]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid1.c
md: collect bitmap-specific fields into one structure.
[net-next-2.6.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
25570727 34#include <linux/delay.h>
bff61975 35#include <linux/blkdev.h>
bff61975 36#include <linux/seq_file.h>
43b2e5d8 37#include "md.h"
ef740c37
CH
38#include "raid1.h"
39#include "bitmap.h"
191ea9b2
N
40
41#define DEBUG 0
42#if DEBUG
43#define PRINTK(x...) printk(x)
44#else
45#define PRINTK(x...)
46#endif
1da177e4
LT
47
48/*
49 * Number of guaranteed r1bios in case of extreme VM load:
50 */
51#define NR_RAID1_BIOS 256
52
1da177e4
LT
53
54static void unplug_slaves(mddev_t *mddev);
55
17999be4
N
56static void allow_barrier(conf_t *conf);
57static void lower_barrier(conf_t *conf);
1da177e4 58
dd0fc66f 59static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
60{
61 struct pool_info *pi = data;
62 r1bio_t *r1_bio;
63 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
9ffae0cf 66 r1_bio = kzalloc(size, gfp_flags);
ed9bfdf1 67 if (!r1_bio && pi->mddev)
1da177e4
LT
68 unplug_slaves(pi->mddev);
69
70 return r1_bio;
71}
72
73static void r1bio_pool_free(void *r1_bio, void *data)
74{
75 kfree(r1_bio);
76}
77
78#define RESYNC_BLOCK_SIZE (64*1024)
79//#define RESYNC_BLOCK_SIZE PAGE_SIZE
80#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82#define RESYNC_WINDOW (2048*1024)
83
dd0fc66f 84static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
85{
86 struct pool_info *pi = data;
87 struct page *page;
88 r1bio_t *r1_bio;
89 struct bio *bio;
90 int i, j;
91
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 if (!r1_bio) {
94 unplug_slaves(pi->mddev);
95 return NULL;
96 }
97
98 /*
99 * Allocate bios : 1 for reading, n-1 for writing
100 */
101 for (j = pi->raid_disks ; j-- ; ) {
102 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 if (!bio)
104 goto out_free_bio;
105 r1_bio->bios[j] = bio;
106 }
107 /*
108 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
109 * the first bio.
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
1da177e4 112 */
d11c171e
N
113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 j = pi->raid_disks;
115 else
116 j = 1;
117 while(j--) {
118 bio = r1_bio->bios[j];
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
123
124 bio->bi_io_vec[i].bv_page = page;
303a0e11 125 bio->bi_vcnt = i+1;
d11c171e
N
126 }
127 }
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 for (i=0; i<RESYNC_PAGES ; i++)
131 for (j=1; j<pi->raid_disks; j++)
132 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
134 }
135
136 r1_bio->master_bio = NULL;
137
138 return r1_bio;
139
140out_free_pages:
303a0e11
N
141 for (j=0 ; j < pi->raid_disks; j++)
142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 144 j = -1;
1da177e4
LT
145out_free_bio:
146 while ( ++j < pi->raid_disks )
147 bio_put(r1_bio->bios[j]);
148 r1bio_pool_free(r1_bio, data);
149 return NULL;
150}
151
152static void r1buf_pool_free(void *__r1_bio, void *data)
153{
154 struct pool_info *pi = data;
d11c171e 155 int i,j;
1da177e4 156 r1bio_t *r1bio = __r1_bio;
1da177e4 157
d11c171e
N
158 for (i = 0; i < RESYNC_PAGES; i++)
159 for (j = pi->raid_disks; j-- ;) {
160 if (j == 0 ||
161 r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 164 }
1da177e4
LT
165 for (i=0 ; i < pi->raid_disks; i++)
166 bio_put(r1bio->bios[i]);
167
168 r1bio_pool_free(r1bio, data);
169}
170
171static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172{
173 int i;
174
175 for (i = 0; i < conf->raid_disks; i++) {
176 struct bio **bio = r1_bio->bios + i;
cf30a473 177 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
178 bio_put(*bio);
179 *bio = NULL;
180 }
181}
182
858119e1 183static void free_r1bio(r1bio_t *r1_bio)
1da177e4 184{
070ec55d 185 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
186
187 /*
188 * Wake up any possible resync thread that waits for the device
189 * to go idle.
190 */
17999be4 191 allow_barrier(conf);
1da177e4
LT
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
858119e1 197static void put_buf(r1bio_t *r1_bio)
1da177e4 198{
070ec55d 199 conf_t *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
202 for (i=0; i<conf->raid_disks; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
213static void reschedule_retry(r1bio_t *r1_bio)
214{
215 unsigned long flags;
216 mddev_t *mddev = r1_bio->mddev;
070ec55d 217 conf_t *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233static void raid_end_bio_io(r1bio_t *r1_bio)
234{
235 struct bio *bio = r1_bio->master_bio;
236
4b6d287f
N
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio) == WRITE) ? "write" : "read",
241 (unsigned long long) bio->bi_sector,
242 (unsigned long long) bio->bi_sector +
243 (bio->bi_size >> 9) - 1);
244
6712ecf8 245 bio_endio(bio,
4b6d287f
N
246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247 }
1da177e4
LT
248 free_r1bio(r1_bio);
249}
250
251/*
252 * Update disk head position estimator based on IRQ completion info.
253 */
254static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255{
070ec55d 256 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
257
258 conf->mirrors[disk].head_position =
259 r1_bio->sector + (r1_bio->sectors);
260}
261
6712ecf8 262static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
263{
264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 int mirror;
070ec55d 267 conf_t *conf = r1_bio->mddev->private;
1da177e4 268
1da177e4
LT
269 mirror = r1_bio->read_disk;
270 /*
271 * this branch is our 'one mirror IO has finished' event handler:
272 */
ddaf22ab
N
273 update_head_pos(mirror, r1_bio);
274
dd00a99e
N
275 if (uptodate)
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277 else {
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 281 */
dd00a99e
N
282 unsigned long flags;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 if (r1_bio->mddev->degraded == conf->raid_disks ||
285 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 uptodate = 1;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
289 }
1da177e4 290
dd00a99e 291 if (uptodate)
1da177e4 292 raid_end_bio_io(r1_bio);
dd00a99e 293 else {
1da177e4
LT
294 /*
295 * oops, read error:
296 */
297 char b[BDEVNAME_SIZE];
298 if (printk_ratelimit())
299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 reschedule_retry(r1_bio);
302 }
303
304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
305}
306
6712ecf8 307static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
a9701a30 311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
070ec55d 312 conf_t *conf = r1_bio->mddev->private;
04b857f7 313 struct bio *to_put = NULL;
1da177e4 314
1da177e4
LT
315
316 for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 if (r1_bio->bios[mirror] == bio)
318 break;
319
bea27718 320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
a9701a30
N
321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 r1_bio->mddev->barriers_work = 0;
5e7dd2ab 324 /* Don't rdev_dec_pending in this branch - keep it for the retry */
a9701a30 325 } else {
1da177e4 326 /*
a9701a30 327 * this branch is our 'one mirror IO has finished' event handler:
1da177e4 328 */
a9701a30 329 r1_bio->bios[mirror] = NULL;
04b857f7 330 to_put = bio;
a9701a30
N
331 if (!uptodate) {
332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 /* an I/O failed, we can't clear the bitmap */
334 set_bit(R1BIO_Degraded, &r1_bio->state);
335 } else
336 /*
337 * Set R1BIO_Uptodate in our master bio, so that
338 * we will return a good error code for to the higher
339 * levels even if IO on some other mirrored buffer fails.
340 *
341 * The 'master' represents the composite IO operation to
342 * user-side. So if something waits for IO, then it will
343 * wait for the 'master' bio.
344 */
345 set_bit(R1BIO_Uptodate, &r1_bio->state);
346
347 update_head_pos(mirror, r1_bio);
348
349 if (behind) {
350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 atomic_dec(&r1_bio->behind_remaining);
352
353 /* In behind mode, we ACK the master bio once the I/O has safely
354 * reached all non-writemostly disks. Setting the Returned bit
355 * ensures that this gets done only once -- we don't ever want to
356 * return -EIO here, instead we'll wait */
357
358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 /* Maybe we can return now */
361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 struct bio *mbio = r1_bio->master_bio;
363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 (unsigned long long) mbio->bi_sector,
365 (unsigned long long) mbio->bi_sector +
366 (mbio->bi_size >> 9) - 1);
6712ecf8 367 bio_endio(mbio, 0);
a9701a30 368 }
4b6d287f
N
369 }
370 }
5e7dd2ab 371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
4b6d287f 372 }
1da177e4
LT
373 /*
374 *
375 * Let's see if all mirrored write operations have finished
376 * already.
377 */
378 if (atomic_dec_and_test(&r1_bio->remaining)) {
c70810b3 379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
a9701a30 380 reschedule_retry(r1_bio);
c70810b3
N
381 else {
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 /* free extra copy of the data pages */
385 int i = bio->bi_vcnt;
386 while (i--)
387 safe_put_page(bio->bi_io_vec[i].bv_page);
388 }
389 /* clear the bitmap if all writes complete successfully */
390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 r1_bio->sectors,
392 !test_bit(R1BIO_Degraded, &r1_bio->state),
393 behind);
394 md_write_end(r1_bio->mddev);
395 raid_end_bio_io(r1_bio);
4b6d287f 396 }
1da177e4 397 }
c70810b3 398
04b857f7
N
399 if (to_put)
400 bio_put(to_put);
1da177e4
LT
401}
402
403
404/*
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
412 *
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
415 *
416 * The rdev for the device selected will have nr_pending incremented.
