]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ieee1394/ohci1394.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[net-next-2.6.git] / drivers / ieee1394 / ohci1394.c
CommitLineData
1da177e4
LT
1/*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22/*
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
31 *
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
35 *
36 * Things not implemented:
37 * . DMA error recovery
38 *
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42 */
43
44/*
45 * Acknowledgments:
46 *
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
49 *
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
52 *
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
55 *
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
58 *
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
61 *
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
64 *
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
67 *
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
70 *
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
75 *
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
79 *
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
82 *
83 */
84
1da177e4
LT
85#include <linux/kernel.h>
86#include <linux/list.h>
87#include <linux/slab.h>
88#include <linux/interrupt.h>
89#include <linux/wait.h>
90#include <linux/errno.h>
91#include <linux/module.h>
92#include <linux/moduleparam.h>
93#include <linux/pci.h>
94#include <linux/fs.h>
95#include <linux/poll.h>
96#include <asm/byteorder.h>
97#include <asm/atomic.h>
98#include <asm/uaccess.h>
99#include <linux/delay.h>
100#include <linux/spinlock.h>
101
102#include <asm/pgtable.h>
103#include <asm/page.h>
104#include <asm/irq.h>
105#include <linux/sched.h>
106#include <linux/types.h>
107#include <linux/vmalloc.h>
108#include <linux/init.h>
109
110#ifdef CONFIG_PPC_PMAC
111#include <asm/machdep.h>
112#include <asm/pmac_feature.h>
113#include <asm/prom.h>
114#include <asm/pci-bridge.h>
115#endif
116
117#include "csr1212.h"
118#include "ieee1394.h"
119#include "ieee1394_types.h"
120#include "hosts.h"
121#include "dma.h"
122#include "iso.h"
123#include "ieee1394_core.h"
124#include "highlevel.h"
125#include "ohci1394.h"
126
127#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128#define OHCI1394_DEBUG
129#endif
130
131#ifdef DBGMSG
132#undef DBGMSG
133#endif
134
135#ifdef OHCI1394_DEBUG
136#define DBGMSG(fmt, args...) \
137printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138#else
611aa19f 139#define DBGMSG(fmt, args...) do {} while (0)
1da177e4
LT
140#endif
141
142#ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143#define OHCI_DMA_ALLOC(fmt, args...) \
144 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145 ++global_outstanding_dmas, ## args)
146#define OHCI_DMA_FREE(fmt, args...) \
147 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148 --global_outstanding_dmas, ## args)
149static int global_outstanding_dmas = 0;
150#else
611aa19f
SR
151#define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
152#define OHCI_DMA_FREE(fmt, args...) do {} while (0)
1da177e4
LT
153#endif
154
155/* print general (card independent) information */
156#define PRINT_G(level, fmt, args...) \
157printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
158
159/* print card specific information */
160#define PRINT(level, fmt, args...) \
161printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
162
1da177e4
LT
163/* Module Parameters */
164static int phys_dma = 1;
fa9b7399 165module_param(phys_dma, int, 0444);
1da177e4
LT
166MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
167
168static void dma_trm_tasklet(unsigned long data);
169static void dma_trm_reset(struct dma_trm_ctx *d);
170
171static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172 enum context_type type, int ctx, int num_desc,
173 int buf_size, int split_buf_size, int context_base);
174static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
176
177static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178 enum context_type type, int ctx, int num_desc,
179 int context_base);
180
181static void ohci1394_pci_remove(struct pci_dev *pdev);
182
183#ifndef __LITTLE_ENDIAN
9531f13a 184const static size_t hdr_sizes[] = {
1da177e4
LT
185 3, /* TCODE_WRITEQ */
186 4, /* TCODE_WRITEB */
187 3, /* TCODE_WRITE_RESPONSE */
9531f13a 188 0, /* reserved */
1da177e4
LT
189 3, /* TCODE_READQ */
190 4, /* TCODE_READB */
191 3, /* TCODE_READQ_RESPONSE */
192 4, /* TCODE_READB_RESPONSE */
9531f13a 193 1, /* TCODE_CYCLE_START */
1da177e4
LT
194 4, /* TCODE_LOCK_REQUEST */
195 2, /* TCODE_ISO_DATA */
196 4, /* TCODE_LOCK_RESPONSE */
9531f13a 197 /* rest is reserved or link-internal */
1da177e4
LT
198};
199
9531f13a 200static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
1da177e4 201{
9531f13a 202 size_t size;
1da177e4 203
9531f13a 204 if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
1da177e4
LT
205 return;
206
9531f13a 207 size = hdr_sizes[tcode];
1da177e4 208 while (size--)
9531f13a 209 data[size] = le32_to_cpu(data[size]);
1da177e4
LT
210}
211#else
9531f13a 212#define header_le32_to_cpu(w,x) do {} while (0)
1da177e4
LT
213#endif /* !LITTLE_ENDIAN */
214
215/***********************************
216 * IEEE-1394 functionality section *
217 ***********************************/
218
219static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
220{
221 int i;
222 unsigned long flags;
223 quadlet_t r;
224
225 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
226
227 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
228
229 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
230 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
231 break;
232
233 mdelay(1);
234 }
235
236 r = reg_read(ohci, OHCI1394_PhyControl);
237
238 if (i >= OHCI_LOOP_COUNT)
239 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
240 r, r & 0x80000000, i);
241
242 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
243
244 return (r & 0x00ff0000) >> 16;
245}
246
247static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
248{
249 int i;
250 unsigned long flags;
251 u32 r = 0;
252
253 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
254
255 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
256
257 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
258 r = reg_read(ohci, OHCI1394_PhyControl);
259 if (!(r & 0x00004000))
260 break;
261
262 mdelay(1);
263 }
264
265 if (i == OHCI_LOOP_COUNT)
266 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
267 r, r & 0x00004000, i);
268
269 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
270
271 return;
272}
273
274/* Or's our value into the current value */
275static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
276{
277 u8 old;
278
279 old = get_phy_reg (ohci, addr);
280 old |= data;
281 set_phy_reg (ohci, addr, old);
282
283 return;
284}
285
286static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
287 int phyid, int isroot)
288{
289 quadlet_t *q = ohci->selfid_buf_cpu;
290 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
291 size_t size;
292 quadlet_t q0, q1;
293
294 /* Check status of self-id reception */
295
296 if (ohci->selfid_swap)
297 q0 = le32_to_cpu(q[0]);
298 else
299 q0 = q[0];
300
301 if ((self_id_count & 0x80000000) ||
302 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
303 PRINT(KERN_ERR,
304 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
305 self_id_count, q0, ohci->self_id_errors);
306
307 /* Tip by James Goodwin <jamesg@Filanet.com>:
308 * We had an error, generate another bus reset in response. */
309 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
310 set_phy_reg_mask (ohci, 1, 0x40);
311 ohci->self_id_errors++;
312 } else {
313 PRINT(KERN_ERR,
314 "Too many errors on SelfID error reception, giving up!");
315 }
316 return;
317 }
318
319 /* SelfID Ok, reset error counter. */
320 ohci->self_id_errors = 0;
321
322 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
323 q++;
324
325 while (size > 0) {
326 if (ohci->selfid_swap) {
327 q0 = le32_to_cpu(q[0]);
328 q1 = le32_to_cpu(q[1]);
329 } else {
330 q0 = q[0];
331 q1 = q[1];
332 }
333
334 if (q0 == ~q1) {
335 DBGMSG ("SelfID packet 0x%x received", q0);
336 hpsb_selfid_received(host, cpu_to_be32(q0));
337 if (((q0 & 0x3f000000) >> 24) == phyid)
338 DBGMSG ("SelfID for this node is 0x%08x", q0);
339 } else {
340 PRINT(KERN_ERR,
341 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
342 }
343 q += 2;
344 size -= 2;
345 }
346
347 DBGMSG("SelfID complete");
348
349 return;
350}
351
352static void ohci_soft_reset(struct ti_ohci *ohci) {
353 int i;
354
355 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
356
357 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
358 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
359 break;
360 mdelay(1);
361 }
362 DBGMSG ("Soft reset finished");
363}
364
365
366/* Generate the dma receive prgs and start the context */
367static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
368{
369 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
370 int i;
371
372 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
373
374 for (i=0; i<d->num_desc; i++) {
375 u32 c;
376
377 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
378 if (generate_irq)
379 c |= DMA_CTL_IRQ;
380
381 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
382
383 /* End of descriptor list? */
384 if (i + 1 < d->num_desc) {
385 d->prg_cpu[i]->branchAddress =
386 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
387 } else {
388 d->prg_cpu[i]->branchAddress =
389 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
390 }
391
392 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
393 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
394 }
395
396 d->buf_ind = 0;
397 d->buf_offset = 0;
398
399 if (d->type == DMA_CTX_ISO) {
400 /* Clear contextControl */
401 reg_write(ohci, d->ctrlClear, 0xffffffff);
402
403 /* Set bufferFill, isochHeader, multichannel for IR context */
404 reg_write(ohci, d->ctrlSet, 0xd0000000);
405
406 /* Set the context match register to match on all tags */
407 reg_write(ohci, d->ctxtMatch, 0xf0000000);
408
409 /* Clear the multi channel mask high and low registers */
410 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
411 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
412
413 /* Set up isoRecvIntMask to generate interrupts */
414 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
415 }
416
417 /* Tell the controller where the first AR program is */
418 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
419
420 /* Run context */
421 reg_write(ohci, d->ctrlSet, 0x00008000);
422
423 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
424}
425
426/* Initialize the dma transmit context */
427static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
428{
429 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
430
431 /* Stop the context */
432 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
433
434 d->prg_ind = 0;
435 d->sent_ind = 0;
436 d->free_prgs = d->num_desc;
437 d->branchAddrPtr = NULL;
438 INIT_LIST_HEAD(&d->fifo_list);
439 INIT_LIST_HEAD(&d->pending_list);
440
441 if (d->type == DMA_CTX_ISO) {
442 /* enable interrupts */
443 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
444 }
445
446 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
447}
448
449/* Count the number of available iso contexts */
450static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
451{
452 int i,ctx=0;
453 u32 tmp;
454
455 reg_write(ohci, reg, 0xffffffff);
456 tmp = reg_read(ohci, reg);
457
458 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
459
460 /* Count the number of contexts */
461 for (i=0; i<32; i++) {
462 if (tmp & 1) ctx++;
463 tmp >>= 1;
464 }
465 return ctx;
466}
467
468/* Global initialization */
469static void ohci_initialize(struct ti_ohci *ohci)
470{
471 char irq_buf[16];
472 quadlet_t buf;
473 int num_ports, i;
474
475 spin_lock_init(&ohci->phy_reg_lock);
1da177e4
LT
476
477 /* Put some defaults to these undefined bus options */
478 buf = reg_read(ohci, OHCI1394_BusOptions);
479 buf |= 0x60000000; /* Enable CMC and ISC */
1934b8b6
BC
480 if (hpsb_disable_irm)
481 buf &= ~0x80000000;
482 else
1da177e4
LT
483 buf |= 0x80000000; /* Enable IRMC */
484 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
485 buf &= ~0x18000000; /* Disable PMC and BMC */
486 reg_write(ohci, OHCI1394_BusOptions, buf);
487
488 /* Set the bus number */
489 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
490
491 /* Enable posted writes */
492 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
493
494 /* Clear link control register */
495 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
496
497 /* Enable cycle timer and cycle master and set the IRM
498 * contender bit in our self ID packets if appropriate. */
499 reg_write(ohci, OHCI1394_LinkControlSet,
500 OHCI1394_LinkControl_CycleTimerEnable |
501 OHCI1394_LinkControl_CycleMaster);
1934b8b6
BC
502 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
503 if (hpsb_disable_irm)
504 i &= ~PHY_04_CONTENDER;
505 else
506 i |= PHY_04_CONTENDER;
507 set_phy_reg(ohci, 4, i);
1da177e4
LT
508
509 /* Set up self-id dma buffer */
510 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
511
512 /* enable self-id and phys */
513 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
514 OHCI1394_LinkControl_RcvPhyPkt);
515
516 /* Set the Config ROM mapping register */
517 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
518
519 /* Now get our max packet size */
520 ohci->max_packet_size =
521 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
522
523 /* Don't accept phy packets into AR request context */
524 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
525
526 /* Clear the interrupt mask */
527 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
528 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
529
530 /* Clear the interrupt mask */
531 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
532 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
533
534 /* Initialize AR dma */
535 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
536 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
537
538 /* Initialize AT dma */
539 initialize_dma_trm_ctx(&ohci->at_req_context);
540 initialize_dma_trm_ctx(&ohci->at_resp_context);
541
e4ec0f23 542 /* Initialize IR Legacy DMA channel mask */
1da177e4 543 ohci->ir_legacy_channels = 0;
1da177e4 544
180a4304
SR
545 /* Accept AR requests from all nodes */
546 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
547
548 /* Set the address range of the physical response unit.
