]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid10.c
[PATCH] md: improvements to raid5 handling of read errors
[net-next-2.6.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/raid/raid10.h>
22
23/*
24 * RAID10 provides a combination of RAID0 and RAID1 functionality.
25 * The layout of data is defined by
26 * chunk_size
27 * raid_disks
28 * near_copies (stored in low byte of layout)
29 * far_copies (stored in second byte of layout)
30 *
31 * The data to be stored is divided into chunks using chunksize.
32 * Each device is divided into far_copies sections.
33 * In each section, chunks are laid out in a style similar to raid0, but
34 * near_copies copies of each chunk is stored (each on a different drive).
35 * The starting device for each section is offset near_copies from the starting
36 * device of the previous section.
37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38 * drive.
39 * near_copies and far_copies must be at least one, and their product is at most
40 * raid_disks.
41 */
42
43/*
44 * Number of guaranteed r10bios in case of extreme VM load:
45 */
46#define NR_RAID10_BIOS 256
47
48static void unplug_slaves(mddev_t *mddev);
49
dd0fc66f 50static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
51{
52 conf_t *conf = data;
53 r10bio_t *r10_bio;
54 int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56 /* allocate a r10bio with room for raid_disks entries in the bios array */
57 r10_bio = kmalloc(size, gfp_flags);
58 if (r10_bio)
59 memset(r10_bio, 0, size);
60 else
61 unplug_slaves(conf->mddev);
62
63 return r10_bio;
64}
65
66static void r10bio_pool_free(void *r10_bio, void *data)
67{
68 kfree(r10_bio);
69}
70
71#define RESYNC_BLOCK_SIZE (64*1024)
72//#define RESYNC_BLOCK_SIZE PAGE_SIZE
73#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75#define RESYNC_WINDOW (2048*1024)
76
77/*
78 * When performing a resync, we need to read and compare, so
79 * we need as many pages are there are copies.
80 * When performing a recovery, we need 2 bios, one for read,
81 * one for write (we recover only one drive per r10buf)
82 *
83 */
dd0fc66f 84static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
85{
86 conf_t *conf = data;
87 struct page *page;
88 r10bio_t *r10_bio;
89 struct bio *bio;
90 int i, j;
91 int nalloc;
92
93 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 if (!r10_bio) {
95 unplug_slaves(conf->mddev);
96 return NULL;
97 }
98
99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 nalloc = conf->copies; /* resync */
101 else
102 nalloc = 2; /* recovery */
103
104 /*
105 * Allocate bios.
106 */
107 for (j = nalloc ; j-- ; ) {
108 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r10_bio->devs[j].bio = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them
115 * where needed.
116 */
117 for (j = 0 ; j < nalloc; j++) {
118 bio = r10_bio->devs[j].bio;
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
123
124 bio->bi_io_vec[i].bv_page = page;
125 }
126 }
127
128 return r10_bio;
129
130out_free_pages:
131 for ( ; i > 0 ; i--)
132 __free_page(bio->bi_io_vec[i-1].bv_page);
133 while (j--)
134 for (i = 0; i < RESYNC_PAGES ; i++)
135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 j = -1;
137out_free_bio:
138 while ( ++j < nalloc )
139 bio_put(r10_bio->devs[j].bio);
140 r10bio_pool_free(r10_bio, conf);
141 return NULL;
142}
143
144static void r10buf_pool_free(void *__r10_bio, void *data)
145{
146 int i;
147 conf_t *conf = data;
148 r10bio_t *r10bio = __r10_bio;
149 int j;
150
151 for (j=0; j < conf->copies; j++) {
152 struct bio *bio = r10bio->devs[j].bio;
153 if (bio) {
154 for (i = 0; i < RESYNC_PAGES; i++) {
155 __free_page(bio->bi_io_vec[i].bv_page);
156 bio->bi_io_vec[i].bv_page = NULL;
157 }
158 bio_put(bio);
159 }
160 }
161 r10bio_pool_free(r10bio, conf);
162}
163
164static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165{
166 int i;
167
168 for (i = 0; i < conf->copies; i++) {
169 struct bio **bio = & r10_bio->devs[i].bio;
170 if (*bio)
171 bio_put(*bio);
172 *bio = NULL;
173 }
174}
175
176static inline void free_r10bio(r10bio_t *r10_bio)
177{
178 unsigned long flags;
179
180 conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182 /*
183 * Wake up any possible resync thread that waits for the device
184 * to go idle.
185 */
186 spin_lock_irqsave(&conf->resync_lock, flags);
187 if (!--conf->nr_pending) {
188 wake_up(&conf->wait_idle);
189 wake_up(&conf->wait_resume);
190 }
191 spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193 put_all_bios(conf, r10_bio);
194 mempool_free(r10_bio, conf->r10bio_pool);
195}
196
197static inline void put_buf(r10bio_t *r10_bio)
198{
199 conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 unsigned long flags;
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
204 spin_lock_irqsave(&conf->resync_lock, flags);
205 if (!conf->barrier)
206 BUG();
207 --conf->barrier;
208 wake_up(&conf->wait_resume);
209 wake_up(&conf->wait_idle);
210
211 if (!--conf->nr_pending) {
212 wake_up(&conf->wait_idle);
213 wake_up(&conf->wait_resume);
214 }
215 spin_unlock_irqrestore(&conf->resync_lock, flags);
216}
217
218static void reschedule_retry(r10bio_t *r10_bio)
219{
220 unsigned long flags;
221 mddev_t *mddev = r10_bio->mddev;
222 conf_t *conf = mddev_to_conf(mddev);
223
224 spin_lock_irqsave(&conf->device_lock, flags);
225 list_add(&r10_bio->retry_list, &conf->retry_list);
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 md_wakeup_thread(mddev->thread);
229}
230
231/*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
236static void raid_end_bio_io(r10bio_t *r10_bio)
237{
238 struct bio *bio = r10_bio->master_bio;
239
240 bio_endio(bio, bio->bi_size,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
243}
244
245/*
246 * Update disk head position estimator based on IRQ completion info.
247 */
248static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249{
250 conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
254}
255
256static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257{
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 int slot, dev;
261 conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263 if (bio->bi_size)
264 return 1;
265
266 slot = r10_bio->read_slot;
267 dev = r10_bio->devs[slot].devnum;
268 /*
269 * this branch is our 'one mirror IO has finished' event handler:
270 */
271 if (!uptodate)
272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 else
274 /*
275 * Set R10BIO_Uptodate in our master bio, so that
276 * we will return a good error code to the higher
277 * levels even if IO on some other mirrored buffer fails.
278 *
279 * The 'master' represents the composite IO operation to
280 * user-side. So if something waits for IO, then it will
281 * wait for the 'master' bio.