417 */
418static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419{
420 const unsigned long this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
8ddf9efe 422 int wonly_disk = -1;
1da177e4
LT
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
8ddf9efe 425 mdk_rdev_t *rdev;
1da177e4
LT
426
427 rcu_read_lock();
428 /*
8ddf9efe 429 * Check if we can balance. We can balance on the whole
1da177e4
LT
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
432 */
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operation device, for consistancy */
437 new_disk = 0;
438
d6065f7b 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 440 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 441 !rdev || !test_bit(In_sync, &rdev->flags)
8ddf9efe 442 || test_bit(WriteMostly, &rdev->flags);
d6065f7b 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
8ddf9efe 444
cf30a473
N
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
447 wonly_disk = new_disk;
448
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
1da177e4
LT
451 break;
452 }
453 }
454 goto rb_out;
455 }
456
457
458 /* make sure the disk is operational */
d6065f7b 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 460 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 461 !rdev || !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 462 test_bit(WriteMostly, &rdev->flags);
d6065f7b 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
8ddf9efe 464
cf30a473
N
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
467 wonly_disk = new_disk;
468
1da177e4
LT
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
8ddf9efe
N
473 new_disk = wonly_disk;
474 break;
1da177e4
LT
475 }
476 }
8ddf9efe
N
477
478 if (new_disk < 0)
479 goto rb_out;
480
1da177e4
LT
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
483
484 /*
485 * Don't change to another disk for sequential reads:
486 */
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
491
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493
494 /* Find the disk whose head is closest */
495
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
500
d6065f7b 501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
8ddf9efe 502
cf30a473 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
b2d444d7 504 !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 505 test_bit(WriteMostly, &rdev->flags))
1da177e4
LT
506 continue;
507
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
1da177e4
LT
510 break;
511 }
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
1da177e4
LT
516 }
517 } while (disk != conf->last_used);
518
8ddf9efe 519 rb_out:
1da177e4
LT
520
521
522 if (new_disk >= 0) {
d6065f7b 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
8ddf9efe
N
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
b2d444d7 527 if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
530 */
03c902e1 531 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
532 goto retry;
533 }
8ddf9efe
N
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
1da177e4
LT
536 }
537 rcu_read_unlock();
538
539 return new_disk;
540}
541
542static void unplug_slaves(mddev_t *mddev)
543{
070ec55d 544 conf_t *conf = mddev->private;
1da177e4
LT
545 int i;
546
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
552
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
555
2ad8b1ef 556 blk_unplug(r_queue);
1da177e4
LT
557
558 rdev_dec_pending(rdev, mddev);
559 rcu_read_lock();
560 }
561 }
562 rcu_read_unlock();
563}
564
165125e1 565static void raid1_unplug(struct request_queue *q)
1da177e4 566{
191ea9b2
N
567 mddev_t *mddev = q->queuedata;
568
569 unplug_slaves(mddev);
570 md_wakeup_thread(mddev->thread);
1da177e4
LT
571}
572
0d129228
N
573static int raid1_congested(void *data, int bits)
574{
575 mddev_t *mddev = data;
070ec55d 576 conf_t *conf = mddev->private;
0d129228
N
577 int i, ret = 0;
578
3fa841d7
N
579 if (mddev_congested(mddev, bits))
580 return 1;
581
0d129228
N
582 rcu_read_lock();
583 for (i = 0; i < mddev->raid_disks; i++) {
584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 586 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
587
588 /* Note the '|| 1' - when read_balance prefers
589 * non-congested targets, it can be removed
590 */
91a9e99d 591 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
592 ret |= bdi_congested(&q->backing_dev_info, bits);
593 else
594 ret &= bdi_congested(&q->backing_dev_info, bits);
595 }
596 }
597 rcu_read_unlock();
598 return ret;
599}
600
601
a35e63ef
N
602static int flush_pending_writes(conf_t *conf)
603{
604 /* Any writes that have been queued but are awaiting
605 * bitmap updates get flushed here.
606 * We return 1 if any requests were actually submitted.
607 */
608 int rv = 0;
609
610 spin_lock_irq(&conf->device_lock);
611
612 if (conf->pending_bio_list.head) {
613 struct bio *bio;
614 bio = bio_list_get(&conf->pending_bio_list);
615 blk_remove_plug(conf->mddev->queue);
616 spin_unlock_irq(&conf->device_lock);
617 /* flush any pending bitmap writes to
618 * disk before proceeding w/ I/O */
619 bitmap_unplug(conf->mddev->bitmap);
620
621 while (bio) { /* submit pending writes */
622 struct bio *next = bio->bi_next;
623 bio->bi_next = NULL;
624 generic_make_request(bio);
625 bio = next;
626 }
627 rv = 1;
628 } else
629 spin_unlock_irq(&conf->device_lock);
630 return rv;
631}
632
17999be4
N
633/* Barriers....
634 * Sometimes we need to suspend IO while we do something else,
635 * either some resync/recovery, or reconfigure the array.
636 * To do this we raise a 'barrier'.
637 * The 'barrier' is a counter that can be raised multiple times
638 * to count how many activities are happening which preclude
639 * normal IO.
640 * We can only raise the barrier if there is no pending IO.
641 * i.e. if nr_pending == 0.
642 * We choose only to raise the barrier if no-one is waiting for the
643 * barrier to go down. This means that as soon as an IO request
644 * is ready, no other operations which require a barrier will start
645 * until the IO request has had a chance.
646 *
647 * So: regular IO calls 'wait_barrier'. When that returns there
648 * is no backgroup IO happening, It must arrange to call
649 * allow_barrier when it has finished its IO.
650 * backgroup IO calls must call raise_barrier. Once that returns
651 * there is no normal IO happeing. It must arrange to call
652 * lower_barrier when the particular background IO completes.
1da177e4
LT
653 */
654#define RESYNC_DEPTH 32
655
17999be4 656static void raise_barrier(conf_t *conf)
1da177e4
LT
657{
658 spin_lock_irq(&conf->resync_lock);
17999be4
N
659
660 /* Wait until no block IO is waiting */
661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662 conf->resync_lock,
663 raid1_unplug(conf->mddev->queue));
664
665 /* block any new IO from starting */
666 conf->barrier++;
667
668 /* No wait for all pending IO to complete */
669 wait_event_lock_irq(conf->wait_barrier,
670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671 conf->resync_lock,
672 raid1_unplug(conf->mddev->queue));
673
674 spin_unlock_irq(&conf->resync_lock);
675}
676
677static void lower_barrier(conf_t *conf)
678{
679 unsigned long flags;
709ae487 680 BUG_ON(conf->barrier <= 0);
17999be4
N
681 spin_lock_irqsave(&conf->resync_lock, flags);
682 conf->barrier--;
683 spin_unlock_irqrestore(&conf->resync_lock, flags);
684 wake_up(&conf->wait_barrier);
685}
686
687static void wait_barrier(conf_t *conf)
688{
689 spin_lock_irq(&conf->resync_lock);
690 if (conf->barrier) {
691 conf->nr_waiting++;
692 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693 conf->resync_lock,
694 raid1_unplug(conf->mddev->queue));
695 conf->nr_waiting--;
1da177e4 696 }
17999be4 697 conf->nr_pending++;
1da177e4
LT
698 spin_unlock_irq(&conf->resync_lock);
699}
700
17999be4
N
701static void allow_barrier(conf_t *conf)
702{
703 unsigned long flags;
704 spin_lock_irqsave(&conf->resync_lock, flags);
705 conf->nr_pending--;
706 spin_unlock_irqrestore(&conf->resync_lock, flags);
707 wake_up(&conf->wait_barrier);
708}
709
ddaf22ab
N
710static void freeze_array(conf_t *conf)
711{
712 /* stop syncio and normal IO and wait for everything to
713 * go quite.
714 * We increment barrier and nr_waiting, and then
1c830532
N
715 * wait until nr_pending match nr_queued+1
716 * This is called in the context of one normal IO request
717 * that has failed. Thus any sync request that might be pending
718 * will be blocked by nr_pending, and we need to wait for
719 * pending IO requests to complete or be queued for re-try.
720 * Thus the number queued (nr_queued) plus this request (1)
721 * must match the number of pending IOs (nr_pending) before
722 * we continue.
ddaf22ab
N
723 */
724 spin_lock_irq(&conf->resync_lock);
725 conf->barrier++;
726 conf->nr_waiting++;
727 wait_event_lock_irq(conf->wait_barrier,
1c830532 728 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 729 conf->resync_lock,
a35e63ef
N
730 ({ flush_pending_writes(conf);
731 raid1_unplug(conf->mddev->queue); }));
ddaf22ab
N
732 spin_unlock_irq(&conf->resync_lock);
733}
734static void unfreeze_array(conf_t *conf)
735{
736 /* reverse the effect of the freeze */
737 spin_lock_irq(&conf->resync_lock);
738 conf->barrier--;
739 conf->nr_waiting--;
740 wake_up(&conf->wait_barrier);
741 spin_unlock_irq(&conf->resync_lock);
742}
743
17999be4 744
4b6d287f
N
745/* duplicate the data pages for behind I/O */
746static struct page **alloc_behind_pages(struct bio *bio)
747{
748 int i;
749 struct bio_vec *bvec;
9ffae0cf 750 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
4b6d287f
N
751 GFP_NOIO);
752 if (unlikely(!pages))
753 goto do_sync_io;
754
4b6d287f
N
755 bio_for_each_segment(bvec, bio, i) {
756 pages[i] = alloc_page(GFP_NOIO);
757 if (unlikely(!pages[i]))
758 goto do_sync_io;
759 memcpy(kmap(pages[i]) + bvec->bv_offset,
760 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761 kunmap(pages[i]);
762 kunmap(bvec->bv_page);
763 }
764
765 return pages;
766
767do_sync_io:
768 if (pages)
769 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
2d1f3b5d 770 put_page(pages[i]);
4b6d287f
N
771 kfree(pages);
772 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773 return NULL;
774}
775
165125e1 776static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
777{
778 mddev_t *mddev = q->queuedata;
070ec55d 779 conf_t *conf = mddev->private;
1da177e4
LT
780 mirror_info_t *mirror;
781 r1bio_t *r1_bio;
782 struct bio *read_bio;
191ea9b2 783 int i, targets = 0, disks;
84255d10 784 struct bitmap *bitmap;
191ea9b2
N
785 unsigned long flags;
786 struct bio_list bl;
4b6d287f 787 struct page **behind_pages = NULL;
a362357b 788 const int rw = bio_data_dir(bio);
1f98a13f
JA
789 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790 int cpu;
791 bool do_barriers;
6bfe0b49 792 mdk_rdev_t *blocked_rdev;
191ea9b2 793
1da177e4
LT
794 /*
795 * Register the new request and wait if the reconstruction
796 * thread has put up a bar for new requests.
