]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid1.c
md/linear: standardise all printk messages
[net-next-2.6.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
25570727 34#include <linux/delay.h>
bff61975 35#include <linux/blkdev.h>
bff61975 36#include <linux/seq_file.h>
43b2e5d8 37#include "md.h"
ef740c37
CH
38#include "raid1.h"
39#include "bitmap.h"
191ea9b2
N
40
41#define DEBUG 0
42#if DEBUG
43#define PRINTK(x...) printk(x)
44#else
45#define PRINTK(x...)
46#endif
1da177e4
LT
47
48/*
49 * Number of guaranteed r1bios in case of extreme VM load:
50 */
51#define NR_RAID1_BIOS 256
52
1da177e4
LT
53
54static void unplug_slaves(mddev_t *mddev);
55
17999be4
N
56static void allow_barrier(conf_t *conf);
57static void lower_barrier(conf_t *conf);
1da177e4 58
dd0fc66f 59static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
60{
61 struct pool_info *pi = data;
62 r1bio_t *r1_bio;
63 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
9ffae0cf 66 r1_bio = kzalloc(size, gfp_flags);
ed9bfdf1 67 if (!r1_bio && pi->mddev)
1da177e4
LT
68 unplug_slaves(pi->mddev);
69
70 return r1_bio;
71}
72
73static void r1bio_pool_free(void *r1_bio, void *data)
74{
75 kfree(r1_bio);
76}
77
78#define RESYNC_BLOCK_SIZE (64*1024)
79//#define RESYNC_BLOCK_SIZE PAGE_SIZE
80#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82#define RESYNC_WINDOW (2048*1024)
83
dd0fc66f 84static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
85{
86 struct pool_info *pi = data;
87 struct page *page;
88 r1bio_t *r1_bio;
89 struct bio *bio;
90 int i, j;
91
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 if (!r1_bio) {
94 unplug_slaves(pi->mddev);
95 return NULL;
96 }
97
98 /*
99 * Allocate bios : 1 for reading, n-1 for writing
100 */
101 for (j = pi->raid_disks ; j-- ; ) {
102 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 if (!bio)
104 goto out_free_bio;
105 r1_bio->bios[j] = bio;
106 }
107 /*
108 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
109 * the first bio.
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
1da177e4 112 */
d11c171e
N
113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 j = pi->raid_disks;
115 else
116 j = 1;
117 while(j--) {
118 bio = r1_bio->bios[j];
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
123
124 bio->bi_io_vec[i].bv_page = page;
303a0e11 125 bio->bi_vcnt = i+1;
d11c171e
N
126 }
127 }
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 for (i=0; i<RESYNC_PAGES ; i++)
131 for (j=1; j<pi->raid_disks; j++)
132 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
134 }
135
136 r1_bio->master_bio = NULL;
137
138 return r1_bio;
139
140out_free_pages:
303a0e11
N
141 for (j=0 ; j < pi->raid_disks; j++)
142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 144 j = -1;
1da177e4
LT
145out_free_bio:
146 while ( ++j < pi->raid_disks )
147 bio_put(r1_bio->bios[j]);
148 r1bio_pool_free(r1_bio, data);
149 return NULL;
150}
151
152static void r1buf_pool_free(void *__r1_bio, void *data)
153{
154 struct pool_info *pi = data;
d11c171e 155 int i,j;
1da177e4 156 r1bio_t *r1bio = __r1_bio;
1da177e4 157
d11c171e
N
158 for (i = 0; i < RESYNC_PAGES; i++)
159 for (j = pi->raid_disks; j-- ;) {
160 if (j == 0 ||
161 r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 164 }
1da177e4
LT
165 for (i=0 ; i < pi->raid_disks; i++)
166 bio_put(r1bio->bios[i]);
167
168 r1bio_pool_free(r1bio, data);
169}
170
171static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172{
173 int i;
174
175 for (i = 0; i < conf->raid_disks; i++) {
176 struct bio **bio = r1_bio->bios + i;
cf30a473 177 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
178 bio_put(*bio);
179 *bio = NULL;
180 }
181}
182
858119e1 183static void free_r1bio(r1bio_t *r1_bio)
1da177e4 184{
070ec55d 185 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
186
187 /*
188 * Wake up any possible resync thread that waits for the device
189 * to go idle.
190 */
17999be4 191 allow_barrier(conf);
1da177e4
LT
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
858119e1 197static void put_buf(r1bio_t *r1_bio)
1da177e4 198{
070ec55d 199 conf_t *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
202 for (i=0; i<conf->raid_disks; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
213static void reschedule_retry(r1bio_t *r1_bio)
214{
215 unsigned long flags;
216 mddev_t *mddev = r1_bio->mddev;
070ec55d 217 conf_t *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233static void raid_end_bio_io(r1bio_t *r1_bio)
234{
235 struct bio *bio = r1_bio->master_bio;
236
4b6d287f
N
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio) == WRITE) ? "write" : "read",
241 (unsigned long long) bio->bi_sector,
242 (unsigned long long) bio->bi_sector +
243 (bio->bi_size >> 9) - 1);
244
6712ecf8 245 bio_endio(bio,
4b6d287f
N
246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247 }
1da177e4
LT
248 free_r1bio(r1_bio);
249}
250
251/*
252 * Update disk head position estimator based on IRQ completion info.
253 */
254static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255{
070ec55d 256 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
257
258 conf->mirrors[disk].head_position =
259 r1_bio->sector + (r1_bio->sectors);
260}
261
6712ecf8 262static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
263{
264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 265 r1bio_t *r1_bio = bio->bi_private;
1da177e4 266 int mirror;
070ec55d 267 conf_t *conf = r1_bio->mddev->private;
1da177e4 268
1da177e4
LT
269 mirror = r1_bio->read_disk;
270 /*
271 * this branch is our 'one mirror IO has finished' event handler:
272 */
ddaf22ab
N
273 update_head_pos(mirror, r1_bio);
274
dd00a99e
N
275 if (uptodate)
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277 else {
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 281 */
dd00a99e
N
282 unsigned long flags;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 if (r1_bio->mddev->degraded == conf->raid_disks ||
285 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 uptodate = 1;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
289 }
1da177e4 290
dd00a99e 291 if (uptodate)
1da177e4 292 raid_end_bio_io(r1_bio);
dd00a99e 293 else {
1da177e4
LT
294 /*
295 * oops, read error:
296 */
297 char b[BDEVNAME_SIZE];
298 if (printk_ratelimit())
9dd1e2fa
N
299 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
300 mdname(conf->mddev),
1da177e4
LT
301 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
302 reschedule_retry(r1_bio);
303 }
304
305 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
306}
307
6712ecf8 308static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
309{
310 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 311 r1bio_t *r1_bio = bio->bi_private;
a9701a30 312 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
070ec55d 313 conf_t *conf = r1_bio->mddev->private;
04b857f7 314 struct bio *to_put = NULL;
1da177e4 315
1da177e4
LT
316
317 for (mirror = 0; mirror < conf->raid_disks; mirror++)
318 if (r1_bio->bios[mirror] == bio)
319 break;
320
bea27718 321 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
a9701a30
N
322 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
323 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
324 r1_bio->mddev->barriers_work = 0;
5e7dd2ab 325 /* Don't rdev_dec_pending in this branch - keep it for the retry */
a9701a30 326 } else {
1da177e4 327 /*
a9701a30 328 * this branch is our 'one mirror IO has finished' event handler:
1da177e4 329 */
a9701a30 330 r1_bio->bios[mirror] = NULL;
04b857f7 331 to_put = bio;
a9701a30
N
332 if (!uptodate) {
333 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
334 /* an I/O failed, we can't clear the bitmap */
335 set_bit(R1BIO_Degraded, &r1_bio->state);
336 } else
337 /*
338 * Set R1BIO_Uptodate in our master bio, so that
339 * we will return a good error code for to the higher
340 * levels even if IO on some other mirrored buffer fails.
341 *
342 * The 'master' represents the composite IO operation to
343 * user-side. So if something waits for IO, then it will
344 * wait for the 'master' bio.
345 */
346 set_bit(R1BIO_Uptodate, &r1_bio->state);
347
348 update_head_pos(mirror, r1_bio);
349
350 if (behind) {
351 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
352 atomic_dec(&r1_bio->behind_remaining);
353
354 /* In behind mode, we ACK the master bio once the I/O has safely
355 * reached all non-writemostly disks. Setting the Returned bit
356 * ensures that this gets done only once -- we don't ever want to
357 * return -EIO here, instead we'll wait */
358
359 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
360 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
361 /* Maybe we can return now */
362 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
363 struct bio *mbio = r1_bio->master_bio;
364 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
365 (unsigned long long) mbio->bi_sector,
366 (unsigned long long) mbio->bi_sector +
367 (mbio->bi_size >> 9) - 1);
6712ecf8 368 bio_endio(mbio, 0);
a9701a30 369 }
4b6d287f
N
370 }
371 }
5e7dd2ab 372 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
4b6d287f 373 }
1da177e4
LT
374 /*
375 *
376 * Let's see if all mirrored write operations have finished
377 * already.
378 */
379 if (atomic_dec_and_test(&r1_bio->remaining)) {
c70810b3 380 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
a9701a30 381 reschedule_retry(r1_bio);
c70810b3
N
382 else {
383 /* it really is the end of this request */
384 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
385 /* free extra copy of the data pages */
386 int i = bio->bi_vcnt;
387 while (i--)
388 safe_put_page(bio->bi_io_vec[i].bv_page);
389 }
390 /* clear the bitmap if all writes complete successfully */
391 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
392 r1_bio->sectors,
393 !test_bit(R1BIO_Degraded, &r1_bio->state),
394 behind);
395 md_write_end(r1_bio->mddev);
396 raid_end_bio_io(r1_bio);
4b6d287f 397 }
1da177e4 398 }
c70810b3 399
04b857f7
N
400 if (to_put)
401 bio_put(to_put);
1da177e4
LT
402}
403
404
405/*
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
413 *
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
416 *
417 * The rdev for the device selected will have nr_pending incremented.
