]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/md.c
[PATCH] md: fix deadlock due to md thread processing delayed requests.
[net-next-2.6.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
32a7627c
N
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
1da177e4
LT
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/module.h>
36#include <linux/config.h>
37#include <linux/linkage.h>
38#include <linux/raid/md.h>
32a7627c 39#include <linux/raid/bitmap.h>
1da177e4
LT
40#include <linux/sysctl.h>
41#include <linux/devfs_fs_kernel.h>
42#include <linux/buffer_head.h> /* for invalidate_bdev */
43#include <linux/suspend.h>
44
45#include <linux/init.h>
46
32a7627c
N
47#include <linux/file.h>
48
1da177e4
LT
49#ifdef CONFIG_KMOD
50#include <linux/kmod.h>
51#endif
52
53#include <asm/unaligned.h>
54
55#define MAJOR_NR MD_MAJOR
56#define MD_DRIVER
57
58/* 63 partitions with the alternate major number (mdp) */
59#define MdpMinorShift 6
60
61#define DEBUG 0
62#define dprintk(x...) ((void)(DEBUG && printk(x)))
63
64
65#ifndef MODULE
66static void autostart_arrays (int part);
67#endif
68
69static mdk_personality_t *pers[MAX_PERSONALITY];
70static DEFINE_SPINLOCK(pers_lock);
71
72/*
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
79 * idle IO detection.
80 *
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82 */
83
84static int sysctl_speed_limit_min = 1000;
85static int sysctl_speed_limit_max = 200000;
86
87static struct ctl_table_header *raid_table_header;
88
89static ctl_table raid_table[] = {
90 {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = &proc_dointvec,
97 },
98 {
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
103 .mode = 0644,
104 .proc_handler = &proc_dointvec,
105 },
106 { .ctl_name = 0 }
107};
108
109static ctl_table raid_dir_table[] = {
110 {
111 .ctl_name = DEV_RAID,
112 .procname = "raid",
113 .maxlen = 0,
114 .mode = 0555,
115 .child = raid_table,
116 },
117 { .ctl_name = 0 }
118};
119
120static ctl_table raid_root_table[] = {
121 {
122 .ctl_name = CTL_DEV,
123 .procname = "dev",
124 .maxlen = 0,
125 .mode = 0555,
126 .child = raid_dir_table,
127 },
128 { .ctl_name = 0 }
129};
130
131static struct block_device_operations md_fops;
132
133/*
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
136 */
137static LIST_HEAD(all_mddevs);
138static DEFINE_SPINLOCK(all_mddevs_lock);
139
140
141/*
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
147 */
148#define ITERATE_MDDEV(mddev,tmp) \
149 \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
152 mddev = NULL;}); \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
160 tmp = tmp->next;}) \
161 )
162
163
164static int md_fail_request (request_queue_t *q, struct bio *bio)
165{
166 bio_io_error(bio, bio->bi_size);
167 return 0;
168}
169
170static inline mddev_t *mddev_get(mddev_t *mddev)
171{
172 atomic_inc(&mddev->active);
173 return mddev;
174}
175
176static void mddev_put(mddev_t *mddev)
177{
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 return;
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
183 kfree(mddev);
184 }
185 spin_unlock(&all_mddevs_lock);
186}
187
188static mddev_t * mddev_find(dev_t unit)
189{
190 mddev_t *mddev, *new = NULL;
191
192 retry:
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
196 mddev_get(mddev);
197 spin_unlock(&all_mddevs_lock);
198 if (new)
199 kfree(new);
200 return mddev;
201 }
202
203 if (new) {
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
206 return new;
207 }
208 spin_unlock(&all_mddevs_lock);
209
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 if (!new)
212 return NULL;
213
214 memset(new, 0, sizeof(*new));
215
216 new->unit = unit;
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
219 else
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
221
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
06d91a5f 227 spin_lock_init(&new->write_lock);
3d310eb7 228 init_waitqueue_head(&new->sb_wait);
1da177e4
LT
229
230 new->queue = blk_alloc_queue(GFP_KERNEL);
231 if (!new->queue) {
232 kfree(new);
233 return NULL;
234 }
235
236 blk_queue_make_request(new->queue, md_fail_request);
237
238 goto retry;
239}
240
241static inline int mddev_lock(mddev_t * mddev)
242{
243 return down_interruptible(&mddev->reconfig_sem);
244}
245
246static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247{
248 down(&mddev->reconfig_sem);
249}
250
251static inline int mddev_trylock(mddev_t * mddev)
252{
253 return down_trylock(&mddev->reconfig_sem);
254}
255
256static inline void mddev_unlock(mddev_t * mddev)
257{
258 up(&mddev->reconfig_sem);
259
260 if (mddev->thread)
261 md_wakeup_thread(mddev->thread);
262}
263
264mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
265{
266 mdk_rdev_t * rdev;
267 struct list_head *tmp;
268
269 ITERATE_RDEV(mddev,rdev,tmp) {
270 if (rdev->desc_nr == nr)
271 return rdev;
272 }
273 return NULL;
274}
275
276static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277{
278 struct list_head *tmp;
279 mdk_rdev_t *rdev;
280
281 ITERATE_RDEV(mddev,rdev,tmp) {
282 if (rdev->bdev->bd_dev == dev)
283 return rdev;
284 }
285 return NULL;
286}
287
288inline static sector_t calc_dev_sboffset(struct block_device *bdev)
289{
290 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
291 return MD_NEW_SIZE_BLOCKS(size);
292}
293
294static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
295{
296 sector_t size;
297
298 size = rdev->sb_offset;
299
300 if (chunk_size)
301 size &= ~((sector_t)chunk_size/1024 - 1);
302 return size;
303}
304
305static int alloc_disk_sb(mdk_rdev_t * rdev)
306{
307 if (rdev->sb_page)
308 MD_BUG();
309
310 rdev->sb_page = alloc_page(GFP_KERNEL);
311 if (!rdev->sb_page) {
312 printk(KERN_ALERT "md: out of memory.\n");
313 return -EINVAL;
314 }
315
316 return 0;
317}
318
319static void free_disk_sb(mdk_rdev_t * rdev)
320{
321 if (rdev->sb_page) {
322 page_cache_release(rdev->sb_page);
323 rdev->sb_loaded = 0;
324 rdev->sb_page = NULL;
325 rdev->sb_offset = 0;
326 rdev->size = 0;
327 }
328}
329
330
331static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
332{
333 if (bio->bi_size)
334 return 1;
335
336 complete((struct completion*)bio->bi_private);
337 return 0;
338}
339
340static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
341 struct page *page, int rw)
342{
baaa2c51 343 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
344 struct completion event;
345 int ret;
346
347 rw |= (1 << BIO_RW_SYNC);
348
349 bio->bi_bdev = bdev;
350 bio->bi_sector = sector;
351 bio_add_page(bio, page, size, 0);
352 init_completion(&event);
353 bio->bi_private = &event;
354 bio->bi_end_io = bi_complete;
355 submit_bio(rw, bio);
356 wait_for_completion(&event);
357
358 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 bio_put(bio);
360 return ret;
361}
362
363static int read_disk_sb(mdk_rdev_t * rdev)
364{
365 char b[BDEVNAME_SIZE];
366 if (!rdev->sb_page) {
367 MD_BUG();
368 return -EINVAL;
369 }
370 if (rdev->sb_loaded)
371 return 0;
372
373
374 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
375 goto fail;
376 rdev->sb_loaded = 1;
377 return 0;
378
379fail:
380 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
381 bdevname(rdev->bdev,b));
382 return -EINVAL;
383}
384
385static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
386{
387 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
388 (sb1->set_uuid1 == sb2->set_uuid1) &&
389 (sb1->set_uuid2 == sb2->set_uuid2) &&
390 (sb1->set_uuid3 == sb2->set_uuid3))
391
392 return 1;
393
394 return 0;
395}
396
397
398static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
399{
400 int ret;
401 mdp_super_t *tmp1, *tmp2;
402
403 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
404 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
405
406 if (!tmp1 || !tmp2) {
407 ret = 0;
408 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
409 goto abort;
410 }
411
412 *tmp1 = *sb1;
413 *tmp2 = *sb2;
414
415 /*
416 * nr_disks is not constant
417 */
418 tmp1->nr_disks = 0;
419 tmp2->nr_disks = 0;
420
421 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
422 ret = 0;
423 else
424 ret = 1;
425
426abort:
427 if (tmp1)
428 kfree(tmp1);
429 if (tmp2)
430 kfree(tmp2);
431
432 return ret;
433}
434
435static unsigned int calc_sb_csum(mdp_super_t * sb)
436{
437 unsigned int disk_csum, csum;
438
439 disk_csum = sb->sb_csum;
440 sb->sb_csum = 0;
441 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
442 sb->sb_csum = disk_csum;
443 return csum;
444}
445
446
447/*
448 * Handle superblock details.
449 * We want to be able to handle multiple superblock formats
450 * so we have a common interface to them all, and an array of
451 * different handlers.
452 * We rely on user-space to write the initial superblock, and support
453 * reading and updating of superblocks.
454 * Interface methods are:
455 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
456 * loads and validates a superblock on dev.
457 * if refdev != NULL, compare superblocks on both devices
458 * Return:
459 * 0 - dev has a superblock that is compatible with refdev
460 * 1 - dev has a superblock that is compatible and newer than refdev
461 * so dev should be used as the refdev in future
462 * -EINVAL superblock incompatible or invalid
463 * -othererror e.g. -EIO
464 *
465 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
466 * Verify that dev is acceptable into mddev.
467 * The first time, mddev->raid_disks will be 0, and data from
468 * dev should be merged in. Subsequent calls check that dev
469 * is new enough. Return 0 or -EINVAL
470 *
471 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
472 * Update the superblock for rdev with data in mddev
473 * This does not write to disc.
474 *
475 */
476
477struct super_type {
478 char *name;
479 struct module *owner;
480 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
481 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
482 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
483};
484
485/*
486 * load_super for 0.90.0
487 */
488static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
489{
490 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
491 mdp_super_t *sb;
492 int ret;
493 sector_t sb_offset;
494
495 /*
496 * Calculate the position of the superblock,
497 * it's at the end of the disk.
498 *
499 * It also happens to be a multiple of 4Kb.
500 */
501 sb_offset = calc_dev_sboffset(rdev->bdev);
502 rdev->sb_offset = sb_offset;
503
504 ret = read_disk_sb(rdev);
505 if (ret) return ret;
506
507 ret = -EINVAL;
508
509 bdevname(rdev->bdev, b);
510 sb = (mdp_super_t*)page_address(rdev->sb_page);
511
512 if (sb->md_magic != MD_SB_MAGIC) {
513 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
514 b);
515 goto abort;
516 }
517
518 if (sb->major_version != 0 ||
519 sb->minor_version != 90) {
520 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
521 sb->major_version, sb->minor_version,
522 b);
523 goto abort;
524 }
525
526 if (sb->raid_disks <= 0)
527 goto abort;
528
529 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
530 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
531 b);
532 goto abort;
533 }
534
535 rdev->preferred_minor = sb->md_minor;
536 rdev->data_offset = 0;
537
538 if (sb->level == LEVEL_MULTIPATH)
539 rdev->desc_nr = -1;
540 else
541 rdev->desc_nr = sb->this_disk.number;
542
543 if (refdev == 0)
544 ret = 1;
545 else {
546 __u64 ev1, ev2;
547 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
548 if (!uuid_equal(refsb, sb)) {
549 printk(KERN_WARNING "md: %s has different UUID to %s\n",
550 b, bdevname(refdev->bdev,b2));
551 goto abort;
552 }
553 if (!sb_equal(refsb, sb)) {
554 printk(KERN_WARNING "md: %s has same UUID"
555 " but different superblock to %s\n",
556 b, bdevname(refdev->bdev, b2));
557 goto abort;
558 }
559 ev1 = md_event(sb);
560 ev2 = md_event(refsb);
561 if (ev1 > ev2)
562 ret = 1;
563 else
564 ret = 0;
565 }
566 rdev->size = calc_dev_size(rdev, sb->chunk_size);
567
568 abort:
569 return ret;
570}
571
572/*
573 * validate_super for 0.90.0
574 */
575static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
576{
577 mdp_disk_t *desc;
578 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
579
41158c7e
N
580 rdev->raid_disk = -1;
581 rdev->in_sync = 0;
1da177e4
LT
582 if (mddev->raid_disks == 0) {
583 mddev->major_version = 0;
584 mddev->minor_version = sb->minor_version;
585 mddev->patch_version = sb->patch_version;
586 mddev->persistent = ! sb->not_persistent;
587 mddev->chunk_size = sb->chunk_size;
588 mddev->ctime = sb->ctime;
589 mddev->utime = sb->utime;
590 mddev->level = sb->level;
591 mddev->layout = sb->layout;
592 mddev->raid_disks = sb->raid_disks;
593 mddev->size = sb->size;
594 mddev->events = md_event(sb);
595
596 if (sb->state & (1<<MD_SB_CLEAN))
597 mddev->recovery_cp = MaxSector;
598 else {
599 if (sb->events_hi == sb->cp_events_hi &&
600 sb->events_lo == sb->cp_events_lo) {
601 mddev->recovery_cp = sb->recovery_cp;
602 } else
603 mddev->recovery_cp = 0;
604 }
605
606 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
607 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
608 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
609 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
610
611 mddev->max_disks = MD_SB_DISKS;
41158c7e
N
612 } else if (mddev->pers == NULL) {
613 /* Insist on good event counter while assembling */
614 __u64 ev1 = md_event(sb);
1da177e4
LT
615 ++ev1;
616 if (ev1 < mddev->events)
617 return -EINVAL;
41158c7e
N
618 } else if (mddev->bitmap) {
619 /* if adding to array with a bitmap, then we can accept an
620 * older device ... but not too old.
621 */
622 __u64 ev1 = md_event(sb);
623 if (ev1 < mddev->bitmap->events_cleared)
624 return 0;
625 } else /* just a hot-add of a new device, leave raid_disk at -1 */
626 return 0;
627
1da177e4 628 if (mddev->level != LEVEL_MULTIPATH) {
41158c7e 629 rdev->faulty = 0;
1da177e4
LT
630 desc = sb->disks + rdev->desc_nr;
631
632 if (desc->state & (1<<MD_DISK_FAULTY))
633 rdev->faulty = 1;
634 else if (desc->state & (1<<MD_DISK_SYNC) &&
635 desc->raid_disk < mddev->raid_disks) {
636 rdev->in_sync = 1;
637 rdev->raid_disk = desc->raid_disk;
638 }
41158c7e
N
639 } else /* MULTIPATH are always insync */
640 rdev->in_sync = 1;
1da177e4
LT
641 return 0;
642}
643
644/*
645 * sync_super for 0.90.0
646 */
647static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
648{
649 mdp_super_t *sb;
650 struct list_head *tmp;
651 mdk_rdev_t *rdev2;
652 int next_spare = mddev->raid_disks;
653
654 /* make rdev->sb match mddev data..