797 * Continue immediately if no resync is active currently.
62de608d
N
798 * We test barriers_work *after* md_write_start as md_write_start
799 * may cause the first superblock write, and that will check out
800 * if barriers work.
1da177e4 801 */
62de608d 802
3d310eb7
N
803 md_write_start(mddev, bio); /* wait on superblock update early */
804
6eef4b21
N
805 if (bio_data_dir(bio) == WRITE &&
806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807 bio->bi_sector < mddev->suspend_hi) {
808 /* As the suspend_* range is controlled by
809 * userspace, we want an interruptible
810 * wait.
811 */
812 DEFINE_WAIT(w);
813 for (;;) {
814 flush_signals(current);
815 prepare_to_wait(&conf->wait_barrier,
816 &w, TASK_INTERRUPTIBLE);
817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818 bio->bi_sector >= mddev->suspend_hi)
819 break;
820 schedule();
821 }
822 finish_wait(&conf->wait_barrier, &w);
823 }
1f98a13f
JA
824 if (unlikely(!mddev->barriers_work &&
825 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
62de608d
N
826 if (rw == WRITE)
827 md_write_end(mddev);
6712ecf8 828 bio_endio(bio, -EOPNOTSUPP);
62de608d
N
829 return 0;
830 }
831
17999be4 832 wait_barrier(conf);
1da177e4 833
84255d10
N
834 bitmap = mddev->bitmap;
835
074a7aca
TH
836 cpu = part_stat_lock();
837 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839 bio_sectors(bio));
840 part_stat_unlock();
1da177e4
LT
841
842 /*
843 * make_request() can abort the operation when READA is being
844 * used and no empty request is available.
845 *
846 */
847 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
848
849 r1_bio->master_bio = bio;
850 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 851 r1_bio->state = 0;
1da177e4
LT
852 r1_bio->mddev = mddev;
853 r1_bio->sector = bio->bi_sector;
854
a362357b 855 if (rw == READ) {
1da177e4
LT
856 /*
857 * read balancing logic:
858 */
859 int rdisk = read_balance(conf, r1_bio);
860
861 if (rdisk < 0) {
862 /* couldn't find anywhere to read from */
863 raid_end_bio_io(r1_bio);
864 return 0;
865 }
866 mirror = conf->mirrors + rdisk;
867
868 r1_bio->read_disk = rdisk;
869
870 read_bio = bio_clone(bio, GFP_NOIO);
871
872 r1_bio->bios[rdisk] = read_bio;
873
874 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875 read_bio->bi_bdev = mirror->rdev->bdev;
876 read_bio->bi_end_io = raid1_end_read_request;
1ef04fef 877 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
878 read_bio->bi_private = r1_bio;
879
880 generic_make_request(read_bio);
881 return 0;
882 }
883
884 /*
885 * WRITE:
886 */
887 /* first select target devices under spinlock and
888 * inc refcount on their rdev. Record them by setting
889 * bios[x] to bio
890 */
891 disks = conf->raid_disks;
191ea9b2
N
892#if 0
893 { static int first=1;
894 if (first) printk("First Write sector %llu disks %d\n",
895 (unsigned long long)r1_bio->sector, disks);
896 first = 0;
897 }
898#endif
6bfe0b49
DW
899 retry_write:
900 blocked_rdev = NULL;
1da177e4
LT
901 rcu_read_lock();
902 for (i = 0; i < disks; i++) {
6bfe0b49
DW
903 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905 atomic_inc(&rdev->nr_pending);
906 blocked_rdev = rdev;
907 break;
908 }
909 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4 910 atomic_inc(&rdev->nr_pending);
b2d444d7 911 if (test_bit(Faulty, &rdev->flags)) {
03c902e1 912 rdev_dec_pending(rdev, mddev);
1da177e4
LT
913 r1_bio->bios[i] = NULL;
914 } else
915 r1_bio->bios[i] = bio;
191ea9b2 916 targets++;
1da177e4
LT
917 } else
918 r1_bio->bios[i] = NULL;
919 }
920 rcu_read_unlock();
921
6bfe0b49
DW
922 if (unlikely(blocked_rdev)) {
923 /* Wait for this device to become unblocked */
924 int j;
925
926 for (j = 0; j < i; j++)
927 if (r1_bio->bios[j])
928 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
929
930 allow_barrier(conf);
931 md_wait_for_blocked_rdev(blocked_rdev, mddev);
932 wait_barrier(conf);
933 goto retry_write;
934 }
935
4b6d287f
N
936 BUG_ON(targets == 0); /* we never fail the last device */
937
191ea9b2
N
938 if (targets < conf->raid_disks) {
939 /* array is degraded, we will not clear the bitmap
940 * on I/O completion (see raid1_end_write_request) */
941 set_bit(R1BIO_Degraded, &r1_bio->state);
942 }
943
4b6d287f
N
944 /* do behind I/O ? */
945 if (bitmap &&
946 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
947 (behind_pages = alloc_behind_pages(bio)) != NULL)
948 set_bit(R1BIO_BehindIO, &r1_bio->state);
949
191ea9b2 950 atomic_set(&r1_bio->remaining, 0);
4b6d287f 951 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 952
1f98a13f 953 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
a9701a30
N
954 if (do_barriers)
955 set_bit(R1BIO_Barrier, &r1_bio->state);
956
191ea9b2 957 bio_list_init(&bl);
1da177e4
LT
958 for (i = 0; i < disks; i++) {
959 struct bio *mbio;
960 if (!r1_bio->bios[i])
961 continue;
962
963 mbio = bio_clone(bio, GFP_NOIO);
964 r1_bio->bios[i] = mbio;
965
966 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
967 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
968 mbio->bi_end_io = raid1_end_write_request;
1ef04fef
DM
969 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
970 (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
971 mbio->bi_private = r1_bio;
972
4b6d287f
N
973 if (behind_pages) {
974 struct bio_vec *bvec;
975 int j;
976
977 /* Yes, I really want the '__' version so that
978 * we clear any unused pointer in the io_vec, rather
979 * than leave them unchanged. This is important
980 * because when we come to free the pages, we won't
981 * know the originial bi_idx, so we just free
982 * them all
983 */
984 __bio_for_each_segment(bvec, mbio, j, 0)
985 bvec->bv_page = behind_pages[j];
986 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
987 atomic_inc(&r1_bio->behind_remaining);
988 }
989
1da177e4 990 atomic_inc(&r1_bio->remaining);
1da177e4 991
191ea9b2 992 bio_list_add(&bl, mbio);
1da177e4 993 }
4b6d287f 994 kfree(behind_pages); /* the behind pages are attached to the bios now */
1da177e4 995
4b6d287f
N
996 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
997 test_bit(R1BIO_BehindIO, &r1_bio->state));
191ea9b2
N
998 spin_lock_irqsave(&conf->device_lock, flags);
999 bio_list_merge(&conf->pending_bio_list, &bl);
1000 bio_list_init(&bl);
1001
1002 blk_plug_device(mddev->queue);
1003 spin_unlock_irqrestore(&conf->device_lock, flags);
1004
a35e63ef
N
1005 /* In case raid1d snuck into freeze_array */
1006 wake_up(&conf->wait_barrier);
1007
e3881a68
LE
1008 if (do_sync)
1009 md_wakeup_thread(mddev->thread);
191ea9b2
N
1010#if 0
1011 while ((bio = bio_list_pop(&bl)) != NULL)
1012 generic_make_request(bio);
1013#endif
1014
1da177e4
LT
1015 return 0;
1016}
1017
1018static void status(struct seq_file *seq, mddev_t *mddev)
1019{
070ec55d 1020 conf_t *conf = mddev->private;
1da177e4
LT
1021 int i;
1022
1023 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1024 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1025 rcu_read_lock();
1026 for (i = 0; i < conf->raid_disks; i++) {
1027 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1028 seq_printf(seq, "%s",
ddac7c7e
N
1029 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1030 }
1031 rcu_read_unlock();
1da177e4
LT
1032 seq_printf(seq, "]");
1033}
1034
1035
1036static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1037{
1038 char b[BDEVNAME_SIZE];
070ec55d 1039 conf_t *conf = mddev->private;
1da177e4
LT
1040
1041 /*
1042 * If it is not operational, then we have already marked it as dead
1043 * else if it is the last working disks, ignore the error, let the
1044 * next level up know.