418 */
419static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420{
421 const unsigned long this_sector = r1_bio->sector;
422 int new_disk = conf->last_used, disk = new_disk;
8ddf9efe 423 int wonly_disk = -1;
1da177e4
LT
424 const int sectors = r1_bio->sectors;
425 sector_t new_distance, current_distance;
8ddf9efe 426 mdk_rdev_t *rdev;
1da177e4
LT
427
428 rcu_read_lock();
429 /*
8ddf9efe 430 * Check if we can balance. We can balance on the whole
1da177e4
LT
431 * device if no resync is going on, or below the resync window.
432 * We take the first readable disk when above the resync window.
433 */
434 retry:
435 if (conf->mddev->recovery_cp < MaxSector &&
436 (this_sector + sectors >= conf->next_resync)) {
437 /* Choose the first operation device, for consistancy */
438 new_disk = 0;
439
d6065f7b 440 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 441 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 442 !rdev || !test_bit(In_sync, &rdev->flags)
8ddf9efe 443 || test_bit(WriteMostly, &rdev->flags);
d6065f7b 444 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
8ddf9efe 445
cf30a473
N
446 if (rdev && test_bit(In_sync, &rdev->flags) &&
447 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
448 wonly_disk = new_disk;
449
450 if (new_disk == conf->raid_disks - 1) {
451 new_disk = wonly_disk;
1da177e4
LT
452 break;
453 }
454 }
455 goto rb_out;
456 }
457
458
459 /* make sure the disk is operational */
d6065f7b 460 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 461 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 462 !rdev || !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 463 test_bit(WriteMostly, &rdev->flags);
d6065f7b 464 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
8ddf9efe 465
cf30a473
N
466 if (rdev && test_bit(In_sync, &rdev->flags) &&
467 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
468 wonly_disk = new_disk;
469
1da177e4
LT
470 if (new_disk <= 0)
471 new_disk = conf->raid_disks;
472 new_disk--;
473 if (new_disk == disk) {
8ddf9efe
N
474 new_disk = wonly_disk;
475 break;
1da177e4
LT
476 }
477 }
8ddf9efe
N
478
479 if (new_disk < 0)
480 goto rb_out;
481
1da177e4
LT
482 disk = new_disk;
483 /* now disk == new_disk == starting point for search */
484
485 /*
486 * Don't change to another disk for sequential reads:
487 */
488 if (conf->next_seq_sect == this_sector)
489 goto rb_out;
490 if (this_sector == conf->mirrors[new_disk].head_position)
491 goto rb_out;
492
493 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494
495 /* Find the disk whose head is closest */
496
497 do {
498 if (disk <= 0)
499 disk = conf->raid_disks;
500 disk--;
501
d6065f7b 502 rdev = rcu_dereference(conf->mirrors[disk].rdev);
8ddf9efe 503
cf30a473 504 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
b2d444d7 505 !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 506 test_bit(WriteMostly, &rdev->flags))
1da177e4
LT
507 continue;
508
509 if (!atomic_read(&rdev->nr_pending)) {
510 new_disk = disk;
1da177e4
LT
511 break;
512 }
513 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
514 if (new_distance < current_distance) {
515 current_distance = new_distance;
516 new_disk = disk;
1da177e4
LT
517 }
518 } while (disk != conf->last_used);
519
8ddf9efe 520 rb_out:
1da177e4
LT
521
522
523 if (new_disk >= 0) {
d6065f7b 524 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
8ddf9efe
N
525 if (!rdev)
526 goto retry;
527 atomic_inc(&rdev->nr_pending);
b2d444d7 528 if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
529 /* cannot risk returning a device that failed
530 * before we inc'ed nr_pending
531 */
03c902e1 532 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
533 goto retry;
534 }
8ddf9efe
N
535 conf->next_seq_sect = this_sector + sectors;
536 conf->last_used = new_disk;
1da177e4
LT
537 }
538 rcu_read_unlock();
539
540 return new_disk;
541}
542
543static void unplug_slaves(mddev_t *mddev)
544{
070ec55d 545 conf_t *conf = mddev->private;
1da177e4
LT
546 int i;
547
548 rcu_read_lock();
549 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 550 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 551 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 552 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
553
554 atomic_inc(&rdev->nr_pending);
555 rcu_read_unlock();
556
2ad8b1ef 557 blk_unplug(r_queue);
1da177e4
LT
558
559 rdev_dec_pending(rdev, mddev);
560 rcu_read_lock();
561 }
562 }
563 rcu_read_unlock();
564}
565
165125e1 566static void raid1_unplug(struct request_queue *q)
1da177e4 567{
191ea9b2
N
568 mddev_t *mddev = q->queuedata;
569
570 unplug_slaves(mddev);
571 md_wakeup_thread(mddev->thread);
1da177e4
LT
572}
573
0d129228
N
574static int raid1_congested(void *data, int bits)
575{
576 mddev_t *mddev = data;
070ec55d 577 conf_t *conf = mddev->private;
0d129228
N
578 int i, ret = 0;
579
3fa841d7
N
580 if (mddev_congested(mddev, bits))
581 return 1;
582
0d129228
N
583 rcu_read_lock();
584 for (i = 0; i < mddev->raid_disks; i++) {
585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 587 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
588
589 /* Note the '|| 1' - when read_balance prefers
590 * non-congested targets, it can be removed
591 */
91a9e99d 592 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
593 ret |= bdi_congested(&q->backing_dev_info, bits);
594 else
595 ret &= bdi_congested(&q->backing_dev_info, bits);
596 }
597 }
598 rcu_read_unlock();
599 return ret;
600}
601
602
a35e63ef
N
603static int flush_pending_writes(conf_t *conf)
604{
605 /* Any writes that have been queued but are awaiting
606 * bitmap updates get flushed here.
607 * We return 1 if any requests were actually submitted.
608 */
609 int rv = 0;
610
611 spin_lock_irq(&conf->device_lock);
612
613 if (conf->pending_bio_list.head) {
614 struct bio *bio;
615 bio = bio_list_get(&conf->pending_bio_list);
616 blk_remove_plug(conf->mddev->queue);
617 spin_unlock_irq(&conf->device_lock);
618 /* flush any pending bitmap writes to
619 * disk before proceeding w/ I/O */
620 bitmap_unplug(conf->mddev->bitmap);
621
622 while (bio) { /* submit pending writes */
623 struct bio *next = bio->bi_next;
624 bio->bi_next = NULL;
625 generic_make_request(bio);
626 bio = next;
627 }
628 rv = 1;
629 } else
630 spin_unlock_irq(&conf->device_lock);
631 return rv;
632}
633
17999be4
N
634/* Barriers....
635 * Sometimes we need to suspend IO while we do something else,
636 * either some resync/recovery, or reconfigure the array.
637 * To do this we raise a 'barrier'.
638 * The 'barrier' is a counter that can be raised multiple times
639 * to count how many activities are happening which preclude
640 * normal IO.
641 * We can only raise the barrier if there is no pending IO.
642 * i.e. if nr_pending == 0.
643 * We choose only to raise the barrier if no-one is waiting for the
644 * barrier to go down. This means that as soon as an IO request
645 * is ready, no other operations which require a barrier will start
646 * until the IO request has had a chance.
647 *
648 * So: regular IO calls 'wait_barrier'. When that returns there
649 * is no backgroup IO happening, It must arrange to call
650 * allow_barrier when it has finished its IO.
651 * backgroup IO calls must call raise_barrier. Once that returns
652 * there is no normal IO happeing. It must arrange to call
653 * lower_barrier when the particular background IO completes.
1da177e4
LT
654 */
655#define RESYNC_DEPTH 32
656
17999be4 657static void raise_barrier(conf_t *conf)
1da177e4
LT
658{
659 spin_lock_irq(&conf->resync_lock);
17999be4
N
660
661 /* Wait until no block IO is waiting */
662 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
663 conf->resync_lock,
664 raid1_unplug(conf->mddev->queue));
665
666 /* block any new IO from starting */
667 conf->barrier++;
668
669 /* No wait for all pending IO to complete */
670 wait_event_lock_irq(conf->wait_barrier,
671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
672 conf->resync_lock,
673 raid1_unplug(conf->mddev->queue));
674
675 spin_unlock_irq(&conf->resync_lock);
676}
677
678static void lower_barrier(conf_t *conf)
679{
680 unsigned long flags;
709ae487 681 BUG_ON(conf->barrier <= 0);
17999be4
N
682 spin_lock_irqsave(&conf->resync_lock, flags);
683 conf->barrier--;
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
686}
687
688static void wait_barrier(conf_t *conf)
689{
690 spin_lock_irq(&conf->resync_lock);
691 if (conf->barrier) {
692 conf->nr_waiting++;
693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 conf->resync_lock,
695 raid1_unplug(conf->mddev->queue));
696 conf->nr_waiting--;
1da177e4 697 }
17999be4 698 conf->nr_pending++;
1da177e4
LT
699 spin_unlock_irq(&conf->resync_lock);
700}
701
17999be4
N
702static void allow_barrier(conf_t *conf)
703{
704 unsigned long flags;
705 spin_lock_irqsave(&conf->resync_lock, flags);
706 conf->nr_pending--;
707 spin_unlock_irqrestore(&conf->resync_lock, flags);
708 wake_up(&conf->wait_barrier);
709}
710
ddaf22ab
N
711static void freeze_array(conf_t *conf)
712{
713 /* stop syncio and normal IO and wait for everything to
714 * go quite.
715 * We increment barrier and nr_waiting, and then
1c830532
N
716 * wait until nr_pending match nr_queued+1
717 * This is called in the context of one normal IO request
718 * that has failed. Thus any sync request that might be pending
719 * will be blocked by nr_pending, and we need to wait for
720 * pending IO requests to complete or be queued for re-try.