655 *
656 * 1/ zero out disks
657 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
658 * 3/ any empty disks < next_spare become removed
659 *
660 * disks[0] gets initialised to REMOVED because
661 * we cannot be sure from other fields if it has
662 * been initialised or not.
663 */
664 int i;
665 int active=0, working=0,failed=0,spare=0,nr_disks=0;
666
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
668
669 memset(sb, 0, sizeof(*sb));
670
671 sb->md_magic = MD_SB_MAGIC;
672 sb->major_version = mddev->major_version;
673 sb->minor_version = mddev->minor_version;
674 sb->patch_version = mddev->patch_version;
675 sb->gvalid_words = 0; /* ignored */
676 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
677 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
678 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
679 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
680
681 sb->ctime = mddev->ctime;
682 sb->level = mddev->level;
683 sb->size = mddev->size;
684 sb->raid_disks = mddev->raid_disks;
685 sb->md_minor = mddev->md_minor;
686 sb->not_persistent = !mddev->persistent;
687 sb->utime = mddev->utime;
688 sb->state = 0;
689 sb->events_hi = (mddev->events>>32);
690 sb->events_lo = (u32)mddev->events;
691
692 if (mddev->in_sync)
693 {
694 sb->recovery_cp = mddev->recovery_cp;
695 sb->cp_events_hi = (mddev->events>>32);
696 sb->cp_events_lo = (u32)mddev->events;
697 if (mddev->recovery_cp == MaxSector)
698 sb->state = (1<< MD_SB_CLEAN);
699 } else
700 sb->recovery_cp = 0;
701
702 sb->layout = mddev->layout;
703 sb->chunk_size = mddev->chunk_size;
704
705 sb->disks[0].state = (1<<MD_DISK_REMOVED);
706 ITERATE_RDEV(mddev,rdev2,tmp) {
707 mdp_disk_t *d;
708 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
709 rdev2->desc_nr = rdev2->raid_disk;
710 else
711 rdev2->desc_nr = next_spare++;
712 d = &sb->disks[rdev2->desc_nr];
713 nr_disks++;
714 d->number = rdev2->desc_nr;
715 d->major = MAJOR(rdev2->bdev->bd_dev);
716 d->minor = MINOR(rdev2->bdev->bd_dev);
717 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
718 d->raid_disk = rdev2->raid_disk;
719 else
720 d->raid_disk = rdev2->desc_nr; /* compatibility */
721 if (rdev2->faulty) {
722 d->state = (1<<MD_DISK_FAULTY);
723 failed++;
724 } else if (rdev2->in_sync) {
725 d->state = (1<<MD_DISK_ACTIVE);
726 d->state |= (1<<MD_DISK_SYNC);
727 active++;
728 working++;
729 } else {
730 d->state = 0;
731 spare++;
732 working++;
733 }
734 }
735
736 /* now set the "removed" and "faulty" bits on any missing devices */
737 for (i=0 ; i < mddev->raid_disks ; i++) {
738 mdp_disk_t *d = &sb->disks[i];
739 if (d->state == 0 && d->number == 0) {
740 d->number = i;
741 d->raid_disk = i;
742 d->state = (1<<MD_DISK_REMOVED);
743 d->state |= (1<<MD_DISK_FAULTY);
744 failed++;
745 }
746 }
747 sb->nr_disks = nr_disks;
748 sb->active_disks = active;
749 sb->working_disks = working;
750 sb->failed_disks = failed;
751 sb->spare_disks = spare;
752
753 sb->this_disk = sb->disks[rdev->desc_nr];
754 sb->sb_csum = calc_sb_csum(sb);
755}
756
757/*
758 * version 1 superblock
759 */
760
761static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
762{
763 unsigned int disk_csum, csum;
764 unsigned long long newcsum;
765 int size = 256 + le32_to_cpu(sb->max_dev)*2;
766 unsigned int *isuper = (unsigned int*)sb;
767 int i;
768
769 disk_csum = sb->sb_csum;
770 sb->sb_csum = 0;
771 newcsum = 0;
772 for (i=0; size>=4; size -= 4 )
773 newcsum += le32_to_cpu(*isuper++);
774
775 if (size == 2)
776 newcsum += le16_to_cpu(*(unsigned short*) isuper);
777
778 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
779 sb->sb_csum = disk_csum;
780 return cpu_to_le32(csum);
781}
782
783static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
784{
785 struct mdp_superblock_1 *sb;
786 int ret;
787 sector_t sb_offset;
788 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
789
790 /*
791 * Calculate the position of the superblock.
792 * It is always aligned to a 4K boundary and
793 * depeding on minor_version, it can be:
794 * 0: At least 8K, but less than 12K, from end of device
795 * 1: At start of device
796 * 2: 4K from start of device.
797 */
798 switch(minor_version) {
799 case 0:
800 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
801 sb_offset -= 8*2;
802 sb_offset &= ~(4*2-1);
803 /* convert from sectors to K */
804 sb_offset /= 2;
805 break;
806 case 1:
807 sb_offset = 0;
808 break;
809 case 2:
810 sb_offset = 4;
811 break;
812 default:
813 return -EINVAL;
814 }
815 rdev->sb_offset = sb_offset;
816
817 ret = read_disk_sb(rdev);
818 if (ret) return ret;
819
820
821 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
822
823 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
824 sb->major_version != cpu_to_le32(1) ||
825 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
826 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
827 sb->feature_map != 0)
828 return -EINVAL;
829
830 if (calc_sb_1_csum(sb) != sb->sb_csum) {
831 printk("md: invalid superblock checksum on %s\n",
832 bdevname(rdev->bdev,b));
833 return -EINVAL;
834 }
835 if (le64_to_cpu(sb->data_size) < 10) {
836 printk("md: data_size too small on %s\n",
837 bdevname(rdev->bdev,b));
838 return -EINVAL;
839 }
840 rdev->preferred_minor = 0xffff;
841 rdev->data_offset = le64_to_cpu(sb->data_offset);
842
843 if (refdev == 0)
844 return 1;
845 else {
846 __u64 ev1, ev2;
847 struct mdp_superblock_1 *refsb =
848 (struct mdp_superblock_1*)page_address(refdev->sb_page);
849
850 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
851 sb->level != refsb->level ||
852 sb->layout != refsb->layout ||
853 sb->chunksize != refsb->chunksize) {
854 printk(KERN_WARNING "md: %s has strangely different"
855 " superblock to %s\n",
856 bdevname(rdev->bdev,b),
857 bdevname(refdev->bdev,b2));
858 return -EINVAL;
859 }
860 ev1 = le64_to_cpu(sb->events);
861 ev2 = le64_to_cpu(refsb->events);
862
863 if (ev1 > ev2)
864 return 1;
865 }
866 if (minor_version)
867 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
868 else
869 rdev->size = rdev->sb_offset;
870 if (rdev->size < le64_to_cpu(sb->data_size)/2)
871 return -EINVAL;
872 rdev->size = le64_to_cpu(sb->data_size)/2;
873 if (le32_to_cpu(sb->chunksize))
874 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
875 return 0;
876}
877
878static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
879{
880 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
881
41158c7e
N
882 rdev->raid_disk = -1;
883 rdev->in_sync = 0;
1da177e4
LT
884 if (mddev->raid_disks == 0) {
885 mddev->major_version = 1;
886 mddev->patch_version = 0;
887 mddev->persistent = 1;
888 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
889 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
890 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
891 mddev->level = le32_to_cpu(sb->level);
892 mddev->layout = le32_to_cpu(sb->layout);
893 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
894 mddev->size = le64_to_cpu(sb->size)/2;
895 mddev->events = le64_to_cpu(sb->events);
896
897 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
898 memcpy(mddev->uuid, sb->set_uuid, 16);
899
900 mddev->max_disks = (4096-256)/2;
41158c7e
N
901 } else if (mddev->pers == NULL) {
902 /* Insist of good event counter while assembling */
903 __u64 ev1 = le64_to_cpu(sb->events);
1da177e4
LT
904 ++ev1;
905 if (ev1 < mddev->events)
906 return -EINVAL;
41158c7e
N
907 } else if (mddev->bitmap) {
908 /* If adding to array with a bitmap, then we can accept an
909 * older device, but not too old.
910 */
911 __u64 ev1 = le64_to_cpu(sb->events);
912 if (ev1 < mddev->bitmap->events_cleared)
913 return 0;
914 } else /* just a hot-add of a new device, leave raid_disk at -1 */
915 return 0;
1da177e4
LT
916
917 if (mddev->level != LEVEL_MULTIPATH) {
918 int role;
919 rdev->desc_nr = le32_to_cpu(sb->dev_number);
920 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
921 switch(role) {
922 case 0xffff: /* spare */
1da177e4 923 rdev->faulty = 0;
1da177e4
LT
924 break;
925 case 0xfffe: /* faulty */
1da177e4 926 rdev->faulty = 1;
1da177e4
LT
927 break;
928 default:
929 rdev->in_sync = 1;
930 rdev->faulty = 0;
931 rdev->raid_disk = role;
932 break;
933 }
41158c7e
N
934 } else /* MULTIPATH are always insync */
935 rdev->in_sync = 1;
936
1da177e4
LT
937 return 0;
938}
939
940static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
941{
942 struct mdp_superblock_1 *sb;
943 struct list_head *tmp;
944 mdk_rdev_t *rdev2;
945 int max_dev, i;
946 /* make rdev->sb match mddev and rdev data. */
947
948 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
949
950 sb->feature_map = 0;
951 sb->pad0 = 0;
952 memset(sb->pad1, 0, sizeof(sb->pad1));
953 memset(sb->pad2, 0, sizeof(sb->pad2));
954 memset(sb->pad3, 0, sizeof(sb->pad3));
955
956 sb->utime = cpu_to_le64((__u64)mddev->utime);
957 sb->events = cpu_to_le64(mddev->events);
958 if (mddev->in_sync)
959 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
960 else
961 sb->resync_offset = cpu_to_le64(0);
962
963 max_dev = 0;
964 ITERATE_RDEV(mddev,rdev2,tmp)
965 if (rdev2->desc_nr+1 > max_dev)
966 max_dev = rdev2->desc_nr+1;
967
968 sb->max_dev = cpu_to_le32(max_dev);
969 for (i=0; i<max_dev;i++)
970 sb->dev_roles[i] = cpu_to_le16(0xfffe);
971
972 ITERATE_RDEV(mddev,rdev2,tmp) {
973 i = rdev2->desc_nr;
974 if (rdev2->faulty)
975 sb->dev_roles[i] = cpu_to_le16(0xfffe);
976 else if (rdev2->in_sync)
977 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
978 else
979 sb->dev_roles[i] = cpu_to_le16(0xffff);
980 }
981
982 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
983 sb->sb_csum = calc_sb_1_csum(sb);
984}
985
986
75c96f85 987static struct super_type super_types[] = {
1da177e4
LT
988 [0] = {
989 .name = "0.90.0",
990 .owner = THIS_MODULE,
991 .load_super = super_90_load,
992 .validate_super = super_90_validate,
993 .sync_super = super_90_sync,
994 },
995 [1] = {
996 .name = "md-1",
997 .owner = THIS_MODULE,
998 .load_super = super_1_load,
999 .validate_super = super_1_validate,
1000 .sync_super = super_1_sync,
1001 },
1002};
1003
1004static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1005{
1006 struct list_head *tmp;
1007 mdk_rdev_t *rdev;
1008
1009 ITERATE_RDEV(mddev,rdev,tmp)
1010 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1011 return rdev;
1012
1013 return NULL;
1014}
1015
1016static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1017{
1018 struct list_head *tmp;
1019 mdk_rdev_t *rdev;
1020
1021 ITERATE_RDEV(mddev1,rdev,tmp)
1022 if (match_dev_unit(mddev2, rdev))
1023 return 1;
1024
1025 return 0;
1026}
1027
1028static LIST_HEAD(pending_raid_disks);
1029
1030static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1031{
1032 mdk_rdev_t *same_pdev;
1033 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1034
1035 if (rdev->mddev) {
1036 MD_BUG();
1037 return -EINVAL;
1038 }
1039 same_pdev = match_dev_unit(mddev, rdev);
1040 if (same_pdev)
1041 printk(KERN_WARNING
1042 "%s: WARNING: %s appears to be on the same physical"
1043 " disk as %s. True\n protection against single-disk"
1044 " failure might be compromised.\n",
1045 mdname(mddev), bdevname(rdev->bdev,b),
1046 bdevname(same_pdev->bdev,b2));
1047
1048 /* Verify rdev->desc_nr is unique.
1049 * If it is -1, assign a free number, else
1050 * check number is not in use
1051 */
1052 if (rdev->desc_nr < 0) {
1053 int choice = 0;
1054 if (mddev->pers) choice = mddev->raid_disks;
1055 while (find_rdev_nr(mddev, choice))
1056 choice++;
1057 rdev->desc_nr = choice;
1058 } else {
1059 if (find_rdev_nr(mddev, rdev->desc_nr))
1060 return -EBUSY;
1061 }
1062
1063 list_add(&rdev->same_set, &mddev->disks);
1064 rdev->mddev = mddev;
1065 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1066 return 0;
1067}
1068
1069static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1070{
1071 char b[BDEVNAME_SIZE];
1072 if (!rdev->mddev) {
1073 MD_BUG();
1074 return;
1075 }
1076 list_del_init(&rdev->same_set);
1077 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1078 rdev->mddev = NULL;
1079}
1080
1081/*
1082 * prevent the device from being mounted, repartitioned or
1083 * otherwise reused by a RAID array (or any other kernel
1084 * subsystem), by bd_claiming the device.
