]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid10.c
[PATCH] md: auto-correct correctable read errors in raid10
[net-next-2.6.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
6cce3b23 21#include "dm-bio-list.h"
1da177e4 22#include <linux/raid/raid10.h>
6cce3b23 23#include <linux/raid/bitmap.h>
1da177e4
LT
24
25/*
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 *
33 * The data to be stored is divided into chunks using chunksize.
34 * Each device is divided into far_copies sections.
35 * In each section, chunks are laid out in a style similar to raid0, but
36 * near_copies copies of each chunk is stored (each on a different drive).
37 * The starting device for each section is offset near_copies from the starting
38 * device of the previous section.
39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
40 * drive.
41 * near_copies and far_copies must be at least one, and their product is at most
42 * raid_disks.
43 */
44
45/*
46 * Number of guaranteed r10bios in case of extreme VM load:
47 */
48#define NR_RAID10_BIOS 256
49
50static void unplug_slaves(mddev_t *mddev);
51
0a27ec96
N
52static void allow_barrier(conf_t *conf);
53static void lower_barrier(conf_t *conf);
54
dd0fc66f 55static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
56{
57 conf_t *conf = data;
58 r10bio_t *r10_bio;
59 int size = offsetof(struct r10bio_s, devs[conf->copies]);
60
61 /* allocate a r10bio with room for raid_disks entries in the bios array */
62 r10_bio = kmalloc(size, gfp_flags);
63 if (r10_bio)
64 memset(r10_bio, 0, size);
65 else
66 unplug_slaves(conf->mddev);
67
68 return r10_bio;
69}
70
71static void r10bio_pool_free(void *r10_bio, void *data)
72{
73 kfree(r10_bio);
74}
75
76#define RESYNC_BLOCK_SIZE (64*1024)
77//#define RESYNC_BLOCK_SIZE PAGE_SIZE
78#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80#define RESYNC_WINDOW (2048*1024)
81
82/*
83 * When performing a resync, we need to read and compare, so
84 * we need as many pages are there are copies.
85 * When performing a recovery, we need 2 bios, one for read,
86 * one for write (we recover only one drive per r10buf)
87 *
88 */
dd0fc66f 89static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
90{
91 conf_t *conf = data;
92 struct page *page;
93 r10bio_t *r10_bio;
94 struct bio *bio;
95 int i, j;
96 int nalloc;
97
98 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
99 if (!r10_bio) {
100 unplug_slaves(conf->mddev);
101 return NULL;
102 }
103
104 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
105 nalloc = conf->copies; /* resync */
106 else
107 nalloc = 2; /* recovery */
108
109 /*
110 * Allocate bios.
111 */
112 for (j = nalloc ; j-- ; ) {
113 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r10_bio->devs[j].bio = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them
120 * where needed.
121 */
122 for (j = 0 ; j < nalloc; j++) {
123 bio = r10_bio->devs[j].bio;
124 for (i = 0; i < RESYNC_PAGES; i++) {
125 page = alloc_page(gfp_flags);
126 if (unlikely(!page))
127 goto out_free_pages;
128
129 bio->bi_io_vec[i].bv_page = page;
130 }
131 }
132
133 return r10_bio;
134
135out_free_pages:
136 for ( ; i > 0 ; i--)
137 __free_page(bio->bi_io_vec[i-1].bv_page);
138 while (j--)
139 for (i = 0; i < RESYNC_PAGES ; i++)
140 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
141 j = -1;
142out_free_bio:
143 while ( ++j < nalloc )
144 bio_put(r10_bio->devs[j].bio);
145 r10bio_pool_free(r10_bio, conf);
146 return NULL;
147}
148
149static void r10buf_pool_free(void *__r10_bio, void *data)
150{
151 int i;
152 conf_t *conf = data;
153 r10bio_t *r10bio = __r10_bio;
154 int j;
155
156 for (j=0; j < conf->copies; j++) {
157 struct bio *bio = r10bio->devs[j].bio;
158 if (bio) {
159 for (i = 0; i < RESYNC_PAGES; i++) {
160 __free_page(bio->bi_io_vec[i].bv_page);
161 bio->bi_io_vec[i].bv_page = NULL;
162 }
163 bio_put(bio);
164 }
165 }
166 r10bio_pool_free(r10bio, conf);
167}
168
169static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
170{
171 int i;
172
173 for (i = 0; i < conf->copies; i++) {
174 struct bio **bio = & r10_bio->devs[i].bio;
175 if (*bio)
176 bio_put(*bio);
177 *bio = NULL;
178 }
179}
180
181static inline void free_r10bio(r10bio_t *r10_bio)
182{
1da177e4
LT
183 conf_t *conf = mddev_to_conf(r10_bio->mddev);
184
185 /*
186 * Wake up any possible resync thread that waits for the device
187 * to go idle.
188 */
0a27ec96 189 allow_barrier(conf);
1da177e4
LT
190
191 put_all_bios(conf, r10_bio);
192 mempool_free(r10_bio, conf->r10bio_pool);
193}
194
195static inline void put_buf(r10bio_t *r10_bio)
196{
197 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1da177e4
LT
198
199 mempool_free(r10_bio, conf->r10buf_pool);
200
0a27ec96 201 lower_barrier(conf);
1da177e4
LT
202}
203
204static void reschedule_retry(r10bio_t *r10_bio)
205{
206 unsigned long flags;
207 mddev_t *mddev = r10_bio->mddev;
208 conf_t *conf = mddev_to_conf(mddev);
209
210 spin_lock_irqsave(&conf->device_lock, flags);
211 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 212 conf->nr_queued ++;
1da177e4
LT
213 spin_unlock_irqrestore(&conf->device_lock, flags);
214
215 md_wakeup_thread(mddev->thread);
216}
217
218/*
219 * raid_end_bio_io() is called when we have finished servicing a mirrored
220 * operation and are ready to return a success/failure code to the buffer
221 * cache layer.
222 */
223static void raid_end_bio_io(r10bio_t *r10_bio)
224{
225 struct bio *bio = r10_bio->master_bio;
226
227 bio_endio(bio, bio->bi_size,
228 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
229 free_r10bio(r10_bio);
230}
231
232/*
233 * Update disk head position estimator based on IRQ completion info.
234 */
235static inline void update_head_pos(int slot, r10bio_t *r10_bio)
236{
237 conf_t *conf = mddev_to_conf(r10_bio->mddev);
238
239 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
240 r10_bio->devs[slot].addr + (r10_bio->sectors);
241}
242
243static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
244{
245 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
246 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
247 int slot, dev;
248 conf_t *conf = mddev_to_conf(r10_bio->mddev);
249
250 if (bio->bi_size)
251 return 1;
252
253 slot = r10_bio->read_slot;
254 dev = r10_bio->devs[slot].devnum;
255 /*
256 * this branch is our 'one mirror IO has finished' event handler:
257 */
4443ae10
N
258 update_head_pos(slot, r10_bio);
259
260 if (uptodate) {
1da177e4
LT
261 /*
262 * Set R10BIO_Uptodate in our master bio, so that
263 * we will return a good error code to the higher
264 * levels even if IO on some other mirrored buffer fails.
265 *
266 * The 'master' represents the composite IO operation to
267 * user-side. So if something waits for IO, then it will
268 * wait for the 'master' bio.
269 */
270 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 271 raid_end_bio_io(r10_bio);
4443ae10 272 } else {
1da177e4
LT
273 /*
274 * oops, read error:
275 */
276 char b[BDEVNAME_SIZE];
277 if (printk_ratelimit())
278 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
279 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
280 reschedule_retry(r10_bio);
281 }
282
283 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
284 return 0;
285}
286
287static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
288{
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 int slot, dev;
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
293
294 if (bio->bi_size)
295 return 1;
296
297 for (slot = 0; slot < conf->copies; slot++)
298 if (r10_bio->devs[slot].bio == bio)
299 break;
300 dev = r10_bio->devs[slot].devnum;
301
302 /*
303 * this branch is our 'one mirror IO has finished' event handler:
304 */
6cce3b23 305 if (!uptodate) {
1da177e4 306 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
307 /* an I/O failed, we can't clear the bitmap */
308 set_bit(R10BIO_Degraded, &r10_bio->state);
309 } else
1da177e4
LT
310 /*
311 * Set R10BIO_Uptodate in our master bio, so that
312 * we will return a good error code for to the higher
313 * levels even if IO on some other mirrored buffer fails.