282 */
283 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285 update_head_pos(slot, r10_bio);
286
287 /*
288 * we have only one bio on the read side
289 */
290 if (uptodate)
291 raid_end_bio_io(r10_bio);
292 else {
293 /*
294 * oops, read error:
295 */
296 char b[BDEVNAME_SIZE];
297 if (printk_ratelimit())
298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 reschedule_retry(r10_bio);
301 }
302
303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 return 0;
305}
306
307static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 int slot, dev;
312 conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314 if (bio->bi_size)
315 return 1;
316
317 for (slot = 0; slot < conf->copies; slot++)
318 if (r10_bio->devs[slot].bio == bio)
319 break;
320 dev = r10_bio->devs[slot].devnum;
321
322 /*
323 * this branch is our 'one mirror IO has finished' event handler:
324 */
325 if (!uptodate)
326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 else
328 /*
329 * Set R10BIO_Uptodate in our master bio, so that
330 * we will return a good error code for to the higher
331 * levels even if IO on some other mirrored buffer fails.
332 *
333 * The 'master' represents the composite IO operation to
334 * user-side. So if something waits for IO, then it will
335 * wait for the 'master' bio.
336 */
337 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339 update_head_pos(slot, r10_bio);
340
341 /*
342 *
343 * Let's see if all mirrored write operations have finished
344 * already.
345 */
346 if (atomic_dec_and_test(&r10_bio->remaining)) {
347 md_write_end(r10_bio->mddev);
348 raid_end_bio_io(r10_bio);
349 }
350
351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 return 0;
353}
354
355
356/*
357 * RAID10 layout manager
358 * Aswell as the chunksize and raid_disks count, there are two
359 * parameters: near_copies and far_copies.
360 * near_copies * far_copies must be <= raid_disks.
361 * Normally one of these will be 1.
362 * If both are 1, we get raid0.
363 * If near_copies == raid_disks, we get raid1.
364 *
365 * Chunks are layed out in raid0 style with near_copies copies of the
366 * first chunk, followed by near_copies copies of the next chunk and
367 * so on.
368 * If far_copies > 1, then after 1/far_copies of the array has been assigned
369 * as described above, we start again with a device offset of near_copies.
370 * So we effectively have another copy of the whole array further down all
371 * the drives, but with blocks on different drives.
372 * With this layout, and block is never stored twice on the one device.
373 *
374 * raid10_find_phys finds the sector offset of a given virtual sector
375 * on each device that it is on. If a block isn't on a device,
376 * that entry in the array is set to MaxSector.
377 *
378 * raid10_find_virt does the reverse mapping, from a device and a
379 * sector offset to a virtual address
380 */
381
382static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383{
384 int n,f;
385 sector_t sector;
386 sector_t chunk;
387 sector_t stripe;
388 int dev;
389
390 int slot = 0;
391
392 /* now calculate first sector/dev */
393 chunk = r10bio->sector >> conf->chunk_shift;
394 sector = r10bio->sector & conf->chunk_mask;
395
396 chunk *= conf->near_copies;
397 stripe = chunk;
398 dev = sector_div(stripe, conf->raid_disks);
399
400 sector += stripe << conf->chunk_shift;
401
402 /* and calculate all the others */
403 for (n=0; n < conf->near_copies; n++) {
404 int d = dev;
405 sector_t s = sector;
406 r10bio->devs[slot].addr = sector;
407 r10bio->devs[slot].devnum = d;
408 slot++;
409
410 for (f = 1; f < conf->far_copies; f++) {
411 d += conf->near_copies;
412 if (d >= conf->raid_disks)
413 d -= conf->raid_disks;
414 s += conf->stride;
415 r10bio->devs[slot].devnum = d;
416 r10bio->devs[slot].addr = s;
417 slot++;
418 }
419 dev++;
420 if (dev >= conf->raid_disks) {
421 dev = 0;
422 sector += (conf->chunk_mask + 1);
423 }
424 }
425 BUG_ON(slot != conf->copies);
426}
427
428static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429{
430 sector_t offset, chunk, vchunk;
431
432 while (sector > conf->stride) {
433 sector -= conf->stride;
434 if (dev < conf->near_copies)
435 dev += conf->raid_disks - conf->near_copies;
436 else
437 dev -= conf->near_copies;
438 }
439
440 offset = sector & conf->chunk_mask;
441 chunk = sector >> conf->chunk_shift;
442 vchunk = chunk * conf->raid_disks + dev;
443 sector_div(vchunk, conf->near_copies);
444 return (vchunk << conf->chunk_shift) + offset;
445}
446
447/**
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @q: request queue
450 * @bio: the buffer head that's been built up so far
451 * @biovec: the request that could be merged to it.
452 *
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
456 */
457static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 struct bio_vec *bio_vec)
459{
460 mddev_t *mddev = q->queuedata;
461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 int max;
463 unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 unsigned int bio_sectors = bio->bi_size >> 9;
465
466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 if (max <= bio_vec->bv_len && bio_sectors == 0)
469 return bio_vec->bv_len;
470 else
471 return max;
472}
473
474/*
475 * This routine returns the disk from which the requested read should
476 * be done. There is a per-array 'next expected sequential IO' sector
477 * number - if this matches on the next IO then we use the last disk.
478 * There is also a per-disk 'last know head position' sector that is
479 * maintained from IRQ contexts, both the normal and the resync IO
480 * completion handlers update this position correctly. If there is no
481 * perfect sequential match then we pick the disk whose head is closest.
482 *
483 * If there are 2 mirrors in the same 2 devices, performance degrades
484 * because position is mirror, not device based.
485 *
486 * The rdev for the device selected will have nr_pending incremented.
487 */
488
489/*
490 * FIXME: possibly should rethink readbalancing and do it differently
491 * depending on near_copies / far_copies geometry.
492 */
493static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494{
495 const unsigned long this_sector = r10_bio->sector;
496 int disk, slot, nslot;
497 const int sectors = r10_bio->sectors;
498 sector_t new_distance, current_distance;
d6065f7b 499 mdk_rdev_t *rdev;
1da177e4
LT
500
501 raid10_find_phys(conf, r10_bio);
502 rcu_read_lock();
503 /*
504 * Check if we can balance. We can balance on the whole
505 * device if no resync is going on, or below the resync window.
506 * We take the first readable disk when above the resync window.