1085 */
1086static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1087{
1088 int err = 0;
1089 struct block_device *bdev;
1090 char b[BDEVNAME_SIZE];
1091
1092 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1093 if (IS_ERR(bdev)) {
1094 printk(KERN_ERR "md: could not open %s.\n",
1095 __bdevname(dev, b));
1096 return PTR_ERR(bdev);
1097 }
1098 err = bd_claim(bdev, rdev);
1099 if (err) {
1100 printk(KERN_ERR "md: could not bd_claim %s.\n",
1101 bdevname(bdev, b));
1102 blkdev_put(bdev);
1103 return err;
1104 }
1105 rdev->bdev = bdev;
1106 return err;
1107}
1108
1109static void unlock_rdev(mdk_rdev_t *rdev)
1110{
1111 struct block_device *bdev = rdev->bdev;
1112 rdev->bdev = NULL;
1113 if (!bdev)
1114 MD_BUG();
1115 bd_release(bdev);
1116 blkdev_put(bdev);
1117}
1118
1119void md_autodetect_dev(dev_t dev);
1120
1121static void export_rdev(mdk_rdev_t * rdev)
1122{
1123 char b[BDEVNAME_SIZE];
1124 printk(KERN_INFO "md: export_rdev(%s)\n",
1125 bdevname(rdev->bdev,b));
1126 if (rdev->mddev)
1127 MD_BUG();
1128 free_disk_sb(rdev);
1129 list_del_init(&rdev->same_set);
1130#ifndef MODULE
1131 md_autodetect_dev(rdev->bdev->bd_dev);
1132#endif
1133 unlock_rdev(rdev);
1134 kfree(rdev);
1135}
1136
1137static void kick_rdev_from_array(mdk_rdev_t * rdev)
1138{
1139 unbind_rdev_from_array(rdev);
1140 export_rdev(rdev);
1141}
1142
1143static void export_array(mddev_t *mddev)
1144{
1145 struct list_head *tmp;
1146 mdk_rdev_t *rdev;
1147
1148 ITERATE_RDEV(mddev,rdev,tmp) {
1149 if (!rdev->mddev) {
1150 MD_BUG();
1151 continue;
1152 }
1153 kick_rdev_from_array(rdev);
1154 }
1155 if (!list_empty(&mddev->disks))
1156 MD_BUG();
1157 mddev->raid_disks = 0;
1158 mddev->major_version = 0;
1159}
1160
1161static void print_desc(mdp_disk_t *desc)
1162{
1163 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1164 desc->major,desc->minor,desc->raid_disk,desc->state);
1165}
1166
1167static void print_sb(mdp_super_t *sb)
1168{
1169 int i;
1170
1171 printk(KERN_INFO
1172 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1173 sb->major_version, sb->minor_version, sb->patch_version,
1174 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1175 sb->ctime);
1176 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1177 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1178 sb->md_minor, sb->layout, sb->chunk_size);
1179 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1180 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1181 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1182 sb->failed_disks, sb->spare_disks,
1183 sb->sb_csum, (unsigned long)sb->events_lo);
1184
1185 printk(KERN_INFO);
1186 for (i = 0; i < MD_SB_DISKS; i++) {
1187 mdp_disk_t *desc;
1188
1189 desc = sb->disks + i;
1190 if (desc->number || desc->major || desc->minor ||
1191 desc->raid_disk || (desc->state && (desc->state != 4))) {
1192 printk(" D %2d: ", i);
1193 print_desc(desc);
1194 }
1195 }
1196 printk(KERN_INFO "md: THIS: ");
1197 print_desc(&sb->this_disk);
1198
1199}
1200
1201static void print_rdev(mdk_rdev_t *rdev)
1202{
1203 char b[BDEVNAME_SIZE];
1204 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1205 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1206 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1207 if (rdev->sb_loaded) {
1208 printk(KERN_INFO "md: rdev superblock:\n");
1209 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1210 } else
1211 printk(KERN_INFO "md: no rdev superblock!\n");
1212}
1213
1214void md_print_devices(void)
1215{
1216 struct list_head *tmp, *tmp2;
1217 mdk_rdev_t *rdev;
1218 mddev_t *mddev;
1219 char b[BDEVNAME_SIZE];
1220
1221 printk("\n");
1222 printk("md: **********************************\n");
1223 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1224 printk("md: **********************************\n");
1225 ITERATE_MDDEV(mddev,tmp) {
1da177e4 1226
32a7627c
N
1227 if (mddev->bitmap)
1228 bitmap_print_sb(mddev->bitmap);
1229 else
1230 printk("%s: ", mdname(mddev));
1da177e4
LT
1231 ITERATE_RDEV(mddev,rdev,tmp2)
1232 printk("<%s>", bdevname(rdev->bdev,b));
1233 printk("\n");
1234
1235 ITERATE_RDEV(mddev,rdev,tmp2)
1236 print_rdev(rdev);
1237 }
1238 printk("md: **********************************\n");
1239 printk("\n");
1240}
1241
1242
1243static int write_disk_sb(mdk_rdev_t * rdev)
1244{
1245 char b[BDEVNAME_SIZE];
1246 if (!rdev->sb_loaded) {
1247 MD_BUG();
1248 return 1;
1249 }
1250 if (rdev->faulty) {
1251 MD_BUG();
1252 return 1;
1253 }
1254
1255 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1256 bdevname(rdev->bdev,b),
1257 (unsigned long long)rdev->sb_offset);
1258
1259 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1260 return 0;
1261
1262 printk("md: write_disk_sb failed for device %s\n",
1263 bdevname(rdev->bdev,b));
1264 return 1;
1265}
1266
1267static void sync_sbs(mddev_t * mddev)
1268{
1269 mdk_rdev_t *rdev;
1270 struct list_head *tmp;
1271
1272 ITERATE_RDEV(mddev,rdev,tmp) {
1273 super_types[mddev->major_version].
1274 sync_super(mddev, rdev);
1275 rdev->sb_loaded = 1;
1276 }
1277}
1278
1279static void md_update_sb(mddev_t * mddev)
1280{
1281 int err, count = 100;
1282 struct list_head *tmp;
1283 mdk_rdev_t *rdev;
06d91a5f 1284 int sync_req;
1da177e4 1285
1da177e4 1286repeat:
06d91a5f
N
1287 spin_lock(&mddev->write_lock);
1288 sync_req = mddev->in_sync;
1da177e4
LT
1289 mddev->utime = get_seconds();
1290 mddev->events ++;
1291
1292 if (!mddev->events) {
1293 /*
1294 * oops, this 64-bit counter should never wrap.
1295 * Either we are in around ~1 trillion A.C., assuming
1296 * 1 reboot per second, or we have a bug:
1297 */
1298 MD_BUG();
1299 mddev->events --;
1300 }
1301 sync_sbs(mddev);
1302
1303 /*
1304 * do not write anything to disk if using
1305 * nonpersistent superblocks
1306 */
06d91a5f
N
1307 if (!mddev->persistent) {
1308 mddev->sb_dirty = 0;
1309 spin_unlock(&mddev->write_lock);
3d310eb7 1310 wake_up(&mddev->sb_wait);
1da177e4 1311 return;
06d91a5f
N
1312 }
1313 spin_unlock(&mddev->write_lock);
1da177e4
LT
1314
1315 dprintk(KERN_INFO
1316 "md: updating %s RAID superblock on device (in sync %d)\n",
1317 mdname(mddev),mddev->in_sync);
1318
32a7627c 1319 err = bitmap_update_sb(mddev->bitmap);
1da177e4
LT
1320 ITERATE_RDEV(mddev,rdev,tmp) {
1321 char b[BDEVNAME_SIZE];
1322 dprintk(KERN_INFO "md: ");
1323 if (rdev->faulty)
1324 dprintk("(skipping faulty ");
1325
1326 dprintk("%s ", bdevname(rdev->bdev,b));
1327 if (!rdev->faulty) {
1328 err += write_disk_sb(rdev);
1329 } else
1330 dprintk(")\n");
1331 if (!err && mddev->level == LEVEL_MULTIPATH)
1332 /* only need to write one superblock... */
1333 break;
1334 }
1335 if (err) {
1336 if (--count) {
1337 printk(KERN_ERR "md: errors occurred during superblock"
1338 " update, repeating\n");
1339 goto repeat;
1340 }
1341 printk(KERN_ERR \
1342 "md: excessive errors occurred during superblock update, exiting\n");
1343 }
06d91a5f
N
1344 spin_lock(&mddev->write_lock);
1345 if (mddev->in_sync != sync_req) {
1346 /* have to write it out again */
1347 spin_unlock(&mddev->write_lock);
1348 goto repeat;
1349 }
1350 mddev->sb_dirty = 0;
1351 spin_unlock(&mddev->write_lock);
3d310eb7 1352 wake_up(&mddev->sb_wait);
06d91a5f 1353
1da177e4
LT
1354}
1355
1356/*
1357 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1358 *
1359 * mark the device faulty if:
1360 *
1361 * - the device is nonexistent (zero size)
1362 * - the device has no valid superblock
1363 *
1364 * a faulty rdev _never_ has rdev->sb set.
1365 */
1366static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1367{
1368 char b[BDEVNAME_SIZE];
1369 int err;
1370 mdk_rdev_t *rdev;
1371 sector_t size;
1372
1373 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1374 if (!rdev) {
1375 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1376 return ERR_PTR(-ENOMEM);
1377 }
1378 memset(rdev, 0, sizeof(*rdev));
1379
1380 if ((err = alloc_disk_sb(rdev)))
1381 goto abort_free;
1382
1383 err = lock_rdev(rdev, newdev);
1384 if (err)
1385 goto abort_free;
1386
1387 rdev->desc_nr = -1;
1388 rdev->faulty = 0;
1389 rdev->in_sync = 0;
1390 rdev->data_offset = 0;
1391 atomic_set(&rdev->nr_pending, 0);
1392
1393 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1394 if (!size) {
1395 printk(KERN_WARNING
1396 "md: %s has zero or unknown size, marking faulty!\n",
1397 bdevname(rdev->bdev,b));
1398 err = -EINVAL;
1399 goto abort_free;
1400 }
1401
1402 if (super_format >= 0) {
1403 err = super_types[super_format].
1404 load_super(rdev, NULL, super_minor);
1405 if (err == -EINVAL) {
1406 printk(KERN_WARNING
1407 "md: %s has invalid sb, not importing!\n",
1408 bdevname(rdev->bdev,b));
1409 goto abort_free;
1410 }
1411 if (err < 0) {
1412 printk(KERN_WARNING
1413 "md: could not read %s's sb, not importing!\n",
1414 bdevname(rdev->bdev,b));
1415 goto abort_free;
1416 }
1417 }
1418 INIT_LIST_HEAD(&rdev->same_set);
1419
1420 return rdev;
1421
1422abort_free:
1423 if (rdev->sb_page) {
1424 if (rdev->bdev)
1425 unlock_rdev(rdev);
1426 free_disk_sb(rdev);
1427 }
1428 kfree(rdev);
1429 return ERR_PTR(err);
1430}
1431
1432/*
1433 * Check a full RAID array for plausibility
1434 */
1435
1436
a757e64c 1437static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1438{
1439 int i;
1440 struct list_head *tmp;
1441 mdk_rdev_t *rdev, *freshest;
1442 char b[BDEVNAME_SIZE];
1443
1444 freshest = NULL;
1445 ITERATE_RDEV(mddev,rdev,tmp)
1446 switch (super_types[mddev->major_version].
1447 load_super(rdev, freshest, mddev->minor_version)) {
1448 case 1:
1449 freshest = rdev;
1450 break;
1451 case 0:
1452 break;
1453 default:
1454 printk( KERN_ERR \
1455 "md: fatal superblock inconsistency in %s"
1456 " -- removing from array\n",
1457 bdevname(rdev->bdev,b));
1458 kick_rdev_from_array(rdev);
1459 }
1460
1461
1462 super_types[mddev->major_version].
1463 validate_super(mddev, freshest);
1464
1465 i = 0;
1466 ITERATE_RDEV(mddev,rdev,tmp) {
1467 if (rdev != freshest)
1468 if (super_types[mddev->major_version].
1469 validate_super(mddev, rdev)) {
1470 printk(KERN_WARNING "md: kicking non-fresh %s"
1471 " from array!\n",
1472 bdevname(rdev->bdev,b));
1473 kick_rdev_from_array(rdev);
1474 continue;
1475 }
1476 if (mddev->level == LEVEL_MULTIPATH) {
1477 rdev->desc_nr = i++;
1478 rdev->raid_disk = rdev->desc_nr;
1479 rdev->in_sync = 1;
1480 }
1481 }
1482
1483
1484
1485 if (mddev->recovery_cp != MaxSector &&
1486 mddev->level >= 1)
1487 printk(KERN_ERR "md: %s: raid array is not clean"
1488 " -- starting background reconstruction\n",
1489 mdname(mddev));
1490
1da177e4
LT
1491}
1492
1493int mdp_major = 0;
1494
1495static struct kobject *md_probe(dev_t dev, int *part, void *data)
1496{
1497 static DECLARE_MUTEX(disks_sem);
1498 mddev_t *mddev = mddev_find(dev);
1499 struct gendisk *disk;
1500 int partitioned = (MAJOR(dev) != MD_MAJOR);
1501 int shift = partitioned ? MdpMinorShift : 0;
1502 int unit = MINOR(dev) >> shift;
1503
1504 if (!mddev)
1505 return NULL;
1506
1507 down(&disks_sem);
1508 if (mddev->gendisk) {
1509 up(&disks_sem);
1510 mddev_put(mddev);
1511 return NULL;
1512 }
1513 disk = alloc_disk(1 << shift);
1514 if (!disk) {
1515 up(&disks_sem);
1516 mddev_put(mddev);
1517 return NULL;
1518 }
1519 disk->major = MAJOR(dev);
1520 disk->first_minor = unit << shift;
1521 if (partitioned) {
1522 sprintf(disk->disk_name, "md_d%d", unit);
1523 sprintf(disk->devfs_name, "md/d%d", unit);
1524 } else {
1525 sprintf(disk->disk_name, "md%d", unit);
1526 sprintf(disk->devfs_name, "md/%d", unit);
1527 }
1528 disk->fops = &md_fops;
1529 disk->private_data = mddev;
1530 disk->queue = mddev->queue;
1531 add_disk(disk);
1532 mddev->gendisk = disk;
1533 up(&disks_sem);
1534 return NULL;
1535}
1536
1537void md_wakeup_thread(mdk_thread_t *thread);
1538
1539static void md_safemode_timeout(unsigned long data)
1540{
1541 mddev_t *mddev = (mddev_t *) data;
1542
1543 mddev->safemode = 1;
1544 md_wakeup_thread(mddev->thread);
1545}
1546
1547
1548static int do_md_run(mddev_t * mddev)
1549{
1550 int pnum, err;
1551 int chunk_size;
1552 struct list_head *tmp;
1553 mdk_rdev_t *rdev;
1554 struct gendisk *disk;
1555 char b[BDEVNAME_SIZE];
1556
a757e64c
N
1557 if (list_empty(&mddev->disks))
1558 /* cannot run an array with no devices.. */
1da177e4 1559 return -EINVAL;
1da177e4
LT
1560
1561 if (mddev->pers)
1562 return -EBUSY;
1563
1564 /*
1565 * Analyze all RAID superblock(s)
1566 */
a757e64c
N
1567 if (!mddev->raid_disks)
1568 analyze_sbs(mddev);
1da177e4
LT
1569
1570 chunk_size = mddev->chunk_size;
1571 pnum = level_to_pers(mddev->level);
1572
1573 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1574 if (!chunk_size) {
1575 /*
1576 * 'default chunksize' in the old md code used to
1577 * be PAGE_SIZE, baaad.
1578 * we abort here to be on the safe side. We don't
1579 * want to continue the bad practice.
