5003
5004static void *raid5_takeover_raid1(mddev_t *mddev)
5005{
5006 int chunksect;
5007
5008 if (mddev->raid_disks != 2 ||
5009 mddev->degraded > 1)
5010 return ERR_PTR(-EINVAL);
5011
5012 /* Should check if there are write-behind devices? */
5013
5014 chunksect = 64*2; /* 64K by default */
5015
5016 /* The array must be an exact multiple of chunksize */
5017 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5018 chunksect >>= 1;
5019
5020 if ((chunksect<<9) < STRIPE_SIZE)
5021 /* array size does not allow a suitable chunk size */
5022 return ERR_PTR(-EINVAL);
5023
5024 mddev->new_level = 5;
5025 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5026 mddev->new_chunk = chunksect << 9;
5027
5028 return setup_conf(mddev);
5029}
5030
fc9739c6
N
5031static void *raid5_takeover_raid6(mddev_t *mddev)
5032{
5033 int new_layout;
5034
5035 switch (mddev->layout) {
5036 case ALGORITHM_LEFT_ASYMMETRIC_6:
5037 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5038 break;
5039 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5040 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5041 break;
5042 case ALGORITHM_LEFT_SYMMETRIC_6:
5043 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5044 break;
5045 case ALGORITHM_RIGHT_SYMMETRIC_6:
5046 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5047 break;
5048 case ALGORITHM_PARITY_0_6:
5049 new_layout = ALGORITHM_PARITY_0;
5050 break;
5051 case ALGORITHM_PARITY_N:
5052 new_layout = ALGORITHM_PARITY_N;
5053 break;
5054 default:
5055 return ERR_PTR(-EINVAL);
5056 }
5057 mddev->new_level = 5;
5058 mddev->new_layout = new_layout;
5059 mddev->delta_disks = -1;
5060 mddev->raid_disks -= 1;
5061 return setup_conf(mddev);
5062}
5063
d562b0c4 5064
b3546035
N
5065static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5066{
5067 /* Currently the layout and chunk size can only be changed
5068 * for a 2-drive raid array, as in that case no data shuffling
5069 * is required.
5070 * Later we might validate these and set new_* so a reshape
5071 * can complete the change.
5072 */
5073 raid5_conf_t *conf = mddev_to_conf(mddev);
5074
5075 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5076 return -EINVAL;
5077 if (new_chunk > 0) {
5078 if (new_chunk & (new_chunk-1))
5079 /* not a power of 2 */
5080 return -EINVAL;
5081 if (new_chunk < PAGE_SIZE)
5082 return -EINVAL;
5083 if (mddev->array_sectors & ((new_chunk>>9)-1))
5084 /* not factor of array size */
5085 return -EINVAL;
5086 }
5087
5088 /* They look valid */
5089
5090 if (mddev->raid_disks != 2)
5091 return -EINVAL;
5092
5093 if (new_layout >= 0) {
5094 conf->algorithm = new_layout;
5095 mddev->layout = mddev->new_layout = new_layout;
5096 }
5097 if (new_chunk > 0) {
5098 conf->chunk_size = new_chunk;
5099 mddev->chunk_size = mddev->new_chunk = new_chunk;
5100 }
5101 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5102 md_wakeup_thread(mddev->thread);
5103 return 0;
5104}
5105
d562b0c4
N
5106static void *raid5_takeover(mddev_t *mddev)
5107{
5108 /* raid5 can take over:
5109 * raid0 - if all devices are the same - make it a raid4 layout
5110 * raid1 - if there are two drives. We need to know the chunk size
5111 * raid4 - trivial - just use a raid4 layout.
5112 * raid6 - Providing it is a *_6 layout
5113 *
5114 * For now, just do raid1
5115 */
5116
5117 if (mddev->level == 1)
5118 return raid5_takeover_raid1(mddev);
e9d4758f
N
5119 if (mddev->level == 4) {
5120 mddev->new_layout = ALGORITHM_PARITY_N;
5121 mddev->new_level = 5;
5122 return setup_conf(mddev);
5123 }
fc9739c6
N
5124 if (mddev->level == 6)
5125 return raid5_takeover_raid6(mddev);
d562b0c4
N
5126
5127 return ERR_PTR(-EINVAL);
5128}
5129
5130
245f46c2
N
5131static struct mdk_personality raid5_personality;
5132
5133static void *raid6_takeover(mddev_t *mddev)
5134{
5135 /* Currently can only take over a raid5. We map the
5136 * personality to an equivalent raid6 personality
5137 * with the Q block at the end.