507 */
508 if (conf->mddev->recovery_cp < MaxSector
509 && (this_sector + sectors >= conf->next_resync)) {
510 /* make sure that disk is operational */
511 slot = 0;
512 disk = r10_bio->devs[slot].devnum;
513
d6065f7b
SW
514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 !rdev->in_sync) {
1da177e4
LT
516 slot++;
517 if (slot == conf->copies) {
518 slot = 0;
519 disk = -1;
520 break;
521 }
522 disk = r10_bio->devs[slot].devnum;
523 }
524 goto rb_out;
525 }
526
527
528 /* make sure the disk is operational */
529 slot = 0;
530 disk = r10_bio->devs[slot].devnum;
d6065f7b
SW
531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 !rdev->in_sync) {
1da177e4
LT
533 slot ++;
534 if (slot == conf->copies) {
535 disk = -1;
536 goto rb_out;
537 }
538 disk = r10_bio->devs[slot].devnum;
539 }
540
541
3ec67ac1
N
542 current_distance = abs(r10_bio->devs[slot].addr -
543 conf->mirrors[disk].head_position);
1da177e4
LT
544
545 /* Find the disk whose head is closest */
546
547 for (nslot = slot; nslot < conf->copies; nslot++) {
548 int ndisk = r10_bio->devs[nslot].devnum;
549
550
d6065f7b
SW
551 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
552 !rdev->in_sync)
1da177e4
LT
553 continue;
554
d6065f7b 555 if (!atomic_read(&rdev->nr_pending)) {
1da177e4
LT
556 disk = ndisk;
557 slot = nslot;
558 break;
559 }
560 new_distance = abs(r10_bio->devs[nslot].addr -
561 conf->mirrors[ndisk].head_position);
562 if (new_distance < current_distance) {
563 current_distance = new_distance;
564 disk = ndisk;
565 slot = nslot;
566 }
567 }
568
569rb_out:
570 r10_bio->read_slot = slot;
571/* conf->next_seq_sect = this_sector + sectors;*/
572
d6065f7b 573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4
LT
574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
575 rcu_read_unlock();
576
577 return disk;
578}
579
580static void unplug_slaves(mddev_t *mddev)
581{
582 conf_t *conf = mddev_to_conf(mddev);
583 int i;
584
585 rcu_read_lock();
586 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 587 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4
LT
588 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
589 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
590
591 atomic_inc(&rdev->nr_pending);
592 rcu_read_unlock();
593
594 if (r_queue->unplug_fn)
595 r_queue->unplug_fn(r_queue);
596
597 rdev_dec_pending(rdev, mddev);
598 rcu_read_lock();
599 }
600 }
601 rcu_read_unlock();
602}
603
604static void raid10_unplug(request_queue_t *q)
605{
606 unplug_slaves(q->queuedata);
607}
608
609static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
610 sector_t *error_sector)
611{
612 mddev_t *mddev = q->queuedata;
613 conf_t *conf = mddev_to_conf(mddev);
614 int i, ret = 0;
615
616 rcu_read_lock();
617 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 618 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4
LT
619 if (rdev && !rdev->faulty) {
620 struct block_device *bdev = rdev->bdev;
621 request_queue_t *r_queue = bdev_get_queue(bdev);
622
623 if (!r_queue->issue_flush_fn)
624 ret = -EOPNOTSUPP;
625 else {
626 atomic_inc(&rdev->nr_pending);
627 rcu_read_unlock();
628 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
629 error_sector);
630 rdev_dec_pending(rdev, mddev);
631 rcu_read_lock();
632 }
633 }
634 }
635 rcu_read_unlock();
636 return ret;
637}
638
639/*
640 * Throttle resync depth, so that we can both get proper overlapping of
641 * requests, but are still able to handle normal requests quickly.
642 */
643#define RESYNC_DEPTH 32
644
645static void device_barrier(conf_t *conf, sector_t sect)
646{
647 spin_lock_irq(&conf->resync_lock);
648 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
649 conf->resync_lock, unplug_slaves(conf->mddev));
650
651 if (!conf->barrier++) {
652 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
653 conf->resync_lock, unplug_slaves(conf->mddev));
654 if (conf->nr_pending)
655 BUG();
656 }
657 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
658 conf->resync_lock, unplug_slaves(conf->mddev));
659 conf->next_resync = sect;
660 spin_unlock_irq(&conf->resync_lock);
661}
662
663static int make_request(request_queue_t *q, struct bio * bio)
664{
665 mddev_t *mddev = q->queuedata;
666 conf_t *conf = mddev_to_conf(mddev);
667 mirror_info_t *mirror;
668 r10bio_t *r10_bio;
669 struct bio *read_bio;
670 int i;
671 int chunk_sects = conf->chunk_mask + 1;
a362357b 672 const int rw = bio_data_dir(bio);
1da177e4 673
e5dcdd80
N
674 if (unlikely(bio_barrier(bio))) {
675 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
676 return 0;
677 }
678
1da177e4
LT
679 /* If this request crosses a chunk boundary, we need to
680 * split it. This will only happen for 1 PAGE (or less) requests.
681 */
682 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
683 > chunk_sects &&
684 conf->near_copies < conf->raid_disks)) {
685 struct bio_pair *bp;
686 /* Sanity check -- queue functions should prevent this happening */
687 if (bio->bi_vcnt != 1 ||
688 bio->bi_idx != 0)
689 goto bad_map;
690 /* This is a one page bio that upper layers
691 * refuse to split for us, so we need to split it.
692 */
693 bp = bio_split(bio, bio_split_pool,
694 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
695 if (make_request(q, &bp->bio1))
696 generic_make_request(&bp->bio1);
697 if (make_request(q, &bp->bio2))
698 generic_make_request(&bp->bio2);
699
700 bio_pair_release(bp);
701 return 0;
702 bad_map:
703 printk("raid10_make_request bug: can't convert block across chunks"
704 " or bigger than %dk %llu %d\n", chunk_sects/2,
705 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
706
707 bio_io_error(bio, bio->bi_size);
708 return 0;
709 }
710
3d310eb7 711 md_write_start(mddev, bio);
06d91a5f 712
1da177e4
LT
713 /*
714 * Register the new request and wait if the reconstruction
715 * thread has put up a bar for new requests.
716 * Continue immediately if no resync is active currently.