1580 */
1581 printk(KERN_ERR
1582 "no chunksize specified, see 'man raidtab'\n");
1583 return -EINVAL;
1584 }
1585 if (chunk_size > MAX_CHUNK_SIZE) {
1586 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1587 chunk_size, MAX_CHUNK_SIZE);
1588 return -EINVAL;
1589 }
1590 /*
1591 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1592 */
1593 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1594 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1595 return -EINVAL;
1596 }
1597 if (chunk_size < PAGE_SIZE) {
1598 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1599 chunk_size, PAGE_SIZE);
1600 return -EINVAL;
1601 }
1602
1603 /* devices must have minimum size of one chunk */
1604 ITERATE_RDEV(mddev,rdev,tmp) {
1605 if (rdev->faulty)
1606 continue;
1607 if (rdev->size < chunk_size / 1024) {
1608 printk(KERN_WARNING
1609 "md: Dev %s smaller than chunk_size:"
1610 " %lluk < %dk\n",
1611 bdevname(rdev->bdev,b),
1612 (unsigned long long)rdev->size,
1613 chunk_size / 1024);
1614 return -EINVAL;
1615 }
1616 }
1617 }
1618
1da177e4
LT
1619#ifdef CONFIG_KMOD
1620 if (!pers[pnum])
1621 {
1622 request_module("md-personality-%d", pnum);
1623 }
1624#endif
1625
1626 /*
1627 * Drop all container device buffers, from now on
1628 * the only valid external interface is through the md
1629 * device.
1630 * Also find largest hardsector size
1631 */
1632 ITERATE_RDEV(mddev,rdev,tmp) {
1633 if (rdev->faulty)
1634 continue;
1635 sync_blockdev(rdev->bdev);
1636 invalidate_bdev(rdev->bdev, 0);
1637 }
1638
1639 md_probe(mddev->unit, NULL, NULL);
1640 disk = mddev->gendisk;
1641 if (!disk)
1642 return -ENOMEM;
1643
1644 spin_lock(&pers_lock);
1645 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1646 spin_unlock(&pers_lock);
1647 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1648 pnum);
1649 return -EINVAL;
1650 }
1651
1652 mddev->pers = pers[pnum];
1653 spin_unlock(&pers_lock);
1654
1655 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1656
32a7627c
N
1657 /* before we start the array running, initialise the bitmap */
1658 err = bitmap_create(mddev);
1659 if (err)
1660 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1661 mdname(mddev), err);
1662 else
1663 err = mddev->pers->run(mddev);
1da177e4
LT
1664 if (err) {
1665 printk(KERN_ERR "md: pers->run() failed ...\n");
1666 module_put(mddev->pers->owner);
1667 mddev->pers = NULL;
32a7627c
N
1668 bitmap_destroy(mddev);
1669 return err;
1da177e4
LT
1670 }
1671 atomic_set(&mddev->writes_pending,0);
1672 mddev->safemode = 0;
1673 mddev->safemode_timer.function = md_safemode_timeout;
1674 mddev->safemode_timer.data = (unsigned long) mddev;
1675 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1676 mddev->in_sync = 1;
1677
1678 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1679
1680 if (mddev->sb_dirty)
1681 md_update_sb(mddev);
1682
1683 set_capacity(disk, mddev->array_size<<1);
1684
1685 /* If we call blk_queue_make_request here, it will
1686 * re-initialise max_sectors etc which may have been
1687 * refined inside -> run. So just set the bits we need to set.
1688 * Most initialisation happended when we called
1689 * blk_queue_make_request(..., md_fail_request)
1690 * earlier.
1691 */
1692 mddev->queue->queuedata = mddev;
1693 mddev->queue->make_request_fn = mddev->pers->make_request;
1694
1695 mddev->changed = 1;
1696 return 0;
1697}
1698
1699static int restart_array(mddev_t *mddev)
1700{
1701 struct gendisk *disk = mddev->gendisk;
1702 int err;
1703
1704 /*
1705 * Complain if it has no devices
1706 */
1707 err = -ENXIO;
1708 if (list_empty(&mddev->disks))
1709 goto out;
1710
1711 if (mddev->pers) {
1712 err = -EBUSY;
1713 if (!mddev->ro)
1714 goto out;
1715
1716 mddev->safemode = 0;
1717 mddev->ro = 0;
1718 set_disk_ro(disk, 0);
1719
1720 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1721 mdname(mddev));
1722 /*
1723 * Kick recovery or resync if necessary
1724 */
1725 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1726 md_wakeup_thread(mddev->thread);
1727 err = 0;
1728 } else {
1729 printk(KERN_ERR "md: %s has no personality assigned.\n",
1730 mdname(mddev));
1731 err = -EINVAL;
1732 }
1733
1734out:
1735 return err;
1736}
1737
1738static int do_md_stop(mddev_t * mddev, int ro)
1739{
1740 int err = 0;
1741 struct gendisk *disk = mddev->gendisk;
1742
1743 if (mddev->pers) {
1744 if (atomic_read(&mddev->active)>2) {
1745 printk("md: %s still in use.\n",mdname(mddev));
1746 return -EBUSY;
1747 }
1748
1749 if (mddev->sync_thread) {
1750 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1751 md_unregister_thread(mddev->sync_thread);
1752 mddev->sync_thread = NULL;
1753 }
1754
1755 del_timer_sync(&mddev->safemode_timer);
1756
1757 invalidate_partition(disk, 0);
1758
1759 if (ro) {
1760 err = -ENXIO;
1761 if (mddev->ro)
1762 goto out;
1763 mddev->ro = 1;
1764 } else {
1765 if (mddev->ro)
1766 set_disk_ro(disk, 0);
1767 blk_queue_make_request(mddev->queue, md_fail_request);
1768 mddev->pers->stop(mddev);
1769 module_put(mddev->pers->owner);
1770 mddev->pers = NULL;
1771 if (mddev->ro)
1772 mddev->ro = 0;
1773 }
1774 if (!mddev->in_sync) {
1775 /* mark array as shutdown cleanly */
1776 mddev->in_sync = 1;
1777 md_update_sb(mddev);
1778 }
1779 if (ro)
1780 set_disk_ro(disk, 1);
1781 }
32a7627c
N
1782
1783 bitmap_destroy(mddev);
1784 if (mddev->bitmap_file) {
1785 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1786 fput(mddev->bitmap_file);
1787 mddev->bitmap_file = NULL;
1788 }
1789
1da177e4
LT
1790 /*
1791 * Free resources if final stop
1792 */
1793 if (!ro) {
1794 struct gendisk *disk;
1795 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1796
1797 export_array(mddev);
1798
1799 mddev->array_size = 0;
1800 disk = mddev->gendisk;
1801 if (disk)
1802 set_capacity(disk, 0);
1803 mddev->changed = 1;
1804 } else
1805 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1806 mdname(mddev));
1807 err = 0;
1808out:
1809 return err;
1810}
1811
1812static void autorun_array(mddev_t *mddev)
1813{
1814 mdk_rdev_t *rdev;
1815 struct list_head *tmp;
1816 int err;
1817
a757e64c 1818 if (list_empty(&mddev->disks))
1da177e4 1819 return;
1da177e4
LT
1820
1821 printk(KERN_INFO "md: running: ");
1822
1823 ITERATE_RDEV(mddev,rdev,tmp) {
1824 char b[BDEVNAME_SIZE];
1825 printk("<%s>", bdevname(rdev->bdev,b));
1826 }
1827 printk("\n");
1828
1829 err = do_md_run (mddev);
1830 if (err) {
1831 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1832 do_md_stop (mddev, 0);
1833 }
1834}
1835
1836/*
1837 * lets try to run arrays based on all disks that have arrived
1838 * until now. (those are in pending_raid_disks)
1839 *
1840 * the method: pick the first pending disk, collect all disks with
1841 * the same UUID, remove all from the pending list and put them into
1842 * the 'same_array' list. Then order this list based on superblock
1843 * update time (freshest comes first), kick out 'old' disks and
1844 * compare superblocks. If everything's fine then run it.
1845 *
1846 * If "unit" is allocated, then bump its reference count
1847 */
1848static void autorun_devices(int part)
1849{
1850 struct list_head candidates;
1851 struct list_head *tmp;
1852 mdk_rdev_t *rdev0, *rdev;
1853 mddev_t *mddev;
1854 char b[BDEVNAME_SIZE];
1855
1856 printk(KERN_INFO "md: autorun ...\n");
1857 while (!list_empty(&pending_raid_disks)) {
1858 dev_t dev;
1859 rdev0 = list_entry(pending_raid_disks.next,
1860 mdk_rdev_t, same_set);
1861
1862 printk(KERN_INFO "md: considering %s ...\n",
1863 bdevname(rdev0->bdev,b));
1864 INIT_LIST_HEAD(&candidates);
1865 ITERATE_RDEV_PENDING(rdev,tmp)
1866 if (super_90_load(rdev, rdev0, 0) >= 0) {
1867 printk(KERN_INFO "md: adding %s ...\n",
1868 bdevname(rdev->bdev,b));
1869 list_move(&rdev->same_set, &candidates);
1870 }
1871 /*
1872 * now we have a set of devices, with all of them having
1873 * mostly sane superblocks. It's time to allocate the
1874 * mddev.
1875 */
1876 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1877 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1878 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1879 break;
1880 }
1881 if (part)
1882 dev = MKDEV(mdp_major,
1883 rdev0->preferred_minor << MdpMinorShift);
1884 else
1885 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1886
1887 md_probe(dev, NULL, NULL);
1888 mddev = mddev_find(dev);
1889 if (!mddev) {
1890 printk(KERN_ERR
1891 "md: cannot allocate memory for md drive.\n");
1892 break;
1893 }
1894 if (mddev_lock(mddev))
1895 printk(KERN_WARNING "md: %s locked, cannot run\n",
1896 mdname(mddev));
1897 else if (mddev->raid_disks || mddev->major_version
1898 || !list_empty(&mddev->disks)) {
1899 printk(KERN_WARNING
1900 "md: %s already running, cannot run %s\n",
1901 mdname(mddev), bdevname(rdev0->bdev,b));
1902 mddev_unlock(mddev);
1903 } else {
1904 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1905 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1906 list_del_init(&rdev->same_set);
1907 if (bind_rdev_to_array(rdev, mddev))
1908 export_rdev(rdev);
1909 }
1910 autorun_array(mddev);
1911 mddev_unlock(mddev);
1912 }
1913 /* on success, candidates will be empty, on error
1914 * it won't...
1915 */
1916 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1917 export_rdev(rdev);
1918 mddev_put(mddev);
1919 }
1920 printk(KERN_INFO "md: ... autorun DONE.\n");
1921}
1922
1923/*
1924 * import RAID devices based on one partition
1925 * if possible, the array gets run as well.
1926 */
1927
1928static int autostart_array(dev_t startdev)
1929{
1930 char b[BDEVNAME_SIZE];
1931 int err = -EINVAL, i;
1932 mdp_super_t *sb = NULL;
1933 mdk_rdev_t *start_rdev = NULL, *rdev;
1934
1935 start_rdev = md_import_device(startdev, 0, 0);
1936 if (IS_ERR(start_rdev))
1937 return err;
1938
1939
1940 /* NOTE: this can only work for 0.90.0 superblocks */
1941 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1942 if (sb->major_version != 0 ||
1943 sb->minor_version != 90 ) {
1944 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1945 export_rdev(start_rdev);
1946 return err;
1947 }
1948
1949 if (start_rdev->faulty) {
1950 printk(KERN_WARNING
1951 "md: can not autostart based on faulty %s!\n",
1952 bdevname(start_rdev->bdev,b));
1953 export_rdev(start_rdev);
1954 return err;
1955 }
1956 list_add(&start_rdev->same_set, &pending_raid_disks);
1957
1958 for (i = 0; i < MD_SB_DISKS; i++) {
1959 mdp_disk_t *desc = sb->disks + i;
1960 dev_t dev = MKDEV(desc->major, desc->minor);
1961
1962 if (!dev)
1963 continue;
1964 if (dev == startdev)
1965 continue;
1966 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1967 continue;
1968 rdev = md_import_device(dev, 0, 0);
1969 if (IS_ERR(rdev))
1970 continue;
1971
1972 list_add(&rdev->same_set, &pending_raid_disks);
1973 }
1974
1975 /*
1976 * possibly return codes
1977 */
1978 autorun_devices(0);
1979 return 0;
1980
1981}
1982
1983
1984static int get_version(void __user * arg)
1985{
1986 mdu_version_t ver;
1987
1988 ver.major = MD_MAJOR_VERSION;
1989 ver.minor = MD_MINOR_VERSION;
1990 ver.patchlevel = MD_PATCHLEVEL_VERSION;
1991
1992 if (copy_to_user(arg, &ver, sizeof(ver)))
1993 return -EFAULT;
1994
1995 return 0;
1996}
1997
1998static int get_array_info(mddev_t * mddev, void __user * arg)
1999{
2000 mdu_array_info_t info;
2001 int nr,working,active,failed,spare;
2002 mdk_rdev_t *rdev;
2003 struct list_head *tmp;
2004
2005 nr=working=active=failed=spare=0;
2006 ITERATE_RDEV(mddev,rdev,tmp) {
2007 nr++;
2008 if (rdev->faulty)
2009 failed++;
2010 else {
2011 working++;
2012 if (rdev->in_sync)
2013 active++;
2014 else
2015 spare++;
2016 }
2017 }
2018
2019 info.major_version = mddev->major_version;
2020 info.minor_version = mddev->minor_version;
2021 info.patch_version = MD_PATCHLEVEL_VERSION;
2022 info.ctime = mddev->ctime;
2023 info.level = mddev->level;
2024 info.size = mddev->size;
2025 info.nr_disks = nr;
2026 info.raid_disks = mddev->raid_disks;
2027 info.md_minor = mddev->md_minor;
2028 info.not_persistent= !mddev->persistent;
2029
2030 info.utime = mddev->utime;
2031 info.state = 0;
2032 if (mddev->in_sync)
2033 info.state = (1<<MD_SB_CLEAN);
2034 info.active_disks = active;
2035 info.working_disks = working;
2036 info.failed_disks = failed;
2037 info.spare_disks = spare;
2038
2039 info.layout = mddev->layout;
2040 info.chunk_size = mddev->chunk_size;
2041
2042 if (copy_to_user(arg, &info, sizeof(info)))
2043 return -EFAULT;
2044
2045 return 0;
2046}
2047
32a7627c
N
2048static int get_bitmap_file(mddev_t * mddev, void * arg)
2049{
2050 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2051 char *ptr, *buf = NULL;
2052 int err = -ENOMEM;
2053
2054 file = kmalloc(sizeof(*file), GFP_KERNEL);
2055 if (!file)
2056 goto out;
2057
2058 /* bitmap disabled, zero the first byte and copy out */
2059 if (!mddev->bitmap || !mddev->bitmap->file) {
2060 file->pathname[0] = '\0';
2061 goto copy_out;
2062 }
2063
2064 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2065 if (!buf)
2066 goto out;
2067
2068 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2069 if (!ptr)
2070 goto out;
2071
2072 strcpy(file->pathname, ptr);
2073
2074copy_out:
2075 err = 0;
2076 if (copy_to_user(arg, file, sizeof(*file)))
2077 err = -EFAULT;
2078out:
2079 kfree(buf);
2080 kfree(file);
2081 return err;
2082}
2083
1da177e4
LT
2084static int get_disk_info(mddev_t * mddev, void __user * arg)
2085{
2086 mdu_disk_info_t info;
2087 unsigned int nr;
2088 mdk_rdev_t *rdev;
2089
2090 if (copy_from_user(&info, arg, sizeof(info)))
2091 return -EFAULT;
2092
2093 nr = info.number;
2094
2095 rdev = find_rdev_nr(mddev, nr);
2096 if (rdev) {
2097 info.major = MAJOR(rdev->bdev->bd_dev);
2098 info.minor = MINOR(rdev->bdev->bd_dev);
2099 info.raid_disk = rdev->raid_disk;
2100 info.state = 0;
2101 if (rdev->faulty)
2102 info.state |= (1<<MD_DISK_FAULTY);
2103 else if (rdev->in_sync) {
2104 info.state |= (1<<MD_DISK_ACTIVE);
2105 info.state |= (1<<MD_DISK_SYNC);
2106 }
2107 } else {
2108 info.major = info.minor = 0;
2109 info.raid_disk = -1;
2110 info.state = (1<<MD_DISK_REMOVED);
2111 }
2112
2113 if (copy_to_user(arg, &info, sizeof(info)))
2114 return -EFAULT;
2115
2116 return 0;
2117}
2118
2119static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2120{
2121 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2122 mdk_rdev_t *rdev;
2123 dev_t dev = MKDEV(info->major,info->minor);
2124
2125 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2126 return -EOVERFLOW;
2127
2128 if (!mddev->raid_disks) {
2129 int err;
2130 /* expecting a device which has a superblock */
2131 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2132 if (IS_ERR(rdev)) {
2133 printk(KERN_WARNING
2134 "md: md_import_device returned %ld\n",
2135 PTR_ERR(rdev));
2136 return PTR_ERR(rdev);
2137 }
2138 if (!list_empty(&mddev->disks)) {
2139 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2140 mdk_rdev_t, same_set);
2141 int err = super_types[mddev->major_version]
2142 .load_super(rdev, rdev0, mddev->minor_version);
2143 if (err < 0) {
2144 printk(KERN_WARNING
2145 "md: %s has different UUID to %s\n",
2146 bdevname(rdev->bdev,b),
2147 bdevname(rdev0->bdev,b2));
2148 export_rdev(rdev);
2149 return -EINVAL;
2150 }
2151 }
2152 err = bind_rdev_to_array(rdev, mddev);
2153 if (err)
2154 export_rdev(rdev);
2155 return err;
2156 }
2157
2158 /*
2159 * add_new_disk can be used once the array is assembled
2160 * to add "hot spares". They must already have a superblock
2161 * written
2162 */
2163 if (mddev->pers) {
2164 int err;
2165 if (!mddev->pers->hot_add_disk) {
2166 printk(KERN_WARNING
2167 "%s: personality does not support diskops!\n",
2168 mdname(mddev));
2169 return -EINVAL;
2170 }
2171 rdev = md_import_device(dev, mddev->major_version,
2172 mddev->minor_version);
2173 if (IS_ERR(rdev)) {
2174 printk(KERN_WARNING
2175 "md: md_import_device returned %ld\n",
2176 PTR_ERR(rdev));
2177 return PTR_ERR(rdev);
2178 }
41158c7e
N
2179 /* set save_raid_disk if appropriate */
2180 if (!mddev->persistent) {
2181 if (info->state & (1<<MD_DISK_SYNC) &&
2182 info->raid_disk < mddev->raid_disks)
2183 rdev->raid_disk = info->raid_disk;
2184 else
2185 rdev->raid_disk = -1;
2186 } else
2187 super_types[mddev->major_version].