721 * Thus the number queued (nr_queued) plus this request (1)
722 * must match the number of pending IOs (nr_pending) before
723 * we continue.
ddaf22ab
N
724 */
725 spin_lock_irq(&conf->resync_lock);
726 conf->barrier++;
727 conf->nr_waiting++;
728 wait_event_lock_irq(conf->wait_barrier,
1c830532 729 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 730 conf->resync_lock,
a35e63ef
N
731 ({ flush_pending_writes(conf);
732 raid1_unplug(conf->mddev->queue); }));
ddaf22ab
N
733 spin_unlock_irq(&conf->resync_lock);
734}
735static void unfreeze_array(conf_t *conf)
736{
737 /* reverse the effect of the freeze */
738 spin_lock_irq(&conf->resync_lock);
739 conf->barrier--;
740 conf->nr_waiting--;
741 wake_up(&conf->wait_barrier);
742 spin_unlock_irq(&conf->resync_lock);
743}
744
17999be4 745
4b6d287f
N
746/* duplicate the data pages for behind I/O */
747static struct page **alloc_behind_pages(struct bio *bio)
748{
749 int i;
750 struct bio_vec *bvec;
9ffae0cf 751 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
4b6d287f
N
752 GFP_NOIO);
753 if (unlikely(!pages))
754 goto do_sync_io;
755
4b6d287f
N
756 bio_for_each_segment(bvec, bio, i) {
757 pages[i] = alloc_page(GFP_NOIO);
758 if (unlikely(!pages[i]))
759 goto do_sync_io;
760 memcpy(kmap(pages[i]) + bvec->bv_offset,
761 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
762 kunmap(pages[i]);
763 kunmap(bvec->bv_page);
764 }
765
766 return pages;
767
768do_sync_io:
769 if (pages)
770 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
2d1f3b5d 771 put_page(pages[i]);
4b6d287f
N
772 kfree(pages);
773 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
774 return NULL;
775}
776
21a52c6d 777static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 778{
070ec55d 779 conf_t *conf = mddev->private;
1da177e4
LT
780 mirror_info_t *mirror;
781 r1bio_t *r1_bio;
782 struct bio *read_bio;
191ea9b2 783 int i, targets = 0, disks;
84255d10 784 struct bitmap *bitmap;
191ea9b2
N
785 unsigned long flags;
786 struct bio_list bl;
4b6d287f 787 struct page **behind_pages = NULL;
a362357b 788 const int rw = bio_data_dir(bio);
1f98a13f 789 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1f98a13f 790 bool do_barriers;
6bfe0b49 791 mdk_rdev_t *blocked_rdev;
191ea9b2 792
1da177e4
LT
793 /*
794 * Register the new request and wait if the reconstruction
795 * thread has put up a bar for new requests.
796 * Continue immediately if no resync is active currently.
62de608d
N
797 * We test barriers_work *after* md_write_start as md_write_start
798 * may cause the first superblock write, and that will check out
799 * if barriers work.
1da177e4 800 */
62de608d 801
3d310eb7
N
802 md_write_start(mddev, bio); /* wait on superblock update early */
803
6eef4b21
N
804 if (bio_data_dir(bio) == WRITE &&
805 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
806 bio->bi_sector < mddev->suspend_hi) {
807 /* As the suspend_* range is controlled by
808 * userspace, we want an interruptible
809 * wait.
810 */
811 DEFINE_WAIT(w);
812 for (;;) {
813 flush_signals(current);
814 prepare_to_wait(&conf->wait_barrier,
815 &w, TASK_INTERRUPTIBLE);
816 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
817 bio->bi_sector >= mddev->suspend_hi)
818 break;
819 schedule();
820 }
821 finish_wait(&conf->wait_barrier, &w);
822 }
1f98a13f
JA
823 if (unlikely(!mddev->barriers_work &&
824 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
62de608d
N
825 if (rw == WRITE)
826 md_write_end(mddev);
6712ecf8 827 bio_endio(bio, -EOPNOTSUPP);
62de608d
N
828 return 0;
829 }
830
17999be4 831 wait_barrier(conf);
1da177e4 832
84255d10
N
833 bitmap = mddev->bitmap;
834
1da177e4
LT
835 /*
836 * make_request() can abort the operation when READA is being
837 * used and no empty request is available.
838 *
839 */
840 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
841
842 r1_bio->master_bio = bio;
843 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 844 r1_bio->state = 0;
1da177e4
LT
845 r1_bio->mddev = mddev;
846 r1_bio->sector = bio->bi_sector;
847
a362357b 848 if (rw == READ) {
1da177e4
LT
849 /*
850 * read balancing logic:
851 */
852 int rdisk = read_balance(conf, r1_bio);
853
854 if (rdisk < 0) {
855 /* couldn't find anywhere to read from */
856 raid_end_bio_io(r1_bio);
857 return 0;
858 }
859 mirror = conf->mirrors + rdisk;
860
e555190d
N
861 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
862 bitmap) {
863 /* Reading from a write-mostly device must
864 * take care not to over-take any writes
865 * that are 'behind'
866 */
867 wait_event(bitmap->behind_wait,
868 atomic_read(&bitmap->behind_writes) == 0);
869 }
1da177e4
LT
870 r1_bio->read_disk = rdisk;
871
872 read_bio = bio_clone(bio, GFP_NOIO);
873
874 r1_bio->bios[rdisk] = read_bio;
875
876 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
877 read_bio->bi_bdev = mirror->rdev->bdev;
878 read_bio->bi_end_io = raid1_end_read_request;
1ef04fef 879 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
880 read_bio->bi_private = r1_bio;
881
882 generic_make_request(read_bio);
883 return 0;
884 }
885
886 /*
887 * WRITE:
888 */
889 /* first select target devices under spinlock and
890 * inc refcount on their rdev. Record them by setting
891 * bios[x] to bio
892 */
893 disks = conf->raid_disks;
191ea9b2
N
894#if 0
895 { static int first=1;
896 if (first) printk("First Write sector %llu disks %d\n",
897 (unsigned long long)r1_bio->sector, disks);
898 first = 0;
899 }
900#endif
6bfe0b49
DW
901 retry_write:
902 blocked_rdev = NULL;
1da177e4
LT
903 rcu_read_lock();
904 for (i = 0; i < disks; i++) {
6bfe0b49
DW
905 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
906 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
907 atomic_inc(&rdev->nr_pending);
908 blocked_rdev = rdev;
909 break;
910 }
911 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4 912 atomic_inc(&rdev->nr_pending);
b2d444d7 913 if (test_bit(Faulty, &rdev->flags)) {
03c902e1 914 rdev_dec_pending(rdev, mddev);
1da177e4 915 r1_bio->bios[i] = NULL;
964147d5 916 } else {
1da177e4 917 r1_bio->bios[i] = bio;
964147d5
N
918 targets++;
919 }
1da177e4
LT
920 } else
921 r1_bio->bios[i] = NULL;
922 }
923 rcu_read_unlock();
924
6bfe0b49
DW
925 if (unlikely(blocked_rdev)) {
926 /* Wait for this device to become unblocked */
927 int j;
928
929 for (j = 0; j < i; j++)
930 if (r1_bio->bios[j])
931 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
932
933 allow_barrier(conf);
934 md_wait_for_blocked_rdev(blocked_rdev, mddev);
935 wait_barrier(conf);
936 goto retry_write;
937 }
938
4b6d287f
N
939 BUG_ON(targets == 0); /* we never fail the last device */
940
191ea9b2
N
941 if (targets < conf->raid_disks) {
942 /* array is degraded, we will not clear the bitmap
943 * on I/O completion (see raid1_end_write_request) */
944 set_bit(R1BIO_Degraded, &r1_bio->state);
945 }
946
e555190d
N
947 /* do behind I/O ?
948 * Not if there are too many, or cannot allocate memory,
949 * or a reader on WriteMostly is waiting for behind writes
950 * to flush */
4b6d287f 951 if (bitmap &&
42a04b50
N
952 (atomic_read(&bitmap->behind_writes)
953 < mddev->bitmap_info.max_write_behind) &&
e555190d 954 !waitqueue_active(&bitmap->behind_wait) &&
4b6d287f
N
955 (behind_pages = alloc_behind_pages(bio)) != NULL)
956 set_bit(R1BIO_BehindIO, &r1_bio->state);
957
191ea9b2 958 atomic_set(&r1_bio->remaining, 0);
4b6d287f 959 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 960
1f98a13f 961 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
a9701a30
N
962 if (do_barriers)
963 set_bit(R1BIO_Barrier, &r1_bio->state);
964
191ea9b2 965 bio_list_init(&bl);
1da177e4
LT
966 for (i = 0; i < disks; i++) {
967 struct bio *mbio;
968 if (!r1_bio->bios[i])
969 continue;
970
971 mbio = bio_clone(bio, GFP_NOIO);
972 r1_bio->bios[i] = mbio;
973
974 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
975 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
976 mbio->bi_end_io = raid1_end_write_request;
1ef04fef
DM
977 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
978 (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
979 mbio->bi_private = r1_bio;
980
4b6d287f
N
981 if (behind_pages) {
982 struct bio_vec *bvec;
983 int j;
984
985 /* Yes, I really want the '__' version so that
986 * we clear any unused pointer in the io_vec, rather
987 * than leave them unchanged. This is important
988 * because when we come to free the pages, we won't
989 * know the originial bi_idx, so we just free
990 * them all
991 */
992 __bio_for_each_segment(bvec, mbio, j, 0)
993 bvec->bv_page = behind_pages[j];
994 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
995 atomic_inc(&r1_bio->behind_remaining);
996 }
997
1da177e4 998 atomic_inc(&r1_bio->remaining);
1da177e4 999
191ea9b2 1000 bio_list_add(&bl, mbio);
1da177e4 1001 }
4b6d287f 1002 kfree(behind_pages); /* the behind pages are attached to the bios now */
1da177e4 1003
4b6d287f
N
1004 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
1005 test_bit(R1BIO_BehindIO, &r1_bio->state));
191ea9b2
N
1006 spin_lock_irqsave(&conf->device_lock, flags);
1007 bio_list_merge(&conf->pending_bio_list, &bl);
1008 bio_list_init(&bl);
1009
1010 blk_plug_device(mddev->queue);
1011 spin_unlock_irqrestore(&conf->device_lock, flags);
1012
a35e63ef
N
1013 /* In case raid1d snuck into freeze_array */
1014 wake_up(&conf->wait_barrier);
1015
e3881a68
LE
1016 if (do_sync)
1017 md_wakeup_thread(mddev->thread);
191ea9b2
N
1018#if 0
1019 while ((bio = bio_list_pop(&bl)) != NULL)
1020 generic_make_request(bio);
1021#endif
1022
1da177e4
LT
1023 return 0;
1024}
1025
1026static void status(struct seq_file *seq, mddev_t *mddev)
1027{
070ec55d 1028 conf_t *conf = mddev->private;
1da177e4
LT
1029 int i;
1030
1031 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1032 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1033 rcu_read_lock();
1034 for (i = 0; i < conf->raid_disks; i++) {
1035 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1036 seq_printf(seq, "%s",
ddac7c7e
N
1037 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1038 }
1039 rcu_read_unlock();
1da177e4
LT
1040 seq_printf(seq, "]");
1041}
1042
1043
1044static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1045{
1046 char b[BDEVNAME_SIZE];
070ec55d 1047 conf_t *conf = mddev->private;
1da177e4
LT
1048
1049 /*
1050 * If it is not operational, then we have already marked it as dead
1051 * else if it is the last working disks, ignore the error, let the
1052 * next level up know.