717 */
718 spin_lock_irq(&conf->resync_lock);
719 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
720 conf->nr_pending++;
721 spin_unlock_irq(&conf->resync_lock);
722
a362357b
JA
723 disk_stat_inc(mddev->gendisk, ios[rw]);
724 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
1da177e4
LT
725
726 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
727
728 r10_bio->master_bio = bio;
729 r10_bio->sectors = bio->bi_size >> 9;
730
731 r10_bio->mddev = mddev;
732 r10_bio->sector = bio->bi_sector;
733
a362357b 734 if (rw == READ) {
1da177e4
LT
735 /*
736 * read balancing logic:
737 */
738 int disk = read_balance(conf, r10_bio);
739 int slot = r10_bio->read_slot;
740 if (disk < 0) {
741 raid_end_bio_io(r10_bio);
742 return 0;
743 }
744 mirror = conf->mirrors + disk;
745
746 read_bio = bio_clone(bio, GFP_NOIO);
747
748 r10_bio->devs[slot].bio = read_bio;
749
750 read_bio->bi_sector = r10_bio->devs[slot].addr +
751 mirror->rdev->data_offset;
752 read_bio->bi_bdev = mirror->rdev->bdev;
753 read_bio->bi_end_io = raid10_end_read_request;
754 read_bio->bi_rw = READ;
755 read_bio->bi_private = r10_bio;
756
757 generic_make_request(read_bio);
758 return 0;
759 }
760
761 /*
762 * WRITE:
763 */
764 /* first select target devices under spinlock and
765 * inc refcount on their rdev. Record them by setting
766 * bios[x] to bio
767 */
768 raid10_find_phys(conf, r10_bio);
769 rcu_read_lock();
770 for (i = 0; i < conf->copies; i++) {
771 int d = r10_bio->devs[i].devnum;
d6065f7b
SW
772 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
773 if (rdev &&
774 !rdev->faulty) {
775 atomic_inc(&rdev->nr_pending);
1da177e4
LT
776 r10_bio->devs[i].bio = bio;
777 } else
778 r10_bio->devs[i].bio = NULL;
779 }
780 rcu_read_unlock();
781
782 atomic_set(&r10_bio->remaining, 1);
06d91a5f 783
1da177e4
LT
784 for (i = 0; i < conf->copies; i++) {
785 struct bio *mbio;
786 int d = r10_bio->devs[i].devnum;
787 if (!r10_bio->devs[i].bio)
788 continue;
789
790 mbio = bio_clone(bio, GFP_NOIO);
791 r10_bio->devs[i].bio = mbio;
792
793 mbio->bi_sector = r10_bio->devs[i].addr+
794 conf->mirrors[d].rdev->data_offset;
795 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
796 mbio->bi_end_io = raid10_end_write_request;
797 mbio->bi_rw = WRITE;
798 mbio->bi_private = r10_bio;
799
800 atomic_inc(&r10_bio->remaining);
801 generic_make_request(mbio);
802 }
803
804 if (atomic_dec_and_test(&r10_bio->remaining)) {
805 md_write_end(mddev);
806 raid_end_bio_io(r10_bio);
807 }
808
809 return 0;
810}
811
812static void status(struct seq_file *seq, mddev_t *mddev)
813{
814 conf_t *conf = mddev_to_conf(mddev);
815 int i;
816
817 if (conf->near_copies < conf->raid_disks)
818 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
819 if (conf->near_copies > 1)
820 seq_printf(seq, " %d near-copies", conf->near_copies);
821 if (conf->far_copies > 1)
822 seq_printf(seq, " %d far-copies", conf->far_copies);
823
824 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
825 conf->working_disks);
826 for (i = 0; i < conf->raid_disks; i++)
827 seq_printf(seq, "%s",
828 conf->mirrors[i].rdev &&
829 conf->mirrors[i].rdev->in_sync ? "U" : "_");
830 seq_printf(seq, "]");
831}
832
833static void error(mddev_t *mddev, mdk_rdev_t *rdev)
834{
835 char b[BDEVNAME_SIZE];
836 conf_t *conf = mddev_to_conf(mddev);
837
838 /*
839 * If it is not operational, then we have already marked it as dead
840 * else if it is the last working disks, ignore the error, let the
841 * next level up know.
842 * else mark the drive as failed
843 */
844 if (rdev->in_sync
845 && conf->working_disks == 1)
846 /*
847 * Don't fail the drive, just return an IO error.
848 * The test should really be more sophisticated than
849 * "working_disks == 1", but it isn't critical, and
850 * can wait until we do more sophisticated "is the drive
851 * really dead" tests...
852 */
853 return;
854 if (rdev->in_sync) {
855 mddev->degraded++;
856 conf->working_disks--;
857 /*
858 * if recovery is running, make sure it aborts.
859 */
860 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
861 }
862 rdev->in_sync = 0;
863 rdev->faulty = 1;
864 mddev->sb_dirty = 1;
865 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
866 " Operation continuing on %d devices\n",
867 bdevname(rdev->bdev,b), conf->working_disks);
868}
869
870static void print_conf(conf_t *conf)
871{
872 int i;
873 mirror_info_t *tmp;
874
875 printk("RAID10 conf printout:\n");
876 if (!conf) {
877 printk("(!conf)\n");
878 return;
879 }
880 printk(" --- wd:%d rd:%d\n", conf->working_disks,
881 conf->raid_disks);
882
883 for (i = 0; i < conf->raid_disks; i++) {
884 char b[BDEVNAME_SIZE];
885 tmp = conf->mirrors + i;
886 if (tmp->rdev)
887 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
888 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
889 bdevname(tmp->rdev->bdev,b));
890 }
891}
892
893static void close_sync(conf_t *conf)
894{
895 spin_lock_irq(&conf->resync_lock);
896 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
897 conf->resync_lock, unplug_slaves(conf->mddev));
898 spin_unlock_irq(&conf->resync_lock);
899
900 if (conf->barrier) BUG();
901 if (waitqueue_active(&conf->wait_idle)) BUG();
902
903 mempool_destroy(conf->r10buf_pool);
904 conf->r10buf_pool = NULL;
905}
906
6d508242
N
907/* check if there are enough drives for
908 * every block to appear on atleast one
909 */
910static int enough(conf_t *conf)
911{
912 int first = 0;
913
914 do {
915 int n = conf->copies;
916 int cnt = 0;
917 while (n--) {
918 if (conf->mirrors[first].rdev)
919 cnt++;
920 first = (first+1) % conf->raid_disks;
921 }
922 if (cnt == 0)
923 return 0;
924 } while (first != 0);
925 return 1;
926}
927
1da177e4
LT
928static int raid10_spare_active(mddev_t *mddev)
929{
930 int i;
931 conf_t *conf = mddev->private;
932 mirror_info_t *tmp;
933
934 /*
935 * Find all non-in_sync disks within the RAID10 configuration
936 * and mark them in_sync
937 */
938 for (i = 0; i < conf->raid_disks; i++) {
939 tmp = conf->mirrors + i;
940 if (tmp->rdev
941 && !tmp->rdev->faulty
942 && !tmp->rdev->in_sync) {
943 conf->working_disks++;
944 mddev->degraded--;
945 tmp->rdev->in_sync = 1;
946 }
947 }
948
949 print_conf(conf);
950 return 0;
951}
952
953
954static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
955{
956 conf_t *conf = mddev->private;
957 int found = 0;
958 int mirror;
959 mirror_info_t *p;
960
961 if (mddev->recovery_cp < MaxSector)
962 /* only hot-add to in-sync arrays, as recovery is
963 * very different from resync
964 */
965 return 0;
6d508242
N
966 if (!enough(conf))
967 return 0;
1da177e4
LT
968
969 for (mirror=0; mirror < mddev->raid_disks; mirror++)
970 if ( !(p=conf->mirrors+mirror)->rdev) {
971
972 blk_queue_stack_limits(mddev->queue,
973 rdev->bdev->bd_disk->queue);
974 /* as we don't honour merge_bvec_fn, we must never risk
975 * violating it, so limit ->max_sector to one PAGE, as
976 * a one page request is never in violation.