2188 validate_super(mddev, rdev);
2189 rdev->saved_raid_disk = rdev->raid_disk;
2190
1da177e4
LT
2191 rdev->in_sync = 0; /* just to be sure */
2192 rdev->raid_disk = -1;
2193 err = bind_rdev_to_array(rdev, mddev);
2194 if (err)
2195 export_rdev(rdev);
c361777f
N
2196
2197 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1da177e4
LT
2198 if (mddev->thread)
2199 md_wakeup_thread(mddev->thread);
2200 return err;
2201 }
2202
2203 /* otherwise, add_new_disk is only allowed
2204 * for major_version==0 superblocks
2205 */
2206 if (mddev->major_version != 0) {
2207 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2208 mdname(mddev));
2209 return -EINVAL;
2210 }
2211
2212 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2213 int err;
2214 rdev = md_import_device (dev, -1, 0);
2215 if (IS_ERR(rdev)) {
2216 printk(KERN_WARNING
2217 "md: error, md_import_device() returned %ld\n",
2218 PTR_ERR(rdev));
2219 return PTR_ERR(rdev);
2220 }
2221 rdev->desc_nr = info->number;
2222 if (info->raid_disk < mddev->raid_disks)
2223 rdev->raid_disk = info->raid_disk;
2224 else
2225 rdev->raid_disk = -1;
2226
2227 rdev->faulty = 0;
2228 if (rdev->raid_disk < mddev->raid_disks)
2229 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2230 else
2231 rdev->in_sync = 0;
2232
2233 err = bind_rdev_to_array(rdev, mddev);
2234 if (err) {
2235 export_rdev(rdev);
2236 return err;
2237 }
2238
2239 if (!mddev->persistent) {
2240 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2241 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2242 } else
2243 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2244 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2245
2246 if (!mddev->size || (mddev->size > rdev->size))
2247 mddev->size = rdev->size;
2248 }
2249
2250 return 0;
2251}
2252
2253static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2254{
2255 char b[BDEVNAME_SIZE];
2256 mdk_rdev_t *rdev;
2257
2258 if (!mddev->pers)
2259 return -ENODEV;
2260
2261 rdev = find_rdev(mddev, dev);
2262 if (!rdev)
2263 return -ENXIO;
2264
2265 if (rdev->raid_disk >= 0)
2266 goto busy;
2267
2268 kick_rdev_from_array(rdev);
2269 md_update_sb(mddev);
2270
2271 return 0;
2272busy:
2273 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2274 bdevname(rdev->bdev,b), mdname(mddev));
2275 return -EBUSY;
2276}
2277
2278static int hot_add_disk(mddev_t * mddev, dev_t dev)
2279{
2280 char b[BDEVNAME_SIZE];
2281 int err;
2282 unsigned int size;
2283 mdk_rdev_t *rdev;
2284
2285 if (!mddev->pers)
2286 return -ENODEV;
2287
2288 if (mddev->major_version != 0) {
2289 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2290 " version-0 superblocks.\n",
2291 mdname(mddev));
2292 return -EINVAL;
2293 }
2294 if (!mddev->pers->hot_add_disk) {
2295 printk(KERN_WARNING
2296 "%s: personality does not support diskops!\n",
2297 mdname(mddev));
2298 return -EINVAL;
2299 }
2300
2301 rdev = md_import_device (dev, -1, 0);
2302 if (IS_ERR(rdev)) {
2303 printk(KERN_WARNING
2304 "md: error, md_import_device() returned %ld\n",
2305 PTR_ERR(rdev));
2306 return -EINVAL;
2307 }
2308
2309 if (mddev->persistent)
2310 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2311 else
2312 rdev->sb_offset =
2313 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2314
2315 size = calc_dev_size(rdev, mddev->chunk_size);
2316 rdev->size = size;
2317
2318 if (size < mddev->size) {
2319 printk(KERN_WARNING
2320 "%s: disk size %llu blocks < array size %llu\n",
2321 mdname(mddev), (unsigned long long)size,
2322 (unsigned long long)mddev->size);
2323 err = -ENOSPC;
2324 goto abort_export;
2325 }
2326
2327 if (rdev->faulty) {
2328 printk(KERN_WARNING
2329 "md: can not hot-add faulty %s disk to %s!\n",
2330 bdevname(rdev->bdev,b), mdname(mddev));
2331 err = -EINVAL;
2332 goto abort_export;
2333 }
2334 rdev->in_sync = 0;
2335 rdev->desc_nr = -1;
2336 bind_rdev_to_array(rdev, mddev);
2337
2338 /*
2339 * The rest should better be atomic, we can have disk failures
2340 * noticed in interrupt contexts ...
2341 */
2342
2343 if (rdev->desc_nr == mddev->max_disks) {
2344 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2345 mdname(mddev));
2346 err = -EBUSY;
2347 goto abort_unbind_export;
2348 }
2349
2350 rdev->raid_disk = -1;
2351
2352 md_update_sb(mddev);
2353
2354 /*
2355 * Kick recovery, maybe this spare has to be added to the
2356 * array immediately.
2357 */
2358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2359 md_wakeup_thread(mddev->thread);
2360
2361 return 0;
2362
2363abort_unbind_export:
2364 unbind_rdev_from_array(rdev);
2365
2366abort_export:
2367 export_rdev(rdev);
2368 return err;
2369}
2370
32a7627c
N
2371/* similar to deny_write_access, but accounts for our holding a reference
2372 * to the file ourselves */
2373static int deny_bitmap_write_access(struct file * file)
2374{
2375 struct inode *inode = file->f_mapping->host;
2376
2377 spin_lock(&inode->i_lock);
2378 if (atomic_read(&inode->i_writecount) > 1) {
2379 spin_unlock(&inode->i_lock);
2380 return -ETXTBSY;
2381 }
2382 atomic_set(&inode->i_writecount, -1);
2383 spin_unlock(&inode->i_lock);
2384
2385 return 0;
2386}
2387
2388static int set_bitmap_file(mddev_t *mddev, int fd)
2389{
2390 int err;
2391
2392 if (mddev->pers)
2393 return -EBUSY;
2394
2395 mddev->bitmap_file = fget(fd);
2396
2397 if (mddev->bitmap_file == NULL) {
2398 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2399 mdname(mddev));
2400 return -EBADF;
2401 }
2402
2403 err = deny_bitmap_write_access(mddev->bitmap_file);
2404 if (err) {
2405 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2406 mdname(mddev));
2407 fput(mddev->bitmap_file);
2408 mddev->bitmap_file = NULL;
2409 }
2410 return err;
2411}
2412
1da177e4
LT
2413/*
2414 * set_array_info is used two different ways
2415 * The original usage is when creating a new array.
2416 * In this usage, raid_disks is > 0 and it together with
2417 * level, size, not_persistent,layout,chunksize determine the
2418 * shape of the array.
2419 * This will always create an array with a type-0.90.0 superblock.
2420 * The newer usage is when assembling an array.
2421 * In this case raid_disks will be 0, and the major_version field is
2422 * use to determine which style super-blocks are to be found on the devices.
2423 * The minor and patch _version numbers are also kept incase the
2424 * super_block handler wishes to interpret them.
2425 */
2426static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2427{
2428
2429 if (info->raid_disks == 0) {
2430 /* just setting version number for superblock loading */
2431 if (info->major_version < 0 ||
2432 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2433 super_types[info->major_version].name == NULL) {
2434 /* maybe try to auto-load a module? */
2435 printk(KERN_INFO
2436 "md: superblock version %d not known\n",
2437 info->major_version);
2438 return -EINVAL;
2439 }
2440 mddev->major_version = info->major_version;
2441 mddev->minor_version = info->minor_version;
2442 mddev->patch_version = info->patch_version;
2443 return 0;
2444 }
2445 mddev->major_version = MD_MAJOR_VERSION;
2446 mddev->minor_version = MD_MINOR_VERSION;
2447 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2448 mddev->ctime = get_seconds();
2449
2450 mddev->level = info->level;
2451 mddev->size = info->size;
2452 mddev->raid_disks = info->raid_disks;
2453 /* don't set md_minor, it is determined by which /dev/md* was
2454 * openned
2455 */
2456 if (info->state & (1<<MD_SB_CLEAN))
2457 mddev->recovery_cp = MaxSector;
2458 else
2459 mddev->recovery_cp = 0;
2460 mddev->persistent = ! info->not_persistent;
2461
2462 mddev->layout = info->layout;
2463 mddev->chunk_size = info->chunk_size;
2464
2465 mddev->max_disks = MD_SB_DISKS;
2466
2467 mddev->sb_dirty = 1;
2468
2469 /*
2470 * Generate a 128 bit UUID
2471 */
2472 get_random_bytes(mddev->uuid, 16);
2473
2474 return 0;
2475}
2476
2477/*
2478 * update_array_info is used to change the configuration of an
2479 * on-line array.
2480 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2481 * fields in the info are checked against the array.
2482 * Any differences that cannot be handled will cause an error.
2483 * Normally, only one change can be managed at a time.
2484 */
2485static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2486{
2487 int rv = 0;
2488 int cnt = 0;
2489
2490 if (mddev->major_version != info->major_version ||
2491 mddev->minor_version != info->minor_version ||
2492/* mddev->patch_version != info->patch_version || */
2493 mddev->ctime != info->ctime ||
2494 mddev->level != info->level ||
2495/* mddev->layout != info->layout || */
2496 !mddev->persistent != info->not_persistent||
2497 mddev->chunk_size != info->chunk_size )
2498 return -EINVAL;
2499 /* Check there is only one change */
2500 if (mddev->size != info->size) cnt++;
2501 if (mddev->raid_disks != info->raid_disks) cnt++;
2502 if (mddev->layout != info->layout) cnt++;
2503 if (cnt == 0) return 0;
2504 if (cnt > 1) return -EINVAL;
2505
2506 if (mddev->layout != info->layout) {
2507 /* Change layout
2508 * we don't need to do anything at the md level, the
2509 * personality will take care of it all.
2510 */
2511 if (mddev->pers->reconfig == NULL)
2512 return -EINVAL;
2513 else
2514 return mddev->pers->reconfig(mddev, info->layout, -1);
2515 }
2516 if (mddev->size != info->size) {
2517 mdk_rdev_t * rdev;
2518 struct list_head *tmp;
2519 if (mddev->pers->resize == NULL)
2520 return -EINVAL;
2521 /* The "size" is the amount of each device that is used.
2522 * This can only make sense for arrays with redundancy.
2523 * linear and raid0 always use whatever space is available
2524 * We can only consider changing the size if no resync
2525 * or reconstruction is happening, and if the new size
2526 * is acceptable. It must fit before the sb_offset or,
2527 * if that is <data_offset, it must fit before the
2528 * size of each device.
2529 * If size is zero, we find the largest size that fits.