1053 * else mark the drive as failed
1054 */
b2d444d7 1055 if (test_bit(In_sync, &rdev->flags)
4044ba58 1056 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1057 /*
1058 * Don't fail the drive, act as though we were just a
4044ba58
N
1059 * normal single drive.
1060 * However don't try a recovery from this drive as
1061 * it is very likely to fail.
1da177e4 1062 */
4044ba58 1063 mddev->recovery_disabled = 1;
1da177e4 1064 return;
4044ba58 1065 }
c04be0aa
N
1066 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1067 unsigned long flags;
1068 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1069 mddev->degraded++;
dd00a99e 1070 set_bit(Faulty, &rdev->flags);
c04be0aa 1071 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1072 /*
1073 * if recovery is running, make sure it aborts.
1074 */
dfc70645 1075 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1076 } else
1077 set_bit(Faulty, &rdev->flags);
850b2b42 1078 set_bit(MD_CHANGE_DEVS, &mddev->flags);
9dd1e2fa
N
1079 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1080 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1081 mdname(mddev), bdevname(rdev->bdev, b),
1082 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1083}
1084
1085static void print_conf(conf_t *conf)
1086{
1087 int i;
1da177e4 1088
9dd1e2fa 1089 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1090 if (!conf) {
9dd1e2fa 1091 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1092 return;
1093 }
9dd1e2fa 1094 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1095 conf->raid_disks);
1096
ddac7c7e 1097 rcu_read_lock();
1da177e4
LT
1098 for (i = 0; i < conf->raid_disks; i++) {
1099 char b[BDEVNAME_SIZE];
ddac7c7e
N
1100 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1101 if (rdev)
9dd1e2fa 1102 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1103 i, !test_bit(In_sync, &rdev->flags),
1104 !test_bit(Faulty, &rdev->flags),
1105 bdevname(rdev->bdev,b));
1da177e4 1106 }
ddac7c7e 1107 rcu_read_unlock();
1da177e4
LT
1108}
1109
1110static void close_sync(conf_t *conf)
1111{
17999be4
N
1112 wait_barrier(conf);
1113 allow_barrier(conf);
1da177e4
LT
1114
1115 mempool_destroy(conf->r1buf_pool);
1116 conf->r1buf_pool = NULL;
1117}
1118
1119static int raid1_spare_active(mddev_t *mddev)
1120{
1121 int i;
1122 conf_t *conf = mddev->private;
1da177e4
LT
1123
1124 /*
1125 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1126 * and mark them readable.
1127 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1128 */
1129 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1130 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1131 if (rdev
1132 && !test_bit(Faulty, &rdev->flags)
c04be0aa
N
1133 && !test_and_set_bit(In_sync, &rdev->flags)) {
1134 unsigned long flags;
1135 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1136 mddev->degraded--;
c04be0aa 1137 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1138 }
1139 }
1140
1141 print_conf(conf);
1142 return 0;
1143}
1144
1145
1146static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1147{
1148 conf_t *conf = mddev->private;
199050ea 1149 int err = -EEXIST;
41158c7e 1150 int mirror = 0;
1da177e4 1151 mirror_info_t *p;
6c2fce2e
NB
1152 int first = 0;
1153 int last = mddev->raid_disks - 1;
1da177e4 1154
6c2fce2e
NB
1155 if (rdev->raid_disk >= 0)
1156 first = last = rdev->raid_disk;
1157
1158 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1159 if ( !(p=conf->mirrors+mirror)->rdev) {
1160
8f6c2e4b
MP
1161 disk_stack_limits(mddev->gendisk, rdev->bdev,
1162 rdev->data_offset << 9);
627a2d3c
N
1163 /* as we don't honour merge_bvec_fn, we must
1164 * never risk violating it, so limit
1165 * ->max_segments to one lying with a single
1166 * page, as a one page request is never in
1167 * violation.
1da177e4 1168 */
627a2d3c
N
1169 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1170 blk_queue_max_segments(mddev->queue, 1);
1171 blk_queue_segment_boundary(mddev->queue,
1172 PAGE_CACHE_SIZE - 1);
1173 }
1da177e4
LT
1174
1175 p->head_position = 0;
1176 rdev->raid_disk = mirror;
199050ea 1177 err = 0;
6aea114a
N
1178 /* As all devices are equivalent, we don't need a full recovery
1179 * if this was recently any drive of the array
1180 */
1181 if (rdev->saved_raid_disk < 0)
41158c7e 1182 conf->fullsync = 1;
d6065f7b 1183 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1184 break;
1185 }
ac5e7113 1186 md_integrity_add_rdev(rdev, mddev);
1da177e4 1187 print_conf(conf);
199050ea 1188 return err;
1da177e4
LT
1189}
1190
1191static int raid1_remove_disk(mddev_t *mddev, int number)
1192{
1193 conf_t *conf = mddev->private;
1194 int err = 0;
1195 mdk_rdev_t *rdev;
1196 mirror_info_t *p = conf->mirrors+ number;
1197
1198 print_conf(conf);
1199 rdev = p->rdev;
1200 if (rdev) {
b2d444d7 1201 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1202 atomic_read(&rdev->nr_pending)) {
1203 err = -EBUSY;
1204 goto abort;
1205 }
dfc70645
N
1206 /* Only remove non-faulty devices is recovery
1207 * is not possible.
1208 */
1209 if (!test_bit(Faulty, &rdev->flags) &&
1210 mddev->degraded < conf->raid_disks) {
1211 err = -EBUSY;
1212 goto abort;
1213 }
1da177e4 1214 p->rdev = NULL;
fbd568a3 1215 synchronize_rcu();
1da177e4
LT
1216 if (atomic_read(&rdev->nr_pending)) {
1217 /* lost the race, try later */
1218 err = -EBUSY;
1219 p->rdev = rdev;
ac5e7113 1220 goto abort;
1da177e4 1221 }
ac5e7113 1222 md_integrity_register(mddev);
1da177e4
LT
1223 }
1224abort:
1225
1226 print_conf(conf);
1227 return err;
1228}
1229
1230
6712ecf8 1231static void end_sync_read(struct bio *bio, int error)
1da177e4 1232{
7b92813c 1233 r1bio_t *r1_bio = bio->bi_private;
d11c171e 1234 int i;
1da177e4 1235
d11c171e
N
1236 for (i=r1_bio->mddev->raid_disks; i--; )
1237 if (r1_bio->bios[i] == bio)
1238 break;
1239 BUG_ON(i < 0);
1240 update_head_pos(i, r1_bio);
1da177e4
LT
1241 /*
1242 * we have read a block, now it needs to be re-written,
1243 * or re-read if the read failed.
1244 * We don't do much here, just schedule handling by raid1d
1245 */
69382e85 1246 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1247 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1248
1249 if (atomic_dec_and_test(&r1_bio->remaining))
1250 reschedule_retry(r1_bio);
1da177e4
LT
1251}
1252
6712ecf8 1253static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1254{
1255 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1256 r1bio_t *r1_bio = bio->bi_private;
1da177e4 1257 mddev_t *mddev = r1_bio->mddev;
070ec55d 1258 conf_t *conf = mddev->private;
1da177e4
LT
1259 int i;
1260 int mirror=0;
1261
1da177e4
LT
1262 for (i = 0; i < conf->raid_disks; i++)
1263 if (r1_bio->bios[i] == bio) {
1264 mirror = i;
1265 break;
1266 }
6b1117d5
N
1267 if (!uptodate) {
1268 int sync_blocks = 0;
1269 sector_t s = r1_bio->sector;
1270 long sectors_to_go = r1_bio->sectors;
1271 /* make sure these bits doesn't get cleared. */
1272 do {
5e3db645 1273 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1274 &sync_blocks, 1);
1275 s += sync_blocks;
1276 sectors_to_go -= sync_blocks;
1277 } while (sectors_to_go > 0);
1da177e4 1278 md_error(mddev, conf->mirrors[mirror].rdev);
6b1117d5 1279 }
e3b9703e 1280
1da177e4
LT
1281 update_head_pos(mirror, r1_bio);
1282
1283 if (atomic_dec_and_test(&r1_bio->remaining)) {
73d5c38a 1284 sector_t s = r1_bio->sectors;
1da177e4 1285 put_buf(r1_bio);
73d5c38a 1286 md_done_sync(mddev, s, uptodate);
1da177e4 1287 }
1da177e4
LT
1288}
1289
1290static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1291{
070ec55d 1292 conf_t *conf = mddev->private;
1da177e4
LT
1293 int i;
1294 int disks = conf->raid_disks;
1295 struct bio *bio, *wbio;
1296
1297 bio = r1_bio->bios[r1_bio->read_disk];
1298
69382e85 1299
d11c171e
N
1300 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1301 /* We have read all readable devices. If we haven't
1302 * got the block, then there is no hope left.