977 */
978 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
979 mddev->queue->max_sectors > (PAGE_SIZE>>9))
980 mddev->queue->max_sectors = (PAGE_SIZE>>9);
981
982 p->head_position = 0;
983 rdev->raid_disk = mirror;
984 found = 1;
d6065f7b 985 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
986 break;
987 }
988
989 print_conf(conf);
990 return found;
991}
992
993static int raid10_remove_disk(mddev_t *mddev, int number)
994{
995 conf_t *conf = mddev->private;
996 int err = 0;
997 mdk_rdev_t *rdev;
998 mirror_info_t *p = conf->mirrors+ number;
999
1000 print_conf(conf);
1001 rdev = p->rdev;
1002 if (rdev) {
1003 if (rdev->in_sync ||
1004 atomic_read(&rdev->nr_pending)) {
1005 err = -EBUSY;
1006 goto abort;
1007 }
1008 p->rdev = NULL;
fbd568a3 1009 synchronize_rcu();
1da177e4
LT
1010 if (atomic_read(&rdev->nr_pending)) {
1011 /* lost the race, try later */
1012 err = -EBUSY;
1013 p->rdev = rdev;
1014 }
1015 }
1016abort:
1017
1018 print_conf(conf);
1019 return err;
1020}
1021
1022
1023static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1024{
1025 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1026 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1027 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1028 int i,d;
1029
1030 if (bio->bi_size)
1031 return 1;
1032
1033 for (i=0; i<conf->copies; i++)
1034 if (r10_bio->devs[i].bio == bio)
1035 break;
1036 if (i == conf->copies)
1037 BUG();
1038 update_head_pos(i, r10_bio);
1039 d = r10_bio->devs[i].devnum;
1040 if (!uptodate)
1041 md_error(r10_bio->mddev,
1042 conf->mirrors[d].rdev);
1043
1044 /* for reconstruct, we always reschedule after a read.
1045 * for resync, only after all reads
1046 */
1047 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1048 atomic_dec_and_test(&r10_bio->remaining)) {
1049 /* we have read all the blocks,
1050 * do the comparison in process context in raid10d
1051 */
1052 reschedule_retry(r10_bio);
1053 }
1054 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1055 return 0;
1056}
1057
1058static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1059{
1060 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1061 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1062 mddev_t *mddev = r10_bio->mddev;
1063 conf_t *conf = mddev_to_conf(mddev);
1064 int i,d;
1065
1066 if (bio->bi_size)
1067 return 1;
1068
1069 for (i = 0; i < conf->copies; i++)
1070 if (r10_bio->devs[i].bio == bio)
1071 break;
1072 d = r10_bio->devs[i].devnum;
1073
1074 if (!uptodate)
1075 md_error(mddev, conf->mirrors[d].rdev);
1076 update_head_pos(i, r10_bio);
1077
1078 while (atomic_dec_and_test(&r10_bio->remaining)) {
1079 if (r10_bio->master_bio == NULL) {
1080 /* the primary of several recovery bios */
1081 md_done_sync(mddev, r10_bio->sectors, 1);
1082 put_buf(r10_bio);
1083 break;
1084 } else {
1085 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1086 put_buf(r10_bio);
1087 r10_bio = r10_bio2;
1088 }
1089 }
1090 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1091 return 0;
1092}
1093
1094/*
1095 * Note: sync and recover and handled very differently for raid10
1096 * This code is for resync.
1097 * For resync, we read through virtual addresses and read all blocks.
1098 * If there is any error, we schedule a write. The lowest numbered
1099 * drive is authoritative.
1100 * However requests come for physical address, so we need to map.
1101 * For every physical address there are raid_disks/copies virtual addresses,
1102 * which is always are least one, but is not necessarly an integer.
1103 * This means that a physical address can span multiple chunks, so we may
1104 * have to submit multiple io requests for a single sync request.
1105 */
1106/*
1107 * We check if all blocks are in-sync and only write to blocks that
1108 * aren't in sync
1109 */
1110static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1111{
1112 conf_t *conf = mddev_to_conf(mddev);
1113 int i, first;
1114 struct bio *tbio, *fbio;
1115
1116 atomic_set(&r10_bio->remaining, 1);
1117
1118 /* find the first device with a block */
1119 for (i=0; i<conf->copies; i++)
1120 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1121 break;
1122
1123 if (i == conf->copies)
1124 goto done;
1125
1126 first = i;
1127 fbio = r10_bio->devs[i].bio;
1128
1129 /* now find blocks with errors */
1130 for (i=first+1 ; i < conf->copies ; i++) {
1131 int vcnt, j, d;
1132
1133 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1134 continue;
1135 /* We know that the bi_io_vec layout is the same for
1136 * both 'first' and 'i', so we just compare them.
1137 * All vec entries are PAGE_SIZE;
1138 */
1139 tbio = r10_bio->devs[i].bio;
1140 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1141 for (j = 0; j < vcnt; j++)
1142 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1143 page_address(tbio->bi_io_vec[j].bv_page),
1144 PAGE_SIZE))
1145 break;
1146 if (j == vcnt)
1147 continue;
1148 /* Ok, we need to write this bio
1149 * First we need to fixup bv_offset, bv_len and
1150 * bi_vecs, as the read request might have corrupted these
1151 */
1152 tbio->bi_vcnt = vcnt;
1153 tbio->bi_size = r10_bio->sectors << 9;
1154 tbio->bi_idx = 0;
1155 tbio->bi_phys_segments = 0;
1156 tbio->bi_hw_segments = 0;
1157 tbio->bi_hw_front_size = 0;
1158 tbio->bi_hw_back_size = 0;
1159 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1160 tbio->bi_flags |= 1 << BIO_UPTODATE;
1161 tbio->bi_next = NULL;
1162 tbio->bi_rw = WRITE;
1163 tbio->bi_private = r10_bio;
1164 tbio->bi_sector = r10_bio->devs[i].addr;
1165
1166 for (j=0; j < vcnt ; j++) {
1167 tbio->bi_io_vec[j].bv_offset = 0;
1168 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1169
1170 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1171 page_address(fbio->bi_io_vec[j].bv_page),
1172 PAGE_SIZE);
1173 }
1174 tbio->bi_end_io = end_sync_write;
1175
1176 d = r10_bio->devs[i].devnum;
1177 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1178 atomic_inc(&r10_bio->remaining);
1179 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1180
1181 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1182 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1183 generic_make_request(tbio);
1184 }
1185
1186done:
1187 if (atomic_dec_and_test(&r10_bio->remaining)) {
1188 md_done_sync(mddev, r10_bio->sectors, 1);
1189 put_buf(r10_bio);
1190 }
1191}
1192
1193/*
1194 * Now for the recovery code.
1195 * Recovery happens across physical sectors.
1196 * We recover all non-is_sync drives by finding the virtual address of
1197 * each, and then choose a working drive that also has that virt address.
1198 * There is a separate r10_bio for each non-in_sync drive.
1199 * Only the first two slots are in use. The first for reading,
1200 * The second for writing.