2530 */
2531 if (mddev->sync_thread)
2532 return -EBUSY;
2533 ITERATE_RDEV(mddev,rdev,tmp) {
2534 sector_t avail;
2535 int fit = (info->size == 0);
2536 if (rdev->sb_offset > rdev->data_offset)
2537 avail = (rdev->sb_offset*2) - rdev->data_offset;
2538 else
2539 avail = get_capacity(rdev->bdev->bd_disk)
2540 - rdev->data_offset;
2541 if (fit && (info->size == 0 || info->size > avail/2))
2542 info->size = avail/2;
2543 if (avail < ((sector_t)info->size << 1))
2544 return -ENOSPC;
2545 }
2546 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2547 if (!rv) {
2548 struct block_device *bdev;
2549
2550 bdev = bdget_disk(mddev->gendisk, 0);
2551 if (bdev) {
2552 down(&bdev->bd_inode->i_sem);
2553 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2554 up(&bdev->bd_inode->i_sem);
2555 bdput(bdev);
2556 }
2557 }
2558 }
2559 if (mddev->raid_disks != info->raid_disks) {
2560 /* change the number of raid disks */
2561 if (mddev->pers->reshape == NULL)
2562 return -EINVAL;
2563 if (info->raid_disks <= 0 ||
2564 info->raid_disks >= mddev->max_disks)
2565 return -EINVAL;
2566 if (mddev->sync_thread)
2567 return -EBUSY;
2568 rv = mddev->pers->reshape(mddev, info->raid_disks);
2569 if (!rv) {
2570 struct block_device *bdev;
2571
2572 bdev = bdget_disk(mddev->gendisk, 0);
2573 if (bdev) {
2574 down(&bdev->bd_inode->i_sem);
2575 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2576 up(&bdev->bd_inode->i_sem);
2577 bdput(bdev);
2578 }
2579 }
2580 }
2581 md_update_sb(mddev);
2582 return rv;
2583}
2584
2585static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2586{
2587 mdk_rdev_t *rdev;
2588
2589 if (mddev->pers == NULL)
2590 return -ENODEV;
2591
2592 rdev = find_rdev(mddev, dev);
2593 if (!rdev)
2594 return -ENODEV;
2595
2596 md_error(mddev, rdev);
2597 return 0;
2598}
2599
2600static int md_ioctl(struct inode *inode, struct file *file,
2601 unsigned int cmd, unsigned long arg)
2602{
2603 int err = 0;
2604 void __user *argp = (void __user *)arg;
2605 struct hd_geometry __user *loc = argp;
2606 mddev_t *mddev = NULL;
2607
2608 if (!capable(CAP_SYS_ADMIN))
2609 return -EACCES;
2610
2611 /*
2612 * Commands dealing with the RAID driver but not any
2613 * particular array:
2614 */
2615 switch (cmd)
2616 {
2617 case RAID_VERSION:
2618 err = get_version(argp);
2619 goto done;
2620
2621 case PRINT_RAID_DEBUG:
2622 err = 0;
2623 md_print_devices();
2624 goto done;
2625
2626#ifndef MODULE
2627 case RAID_AUTORUN:
2628 err = 0;
2629 autostart_arrays(arg);
2630 goto done;
2631#endif
2632 default:;
2633 }
2634
2635 /*
2636 * Commands creating/starting a new array:
2637 */
2638
2639 mddev = inode->i_bdev->bd_disk->private_data;
2640
2641 if (!mddev) {
2642 BUG();
2643 goto abort;
2644 }
2645
2646
2647 if (cmd == START_ARRAY) {
2648 /* START_ARRAY doesn't need to lock the array as autostart_array
2649 * does the locking, and it could even be a different array
2650 */
2651 static int cnt = 3;
2652 if (cnt > 0 ) {
2653 printk(KERN_WARNING
2654 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2655 "This will not be supported beyond 2.6\n",
2656 current->comm, current->pid);
2657 cnt--;
2658 }
2659 err = autostart_array(new_decode_dev(arg));
2660 if (err) {
2661 printk(KERN_WARNING "md: autostart failed!\n");
2662 goto abort;
2663 }
2664 goto done;
2665 }
2666
2667 err = mddev_lock(mddev);
2668 if (err) {
2669 printk(KERN_INFO
2670 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2671 err, cmd);
2672 goto abort;
2673 }
2674
2675 switch (cmd)
2676 {
2677 case SET_ARRAY_INFO:
2678 {
2679 mdu_array_info_t info;
2680 if (!arg)
2681 memset(&info, 0, sizeof(info));
2682 else if (copy_from_user(&info, argp, sizeof(info))) {
2683 err = -EFAULT;
2684 goto abort_unlock;
2685 }
2686 if (mddev->pers) {
2687 err = update_array_info(mddev, &info);
2688 if (err) {
2689 printk(KERN_WARNING "md: couldn't update"
2690 " array info. %d\n", err);
2691 goto abort_unlock;
2692 }
2693 goto done_unlock;
2694 }
2695 if (!list_empty(&mddev->disks)) {
2696 printk(KERN_WARNING
2697 "md: array %s already has disks!\n",
2698 mdname(mddev));
2699 err = -EBUSY;
2700 goto abort_unlock;
2701 }
2702 if (mddev->raid_disks) {
2703 printk(KERN_WARNING
2704 "md: array %s already initialised!\n",
2705 mdname(mddev));
2706 err = -EBUSY;
2707 goto abort_unlock;
2708 }
2709 err = set_array_info(mddev, &info);
2710 if (err) {
2711 printk(KERN_WARNING "md: couldn't set"
2712 " array info. %d\n", err);
2713 goto abort_unlock;
2714 }
2715 }
2716 goto done_unlock;
2717
2718 default:;
2719 }
2720
2721 /*
2722 * Commands querying/configuring an existing array:
2723 */
32a7627c
N
2724 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2725 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2726 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2727 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
1da177e4
LT
2728 err = -ENODEV;
2729 goto abort_unlock;
2730 }
2731
2732 /*
2733 * Commands even a read-only array can execute:
2734 */
2735 switch (cmd)
2736 {
2737 case GET_ARRAY_INFO:
2738 err = get_array_info(mddev, argp);
2739 goto done_unlock;
2740
32a7627c
N
2741 case GET_BITMAP_FILE:
2742 err = get_bitmap_file(mddev, (void *)arg);
2743 goto done_unlock;
2744
1da177e4
LT
2745 case GET_DISK_INFO:
2746 err = get_disk_info(mddev, argp);
2747 goto done_unlock;
2748
2749 case RESTART_ARRAY_RW:
2750 err = restart_array(mddev);
2751 goto done_unlock;
2752
2753 case STOP_ARRAY:
2754 err = do_md_stop (mddev, 0);
2755 goto done_unlock;
2756
2757 case STOP_ARRAY_RO:
2758 err = do_md_stop (mddev, 1);
2759 goto done_unlock;
2760
2761 /*
2762 * We have a problem here : there is no easy way to give a CHS
2763 * virtual geometry. We currently pretend that we have a 2 heads
2764 * 4 sectors (with a BIG number of cylinders...). This drives
2765 * dosfs just mad... ;-)
2766 */
2767 case HDIO_GETGEO:
2768 if (!loc) {
2769 err = -EINVAL;
2770 goto abort_unlock;
2771 }
2772 err = put_user (2, (char __user *) &loc->heads);
2773 if (err)
2774 goto abort_unlock;
2775 err = put_user (4, (char __user *) &loc->sectors);
2776 if (err)
2777 goto abort_unlock;
2778 err = put_user(get_capacity(mddev->gendisk)/8,
2779 (short __user *) &loc->cylinders);
2780 if (err)
2781 goto abort_unlock;
2782 err = put_user (get_start_sect(inode->i_bdev),
2783 (long __user *) &loc->start);
2784 goto done_unlock;
2785 }
2786
2787 /*
2788 * The remaining ioctls are changing the state of the
2789 * superblock, so we do not allow read-only arrays
2790 * here:
2791 */
2792 if (mddev->ro) {
2793 err = -EROFS;
2794 goto abort_unlock;
2795 }
2796
2797 switch (cmd)
2798 {
2799 case ADD_NEW_DISK:
2800 {
2801 mdu_disk_info_t info;
2802 if (copy_from_user(&info, argp, sizeof(info)))
2803 err = -EFAULT;
2804 else
2805 err = add_new_disk(mddev, &info);
2806 goto done_unlock;
2807 }
2808
2809 case HOT_REMOVE_DISK:
2810 err = hot_remove_disk(mddev, new_decode_dev(arg));
2811 goto done_unlock;
2812
2813 case HOT_ADD_DISK:
2814 err = hot_add_disk(mddev, new_decode_dev(arg));
2815 goto done_unlock;
2816
2817 case SET_DISK_FAULTY:
2818 err = set_disk_faulty(mddev, new_decode_dev(arg));
2819 goto done_unlock;
2820
2821 case RUN_ARRAY:
2822 err = do_md_run (mddev);
2823 goto done_unlock;
2824
32a7627c
N
2825 case SET_BITMAP_FILE:
2826 err = set_bitmap_file(mddev, (int)arg);
2827 goto done_unlock;
2828
1da177e4
LT
2829 default:
2830 if (_IOC_TYPE(cmd) == MD_MAJOR)
2831 printk(KERN_WARNING "md: %s(pid %d) used"
2832 " obsolete MD ioctl, upgrade your"
2833 " software to use new ictls.\n",
2834 current->comm, current->pid);
2835 err = -EINVAL;
2836 goto abort_unlock;
2837 }
2838
2839done_unlock:
2840abort_unlock:
2841 mddev_unlock(mddev);
2842
2843 return err;
2844done:
2845 if (err)
2846 MD_BUG();
2847abort:
2848 return err;
2849}
2850
2851static int md_open(struct inode *inode, struct file *file)
2852{
2853 /*
2854 * Succeed if we can lock the mddev, which confirms that
2855 * it isn't being stopped right now.
2856 */
2857 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2858 int err;
2859
2860 if ((err = mddev_lock(mddev)))
2861 goto out;
2862
2863 err = 0;
2864 mddev_get(mddev);
2865 mddev_unlock(mddev);
2866
2867 check_disk_change(inode->i_bdev);
2868 out:
2869 return err;
2870}
2871
2872static int md_release(struct inode *inode, struct file * file)
2873{
2874 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2875
2876 if (!mddev)
2877 BUG();
2878 mddev_put(mddev);
2879
2880 return 0;
2881}
2882
2883static int md_media_changed(struct gendisk *disk)
2884{
2885 mddev_t *mddev = disk->private_data;
2886
2887 return mddev->changed;
2888}
2889
2890static int md_revalidate(struct gendisk *disk)
2891{
2892 mddev_t *mddev = disk->private_data;
2893
2894 mddev->changed = 0;
2895 return 0;
2896}
2897static struct block_device_operations md_fops =
2898{
2899 .owner = THIS_MODULE,
2900 .open = md_open,
2901 .release = md_release,
2902 .ioctl = md_ioctl,
2903 .media_changed = md_media_changed,
2904 .revalidate_disk= md_revalidate,
2905};
2906
75c96f85 2907static int md_thread(void * arg)
1da177e4
LT
2908{
2909 mdk_thread_t *thread = arg;
2910
2911 lock_kernel();
2912
2913 /*
2914 * Detach thread
2915 */
2916
2917 daemonize(thread->name, mdname(thread->mddev));
2918
2919 current->exit_signal = SIGCHLD;
2920 allow_signal(SIGKILL);
2921 thread->tsk = current;
2922
2923 /*
2924 * md_thread is a 'system-thread', it's priority should be very
2925 * high. We avoid resource deadlocks individually in each
2926 * raid personality. (RAID5 does preallocation) We also use RR and
2927 * the very same RT priority as kswapd, thus we will never get
2928 * into a priority inversion deadlock.
2929 *
2930 * we definitely have to have equal or higher priority than
2931 * bdflush, otherwise bdflush will deadlock if there are too
2932 * many dirty RAID5 blocks.
2933 */
2934 unlock_kernel();
2935
2936 complete(thread->event);
2937 while (thread->run) {
2938 void (*run)(mddev_t *);
2939
32a7627c
N
2940 wait_event_interruptible_timeout(thread->wqueue,
2941 test_bit(THREAD_WAKEUP, &thread->flags),
2942 thread->timeout);
1da177e4
LT
2943 if (current->flags & PF_FREEZE)
2944 refrigerator(PF_FREEZE);
2945
2946 clear_bit(THREAD_WAKEUP, &thread->flags);
2947
2948 run = thread->run;
2949 if (run)
2950 run(thread->mddev);
2951
2952 if (signal_pending(current))
2953 flush_signals(current);
2954 }
2955 complete(thread->event);
2956 return 0;
2957}
2958
2959void md_wakeup_thread(mdk_thread_t *thread)
2960{
2961 if (thread) {
2962 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2963 set_bit(THREAD_WAKEUP, &thread->flags);
2964 wake_up(&thread->wqueue);
2965 }
2966}
2967
2968mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2969 const char *name)
2970{
2971 mdk_thread_t *thread;
2972 int ret;
2973 struct completion event;
2974
2975 thread = (mdk_thread_t *) kmalloc
2976 (sizeof(mdk_thread_t), GFP_KERNEL);
2977 if (!thread)
2978 return NULL;
2979
2980 memset(thread, 0, sizeof(mdk_thread_t));
2981 init_waitqueue_head(&thread->wqueue);
2982
2983 init_completion(&event);
2984 thread->event = &event;
2985 thread->run = run;
2986 thread->mddev = mddev;
2987 thread->name = name;
32a7627c 2988 thread->timeout = MAX_SCHEDULE_TIMEOUT;
1da177e4
LT
2989 ret = kernel_thread(md_thread, thread, 0);
2990 if (ret < 0) {
2991 kfree(thread);
2992 return NULL;
2993 }
2994 wait_for_completion(&event);
2995 return thread;
2996}
2997
1da177e4
LT
2998void md_unregister_thread(mdk_thread_t *thread)
2999{
3000 struct completion event;
3001
3002 init_completion(&event);
3003
3004 thread->event = &event;
d28446fe
N
3005
3006 /* As soon as ->run is set to NULL, the task could disappear,
3007 * so we need to hold tasklist_lock until we have sent the signal
3008 */
3009 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3010 read_lock(&tasklist_lock);
1da177e4 3011 thread->run = NULL;
d28446fe
N
3012 send_sig(SIGKILL, thread->tsk, 1);
3013 read_unlock(&tasklist_lock);
1da177e4
LT
3014 wait_for_completion(&event);
3015 kfree(thread);
3016}
3017
3018void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3019{
3020 if (!mddev) {
3021 MD_BUG();
3022 return;
3023 }
3024
3025 if (!rdev || rdev->faulty)
3026 return;
32a7627c 3027/*
1da177e4
LT
3028 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3029 mdname(mddev),
3030 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3031 __builtin_return_address(0),__builtin_return_address(1),
3032 __builtin_return_address(2),__builtin_return_address(3));
32a7627c 3033*/
1da177e4
LT
3034 if (!mddev->pers->error_handler)
3035 return;
3036 mddev->pers->error_handler(mddev,rdev);
3037 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3038 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3039 md_wakeup_thread(mddev->thread);
3040}
3041
3042/* seq_file implementation /proc/mdstat */
3043
3044static void status_unused(struct seq_file *seq)
3045{
3046 int i = 0;
3047 mdk_rdev_t *rdev;
3048 struct list_head *tmp;
3049
3050 seq_printf(seq, "unused devices: ");
3051
3052 ITERATE_RDEV_PENDING(rdev,tmp) {
3053 char b[BDEVNAME_SIZE];
3054 i++;
3055 seq_printf(seq, "%s ",
3056 bdevname(rdev->bdev,b));
3057 }
3058 if (!i)
3059 seq_printf(seq, "<none>");
3060
3061 seq_printf(seq, "\n");
3062}
3063
3064
3065static void status_resync(struct seq_file *seq, mddev_t * mddev)
3066{
3067 unsigned long max_blocks, resync, res, dt, db, rt;
3068
3069 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3070
3071 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3072 max_blocks = mddev->resync_max_sectors >> 1;
3073 else
3074 max_blocks = mddev->size;
3075
3076 /*
3077 * Should not happen.