314 *
315 * The 'master' represents the composite IO operation to
316 * user-side. So if something waits for IO, then it will
317 * wait for the 'master' bio.
318 */
319 set_bit(R10BIO_Uptodate, &r10_bio->state);
320
321 update_head_pos(slot, r10_bio);
322
323 /*
324 *
325 * Let's see if all mirrored write operations have finished
326 * already.
327 */
328 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
329 /* clear the bitmap if all writes complete successfully */
330 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
331 r10_bio->sectors,
332 !test_bit(R10BIO_Degraded, &r10_bio->state),
333 0);
1da177e4
LT
334 md_write_end(r10_bio->mddev);
335 raid_end_bio_io(r10_bio);
336 }
337
338 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
339 return 0;
340}
341
342
343/*
344 * RAID10 layout manager
345 * Aswell as the chunksize and raid_disks count, there are two
346 * parameters: near_copies and far_copies.
347 * near_copies * far_copies must be <= raid_disks.
348 * Normally one of these will be 1.
349 * If both are 1, we get raid0.
350 * If near_copies == raid_disks, we get raid1.
351 *
352 * Chunks are layed out in raid0 style with near_copies copies of the
353 * first chunk, followed by near_copies copies of the next chunk and
354 * so on.
355 * If far_copies > 1, then after 1/far_copies of the array has been assigned
356 * as described above, we start again with a device offset of near_copies.
357 * So we effectively have another copy of the whole array further down all
358 * the drives, but with blocks on different drives.
359 * With this layout, and block is never stored twice on the one device.
360 *
361 * raid10_find_phys finds the sector offset of a given virtual sector
362 * on each device that it is on. If a block isn't on a device,
363 * that entry in the array is set to MaxSector.
364 *
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
367 */
368
369static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
370{
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
376
377 int slot = 0;
378
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
382
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
386
387 sector += stripe << conf->chunk_shift;
388
389 /* and calculate all the others */
390 for (n=0; n < conf->near_copies; n++) {
391 int d = dev;
392 sector_t s = sector;
393 r10bio->devs[slot].addr = sector;
394 r10bio->devs[slot].devnum = d;
395 slot++;
396
397 for (f = 1; f < conf->far_copies; f++) {
398 d += conf->near_copies;
399 if (d >= conf->raid_disks)
400 d -= conf->raid_disks;
401 s += conf->stride;
402 r10bio->devs[slot].devnum = d;
403 r10bio->devs[slot].addr = s;
404 slot++;
405 }
406 dev++;
407 if (dev >= conf->raid_disks) {
408 dev = 0;
409 sector += (conf->chunk_mask + 1);
410 }
411 }
412 BUG_ON(slot != conf->copies);
413}
414
415static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
416{
417 sector_t offset, chunk, vchunk;
418
419 while (sector > conf->stride) {
420 sector -= conf->stride;
421 if (dev < conf->near_copies)
422 dev += conf->raid_disks - conf->near_copies;
423 else
424 dev -= conf->near_copies;
425 }
426
427 offset = sector & conf->chunk_mask;
428 chunk = sector >> conf->chunk_shift;
429 vchunk = chunk * conf->raid_disks + dev;
430 sector_div(vchunk, conf->near_copies);
431 return (vchunk << conf->chunk_shift) + offset;
432}
433
434/**
435 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
436 * @q: request queue
437 * @bio: the buffer head that's been built up so far
438 * @biovec: the request that could be merged to it.
439 *
440 * Return amount of bytes we can accept at this offset
441 * If near_copies == raid_disk, there are no striping issues,
442 * but in that case, the function isn't called at all.
443 */
444static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
445 struct bio_vec *bio_vec)
446{
447 mddev_t *mddev = q->queuedata;
448 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
449 int max;
450 unsigned int chunk_sectors = mddev->chunk_size >> 9;
451 unsigned int bio_sectors = bio->bi_size >> 9;
452
453 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
454 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
455 if (max <= bio_vec->bv_len && bio_sectors == 0)
456 return bio_vec->bv_len;
457 else
458 return max;
459}
460
461/*
462 * This routine returns the disk from which the requested read should
463 * be done. There is a per-array 'next expected sequential IO' sector
464 * number - if this matches on the next IO then we use the last disk.
465 * There is also a per-disk 'last know head position' sector that is
466 * maintained from IRQ contexts, both the normal and the resync IO
467 * completion handlers update this position correctly. If there is no
468 * perfect sequential match then we pick the disk whose head is closest.
469 *
470 * If there are 2 mirrors in the same 2 devices, performance degrades
471 * because position is mirror, not device based.
472 *
473 * The rdev for the device selected will have nr_pending incremented.
474 */
475
476/*
477 * FIXME: possibly should rethink readbalancing and do it differently
478 * depending on near_copies / far_copies geometry.
479 */
480static int read_balance(conf_t *conf, r10bio_t *r10_bio)
481{
482 const unsigned long this_sector = r10_bio->sector;
483 int disk, slot, nslot;
484 const int sectors = r10_bio->sectors;
485 sector_t new_distance, current_distance;
d6065f7b 486 mdk_rdev_t *rdev;
1da177e4
LT
487
488 raid10_find_phys(conf, r10_bio);
489 rcu_read_lock();
490 /*
491 * Check if we can balance. We can balance on the whole
6cce3b23
N
492 * device if no resync is going on (recovery is ok), or below
493 * the resync window. We take the first readable disk when
494 * above the resync window.
1da177e4
LT
495 */
496 if (conf->mddev->recovery_cp < MaxSector
497 && (this_sector + sectors >= conf->next_resync)) {
498 /* make sure that disk is operational */
499 slot = 0;
500 disk = r10_bio->devs[slot].devnum;
501
d6065f7b 502 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
b2d444d7 503 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
504 slot++;
505 if (slot == conf->copies) {
506 slot = 0;
507 disk = -1;
508 break;
509 }
510 disk = r10_bio->devs[slot].devnum;
511 }
512 goto rb_out;
513 }
514
515
516 /* make sure the disk is operational */
517 slot = 0;
518 disk = r10_bio->devs[slot].devnum;
d6065f7b 519 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
b2d444d7 520 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
521 slot ++;
522 if (slot == conf->copies) {
523 disk = -1;
524 goto rb_out;
525 }
526 disk = r10_bio->devs[slot].devnum;
527 }
528
529
3ec67ac1
N
530 current_distance = abs(r10_bio->devs[slot].addr -
531 conf->mirrors[disk].head_position);
1da177e4
LT
532
533 /* Find the disk whose head is closest */
534
535 for (nslot = slot; nslot < conf->copies; nslot++) {
536 int ndisk = r10_bio->devs[nslot].devnum;
537
538
d6065f7b 539 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
b2d444d7 540 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
541 continue;
542
22dfdf52
N
543 /* This optimisation is debatable, and completely destroys
544 * sequential read speed for 'far copies' arrays. So only
545 * keep it for 'near' arrays, and review those later.
546 */
547 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
548 disk = ndisk;
549 slot = nslot;
550 break;
551 }
552 new_distance = abs(r10_bio->devs[nslot].addr -
553 conf->mirrors[ndisk].head_position);
554 if (new_distance < current_distance) {
555 current_distance = new_distance;
556 disk = ndisk;
557 slot = nslot;
558 }
559 }
560
561rb_out:
562 r10_bio->read_slot = slot;
563/* conf->next_seq_sect = this_sector + sectors;*/
564
d6065f7b 565 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4
LT
566 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
567 rcu_read_unlock();
568
569 return disk;
570}
571
572static void unplug_slaves(mddev_t *mddev)
573{
574 conf_t *conf = mddev_to_conf(mddev);
575 int i;
576
577 rcu_read_lock();
578 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 579 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 580 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1da177e4
LT
581 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
582
583 atomic_inc(&rdev->nr_pending);
584 rcu_read_unlock();
585
586 if (r_queue->unplug_fn)
587 r_queue->unplug_fn(r_queue);
588
589 rdev_dec_pending(rdev, mddev);
590 rcu_read_lock();
591 }
592 }
593 rcu_read_unlock();
594}
595
596static void raid10_unplug(request_queue_t *q)
597{
6cce3b23
N
598 mddev_t *mddev = q->queuedata;
599
1da177e4 600 unplug_slaves(q->queuedata);
6cce3b23 601 md_wakeup_thread(mddev->thread);
1da177e4
LT
602}
603
604static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
605 sector_t *error_sector)
606{
607 mddev_t *mddev = q->queuedata;
608 conf_t *conf = mddev_to_conf(mddev);
609 int i, ret = 0;
610
611 rcu_read_lock();
612 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 613 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 614 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
615 struct block_device *bdev = rdev->bdev;
616 request_queue_t *r_queue = bdev_get_queue(bdev);
617
618 if (!r_queue->issue_flush_fn)
619 ret = -EOPNOTSUPP;
620 else {
621 atomic_inc(&rdev->nr_pending);
622 rcu_read_unlock();
623 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
624 error_sector);
625 rdev_dec_pending(rdev, mddev);
626 rcu_read_lock();
627 }
628 }
629 }
630 rcu_read_unlock();
631 return ret;
632}
633
0a27ec96
N
634/* Barriers....