1045 * else mark the drive as failed
1046 */
b2d444d7 1047 if (test_bit(In_sync, &rdev->flags)
4044ba58 1048 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1049 /*
1050 * Don't fail the drive, act as though we were just a
4044ba58
N
1051 * normal single drive.
1052 * However don't try a recovery from this drive as
1053 * it is very likely to fail.
1da177e4 1054 */
4044ba58 1055 mddev->recovery_disabled = 1;
1da177e4 1056 return;
4044ba58 1057 }
c04be0aa
N
1058 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1061 mddev->degraded++;
dd00a99e 1062 set_bit(Faulty, &rdev->flags);
c04be0aa 1063 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1064 /*
1065 * if recovery is running, make sure it aborts.
1066 */
dfc70645 1067 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1068 } else
1069 set_bit(Faulty, &rdev->flags);
850b2b42 1070 set_bit(MD_CHANGE_DEVS, &mddev->flags);
d7a420c9
NA
1071 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1072 "raid1: Operation continuing on %d devices.\n",
11ce99e6 1073 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
1074}
1075
1076static void print_conf(conf_t *conf)
1077{
1078 int i;
1da177e4
LT
1079
1080 printk("RAID1 conf printout:\n");
1081 if (!conf) {
1082 printk("(!conf)\n");
1083 return;
1084 }
11ce99e6 1085 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1086 conf->raid_disks);
1087
ddac7c7e 1088 rcu_read_lock();
1da177e4
LT
1089 for (i = 0; i < conf->raid_disks; i++) {
1090 char b[BDEVNAME_SIZE];
ddac7c7e
N
1091 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1092 if (rdev)
1da177e4 1093 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1094 i, !test_bit(In_sync, &rdev->flags),
1095 !test_bit(Faulty, &rdev->flags),
1096 bdevname(rdev->bdev,b));
1da177e4 1097 }
ddac7c7e 1098 rcu_read_unlock();
1da177e4
LT
1099}
1100
1101static void close_sync(conf_t *conf)
1102{
17999be4
N
1103 wait_barrier(conf);
1104 allow_barrier(conf);
1da177e4
LT
1105
1106 mempool_destroy(conf->r1buf_pool);
1107 conf->r1buf_pool = NULL;
1108}
1109
1110static int raid1_spare_active(mddev_t *mddev)
1111{
1112 int i;
1113 conf_t *conf = mddev->private;
1da177e4
LT
1114
1115 /*
1116 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1117 * and mark them readable.
1118 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1119 */
1120 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1121 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1122 if (rdev
1123 && !test_bit(Faulty, &rdev->flags)
c04be0aa
N
1124 && !test_and_set_bit(In_sync, &rdev->flags)) {
1125 unsigned long flags;
1126 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1127 mddev->degraded--;
c04be0aa 1128 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1129 }
1130 }
1131
1132 print_conf(conf);
1133 return 0;
1134}
1135
1136
1137static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1138{
1139 conf_t *conf = mddev->private;
199050ea 1140 int err = -EEXIST;
41158c7e 1141 int mirror = 0;
1da177e4 1142 mirror_info_t *p;
6c2fce2e
NB
1143 int first = 0;
1144 int last = mddev->raid_disks - 1;
1da177e4 1145
6c2fce2e
NB
1146 if (rdev->raid_disk >= 0)
1147 first = last = rdev->raid_disk;
1148
1149 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1150 if ( !(p=conf->mirrors+mirror)->rdev) {
1151
8f6c2e4b
MP
1152 disk_stack_limits(mddev->gendisk, rdev->bdev,
1153 rdev->data_offset << 9);
1da177e4
LT
1154 /* as we don't honour merge_bvec_fn, we must never risk
1155 * violating it, so limit ->max_sector to one PAGE, as
1156 * a one page request is never in violation.
1157 */
1158 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
ae03bf63 1159 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1da177e4
LT
1160 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1161
1162 p->head_position = 0;
1163 rdev->raid_disk = mirror;
199050ea 1164 err = 0;
6aea114a
N
1165 /* As all devices are equivalent, we don't need a full recovery
1166 * if this was recently any drive of the array
1167 */
1168 if (rdev->saved_raid_disk < 0)
41158c7e 1169 conf->fullsync = 1;
d6065f7b 1170 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1171 break;
1172 }
ac5e7113 1173 md_integrity_add_rdev(rdev, mddev);
1da177e4 1174 print_conf(conf);
199050ea 1175 return err;
1da177e4
LT
1176}
1177
1178static int raid1_remove_disk(mddev_t *mddev, int number)
1179{
1180 conf_t *conf = mddev->private;
1181 int err = 0;
1182 mdk_rdev_t *rdev;
1183 mirror_info_t *p = conf->mirrors+ number;
1184
1185 print_conf(conf);
1186 rdev = p->rdev;
1187 if (rdev) {
b2d444d7 1188 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1189 atomic_read(&rdev->nr_pending)) {
1190 err = -EBUSY;
1191 goto abort;
1192 }
dfc70645
N
1193 /* Only remove non-faulty devices is recovery
1194 * is not possible.
1195 */
1196 if (!test_bit(Faulty, &rdev->flags) &&
1197 mddev->degraded < conf->raid_disks) {
1198 err = -EBUSY;
1199 goto abort;
1200 }
1da177e4 1201 p->rdev = NULL;
fbd568a3 1202 synchronize_rcu();
1da177e4
LT
1203 if (atomic_read(&rdev->nr_pending)) {
1204 /* lost the race, try later */
1205 err = -EBUSY;
1206 p->rdev = rdev;
ac5e7113 1207 goto abort;
1da177e4 1208 }
ac5e7113 1209 md_integrity_register(mddev);
1da177e4
LT
1210 }
1211abort:
1212
1213 print_conf(conf);
1214 return err;
1215}
1216
1217
6712ecf8 1218static void end_sync_read(struct bio *bio, int error)
1da177e4 1219{
1da177e4 1220 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
d11c171e 1221 int i;
1da177e4 1222
d11c171e
N
1223 for (i=r1_bio->mddev->raid_disks; i--; )
1224 if (r1_bio->bios[i] == bio)
1225 break;
1226 BUG_ON(i < 0);
1227 update_head_pos(i, r1_bio);
1da177e4
LT
1228 /*
1229 * we have read a block, now it needs to be re-written,
1230 * or re-read if the read failed.
1231 * We don't do much here, just schedule handling by raid1d
1232 */
69382e85 1233 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1234 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1235
1236 if (atomic_dec_and_test(&r1_bio->remaining))
1237 reschedule_retry(r1_bio);
1da177e4
LT
1238}
1239
6712ecf8 1240static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1241{
1242 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1243 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1244 mddev_t *mddev = r1_bio->mddev;
070ec55d 1245 conf_t *conf = mddev->private;
1da177e4
LT
1246 int i;
1247 int mirror=0;
1248
1da177e4
LT
1249 for (i = 0; i < conf->raid_disks; i++)
1250 if (r1_bio->bios[i] == bio) {
1251 mirror = i;
1252 break;
1253 }
6b1117d5
N
1254 if (!uptodate) {
1255 int sync_blocks = 0;
1256 sector_t s = r1_bio->sector;
1257 long sectors_to_go = r1_bio->sectors;
1258 /* make sure these bits doesn't get cleared. */
1259 do {
5e3db645 1260 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1261 &sync_blocks, 1);
1262 s += sync_blocks;
1263 sectors_to_go -= sync_blocks;
1264 } while (sectors_to_go > 0);
1da177e4 1265 md_error(mddev, conf->mirrors[mirror].rdev);
6b1117d5 1266 }
e3b9703e 1267
1da177e4
LT
1268 update_head_pos(mirror, r1_bio);
1269
1270 if (atomic_dec_and_test(&r1_bio->remaining)) {
73d5c38a 1271 sector_t s = r1_bio->sectors;
1da177e4 1272 put_buf(r1_bio);
73d5c38a 1273 md_done_sync(mddev, s, uptodate);
1da177e4 1274 }
1da177e4
LT
1275}
1276
1277static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1278{
070ec55d 1279 conf_t *conf = mddev->private;
1da177e4
LT
1280 int i;
1281 int disks = conf->raid_disks;
1282 struct bio *bio, *wbio;
1283
1284 bio = r1_bio->bios[r1_bio->read_disk];
1285
69382e85 1286
d11c171e
N
1287 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1288 /* We have read all readable devices. If we haven't
1289 * got the block, then there is no hope left.
1290 * If we have, then we want to do a comparison
1291 * and skip the write if everything is the same.