549 * Most controllers do not implement it as a writable register though.
550 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
551 * register content.
552 * To actually enable physical responses is the job of our interrupt
553 * handler which programs the physical request filter. */
4611ed38
BC
554 reg_write(ohci, OHCI1394_PhyUpperBound,
555 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
180a4304
SR
556
557 DBGMSG("physUpperBoundOffset=%08x",
558 reg_read(ohci, OHCI1394_PhyUpperBound));
1da177e4
LT
559
560 /* Specify AT retries */
561 reg_write(ohci, OHCI1394_ATRetries,
562 OHCI1394_MAX_AT_REQ_RETRIES |
563 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
564 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
565
566 /* We don't want hardware swapping */
567 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
568
569 /* Enable interrupts */
570 reg_write(ohci, OHCI1394_IntMaskSet,
571 OHCI1394_unrecoverableError |
572 OHCI1394_masterIntEnable |
573 OHCI1394_busReset |
574 OHCI1394_selfIDComplete |
575 OHCI1394_RSPkt |
576 OHCI1394_RQPkt |
577 OHCI1394_respTxComplete |
578 OHCI1394_reqTxComplete |
579 OHCI1394_isochRx |
580 OHCI1394_isochTx |
e2f8165d 581 OHCI1394_postedWriteErr |
57fdb58f 582 OHCI1394_cycleTooLong |
1da177e4
LT
583 OHCI1394_cycleInconsistent);
584
585 /* Enable link */
586 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
587
588 buf = reg_read(ohci, OHCI1394_Version);
1da177e4 589 sprintf (irq_buf, "%d", ohci->dev->irq);
1da177e4 590 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
e29419ff 591 "MMIO=[%llx-%llx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
1da177e4
LT
592 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
593 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
e29419ff
GKH
594 (unsigned long long)pci_resource_start(ohci->dev, 0),
595 (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
209171a1
SR
596 ohci->max_packet_size,
597 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
1da177e4
LT
598
599 /* Check all of our ports to make sure that if anything is
600 * connected, we enable that port. */
601 num_ports = get_phy_reg(ohci, 2) & 0xf;
602 for (i = 0; i < num_ports; i++) {
603 unsigned int status;
604
605 set_phy_reg(ohci, 7, i);
606 status = get_phy_reg(ohci, 8);
607
608 if (status & 0x20)
609 set_phy_reg(ohci, 8, status & ~1);
610 }
611
612 /* Serial EEPROM Sanity check. */
613 if ((ohci->max_packet_size < 512) ||
614 (ohci->max_packet_size > 4096)) {
615 /* Serial EEPROM contents are suspect, set a sane max packet
616 * size and print the raw contents for bug reports if verbose
617 * debug is enabled. */
618#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
619 int i;
620#endif
621
622 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
623 "attempting to setting max_packet_size to 512 bytes");
624 reg_write(ohci, OHCI1394_BusOptions,
625 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
626 ohci->max_packet_size = 512;
627#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
628 PRINT(KERN_DEBUG, " EEPROM Present: %d",
629 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
630 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
631
632 for (i = 0;
633 ((i < 1000) &&
634 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
635 udelay(10);
636
637 for (i = 0; i < 0x20; i++) {
638 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
639 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
640 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
641 }
642#endif
643 }
644}
645
646/*
647 * Insert a packet in the DMA fifo and generate the DMA prg
648 * FIXME: rewrite the program in order to accept packets crossing
649 * page boundaries.
650 * check also that a single dma descriptor doesn't cross a
651 * page boundary.
652 */
653static void insert_packet(struct ti_ohci *ohci,
654 struct dma_trm_ctx *d, struct hpsb_packet *packet)
655{
656 u32 cycleTimer;
657 int idx = d->prg_ind;
658
659 DBGMSG("Inserting packet for node " NODE_BUS_FMT
660 ", tlabel=%d, tcode=0x%x, speed=%d",
661 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
662 packet->tcode, packet->speed_code);
663
664 d->prg_cpu[idx]->begin.address = 0;
665 d->prg_cpu[idx]->begin.branchAddress = 0;
666
667 if (d->type == DMA_CTX_ASYNC_RESP) {
668 /*
669 * For response packets, we need to put a timeout value in
670 * the 16 lower bits of the status... let's try 1 sec timeout
671 */
672 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
673 d->prg_cpu[idx]->begin.status = cpu_to_le32(
674 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
675 ((cycleTimer&0x01fff000)>>12));
676
677 DBGMSG("cycleTimer: %08x timeStamp: %08x",
678 cycleTimer, d->prg_cpu[idx]->begin.status);
679 } else
680 d->prg_cpu[idx]->begin.status = 0;
681
682 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
683
684 if (packet->type == hpsb_raw) {
685 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
686 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
687 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
688 } else {
689 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
690 (packet->header[0] & 0xFFFF);
691
692 if (packet->tcode == TCODE_ISO_DATA) {
693 /* Sending an async stream packet */
694 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
695 } else {
696 /* Sending a normal async request or response */
697 d->prg_cpu[idx]->data[1] =
698 (packet->header[1] & 0xFFFF) |
699 (packet->header[0] & 0xFFFF0000);
700 d->prg_cpu[idx]->data[2] = packet->header[2];
701 d->prg_cpu[idx]->data[3] = packet->header[3];
702 }
9531f13a 703 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
1da177e4
LT
704 }
705
706 if (packet->data_size) { /* block transmit */
707 if (packet->tcode == TCODE_STREAM_DATA){
708 d->prg_cpu[idx]->begin.control =
709 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
710 DMA_CTL_IMMEDIATE | 0x8);
711 } else {
712 d->prg_cpu[idx]->begin.control =
713 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
714 DMA_CTL_IMMEDIATE | 0x10);
715 }
716 d->prg_cpu[idx]->end.control =
717 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
718 DMA_CTL_IRQ |
719 DMA_CTL_BRANCH |
720 packet->data_size);
721 /*
722 * Check that the packet data buffer
723 * does not cross a page boundary.
724 *
725 * XXX Fix this some day. eth1394 seems to trigger
726 * it, but ignoring it doesn't seem to cause a
727 * problem.
728 */
729#if 0
730 if (cross_bound((unsigned long)packet->data,
731 packet->data_size)>0) {
732 /* FIXME: do something about it */
733 PRINT(KERN_ERR,
734 "%s: packet data addr: %p size %Zd bytes "
735 "cross page boundary", __FUNCTION__,
736 packet->data, packet->data_size);
737 }
738#endif
739 d->prg_cpu[idx]->end.address = cpu_to_le32(
740 pci_map_single(ohci->dev, packet->data,
741 packet->data_size,
742 PCI_DMA_TODEVICE));
743 OHCI_DMA_ALLOC("single, block transmit packet");
744
745 d->prg_cpu[idx]->end.branchAddress = 0;
746 d->prg_cpu[idx]->end.status = 0;
747 if (d->branchAddrPtr)
748 *(d->branchAddrPtr) =
749 cpu_to_le32(d->prg_bus[idx] | 0x3);
750 d->branchAddrPtr =
751 &(d->prg_cpu[idx]->end.branchAddress);
752 } else { /* quadlet transmit */
753 if (packet->type == hpsb_raw)
754 d->prg_cpu[idx]->begin.control =
755 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
756 DMA_CTL_IMMEDIATE |
757 DMA_CTL_IRQ |
758 DMA_CTL_BRANCH |
759 (packet->header_size + 4));
760 else
761 d->prg_cpu[idx]->begin.control =
762 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
763 DMA_CTL_IMMEDIATE |
764 DMA_CTL_IRQ |
765 DMA_CTL_BRANCH |
766 packet->header_size);
767
768 if (d->branchAddrPtr)
769 *(d->branchAddrPtr) =
770 cpu_to_le32(d->prg_bus[idx] | 0x2);
771 d->branchAddrPtr =
772 &(d->prg_cpu[idx]->begin.branchAddress);
773 }
774
775 } else { /* iso packet */
776 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
777 (packet->header[0] & 0xFFFF);
778 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
9531f13a 779 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
1da177e4
LT
780
781 d->prg_cpu[idx]->begin.control =
782 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
783 DMA_CTL_IMMEDIATE | 0x8);
784 d->prg_cpu[idx]->end.control =
785 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
786 DMA_CTL_UPDATE |
787 DMA_CTL_IRQ |
788 DMA_CTL_BRANCH |
789 packet->data_size);
790 d->prg_cpu[idx]->end.address = cpu_to_le32(
791 pci_map_single(ohci->dev, packet->data,
792 packet->data_size, PCI_DMA_TODEVICE));
793 OHCI_DMA_ALLOC("single, iso transmit packet");
794
795 d->prg_cpu[idx]->end.branchAddress = 0;
796 d->prg_cpu[idx]->end.status = 0;
797 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
798 " begin=%08x %08x %08x %08x\n"
799 " %08x %08x %08x %08x\n"
800 " end =%08x %08x %08x %08x",
801 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
802 d->prg_cpu[idx]->begin.control,
803 d->prg_cpu[idx]->begin.address,
804 d->prg_cpu[idx]->begin.branchAddress,
805 d->prg_cpu[idx]->begin.status,
806 d->prg_cpu[idx]->data[0],
807 d->prg_cpu[idx]->data[1],
808 d->prg_cpu[idx]->data[2],
809 d->prg_cpu[idx]->data[3],
810 d->prg_cpu[idx]->end.control,
811 d->prg_cpu[idx]->end.address,
812 d->prg_cpu[idx]->end.branchAddress,
813 d->prg_cpu[idx]->end.status);
814 if (d->branchAddrPtr)
815 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
816 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
817 }
818 d->free_prgs--;
819
820 /* queue the packet in the appropriate context queue */
821 list_add_tail(&packet->driver_list, &d->fifo_list);
822 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
823}
824
825/*
826 * This function fills the FIFO with the (eventual) pending packets
827 * and runs or wakes up the DMA prg if necessary.