635 * Sometimes we need to suspend IO while we do something else,
636 * either some resync/recovery, or reconfigure the array.
637 * To do this we raise a 'barrier'.
638 * The 'barrier' is a counter that can be raised multiple times
639 * to count how many activities are happening which preclude
640 * normal IO.
641 * We can only raise the barrier if there is no pending IO.
642 * i.e. if nr_pending == 0.
643 * We choose only to raise the barrier if no-one is waiting for the
644 * barrier to go down. This means that as soon as an IO request
645 * is ready, no other operations which require a barrier will start
646 * until the IO request has had a chance.
647 *
648 * So: regular IO calls 'wait_barrier'. When that returns there
649 * is no backgroup IO happening, It must arrange to call
650 * allow_barrier when it has finished its IO.
651 * backgroup IO calls must call raise_barrier. Once that returns
652 * there is no normal IO happeing. It must arrange to call
653 * lower_barrier when the particular background IO completes.
1da177e4
LT
654 */
655#define RESYNC_DEPTH 32
656
6cce3b23 657static void raise_barrier(conf_t *conf, int force)
1da177e4 658{
6cce3b23 659 BUG_ON(force && !conf->barrier);
1da177e4 660 spin_lock_irq(&conf->resync_lock);
0a27ec96 661
6cce3b23
N
662 /* Wait until no block IO is waiting (unless 'force') */
663 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
0a27ec96
N
664 conf->resync_lock,
665 raid10_unplug(conf->mddev->queue));
666
667 /* block any new IO from starting */
668 conf->barrier++;
669
670 /* No wait for all pending IO to complete */
671 wait_event_lock_irq(conf->wait_barrier,
672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
673 conf->resync_lock,
674 raid10_unplug(conf->mddev->queue));
675
676 spin_unlock_irq(&conf->resync_lock);
677}
678
679static void lower_barrier(conf_t *conf)
680{
681 unsigned long flags;
682 spin_lock_irqsave(&conf->resync_lock, flags);
683 conf->barrier--;
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
686}
687
688static void wait_barrier(conf_t *conf)
689{
690 spin_lock_irq(&conf->resync_lock);
691 if (conf->barrier) {
692 conf->nr_waiting++;
693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 conf->resync_lock,
695 raid10_unplug(conf->mddev->queue));
696 conf->nr_waiting--;
1da177e4 697 }
0a27ec96 698 conf->nr_pending++;
1da177e4
LT
699 spin_unlock_irq(&conf->resync_lock);
700}
701
0a27ec96
N
702static void allow_barrier(conf_t *conf)
703{
704 unsigned long flags;
705 spin_lock_irqsave(&conf->resync_lock, flags);
706 conf->nr_pending--;
707 spin_unlock_irqrestore(&conf->resync_lock, flags);
708 wake_up(&conf->wait_barrier);
709}
710
4443ae10
N
711static void freeze_array(conf_t *conf)
712{
713 /* stop syncio and normal IO and wait for everything to
714 * go quite.
715 * We increment barrier and nr_waiting, and then
716 * wait until barrier+nr_pending match nr_queued+2
717 */
718 spin_lock_irq(&conf->resync_lock);
719 conf->barrier++;
720 conf->nr_waiting++;
721 wait_event_lock_irq(conf->wait_barrier,
722 conf->barrier+conf->nr_pending == conf->nr_queued+2,
723 conf->resync_lock,
724 raid10_unplug(conf->mddev->queue));
725 spin_unlock_irq(&conf->resync_lock);
726}
727
728static void unfreeze_array(conf_t *conf)
729{
730 /* reverse the effect of the freeze */
731 spin_lock_irq(&conf->resync_lock);
732 conf->barrier--;
733 conf->nr_waiting--;
734 wake_up(&conf->wait_barrier);
735 spin_unlock_irq(&conf->resync_lock);
736}
737
1da177e4
LT
738static int make_request(request_queue_t *q, struct bio * bio)
739{
740 mddev_t *mddev = q->queuedata;
741 conf_t *conf = mddev_to_conf(mddev);
742 mirror_info_t *mirror;
743 r10bio_t *r10_bio;
744 struct bio *read_bio;
745 int i;
746 int chunk_sects = conf->chunk_mask + 1;
a362357b 747 const int rw = bio_data_dir(bio);
6cce3b23
N
748 struct bio_list bl;
749 unsigned long flags;
1da177e4 750
e5dcdd80
N
751 if (unlikely(bio_barrier(bio))) {
752 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
753 return 0;
754 }
755
1da177e4
LT
756 /* If this request crosses a chunk boundary, we need to
757 * split it. This will only happen for 1 PAGE (or less) requests.
758 */
759 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
760 > chunk_sects &&
761 conf->near_copies < conf->raid_disks)) {
762 struct bio_pair *bp;
763 /* Sanity check -- queue functions should prevent this happening */
764 if (bio->bi_vcnt != 1 ||
765 bio->bi_idx != 0)
766 goto bad_map;
767 /* This is a one page bio that upper layers
768 * refuse to split for us, so we need to split it.
769 */
770 bp = bio_split(bio, bio_split_pool,
771 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
772 if (make_request(q, &bp->bio1))
773 generic_make_request(&bp->bio1);
774 if (make_request(q, &bp->bio2))
775 generic_make_request(&bp->bio2);
776
777 bio_pair_release(bp);
778 return 0;
779 bad_map:
780 printk("raid10_make_request bug: can't convert block across chunks"
781 " or bigger than %dk %llu %d\n", chunk_sects/2,
782 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
783
784 bio_io_error(bio, bio->bi_size);
785 return 0;
786 }
787
3d310eb7 788 md_write_start(mddev, bio);
06d91a5f 789
1da177e4
LT
790 /*
791 * Register the new request and wait if the reconstruction
792 * thread has put up a bar for new requests.
793 * Continue immediately if no resync is active currently.