1292 * If any blocks failed to read, then we need to
1293 * attempt an over-write
1294 */
1295 int primary;
1296 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1297 for (i=0; i<mddev->raid_disks; i++)
1298 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1299 md_error(mddev, conf->mirrors[i].rdev);
1300
1301 md_done_sync(mddev, r1_bio->sectors, 1);
1302 put_buf(r1_bio);
1303 return;
1304 }
1305 for (primary=0; primary<mddev->raid_disks; primary++)
1306 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1307 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1308 r1_bio->bios[primary]->bi_end_io = NULL;
03c902e1 1309 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
d11c171e
N
1310 break;
1311 }
1312 r1_bio->read_disk = primary;
1313 for (i=0; i<mddev->raid_disks; i++)
ed456662 1314 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
d11c171e
N
1315 int j;
1316 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1317 struct bio *pbio = r1_bio->bios[primary];
1318 struct bio *sbio = r1_bio->bios[i];
ed456662
MA
1319
1320 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1321 for (j = vcnt; j-- ; ) {
1322 struct page *p, *s;
1323 p = pbio->bi_io_vec[j].bv_page;
1324 s = sbio->bi_io_vec[j].bv_page;
1325 if (memcmp(page_address(p),
1326 page_address(s),
1327 PAGE_SIZE))
1328 break;
1329 }
1330 } else
1331 j = 0;
d11c171e
N
1332 if (j >= 0)
1333 mddev->resync_mismatches += r1_bio->sectors;
cf7a4416
N
1334 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1335 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
d11c171e 1336 sbio->bi_end_io = NULL;
03c902e1
N
1337 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1338 } else {
d11c171e 1339 /* fixup the bio for reuse */
698b18c1 1340 int size;
d11c171e
N
1341 sbio->bi_vcnt = vcnt;
1342 sbio->bi_size = r1_bio->sectors << 9;
1343 sbio->bi_idx = 0;
1344 sbio->bi_phys_segments = 0;
d11c171e
N
1345 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1346 sbio->bi_flags |= 1 << BIO_UPTODATE;
1347 sbio->bi_next = NULL;
1348 sbio->bi_sector = r1_bio->sector +
1349 conf->mirrors[i].rdev->data_offset;
1350 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
698b18c1
N
1351 size = sbio->bi_size;
1352 for (j = 0; j < vcnt ; j++) {
1353 struct bio_vec *bi;
1354 bi = &sbio->bi_io_vec[j];
1355 bi->bv_offset = 0;
1356 if (size > PAGE_SIZE)
1357 bi->bv_len = PAGE_SIZE;
1358 else
1359 bi->bv_len = size;
1360 size -= PAGE_SIZE;
1361 memcpy(page_address(bi->bv_page),
3eda22d1
N
1362 page_address(pbio->bi_io_vec[j].bv_page),
1363 PAGE_SIZE);
698b18c1 1364 }
3eda22d1 1365
d11c171e
N
1366 }
1367 }
1368 }
1da177e4 1369 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
69382e85
N
1370 /* ouch - failed to read all of that.
1371 * Try some synchronous reads of other devices to get
1372 * good data, much like with normal read errors. Only
ddac7c7e 1373 * read into the pages we already have so we don't
69382e85
N
1374 * need to re-issue the read request.
1375 * We don't need to freeze the array, because being in an
1376 * active sync request, there is no normal IO, and
1377 * no overlapping syncs.
1da177e4 1378 */
69382e85
N
1379 sector_t sect = r1_bio->sector;
1380 int sectors = r1_bio->sectors;
1381 int idx = 0;
1382
1383 while(sectors) {
1384 int s = sectors;
1385 int d = r1_bio->read_disk;
1386 int success = 0;
1387 mdk_rdev_t *rdev;
1388
1389 if (s > (PAGE_SIZE>>9))
1390 s = PAGE_SIZE >> 9;
1391 do {
1392 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
ddac7c7e
N
1393 /* No rcu protection needed here devices
1394 * can only be removed when no resync is
1395 * active, and resync is currently active
1396 */
69382e85
N
1397 rdev = conf->mirrors[d].rdev;
1398 if (sync_page_io(rdev->bdev,
1399 sect + rdev->data_offset,
1400 s<<9,
1401 bio->bi_io_vec[idx].bv_page,
1402 READ)) {
1403 success = 1;
1404 break;
1405 }
1406 }
1407 d++;
1408 if (d == conf->raid_disks)
1409 d = 0;
1410 } while (!success && d != r1_bio->read_disk);
1411
1412 if (success) {
097426f6 1413 int start = d;
69382e85
N
1414 /* write it back and re-read */
1415 set_bit(R1BIO_Uptodate, &r1_bio->state);
1416 while (d != r1_bio->read_disk) {
1417 if (d == 0)
1418 d = conf->raid_disks;
1419 d--;
1420 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1421 continue;
1422 rdev = conf->mirrors[d].rdev;
4dbcdc75 1423 atomic_add(s, &rdev->corrected_errors);
69382e85
N
1424 if (sync_page_io(rdev->bdev,
1425 sect + rdev->data_offset,
1426 s<<9,
1427 bio->bi_io_vec[idx].bv_page,
097426f6
N
1428 WRITE) == 0)
1429 md_error(mddev, rdev);
1430 }
1431 d = start;
1432 while (d != r1_bio->read_disk) {
1433 if (d == 0)
1434 d = conf->raid_disks;
1435 d--;
1436 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1437 continue;
1438 rdev = conf->mirrors[d].rdev;
1439 if (sync_page_io(rdev->bdev,
69382e85
N
1440 sect + rdev->data_offset,
1441 s<<9,
1442 bio->bi_io_vec[idx].bv_page,
097426f6 1443 READ) == 0)
69382e85 1444 md_error(mddev, rdev);
69382e85
N
1445 }
1446 } else {
1447 char b[BDEVNAME_SIZE];
1448 /* Cannot read from anywhere, array is toast */
1449 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1450 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1451 " for block %llu\n",
1452 bdevname(bio->bi_bdev,b),
1453 (unsigned long long)r1_bio->sector);
1454 md_done_sync(mddev, r1_bio->sectors, 0);
1455 put_buf(r1_bio);
1456 return;
1457 }
1458 sectors -= s;
1459 sect += s;
1460 idx ++;
1461 }
1da177e4 1462 }
d11c171e
N
1463
1464 /*
1465 * schedule writes
1466 */
1da177e4
LT
1467 atomic_set(&r1_bio->remaining, 1);
1468 for (i = 0; i < disks ; i++) {
1469 wbio = r1_bio->bios[i];
3e198f78
N
1470 if (wbio->bi_end_io == NULL ||
1471 (wbio->bi_end_io == end_sync_read &&
1472 (i == r1_bio->read_disk ||
1473 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1474 continue;
1475
3e198f78
N
1476 wbio->bi_rw = WRITE;
1477 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1478 atomic_inc(&r1_bio->remaining);
1479 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1480
1da177e4
LT
1481 generic_make_request(wbio);
1482 }
1483
1484 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1485 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1486 md_done_sync(mddev, r1_bio->sectors, 1);
1487 put_buf(r1_bio);
1488 }
1489}
1490
1491/*
1492 * This is a kernel thread which:
1493 *
1494 * 1. Retries failed read operations on working mirrors.
1495 * 2. Updates the raid superblock when problems encounter.
1496 * 3. Performs writes following reads for array syncronising.
1497 */
1498
867868fb
N
1499static void fix_read_error(conf_t *conf, int read_disk,
1500 sector_t sect, int sectors)
1501{
1502 mddev_t *mddev = conf->mddev;
1503 while(sectors) {
1504 int s = sectors;
1505 int d = read_disk;
1506 int success = 0;
1507 int start;
1508 mdk_rdev_t *rdev;
1509
1510 if (s > (PAGE_SIZE>>9))
1511 s = PAGE_SIZE >> 9;
1512
1513 do {
1514 /* Note: no rcu protection needed here
1515 * as this is synchronous in the raid1d thread
1516 * which is the thread that might remove
1517 * a device. If raid1d ever becomes multi-threaded....
1518 */
1519 rdev = conf->mirrors[d].rdev;
1520 if (rdev &&
1521 test_bit(In_sync, &rdev->flags) &&
1522 sync_page_io(rdev->bdev,
1523 sect + rdev->data_offset,
1524 s<<9,
1525 conf->tmppage, READ))
1526 success = 1;
1527 else {
1528 d++;
1529 if (d == conf->raid_disks)
1530 d = 0;
1531 }
1532 } while (!success && d != read_disk);
1533
1534 if (!success) {
1535 /* Cannot read from anywhere -- bye bye array */
1536 md_error(mddev, conf->mirrors[read_disk].rdev);
1537 break;
1538 }
1539 /* write it back and re-read */
1540 start = d;
1541 while (d != read_disk) {
1542 if (d==0)
1543 d = conf->raid_disks;
1544 d--;
1545 rdev = conf->mirrors[d].rdev;
1546 if (rdev &&
1547 test_bit(In_sync, &rdev->flags)) {
1548 if (sync_page_io(rdev->bdev,
1549 sect + rdev->data_offset,
1550 s<<9, conf->tmppage, WRITE)
1551 == 0)
1552 /* Well, this device is dead */
1553 md_error(mddev, rdev);
1554 }
1555 }
1556 d = start;
1557 while (d != read_disk) {
1558 char b[BDEVNAME_SIZE];
1559 if (d==0)
1560 d = conf->raid_disks;
1561 d--;
1562 rdev = conf->mirrors[d].rdev;
1563 if (rdev &&
1564 test_bit(In_sync, &rdev->flags)) {
1565 if (sync_page_io(rdev->bdev,
1566 sect + rdev->data_offset,
1567 s<<9, conf->tmppage, READ)
1568 == 0)
1569 /* Well, this device is dead */
1570 md_error(mddev, rdev);
1571 else {
1572 atomic_add(s, &rdev->corrected_errors);
1573 printk(KERN_INFO
1574 "raid1:%s: read error corrected "
1575 "(%d sectors at %llu on %s)\n",
1576 mdname(mddev), s,
969b755a
RD
1577 (unsigned long long)(sect +
1578 rdev->data_offset),
867868fb
N
1579 bdevname(rdev->bdev, b));
1580 }
1581 }
1582 }
1583 sectors -= s;
1584 sect += s;
1585 }
1586}
1587
1da177e4
LT
1588static void raid1d(mddev_t *mddev)
1589{
1590 r1bio_t *r1_bio;
1591 struct bio *bio;
1592 unsigned long flags;
070ec55d 1593 conf_t *conf = mddev->private;
1da177e4
LT
1594 struct list_head *head = &conf->retry_list;
1595 int unplug=0;
1596 mdk_rdev_t *rdev;
1597
1598 md_check_recovery(mddev);
1da177e4
LT
1599
1600 for (;;) {
1601 char b[BDEVNAME_SIZE];
191ea9b2 1602
a35e63ef 1603 unplug += flush_pending_writes(conf);
191ea9b2 1604
a35e63ef
N
1605 spin_lock_irqsave(&conf->device_lock, flags);
1606 if (list_empty(head)) {
1607 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1608 break;
a35e63ef 1609 }
1da177e4
LT
1610 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1611 list_del(head->prev);
ddaf22ab 1612 conf->nr_queued--;
1da177e4
LT
1613 spin_unlock_irqrestore(&conf->device_lock, flags);
1614
1615 mddev = r1_bio->mddev;
070ec55d 1616 conf = mddev->private;
1da177e4
LT
1617 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1618 sync_request_write(mddev, r1_bio);
1619 unplug = 1;
a9701a30
N
1620 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1621 /* some requests in the r1bio were BIO_RW_BARRIER
bea27718 1622 * requests which failed with -EOPNOTSUPP. Hohumm..
a9701a30
N
1623 * Better resubmit without the barrier.