828 *
829 * The function MUST be called with the d->lock held.
830 */
831static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
832{
833 struct hpsb_packet *packet, *ptmp;
834 int idx = d->prg_ind;
835 int z = 0;
836
837 /* insert the packets into the dma fifo */
838 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
839 if (!d->free_prgs)
840 break;
841
842 /* For the first packet only */
843 if (!z)
844 z = (packet->data_size) ? 3 : 2;
845
846 /* Insert the packet */
847 list_del_init(&packet->driver_list);
848 insert_packet(ohci, d, packet);
849 }
850
851 /* Nothing must have been done, either no free_prgs or no packets */
852 if (z == 0)
853 return;
854
855 /* Is the context running ? (should be unless it is
856 the first packet to be sent in this context) */
857 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
858 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
859
860 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
861 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
862
863 /* Check that the node id is valid, and not 63 */
864 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
865 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
866 else
867 reg_write(ohci, d->ctrlSet, 0x8000);
868 } else {
869 /* Wake up the dma context if necessary */
870 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
871 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
872
873 /* do this always, to avoid race condition */
874 reg_write(ohci, d->ctrlSet, 0x1000);
875 }
876
877 return;
878}
879
880/* Transmission of an async or iso packet */
881static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
882{
883 struct ti_ohci *ohci = host->hostdata;
884 struct dma_trm_ctx *d;
885 unsigned long flags;
886
887 if (packet->data_size > ohci->max_packet_size) {
888 PRINT(KERN_ERR,
889 "Transmit packet size %Zd is too big",
890 packet->data_size);
891 return -EOVERFLOW;
892 }
893
894 /* Decide whether we have an iso, a request, or a response packet */
895 if (packet->type == hpsb_raw)
896 d = &ohci->at_req_context;
897 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
898 /* The legacy IT DMA context is initialized on first
899 * use. However, the alloc cannot be run from
900 * interrupt context, so we bail out if that is the
901 * case. I don't see anyone sending ISO packets from
902 * interrupt context anyway... */
903
904 if (ohci->it_legacy_context.ohci == NULL) {
905 if (in_interrupt()) {
906 PRINT(KERN_ERR,
907 "legacy IT context cannot be initialized during interrupt");
908 return -EINVAL;
909 }
910
911 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
912 DMA_CTX_ISO, 0, IT_NUM_DESC,
913 OHCI1394_IsoXmitContextBase) < 0) {
914 PRINT(KERN_ERR,
915 "error initializing legacy IT context");
916 return -ENOMEM;
917 }
918
919 initialize_dma_trm_ctx(&ohci->it_legacy_context);
920 }
921
922 d = &ohci->it_legacy_context;
923 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
924 d = &ohci->at_resp_context;
925 else
926 d = &ohci->at_req_context;
927
928 spin_lock_irqsave(&d->lock,flags);
929
930 list_add_tail(&packet->driver_list, &d->pending_list);
931
932 dma_trm_flush(ohci, d);
933
934 spin_unlock_irqrestore(&d->lock,flags);
935
936 return 0;
937}
938
939static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
940{
941 struct ti_ohci *ohci = host->hostdata;
942 int retval = 0;
943 unsigned long flags;
944 int phy_reg;
945
946 switch (cmd) {
947 case RESET_BUS:
948 switch (arg) {
949 case SHORT_RESET:
950 phy_reg = get_phy_reg(ohci, 5);
951 phy_reg |= 0x40;
952 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
953 break;
954 case LONG_RESET:
955 phy_reg = get_phy_reg(ohci, 1);
956 phy_reg |= 0x40;
957 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
958 break;
959 case SHORT_RESET_NO_FORCE_ROOT:
960 phy_reg = get_phy_reg(ohci, 1);
961 if (phy_reg & 0x80) {
962 phy_reg &= ~0x80;
963 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
964 }
965
966 phy_reg = get_phy_reg(ohci, 5);
967 phy_reg |= 0x40;
968 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
969 break;
970 case LONG_RESET_NO_FORCE_ROOT:
971 phy_reg = get_phy_reg(ohci, 1);
972 phy_reg &= ~0x80;
973 phy_reg |= 0x40;
974 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
975 break;
976 case SHORT_RESET_FORCE_ROOT:
977 phy_reg = get_phy_reg(ohci, 1);
978 if (!(phy_reg & 0x80)) {
979 phy_reg |= 0x80;
980 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
981 }
982
983 phy_reg = get_phy_reg(ohci, 5);
984 phy_reg |= 0x40;
985 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
986 break;
987 case LONG_RESET_FORCE_ROOT:
988 phy_reg = get_phy_reg(ohci, 1);
989 phy_reg |= 0xc0;
990 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
991 break;
992 default:
993 retval = -1;
994 }
995 break;
996
997 case GET_CYCLE_COUNTER:
998 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
999 break;
1000
1001 case SET_CYCLE_COUNTER:
1002 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1003 break;
1004
1005 case SET_BUS_ID:
1006 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1007 break;
1008
1009 case ACT_CYCLE_MASTER:
1010 if (arg) {
1011 /* check if we are root and other nodes are present */
1012 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1013 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1014 /*
1015 * enable cycleTimer, cycleMaster
1016 */
1017 DBGMSG("Cycle master enabled");
1018 reg_write(ohci, OHCI1394_LinkControlSet,
1019 OHCI1394_LinkControl_CycleTimerEnable |
1020 OHCI1394_LinkControl_CycleMaster);
1021 }
1022 } else {
1023 /* disable cycleTimer, cycleMaster, cycleSource */
1024 reg_write(ohci, OHCI1394_LinkControlClear,
1025 OHCI1394_LinkControl_CycleTimerEnable |
1026 OHCI1394_LinkControl_CycleMaster |
1027 OHCI1394_LinkControl_CycleSource);
1028 }
1029 break;
1030
1031 case CANCEL_REQUESTS:
1032 DBGMSG("Cancel request received");
1033 dma_trm_reset(&ohci->at_req_context);
1034 dma_trm_reset(&ohci->at_resp_context);
1035 break;
1036
1037 case ISO_LISTEN_CHANNEL:
1038 {
1039 u64 mask;
e4ec0f23
JM
1040 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1041 int ir_legacy_active;
1da177e4
LT
1042
1043 if (arg<0 || arg>63) {
1044 PRINT(KERN_ERR,
1045 "%s: IS0 listen channel %d is out of range",
1046 __FUNCTION__, arg);
1047 return -EFAULT;
1048 }
1049
1050 mask = (u64)0x1<<arg;
1051
1052 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1053
1054 if (ohci->ISO_channel_usage & mask) {
1055 PRINT(KERN_ERR,
1056 "%s: IS0 listen channel %d is already used",
1057 __FUNCTION__, arg);
1058 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1059 return -EFAULT;
1060 }
1061
e4ec0f23
JM
1062 ir_legacy_active = ohci->ir_legacy_channels;
1063
1da177e4
LT
1064 ohci->ISO_channel_usage |= mask;
1065 ohci->ir_legacy_channels |= mask;
1066
e4ec0f23
JM
1067 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1068
1069 if (!ir_legacy_active) {
1070 if (ohci1394_register_iso_tasklet(ohci,
1071 &ohci->ir_legacy_tasklet) < 0) {
1072 PRINT(KERN_ERR, "No IR DMA context available");
1073 return -EBUSY;
1074 }
1075
1076 /* the IR context can be assigned to any DMA context
1077 * by ohci1394_register_iso_tasklet */
1078 d->ctx = ohci->ir_legacy_tasklet.context;
1079 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1080 32*d->ctx;
1081 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1082 32*d->ctx;
1083 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1084 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1085
1086 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1087
98848fa8 1088 if (printk_ratelimit())
32e7a04f 1089 DBGMSG("IR legacy activated");
e4ec0f23
JM
1090 }
1091
1092 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1093
1da177e4
LT
1094 if (arg>31)
1095 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1096 1<<(arg-32));
1097 else
1098 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1099 1<<arg);
1100
1101 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1102 DBGMSG("Listening enabled on channel %d", arg);
1103 break;
1104 }
1105 case ISO_UNLISTEN_CHANNEL:
1106 {
1107 u64 mask;
1108
1109 if (arg<0 || arg>63) {
1110 PRINT(KERN_ERR,
1111 "%s: IS0 unlisten channel %d is out of range",
1112 __FUNCTION__, arg);
1113 return -EFAULT;
1114 }
1115
1116 mask = (u64)0x1<<arg;
1117
1118 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1119
1120 if (!(ohci->ISO_channel_usage & mask)) {
1121 PRINT(KERN_ERR,
1122 "%s: IS0 unlisten channel %d is not used",
1123 __FUNCTION__, arg);
1124 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1125 return -EFAULT;
1126 }
1127
1128 ohci->ISO_channel_usage &= ~mask;
1129 ohci->ir_legacy_channels &= ~mask;
1130
1131 if (arg>31)
1132 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1133 1<<(arg-32));
1134 else
1135 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1136 1<<arg);
1137
1138 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1139 DBGMSG("Listening disabled on channel %d", arg);
e4ec0f23
JM
1140
1141 if (ohci->ir_legacy_channels == 0) {
1142 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1143 DBGMSG("ISO legacy receive context stopped");
1144 }
1145
1da177e4
LT
1146 break;
1147 }
1148 default:
1149 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1150 cmd);
1151 break;
1152 }
1153 return retval;
1154}
1155
1156/***********************************
1157 * rawiso ISO reception *
1158 ***********************************/
1159
1160/*
1161 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1162 buffer is split into "blocks" (regions described by one DMA
1163 descriptor). Each block must be one page or less in size, and
1164 must not cross a page boundary.