794 */
0a27ec96 795 wait_barrier(conf);
1da177e4 796
a362357b
JA
797 disk_stat_inc(mddev->gendisk, ios[rw]);
798 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
1da177e4
LT
799
800 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
801
802 r10_bio->master_bio = bio;
803 r10_bio->sectors = bio->bi_size >> 9;
804
805 r10_bio->mddev = mddev;
806 r10_bio->sector = bio->bi_sector;
6cce3b23 807 r10_bio->state = 0;
1da177e4 808
a362357b 809 if (rw == READ) {
1da177e4
LT
810 /*
811 * read balancing logic:
812 */
813 int disk = read_balance(conf, r10_bio);
814 int slot = r10_bio->read_slot;
815 if (disk < 0) {
816 raid_end_bio_io(r10_bio);
817 return 0;
818 }
819 mirror = conf->mirrors + disk;
820
821 read_bio = bio_clone(bio, GFP_NOIO);
822
823 r10_bio->devs[slot].bio = read_bio;
824
825 read_bio->bi_sector = r10_bio->devs[slot].addr +
826 mirror->rdev->data_offset;
827 read_bio->bi_bdev = mirror->rdev->bdev;
828 read_bio->bi_end_io = raid10_end_read_request;
829 read_bio->bi_rw = READ;
830 read_bio->bi_private = r10_bio;
831
832 generic_make_request(read_bio);
833 return 0;
834 }
835
836 /*
837 * WRITE:
838 */
839 /* first select target devices under spinlock and
840 * inc refcount on their rdev. Record them by setting
841 * bios[x] to bio
842 */
843 raid10_find_phys(conf, r10_bio);
844 rcu_read_lock();
845 for (i = 0; i < conf->copies; i++) {
846 int d = r10_bio->devs[i].devnum;
d6065f7b
SW
847 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
848 if (rdev &&
b2d444d7 849 !test_bit(Faulty, &rdev->flags)) {
d6065f7b 850 atomic_inc(&rdev->nr_pending);
1da177e4 851 r10_bio->devs[i].bio = bio;
6cce3b23 852 } else {
1da177e4 853 r10_bio->devs[i].bio = NULL;
6cce3b23
N
854 set_bit(R10BIO_Degraded, &r10_bio->state);
855 }
1da177e4
LT
856 }
857 rcu_read_unlock();
858
6cce3b23 859 atomic_set(&r10_bio->remaining, 0);
06d91a5f 860
6cce3b23 861 bio_list_init(&bl);
1da177e4
LT
862 for (i = 0; i < conf->copies; i++) {
863 struct bio *mbio;
864 int d = r10_bio->devs[i].devnum;
865 if (!r10_bio->devs[i].bio)
866 continue;
867
868 mbio = bio_clone(bio, GFP_NOIO);
869 r10_bio->devs[i].bio = mbio;
870
871 mbio->bi_sector = r10_bio->devs[i].addr+
872 conf->mirrors[d].rdev->data_offset;
873 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
874 mbio->bi_end_io = raid10_end_write_request;
875 mbio->bi_rw = WRITE;
876 mbio->bi_private = r10_bio;
877
878 atomic_inc(&r10_bio->remaining);
6cce3b23 879 bio_list_add(&bl, mbio);
1da177e4
LT
880 }
881
6cce3b23
N
882 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
883 spin_lock_irqsave(&conf->device_lock, flags);
884 bio_list_merge(&conf->pending_bio_list, &bl);
885 blk_plug_device(mddev->queue);
886 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
887
888 return 0;
889}
890
891static void status(struct seq_file *seq, mddev_t *mddev)
892{
893 conf_t *conf = mddev_to_conf(mddev);
894 int i;
895
896 if (conf->near_copies < conf->raid_disks)
897 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
898 if (conf->near_copies > 1)
899 seq_printf(seq, " %d near-copies", conf->near_copies);
900 if (conf->far_copies > 1)
901 seq_printf(seq, " %d far-copies", conf->far_copies);
902
903 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
904 conf->working_disks);
905 for (i = 0; i < conf->raid_disks; i++)
906 seq_printf(seq, "%s",
907 conf->mirrors[i].rdev &&
b2d444d7 908 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
909 seq_printf(seq, "]");
910}
911
912static void error(mddev_t *mddev, mdk_rdev_t *rdev)
913{
914 char b[BDEVNAME_SIZE];
915 conf_t *conf = mddev_to_conf(mddev);
916
917 /*
918 * If it is not operational, then we have already marked it as dead
919 * else if it is the last working disks, ignore the error, let the
920 * next level up know.
921 * else mark the drive as failed
922 */
b2d444d7 923 if (test_bit(In_sync, &rdev->flags)
1da177e4
LT
924 && conf->working_disks == 1)
925 /*
926 * Don't fail the drive, just return an IO error.
927 * The test should really be more sophisticated than
928 * "working_disks == 1", but it isn't critical, and
929 * can wait until we do more sophisticated "is the drive
930 * really dead" tests...
931 */
932 return;
b2d444d7 933 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
934 mddev->degraded++;
935 conf->working_disks--;
936 /*
937 * if recovery is running, make sure it aborts.
938 */
939 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
940 }
b2d444d7
N
941 clear_bit(In_sync, &rdev->flags);
942 set_bit(Faulty, &rdev->flags);
1da177e4
LT
943 mddev->sb_dirty = 1;
944 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
945 " Operation continuing on %d devices\n",
946 bdevname(rdev->bdev,b), conf->working_disks);
947}
948
949static void print_conf(conf_t *conf)
950{
951 int i;
952 mirror_info_t *tmp;
953
954 printk("RAID10 conf printout:\n");
955 if (!conf) {
956 printk("(!conf)\n");
957 return;
958 }
959 printk(" --- wd:%d rd:%d\n", conf->working_disks,
960 conf->raid_disks);
961
962 for (i = 0; i < conf->raid_disks; i++) {
963 char b[BDEVNAME_SIZE];
964 tmp = conf->mirrors + i;
965 if (tmp->rdev)
966 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
967 i, !test_bit(In_sync, &tmp->rdev->flags),
968 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
969 bdevname(tmp->rdev->bdev,b));
970 }
971}
972
973static void close_sync(conf_t *conf)
974{
0a27ec96
N
975 wait_barrier(conf);
976 allow_barrier(conf);
1da177e4
LT
977
978 mempool_destroy(conf->r10buf_pool);
979 conf->r10buf_pool = NULL;
980}
981
6d508242
N
982/* check if there are enough drives for
983 * every block to appear on atleast one
984 */
985static int enough(conf_t *conf)
986{
987 int first = 0;
988
989 do {
990 int n = conf->copies;
991 int cnt = 0;
992 while (n--) {
993 if (conf->mirrors[first].rdev)
994 cnt++;
995 first = (first+1) % conf->raid_disks;
996 }
997 if (cnt == 0)
998 return 0;
999 } while (first != 0);
1000 return 1;
1001}
1002
1da177e4
LT
1003static int raid10_spare_active(mddev_t *mddev)
1004{
1005 int i;
1006 conf_t *conf = mddev->private;
1007 mirror_info_t *tmp;
1008
1009 /*
1010 * Find all non-in_sync disks within the RAID10 configuration
1011 * and mark them in_sync
1012 */
1013 for (i = 0; i < conf->raid_disks; i++) {
1014 tmp = conf->mirrors + i;
1015 if (tmp->rdev
b2d444d7
N
1016 && !test_bit(Faulty, &tmp->rdev->flags)
1017 && !test_bit(In_sync, &tmp->rdev->flags)) {
1da177e4
LT
1018 conf->working_disks++;
1019 mddev->degraded--;
b2d444d7 1020 set_bit(In_sync, &tmp->rdev->flags);
1da177e4
LT
1021 }
1022 }
1023
1024 print_conf(conf);
1025 return 0;
1026}
1027
1028
1029static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1030{
1031 conf_t *conf = mddev->private;
1032 int found = 0;
1033 int mirror;
1034 mirror_info_t *p;
1035
1036 if (mddev->recovery_cp < MaxSector)
1037 /* only hot-add to in-sync arrays, as recovery is
1038 * very different from resync
1039 */
1040 return 0;
6d508242
N
1041 if (!enough(conf))
1042 return 0;
1da177e4 1043
6cce3b23
N
1044 if (rdev->saved_raid_disk >= 0 &&
1045 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1046 mirror = rdev->saved_raid_disk;
1047 else
1048 mirror = 0;
1049 for ( ; mirror < mddev->raid_disks; mirror++)
1da177e4
LT
1050 if ( !(p=conf->mirrors+mirror)->rdev) {
1051
1052 blk_queue_stack_limits(mddev->queue,
1053 rdev->bdev->bd_disk->queue);
1054 /* as we don't honour merge_bvec_fn, we must never risk
1055 * violating it, so limit ->max_sector to one PAGE, as
1056 * a one page request is never in violation.
1057 */
1058 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1059 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1060 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1061
1062 p->head_position = 0;
1063 rdev->raid_disk = mirror;
1064 found = 1;
6cce3b23
N
1065 if (rdev->saved_raid_disk != mirror)
1066 conf->fullsync = 1;
d6065f7b 1067 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1068 break;
1069 }
1070
1071 print_conf(conf);
1072 return found;
1073}
1074
1075static int raid10_remove_disk(mddev_t *mddev, int number)
1076{
1077 conf_t *conf = mddev->private;
1078 int err = 0;
1079 mdk_rdev_t *rdev;
1080 mirror_info_t *p = conf->mirrors+ number;
1081
1082 print_conf(conf);
1083 rdev = p->rdev;
1084 if (rdev) {
b2d444d7 1085 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1086 atomic_read(&rdev->nr_pending)) {
1087 err = -EBUSY;
1088 goto abort;
1089 }
1090 p->rdev = NULL;
fbd568a3 1091 synchronize_rcu();
1da177e4
LT
1092 if (atomic_read(&rdev->nr_pending)) {
1093 /* lost the race, try later */
1094 err = -EBUSY;
1095 p->rdev = rdev;
1096 }
1097 }
1098abort:
1099
1100 print_conf(conf);
1101 return err;
1102}
1103
1104
1105static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1106{
1107 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1108 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1109 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1110 int i,d;
1111
1112 if (bio->bi_size)
1113 return 1;
1114
1115 for (i=0; i<conf->copies; i++)
1116 if (r10_bio->devs[i].bio == bio)
1117 break;
1118 if (i == conf->copies)
1119 BUG();
1120 update_head_pos(i, r10_bio);
1121 d = r10_bio->devs[i].devnum;
1122 if (!uptodate)
1123 md_error(r10_bio->mddev,
1124 conf->mirrors[d].rdev);
1125
1126 /* for reconstruct, we always reschedule after a read.