1624 * We know which devices to resubmit for, because
1625 * all others have had their bios[] entry cleared.
5e7dd2ab 1626 * We already have a nr_pending reference on these rdevs.
a9701a30
N
1627 */
1628 int i;
1f98a13f 1629 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
a9701a30
N
1630 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1631 clear_bit(R1BIO_Barrier, &r1_bio->state);
2f889129
N
1632 for (i=0; i < conf->raid_disks; i++)
1633 if (r1_bio->bios[i])
1634 atomic_inc(&r1_bio->remaining);
a9701a30
N
1635 for (i=0; i < conf->raid_disks; i++)
1636 if (r1_bio->bios[i]) {
1637 struct bio_vec *bvec;
1638 int j;
1639
1640 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1641 /* copy pages from the failed bio, as
1642 * this might be a write-behind device */
1643 __bio_for_each_segment(bvec, bio, j, 0)
1644 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1645 bio_put(r1_bio->bios[i]);
1646 bio->bi_sector = r1_bio->sector +
1647 conf->mirrors[i].rdev->data_offset;
1648 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1649 bio->bi_end_io = raid1_end_write_request;
1ef04fef
DM
1650 bio->bi_rw = WRITE |
1651 (do_sync << BIO_RW_SYNCIO);
a9701a30
N
1652 bio->bi_private = r1_bio;
1653 r1_bio->bios[i] = bio;
1654 generic_make_request(bio);
1655 }
1da177e4
LT
1656 } else {
1657 int disk;
ddaf22ab
N
1658
1659 /* we got a read error. Maybe the drive is bad. Maybe just
1660 * the block and we can fix it.
1661 * We freeze all other IO, and try reading the block from
1662 * other devices. When we find one, we re-write
1663 * and check it that fixes the read error.
1664 * This is all done synchronously while the array is
1665 * frozen
1666 */
867868fb
N
1667 if (mddev->ro == 0) {
1668 freeze_array(conf);
1669 fix_read_error(conf, r1_bio->read_disk,
1670 r1_bio->sector,
1671 r1_bio->sectors);
1672 unfreeze_array(conf);
d0e26078
N
1673 } else
1674 md_error(mddev,
1675 conf->mirrors[r1_bio->read_disk].rdev);
ddaf22ab 1676
1da177e4 1677 bio = r1_bio->bios[r1_bio->read_disk];
d0e26078 1678 if ((disk=read_balance(conf, r1_bio)) == -1) {
1da177e4
LT
1679 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1680 " read error for block %llu\n",
1681 bdevname(bio->bi_bdev,b),
1682 (unsigned long long)r1_bio->sector);
1683 raid_end_bio_io(r1_bio);
1684 } else {
1f98a13f 1685 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
cf30a473
N
1686 r1_bio->bios[r1_bio->read_disk] =
1687 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1688 r1_bio->read_disk = disk;
1689 bio_put(bio);
1690 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1691 r1_bio->bios[r1_bio->read_disk] = bio;
1692 rdev = conf->mirrors[disk].rdev;
1693 if (printk_ratelimit())
1694 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1695 " another mirror\n",
1696 bdevname(rdev->bdev,b),
1697 (unsigned long long)r1_bio->sector);
1698 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1699 bio->bi_bdev = rdev->bdev;
1700 bio->bi_end_io = raid1_end_read_request;
1ef04fef 1701 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
1702 bio->bi_private = r1_bio;
1703 unplug = 1;
1704 generic_make_request(bio);
1705 }
1706 }
1d9d5241 1707 cond_resched();
1da177e4 1708 }
1da177e4
LT
1709 if (unplug)
1710 unplug_slaves(mddev);
1711}
1712
1713
1714static int init_resync(conf_t *conf)
1715{
1716 int buffs;
1717
1718 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 1719 BUG_ON(conf->r1buf_pool);
1da177e4
LT
1720 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1721 conf->poolinfo);
1722 if (!conf->r1buf_pool)
1723 return -ENOMEM;
1724 conf->next_resync = 0;
1725 return 0;
1726}
1727
1728/*
1729 * perform a "sync" on one "block"
1730 *
1731 * We need to make sure that no normal I/O request - particularly write
1732 * requests - conflict with active sync requests.
1733 *
1734 * This is achieved by tracking pending requests and a 'barrier' concept
1735 * that can be installed to exclude normal IO requests.
1736 */
1737
57afd89f 1738static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 1739{
070ec55d 1740 conf_t *conf = mddev->private;
1da177e4
LT
1741 r1bio_t *r1_bio;
1742 struct bio *bio;
1743 sector_t max_sector, nr_sectors;
3e198f78 1744 int disk = -1;
1da177e4 1745 int i;
3e198f78
N
1746 int wonly = -1;
1747 int write_targets = 0, read_targets = 0;
191ea9b2 1748 int sync_blocks;
e3b9703e 1749 int still_degraded = 0;
1da177e4
LT
1750
1751 if (!conf->r1buf_pool)
191ea9b2
N
1752 {
1753/*
1754 printk("sync start - bitmap %p\n", mddev->bitmap);
1755*/
1da177e4 1756 if (init_resync(conf))
57afd89f 1757 return 0;
191ea9b2 1758 }
1da177e4 1759
58c0fed4 1760 max_sector = mddev->dev_sectors;
1da177e4 1761 if (sector_nr >= max_sector) {
191ea9b2
N
1762 /* If we aborted, we need to abort the
1763 * sync on the 'current' bitmap chunk (there will
1764 * only be one in raid1 resync.
1765 * We can find the current addess in mddev->curr_resync
1766 */
6a806c51
N
1767 if (mddev->curr_resync < max_sector) /* aborted */
1768 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 1769 &sync_blocks, 1);
6a806c51 1770 else /* completed sync */
191ea9b2 1771 conf->fullsync = 0;
6a806c51
N
1772
1773 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
1774 close_sync(conf);
1775 return 0;
1776 }
1777
07d84d10
N
1778 if (mddev->bitmap == NULL &&
1779 mddev->recovery_cp == MaxSector &&
6394cca5 1780 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
1781 conf->fullsync == 0) {
1782 *skipped = 1;
1783 return max_sector - sector_nr;
1784 }
6394cca5
N
1785 /* before building a request, check if we can skip these blocks..
1786 * This call the bitmap_start_sync doesn't actually record anything
1787 */
e3b9703e 1788 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 1789 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
1790 /* We can skip this block, and probably several more */
1791 *skipped = 1;
1792 return sync_blocks;
1793 }
1da177e4 1794 /*
17999be4
N
1795 * If there is non-resync activity waiting for a turn,
1796 * and resync is going fast enough,
1797 * then let it though before starting on this new sync request.
1da177e4 1798 */
17999be4 1799 if (!go_faster && conf->nr_waiting)
1da177e4 1800 msleep_interruptible(1000);
17999be4 1801
b47490c9 1802 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
17999be4
N
1803 raise_barrier(conf);
1804
1805 conf->next_resync = sector_nr;
1da177e4 1806
3e198f78
N
1807 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1808 rcu_read_lock();
1da177e4 1809 /*
3e198f78
N
1810 * If we get a correctably read error during resync or recovery,
1811 * we might want to read from a different device. So we
1812 * flag all drives that could conceivably be read from for READ,
1813 * and any others (which will be non-In_sync devices) for WRITE.
1814 * If a read fails, we try reading from something else for which READ
1815 * is OK.