1303 * If we have, then we want to do a comparison
1304 * and skip the write if everything is the same.
1305 * If any blocks failed to read, then we need to
1306 * attempt an over-write
1307 */
1308 int primary;
1309 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1310 for (i=0; i<mddev->raid_disks; i++)
1311 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1312 md_error(mddev, conf->mirrors[i].rdev);
1313
1314 md_done_sync(mddev, r1_bio->sectors, 1);
1315 put_buf(r1_bio);
1316 return;
1317 }
1318 for (primary=0; primary<mddev->raid_disks; primary++)
1319 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1320 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1321 r1_bio->bios[primary]->bi_end_io = NULL;
03c902e1 1322 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
d11c171e
N
1323 break;
1324 }
1325 r1_bio->read_disk = primary;
1326 for (i=0; i<mddev->raid_disks; i++)
ed456662 1327 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
d11c171e
N
1328 int j;
1329 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1330 struct bio *pbio = r1_bio->bios[primary];
1331 struct bio *sbio = r1_bio->bios[i];
ed456662
MA
1332
1333 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1334 for (j = vcnt; j-- ; ) {
1335 struct page *p, *s;
1336 p = pbio->bi_io_vec[j].bv_page;
1337 s = sbio->bi_io_vec[j].bv_page;
1338 if (memcmp(page_address(p),
1339 page_address(s),
1340 PAGE_SIZE))
1341 break;
1342 }
1343 } else
1344 j = 0;
d11c171e
N
1345 if (j >= 0)
1346 mddev->resync_mismatches += r1_bio->sectors;
cf7a4416
N
1347 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1348 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
d11c171e 1349 sbio->bi_end_io = NULL;
03c902e1
N
1350 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1351 } else {
d11c171e 1352 /* fixup the bio for reuse */
698b18c1 1353 int size;
d11c171e
N
1354 sbio->bi_vcnt = vcnt;
1355 sbio->bi_size = r1_bio->sectors << 9;
1356 sbio->bi_idx = 0;
1357 sbio->bi_phys_segments = 0;
d11c171e
N
1358 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1359 sbio->bi_flags |= 1 << BIO_UPTODATE;
1360 sbio->bi_next = NULL;
1361 sbio->bi_sector = r1_bio->sector +
1362 conf->mirrors[i].rdev->data_offset;
1363 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
698b18c1
N
1364 size = sbio->bi_size;
1365 for (j = 0; j < vcnt ; j++) {
1366 struct bio_vec *bi;
1367 bi = &sbio->bi_io_vec[j];
1368 bi->bv_offset = 0;
1369 if (size > PAGE_SIZE)
1370 bi->bv_len = PAGE_SIZE;
1371 else
1372 bi->bv_len = size;
1373 size -= PAGE_SIZE;
1374 memcpy(page_address(bi->bv_page),
3eda22d1
N
1375 page_address(pbio->bi_io_vec[j].bv_page),
1376 PAGE_SIZE);
698b18c1 1377 }
3eda22d1 1378
d11c171e
N
1379 }
1380 }
1381 }
1da177e4 1382 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
69382e85
N
1383 /* ouch - failed to read all of that.
1384 * Try some synchronous reads of other devices to get
1385 * good data, much like with normal read errors. Only
ddac7c7e 1386 * read into the pages we already have so we don't
69382e85
N
1387 * need to re-issue the read request.
1388 * We don't need to freeze the array, because being in an
1389 * active sync request, there is no normal IO, and
1390 * no overlapping syncs.
1da177e4 1391 */
69382e85
N
1392 sector_t sect = r1_bio->sector;
1393 int sectors = r1_bio->sectors;
1394 int idx = 0;
1395
1396 while(sectors) {
1397 int s = sectors;
1398 int d = r1_bio->read_disk;
1399 int success = 0;
1400 mdk_rdev_t *rdev;
1401
1402 if (s > (PAGE_SIZE>>9))
1403 s = PAGE_SIZE >> 9;
1404 do {
1405 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
ddac7c7e
N
1406 /* No rcu protection needed here devices
1407 * can only be removed when no resync is
1408 * active, and resync is currently active
1409 */
69382e85
N
1410 rdev = conf->mirrors[d].rdev;
1411 if (sync_page_io(rdev->bdev,
1412 sect + rdev->data_offset,
1413 s<<9,
1414 bio->bi_io_vec[idx].bv_page,
1415 READ)) {
1416 success = 1;
1417 break;
1418 }
1419 }
1420 d++;
1421 if (d == conf->raid_disks)
1422 d = 0;
1423 } while (!success && d != r1_bio->read_disk);
1424
1425 if (success) {
097426f6 1426 int start = d;
69382e85
N
1427 /* write it back and re-read */
1428 set_bit(R1BIO_Uptodate, &r1_bio->state);
1429 while (d != r1_bio->read_disk) {
1430 if (d == 0)
1431 d = conf->raid_disks;
1432 d--;
1433 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1434 continue;
1435 rdev = conf->mirrors[d].rdev;
4dbcdc75 1436 atomic_add(s, &rdev->corrected_errors);
69382e85
N
1437 if (sync_page_io(rdev->bdev,
1438 sect + rdev->data_offset,
1439 s<<9,
1440 bio->bi_io_vec[idx].bv_page,
097426f6
N
1441 WRITE) == 0)
1442 md_error(mddev, rdev);
1443 }
1444 d = start;
1445 while (d != r1_bio->read_disk) {
1446 if (d == 0)
1447 d = conf->raid_disks;
1448 d--;
1449 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1450 continue;
1451 rdev = conf->mirrors[d].rdev;
1452 if (sync_page_io(rdev->bdev,
69382e85
N
1453 sect + rdev->data_offset,
1454 s<<9,
1455 bio->bi_io_vec[idx].bv_page,
097426f6 1456 READ) == 0)
69382e85 1457 md_error(mddev, rdev);
69382e85
N
1458 }
1459 } else {
1460 char b[BDEVNAME_SIZE];
1461 /* Cannot read from anywhere, array is toast */
1462 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
9dd1e2fa 1463 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
69382e85 1464 " for block %llu\n",
9dd1e2fa
N
1465 mdname(mddev),
1466 bdevname(bio->bi_bdev, b),
69382e85
N
1467 (unsigned long long)r1_bio->sector);
1468 md_done_sync(mddev, r1_bio->sectors, 0);
1469 put_buf(r1_bio);
1470 return;
1471 }
1472 sectors -= s;
1473 sect += s;
1474 idx ++;
1475 }
1da177e4 1476 }
d11c171e
N
1477
1478 /*
1479 * schedule writes
1480 */
1da177e4
LT
1481 atomic_set(&r1_bio->remaining, 1);
1482 for (i = 0; i < disks ; i++) {
1483 wbio = r1_bio->bios[i];
3e198f78
N
1484 if (wbio->bi_end_io == NULL ||
1485 (wbio->bi_end_io == end_sync_read &&
1486 (i == r1_bio->read_disk ||
1487 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1488 continue;
1489
3e198f78
N
1490 wbio->bi_rw = WRITE;
1491 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1492 atomic_inc(&r1_bio->remaining);
1493 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1494
1da177e4
LT
1495 generic_make_request(wbio);
1496 }
1497
1498 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1499 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1500 md_done_sync(mddev, r1_bio->sectors, 1);
1501 put_buf(r1_bio);
1502 }
1503}
1504
1505/*
1506 * This is a kernel thread which:
1507 *
1508 * 1. Retries failed read operations on working mirrors.
1509 * 2. Updates the raid superblock when problems encounter.
1510 * 3. Performs writes following reads for array syncronising.
1511 */
1512
867868fb
N
1513static void fix_read_error(conf_t *conf, int read_disk,
1514 sector_t sect, int sectors)
1515{
1516 mddev_t *mddev = conf->mddev;
1517 while(sectors) {
1518 int s = sectors;
1519 int d = read_disk;
1520 int success = 0;
1521 int start;
1522 mdk_rdev_t *rdev;
1523
1524 if (s > (PAGE_SIZE>>9))
1525 s = PAGE_SIZE >> 9;
1526
1527 do {
1528 /* Note: no rcu protection needed here
1529 * as this is synchronous in the raid1d thread
1530 * which is the thread that might remove
1531 * a device. If raid1d ever becomes multi-threaded....