1127 * for resync, only after all reads
1128 */
1129 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1130 atomic_dec_and_test(&r10_bio->remaining)) {
1131 /* we have read all the blocks,
1132 * do the comparison in process context in raid10d
1133 */
1134 reschedule_retry(r10_bio);
1135 }
1136 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1137 return 0;
1138}
1139
1140static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1141{
1142 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1143 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1144 mddev_t *mddev = r10_bio->mddev;
1145 conf_t *conf = mddev_to_conf(mddev);
1146 int i,d;
1147
1148 if (bio->bi_size)
1149 return 1;
1150
1151 for (i = 0; i < conf->copies; i++)
1152 if (r10_bio->devs[i].bio == bio)
1153 break;
1154 d = r10_bio->devs[i].devnum;
1155
1156 if (!uptodate)
1157 md_error(mddev, conf->mirrors[d].rdev);
1158 update_head_pos(i, r10_bio);
1159
1160 while (atomic_dec_and_test(&r10_bio->remaining)) {
1161 if (r10_bio->master_bio == NULL) {
1162 /* the primary of several recovery bios */
1163 md_done_sync(mddev, r10_bio->sectors, 1);
1164 put_buf(r10_bio);
1165 break;
1166 } else {
1167 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1168 put_buf(r10_bio);
1169 r10_bio = r10_bio2;
1170 }
1171 }
1172 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1173 return 0;
1174}
1175
1176/*
1177 * Note: sync and recover and handled very differently for raid10
1178 * This code is for resync.
1179 * For resync, we read through virtual addresses and read all blocks.
1180 * If there is any error, we schedule a write. The lowest numbered
1181 * drive is authoritative.
1182 * However requests come for physical address, so we need to map.
1183 * For every physical address there are raid_disks/copies virtual addresses,
1184 * which is always are least one, but is not necessarly an integer.
1185 * This means that a physical address can span multiple chunks, so we may
1186 * have to submit multiple io requests for a single sync request.
1187 */
1188/*
1189 * We check if all blocks are in-sync and only write to blocks that
1190 * aren't in sync
1191 */
1192static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1193{
1194 conf_t *conf = mddev_to_conf(mddev);
1195 int i, first;
1196 struct bio *tbio, *fbio;
1197
1198 atomic_set(&r10_bio->remaining, 1);
1199
1200 /* find the first device with a block */
1201 for (i=0; i<conf->copies; i++)
1202 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1203 break;
1204
1205 if (i == conf->copies)
1206 goto done;
1207
1208 first = i;
1209 fbio = r10_bio->devs[i].bio;
1210
1211 /* now find blocks with errors */
1212 for (i=first+1 ; i < conf->copies ; i++) {
1213 int vcnt, j, d;
1214
1215 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1216 continue;
1217 /* We know that the bi_io_vec layout is the same for
1218 * both 'first' and 'i', so we just compare them.
1219 * All vec entries are PAGE_SIZE;
1220 */
1221 tbio = r10_bio->devs[i].bio;
1222 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1223 for (j = 0; j < vcnt; j++)
1224 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1225 page_address(tbio->bi_io_vec[j].bv_page),
1226 PAGE_SIZE))
1227 break;
1228 if (j == vcnt)
1229 continue;
18f08819
N
1230 mddev->resync_mismatches += r10_bio->sectors;
1231 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1232 /* Don't fix anything. */
1233 continue;
1da177e4
LT
1234 /* Ok, we need to write this bio
1235 * First we need to fixup bv_offset, bv_len and
1236 * bi_vecs, as the read request might have corrupted these
1237 */
1238 tbio->bi_vcnt = vcnt;
1239 tbio->bi_size = r10_bio->sectors << 9;
1240 tbio->bi_idx = 0;
1241 tbio->bi_phys_segments = 0;
1242 tbio->bi_hw_segments = 0;
1243 tbio->bi_hw_front_size = 0;
1244 tbio->bi_hw_back_size = 0;
1245 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1246 tbio->bi_flags |= 1 << BIO_UPTODATE;
1247 tbio->bi_next = NULL;
1248 tbio->bi_rw = WRITE;
1249 tbio->bi_private = r10_bio;
1250 tbio->bi_sector = r10_bio->devs[i].addr;
1251
1252 for (j=0; j < vcnt ; j++) {
1253 tbio->bi_io_vec[j].bv_offset = 0;
1254 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1255
1256 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1257 page_address(fbio->bi_io_vec[j].bv_page),
1258 PAGE_SIZE);
1259 }
1260 tbio->bi_end_io = end_sync_write;
1261
1262 d = r10_bio->devs[i].devnum;
1263 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1264 atomic_inc(&r10_bio->remaining);
1265 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1266
1267 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1268 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1269 generic_make_request(tbio);
1270 }
1271
1272done:
1273 if (atomic_dec_and_test(&r10_bio->remaining)) {
1274 md_done_sync(mddev, r10_bio->sectors, 1);
1275 put_buf(r10_bio);
1276 }
1277}
1278
1279/*
1280 * Now for the recovery code.
1281 * Recovery happens across physical sectors.
1282 * We recover all non-is_sync drives by finding the virtual address of
1283 * each, and then choose a working drive that also has that virt address.
1284 * There is a separate r10_bio for each non-in_sync drive.
1285 * Only the first two slots are in use. The first for reading,
1286 * The second for writing.
1287 *
1288 */
1289
1290static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1291{
1292 conf_t *conf = mddev_to_conf(mddev);
1293 int i, d;
1294 struct bio *bio, *wbio;
1295
1296
1297 /* move the pages across to the second bio
1298 * and submit the write request
1299 */
1300 bio = r10_bio->devs[0].bio;
1301 wbio = r10_bio->devs[1].bio;
1302 for (i=0; i < wbio->bi_vcnt; i++) {
1303 struct page *p = bio->bi_io_vec[i].bv_page;
1304 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1305 wbio->bi_io_vec[i].bv_page = p;
1306 }
1307 d = r10_bio->devs[1].devnum;
1308
1309 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1310 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1311 generic_make_request(wbio);
1312}
1313
1314
1315/*
1316 * This is a kernel thread which:
1317 *
1318 * 1. Retries failed read operations on working mirrors.
1319 * 2. Updates the raid superblock when problems encounter.
1320 * 3. Performs writes following reads for array syncronising.
1321 */
1322
1323static void raid10d(mddev_t *mddev)
1324{
1325 r10bio_t *r10_bio;
1326 struct bio *bio;
1327 unsigned long flags;
1328 conf_t *conf = mddev_to_conf(mddev);
1329 struct list_head *head = &conf->retry_list;
1330 int unplug=0;
1331 mdk_rdev_t *rdev;
1332
1333 md_check_recovery(mddev);
1da177e4
LT
1334
1335 for (;;) {
1336 char b[BDEVNAME_SIZE];
1337 spin_lock_irqsave(&conf->device_lock, flags);
6cce3b23
N
1338
1339 if (conf->pending_bio_list.head) {
1340 bio = bio_list_get(&conf->pending_bio_list);
1341 blk_remove_plug(mddev->queue);
1342 spin_unlock_irqrestore(&conf->device_lock, flags);
1343 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1344 if (bitmap_unplug(mddev->bitmap) != 0)
1345 printk("%s: bitmap file write failed!\n", mdname(mddev));
1346
1347 while (bio) { /* submit pending writes */
1348 struct bio *next = bio->bi_next;
1349 bio->bi_next = NULL;
1350 generic_make_request(bio);
1351 bio = next;
1352 }
1353 unplug = 1;
1354
1355 continue;
1356 }
1357
1da177e4
LT
1358 if (list_empty(head))
1359 break;
1360 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1361 list_del(head->prev);
4443ae10 1362 conf->nr_queued--;
1da177e4
LT
1363 spin_unlock_irqrestore(&conf->device_lock, flags);
1364
1365 mddev = r10_bio->mddev;
1366 conf = mddev_to_conf(mddev);
1367 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1368 sync_request_write(mddev, r10_bio);
1369 unplug = 1;
1370 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1371 recovery_request_write(mddev, r10_bio);
1372 unplug = 1;
1373 } else {
1374 int mirror;
4443ae10
N
1375 /* we got a read error. Maybe the drive is bad. Maybe just
1376 * the block and we can fix it.