1165
1166 There is one little wrinkle with buffer-fill mode: a packet that
1167 starts in the final block may wrap around into the first block. But
1168 the user API expects all packets to be contiguous. Our solution is
1169 to keep the very last page of the DMA buffer in reserve - if a
1170 packet spans the gap, we copy its tail into this page.
1171*/
1172
1173struct ohci_iso_recv {
1174 struct ti_ohci *ohci;
1175
1176 struct ohci1394_iso_tasklet task;
1177 int task_active;
1178
1179 enum { BUFFER_FILL_MODE = 0,
1180 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1181
1182 /* memory and PCI mapping for the DMA descriptors */
1183 struct dma_prog_region prog;
1184 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1185
1186 /* how many DMA blocks fit in the buffer */
1187 unsigned int nblocks;
1188
1189 /* stride of DMA blocks */
1190 unsigned int buf_stride;
1191
1192 /* number of blocks to batch between interrupts */
1193 int block_irq_interval;
1194
1195 /* block that DMA will finish next */
1196 int block_dma;
1197
1198 /* (buffer-fill only) block that the reader will release next */
1199 int block_reader;
1200
1201 /* (buffer-fill only) bytes of buffer the reader has released,
1202 less than one block */
1203 int released_bytes;
1204
1205 /* (buffer-fill only) buffer offset at which the next packet will appear */
1206 int dma_offset;
1207
1208 /* OHCI DMA context control registers */
1209 u32 ContextControlSet;
1210 u32 ContextControlClear;
1211 u32 CommandPtr;
1212 u32 ContextMatch;
1213};
1214
1215static void ohci_iso_recv_task(unsigned long data);
1216static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1217static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1218static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1219static void ohci_iso_recv_program(struct hpsb_iso *iso);
1220
1221static int ohci_iso_recv_init(struct hpsb_iso *iso)
1222{
1223 struct ti_ohci *ohci = iso->host->hostdata;
1224 struct ohci_iso_recv *recv;
1225 int ctx;
1226 int ret = -ENOMEM;
1227
1228 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1229 if (!recv)
1230 return -ENOMEM;
1231
1232 iso->hostdata = recv;
1233 recv->ohci = ohci;
1234 recv->task_active = 0;
1235 dma_prog_region_init(&recv->prog);
1236 recv->block = NULL;
1237
1238 /* use buffer-fill mode, unless irq_interval is 1
1239 (note: multichannel requires buffer-fill) */
1240
1241 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1242 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1243 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1244 } else {
1245 recv->dma_mode = BUFFER_FILL_MODE;
1246 }
1247
1248 /* set nblocks, buf_stride, block_irq_interval */
1249
1250 if (recv->dma_mode == BUFFER_FILL_MODE) {
1251 recv->buf_stride = PAGE_SIZE;
1252
1253 /* one block per page of data in the DMA buffer, minus the final guard page */
1254 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1255 if (recv->nblocks < 3) {
1256 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1257 goto err;
1258 }
1259
1260 /* iso->irq_interval is in packets - translate that to blocks */
1261 if (iso->irq_interval == 1)
1262 recv->block_irq_interval = 1;
1263 else
1264 recv->block_irq_interval = iso->irq_interval *
1265 ((recv->nblocks+1)/iso->buf_packets);
1266 if (recv->block_irq_interval*4 > recv->nblocks)
1267 recv->block_irq_interval = recv->nblocks/4;
1268 if (recv->block_irq_interval < 1)
1269 recv->block_irq_interval = 1;
1270
1271 } else {
1272 int max_packet_size;
1273
1274 recv->nblocks = iso->buf_packets;
1275 recv->block_irq_interval = iso->irq_interval;
1276 if (recv->block_irq_interval * 4 > iso->buf_packets)
1277 recv->block_irq_interval = iso->buf_packets / 4;
1278 if (recv->block_irq_interval < 1)
1279 recv->block_irq_interval = 1;
1280
1281 /* choose a buffer stride */
1282 /* must be a power of 2, and <= PAGE_SIZE */
1283
1284 max_packet_size = iso->buf_size / iso->buf_packets;
1285
1286 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1287 recv->buf_stride *= 2);
1288
1289 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1290 recv->buf_stride > PAGE_SIZE) {
1291 /* this shouldn't happen, but anyway... */
1292 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1293 goto err;
1294 }
1295 }
1296
1297 recv->block_reader = 0;
1298 recv->released_bytes = 0;
1299 recv->block_dma = 0;
1300 recv->dma_offset = 0;
1301
1302 /* size of DMA program = one descriptor per block */
1303 if (dma_prog_region_alloc(&recv->prog,
1304 sizeof(struct dma_cmd) * recv->nblocks,
1305 recv->ohci->dev))
1306 goto err;
1307
1308 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1309
1310 ohci1394_init_iso_tasklet(&recv->task,
1311 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1312 OHCI_ISO_RECEIVE,
1313 ohci_iso_recv_task, (unsigned long) iso);
1314
e4ec0f23
JM
1315 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1316 ret = -EBUSY;
1da177e4 1317 goto err;
e4ec0f23 1318 }
1da177e4
LT
1319
1320 recv->task_active = 1;
1321
1322 /* recv context registers are spaced 32 bytes apart */
1323 ctx = recv->task.context;
1324 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1325 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1326 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1327 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1328
1329 if (iso->channel == -1) {
1330 /* clear multi-channel selection mask */
1331 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1332 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1333 }
1334
1335 /* write the DMA program */
1336 ohci_iso_recv_program(iso);
1337
1338 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1339 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1340 recv->dma_mode == BUFFER_FILL_MODE ?
1341 "buffer-fill" : "packet-per-buffer",
1342 iso->buf_size/PAGE_SIZE, iso->buf_size,
1343 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1344
1345 return 0;
1346
1347err:
1348 ohci_iso_recv_shutdown(iso);
1349 return ret;
1350}
1351
1352static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1353{
1354 struct ohci_iso_recv *recv = iso->hostdata;
1355
1356 /* disable interrupts */
1357 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1358
1359 /* halt DMA */
1360 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1361}
1362
1363static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1364{
1365 struct ohci_iso_recv *recv = iso->hostdata;
1366
1367 if (recv->task_active) {
1368 ohci_iso_recv_stop(iso);
1369 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1370 recv->task_active = 0;
1371 }
1372
1373 dma_prog_region_free(&recv->prog);
1374 kfree(recv);
1375 iso->hostdata = NULL;
1376}
1377
1378/* set up a "gapped" ring buffer DMA program */
1379static void ohci_iso_recv_program(struct hpsb_iso *iso)
1380{
1381 struct ohci_iso_recv *recv = iso->hostdata;
1382 int blk;
1383
1384 /* address of 'branch' field in previous DMA descriptor */
1385 u32 *prev_branch = NULL;
1386
1387 for (blk = 0; blk < recv->nblocks; blk++) {
1388 u32 control;
1389
1390 /* the DMA descriptor */
1391 struct dma_cmd *cmd = &recv->block[blk];
1392
1393 /* offset of the DMA descriptor relative to the DMA prog buffer */
1394 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1395
1396 /* offset of this packet's data within the DMA buffer */
1397 unsigned long buf_offset = blk * recv->buf_stride;
1398
1399 if (recv->dma_mode == BUFFER_FILL_MODE) {
1400 control = 2 << 28; /* INPUT_MORE */
1401 } else {
1402 control = 3 << 28; /* INPUT_LAST */
1403 }
1404
1405 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1406
1407 /* interrupt on last block, and at intervals */
1408 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1409 control |= 3 << 20; /* want interrupt */
1410 }
1411
1412 control |= 3 << 18; /* enable branch to address */
1413 control |= recv->buf_stride;
1414
1415 cmd->control = cpu_to_le32(control);
1416 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1417 cmd->branchAddress = 0; /* filled in on next loop */
1418 cmd->status = cpu_to_le32(recv->buf_stride);
1419
1420 /* link the previous descriptor to this one */
1421 if (prev_branch) {
1422 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1423 }
1424
1425 prev_branch = &cmd->branchAddress;
1426 }
1427
1428 /* the final descriptor's branch address and Z should be left at 0 */
1429}
1430
1431/* listen or unlisten to a specific channel (multi-channel mode only) */
1432static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1433{
1434 struct ohci_iso_recv *recv = iso->hostdata;
1435 int reg, i;
1436
1437 if (channel < 32) {
1438 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1439 i = channel;
1440 } else {
1441 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1442 i = channel - 32;
1443 }
1444
1445 reg_write(recv->ohci, reg, (1 << i));
1446
1447 /* issue a dummy read to force all PCI writes to be posted immediately */
1448 mb();
1449 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1450}
1451
1452static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1453{
1454 struct ohci_iso_recv *recv = iso->hostdata;
1455 int i;
1456
1457 for (i = 0; i < 64; i++) {
1458 if (mask & (1ULL << i)) {
1459 if (i < 32)
1460 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1461 else
1462 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1463 } else {
1464 if (i < 32)
1465 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1466 else
1467 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1468 }
1469 }
1470
1471 /* issue a dummy read to force all PCI writes to be posted immediately */
1472 mb();
1473 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1474}
1475
1476static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1477{
1478 struct ohci_iso_recv *recv = iso->hostdata;
1479 struct ti_ohci *ohci = recv->ohci;
1480 u32 command, contextMatch;
1481
1482 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1483 wmb();
1484
1485 /* always keep ISO headers */
1486 command = (1 << 30);
1487
1488 if (recv->dma_mode == BUFFER_FILL_MODE)
1489 command |= (1 << 31);
1490
1491 reg_write(recv->ohci, recv->ContextControlSet, command);
1492
1493 /* match on specified tags */
1494 contextMatch = tag_mask << 28;
1495
1496 if (iso->channel == -1) {
1497 /* enable multichannel reception */
1498 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1499 } else {
1500 /* listen on channel */
1501 contextMatch |= iso->channel;
1502 }
1503
1504 if (cycle != -1) {
1505 u32 seconds;
1506
1507 /* enable cycleMatch */
1508 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1509
1510 /* set starting cycle */
1511 cycle &= 0x1FFF;
1512
1513 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1514 just snarf them from the current time */
1515 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1516
1517 /* advance one second to give some extra time for DMA to start */
1518 seconds += 1;
1519
1520 cycle |= (seconds & 3) << 13;
1521
1522 contextMatch |= cycle << 12;
1523 }
1524
1525 if (sync != -1) {
1526 /* set sync flag on first DMA descriptor */
1527 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1528 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1529
1530 /* match sync field */
1531 contextMatch |= (sync&0xf)<<8;
1532 }
1533
1534 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1535
1536 /* address of first descriptor block */
1537 command = dma_prog_region_offset_to_bus(&recv->prog,
1538 recv->block_dma * sizeof(struct dma_cmd));
1539 command |= 1; /* Z=1 */
1540
1541 reg_write(recv->ohci, recv->CommandPtr, command);
1542
1543 /* enable interrupts */
1544 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1545
1546 wmb();
1547
1548 /* run */
1549 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1550
1551 /* issue a dummy read of the cycle timer register to force