3078 */
3079 if (!max_blocks) {
3080 MD_BUG();
3081 return;
3082 }
3083 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3084 {
3085 int i, x = res/50, y = 20-x;
3086 seq_printf(seq, "[");
3087 for (i = 0; i < x; i++)
3088 seq_printf(seq, "=");
3089 seq_printf(seq, ">");
3090 for (i = 0; i < y; i++)
3091 seq_printf(seq, ".");
3092 seq_printf(seq, "] ");
3093 }
3094 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3095 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3096 "resync" : "recovery"),
3097 res/10, res % 10, resync, max_blocks);
3098
3099 /*
3100 * We do not want to overflow, so the order of operands and
3101 * the * 100 / 100 trick are important. We do a +1 to be
3102 * safe against division by zero. We only estimate anyway.
3103 *
3104 * dt: time from mark until now
3105 * db: blocks written from mark until now
3106 * rt: remaining time
3107 */
3108 dt = ((jiffies - mddev->resync_mark) / HZ);
3109 if (!dt) dt++;
3110 db = resync - (mddev->resync_mark_cnt/2);
3111 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3112
3113 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3114
3115 seq_printf(seq, " speed=%ldK/sec", db/dt);
3116}
3117
3118static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3119{
3120 struct list_head *tmp;
3121 loff_t l = *pos;
3122 mddev_t *mddev;
3123
3124 if (l >= 0x10000)
3125 return NULL;
3126 if (!l--)
3127 /* header */
3128 return (void*)1;
3129
3130 spin_lock(&all_mddevs_lock);
3131 list_for_each(tmp,&all_mddevs)
3132 if (!l--) {
3133 mddev = list_entry(tmp, mddev_t, all_mddevs);
3134 mddev_get(mddev);
3135 spin_unlock(&all_mddevs_lock);
3136 return mddev;
3137 }
3138 spin_unlock(&all_mddevs_lock);
3139 if (!l--)
3140 return (void*)2;/* tail */
3141 return NULL;
3142}
3143
3144static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3145{
3146 struct list_head *tmp;
3147 mddev_t *next_mddev, *mddev = v;
3148
3149 ++*pos;
3150 if (v == (void*)2)
3151 return NULL;
3152
3153 spin_lock(&all_mddevs_lock);
3154 if (v == (void*)1)
3155 tmp = all_mddevs.next;
3156 else
3157 tmp = mddev->all_mddevs.next;
3158 if (tmp != &all_mddevs)
3159 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3160 else {
3161 next_mddev = (void*)2;
3162 *pos = 0x10000;
3163 }
3164 spin_unlock(&all_mddevs_lock);
3165
3166 if (v != (void*)1)
3167 mddev_put(mddev);
3168 return next_mddev;
3169
3170}
3171
3172static void md_seq_stop(struct seq_file *seq, void *v)
3173{
3174 mddev_t *mddev = v;
3175
3176 if (mddev && v != (void*)1 && v != (void*)2)
3177 mddev_put(mddev);
3178}
3179
3180static int md_seq_show(struct seq_file *seq, void *v)
3181{
3182 mddev_t *mddev = v;
3183 sector_t size;
3184 struct list_head *tmp2;
3185 mdk_rdev_t *rdev;
3186 int i;
32a7627c 3187 struct bitmap *bitmap;
1da177e4
LT
3188
3189 if (v == (void*)1) {
3190 seq_printf(seq, "Personalities : ");
3191 spin_lock(&pers_lock);
3192 for (i = 0; i < MAX_PERSONALITY; i++)
3193 if (pers[i])
3194 seq_printf(seq, "[%s] ", pers[i]->name);
3195
3196 spin_unlock(&pers_lock);
3197 seq_printf(seq, "\n");
3198 return 0;
3199 }
3200 if (v == (void*)2) {
3201 status_unused(seq);
3202 return 0;
3203 }
3204
3205 if (mddev_lock(mddev)!=0)
3206 return -EINTR;
3207 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3208 seq_printf(seq, "%s : %sactive", mdname(mddev),
3209 mddev->pers ? "" : "in");
3210 if (mddev->pers) {
3211 if (mddev->ro)
3212 seq_printf(seq, " (read-only)");
3213 seq_printf(seq, " %s", mddev->pers->name);
3214 }
3215
3216 size = 0;
3217 ITERATE_RDEV(mddev,rdev,tmp2) {
3218 char b[BDEVNAME_SIZE];
3219 seq_printf(seq, " %s[%d]",
3220 bdevname(rdev->bdev,b), rdev->desc_nr);
3221 if (rdev->faulty) {
3222 seq_printf(seq, "(F)");
3223 continue;
3224 }
3225 size += rdev->size;
3226 }
3227
3228 if (!list_empty(&mddev->disks)) {
3229 if (mddev->pers)
3230 seq_printf(seq, "\n %llu blocks",
3231 (unsigned long long)mddev->array_size);
3232 else
3233 seq_printf(seq, "\n %llu blocks",
3234 (unsigned long long)size);
3235 }
3236
3237 if (mddev->pers) {
3238 mddev->pers->status (seq, mddev);
3239 seq_printf(seq, "\n ");
32a7627c 3240 if (mddev->curr_resync > 2) {
1da177e4 3241 status_resync (seq, mddev);
32a7627c
N
3242 seq_printf(seq, "\n ");
3243 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3244 seq_printf(seq, " resync=DELAYED\n ");
3245 } else
3246 seq_printf(seq, "\n ");
3247
3248 if ((bitmap = mddev->bitmap)) {
32a7627c
N
3249 unsigned long chunk_kb;
3250 unsigned long flags;
32a7627c
N
3251 spin_lock_irqsave(&bitmap->lock, flags);
3252 chunk_kb = bitmap->chunksize >> 10;
3253 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3254 "%lu%s chunk",
3255 bitmap->pages - bitmap->missing_pages,
3256 bitmap->pages,
3257 (bitmap->pages - bitmap->missing_pages)
3258 << (PAGE_SHIFT - 10),
3259 chunk_kb ? chunk_kb : bitmap->chunksize,
3260 chunk_kb ? "KB" : "B");
78d742d8
N
3261 if (bitmap->file) {
3262 seq_printf(seq, ", file: ");
3263 seq_path(seq, bitmap->file->f_vfsmnt,
3264 bitmap->file->f_dentry," \t\n");
32a7627c 3265 }
78d742d8 3266
32a7627c
N
3267 seq_printf(seq, "\n");
3268 spin_unlock_irqrestore(&bitmap->lock, flags);
1da177e4
LT
3269 }
3270
3271 seq_printf(seq, "\n");
3272 }
3273 mddev_unlock(mddev);
3274
3275 return 0;
3276}
3277
3278static struct seq_operations md_seq_ops = {
3279 .start = md_seq_start,
3280 .next = md_seq_next,
3281 .stop = md_seq_stop,
3282 .show = md_seq_show,
3283};
3284
3285static int md_seq_open(struct inode *inode, struct file *file)
3286{
3287 int error;
3288
3289 error = seq_open(file, &md_seq_ops);
3290 return error;
3291}
3292
3293static struct file_operations md_seq_fops = {
3294 .open = md_seq_open,
3295 .read = seq_read,
3296 .llseek = seq_lseek,
3297 .release = seq_release,
3298};
3299
3300int register_md_personality(int pnum, mdk_personality_t *p)
3301{
3302 if (pnum >= MAX_PERSONALITY) {
3303 printk(KERN_ERR
3304 "md: tried to install personality %s as nr %d, but max is %lu\n",
3305 p->name, pnum, MAX_PERSONALITY-1);
3306 return -EINVAL;
3307 }
3308
3309 spin_lock(&pers_lock);
3310 if (pers[pnum]) {
3311 spin_unlock(&pers_lock);
1da177e4
LT
3312 return -EBUSY;
3313 }
3314
3315 pers[pnum] = p;
3316 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3317 spin_unlock(&pers_lock);
3318 return 0;
3319}
3320
3321int unregister_md_personality(int pnum)
3322{
a757e64c 3323 if (pnum >= MAX_PERSONALITY)
1da177e4 3324 return -EINVAL;
1da177e4
LT
3325
3326 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3327 spin_lock(&pers_lock);
3328 pers[pnum] = NULL;
3329 spin_unlock(&pers_lock);
3330 return 0;
3331}
3332
3333static int is_mddev_idle(mddev_t *mddev)
3334{
3335 mdk_rdev_t * rdev;
3336 struct list_head *tmp;
3337 int idle;
3338 unsigned long curr_events;
3339
3340 idle = 1;
3341 ITERATE_RDEV(mddev,rdev,tmp) {
3342 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3343 curr_events = disk_stat_read(disk, read_sectors) +
3344 disk_stat_read(disk, write_sectors) -
3345 atomic_read(&disk->sync_io);
3346 /* Allow some slack between valud of curr_events and last_events,
3347 * as there are some uninteresting races.
3348 * Note: the following is an unsigned comparison.
3349 */
3350 if ((curr_events - rdev->last_events + 32) > 64) {
3351 rdev->last_events = curr_events;
3352 idle = 0;
3353 }
3354 }
3355 return idle;
3356}
3357
3358void md_done_sync(mddev_t *mddev, int blocks, int ok)
3359{
3360 /* another "blocks" (512byte) blocks have been synced */
3361 atomic_sub(blocks, &mddev->recovery_active);
3362 wake_up(&mddev->recovery_wait);
3363 if (!ok) {
3364 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3365 md_wakeup_thread(mddev->thread);
3366 // stop recovery, signal do_sync ....
3367 }
3368}
3369
3370
06d91a5f
N
3371/* md_write_start(mddev, bi)
3372 * If we need to update some array metadata (e.g. 'active' flag
3d310eb7
N
3373 * in superblock) before writing, schedule a superblock update
3374 * and wait for it to complete.
06d91a5f 3375 */
3d310eb7 3376void md_write_start(mddev_t *mddev, struct bio *bi)
1da177e4 3377{
3d310eb7 3378 DEFINE_WAIT(w);
06d91a5f 3379 if (bio_data_dir(bi) != WRITE)
3d310eb7 3380 return;
06d91a5f
N
3381
3382 atomic_inc(&mddev->writes_pending);
06d91a5f 3383 if (mddev->in_sync) {
3d310eb7
N
3384 spin_lock(&mddev->write_lock);
3385 if (mddev->in_sync) {
3386 mddev->in_sync = 0;
3387 mddev->sb_dirty = 1;
3388 md_wakeup_thread(mddev->thread);
3389 }
3390 spin_unlock(&mddev->write_lock);
06d91a5f 3391 }
3d310eb7 3392 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
1da177e4
LT
3393}
3394
3395void md_write_end(mddev_t *mddev)
3396{
3397 if (atomic_dec_and_test(&mddev->writes_pending)) {
3398 if (mddev->safemode == 2)
3399 md_wakeup_thread(mddev->thread);
3400 else
3401 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3402 }
3403}
3404
75c96f85 3405static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3406
3407#define SYNC_MARKS 10
3408#define SYNC_MARK_STEP (3*HZ)
3409static void md_do_sync(mddev_t *mddev)
3410{
3411 mddev_t *mddev2;
3412 unsigned int currspeed = 0,
3413 window;
57afd89f 3414 sector_t max_sectors,j, io_sectors;
1da177e4
LT
3415 unsigned long mark[SYNC_MARKS];
3416 sector_t mark_cnt[SYNC_MARKS];
3417 int last_mark,m;
3418 struct list_head *tmp;
3419 sector_t last_check;
57afd89f 3420 int skipped = 0;
1da177e4
LT
3421
3422 /* just incase thread restarts... */
3423 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3424 return;
3425
3426 /* we overload curr_resync somewhat here.
3427 * 0 == not engaged in resync at all
3428 * 2 == checking that there is no conflict with another sync
3429 * 1 == like 2, but have yielded to allow conflicting resync to
3430 * commense
3431 * other == active in resync - this many blocks
3432 *
3433 * Before starting a resync we must have set curr_resync to
3434 * 2, and then checked that every "conflicting" array has curr_resync
3435 * less than ours. When we find one that is the same or higher
3436 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3437 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3438 * This will mean we have to start checking from the beginning again.