1377 * We freeze all other IO, and try reading the block from
1378 * other devices. When we find one, we re-write
1379 * and check it that fixes the read error.
1380 * This is all done synchronously while the array is
1381 * frozen.
1382 */
1383 int sect = 0; /* Offset from r10_bio->sector */
1384 int sectors = r10_bio->sectors;
1385 freeze_array(conf);
1386 if (mddev->ro == 0) while(sectors) {
1387 int s = sectors;
1388 int sl = r10_bio->read_slot;
1389 int success = 0;
1390
1391 if (s > (PAGE_SIZE>>9))
1392 s = PAGE_SIZE >> 9;
1393
1394 do {
1395 int d = r10_bio->devs[sl].devnum;
1396 rdev = conf->mirrors[d].rdev;
1397 if (rdev &&
1398 test_bit(In_sync, &rdev->flags) &&
1399 sync_page_io(rdev->bdev,
1400 r10_bio->devs[sl].addr +
1401 sect + rdev->data_offset,
1402 s<<9,
1403 conf->tmppage, READ))
1404 success = 1;
1405 else {
1406 sl++;
1407 if (sl == conf->copies)
1408 sl = 0;
1409 }
1410 } while (!success && sl != r10_bio->read_slot);
1411
1412 if (success) {
1413 /* write it back and re-read */
1414 while (sl != r10_bio->read_slot) {
1415 int d;
1416 if (sl==0)
1417 sl = conf->copies;
1418 sl--;
1419 d = r10_bio->devs[sl].devnum;
1420 rdev = conf->mirrors[d].rdev;
1421 if (rdev &&
1422 test_bit(In_sync, &rdev->flags)) {
1423 if (sync_page_io(rdev->bdev,
1424 r10_bio->devs[sl].addr +
1425 sect + rdev->data_offset,
1426 s<<9, conf->tmppage, WRITE) == 0 ||
1427 sync_page_io(rdev->bdev,
1428 r10_bio->devs[sl].addr +
1429 sect + rdev->data_offset,
1430 s<<9, conf->tmppage, READ) == 0) {
1431 /* Well, this device is dead */
1432 md_error(mddev, rdev);
1433 }
1434 }
1435 }
1436 } else {
1437 /* Cannot read from anywhere -- bye bye array */
1438 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
1439 break;
1440 }
1441 sectors -= s;
1442 sect += s;
1443 }
1444
1445 unfreeze_array(conf);
1446
1da177e4
LT
1447 bio = r10_bio->devs[r10_bio->read_slot].bio;
1448 r10_bio->devs[r10_bio->read_slot].bio = NULL;
1449 bio_put(bio);
1450 mirror = read_balance(conf, r10_bio);
1451 if (mirror == -1) {
1452 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1453 " read error for block %llu\n",
1454 bdevname(bio->bi_bdev,b),
1455 (unsigned long long)r10_bio->sector);
1456 raid_end_bio_io(r10_bio);
1457 } else {
1458 rdev = conf->mirrors[mirror].rdev;
1459 if (printk_ratelimit())
1460 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1461 " another mirror\n",
1462 bdevname(rdev->bdev,b),
1463 (unsigned long long)r10_bio->sector);
1464 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1465 r10_bio->devs[r10_bio->read_slot].bio = bio;
1466 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1467 + rdev->data_offset;
1468 bio->bi_bdev = rdev->bdev;
1469 bio->bi_rw = READ;
1470 bio->bi_private = r10_bio;
1471 bio->bi_end_io = raid10_end_read_request;
1472 unplug = 1;
1473 generic_make_request(bio);
1474 }
1475 }
1476 }
1477 spin_unlock_irqrestore(&conf->device_lock, flags);
1478 if (unplug)
1479 unplug_slaves(mddev);
1480}
1481
1482
1483static int init_resync(conf_t *conf)
1484{
1485 int buffs;
1486
1487 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1488 if (conf->r10buf_pool)
1489 BUG();
1490 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1491 if (!conf->r10buf_pool)
1492 return -ENOMEM;
1493 conf->next_resync = 0;
1494 return 0;
1495}
1496
1497/*
1498 * perform a "sync" on one "block"
1499 *
1500 * We need to make sure that no normal I/O request - particularly write
1501 * requests - conflict with active sync requests.
1502 *
1503 * This is achieved by tracking pending requests and a 'barrier' concept
1504 * that can be installed to exclude normal IO requests.
1505 *
1506 * Resync and recovery are handled very differently.
1507 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1508 *
1509 * For resync, we iterate over virtual addresses, read all copies,
1510 * and update if there are differences. If only one copy is live,
1511 * skip it.
1512 * For recovery, we iterate over physical addresses, read a good
1513 * value for each non-in_sync drive, and over-write.
1514 *
1515 * So, for recovery we may have several outstanding complex requests for a
1516 * given address, one for each out-of-sync device. We model this by allocating
1517 * a number of r10_bio structures, one for each out-of-sync device.
1518 * As we setup these structures, we collect all bio's together into a list
1519 * which we then process collectively to add pages, and then process again
1520 * to pass to generic_make_request.
1521 *
1522 * The r10_bio structures are linked using a borrowed master_bio pointer.
1523 * This link is counted in ->remaining. When the r10_bio that points to NULL
1524 * has its remaining count decremented to 0, the whole complex operation
1525 * is complete.
1526 *
1527 */
1528
57afd89f 1529static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1530{
1531 conf_t *conf = mddev_to_conf(mddev);
1532 r10bio_t *r10_bio;
1533 struct bio *biolist = NULL, *bio;
1534 sector_t max_sector, nr_sectors;
1535 int disk;
1536 int i;
6cce3b23
N
1537 int max_sync;
1538 int sync_blocks;
1da177e4
LT
1539
1540 sector_t sectors_skipped = 0;
1541 int chunks_skipped = 0;
1542
1543 if (!conf->r10buf_pool)
1544 if (init_resync(conf))
57afd89f 1545 return 0;
1da177e4
LT
1546
1547 skipped:
1548 max_sector = mddev->size << 1;
1549 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1550 max_sector = mddev->resync_max_sectors;
1551 if (sector_nr >= max_sector) {
6cce3b23
N
1552 /* If we aborted, we need to abort the
1553 * sync on the 'current' bitmap chucks (there can
1554 * be several when recovering multiple devices).
1555 * as we may have started syncing it but not finished.
1556 * We can find the current address in
1557 * mddev->curr_resync, but for recovery,
1558 * we need to convert that to several
1559 * virtual addresses.
1560 */
1561 if (mddev->curr_resync < max_sector) { /* aborted */
1562 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1563 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1564 &sync_blocks, 1);
1565 else for (i=0; i<conf->raid_disks; i++) {
1566 sector_t sect =
1567 raid10_find_virt(conf, mddev->curr_resync, i);
1568 bitmap_end_sync(mddev->bitmap, sect,
1569 &sync_blocks, 1);
1570 }
1571 } else /* completed sync */
1572 conf->fullsync = 0;
1573
1574 bitmap_close_sync(mddev->bitmap);
1da177e4 1575 close_sync(conf);
57afd89f 1576 *skipped = 1;
1da177e4
LT
1577 return sectors_skipped;
1578 }
1579 if (chunks_skipped >= conf->raid_disks) {
1580 /* if there has been nothing to do on any drive,
1581 * then there is nothing to do at all..
1582 */
57afd89f
N
1583 *skipped = 1;
1584 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1585 }
1586
1587 /* make sure whole request will fit in a chunk - if chunks
1588 * are meaningful
1589 */
1590 if (conf->near_copies < conf->raid_disks &&
1591 max_sector > (sector_nr | conf->chunk_mask))
1592 max_sector = (sector_nr | conf->chunk_mask) + 1;
1593 /*
1594 * If there is non-resync activity waiting for us then
1595 * put in a delay to throttle resync.