1201 *
1202 */
1203
1204static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1205{
1206 conf_t *conf = mddev_to_conf(mddev);
1207 int i, d;
1208 struct bio *bio, *wbio;
1209
1210
1211 /* move the pages across to the second bio
1212 * and submit the write request
1213 */
1214 bio = r10_bio->devs[0].bio;
1215 wbio = r10_bio->devs[1].bio;
1216 for (i=0; i < wbio->bi_vcnt; i++) {
1217 struct page *p = bio->bi_io_vec[i].bv_page;
1218 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1219 wbio->bi_io_vec[i].bv_page = p;
1220 }
1221 d = r10_bio->devs[1].devnum;
1222
1223 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1224 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1225 generic_make_request(wbio);
1226}
1227
1228
1229/*
1230 * This is a kernel thread which:
1231 *
1232 * 1. Retries failed read operations on working mirrors.
1233 * 2. Updates the raid superblock when problems encounter.
1234 * 3. Performs writes following reads for array syncronising.
1235 */
1236
1237static void raid10d(mddev_t *mddev)
1238{
1239 r10bio_t *r10_bio;
1240 struct bio *bio;
1241 unsigned long flags;
1242 conf_t *conf = mddev_to_conf(mddev);
1243 struct list_head *head = &conf->retry_list;
1244 int unplug=0;
1245 mdk_rdev_t *rdev;
1246
1247 md_check_recovery(mddev);
1da177e4
LT
1248
1249 for (;;) {
1250 char b[BDEVNAME_SIZE];
1251 spin_lock_irqsave(&conf->device_lock, flags);
1252 if (list_empty(head))
1253 break;
1254 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1255 list_del(head->prev);
1256 spin_unlock_irqrestore(&conf->device_lock, flags);
1257
1258 mddev = r10_bio->mddev;
1259 conf = mddev_to_conf(mddev);
1260 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1261 sync_request_write(mddev, r10_bio);
1262 unplug = 1;
1263 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1264 recovery_request_write(mddev, r10_bio);
1265 unplug = 1;
1266 } else {
1267 int mirror;
1268 bio = r10_bio->devs[r10_bio->read_slot].bio;
1269 r10_bio->devs[r10_bio->read_slot].bio = NULL;
1270 bio_put(bio);
1271 mirror = read_balance(conf, r10_bio);
1272 if (mirror == -1) {
1273 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1274 " read error for block %llu\n",
1275 bdevname(bio->bi_bdev,b),
1276 (unsigned long long)r10_bio->sector);
1277 raid_end_bio_io(r10_bio);
1278 } else {
1279 rdev = conf->mirrors[mirror].rdev;
1280 if (printk_ratelimit())
1281 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1282 " another mirror\n",
1283 bdevname(rdev->bdev,b),
1284 (unsigned long long)r10_bio->sector);
1285 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1286 r10_bio->devs[r10_bio->read_slot].bio = bio;
1287 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1288 + rdev->data_offset;
1289 bio->bi_bdev = rdev->bdev;
1290 bio->bi_rw = READ;
1291 bio->bi_private = r10_bio;
1292 bio->bi_end_io = raid10_end_read_request;
1293 unplug = 1;
1294 generic_make_request(bio);
1295 }
1296 }
1297 }
1298 spin_unlock_irqrestore(&conf->device_lock, flags);
1299 if (unplug)
1300 unplug_slaves(mddev);
1301}
1302
1303
1304static int init_resync(conf_t *conf)
1305{
1306 int buffs;
1307
1308 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1309 if (conf->r10buf_pool)
1310 BUG();
1311 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1312 if (!conf->r10buf_pool)
1313 return -ENOMEM;
1314 conf->next_resync = 0;
1315 return 0;
1316}
1317
1318/*
1319 * perform a "sync" on one "block"
1320 *
1321 * We need to make sure that no normal I/O request - particularly write
1322 * requests - conflict with active sync requests.
1323 *
1324 * This is achieved by tracking pending requests and a 'barrier' concept
1325 * that can be installed to exclude normal IO requests.
1326 *
1327 * Resync and recovery are handled very differently.
1328 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1329 *
1330 * For resync, we iterate over virtual addresses, read all copies,
1331 * and update if there are differences. If only one copy is live,
1332 * skip it.
1333 * For recovery, we iterate over physical addresses, read a good
1334 * value for each non-in_sync drive, and over-write.
1335 *
1336 * So, for recovery we may have several outstanding complex requests for a
1337 * given address, one for each out-of-sync device. We model this by allocating
1338 * a number of r10_bio structures, one for each out-of-sync device.
1339 * As we setup these structures, we collect all bio's together into a list
1340 * which we then process collectively to add pages, and then process again
1341 * to pass to generic_make_request.
1342 *
1343 * The r10_bio structures are linked using a borrowed master_bio pointer.
1344 * This link is counted in ->remaining. When the r10_bio that points to NULL
1345 * has its remaining count decremented to 0, the whole complex operation
1346 * is complete.
1347 *
1348 */
1349
57afd89f 1350static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1351{
1352 conf_t *conf = mddev_to_conf(mddev);
1353 r10bio_t *r10_bio;
1354 struct bio *biolist = NULL, *bio;
1355 sector_t max_sector, nr_sectors;
1356 int disk;
1357 int i;
1358
1359 sector_t sectors_skipped = 0;
1360 int chunks_skipped = 0;
1361
1362 if (!conf->r10buf_pool)
1363 if (init_resync(conf))
57afd89f 1364 return 0;
1da177e4
LT
1365
1366 skipped:
1367 max_sector = mddev->size << 1;
1368 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1369 max_sector = mddev->resync_max_sectors;
1370 if (sector_nr >= max_sector) {
1371 close_sync(conf);
57afd89f 1372 *skipped = 1;
1da177e4
LT
1373 return sectors_skipped;
1374 }
1375 if (chunks_skipped >= conf->raid_disks) {
1376 /* if there has been nothing to do on any drive,
1377 * then there is nothing to do at all..
1378 */
57afd89f
N
1379 *skipped = 1;
1380 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1381 }
1382
1383 /* make sure whole request will fit in a chunk - if chunks
1384 * are meaningful
1385 */
1386 if (conf->near_copies < conf->raid_disks &&
1387 max_sector > (sector_nr | conf->chunk_mask))
1388 max_sector = (sector_nr | conf->chunk_mask) + 1;
1389 /*
1390 * If there is non-resync activity waiting for us then
1391 * put in a delay to throttle resync.
1392 */
1393 if (!go_faster && waitqueue_active(&conf->wait_resume))
1394 msleep_interruptible(1000);
1395 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1396
1397 /* Again, very different code for resync and recovery.
1398 * Both must result in an r10bio with a list of bios that
1399 * have bi_end_io, bi_sector, bi_bdev set,
1400 * and bi_private set to the r10bio.
1401 * For recovery, we may actually create several r10bios
1402 * with 2 bios in each, that correspond to the bios in the main one.
1403 * In this case, the subordinate r10bios link back through a
1404 * borrowed master_bio pointer, and the counter in the master
1405 * includes a ref from each subordinate.
1406 */
1407 /* First, we decide what to do and set ->bi_end_io
1408 * To end_sync_read if we want to read, and
1409 * end_sync_write if we will want to write.