5138 */
5139 int new_layout;
5140
5141 if (mddev->pers != &raid5_personality)
5142 return ERR_PTR(-EINVAL);
5143 if (mddev->degraded > 1)
5144 return ERR_PTR(-EINVAL);
5145 if (mddev->raid_disks > 253)
5146 return ERR_PTR(-EINVAL);
5147 if (mddev->raid_disks < 3)
5148 return ERR_PTR(-EINVAL);
5149
5150 switch (mddev->layout) {
5151 case ALGORITHM_LEFT_ASYMMETRIC:
5152 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5153 break;
5154 case ALGORITHM_RIGHT_ASYMMETRIC:
5155 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5156 break;
5157 case ALGORITHM_LEFT_SYMMETRIC:
5158 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5159 break;
5160 case ALGORITHM_RIGHT_SYMMETRIC:
5161 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5162 break;
5163 case ALGORITHM_PARITY_0:
5164 new_layout = ALGORITHM_PARITY_0_6;
5165 break;
5166 case ALGORITHM_PARITY_N:
5167 new_layout = ALGORITHM_PARITY_N;
5168 break;
5169 default:
5170 return ERR_PTR(-EINVAL);
5171 }
5172 mddev->new_level = 6;
5173 mddev->new_layout = new_layout;
5174 mddev->delta_disks = 1;
5175 mddev->raid_disks += 1;
5176 return setup_conf(mddev);
5177}
5178
5179
16a53ecc
N
5180static struct mdk_personality raid6_personality =
5181{
5182 .name = "raid6",
5183 .level = 6,
5184 .owner = THIS_MODULE,
5185 .make_request = make_request,
5186 .run = run,
5187 .stop = stop,
5188 .status = status,
5189 .error_handler = error,
5190 .hot_add_disk = raid5_add_disk,
5191 .hot_remove_disk= raid5_remove_disk,
5192 .spare_active = raid5_spare_active,
5193 .sync_request = sync_request,
5194 .resize = raid5_resize,
80c3a6ce 5195 .size = raid5_size,
f416885e
N
5196#ifdef CONFIG_MD_RAID5_RESHAPE
5197 .check_reshape = raid5_check_reshape,
5198 .start_reshape = raid5_start_reshape,
cea9c228 5199 .finish_reshape = raid5_finish_reshape,
f416885e 5200#endif
16a53ecc 5201 .quiesce = raid5_quiesce,
245f46c2 5202 .takeover = raid6_takeover,
16a53ecc 5203};
2604b703 5204static struct mdk_personality raid5_personality =
1da177e4
LT
5205{
5206 .name = "raid5",
2604b703 5207 .level = 5,
1da177e4
LT
5208 .owner = THIS_MODULE,
5209 .make_request = make_request,
5210 .run = run,
5211 .stop = stop,
5212 .status = status,
5213 .error_handler = error,
5214 .hot_add_disk = raid5_add_disk,
5215 .hot_remove_disk= raid5_remove_disk,
5216 .spare_active = raid5_spare_active,
5217 .sync_request = sync_request,
5218 .resize = raid5_resize,
80c3a6ce 5219 .size = raid5_size,
29269553 5220#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
5221 .check_reshape = raid5_check_reshape,
5222 .start_reshape = raid5_start_reshape,
cea9c228 5223 .finish_reshape = raid5_finish_reshape,
29269553 5224#endif
72626685 5225 .quiesce = raid5_quiesce,
d562b0c4 5226 .takeover = raid5_takeover,
b3546035 5227 .reconfig = raid5_reconfig,
1da177e4
LT
5228};
5229
2604b703 5230static struct mdk_personality raid4_personality =
1da177e4 5231{
2604b703
N
5232 .name = "raid4",
5233 .level = 4,
5234 .owner = THIS_MODULE,
5235 .make_request = make_request,
5236 .run = run,
5237 .stop = stop,
5238 .status = status,
5239 .error_handler = error,
5240 .hot_add_disk = raid5_add_disk,
5241 .hot_remove_disk= raid5_remove_disk,
5242 .spare_active = raid5_spare_active,
5243 .sync_request = sync_request,
5244 .resize = raid5_resize,
80c3a6ce 5245 .size = raid5_size,
3d37890b
N
5246#ifdef CONFIG_MD_RAID5_RESHAPE
5247 .check_reshape = raid5_check_reshape,
5248 .start_reshape = raid5_start_reshape,
cea9c228 5249 .finish_reshape = raid5_finish_reshape,
3d37890b 5250#endif
2604b703
N
5251 .quiesce = raid5_quiesce,
5252};
5253
5254static int __init raid5_init(void)
5255{
16a53ecc 5256 register_md_personality(&raid6_personality);
2604b703
N
5257 register_md_personality(&raid5_personality);
5258 register_md_personality(&raid4_personality);
5259 return 0;
1da177e4
LT
5260}
5261
2604b703 5262static void raid5_exit(void)
1da177e4 5263{
16a53ecc 5264 unregister_md_personality(&raid6_personality);
2604b703
N
5265 unregister_md_personality(&raid5_personality);
5266 unregister_md_personality(&raid4_personality);
1da177e4
LT
5267}
5268
5269module_init(raid5_init);
5270module_exit(raid5_exit);
5271MODULE_LICENSE("GPL");
5272MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5273MODULE_ALIAS("md-raid5");
5274MODULE_ALIAS("md-raid4");
2604b703
N
5275MODULE_ALIAS("md-level-5");
5276MODULE_ALIAS("md-level-4");
16a53ecc
N
5277MODULE_ALIAS("md-personality-8"); /* RAID6 */
5278MODULE_ALIAS("md-raid6");
5279MODULE_ALIAS("md-level-6");
5280
5281/* This used to be two separate modules, they were: */
5282MODULE_ALIAS("raid5");
5283MODULE_ALIAS("raid6");