1596 */
0a27ec96 1597 if (!go_faster && conf->nr_waiting)
1da177e4 1598 msleep_interruptible(1000);
1da177e4
LT
1599
1600 /* Again, very different code for resync and recovery.
1601 * Both must result in an r10bio with a list of bios that
1602 * have bi_end_io, bi_sector, bi_bdev set,
1603 * and bi_private set to the r10bio.
1604 * For recovery, we may actually create several r10bios
1605 * with 2 bios in each, that correspond to the bios in the main one.
1606 * In this case, the subordinate r10bios link back through a
1607 * borrowed master_bio pointer, and the counter in the master
1608 * includes a ref from each subordinate.
1609 */
1610 /* First, we decide what to do and set ->bi_end_io
1611 * To end_sync_read if we want to read, and
1612 * end_sync_write if we will want to write.
1613 */
1614
6cce3b23 1615 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1616 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1617 /* recovery... the complicated one */
1618 int i, j, k;
1619 r10_bio = NULL;
1620
1621 for (i=0 ; i<conf->raid_disks; i++)
1622 if (conf->mirrors[i].rdev &&
b2d444d7 1623 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1624 int still_degraded = 0;
1da177e4
LT
1625 /* want to reconstruct this device */
1626 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1627 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1628 int must_sync;
1629 /* Unless we are doing a full sync, we only need
1630 * to recover the block if it is set in the bitmap
1631 */
1632 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1633 &sync_blocks, 1);
1634 if (sync_blocks < max_sync)
1635 max_sync = sync_blocks;
1636 if (!must_sync &&
1637 !conf->fullsync) {
1638 /* yep, skip the sync_blocks here, but don't assume
1639 * that there will never be anything to do here
1640 */
1641 chunks_skipped = -1;
1642 continue;
1643 }
1da177e4
LT
1644
1645 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1646 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1647 atomic_set(&r10_bio->remaining, 0);
1648
1649 r10_bio->master_bio = (struct bio*)rb2;
1650 if (rb2)
1651 atomic_inc(&rb2->remaining);
1652 r10_bio->mddev = mddev;
1653 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1654 r10_bio->sector = sect;
1655
1da177e4 1656 raid10_find_phys(conf, r10_bio);
6cce3b23
N
1657 /* Need to check if this section will still be
1658 * degraded
1659 */
1660 for (j=0; j<conf->copies;j++) {
1661 int d = r10_bio->devs[j].devnum;
1662 if (conf->mirrors[d].rdev == NULL ||
1663 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1664 still_degraded = 1;
1665 }
1666 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1667 &sync_blocks, still_degraded);
1668
1da177e4
LT
1669 for (j=0; j<conf->copies;j++) {
1670 int d = r10_bio->devs[j].devnum;
1671 if (conf->mirrors[d].rdev &&
b2d444d7 1672 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1673 /* This is where we read from */
1674 bio = r10_bio->devs[0].bio;
1675 bio->bi_next = biolist;
1676 biolist = bio;
1677 bio->bi_private = r10_bio;
1678 bio->bi_end_io = end_sync_read;
1679 bio->bi_rw = 0;
1680 bio->bi_sector = r10_bio->devs[j].addr +
1681 conf->mirrors[d].rdev->data_offset;
1682 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1683 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1684 atomic_inc(&r10_bio->remaining);
1685 /* and we write to 'i' */
1686
1687 for (k=0; k<conf->copies; k++)
1688 if (r10_bio->devs[k].devnum == i)
1689 break;
1690 bio = r10_bio->devs[1].bio;
1691 bio->bi_next = biolist;
1692 biolist = bio;
1693 bio->bi_private = r10_bio;
1694 bio->bi_end_io = end_sync_write;
1695 bio->bi_rw = 1;
1696 bio->bi_sector = r10_bio->devs[k].addr +
1697 conf->mirrors[i].rdev->data_offset;
1698 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1699
1700 r10_bio->devs[0].devnum = d;
1701 r10_bio->devs[1].devnum = i;
1702
1703 break;
1704 }
1705 }
1706 if (j == conf->copies) {
87fc767b
N
1707 /* Cannot recover, so abort the recovery */
1708 put_buf(r10_bio);
1709 r10_bio = rb2;
1710 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1711 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1712 mdname(mddev));
1713 break;
1da177e4
LT
1714 }
1715 }
1716 if (biolist == NULL) {
1717 while (r10_bio) {
1718 r10bio_t *rb2 = r10_bio;
1719 r10_bio = (r10bio_t*) rb2->master_bio;
1720 rb2->master_bio = NULL;
1721 put_buf(rb2);
1722 }
1723 goto giveup;
1724 }
1725 } else {
1726 /* resync. Schedule a read for every block at this virt offset */
1727 int count = 0;
6cce3b23
N
1728
1729 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1730 &sync_blocks, mddev->degraded) &&
1731 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1732 /* We can skip this block */
1733 *skipped = 1;
1734 return sync_blocks + sectors_skipped;
1735 }
1736 if (sync_blocks < max_sync)
1737 max_sync = sync_blocks;
1da177e4
LT
1738 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1739
1da177e4
LT
1740 r10_bio->mddev = mddev;
1741 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
1742 raise_barrier(conf, 0);
1743 conf->next_resync = sector_nr;
1da177e4
LT
1744
1745 r10_bio->master_bio = NULL;
1746 r10_bio->sector = sector_nr;
1747 set_bit(R10BIO_IsSync, &r10_bio->state);
1748 raid10_find_phys(conf, r10_bio);
1749 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1750
1751 for (i=0; i<conf->copies; i++) {
1752 int d = r10_bio->devs[i].devnum;
1753 bio = r10_bio->devs[i].bio;
1754 bio->bi_end_io = NULL;
1755 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 1756 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
1757 continue;
1758 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1759 atomic_inc(&r10_bio->remaining);
1760 bio->bi_next = biolist;
1761 biolist = bio;
1762 bio->bi_private = r10_bio;
1763 bio->bi_end_io = end_sync_read;
1764 bio->bi_rw = 0;
1765 bio->bi_sector = r10_bio->devs[i].addr +
1766 conf->mirrors[d].rdev->data_offset;
1767 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1768 count++;
1769 }
1770
1771 if (count < 2) {
1772 for (i=0; i<conf->copies; i++) {
1773 int d = r10_bio->devs[i].devnum;
1774 if (r10_bio->devs[i].bio->bi_end_io)
1775 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1776 }
1777 put_buf(r10_bio);
1778 biolist = NULL;
1779 goto giveup;
1780 }
1781 }
1782
1783 for (bio = biolist; bio ; bio=bio->bi_next) {
1784
1785 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1786 if (bio->bi_end_io)
1787 bio->bi_flags |= 1 << BIO_UPTODATE;
1788 bio->bi_vcnt = 0;
1789 bio->bi_idx = 0;
1790 bio->bi_phys_segments = 0;
1791 bio->bi_hw_segments = 0;
1792 bio->bi_size = 0;
1793 }
1794
1795 nr_sectors = 0;
6cce3b23
N
1796 if (sector_nr + max_sync < max_sector)
1797 max_sector = sector_nr + max_sync;
1da177e4
LT
1798 do {
1799 struct page *page;
1800 int len = PAGE_SIZE;
1801 disk = 0;
1802 if (sector_nr + (len>>9) > max_sector)
1803 len = (max_sector - sector_nr) << 9;
1804 if (len == 0)
1805 break;
1806 for (bio= biolist ; bio ; bio=bio->bi_next) {
1807 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1808 if (bio_add_page(bio, page, len, 0) == 0) {
1809 /* stop here */
1810 struct bio *bio2;
1811 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1812 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1813 /* remove last page from this bio */
1814 bio2->bi_vcnt--;
1815 bio2->bi_size -= len;
1816 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1817 }
1818 goto bio_full;
1819 }
1820 disk = i;
1821 }
1822 nr_sectors += len>>9;
1823 sector_nr += len>>9;
1824 } while (biolist->bi_vcnt < RESYNC_PAGES);
1825 bio_full:
1826 r10_bio->sectors = nr_sectors;
1827
1828 while (biolist) {
1829 bio = biolist;
1830 biolist = biolist->bi_next;
1831
1832 bio->bi_next = NULL;
1833 r10_bio = bio->bi_private;
1834 r10_bio->sectors = nr_sectors;
1835
1836 if (bio->bi_end_io == end_sync_read) {
1837 md_sync_acct(bio->bi_bdev, nr_sectors);
1838 generic_make_request(bio);
1839 }
1840 }
1841
57afd89f
N
1842 if (sectors_skipped)
1843 /* pretend they weren't skipped, it makes
1844 * no important difference in this case
1845 */
1846 md_done_sync(mddev, sectors_skipped, 1);
1847
1da177e4
LT
1848 return sectors_skipped + nr_sectors;
1849 giveup:
1850 /* There is nowhere to write, so all non-sync
1851 * drives must be failed, so try the next chunk...