1da177e4 1816 */
1da177e4 1817
1da177e4
LT
1818 r1_bio->mddev = mddev;
1819 r1_bio->sector = sector_nr;
191ea9b2 1820 r1_bio->state = 0;
1da177e4 1821 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
1822
1823 for (i=0; i < conf->raid_disks; i++) {
3e198f78 1824 mdk_rdev_t *rdev;
1da177e4
LT
1825 bio = r1_bio->bios[i];
1826
1827 /* take from bio_init */
1828 bio->bi_next = NULL;
1829 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 1830 bio->bi_rw = READ;
1da177e4
LT
1831 bio->bi_vcnt = 0;
1832 bio->bi_idx = 0;
1833 bio->bi_phys_segments = 0;
1da177e4
LT
1834 bio->bi_size = 0;
1835 bio->bi_end_io = NULL;
1836 bio->bi_private = NULL;
1837
3e198f78
N
1838 rdev = rcu_dereference(conf->mirrors[i].rdev);
1839 if (rdev == NULL ||
1840 test_bit(Faulty, &rdev->flags)) {
e3b9703e
N
1841 still_degraded = 1;
1842 continue;
3e198f78 1843 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
1844 bio->bi_rw = WRITE;
1845 bio->bi_end_io = end_sync_write;
1846 write_targets ++;
3e198f78
N
1847 } else {
1848 /* may need to read from here */
1849 bio->bi_rw = READ;
1850 bio->bi_end_io = end_sync_read;
1851 if (test_bit(WriteMostly, &rdev->flags)) {
1852 if (wonly < 0)
1853 wonly = i;
1854 } else {
1855 if (disk < 0)
1856 disk = i;
1857 }
1858 read_targets++;
1859 }
1860 atomic_inc(&rdev->nr_pending);
1861 bio->bi_sector = sector_nr + rdev->data_offset;
1862 bio->bi_bdev = rdev->bdev;
1da177e4
LT
1863 bio->bi_private = r1_bio;
1864 }
3e198f78
N
1865 rcu_read_unlock();
1866 if (disk < 0)
1867 disk = wonly;
1868 r1_bio->read_disk = disk;
191ea9b2 1869
3e198f78
N
1870 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1871 /* extra read targets are also write targets */
1872 write_targets += read_targets-1;
1873
1874 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
1875 /* There is nowhere to write, so all non-sync
1876 * drives must be failed - so we are finished
1877 */
57afd89f
N
1878 sector_t rv = max_sector - sector_nr;
1879 *skipped = 1;
1da177e4 1880 put_buf(r1_bio);
1da177e4
LT
1881 return rv;
1882 }
1883
c6207277
N
1884 if (max_sector > mddev->resync_max)
1885 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1da177e4 1886 nr_sectors = 0;
289e99e8 1887 sync_blocks = 0;
1da177e4
LT
1888 do {
1889 struct page *page;
1890 int len = PAGE_SIZE;
1891 if (sector_nr + (len>>9) > max_sector)
1892 len = (max_sector - sector_nr) << 9;
1893 if (len == 0)
1894 break;
6a806c51
N
1895 if (sync_blocks == 0) {
1896 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
1897 &sync_blocks, still_degraded) &&
1898 !conf->fullsync &&
1899 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 1900 break;
9e77c485 1901 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
6a806c51
N
1902 if (len > (sync_blocks<<9))
1903 len = sync_blocks<<9;
ab7a30c7 1904 }
191ea9b2 1905
1da177e4
LT
1906 for (i=0 ; i < conf->raid_disks; i++) {
1907 bio = r1_bio->bios[i];
1908 if (bio->bi_end_io) {
d11c171e 1909 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
1910 if (bio_add_page(bio, page, len, 0) == 0) {
1911 /* stop here */
d11c171e 1912 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
1913 while (i > 0) {
1914 i--;
1915 bio = r1_bio->bios[i];
6a806c51
N
1916 if (bio->bi_end_io==NULL)
1917 continue;
1da177e4
LT
1918 /* remove last page from this bio */
1919 bio->bi_vcnt--;
1920 bio->bi_size -= len;
1921 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1922 }
1923 goto bio_full;
1924 }
1925 }
1926 }
1927 nr_sectors += len>>9;
1928 sector_nr += len>>9;
191ea9b2 1929 sync_blocks -= (len>>9);
1da177e4
LT
1930 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1931 bio_full:
1da177e4
LT
1932 r1_bio->sectors = nr_sectors;
1933
d11c171e
N
1934 /* For a user-requested sync, we read all readable devices and do a
1935 * compare
1936 */
1937 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1938 atomic_set(&r1_bio->remaining, read_targets);
1939 for (i=0; i<conf->raid_disks; i++) {
1940 bio = r1_bio->bios[i];
1941 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 1942 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
1943 generic_make_request(bio);
1944 }
1945 }
1946 } else {
1947 atomic_set(&r1_bio->remaining, 1);
1948 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 1949 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 1950 generic_make_request(bio);
1da177e4 1951
d11c171e 1952 }
1da177e4
LT
1953 return nr_sectors;
1954}
1955
80c3a6ce
DW
1956static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1957{
1958 if (sectors)
1959 return sectors;
1960
1961 return mddev->dev_sectors;
1962}
1963
709ae487 1964static conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
1965{
1966 conf_t *conf;
709ae487 1967 int i;
1da177e4
LT
1968 mirror_info_t *disk;
1969 mdk_rdev_t *rdev;
709ae487 1970 int err = -ENOMEM;
1da177e4 1971
9ffae0cf 1972 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4 1973 if (!conf)
709ae487 1974 goto abort;
1da177e4 1975
9ffae0cf 1976 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1977 GFP_KERNEL);
1978 if (!conf->mirrors)
709ae487 1979 goto abort;
1da177e4 1980
ddaf22ab
N
1981 conf->tmppage = alloc_page(GFP_KERNEL);
1982 if (!conf->tmppage)
709ae487 1983 goto abort;
ddaf22ab 1984
709ae487 1985 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 1986 if (!conf->poolinfo)
709ae487 1987 goto abort;
1da177e4
LT
1988 conf->poolinfo->raid_disks = mddev->raid_disks;
1989 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1990 r1bio_pool_free,
1991 conf->poolinfo);
1992 if (!conf->r1bio_pool)
709ae487
N
1993 goto abort;
1994
ed9bfdf1 1995 conf->poolinfo->mddev = mddev;
1da177e4 1996
e7e72bf6 1997 spin_lock_init(&conf->device_lock);
159ec1fc 1998 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 1999 int disk_idx = rdev->raid_disk;
1da177e4
LT
2000 if (disk_idx >= mddev->raid_disks
2001 || disk_idx < 0)
2002 continue;
2003 disk = conf->mirrors + disk_idx;
2004
2005 disk->rdev = rdev;
1da177e4
LT
2006
2007 disk->head_position = 0;
1da177e4
LT
2008 }
2009 conf->raid_disks = mddev->raid_disks;
2010 conf->mddev = mddev;
1da177e4 2011 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2012
2013 spin_lock_init(&conf->resync_lock);
17999be4 2014 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2015
191ea9b2
N
2016 bio_list_init(&conf->pending_bio_list);
2017 bio_list_init(&conf->flushing_bio_list);
2018
709ae487 2019 conf->last_used = -1;
1da177e4
LT
2020 for (i = 0; i < conf->raid_disks; i++) {
2021
2022 disk = conf->mirrors + i;
2023
5fd6c1dc
N
2024 if (!disk->rdev ||
2025 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2026 disk->head_position = 0;
918f0238
N
2027 if (disk->rdev)
2028 conf->fullsync = 1;
709ae487
N
2029 } else if (conf->last_used < 0)
2030 /*
2031 * The first working device is used as a
2032 * starting point to read balancing.
2033 */
2034 conf->last_used = i;
1da177e4 2035 }
709ae487
N
2036
2037 err = -EIO;
2038 if (conf->last_used < 0) {
11ce99e6 2039 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
709ae487
N
2040 mdname(mddev));
2041 goto abort;
2042 }
2043 err = -ENOMEM;
2044 conf->thread = md_register_thread(raid1d, mddev, NULL);
2045 if (!conf->thread) {
2046 printk(KERN_ERR
2047 "raid1: couldn't allocate thread for %s\n",
2048 mdname(mddev));
2049 goto abort;
11ce99e6 2050 }
1da177e4 2051
709ae487
N
2052 return conf;
2053
2054 abort:
2055 if (conf) {
2056 if (conf->r1bio_pool)
2057 mempool_destroy(conf->r1bio_pool);
2058 kfree(conf->mirrors);
2059 safe_put_page(conf->tmppage);
2060 kfree(conf->poolinfo);
2061 kfree(conf);
2062 }
2063 return ERR_PTR(err);
2064}
2065
2066static int run(mddev_t *mddev)
2067{
2068 conf_t *conf;
2069 int i;
2070 mdk_rdev_t *rdev;
2071
2072 if (mddev->level != 1) {
2073 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2074 mdname(mddev), mddev->level);
2075 return -EIO;
2076 }
2077 if (mddev->reshape_position != MaxSector) {
2078 printk("raid1: %s: reshape_position set but not supported\n",
2079 mdname(mddev));
2080 return -EIO;
2081 }
1da177e4 2082 /*
709ae487
N
2083 * copy the already verified devices into our private RAID1
2084 * bookkeeping area. [whatever we allocate in run(),
2085 * should be freed in stop()]
1da177e4 2086 */
709ae487
N
2087 if (mddev->private == NULL)
2088 conf = setup_conf(mddev);
2089 else
2090 conf = mddev->private;
1da177e4 2091
709ae487
N
2092 if (IS_ERR(conf))
2093 return PTR_ERR(conf);
1da177e4 2094
709ae487
N
2095 mddev->queue->queue_lock = &conf->device_lock;
2096 list_for_each_entry(rdev, &mddev->disks, same_set) {
2097 disk_stack_limits(mddev->gendisk, rdev->bdev,
2098 rdev->data_offset << 9);
2099 /* as we don't honour merge_bvec_fn, we must never risk
2100 * violating it, so limit ->max_sector to one PAGE, as
2101 * a one page request is never in violation.