1552 all PCI writes to be posted immediately */
1553 mb();
1554 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1555
1556 /* check RUN */
1557 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1558 PRINT(KERN_ERR,
1559 "Error starting IR DMA (ContextControl 0x%08x)\n",
1560 reg_read(recv->ohci, recv->ContextControlSet));
1561 return -1;
1562 }
1563
1564 return 0;
1565}
1566
1567static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1568{
1569 /* re-use the DMA descriptor for the block */
1570 /* by linking the previous descriptor to it */
1571
1572 int next_i = block;
1573 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1574
1575 struct dma_cmd *next = &recv->block[next_i];
1576 struct dma_cmd *prev = &recv->block[prev_i];
1934b8b6
BC
1577
1578 /* ignore out-of-range requests */
1579 if ((block < 0) || (block > recv->nblocks))
1580 return;
1da177e4
LT
1581
1582 /* 'next' becomes the new end of the DMA chain,
1583 so disable branch and enable interrupt */
1584 next->branchAddress = 0;
1585 next->control |= cpu_to_le32(3 << 20);
1586 next->status = cpu_to_le32(recv->buf_stride);
1587
1588 /* link prev to next */
1589 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1590 sizeof(struct dma_cmd) * next_i)
1591 | 1); /* Z=1 */
1592
1593 /* disable interrupt on previous DMA descriptor, except at intervals */
1594 if ((prev_i % recv->block_irq_interval) == 0) {
1595 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1596 } else {
1597 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1598 }
1599 wmb();
1600
1601 /* wake up DMA in case it fell asleep */
1602 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1603}
1604
1605static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1606 struct hpsb_iso_packet_info *info)
1607{
1da177e4 1608 /* release the memory where the packet was */
1934b8b6 1609 recv->released_bytes += info->total_len;
1da177e4
LT
1610
1611 /* have we released enough memory for one block? */
1612 while (recv->released_bytes > recv->buf_stride) {
1613 ohci_iso_recv_release_block(recv, recv->block_reader);
1614 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1615 recv->released_bytes -= recv->buf_stride;
1616 }
1617}
1618
1619static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1620{
1621 struct ohci_iso_recv *recv = iso->hostdata;
1622 if (recv->dma_mode == BUFFER_FILL_MODE) {
1623 ohci_iso_recv_bufferfill_release(recv, info);
1624 } else {
1625 ohci_iso_recv_release_block(recv, info - iso->infos);
1626 }
1627}
1628
1629/* parse all packets from blocks that have been fully received */
1630static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1631{
1632 int wake = 0;
1633 int runaway = 0;
1634 struct ti_ohci *ohci = recv->ohci;
1635
1636 while (1) {
1637 /* we expect the next parsable packet to begin at recv->dma_offset */
1638 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1639
1640 unsigned int offset;
1934b8b6 1641 unsigned short len, cycle, total_len;
1da177e4
LT
1642 unsigned char channel, tag, sy;
1643
1644 unsigned char *p = iso->data_buf.kvirt;
1645
1646 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1647
1648 /* don't loop indefinitely */
1649 if (runaway++ > 100000) {
1650 atomic_inc(&iso->overflows);
1651 PRINT(KERN_ERR,
1652 "IR DMA error - Runaway during buffer parsing!\n");
1653 break;
1654 }
1655
1656 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1657 if (this_block == recv->block_dma)
1658 break;
1659
1660 wake = 1;
1661
1662 /* parse data length, tag, channel, and sy */
1663
1664 /* note: we keep our own local copies of 'len' and 'offset'
1665 so the user can't mess with them by poking in the mmap area */
1666
1667 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1668
1669 if (len > 4096) {
1670 PRINT(KERN_ERR,
1671 "IR DMA error - bogus 'len' value %u\n", len);
1672 }
1673
1674 channel = p[recv->dma_offset+1] & 0x3F;
1675 tag = p[recv->dma_offset+1] >> 6;
1676 sy = p[recv->dma_offset+0] & 0xF;
1677
1678 /* advance to data payload */
1679 recv->dma_offset += 4;
1680
1681 /* check for wrap-around */
1682 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1683 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1684 }
1685
1686 /* dma_offset now points to the first byte of the data payload */
1687 offset = recv->dma_offset;
1688
1689 /* advance to xferStatus/timeStamp */
1690 recv->dma_offset += len;
1691
1934b8b6 1692 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1da177e4
LT
1693 /* payload is padded to 4 bytes */
1694 if (len % 4) {
1695 recv->dma_offset += 4 - (len%4);
1934b8b6 1696 total_len += 4 - (len%4);
1da177e4
LT
1697 }
1698
1699 /* check for wrap-around */
1700 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1701 /* uh oh, the packet data wraps from the last
1702 to the first DMA block - make the packet
1703 contiguous by copying its "tail" into the
1704 guard page */
1705
1706 int guard_off = recv->buf_stride*recv->nblocks;
1707 int tail_len = len - (guard_off - offset);
1708
1709 if (tail_len > 0 && tail_len < recv->buf_stride) {
1710 memcpy(iso->data_buf.kvirt + guard_off,
1711 iso->data_buf.kvirt,
1712 tail_len);
1713 }
1714
1715 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1716 }
1717
1718 /* parse timestamp */
1719 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1720 cycle &= 0x1FFF;
1721
1722 /* advance to next packet */
1723 recv->dma_offset += 4;
1724
1725 /* check for wrap-around */
1726 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1727 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1728 }
1729
1934b8b6 1730 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1da177e4
LT
1731 }
1732
1733 if (wake)
1734 hpsb_iso_wake(iso);
1735}
1736
1737static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1738{
1739 int loop;
1740 struct ti_ohci *ohci = recv->ohci;
1741
1742 /* loop over all blocks */
1743 for (loop = 0; loop < recv->nblocks; loop++) {
1744
1745 /* check block_dma to see if it's done */
1746 struct dma_cmd *im = &recv->block[recv->block_dma];
1747
1748 /* check the DMA descriptor for new writes to xferStatus */
1749 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1750
1751 /* rescount is the number of bytes *remaining to be written* in the block */
1752 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1753
1754 unsigned char event = xferstatus & 0x1F;
1755
1756 if (!event) {
1757 /* nothing has happened to this block yet */
1758 break;
1759 }
1760
1761 if (event != 0x11) {
1762 atomic_inc(&iso->overflows);
1763 PRINT(KERN_ERR,
1764 "IR DMA error - OHCI error code 0x%02x\n", event);
1765 }
1766
1767 if (rescount != 0) {
1768 /* the card is still writing to this block;
1769 we can't touch it until it's done */
1770 break;
1771 }
1772
1773 /* OK, the block is finished... */
1774
1775 /* sync our view of the block */
1776 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1777
1778 /* reset the DMA descriptor */
1779 im->status = recv->buf_stride;
1780
1781 /* advance block_dma */
1782 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1783
1784 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1785 atomic_inc(&iso->overflows);
1786 DBGMSG("ISO reception overflow - "
1787 "ran out of DMA blocks");
1788 }
1789 }
1790
1791 /* parse any packets that have arrived */
1792 ohci_iso_recv_bufferfill_parse(iso, recv);
1793}
1794
1795static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1796{
1797 int count;
1798 int wake = 0;
1799 struct ti_ohci *ohci = recv->ohci;
1800
1801 /* loop over the entire buffer */
1802 for (count = 0; count < recv->nblocks; count++) {
1803 u32 packet_len = 0;
1804
1805 /* pointer to the DMA descriptor */
1806 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1807
1808 /* check the DMA descriptor for new writes to xferStatus */
1809 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1810 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1811
1812 unsigned char event = xferstatus & 0x1F;
1813
1814 if (!event) {
1815 /* this packet hasn't come in yet; we are done for now */
1816 goto out;
1817 }
1818
1819 if (event == 0x11) {
1820 /* packet received successfully! */
1821
1822 /* rescount is the number of bytes *remaining* in the packet buffer,
1823 after the packet was written */
1824 packet_len = recv->buf_stride - rescount;
1825
1826 } else if (event == 0x02) {
1827 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1828 } else if (event) {
1829 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1830 }
1831
1832 /* sync our view of the buffer */
1833 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1834
1835 /* record the per-packet info */
1836 {
1837 /* iso header is 8 bytes ahead of the data payload */
1838 unsigned char *hdr;
1839
1840 unsigned int offset;
1841 unsigned short cycle;
1842 unsigned char channel, tag, sy;
1843
1844 offset = iso->pkt_dma * recv->buf_stride;
1845 hdr = iso->data_buf.kvirt + offset;
1846
1847 /* skip iso header */
1848 offset += 8;
1849 packet_len -= 8;
1850
1851 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1852 channel = hdr[5] & 0x3F;
1853 tag = hdr[5] >> 6;
1854 sy = hdr[4] & 0xF;
1855
1934b8b6
BC
1856 hpsb_iso_packet_received(iso, offset, packet_len,
1857 recv->buf_stride, cycle, channel, tag, sy);
1da177e4
LT
1858 }
1859
1860 /* reset the DMA descriptor */
1861 il->status = recv->buf_stride;
1862
1863 wake = 1;
1864 recv->block_dma = iso->pkt_dma;
1865 }
1866
1867out:
1868 if (wake)
1869 hpsb_iso_wake(iso);
1870}
1871
1872static void ohci_iso_recv_task(unsigned long data)
1873{
1874 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1875 struct ohci_iso_recv *recv = iso->hostdata;
1876
1877 if (recv->dma_mode == BUFFER_FILL_MODE)
1878 ohci_iso_recv_bufferfill_task(iso, recv);
1879 else
1880 ohci_iso_recv_packetperbuf_task(iso, recv);
1881}
1882
1883/***********************************
1884 * rawiso ISO transmission *
1885 ***********************************/
1886
1887struct ohci_iso_xmit {
1888 struct ti_ohci *ohci;
1889 struct dma_prog_region prog;
1890 struct ohci1394_iso_tasklet task;
1891 int task_active;
1892
1893 u32 ContextControlSet;
1894 u32 ContextControlClear;
1895 u32 CommandPtr;
1896};
1897
1898/* transmission DMA program:
1899 one OUTPUT_MORE_IMMEDIATE for the IT header
1900 one OUTPUT_LAST for the buffer data */
1901
1902struct iso_xmit_cmd {
1903 struct dma_cmd output_more_immediate;
1904 u8 iso_hdr[8];
1905 u32 unused[2];
1906 struct dma_cmd output_last;
1907};
1908
1909static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1910static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1911static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1912static void ohci_iso_xmit_task(unsigned long data);
1913
1914static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1915{
1916 struct ohci_iso_xmit *xmit;
1917 unsigned int prog_size;
1918 int ctx;
1919 int ret = -ENOMEM;
1920
1921 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1922 if (!xmit)
1923 return -ENOMEM;
1924
1925 iso->hostdata = xmit;
1926 xmit->ohci = iso->host->hostdata;
1927 xmit->task_active = 0;
1928
1929 dma_prog_region_init(&xmit->prog);
1930
1931 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1932
1933 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1934 goto err;
1935
1936 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1937 ohci_iso_xmit_task, (unsigned long) iso);
1938
e4ec0f23
JM
1939 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1940 ret = -EBUSY;
1da177e4 1941 goto err;
e4ec0f23 1942 }
1da177e4
LT
1943
1944 xmit->task_active = 1;
1945
1946 /* xmit context registers are spaced 16 bytes apart */
1947 ctx = xmit->task.context;
1948 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1949 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1950 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1951
1952 return 0;
1953
1954err:
1955 ohci_iso_xmit_shutdown(iso);
1956 return ret;
1957}
1958
1959static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1960{
1961 struct ohci_iso_xmit *xmit = iso->hostdata;
1962 struct ti_ohci *ohci = xmit->ohci;
1963
1964 /* disable interrupts */
1965 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1966
1967 /* halt DMA */
1968 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1969 /* XXX the DMA context will lock up if you try to send too much data! */
1970 PRINT(KERN_ERR,
1971 "you probably exceeded the OHCI card's bandwidth limit - "
1972 "reload the module and reduce xmit bandwidth");
1973 }
1974}
1975
1976static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1977{
1978 struct ohci_iso_xmit *xmit = iso->hostdata;
1979
1980 if (xmit->task_active) {
1981 ohci_iso_xmit_stop(iso);
1982 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1983 xmit->task_active = 0;
1984 }
1985
1986 dma_prog_region_free(&xmit->prog);
1987 kfree(xmit);
1988 iso->hostdata = NULL;
1989}
1990
1991static void ohci_iso_xmit_task(unsigned long data)
1992{
1993 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1994 struct ohci_iso_xmit *xmit = iso->hostdata;
1995 struct ti_ohci *ohci = xmit->ohci;
1996 int wake = 0;
1997 int count;
1998
1999 /* check the whole buffer if necessary, starting at pkt_dma */
2000 for (count = 0; count < iso->buf_packets; count++) {
2001 int cycle;
2002
2003 /* DMA descriptor */
2004 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2005
2006 /* check for new writes to xferStatus */
2007 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2008 u8 event = xferstatus & 0x1F;
2009
2010 if (!event) {
2011 /* packet hasn't been sent yet; we are done for now */
2012 break;
2013 }
2014
2015 if (event != 0x11)
2016 PRINT(KERN_ERR,
2017 "IT DMA error - OHCI error code 0x%02x\n", event);
2018
2019 /* at least one packet went out, so wake up the writer */
2020 wake = 1;
2021
2022 /* parse cycle */
2023 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2024
2025 /* tell the subsystem the packet has gone out */
2026 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2027
2028 /* reset the DMA descriptor for next time */
2029 cmd->output_last.status = 0;
2030 }
2031
2032 if (wake)
2033 hpsb_iso_wake(iso);
2034}
2035
2036static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2037{
2038 struct ohci_iso_xmit *xmit = iso->hostdata;
2039 struct ti_ohci *ohci = xmit->ohci;
2040
2041 int next_i, prev_i;
2042 struct iso_xmit_cmd *next, *prev;
2043
2044 unsigned int offset;
2045 unsigned short len;
2046 unsigned char tag, sy;
2047
2048 /* check that the packet doesn't cross a page boundary
2049 (we could allow this if we added OUTPUT_MORE descriptor support) */
2050 if (cross_bound(info->offset, info->len)) {
2051 PRINT(KERN_ERR,
2052 "rawiso xmit: packet %u crosses a page boundary",
2053 iso->first_packet);
2054 return -EINVAL;
2055 }
2056
2057 offset = info->offset;
2058 len = info->len;
2059 tag = info->tag;
2060 sy = info->sy;
2061
2062 /* sync up the card's view of the buffer */
2063 dma_region_sync_for_device(&iso->data_buf, offset, len);
2064
2065 /* append first_packet to the DMA chain */
2066 /* by linking the previous descriptor to it */
2067 /* (next will become the new end of the DMA chain) */
2068
2069 next_i = iso->first_packet;
2070 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2071
2072 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2073 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2074
2075 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2076 memset(next, 0, sizeof(struct iso_xmit_cmd));
2077 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2078
2079 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2080
2081 /* tcode = 0xA, and sy */
2082 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2083
2084 /* tag and channel number */
2085 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2086
2087 /* transmission speed */
2088 next->iso_hdr[2] = iso->speed & 0x7;
2089
2090 /* payload size */
2091 next->iso_hdr[6] = len & 0xFF;
2092 next->iso_hdr[7] = len >> 8;
2093
2094 /* set up the OUTPUT_LAST */
2095 next->output_last.control = cpu_to_le32(1 << 28);
2096 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2097 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2098 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2099 next->output_last.control |= cpu_to_le32(len);
2100
2101 /* payload bus address */
2102 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2103
2104 /* leave branchAddress at zero for now */
2105
2106 /* re-write the previous DMA descriptor to chain to this one */
2107
2108 /* set prev branch address to point to next (Z=3) */
2109 prev->output_last.branchAddress = cpu_to_le32(
2110 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2111
2112 /* disable interrupt, unless required by the IRQ interval */
2113 if (prev_i % iso->irq_interval) {
2114 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2115 } else {
2116 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2117 }
2118
2119 wmb();
2120
2121 /* wake DMA in case it is sleeping */
2122 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2123
2124 /* issue a dummy read of the cycle timer to force all PCI
2125 writes to be posted immediately */
2126 mb();
2127 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2128
2129 return 0;
2130}
2131
2132static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2133{
2134 struct ohci_iso_xmit *xmit = iso->hostdata;
2135 struct ti_ohci *ohci = xmit->ohci;
2136
2137 /* clear out the control register */
2138 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2139 wmb();
2140
2141 /* address and length of first descriptor block (Z=3) */
2142 reg_write(xmit->ohci, xmit->CommandPtr,
2143 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2144
2145 /* cycle match */
2146 if (cycle != -1) {
2147 u32 start = cycle & 0x1FFF;
2148
2149 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2150 just snarf them from the current time */
2151 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2152
2153 /* advance one second to give some extra time for DMA to start */
2154 seconds += 1;
2155
2156 start |= (seconds & 3) << 13;
2157
2158 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2159 }
2160
2161 /* enable interrupts */
2162 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2163
2164 /* run */
2165 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2166 mb();
2167
2168 /* wait 100 usec to give the card time to go active */
2169 udelay(100);
2170
2171 /* check the RUN bit */
2172 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2173 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2174 reg_read(xmit->ohci, xmit->ContextControlSet));
2175 return -1;
2176 }
2177
2178 return 0;
2179}
2180
2181static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2182{
2183
2184 switch(cmd) {
2185 case XMIT_INIT:
2186 return ohci_iso_xmit_init(iso);
2187 case XMIT_START:
2188 return ohci_iso_xmit_start(iso, arg);
2189 case XMIT_STOP:
2190 ohci_iso_xmit_stop(iso);
2191 return 0;
2192 case XMIT_QUEUE:
2193 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2194 case XMIT_SHUTDOWN:
2195 ohci_iso_xmit_shutdown(iso);
2196 return 0;
2197
2198 case RECV_INIT:
2199 return ohci_iso_recv_init(iso);
2200 case RECV_START: {
2201 int *args = (int*) arg;
2202 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2203 }
2204 case RECV_STOP:
2205 ohci_iso_recv_stop(iso);
2206 return 0;
2207 case RECV_RELEASE:
2208 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2209 return 0;
2210 case RECV_FLUSH:
2211 ohci_iso_recv_task((unsigned long) iso);
2212 return 0;
2213 case RECV_SHUTDOWN:
2214 ohci_iso_recv_shutdown(iso);
2215 return 0;
2216 case RECV_LISTEN_CHANNEL:
2217 ohci_iso_recv_change_channel(iso, arg, 1);
2218 return 0;
2219 case RECV_UNLISTEN_CHANNEL:
2220 ohci_iso_recv_change_channel(iso, arg, 0);
2221 return 0;
2222 case RECV_SET_CHANNEL_MASK:
2223 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2224 return 0;
2225
2226 default:
2227 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2228 cmd);
2229 break;
2230 }
2231 return -EINVAL;
2232}
2233
2234/***************************************
2235 * IEEE-1394 functionality section END *
2236 ***************************************/
2237
2238
2239/********************************************************
2240 * Global stuff (interrupt handler, init/shutdown code) *
2241 ********************************************************/
2242
2243static void dma_trm_reset(struct dma_trm_ctx *d)
2244{
2245 unsigned long flags;
2246 LIST_HEAD(packet_list);
2247 struct ti_ohci *ohci = d->ohci;
2248 struct hpsb_packet *packet, *ptmp;
2249
2250 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2251
2252 /* Lock the context, reset it and release it. Move the packets
2253 * that were pending in the context to packet_list and free
2254 * them after releasing the lock. */
2255
2256 spin_lock_irqsave(&d->lock, flags);
2257
2258 list_splice(&d->fifo_list, &packet_list);
2259 list_splice(&d->pending_list, &packet_list);
2260 INIT_LIST_HEAD(&d->fifo_list);
2261 INIT_LIST_HEAD(&d->pending_list);
2262
2263 d->branchAddrPtr = NULL;
2264 d->sent_ind = d->prg_ind;
2265 d->free_prgs = d->num_desc;
2266
2267 spin_unlock_irqrestore(&d->lock, flags);
2268
2269 if (list_empty(&packet_list))
2270 return;
2271
2272 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2273
2274 /* Now process subsystem callbacks for the packets from this
2275 * context. */
2276 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2277 list_del_init(&packet->driver_list);
2278 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2279 }
2280}
2281
2282static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2283 quadlet_t rx_event,
2284 quadlet_t tx_event)
2285{
2286 struct ohci1394_iso_tasklet *t;
2287 unsigned long mask;
4a9949d7 2288 unsigned long flags;
1da177e4 2289
4a9949d7 2290 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
1da177e4
LT
2291
2292 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2293 mask = 1 << t->context;
2294
2295 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2296 tasklet_schedule(&t->tasklet);
2297 else if (rx_event & mask)
2298 tasklet_schedule(&t->tasklet);
2299 }
2300
4a9949d7 2301 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
1da177e4
LT
2302}
2303
7d12e780 2304static irqreturn_t ohci_irq_handler(int irq, void *dev_id)
1da177e4
LT
2305{
2306 quadlet_t event, node_id;
2307 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2308 struct hpsb_host *host = ohci->host;
2309 int phyid = -1, isroot = 0;
2310 unsigned long flags;
2311
2312 /* Read and clear the interrupt event register. Don't clear
2313 * the busReset event, though. This is done when we get the
2314 * selfIDComplete interrupt. */
2315 spin_lock_irqsave(&ohci->event_lock, flags);
2316 event = reg_read(ohci, OHCI1394_IntEventClear);
2317 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2318 spin_unlock_irqrestore(&ohci->event_lock, flags);
2319
2320 if (!event)
2321 return IRQ_NONE;
2322
2323 /* If event is ~(u32)0 cardbus card was ejected. In this case
2324 * we just return, and clean up in the ohci1394_pci_remove
2325 * function. */
2326 if (event == ~(u32) 0) {
2327 DBGMSG("Device removed.");
2328 return IRQ_NONE;
2329 }
2330
2331 DBGMSG("IntEvent: %08x", event);
2332
2333 if (event & OHCI1394_unrecoverableError) {
2334 int ctx;
2335 PRINT(KERN_ERR, "Unrecoverable error!");
2336
2337 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2338 PRINT(KERN_ERR, "Async Req Tx Context died: "
2339 "ctrl[%08x] cmdptr[%08x]",
2340 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2341 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2342