1852 */
1853 {
57afd89f 1854 sector_t sec = max_sector - sector_nr;
1da177e4
LT
1855 sectors_skipped += sec;
1856 chunks_skipped ++;
1857 sector_nr = max_sector;
1da177e4
LT
1858 goto skipped;
1859 }
1860}
1861
1862static int run(mddev_t *mddev)
1863{
1864 conf_t *conf;
1865 int i, disk_idx;
1866 mirror_info_t *disk;
1867 mdk_rdev_t *rdev;
1868 struct list_head *tmp;
1869 int nc, fc;
1870 sector_t stride, size;
1871
1872 if (mddev->level != 10) {
1873 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1874 mdname(mddev), mddev->level);
1875 goto out;
1876 }
1877 nc = mddev->layout & 255;
1878 fc = (mddev->layout >> 8) & 255;
1879 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1880 (mddev->layout >> 16)) {
1881 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1882 mdname(mddev), mddev->layout);
1883 goto out;
1884 }
1885 /*
1886 * copy the already verified devices into our private RAID10
1887 * bookkeeping area. [whatever we allocate in run(),
1888 * should be freed in stop()]
1889 */
4443ae10 1890 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
1891 mddev->private = conf;
1892 if (!conf) {
1893 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1894 mdname(mddev));
1895 goto out;
1896 }
4443ae10 1897 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1898 GFP_KERNEL);
1899 if (!conf->mirrors) {
1900 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1901 mdname(mddev));
1902 goto out_free_conf;
1903 }
4443ae10
N
1904
1905 conf->tmppage = alloc_page(GFP_KERNEL);
1906 if (!conf->tmppage)
1907 goto out_free_conf;
1da177e4
LT
1908
1909 conf->near_copies = nc;
1910 conf->far_copies = fc;
1911 conf->copies = nc*fc;
1912 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1913 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1914 stride = mddev->size >> (conf->chunk_shift-1);
1915 sector_div(stride, fc);
1916 conf->stride = stride << conf->chunk_shift;
1917
1918 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1919 r10bio_pool_free, conf);
1920 if (!conf->r10bio_pool) {
1921 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1922 mdname(mddev));
1923 goto out_free_conf;
1924 }
1da177e4
LT
1925
1926 ITERATE_RDEV(mddev, rdev, tmp) {
1927 disk_idx = rdev->raid_disk;
1928 if (disk_idx >= mddev->raid_disks
1929 || disk_idx < 0)
1930 continue;
1931 disk = conf->mirrors + disk_idx;
1932
1933 disk->rdev = rdev;
1934
1935 blk_queue_stack_limits(mddev->queue,
1936 rdev->bdev->bd_disk->queue);
1937 /* as we don't honour merge_bvec_fn, we must never risk
1938 * violating it, so limit ->max_sector to one PAGE, as
1939 * a one page request is never in violation.
1940 */
1941 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1942 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1943 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1944
1945 disk->head_position = 0;
b2d444d7 1946 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1da177e4
LT
1947 conf->working_disks++;
1948 }
1949 conf->raid_disks = mddev->raid_disks;
1950 conf->mddev = mddev;
1951 spin_lock_init(&conf->device_lock);
1952 INIT_LIST_HEAD(&conf->retry_list);
1953
1954 spin_lock_init(&conf->resync_lock);
0a27ec96 1955 init_waitqueue_head(&conf->wait_barrier);
1da177e4 1956
6d508242
N
1957 /* need to check that every block has at least one working mirror */
1958 if (!enough(conf)) {
1959 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1960 mdname(mddev));
1da177e4
LT
1961 goto out_free_conf;
1962 }
1963
1964 mddev->degraded = 0;
1965 for (i = 0; i < conf->raid_disks; i++) {
1966
1967 disk = conf->mirrors + i;
1968
1969 if (!disk->rdev) {
1970 disk->head_position = 0;
1971 mddev->degraded++;
1972 }
1973 }
1974
1975
1976 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1977 if (!mddev->thread) {
1978 printk(KERN_ERR
1979 "raid10: couldn't allocate thread for %s\n",
1980 mdname(mddev));
1981 goto out_free_conf;
1982 }
1983
1984 printk(KERN_INFO
1985 "raid10: raid set %s active with %d out of %d devices\n",
1986 mdname(mddev), mddev->raid_disks - mddev->degraded,
1987 mddev->raid_disks);
1988 /*
1989 * Ok, everything is just fine now
1990 */
1991 size = conf->stride * conf->raid_disks;
1992 sector_div(size, conf->near_copies);
1993 mddev->array_size = size/2;
1994 mddev->resync_max_sectors = size;
1995
7a5febe9
N
1996 mddev->queue->unplug_fn = raid10_unplug;
1997 mddev->queue->issue_flush_fn = raid10_issue_flush;
1998
1da177e4
LT
1999 /* Calculate max read-ahead size.
2000 * We need to readahead at least twice a whole stripe....
2001 * maybe...
2002 */
2003 {
2004 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
2005 stripe /= conf->near_copies;
2006 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2007 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2008 }
2009
2010 if (conf->near_copies < mddev->raid_disks)
2011 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2012 return 0;
2013
2014out_free_conf:
2015 if (conf->r10bio_pool)
2016 mempool_destroy(conf->r10bio_pool);
4443ae10 2017 put_page(conf->tmppage);
990a8baf 2018 kfree(conf->mirrors);
1da177e4
LT
2019 kfree(conf);
2020 mddev->private = NULL;
2021out:
2022 return -EIO;
2023}
2024
2025static int stop(mddev_t *mddev)
2026{
2027 conf_t *conf = mddev_to_conf(mddev);
2028
2029 md_unregister_thread(mddev->thread);
2030 mddev->thread = NULL;
2031 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2032 if (conf->r10bio_pool)
2033 mempool_destroy(conf->r10bio_pool);
990a8baf 2034 kfree(conf->mirrors);
1da177e4
LT
2035 kfree(conf);
2036 mddev->private = NULL;
2037 return 0;
2038}
2039
6cce3b23
N
2040static void raid10_quiesce(mddev_t *mddev, int state)
2041{
2042 conf_t *conf = mddev_to_conf(mddev);
2043
2044 switch(state) {
2045 case 1:
2046 raise_barrier(conf, 0);
2047 break;
2048 case 0:
2049 lower_barrier(conf);
2050 break;
2051 }
2052 if (mddev->thread) {
2053 if (mddev->bitmap)
2054 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2055 else
2056 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2057 md_wakeup_thread(mddev->thread);
2058 }
2059}
1da177e4
LT
2060
2061static mdk_personality_t raid10_personality =
2062{
2063 .name = "raid10",
2064 .owner = THIS_MODULE,
2065 .make_request = make_request,
2066 .run = run,
2067 .stop = stop,
2068 .status = status,
2069 .error_handler = error,
2070 .hot_add_disk = raid10_add_disk,
2071 .hot_remove_disk= raid10_remove_disk,
2072 .spare_active = raid10_spare_active,
2073 .sync_request = sync_request,
6cce3b23 2074 .quiesce = raid10_quiesce,
1da177e4
LT
2075};
2076
2077static int __init raid_init(void)
2078{
2079 return register_md_personality(RAID10, &raid10_personality);
2080}
2081
2082static void raid_exit(void)
2083{
2084 unregister_md_personality(RAID10);
2085}
2086
2087module_init(raid_init);
2088module_exit(raid_exit);
2089MODULE_LICENSE("GPL");
2090MODULE_ALIAS("md-personality-9"); /* RAID10 */