2102 */
2103 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2104 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2105 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1da177e4 2106 }
191ea9b2 2107
709ae487
N
2108 mddev->degraded = 0;
2109 for (i=0; i < conf->raid_disks; i++)
2110 if (conf->mirrors[i].rdev == NULL ||
2111 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2112 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2113 mddev->degraded++;
2114
2115 if (conf->raid_disks - mddev->degraded == 1)
2116 mddev->recovery_cp = MaxSector;
2117
8c6ac868
AN
2118 if (mddev->recovery_cp != MaxSector)
2119 printk(KERN_NOTICE "raid1: %s is not clean"
2120 " -- starting background reconstruction\n",
2121 mdname(mddev));
1da177e4
LT
2122 printk(KERN_INFO
2123 "raid1: raid set %s active with %d out of %d mirrors\n",
2124 mdname(mddev), mddev->raid_disks - mddev->degraded,
2125 mddev->raid_disks);
709ae487 2126
1da177e4
LT
2127 /*
2128 * Ok, everything is just fine now
2129 */
709ae487
N
2130 mddev->thread = conf->thread;
2131 conf->thread = NULL;
2132 mddev->private = conf;
2133
1f403624 2134 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2135
7a5febe9 2136 mddev->queue->unplug_fn = raid1_unplug;
0d129228
N
2137 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2138 mddev->queue->backing_dev_info.congested_data = mddev;
ac5e7113 2139 md_integrity_register(mddev);
1da177e4 2140 return 0;
1da177e4
LT
2141}
2142
2143static int stop(mddev_t *mddev)
2144{
070ec55d 2145 conf_t *conf = mddev->private;
4b6d287f
N
2146 struct bitmap *bitmap = mddev->bitmap;
2147 int behind_wait = 0;
2148
2149 /* wait for behind writes to complete */
2150 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2151 behind_wait++;
2152 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2153 set_current_state(TASK_UNINTERRUPTIBLE);
2154 schedule_timeout(HZ); /* wait a second */
2155 /* need to kick something here to make sure I/O goes? */
2156 }
1da177e4 2157
409c57f3
N
2158 raise_barrier(conf);
2159 lower_barrier(conf);
2160
1da177e4
LT
2161 md_unregister_thread(mddev->thread);
2162 mddev->thread = NULL;
2163 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2164 if (conf->r1bio_pool)
2165 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2166 kfree(conf->mirrors);
2167 kfree(conf->poolinfo);
1da177e4
LT
2168 kfree(conf);
2169 mddev->private = NULL;
2170 return 0;
2171}
2172
2173static int raid1_resize(mddev_t *mddev, sector_t sectors)
2174{
2175 /* no resync is happening, and there is enough space
2176 * on all devices, so we can resize.
2177 * We need to make sure resync covers any new space.
2178 * If the array is shrinking we should possibly wait until
2179 * any io in the removed space completes, but it hardly seems
2180 * worth it.
2181 */
1f403624 2182 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2183 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2184 return -EINVAL;
f233ea5c 2185 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 2186 mddev->changed = 1;
449aad3e 2187 revalidate_disk(mddev->gendisk);
b522adcd 2188 if (sectors > mddev->dev_sectors &&
f233ea5c 2189 mddev->recovery_cp == MaxSector) {
58c0fed4 2190 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2192 }
b522adcd 2193 mddev->dev_sectors = sectors;
4b5c7ae8 2194 mddev->resync_max_sectors = sectors;
1da177e4
LT
2195 return 0;
2196}
2197
63c70c4f 2198static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2199{
2200 /* We need to:
2201 * 1/ resize the r1bio_pool
2202 * 2/ resize conf->mirrors
2203 *
2204 * We allocate a new r1bio_pool if we can.
2205 * Then raise a device barrier and wait until all IO stops.
2206 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2207 *
2208 * At the same time, we "pack" the devices so that all the missing
2209 * devices have the higher raid_disk numbers.
1da177e4
LT
2210 */
2211 mempool_t *newpool, *oldpool;
2212 struct pool_info *newpoolinfo;
2213 mirror_info_t *newmirrors;
070ec55d 2214 conf_t *conf = mddev->private;
63c70c4f 2215 int cnt, raid_disks;
c04be0aa 2216 unsigned long flags;
b5470dc5 2217 int d, d2, err;
1da177e4 2218
63c70c4f 2219 /* Cannot change chunk_size, layout, or level */
664e7c41 2220 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2221 mddev->layout != mddev->new_layout ||
2222 mddev->level != mddev->new_level) {
664e7c41 2223 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2224 mddev->new_layout = mddev->layout;
2225 mddev->new_level = mddev->level;
2226 return -EINVAL;
2227 }
2228
b5470dc5
DW
2229 err = md_allow_write(mddev);
2230 if (err)
2231 return err;
2a2275d6 2232
63c70c4f
N
2233 raid_disks = mddev->raid_disks + mddev->delta_disks;
2234
6ea9c07c
N
2235 if (raid_disks < conf->raid_disks) {
2236 cnt=0;
2237 for (d= 0; d < conf->raid_disks; d++)
2238 if (conf->mirrors[d].rdev)
2239 cnt++;
2240 if (cnt > raid_disks)
1da177e4 2241 return -EBUSY;
6ea9c07c 2242 }
1da177e4
LT
2243
2244 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2245 if (!newpoolinfo)
2246 return -ENOMEM;
2247 newpoolinfo->mddev = mddev;
2248 newpoolinfo->raid_disks = raid_disks;
2249
2250 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2251 r1bio_pool_free, newpoolinfo);
2252 if (!newpool) {
2253 kfree(newpoolinfo);
2254 return -ENOMEM;
2255 }
9ffae0cf 2256 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2257 if (!newmirrors) {
2258 kfree(newpoolinfo);
2259 mempool_destroy(newpool);
2260 return -ENOMEM;
2261 }
1da177e4 2262
17999be4 2263 raise_barrier(conf);
1da177e4
LT
2264
2265 /* ok, everything is stopped */
2266 oldpool = conf->r1bio_pool;
2267 conf->r1bio_pool = newpool;
6ea9c07c 2268
a88aa786
N
2269 for (d = d2 = 0; d < conf->raid_disks; d++) {
2270 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2271 if (rdev && rdev->raid_disk != d2) {
2272 char nm[20];
2273 sprintf(nm, "rd%d", rdev->raid_disk);
2274 sysfs_remove_link(&mddev->kobj, nm);
2275 rdev->raid_disk = d2;
2276 sprintf(nm, "rd%d", rdev->raid_disk);
2277 sysfs_remove_link(&mddev->kobj, nm);
2278 if (sysfs_create_link(&mddev->kobj,
2279 &rdev->kobj, nm))
2280 printk(KERN_WARNING
2281 "md/raid1: cannot register "
2282 "%s for %s\n",
2283 nm, mdname(mddev));
6ea9c07c 2284 }
a88aa786
N
2285 if (rdev)
2286 newmirrors[d2++].rdev = rdev;
2287 }
1da177e4
LT
2288 kfree(conf->mirrors);
2289 conf->mirrors = newmirrors;
2290 kfree(conf->poolinfo);
2291 conf->poolinfo = newpoolinfo;
2292
c04be0aa 2293 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2294 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2295 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2296 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2297 mddev->delta_disks = 0;
1da177e4 2298
6ea9c07c 2299 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2300 lower_barrier(conf);
1da177e4
LT
2301
2302 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2303 md_wakeup_thread(mddev->thread);
2304
2305 mempool_destroy(oldpool);
2306 return 0;
2307}
2308
500af87a 2309static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063 2310{
070ec55d 2311 conf_t *conf = mddev->private;
36fa3063
N
2312
2313 switch(state) {
6eef4b21
N
2314 case 2: /* wake for suspend */
2315 wake_up(&conf->wait_barrier);
2316 break;
9e6603da 2317 case 1:
17999be4 2318 raise_barrier(conf);
36fa3063 2319 break;
9e6603da 2320 case 0:
17999be4 2321 lower_barrier(conf);
36fa3063
N
2322 break;
2323 }
36fa3063
N
2324}
2325
709ae487
N
2326static void *raid1_takeover(mddev_t *mddev)
2327{
2328 /* raid1 can take over:
2329 * raid5 with 2 devices, any layout or chunk size
2330 */
2331 if (mddev->level == 5 && mddev->raid_disks == 2) {
2332 conf_t *conf;
2333 mddev->new_level = 1;
2334 mddev->new_layout = 0;
2335 mddev->new_chunk_sectors = 0;
2336 conf = setup_conf(mddev);
2337 if (!IS_ERR(conf))
2338 conf->barrier = 1;
2339 return conf;
2340 }
2341 return ERR_PTR(-EINVAL);
2342}
1da177e4 2343
2604b703 2344static struct mdk_personality raid1_personality =
1da177e4
LT
2345{
2346 .name = "raid1",
2604b703 2347 .level = 1,
1da177e4
LT
2348 .owner = THIS_MODULE,
2349 .make_request = make_request,
2350 .run = run,
2351 .stop = stop,
2352 .status = status,
2353 .error_handler = error,
2354 .hot_add_disk = raid1_add_disk,
2355 .hot_remove_disk= raid1_remove_disk,
2356 .spare_active = raid1_spare_active,
2357 .sync_request = sync_request,
2358 .resize = raid1_resize,
80c3a6ce 2359 .size = raid1_size,
63c70c4f 2360 .check_reshape = raid1_reshape,
36fa3063 2361 .quiesce = raid1_quiesce,
709ae487 2362 .takeover = raid1_takeover,
1da177e4
LT
2363};
2364
2365static int __init raid_init(void)
2366{
2604b703 2367 return register_md_personality(&raid1_personality);
1da177e4
LT
2368}
2369
2370static void raid_exit(void)
2371{
2604b703 2372 unregister_md_personality(&raid1_personality);
1da177e4
LT
2373}
2374
2375module_init(raid_init);
2376module_exit(raid_exit);
2377MODULE_LICENSE("GPL");
2378MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2379MODULE_ALIAS("md-raid1");
2604b703 2380MODULE_ALIAS("md-level-1");