2343 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2344 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2345 "ctrl[%08x] cmdptr[%08x]",
2346 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2347 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2348
2349 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2350 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2351 "ctrl[%08x] cmdptr[%08x]",
2352 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2353 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2354
2355 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2356 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2357 "ctrl[%08x] cmdptr[%08x]",
2358 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2359 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2360
2361 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2362 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2363 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2364 "ctrl[%08x] cmdptr[%08x]", ctx,
2365 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2366 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2367 }
2368
2369 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2370 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2371 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2372 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2373 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2374 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2375 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2376 }
2377
2378 event &= ~OHCI1394_unrecoverableError;
2379 }
e2f8165d
JM
2380 if (event & OHCI1394_postedWriteErr) {
2381 PRINT(KERN_ERR, "physical posted write error");
2382 /* no recovery strategy yet, had to involve protocol drivers */
2383 }
57fdb58f
BC
2384 if (event & OHCI1394_cycleTooLong) {
2385 if(printk_ratelimit())
2386 PRINT(KERN_WARNING, "isochronous cycle too long");
2387 else
2388 DBGMSG("OHCI1394_cycleTooLong");
2389 reg_write(ohci, OHCI1394_LinkControlSet,
2390 OHCI1394_LinkControl_CycleMaster);
2391 event &= ~OHCI1394_cycleTooLong;
2392 }
1da177e4
LT
2393 if (event & OHCI1394_cycleInconsistent) {
2394 /* We subscribe to the cycleInconsistent event only to
2395 * clear the corresponding event bit... otherwise,
2396 * isochronous cycleMatch DMA won't work. */
2397 DBGMSG("OHCI1394_cycleInconsistent");
2398 event &= ~OHCI1394_cycleInconsistent;
2399 }
1da177e4
LT
2400 if (event & OHCI1394_busReset) {
2401 /* The busReset event bit can't be cleared during the
2402 * selfID phase, so we disable busReset interrupts, to
2403 * avoid burying the cpu in interrupt requests. */
2404 spin_lock_irqsave(&ohci->event_lock, flags);
2405 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2406
2407 if (ohci->check_busreset) {
2408 int loop_count = 0;
2409
2410 udelay(10);
2411
2412 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2413 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2414
2415 spin_unlock_irqrestore(&ohci->event_lock, flags);
2416 udelay(10);
2417 spin_lock_irqsave(&ohci->event_lock, flags);
2418
2419 /* The loop counter check is to prevent the driver
2420 * from remaining in this state forever. For the
2421 * initial bus reset, the loop continues for ever
2422 * and the system hangs, until some device is plugged-in
2423 * or out manually into a port! The forced reset seems
2424 * to solve this problem. This mainly effects nForce2. */
2425 if (loop_count > 10000) {
2426 ohci_devctl(host, RESET_BUS, LONG_RESET);
2427 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2428 loop_count = 0;
2429 }
2430
2431 loop_count++;
2432 }
2433 }
2434 spin_unlock_irqrestore(&ohci->event_lock, flags);
2435 if (!host->in_bus_reset) {
2436 DBGMSG("irq_handler: Bus reset requested");
2437
2438 /* Subsystem call */
2439 hpsb_bus_reset(ohci->host);
2440 }
2441 event &= ~OHCI1394_busReset;
2442 }
1da177e4
LT
2443 if (event & OHCI1394_reqTxComplete) {
2444 struct dma_trm_ctx *d = &ohci->at_req_context;
2445 DBGMSG("Got reqTxComplete interrupt "
2446 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2447 if (reg_read(ohci, d->ctrlSet) & 0x800)
2448 ohci1394_stop_context(ohci, d->ctrlClear,
2449 "reqTxComplete");
2450 else
2451 dma_trm_tasklet((unsigned long)d);
2452 //tasklet_schedule(&d->task);
2453 event &= ~OHCI1394_reqTxComplete;
2454 }
2455 if (event & OHCI1394_respTxComplete) {
2456 struct dma_trm_ctx *d = &ohci->at_resp_context;
2457 DBGMSG("Got respTxComplete interrupt "
2458 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2459 if (reg_read(ohci, d->ctrlSet) & 0x800)
2460 ohci1394_stop_context(ohci, d->ctrlClear,
2461 "respTxComplete");
2462 else
2463 tasklet_schedule(&d->task);
2464 event &= ~OHCI1394_respTxComplete;
2465 }
2466 if (event & OHCI1394_RQPkt) {
2467 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2468 DBGMSG("Got RQPkt interrupt status=0x%08X",
2469 reg_read(ohci, d->ctrlSet));
2470 if (reg_read(ohci, d->ctrlSet) & 0x800)
2471 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2472 else
2473 tasklet_schedule(&d->task);
2474 event &= ~OHCI1394_RQPkt;
2475 }
2476 if (event & OHCI1394_RSPkt) {
2477 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2478 DBGMSG("Got RSPkt interrupt status=0x%08X",
2479 reg_read(ohci, d->ctrlSet));
2480 if (reg_read(ohci, d->ctrlSet) & 0x800)
2481 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2482 else
2483 tasklet_schedule(&d->task);
2484 event &= ~OHCI1394_RSPkt;
2485 }
2486 if (event & OHCI1394_isochRx) {
2487 quadlet_t rx_event;
2488
2489 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2490 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2491 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2492 event &= ~OHCI1394_isochRx;
2493 }
2494 if (event & OHCI1394_isochTx) {
2495 quadlet_t tx_event;
2496
2497 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2498 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2499 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2500 event &= ~OHCI1394_isochTx;
2501 }
2502 if (event & OHCI1394_selfIDComplete) {
2503 if (host->in_bus_reset) {
2504 node_id = reg_read(ohci, OHCI1394_NodeID);
2505
2506 if (!(node_id & 0x80000000)) {
2507 PRINT(KERN_ERR,
2508 "SelfID received, but NodeID invalid "
2509 "(probably new bus reset occurred): %08X",
2510 node_id);
2511 goto selfid_not_valid;
2512 }
2513
2514 phyid = node_id & 0x0000003f;
2515 isroot = (node_id & 0x40000000) != 0;
2516
2517 DBGMSG("SelfID interrupt received "
2518 "(phyid %d, %s)", phyid,
2519 (isroot ? "root" : "not root"));
2520
2521 handle_selfid(ohci, host, phyid, isroot);
2522
2523 /* Clear the bus reset event and re-enable the
2524 * busReset interrupt. */
2525 spin_lock_irqsave(&ohci->event_lock, flags);
2526 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2527 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2528 spin_unlock_irqrestore(&ohci->event_lock, flags);
2529
1da177e4
LT
2530 /* Turn on phys dma reception.
2531 *
2532 * TODO: Enable some sort of filtering management.
2533 */
2534 if (phys_dma) {
180a4304
SR
2535 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2536 0xffffffff);
2537 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2538 0xffffffff);
1da177e4
LT
2539 }
2540
2541 DBGMSG("PhyReqFilter=%08x%08x",
180a4304
SR
2542 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2543 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
1da177e4
LT
2544
2545 hpsb_selfid_complete(host, phyid, isroot);
2546 } else
2547 PRINT(KERN_ERR,
2548 "SelfID received outside of bus reset sequence");
2549
2550selfid_not_valid:
2551 event &= ~OHCI1394_selfIDComplete;
2552 }
2553
2554 /* Make sure we handle everything, just in case we accidentally
2555 * enabled an interrupt that we didn't write a handler for. */
2556 if (event)
2557 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2558 event);
2559
2560 return IRQ_HANDLED;
2561}
2562
2563/* Put the buffer back into the dma context */
2564static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2565{
2566 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2567 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2568
2569 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2570 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2571 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2572 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2573
2574 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2575 * context program descriptors before it sees the wakeup bit set. */
2576 wmb();
2577
2578 /* wake up the dma context if necessary */
2579 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2580 PRINT(KERN_INFO,
2581 "Waking dma ctx=%d ... processing is probably too slow",
2582 d->ctx);
2583 }
2584
2585 /* do this always, to avoid race condition */
2586 reg_write(ohci, d->ctrlSet, 0x1000);
2587}
2588
2589#define cond_le32_to_cpu(data, noswap) \
2590 (noswap ? data : le32_to_cpu(data))
2591
2592static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2593 -1, 0, -1, 0, -1, -1, 16, -1};
2594
2595/*
2596 * Determine the length of a packet in the buffer
2597 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2598 */
2b01b80b
SR
2599static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2600 quadlet_t *buf_ptr, int offset,
2601 unsigned char tcode, int noswap)
1da177e4
LT
2602{
2603 int length = -1;
2604
2605 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2606 length = TCODE_SIZE[tcode];
2607 if (length == 0) {
2608 if (offset + 12 >= d->buf_size) {
2609 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2610 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2611 } else {
2612 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2613 }
2614 length += 20;
2615 }
2616 } else if (d->type == DMA_CTX_ISO) {
2617 /* Assumption: buffer fill mode with header/trailer */
2618 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2619 }
2620
2621 if (length > 0 && length % 4)
2622 length += 4 - (length % 4);
2623
2624 return length;
2625}
2626
2627/* Tasklet that processes dma receive buffers */
2628static void dma_rcv_tasklet (unsigned long data)
2629{
2630 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2631 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2632 unsigned int split_left, idx, offset, rescount;
2633 unsigned char tcode;
2634 int length, bytes_left, ack;
2635 unsigned long flags;
2636 quadlet_t *buf_ptr;
2637 char *split_ptr;
2638 char msg[256];
2639
2640 spin_lock_irqsave(&d->lock, flags);
2641
2642 idx = d->buf_ind;
2643 offset = d->buf_offset;
2644 buf_ptr = d->buf_cpu[idx] + offset/4;
2645
2646 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2647 bytes_left = d->buf_size - rescount - offset;
2648
2649 while (bytes_left > 0) {
2650 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2651
2652 /* packet_length() will return < 4 for an error */
2653 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2654
2655 if (length < 4) { /* something is wrong */
2656 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2657 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2658 d->ctx, length);
2659 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2660 spin_unlock_irqrestore(&d->lock, flags);
2661 return;
2662 }
2663
2664 /* The first case is where we have a packet that crosses
2665 * over more than one descriptor. The next case is where
2666 * it's all in the first descriptor. */
2667 if ((offset + length) > d->buf_size) {
2668 DBGMSG("Split packet rcv'd");
2669 if (length > d->split_buf_size) {
2670 ohci1394_stop_context(ohci, d->ctrlClear,
2671 "Split packet size exceeded");
2672 d->buf_ind = idx;
2673 d->buf_offset = offset;
2674 spin_unlock_irqrestore(&d->lock, flags);
2675 return;
2676 }
2677
2678 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2679 == d->buf_size) {
2680 /* Other part of packet not written yet.