3439 *
3440 */
3441
3442 do {
3443 mddev->curr_resync = 2;
3444
3445 try_again:
3446 if (signal_pending(current)) {
3447 flush_signals(current);
3448 goto skip;
3449 }
3450 ITERATE_MDDEV(mddev2,tmp) {
3451 printk(".");
3452 if (mddev2 == mddev)
3453 continue;
3454 if (mddev2->curr_resync &&
3455 match_mddev_units(mddev,mddev2)) {
3456 DEFINE_WAIT(wq);
3457 if (mddev < mddev2 && mddev->curr_resync == 2) {
3458 /* arbitrarily yield */
3459 mddev->curr_resync = 1;
3460 wake_up(&resync_wait);
3461 }
3462 if (mddev > mddev2 && mddev->curr_resync == 1)
3463 /* no need to wait here, we can wait the next
3464 * time 'round when curr_resync == 2
3465 */
3466 continue;
3467 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3468 if (!signal_pending(current)
3469 && mddev2->curr_resync >= mddev->curr_resync) {
3470 printk(KERN_INFO "md: delaying resync of %s"
3471 " until %s has finished resync (they"
3472 " share one or more physical units)\n",
3473 mdname(mddev), mdname(mddev2));
3474 mddev_put(mddev2);
3475 schedule();
3476 finish_wait(&resync_wait, &wq);
3477 goto try_again;
3478 }
3479 finish_wait(&resync_wait, &wq);
3480 }
3481 }
3482 } while (mddev->curr_resync < 2);
3483
3484 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3485 /* resync follows the size requested by the personality,
57afd89f 3486 * which defaults to physical size, but can be virtual size
1da177e4
LT
3487 */
3488 max_sectors = mddev->resync_max_sectors;
3489 else
3490 /* recovery follows the physical size of devices */
3491 max_sectors = mddev->size << 1;
3492
3493 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3494 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3495 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3496 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3497 "(but not more than %d KB/sec) for reconstruction.\n",
3498 sysctl_speed_limit_max);
3499
3500 is_mddev_idle(mddev); /* this also initializes IO event counters */
32a7627c
N
3501 /* we don't use the checkpoint if there's a bitmap */
3502 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
1da177e4
LT
3503 j = mddev->recovery_cp;
3504 else
3505 j = 0;
57afd89f 3506 io_sectors = 0;
1da177e4
LT
3507 for (m = 0; m < SYNC_MARKS; m++) {
3508 mark[m] = jiffies;
57afd89f 3509 mark_cnt[m] = io_sectors;
1da177e4
LT
3510 }
3511 last_mark = 0;
3512 mddev->resync_mark = mark[last_mark];
3513 mddev->resync_mark_cnt = mark_cnt[last_mark];
3514
3515 /*
3516 * Tune reconstruction:
3517 */
3518 window = 32*(PAGE_SIZE/512);
3519 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3520 window/2,(unsigned long long) max_sectors/2);
3521
3522 atomic_set(&mddev->recovery_active, 0);
3523 init_waitqueue_head(&mddev->recovery_wait);
3524 last_check = 0;
3525
3526 if (j>2) {
3527 printk(KERN_INFO
3528 "md: resuming recovery of %s from checkpoint.\n",
3529 mdname(mddev));
3530 mddev->curr_resync = j;
3531 }
3532
3533 while (j < max_sectors) {
57afd89f 3534 sector_t sectors;
1da177e4 3535
57afd89f
N
3536 skipped = 0;
3537 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3538 currspeed < sysctl_speed_limit_min);
3539 if (sectors == 0) {
1da177e4
LT
3540 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3541 goto out;
3542 }
57afd89f
N
3543
3544 if (!skipped) { /* actual IO requested */
3545 io_sectors += sectors;
3546 atomic_add(sectors, &mddev->recovery_active);
3547 }
3548
1da177e4
LT
3549 j += sectors;
3550 if (j>1) mddev->curr_resync = j;
3551
57afd89f
N
3552
3553 if (last_check + window > io_sectors || j == max_sectors)
1da177e4
LT
3554 continue;
3555
57afd89f 3556 last_check = io_sectors;
1da177e4
LT
3557
3558 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3559 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3560 break;
3561
3562 repeat:
3563 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3564 /* step marks */
3565 int next = (last_mark+1) % SYNC_MARKS;
3566
3567 mddev->resync_mark = mark[next];
3568 mddev->resync_mark_cnt = mark_cnt[next];
3569 mark[next] = jiffies;
57afd89f 3570 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
1da177e4
LT
3571 last_mark = next;
3572 }
3573
3574
3575 if (signal_pending(current)) {
3576 /*
3577 * got a signal, exit.
3578 */
3579 printk(KERN_INFO
3580 "md: md_do_sync() got signal ... exiting\n");
3581 flush_signals(current);
3582 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3583 goto out;
3584 }
3585
3586 /*
3587 * this loop exits only if either when we are slower than
3588 * the 'hard' speed limit, or the system was IO-idle for
3589 * a jiffy.
3590 * the system might be non-idle CPU-wise, but we only care
3591 * about not overloading the IO subsystem. (things like an
3592 * e2fsck being done on the RAID array should execute fast)
3593 */
3594 mddev->queue->unplug_fn(mddev->queue);
3595 cond_resched();
3596
57afd89f
N
3597 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3598 /((jiffies-mddev->resync_mark)/HZ +1) +1;
1da177e4
LT
3599
3600 if (currspeed > sysctl_speed_limit_min) {
3601 if ((currspeed > sysctl_speed_limit_max) ||
3602 !is_mddev_idle(mddev)) {
3603 msleep_interruptible(250);
3604 goto repeat;
3605 }
3606 }
3607 }
3608 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3609 /*
3610 * this also signals 'finished resyncing' to md_stop
3611 */
3612 out:
3613 mddev->queue->unplug_fn(mddev->queue);
3614
3615 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3616
3617 /* tell personality that we are finished */
57afd89f 3618 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
1da177e4
LT
3619
3620 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3621 mddev->curr_resync > 2 &&
3622 mddev->curr_resync >= mddev->recovery_cp) {
3623 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3624 printk(KERN_INFO
3625 "md: checkpointing recovery of %s.\n",
3626 mdname(mddev));
3627 mddev->recovery_cp = mddev->curr_resync;
3628 } else
3629 mddev->recovery_cp = MaxSector;
3630 }
3631
1da177e4
LT
3632 skip:
3633 mddev->curr_resync = 0;
3634 wake_up(&resync_wait);
3635 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3636 md_wakeup_thread(mddev->thread);
3637}
3638
3639
3640/*
3641 * This routine is regularly called by all per-raid-array threads to
3642 * deal with generic issues like resync and super-block update.
3643 * Raid personalities that don't have a thread (linear/raid0) do not
3644 * need this as they never do any recovery or update the superblock.
3645 *
3646 * It does not do any resync itself, but rather "forks" off other threads
3647 * to do that as needed.
3648 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3649 * "->recovery" and create a thread at ->sync_thread.
3650 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3651 * and wakeups up this thread which will reap the thread and finish up.
3652 * This thread also removes any faulty devices (with nr_pending == 0).
3653 *
3654 * The overall approach is:
3655 * 1/ if the superblock needs updating, update it.
3656 * 2/ If a recovery thread is running, don't do anything else.
3657 * 3/ If recovery has finished, clean up, possibly marking spares active.
3658 * 4/ If there are any faulty devices, remove them.
3659 * 5/ If array is degraded, try to add spares devices
3660 * 6/ If array has spares or is not in-sync, start a resync thread.
3661 */
3662void md_check_recovery(mddev_t *mddev)
3663{
3664 mdk_rdev_t *rdev;
3665 struct list_head *rtmp;
3666
3667
5f40402d
N
3668 if (mddev->bitmap)
3669 bitmap_daemon_work(mddev->bitmap);
1da177e4
LT
3670
3671 if (mddev->ro)
3672 return;
fca4d848
N
3673
3674 if (signal_pending(current)) {
3675 if (mddev->pers->sync_request) {
3676 printk(KERN_INFO "md: %s in immediate safe mode\n",
3677 mdname(mddev));
3678 mddev->safemode = 2;
3679 }
3680 flush_signals(current);
3681 }
3682
1da177e4
LT
3683 if ( ! (
3684 mddev->sb_dirty ||
3685 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
fca4d848
N
3686 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3687 (mddev->safemode == 1) ||
3688 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3689 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
1da177e4
LT
3690 ))
3691 return;
fca4d848 3692
1da177e4
LT
3693 if (mddev_trylock(mddev)==0) {
3694 int spares =0;
fca4d848 3695
06d91a5f 3696 spin_lock(&mddev->write_lock);
fca4d848
N
3697 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3698 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3699 mddev->in_sync = 1;
3700 mddev->sb_dirty = 1;
3701 }
3702 if (mddev->safemode == 1)
3703 mddev->safemode = 0;
06d91a5f 3704 spin_unlock(&mddev->write_lock);
fca4d848 3705
1da177e4
LT
3706 if (mddev->sb_dirty)
3707 md_update_sb(mddev);
06d91a5f 3708
06d91a5f 3709
1da177e4
LT
3710 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3711 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3712 /* resync/recovery still happening */
3713 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3714 goto unlock;
3715 }
3716 if (mddev->sync_thread) {
3717 /* resync has finished, collect result */
3718 md_unregister_thread(mddev->sync_thread);
3719 mddev->sync_thread = NULL;
3720 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3721 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3722 /* success...*/
3723 /* activate any spares */
3724 mddev->pers->spare_active(mddev);
3725 }
3726 md_update_sb(mddev);
41158c7e
N
3727
3728 /* if array is no-longer degraded, then any saved_raid_disk
3729 * information must be scrapped
3730 */
3731 if (!mddev->degraded)
3732 ITERATE_RDEV(mddev,rdev,rtmp)
3733 rdev->saved_raid_disk = -1;
3734
1da177e4
LT
3735 mddev->recovery = 0;
3736 /* flag recovery needed just to double check */
3737 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3738 goto unlock;
3739 }
3740 if (mddev->recovery)
3741 /* probably just the RECOVERY_NEEDED flag */
3742 mddev->recovery = 0;
3743
3744 /* no recovery is running.
3745 * remove any failed drives, then
3746 * add spares if possible.
3747 * Spare are also removed and re-added, to allow
3748 * the personality to fail the re-add.
3749 */
3750 ITERATE_RDEV(mddev,rdev,rtmp)
3751 if (rdev->raid_disk >= 0 &&
3752 (rdev->faulty || ! rdev->in_sync) &&
3753 atomic_read(&rdev->nr_pending)==0) {
3754 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3755 rdev->raid_disk = -1;
3756 }
3757
3758 if (mddev->degraded) {
3759 ITERATE_RDEV(mddev,rdev,rtmp)
3760 if (rdev->raid_disk < 0
3761 && !rdev->faulty) {
3762 if (mddev->pers->hot_add_disk(mddev,rdev))
3763 spares++;
3764 else
3765 break;
3766 }
3767 }
3768
3769 if (!spares && (mddev->recovery_cp == MaxSector )) {
3770 /* nothing we can do ... */
3771 goto unlock;
3772 }
3773 if (mddev->pers->sync_request) {
3774 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3775 if (!spares)
3776 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3777 mddev->sync_thread = md_register_thread(md_do_sync,
3778 mddev,
3779 "%s_resync");
3780 if (!mddev->sync_thread) {
3781 printk(KERN_ERR "%s: could not start resync"
3782 " thread...\n",
3783 mdname(mddev));
3784 /* leave the spares where they are, it shouldn't hurt */
3785 mddev->recovery = 0;
3786 } else {
3787 md_wakeup_thread(mddev->sync_thread);
3788 }
3789 }
3790 unlock:
3791 mddev_unlock(mddev);
3792 }
3793}
3794
75c96f85
AB
3795static int md_notify_reboot(struct notifier_block *this,
3796 unsigned long code, void *x)
1da177e4
LT
3797{
3798 struct list_head *tmp;
3799 mddev_t *mddev;
3800
3801 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3802
3803 printk(KERN_INFO "md: stopping all md devices.\n");
3804
3805 ITERATE_MDDEV(mddev,tmp)
3806 if (mddev_trylock(mddev)==0)
3807 do_md_stop (mddev, 1);
3808 /*
3809 * certain more exotic SCSI devices are known to be
3810 * volatile wrt too early system reboots. While the
3811 * right place to handle this issue is the given
3812 * driver, we do want to have a safe RAID driver ...
3813 */
3814 mdelay(1000*1);
3815 }
3816 return NOTIFY_DONE;
3817}
3818
75c96f85 3819static struct notifier_block md_notifier = {
1da177e4
LT
3820 .notifier_call = md_notify_reboot,
3821 .next = NULL,
3822 .priority = INT_MAX, /* before any real devices */
3823};
3824
3825static void md_geninit(void)
3826{
3827 struct proc_dir_entry *p;
3828
3829 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3830
3831 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3832 if (p)
3833 p->proc_fops = &md_seq_fops;
3834}
3835
75c96f85 3836static int __init md_init(void)
1da177e4
LT
3837{
3838 int minor;
3839
3840 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3841 " MD_SB_DISKS=%d\n",
3842 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3843 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
32a7627c
N
3844 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3845 BITMAP_MINOR);
1da177e4
LT
3846
3847 if (register_blkdev(MAJOR_NR, "md"))
3848 return -1;
3849 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3850 unregister_blkdev(MAJOR_NR, "md");
3851 return -1;
3852 }
3853 devfs_mk_dir("md");
3854 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3855 md_probe, NULL, NULL);
3856 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3857 md_probe, NULL, NULL);
3858
3859 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3860 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3861 S_IFBLK|S_IRUSR|S_IWUSR,
3862 "md/%d", minor);
3863
3864 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3865 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3866 S_IFBLK|S_IRUSR|S_IWUSR,
3867 "md/mdp%d", minor);
3868
3869
3870 register_reboot_notifier(&md_notifier);
3871 raid_table_header = register_sysctl_table(raid_root_table, 1);
3872
3873 md_geninit();
3874 return (0);
3875}
3876
3877
3878#ifndef MODULE
3879
3880/*
3881 * Searches all registered partitions for autorun RAID arrays
3882 * at boot time.
3883 */
3884static dev_t detected_devices[128];
3885static int dev_cnt;
3886
3887void md_autodetect_dev(dev_t dev)
3888{
3889 if (dev_cnt >= 0 && dev_cnt < 127)
3890 detected_devices[dev_cnt++] = dev;
3891}
3892
3893
3894static void autostart_arrays(int part)
3895{
3896 mdk_rdev_t *rdev;
3897 int i;
3898
3899 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3900
3901 for (i = 0; i < dev_cnt; i++) {
3902 dev_t dev = detected_devices[i];
3903
3904 rdev = md_import_device(dev,0, 0);
3905 if (IS_ERR(rdev))
3906 continue;
3907
3908 if (rdev->faulty) {
3909 MD_BUG();
3910 continue;
3911 }
3912 list_add(&rdev->same_set, &pending_raid_disks);
3913 }
3914 dev_cnt = 0;
3915
3916 autorun_devices(part);
3917}
3918
3919#endif
3920
3921static __exit void md_exit(void)
3922{
3923 mddev_t *mddev;
3924 struct list_head *tmp;
3925 int i;
3926 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3927 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3928 for (i=0; i < MAX_MD_DEVS; i++)
3929 devfs_remove("md/%d", i);
3930 for (i=0; i < MAX_MD_DEVS; i++)
3931 devfs_remove("md/d%d", i);
3932
3933 devfs_remove("md");
3934
3935 unregister_blkdev(MAJOR_NR,"md");
3936 unregister_blkdev(mdp_major, "mdp");
3937 unregister_reboot_notifier(&md_notifier);
3938 unregister_sysctl_table(raid_table_header);
3939 remove_proc_entry("mdstat", NULL);
3940 ITERATE_MDDEV(mddev,tmp) {
3941 struct gendisk *disk = mddev->gendisk;
3942 if (!disk)
3943 continue;
3944 export_array(mddev);
3945 del_gendisk(disk);
3946 put_disk(disk);
3947 mddev->gendisk = NULL;
3948 mddev_put(mddev);
3949 }
3950}
3951
3952module_init(md_init)
3953module_exit(md_exit)
3954
3955EXPORT_SYMBOL(register_md_personality);
3956EXPORT_SYMBOL(unregister_md_personality);
3957EXPORT_SYMBOL(md_error);
3958EXPORT_SYMBOL(md_done_sync);
3959EXPORT_SYMBOL(md_write_start);
3960EXPORT_SYMBOL(md_write_end);
1da177e4
LT
3961EXPORT_SYMBOL(md_register_thread);
3962EXPORT_SYMBOL(md_unregister_thread);
3963EXPORT_SYMBOL(md_wakeup_thread);
3964EXPORT_SYMBOL(md_print_devices);
3965EXPORT_SYMBOL(md_check_recovery);
3966MODULE_LICENSE("GPL");