1532 */
1533 rdev = conf->mirrors[d].rdev;
1534 if (rdev &&
1535 test_bit(In_sync, &rdev->flags) &&
1536 sync_page_io(rdev->bdev,
1537 sect + rdev->data_offset,
1538 s<<9,
1539 conf->tmppage, READ))
1540 success = 1;
1541 else {
1542 d++;
1543 if (d == conf->raid_disks)
1544 d = 0;
1545 }
1546 } while (!success && d != read_disk);
1547
1548 if (!success) {
1549 /* Cannot read from anywhere -- bye bye array */
1550 md_error(mddev, conf->mirrors[read_disk].rdev);
1551 break;
1552 }
1553 /* write it back and re-read */
1554 start = d;
1555 while (d != read_disk) {
1556 if (d==0)
1557 d = conf->raid_disks;
1558 d--;
1559 rdev = conf->mirrors[d].rdev;
1560 if (rdev &&
1561 test_bit(In_sync, &rdev->flags)) {
1562 if (sync_page_io(rdev->bdev,
1563 sect + rdev->data_offset,
1564 s<<9, conf->tmppage, WRITE)
1565 == 0)
1566 /* Well, this device is dead */
1567 md_error(mddev, rdev);
1568 }
1569 }
1570 d = start;
1571 while (d != read_disk) {
1572 char b[BDEVNAME_SIZE];
1573 if (d==0)
1574 d = conf->raid_disks;
1575 d--;
1576 rdev = conf->mirrors[d].rdev;
1577 if (rdev &&
1578 test_bit(In_sync, &rdev->flags)) {
1579 if (sync_page_io(rdev->bdev,
1580 sect + rdev->data_offset,
1581 s<<9, conf->tmppage, READ)
1582 == 0)
1583 /* Well, this device is dead */
1584 md_error(mddev, rdev);
1585 else {
1586 atomic_add(s, &rdev->corrected_errors);
1587 printk(KERN_INFO
9dd1e2fa 1588 "md/raid1:%s: read error corrected "
867868fb
N
1589 "(%d sectors at %llu on %s)\n",
1590 mdname(mddev), s,
969b755a
RD
1591 (unsigned long long)(sect +
1592 rdev->data_offset),
867868fb
N
1593 bdevname(rdev->bdev, b));
1594 }
1595 }
1596 }
1597 sectors -= s;
1598 sect += s;
1599 }
1600}
1601
1da177e4
LT
1602static void raid1d(mddev_t *mddev)
1603{
1604 r1bio_t *r1_bio;
1605 struct bio *bio;
1606 unsigned long flags;
070ec55d 1607 conf_t *conf = mddev->private;
1da177e4
LT
1608 struct list_head *head = &conf->retry_list;
1609 int unplug=0;
1610 mdk_rdev_t *rdev;
1611
1612 md_check_recovery(mddev);
1da177e4
LT
1613
1614 for (;;) {
1615 char b[BDEVNAME_SIZE];
191ea9b2 1616
a35e63ef 1617 unplug += flush_pending_writes(conf);
191ea9b2 1618
a35e63ef
N
1619 spin_lock_irqsave(&conf->device_lock, flags);
1620 if (list_empty(head)) {
1621 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1622 break;
a35e63ef 1623 }
1da177e4
LT
1624 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1625 list_del(head->prev);
ddaf22ab 1626 conf->nr_queued--;
1da177e4
LT
1627 spin_unlock_irqrestore(&conf->device_lock, flags);
1628
1629 mddev = r1_bio->mddev;
070ec55d 1630 conf = mddev->private;
1da177e4
LT
1631 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1632 sync_request_write(mddev, r1_bio);
1633 unplug = 1;
a9701a30
N
1634 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1635 /* some requests in the r1bio were BIO_RW_BARRIER
bea27718 1636 * requests which failed with -EOPNOTSUPP. Hohumm..
a9701a30
N
1637 * Better resubmit without the barrier.
1638 * We know which devices to resubmit for, because
1639 * all others have had their bios[] entry cleared.
5e7dd2ab 1640 * We already have a nr_pending reference on these rdevs.
a9701a30
N
1641 */
1642 int i;
1f98a13f 1643 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
a9701a30
N
1644 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1645 clear_bit(R1BIO_Barrier, &r1_bio->state);
2f889129
N
1646 for (i=0; i < conf->raid_disks; i++)
1647 if (r1_bio->bios[i])
1648 atomic_inc(&r1_bio->remaining);
a9701a30
N
1649 for (i=0; i < conf->raid_disks; i++)
1650 if (r1_bio->bios[i]) {
1651 struct bio_vec *bvec;
1652 int j;
1653
1654 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1655 /* copy pages from the failed bio, as
1656 * this might be a write-behind device */
1657 __bio_for_each_segment(bvec, bio, j, 0)
1658 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1659 bio_put(r1_bio->bios[i]);
1660 bio->bi_sector = r1_bio->sector +
1661 conf->mirrors[i].rdev->data_offset;
1662 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1663 bio->bi_end_io = raid1_end_write_request;
1ef04fef
DM
1664 bio->bi_rw = WRITE |
1665 (do_sync << BIO_RW_SYNCIO);
a9701a30
N
1666 bio->bi_private = r1_bio;
1667 r1_bio->bios[i] = bio;
1668 generic_make_request(bio);
1669 }
1da177e4
LT
1670 } else {
1671 int disk;
ddaf22ab
N
1672
1673 /* we got a read error. Maybe the drive is bad. Maybe just
1674 * the block and we can fix it.
1675 * We freeze all other IO, and try reading the block from
1676 * other devices. When we find one, we re-write
1677 * and check it that fixes the read error.
1678 * This is all done synchronously while the array is
1679 * frozen
1680 */
867868fb
N
1681 if (mddev->ro == 0) {
1682 freeze_array(conf);
1683 fix_read_error(conf, r1_bio->read_disk,
1684 r1_bio->sector,
1685 r1_bio->sectors);
1686 unfreeze_array(conf);
d0e26078
N
1687 } else
1688 md_error(mddev,
1689 conf->mirrors[r1_bio->read_disk].rdev);
ddaf22ab 1690
1da177e4 1691 bio = r1_bio->bios[r1_bio->read_disk];
d0e26078 1692 if ((disk=read_balance(conf, r1_bio)) == -1) {
9dd1e2fa 1693 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1da177e4 1694 " read error for block %llu\n",
9dd1e2fa 1695 mdname(mddev),
1da177e4
LT
1696 bdevname(bio->bi_bdev,b),
1697 (unsigned long long)r1_bio->sector);
1698 raid_end_bio_io(r1_bio);
1699 } else {
1f98a13f 1700 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
cf30a473
N
1701 r1_bio->bios[r1_bio->read_disk] =
1702 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1703 r1_bio->read_disk = disk;
1704 bio_put(bio);
1705 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1706 r1_bio->bios[r1_bio->read_disk] = bio;
1707 rdev = conf->mirrors[disk].rdev;
1708 if (printk_ratelimit())
9dd1e2fa 1709 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
d754c5ae 1710 " other mirror: %s\n",
9dd1e2fa 1711 mdname(mddev),
d754c5ae
N
1712 (unsigned long long)r1_bio->sector,
1713 bdevname(rdev->bdev,b));
1da177e4
LT
1714 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1715 bio->bi_bdev = rdev->bdev;
1716 bio->bi_end_io = raid1_end_read_request;
1ef04fef 1717 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1da177e4
LT
1718 bio->bi_private = r1_bio;
1719 unplug = 1;
1720 generic_make_request(bio);
1721 }
1722 }
1d9d5241 1723 cond_resched();
1da177e4 1724 }
1da177e4
LT
1725 if (unplug)
1726 unplug_slaves(mddev);
1727}
1728
1729
1730static int init_resync(conf_t *conf)
1731{
1732 int buffs;
1733
1734 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 1735 BUG_ON(conf->r1buf_pool);
1da177e4
LT
1736 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1737 conf->poolinfo);
1738 if (!conf->r1buf_pool)
1739 return -ENOMEM;
1740 conf->next_resync = 0;
1741 return 0;
1742}
1743
1744/*
1745 * perform a "sync" on one "block"
1746 *
1747 * We need to make sure that no normal I/O request - particularly write
1748 * requests - conflict with active sync requests.
1749 *
1750 * This is achieved by tracking pending requests and a 'barrier' concept
1751 * that can be installed to exclude normal IO requests.
1752 */
1753
57afd89f 1754static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 1755{
070ec55d 1756 conf_t *conf = mddev->private;
1da177e4
LT
1757 r1bio_t *r1_bio;
1758 struct bio *bio;
1759 sector_t max_sector, nr_sectors;
3e198f78 1760 int disk = -1;
1da177e4 1761 int i;
3e198f78
N
1762 int wonly = -1;
1763 int write_targets = 0, read_targets = 0;
191ea9b2 1764 int sync_blocks;
e3b9703e 1765 int still_degraded = 0;
1da177e4
LT
1766
1767 if (!conf->r1buf_pool)
1768 if (init_resync(conf))
57afd89f 1769 return 0;
1da177e4 1770
58c0fed4 1771 max_sector = mddev->dev_sectors;
1da177e4 1772 if (sector_nr >= max_sector) {
191ea9b2
N
1773 /* If we aborted, we need to abort the
1774 * sync on the 'current' bitmap chunk (there will
1775 * only be one in raid1 resync.
1776 * We can find the current addess in mddev->curr_resync
1777 */
6a806c51
N
1778 if (mddev->curr_resync < max_sector) /* aborted */
1779 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 1780 &sync_blocks, 1);
6a806c51 1781 else /* completed sync */
191ea9b2 1782 conf->fullsync = 0;
6a806c51
N
1783
1784 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
1785 close_sync(conf);
1786 return 0;
1787 }
1788
07d84d10
N
1789 if (mddev->bitmap == NULL &&
1790 mddev->recovery_cp == MaxSector &&
6394cca5 1791 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
1792 conf->fullsync == 0) {
1793 *skipped = 1;
1794 return max_sector - sector_nr;
1795 }
6394cca5
N
1796 /* before building a request, check if we can skip these blocks..
1797 * This call the bitmap_start_sync doesn't actually record anything
1798 */
e3b9703e 1799 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 1800 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
1801 /* We can skip this block, and probably several more */
1802 *skipped = 1;
1803 return sync_blocks;
1804 }
1da177e4 1805 /*
17999be4
N
1806 * If there is non-resync activity waiting for a turn,
1807 * and resync is going fast enough,
1808 * then let it though before starting on this new sync request.
1da177e4 1809 */
17999be4 1810 if (!go_faster && conf->nr_waiting)
1da177e4 1811 msleep_interruptible(1000);
17999be4 1812
b47490c9 1813 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
17999be4
N
1814 raise_barrier(conf);
1815
1816 conf->next_resync = sector_nr;
1da177e4 1817
3e198f78
N
1818 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1819 rcu_read_lock();
1da177e4 1820 /*
3e198f78
N
1821 * If we get a correctably read error during resync or recovery,
1822 * we might want to read from a different device. So we
1823 * flag all drives that could conceivably be read from for READ,
1824 * and any others (which will be non-In_sync devices) for WRITE.
1825 * If a read fails, we try reading from something else for which READ
1826 * is OK.