1410 */
1411
1412 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1413 /* recovery... the complicated one */
1414 int i, j, k;
1415 r10_bio = NULL;
1416
1417 for (i=0 ; i<conf->raid_disks; i++)
1418 if (conf->mirrors[i].rdev &&
1419 !conf->mirrors[i].rdev->in_sync) {
1420 /* want to reconstruct this device */
1421 r10bio_t *rb2 = r10_bio;
1422
1423 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1424 spin_lock_irq(&conf->resync_lock);
1425 conf->nr_pending++;
1426 if (rb2) conf->barrier++;
1427 spin_unlock_irq(&conf->resync_lock);
1428 atomic_set(&r10_bio->remaining, 0);
1429
1430 r10_bio->master_bio = (struct bio*)rb2;
1431 if (rb2)
1432 atomic_inc(&rb2->remaining);
1433 r10_bio->mddev = mddev;
1434 set_bit(R10BIO_IsRecover, &r10_bio->state);
1435 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1436 raid10_find_phys(conf, r10_bio);
1437 for (j=0; j<conf->copies;j++) {
1438 int d = r10_bio->devs[j].devnum;
1439 if (conf->mirrors[d].rdev &&
1440 conf->mirrors[d].rdev->in_sync) {
1441 /* This is where we read from */
1442 bio = r10_bio->devs[0].bio;
1443 bio->bi_next = biolist;
1444 biolist = bio;
1445 bio->bi_private = r10_bio;
1446 bio->bi_end_io = end_sync_read;
1447 bio->bi_rw = 0;
1448 bio->bi_sector = r10_bio->devs[j].addr +
1449 conf->mirrors[d].rdev->data_offset;
1450 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1451 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1452 atomic_inc(&r10_bio->remaining);
1453 /* and we write to 'i' */
1454
1455 for (k=0; k<conf->copies; k++)
1456 if (r10_bio->devs[k].devnum == i)
1457 break;
1458 bio = r10_bio->devs[1].bio;
1459 bio->bi_next = biolist;
1460 biolist = bio;
1461 bio->bi_private = r10_bio;
1462 bio->bi_end_io = end_sync_write;
1463 bio->bi_rw = 1;
1464 bio->bi_sector = r10_bio->devs[k].addr +
1465 conf->mirrors[i].rdev->data_offset;
1466 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1467
1468 r10_bio->devs[0].devnum = d;
1469 r10_bio->devs[1].devnum = i;
1470
1471 break;
1472 }
1473 }
1474 if (j == conf->copies) {
87fc767b
N
1475 /* Cannot recover, so abort the recovery */
1476 put_buf(r10_bio);
1477 r10_bio = rb2;
1478 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1479 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1480 mdname(mddev));
1481 break;
1da177e4
LT
1482 }
1483 }
1484 if (biolist == NULL) {
1485 while (r10_bio) {
1486 r10bio_t *rb2 = r10_bio;
1487 r10_bio = (r10bio_t*) rb2->master_bio;
1488 rb2->master_bio = NULL;
1489 put_buf(rb2);
1490 }
1491 goto giveup;
1492 }
1493 } else {
1494 /* resync. Schedule a read for every block at this virt offset */
1495 int count = 0;
1496 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1497
1498 spin_lock_irq(&conf->resync_lock);
1499 conf->nr_pending++;
1500 spin_unlock_irq(&conf->resync_lock);
1501
1502 r10_bio->mddev = mddev;
1503 atomic_set(&r10_bio->remaining, 0);
1504
1505 r10_bio->master_bio = NULL;
1506 r10_bio->sector = sector_nr;
1507 set_bit(R10BIO_IsSync, &r10_bio->state);
1508 raid10_find_phys(conf, r10_bio);
1509 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1510
1511 for (i=0; i<conf->copies; i++) {
1512 int d = r10_bio->devs[i].devnum;
1513 bio = r10_bio->devs[i].bio;
1514 bio->bi_end_io = NULL;
1515 if (conf->mirrors[d].rdev == NULL ||
1516 conf->mirrors[d].rdev->faulty)
1517 continue;
1518 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1519 atomic_inc(&r10_bio->remaining);
1520 bio->bi_next = biolist;
1521 biolist = bio;
1522 bio->bi_private = r10_bio;
1523 bio->bi_end_io = end_sync_read;
1524 bio->bi_rw = 0;
1525 bio->bi_sector = r10_bio->devs[i].addr +
1526 conf->mirrors[d].rdev->data_offset;
1527 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1528 count++;
1529 }
1530
1531 if (count < 2) {
1532 for (i=0; i<conf->copies; i++) {
1533 int d = r10_bio->devs[i].devnum;
1534 if (r10_bio->devs[i].bio->bi_end_io)
1535 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1536 }
1537 put_buf(r10_bio);
1538 biolist = NULL;
1539 goto giveup;
1540 }
1541 }
1542
1543 for (bio = biolist; bio ; bio=bio->bi_next) {
1544
1545 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1546 if (bio->bi_end_io)
1547 bio->bi_flags |= 1 << BIO_UPTODATE;
1548 bio->bi_vcnt = 0;
1549 bio->bi_idx = 0;
1550 bio->bi_phys_segments = 0;
1551 bio->bi_hw_segments = 0;
1552 bio->bi_size = 0;
1553 }
1554
1555 nr_sectors = 0;
1556 do {
1557 struct page *page;
1558 int len = PAGE_SIZE;
1559 disk = 0;
1560 if (sector_nr + (len>>9) > max_sector)
1561 len = (max_sector - sector_nr) << 9;
1562 if (len == 0)
1563 break;
1564 for (bio= biolist ; bio ; bio=bio->bi_next) {
1565 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1566 if (bio_add_page(bio, page, len, 0) == 0) {
1567 /* stop here */
1568 struct bio *bio2;
1569 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1570 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1571 /* remove last page from this bio */
1572 bio2->bi_vcnt--;
1573 bio2->bi_size -= len;
1574 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1575 }
1576 goto bio_full;
1577 }
1578 disk = i;
1579 }
1580 nr_sectors += len>>9;
1581 sector_nr += len>>9;
1582 } while (biolist->bi_vcnt < RESYNC_PAGES);
1583 bio_full:
1584 r10_bio->sectors = nr_sectors;
1585
1586 while (biolist) {
1587 bio = biolist;
1588 biolist = biolist->bi_next;
1589
1590 bio->bi_next = NULL;
1591 r10_bio = bio->bi_private;
1592 r10_bio->sectors = nr_sectors;
1593
1594 if (bio->bi_end_io == end_sync_read) {
1595 md_sync_acct(bio->bi_bdev, nr_sectors);
1596 generic_make_request(bio);
1597 }
1598 }
1599
57afd89f
N
1600 if (sectors_skipped)
1601 /* pretend they weren't skipped, it makes
1602 * no important difference in this case
1603 */
1604 md_done_sync(mddev, sectors_skipped, 1);
1605
1da177e4
LT
1606 return sectors_skipped + nr_sectors;
1607 giveup:
1608 /* There is nowhere to write, so all non-sync
1609 * drives must be failed, so try the next chunk...