1da177e4 1827 */
1da177e4 1828
1da177e4
LT
1829 r1_bio->mddev = mddev;
1830 r1_bio->sector = sector_nr;
191ea9b2 1831 r1_bio->state = 0;
1da177e4 1832 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
1833
1834 for (i=0; i < conf->raid_disks; i++) {
3e198f78 1835 mdk_rdev_t *rdev;
1da177e4
LT
1836 bio = r1_bio->bios[i];
1837
1838 /* take from bio_init */
1839 bio->bi_next = NULL;
1840 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 1841 bio->bi_rw = READ;
1da177e4
LT
1842 bio->bi_vcnt = 0;
1843 bio->bi_idx = 0;
1844 bio->bi_phys_segments = 0;
1da177e4
LT
1845 bio->bi_size = 0;
1846 bio->bi_end_io = NULL;
1847 bio->bi_private = NULL;
1848
3e198f78
N
1849 rdev = rcu_dereference(conf->mirrors[i].rdev);
1850 if (rdev == NULL ||
1851 test_bit(Faulty, &rdev->flags)) {
e3b9703e
N
1852 still_degraded = 1;
1853 continue;
3e198f78 1854 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
1855 bio->bi_rw = WRITE;
1856 bio->bi_end_io = end_sync_write;
1857 write_targets ++;
3e198f78
N
1858 } else {
1859 /* may need to read from here */
1860 bio->bi_rw = READ;
1861 bio->bi_end_io = end_sync_read;
1862 if (test_bit(WriteMostly, &rdev->flags)) {
1863 if (wonly < 0)
1864 wonly = i;
1865 } else {
1866 if (disk < 0)
1867 disk = i;
1868 }
1869 read_targets++;
1870 }
1871 atomic_inc(&rdev->nr_pending);
1872 bio->bi_sector = sector_nr + rdev->data_offset;
1873 bio->bi_bdev = rdev->bdev;
1da177e4
LT
1874 bio->bi_private = r1_bio;
1875 }
3e198f78
N
1876 rcu_read_unlock();
1877 if (disk < 0)
1878 disk = wonly;
1879 r1_bio->read_disk = disk;
191ea9b2 1880
3e198f78
N
1881 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1882 /* extra read targets are also write targets */
1883 write_targets += read_targets-1;
1884
1885 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
1886 /* There is nowhere to write, so all non-sync
1887 * drives must be failed - so we are finished
1888 */
57afd89f
N
1889 sector_t rv = max_sector - sector_nr;
1890 *skipped = 1;
1da177e4 1891 put_buf(r1_bio);
1da177e4
LT
1892 return rv;
1893 }
1894
c6207277
N
1895 if (max_sector > mddev->resync_max)
1896 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1da177e4 1897 nr_sectors = 0;
289e99e8 1898 sync_blocks = 0;
1da177e4
LT
1899 do {
1900 struct page *page;
1901 int len = PAGE_SIZE;
1902 if (sector_nr + (len>>9) > max_sector)
1903 len = (max_sector - sector_nr) << 9;
1904 if (len == 0)
1905 break;
6a806c51
N
1906 if (sync_blocks == 0) {
1907 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
1908 &sync_blocks, still_degraded) &&
1909 !conf->fullsync &&
1910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 1911 break;
9e77c485 1912 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
6a806c51
N
1913 if (len > (sync_blocks<<9))
1914 len = sync_blocks<<9;
ab7a30c7 1915 }
191ea9b2 1916
1da177e4
LT
1917 for (i=0 ; i < conf->raid_disks; i++) {
1918 bio = r1_bio->bios[i];
1919 if (bio->bi_end_io) {
d11c171e 1920 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
1921 if (bio_add_page(bio, page, len, 0) == 0) {
1922 /* stop here */
d11c171e 1923 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
1924 while (i > 0) {
1925 i--;
1926 bio = r1_bio->bios[i];
6a806c51
N
1927 if (bio->bi_end_io==NULL)
1928 continue;
1da177e4
LT
1929 /* remove last page from this bio */
1930 bio->bi_vcnt--;
1931 bio->bi_size -= len;
1932 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1933 }
1934 goto bio_full;
1935 }
1936 }
1937 }
1938 nr_sectors += len>>9;
1939 sector_nr += len>>9;
191ea9b2 1940 sync_blocks -= (len>>9);
1da177e4
LT
1941 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1942 bio_full:
1da177e4
LT
1943 r1_bio->sectors = nr_sectors;
1944
d11c171e
N
1945 /* For a user-requested sync, we read all readable devices and do a
1946 * compare
1947 */
1948 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1949 atomic_set(&r1_bio->remaining, read_targets);
1950 for (i=0; i<conf->raid_disks; i++) {
1951 bio = r1_bio->bios[i];
1952 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 1953 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
1954 generic_make_request(bio);
1955 }
1956 }
1957 } else {
1958 atomic_set(&r1_bio->remaining, 1);
1959 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 1960 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 1961 generic_make_request(bio);
1da177e4 1962
d11c171e 1963 }
1da177e4
LT
1964 return nr_sectors;
1965}
1966
80c3a6ce
DW
1967static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1968{
1969 if (sectors)
1970 return sectors;
1971
1972 return mddev->dev_sectors;
1973}
1974
709ae487 1975static conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
1976{
1977 conf_t *conf;
709ae487 1978 int i;
1da177e4
LT
1979 mirror_info_t *disk;
1980 mdk_rdev_t *rdev;
709ae487 1981 int err = -ENOMEM;
1da177e4 1982
9ffae0cf 1983 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4 1984 if (!conf)
709ae487 1985 goto abort;
1da177e4 1986
9ffae0cf 1987 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1988 GFP_KERNEL);
1989 if (!conf->mirrors)
709ae487 1990 goto abort;
1da177e4 1991
ddaf22ab
N
1992 conf->tmppage = alloc_page(GFP_KERNEL);
1993 if (!conf->tmppage)
709ae487 1994 goto abort;
ddaf22ab 1995
709ae487 1996 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 1997 if (!conf->poolinfo)
709ae487 1998 goto abort;
1da177e4
LT
1999 conf->poolinfo->raid_disks = mddev->raid_disks;
2000 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2001 r1bio_pool_free,
2002 conf->poolinfo);
2003 if (!conf->r1bio_pool)
709ae487
N
2004 goto abort;
2005
ed9bfdf1 2006 conf->poolinfo->mddev = mddev;
1da177e4 2007
e7e72bf6 2008 spin_lock_init(&conf->device_lock);
159ec1fc 2009 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2010 int disk_idx = rdev->raid_disk;
1da177e4
LT
2011 if (disk_idx >= mddev->raid_disks
2012 || disk_idx < 0)
2013 continue;
2014 disk = conf->mirrors + disk_idx;
2015
2016 disk->rdev = rdev;
1da177e4
LT
2017
2018 disk->head_position = 0;
1da177e4
LT
2019 }
2020 conf->raid_disks = mddev->raid_disks;
2021 conf->mddev = mddev;
1da177e4 2022 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2023
2024 spin_lock_init(&conf->resync_lock);
17999be4 2025 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2026
191ea9b2
N
2027 bio_list_init(&conf->pending_bio_list);
2028 bio_list_init(&conf->flushing_bio_list);
2029
709ae487 2030 conf->last_used = -1;
1da177e4
LT
2031 for (i = 0; i < conf->raid_disks; i++) {
2032
2033 disk = conf->mirrors + i;
2034
5fd6c1dc
N
2035 if (!disk->rdev ||
2036 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2037 disk->head_position = 0;
918f0238
N
2038 if (disk->rdev)
2039 conf->fullsync = 1;
709ae487
N
2040 } else if (conf->last_used < 0)
2041 /*
2042 * The first working device is used as a
2043 * starting point to read balancing.
2044 */
2045 conf->last_used = i;
1da177e4 2046 }
709ae487
N
2047
2048 err = -EIO;
2049 if (conf->last_used < 0) {
9dd1e2fa 2050 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2051 mdname(mddev));
2052 goto abort;
2053 }
2054 err = -ENOMEM;
2055 conf->thread = md_register_thread(raid1d, mddev, NULL);
2056 if (!conf->thread) {
2057 printk(KERN_ERR
9dd1e2fa 2058 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2059 mdname(mddev));
2060 goto abort;
11ce99e6 2061 }
1da177e4 2062
709ae487
N
2063 return conf;
2064
2065 abort:
2066 if (conf) {
2067 if (conf->r1bio_pool)
2068 mempool_destroy(conf->r1bio_pool);
2069 kfree(conf->mirrors);
2070 safe_put_page(conf->tmppage);
2071 kfree(conf->poolinfo);
2072 kfree(conf);
2073 }
2074 return ERR_PTR(err);
2075}
2076
2077static int run(mddev_t *mddev)
2078{
2079 conf_t *conf;
2080 int i;
2081 mdk_rdev_t *rdev;
2082
2083 if (mddev->level != 1) {
9dd1e2fa 2084 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2085 mdname(mddev), mddev->level);
2086 return -EIO;
2087 }
2088 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2089 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2090 mdname(mddev));
2091 return -EIO;
2092 }
1da177e4 2093 /*
709ae487
N
2094 * copy the already verified devices into our private RAID1
2095 * bookkeeping area. [whatever we allocate in run(),
2096 * should be freed in stop()]
1da177e4 2097 */
709ae487
N
2098 if (mddev->private == NULL)
2099 conf = setup_conf(mddev);
2100 else
2101 conf = mddev->private;
1da177e4 2102
709ae487
N
2103 if (IS_ERR(conf))
2104 return PTR_ERR(conf);
1da177e4 2105
709ae487
N
2106 mddev->queue->queue_lock = &conf->device_lock;
2107 list_for_each_entry(rdev, &mddev->disks, same_set) {
2108 disk_stack_limits(mddev->gendisk, rdev->bdev,
2109 rdev->data_offset << 9);
2110 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2111 * violating it, so limit ->max_segments to 1 lying within
2112 * a single page, as a one page request is never in violation.