1610 */
1611 {
57afd89f 1612 sector_t sec = max_sector - sector_nr;
1da177e4
LT
1613 sectors_skipped += sec;
1614 chunks_skipped ++;
1615 sector_nr = max_sector;
1da177e4
LT
1616 goto skipped;
1617 }
1618}
1619
1620static int run(mddev_t *mddev)
1621{
1622 conf_t *conf;
1623 int i, disk_idx;
1624 mirror_info_t *disk;
1625 mdk_rdev_t *rdev;
1626 struct list_head *tmp;
1627 int nc, fc;
1628 sector_t stride, size;
1629
1630 if (mddev->level != 10) {
1631 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1632 mdname(mddev), mddev->level);
1633 goto out;
1634 }
1635 nc = mddev->layout & 255;
1636 fc = (mddev->layout >> 8) & 255;
1637 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1638 (mddev->layout >> 16)) {
1639 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1640 mdname(mddev), mddev->layout);
1641 goto out;
1642 }
1643 /*
1644 * copy the already verified devices into our private RAID10
1645 * bookkeeping area. [whatever we allocate in run(),
1646 * should be freed in stop()]
1647 */
1648 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1649 mddev->private = conf;
1650 if (!conf) {
1651 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1652 mdname(mddev));
1653 goto out;
1654 }
1655 memset(conf, 0, sizeof(*conf));
1656 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1657 GFP_KERNEL);
1658 if (!conf->mirrors) {
1659 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1660 mdname(mddev));
1661 goto out_free_conf;
1662 }
1663 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1664
1665 conf->near_copies = nc;
1666 conf->far_copies = fc;
1667 conf->copies = nc*fc;
1668 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1669 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1670 stride = mddev->size >> (conf->chunk_shift-1);
1671 sector_div(stride, fc);
1672 conf->stride = stride << conf->chunk_shift;
1673
1674 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1675 r10bio_pool_free, conf);
1676 if (!conf->r10bio_pool) {
1677 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1678 mdname(mddev));
1679 goto out_free_conf;
1680 }
1da177e4
LT
1681
1682 ITERATE_RDEV(mddev, rdev, tmp) {
1683 disk_idx = rdev->raid_disk;
1684 if (disk_idx >= mddev->raid_disks
1685 || disk_idx < 0)
1686 continue;
1687 disk = conf->mirrors + disk_idx;
1688
1689 disk->rdev = rdev;
1690
1691 blk_queue_stack_limits(mddev->queue,
1692 rdev->bdev->bd_disk->queue);
1693 /* as we don't honour merge_bvec_fn, we must never risk
1694 * violating it, so limit ->max_sector to one PAGE, as
1695 * a one page request is never in violation.
1696 */
1697 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1698 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1699 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1700
1701 disk->head_position = 0;
1702 if (!rdev->faulty && rdev->in_sync)
1703 conf->working_disks++;
1704 }
1705 conf->raid_disks = mddev->raid_disks;
1706 conf->mddev = mddev;
1707 spin_lock_init(&conf->device_lock);
1708 INIT_LIST_HEAD(&conf->retry_list);
1709
1710 spin_lock_init(&conf->resync_lock);
1711 init_waitqueue_head(&conf->wait_idle);
1712 init_waitqueue_head(&conf->wait_resume);
1713
6d508242
N
1714 /* need to check that every block has at least one working mirror */
1715 if (!enough(conf)) {
1716 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1717 mdname(mddev));
1da177e4
LT
1718 goto out_free_conf;
1719 }
1720
1721 mddev->degraded = 0;
1722 for (i = 0; i < conf->raid_disks; i++) {
1723
1724 disk = conf->mirrors + i;
1725
1726 if (!disk->rdev) {
1727 disk->head_position = 0;
1728 mddev->degraded++;
1729 }
1730 }
1731
1732
1733 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1734 if (!mddev->thread) {
1735 printk(KERN_ERR
1736 "raid10: couldn't allocate thread for %s\n",
1737 mdname(mddev));
1738 goto out_free_conf;
1739 }
1740
1741 printk(KERN_INFO
1742 "raid10: raid set %s active with %d out of %d devices\n",
1743 mdname(mddev), mddev->raid_disks - mddev->degraded,
1744 mddev->raid_disks);
1745 /*
1746 * Ok, everything is just fine now
1747 */
1748 size = conf->stride * conf->raid_disks;
1749 sector_div(size, conf->near_copies);
1750 mddev->array_size = size/2;
1751 mddev->resync_max_sectors = size;
1752
7a5febe9
N
1753 mddev->queue->unplug_fn = raid10_unplug;
1754 mddev->queue->issue_flush_fn = raid10_issue_flush;
1755
1da177e4
LT
1756 /* Calculate max read-ahead size.
1757 * We need to readahead at least twice a whole stripe....
1758 * maybe...
1759 */
1760 {
1761 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1762 stripe /= conf->near_copies;
1763 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1764 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1765 }
1766
1767 if (conf->near_copies < mddev->raid_disks)
1768 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1769 return 0;
1770
1771out_free_conf:
1772 if (conf->r10bio_pool)
1773 mempool_destroy(conf->r10bio_pool);
990a8baf 1774 kfree(conf->mirrors);
1da177e4
LT
1775 kfree(conf);
1776 mddev->private = NULL;
1777out:
1778 return -EIO;
1779}
1780
1781static int stop(mddev_t *mddev)
1782{
1783 conf_t *conf = mddev_to_conf(mddev);
1784
1785 md_unregister_thread(mddev->thread);
1786 mddev->thread = NULL;
1787 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1788 if (conf->r10bio_pool)
1789 mempool_destroy(conf->r10bio_pool);
990a8baf 1790 kfree(conf->mirrors);
1da177e4
LT
1791 kfree(conf);
1792 mddev->private = NULL;
1793 return 0;
1794}
1795
1796
1797static mdk_personality_t raid10_personality =
1798{
1799 .name = "raid10",
1800 .owner = THIS_MODULE,
1801 .make_request = make_request,
1802 .run = run,
1803 .stop = stop,
1804 .status = status,
1805 .error_handler = error,
1806 .hot_add_disk = raid10_add_disk,
1807 .hot_remove_disk= raid10_remove_disk,
1808 .spare_active = raid10_spare_active,
1809 .sync_request = sync_request,
1810};
1811
1812static int __init raid_init(void)
1813{
1814 return register_md_personality(RAID10, &raid10_personality);
1815}
1816
1817static void raid_exit(void)
1818{
1819 unregister_md_personality(RAID10);
1820}
1821
1822module_init(raid_init);
1823module_exit(raid_exit);
1824MODULE_LICENSE("GPL");
1825MODULE_ALIAS("md-personality-9"); /* RAID10 */