709ae487 2113 */
627a2d3c
N
2114 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2115 blk_queue_max_segments(mddev->queue, 1);
2116 blk_queue_segment_boundary(mddev->queue,
2117 PAGE_CACHE_SIZE - 1);
2118 }
1da177e4 2119 }
191ea9b2 2120
709ae487
N
2121 mddev->degraded = 0;
2122 for (i=0; i < conf->raid_disks; i++)
2123 if (conf->mirrors[i].rdev == NULL ||
2124 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2125 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2126 mddev->degraded++;
2127
2128 if (conf->raid_disks - mddev->degraded == 1)
2129 mddev->recovery_cp = MaxSector;
2130
8c6ac868 2131 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2132 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2133 " -- starting background reconstruction\n",
2134 mdname(mddev));
1da177e4 2135 printk(KERN_INFO
9dd1e2fa 2136 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2137 mdname(mddev), mddev->raid_disks - mddev->degraded,
2138 mddev->raid_disks);
709ae487 2139
1da177e4
LT
2140 /*
2141 * Ok, everything is just fine now
2142 */
709ae487
N
2143 mddev->thread = conf->thread;
2144 conf->thread = NULL;
2145 mddev->private = conf;
2146
1f403624 2147 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2148
7a5febe9 2149 mddev->queue->unplug_fn = raid1_unplug;
0d129228
N
2150 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2151 mddev->queue->backing_dev_info.congested_data = mddev;
ac5e7113 2152 md_integrity_register(mddev);
1da177e4 2153 return 0;
1da177e4
LT
2154}
2155
2156static int stop(mddev_t *mddev)
2157{
070ec55d 2158 conf_t *conf = mddev->private;
4b6d287f 2159 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2160
2161 /* wait for behind writes to complete */
e555190d 2162 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2163 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2164 mdname(mddev));
4b6d287f 2165 /* need to kick something here to make sure I/O goes? */
e555190d
N
2166 wait_event(bitmap->behind_wait,
2167 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2168 }
1da177e4 2169
409c57f3
N
2170 raise_barrier(conf);
2171 lower_barrier(conf);
2172
1da177e4
LT
2173 md_unregister_thread(mddev->thread);
2174 mddev->thread = NULL;
2175 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2176 if (conf->r1bio_pool)
2177 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2178 kfree(conf->mirrors);
2179 kfree(conf->poolinfo);
1da177e4
LT
2180 kfree(conf);
2181 mddev->private = NULL;
2182 return 0;
2183}
2184
2185static int raid1_resize(mddev_t *mddev, sector_t sectors)
2186{
2187 /* no resync is happening, and there is enough space
2188 * on all devices, so we can resize.
2189 * We need to make sure resync covers any new space.
2190 * If the array is shrinking we should possibly wait until
2191 * any io in the removed space completes, but it hardly seems
2192 * worth it.
2193 */
1f403624 2194 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2195 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2196 return -EINVAL;
f233ea5c 2197 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2198 revalidate_disk(mddev->gendisk);
b522adcd 2199 if (sectors > mddev->dev_sectors &&
f233ea5c 2200 mddev->recovery_cp == MaxSector) {
58c0fed4 2201 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2203 }
b522adcd 2204 mddev->dev_sectors = sectors;
4b5c7ae8 2205 mddev->resync_max_sectors = sectors;
1da177e4
LT
2206 return 0;
2207}
2208
63c70c4f 2209static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2210{
2211 /* We need to:
2212 * 1/ resize the r1bio_pool
2213 * 2/ resize conf->mirrors
2214 *
2215 * We allocate a new r1bio_pool if we can.
2216 * Then raise a device barrier and wait until all IO stops.
2217 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2218 *
2219 * At the same time, we "pack" the devices so that all the missing
2220 * devices have the higher raid_disk numbers.
1da177e4
LT
2221 */
2222 mempool_t *newpool, *oldpool;
2223 struct pool_info *newpoolinfo;
2224 mirror_info_t *newmirrors;
070ec55d 2225 conf_t *conf = mddev->private;
63c70c4f 2226 int cnt, raid_disks;
c04be0aa 2227 unsigned long flags;
b5470dc5 2228 int d, d2, err;
1da177e4 2229
63c70c4f 2230 /* Cannot change chunk_size, layout, or level */
664e7c41 2231 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2232 mddev->layout != mddev->new_layout ||
2233 mddev->level != mddev->new_level) {
664e7c41 2234 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2235 mddev->new_layout = mddev->layout;
2236 mddev->new_level = mddev->level;
2237 return -EINVAL;
2238 }
2239
b5470dc5
DW
2240 err = md_allow_write(mddev);
2241 if (err)
2242 return err;
2a2275d6 2243
63c70c4f
N
2244 raid_disks = mddev->raid_disks + mddev->delta_disks;
2245
6ea9c07c
N
2246 if (raid_disks < conf->raid_disks) {
2247 cnt=0;
2248 for (d= 0; d < conf->raid_disks; d++)
2249 if (conf->mirrors[d].rdev)
2250 cnt++;
2251 if (cnt > raid_disks)
1da177e4 2252 return -EBUSY;
6ea9c07c 2253 }
1da177e4
LT
2254
2255 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2256 if (!newpoolinfo)
2257 return -ENOMEM;
2258 newpoolinfo->mddev = mddev;
2259 newpoolinfo->raid_disks = raid_disks;
2260
2261 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2262 r1bio_pool_free, newpoolinfo);
2263 if (!newpool) {
2264 kfree(newpoolinfo);
2265 return -ENOMEM;
2266 }
9ffae0cf 2267 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2268 if (!newmirrors) {
2269 kfree(newpoolinfo);
2270 mempool_destroy(newpool);
2271 return -ENOMEM;
2272 }
1da177e4 2273
17999be4 2274 raise_barrier(conf);
1da177e4
LT
2275
2276 /* ok, everything is stopped */
2277 oldpool = conf->r1bio_pool;
2278 conf->r1bio_pool = newpool;
6ea9c07c 2279
a88aa786
N
2280 for (d = d2 = 0; d < conf->raid_disks; d++) {
2281 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2282 if (rdev && rdev->raid_disk != d2) {
2283 char nm[20];
2284 sprintf(nm, "rd%d", rdev->raid_disk);
2285 sysfs_remove_link(&mddev->kobj, nm);
2286 rdev->raid_disk = d2;
2287 sprintf(nm, "rd%d", rdev->raid_disk);
2288 sysfs_remove_link(&mddev->kobj, nm);
2289 if (sysfs_create_link(&mddev->kobj,
2290 &rdev->kobj, nm))
2291 printk(KERN_WARNING
9dd1e2fa
N
2292 "md/raid1:%s: cannot register "
2293 "%s\n",
2294 mdname(mddev), nm);
6ea9c07c 2295 }
a88aa786
N
2296 if (rdev)
2297 newmirrors[d2++].rdev = rdev;
2298 }
1da177e4
LT
2299 kfree(conf->mirrors);
2300 conf->mirrors = newmirrors;
2301 kfree(conf->poolinfo);
2302 conf->poolinfo = newpoolinfo;
2303
c04be0aa 2304 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2305 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2306 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2307 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2308 mddev->delta_disks = 0;
1da177e4 2309
6ea9c07c 2310 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2311 lower_barrier(conf);
1da177e4
LT
2312
2313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2314 md_wakeup_thread(mddev->thread);
2315
2316 mempool_destroy(oldpool);
2317 return 0;
2318}
2319
500af87a 2320static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063 2321{
070ec55d 2322 conf_t *conf = mddev->private;
36fa3063
N
2323
2324 switch(state) {
6eef4b21
N
2325 case 2: /* wake for suspend */
2326 wake_up(&conf->wait_barrier);
2327 break;
9e6603da 2328 case 1:
17999be4 2329 raise_barrier(conf);
36fa3063 2330 break;
9e6603da 2331 case 0:
17999be4 2332 lower_barrier(conf);
36fa3063
N
2333 break;
2334 }
36fa3063
N
2335}
2336
709ae487
N
2337static void *raid1_takeover(mddev_t *mddev)
2338{
2339 /* raid1 can take over:
2340 * raid5 with 2 devices, any layout or chunk size
2341 */
2342 if (mddev->level == 5 && mddev->raid_disks == 2) {
2343 conf_t *conf;
2344 mddev->new_level = 1;
2345 mddev->new_layout = 0;
2346 mddev->new_chunk_sectors = 0;
2347 conf = setup_conf(mddev);
2348 if (!IS_ERR(conf))
2349 conf->barrier = 1;
2350 return conf;
2351 }
2352 return ERR_PTR(-EINVAL);
2353}
1da177e4 2354
2604b703 2355static struct mdk_personality raid1_personality =
1da177e4
LT
2356{
2357 .name = "raid1",
2604b703 2358 .level = 1,
1da177e4
LT
2359 .owner = THIS_MODULE,
2360 .make_request = make_request,
2361 .run = run,
2362 .stop = stop,
2363 .status = status,
2364 .error_handler = error,
2365 .hot_add_disk = raid1_add_disk,
2366 .hot_remove_disk= raid1_remove_disk,
2367 .spare_active = raid1_spare_active,
2368 .sync_request = sync_request,
2369 .resize = raid1_resize,
80c3a6ce 2370 .size = raid1_size,
63c70c4f 2371 .check_reshape = raid1_reshape,
36fa3063 2372 .quiesce = raid1_quiesce,
709ae487 2373 .takeover = raid1_takeover,
1da177e4
LT
2374};
2375
2376static int __init raid_init(void)
2377{
2604b703 2378 return register_md_personality(&raid1_personality);
1da177e4
LT
2379}
2380
2381static void raid_exit(void)
2382{
2604b703 2383 unregister_md_personality(&raid1_personality);
1da177e4
LT
2384}
2385
2386module_init(raid_init);
2387module_exit(raid_exit);
2388MODULE_LICENSE("GPL");
0efb9e61 2389MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2390MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2391MODULE_ALIAS("md-raid1");
2604b703 2392MODULE_ALIAS("md-level-1");