2681 * this should never happen I think
2682 * anyway we'll get it on the next call. */
2683 PRINT(KERN_INFO,
2684 "Got only half a packet!");
2685 d->buf_ind = idx;
2686 d->buf_offset = offset;
2687 spin_unlock_irqrestore(&d->lock, flags);
2688 return;
2689 }
2690
2691 split_left = length;
2692 split_ptr = (char *)d->spb;
2693 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2694 split_left -= d->buf_size-offset;
2695 split_ptr += d->buf_size-offset;
2696 insert_dma_buffer(d, idx);
2697 idx = (idx+1) % d->num_desc;
2698 buf_ptr = d->buf_cpu[idx];
2699 offset=0;
2700
2701 while (split_left >= d->buf_size) {
2702 memcpy(split_ptr,buf_ptr,d->buf_size);
2703 split_ptr += d->buf_size;
2704 split_left -= d->buf_size;
2705 insert_dma_buffer(d, idx);
2706 idx = (idx+1) % d->num_desc;
2707 buf_ptr = d->buf_cpu[idx];
2708 }
2709
2710 if (split_left > 0) {
2711 memcpy(split_ptr, buf_ptr, split_left);
2712 offset = split_left;
2713 buf_ptr += offset/4;
2714 }
2715 } else {
2716 DBGMSG("Single packet rcv'd");
2717 memcpy(d->spb, buf_ptr, length);
2718 offset += length;
2719 buf_ptr += length/4;
2720 if (offset==d->buf_size) {
2721 insert_dma_buffer(d, idx);
2722 idx = (idx+1) % d->num_desc;
2723 buf_ptr = d->buf_cpu[idx];
2724 offset=0;
2725 }
2726 }
2727
2728 /* We get one phy packet to the async descriptor for each
2729 * bus reset. We always ignore it. */
2730 if (tcode != OHCI1394_TCODE_PHY) {
2731 if (!ohci->no_swap_incoming)
9531f13a 2732 header_le32_to_cpu(d->spb, tcode);
1da177e4
LT
2733 DBGMSG("Packet received from node"
2734 " %d ack=0x%02X spd=%d tcode=0x%X"
2735 " length=%d ctx=%d tlabel=%d",
2736 (d->spb[1]>>16)&0x3f,
2737 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2738 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2739 tcode, length, d->ctx,
cf82703d 2740 (d->spb[0]>>10)&0x3f);
1da177e4
LT
2741
2742 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2743 == 0x11) ? 1 : 0;
2744
2745 hpsb_packet_received(ohci->host, d->spb,
2746 length-4, ack);
2747 }
2748#ifdef OHCI1394_DEBUG
2749 else
2750 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2751 d->ctx);
2752#endif
2753
2754 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2755
2756 bytes_left = d->buf_size - rescount - offset;
2757
2758 }
2759
2760 d->buf_ind = idx;
2761 d->buf_offset = offset;
2762
2763 spin_unlock_irqrestore(&d->lock, flags);
2764}
2765
2766/* Bottom half that processes sent packets */
2767static void dma_trm_tasklet (unsigned long data)
2768{
2769 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2770 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2771 struct hpsb_packet *packet, *ptmp;
2772 unsigned long flags;
2773 u32 status, ack;
2774 size_t datasize;
2775
2776 spin_lock_irqsave(&d->lock, flags);
2777
2778 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2779 datasize = packet->data_size;
2780 if (datasize && packet->type != hpsb_raw)
2781 status = le32_to_cpu(
2782 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2783 else
2784 status = le32_to_cpu(
2785 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2786
2787 if (status == 0)
2788 /* this packet hasn't been sent yet*/
2789 break;
2790
2791#ifdef OHCI1394_DEBUG
2792 if (datasize)
2793 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2794 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2795 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2796 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2797 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2798 status&0x1f, (status>>5)&0x3,
2799 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2800 d->ctx);
2801 else
2802 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
dfe547ab 2803 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
1da177e4
LT
2804 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2805 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2807 status&0x1f, (status>>5)&0x3,
2808 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2809 d->ctx);
2810 else
2811 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
dfe547ab 2812 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
1da177e4
LT
2813 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2814 >>16)&0x3f,
2815 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2816 >>4)&0xf,
2817 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2818 >>10)&0x3f,
2819 status&0x1f, (status>>5)&0x3,
2820 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2821 d->ctx);
2822#endif
2823
2824 if (status & 0x10) {
2825 ack = status & 0xf;
2826 } else {
2827 switch (status & 0x1f) {
2828 case EVT_NO_STATUS: /* that should never happen */
2829 case EVT_RESERVED_A: /* that should never happen */
2830 case EVT_LONG_PACKET: /* that should never happen */
2831 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2832 ack = ACKX_SEND_ERROR;
2833 break;
2834 case EVT_MISSING_ACK:
2835 ack = ACKX_TIMEOUT;
2836 break;
2837 case EVT_UNDERRUN:
2838 ack = ACKX_SEND_ERROR;
2839 break;
2840 case EVT_OVERRUN: /* that should never happen */
2841 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2842 ack = ACKX_SEND_ERROR;
2843 break;
2844 case EVT_DESCRIPTOR_READ:
2845 case EVT_DATA_READ:
2846 case EVT_DATA_WRITE:
2847 ack = ACKX_SEND_ERROR;
2848 break;
2849 case EVT_BUS_RESET: /* that should never happen */
2850 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2851 ack = ACKX_SEND_ERROR;
2852 break;
2853 case EVT_TIMEOUT:
2854 ack = ACKX_TIMEOUT;
2855 break;
2856 case EVT_TCODE_ERR:
2857 ack = ACKX_SEND_ERROR;
2858 break;
2859 case EVT_RESERVED_B: /* that should never happen */
2860 case EVT_RESERVED_C: /* that should never happen */
2861 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2862 ack = ACKX_SEND_ERROR;
2863 break;
2864 case EVT_UNKNOWN:
2865 case EVT_FLUSHED:
2866 ack = ACKX_SEND_ERROR;
2867 break;
2868 default:
2869 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2870 ack = ACKX_SEND_ERROR;
2871 BUG();
2872 }
2873 }
2874
2875 list_del_init(&packet->driver_list);
2876 hpsb_packet_sent(ohci->host, packet, ack);
2877
2878 if (datasize) {
2879 pci_unmap_single(ohci->dev,
2880 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2881 datasize, PCI_DMA_TODEVICE);
2882 OHCI_DMA_FREE("single Xmit data packet");
2883 }
2884
2885 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2886 d->free_prgs++;
2887 }
2888
2889 dma_trm_flush(ohci, d);
2890
2891 spin_unlock_irqrestore(&d->lock, flags);
2892}
2893
2894static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2895{
2896 if (d->ctrlClear) {
2897 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2898
2899 if (d->type == DMA_CTX_ISO) {
2900 /* disable interrupts */
2901 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2902 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2903 } else {
2904 tasklet_kill(&d->task);
2905 }
2906 }
2907}
2908
2909
2910static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2911{
2912 int i;
2913 struct ti_ohci *ohci = d->ohci;
2914
2915 if (ohci == NULL)
2916 return;
2917
2918 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2919
2920 if (d->buf_cpu) {
2921 for (i=0; i<d->num_desc; i++)
2922 if (d->buf_cpu[i] && d->buf_bus[i]) {
2923 pci_free_consistent(
2924 ohci->dev, d->buf_size,
2925 d->buf_cpu[i], d->buf_bus[i]);
2926 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2927 }
2928 kfree(d->buf_cpu);
2929 kfree(d->buf_bus);
2930 }
2931 if (d->prg_cpu) {
2932 for (i=0; i<d->num_desc; i++)
2933 if (d->prg_cpu[i] && d->prg_bus[i]) {
2934 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2935 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2936 }
2937 pci_pool_destroy(d->prg_pool);
2938 OHCI_DMA_FREE("dma_rcv prg pool");
2939 kfree(d->prg_cpu);
2940 kfree(d->prg_bus);
2941 }
616b859f 2942 kfree(d->spb);
1da177e4
LT
2943
2944 /* Mark this context as freed. */
2945 d->ohci = NULL;
2946}
2947
2948static int
2949alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2950 enum context_type type, int ctx, int num_desc,
2951 int buf_size, int split_buf_size, int context_base)
2952{
2953 int i, len;
2954 static int num_allocs;
2955 static char pool_name[20];
2956
2957 d->ohci = ohci;
2958 d->type = type;
2959 d->ctx = ctx;
2960
2961 d->num_desc = num_desc;
2962 d->buf_size = buf_size;
2963 d->split_buf_size = split_buf_size;
2964
2965 d->ctrlSet = 0;
2966 d->ctrlClear = 0;
2967 d->cmdPtr = 0;
2968
8551158a
SR
2969 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2970 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
1da177e4
LT
2971
2972 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2973 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2974 free_dma_rcv_ctx(d);
2975 return -ENOMEM;
2976 }
1da177e4 2977
8551158a
SR
2978 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2979 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
1da177e4
LT
2980
2981 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2982 PRINT(KERN_ERR, "Failed to allocate dma prg");
2983 free_dma_rcv_ctx(d);
2984 return -ENOMEM;
2985 }
1da177e4
LT
2986
2987 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2988
2989 if (d->spb == NULL) {
2990 PRINT(KERN_ERR, "Failed to allocate split buffer");
2991 free_dma_rcv_ctx(d);
2992 return -ENOMEM;
2993 }
2994
2995 len = sprintf(pool_name, "ohci1394_rcv_prg");
2996 sprintf(pool_name+len, "%d", num_allocs);
2997 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2998 sizeof(struct dma_cmd), 4, 0);
2999 if(d->prg_pool == NULL)
3000 {
3001 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3002 free_dma_rcv_ctx(d);
3003 return -ENOMEM;
3004 }
3005 num_allocs++;
3006
3007 OHCI_DMA_ALLOC("dma_rcv prg pool");
3008
3009 for (i=0; i<d->num_desc; i++) {
3010 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3011 d->buf_size,
3012 d->buf_bus+i);
3013 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3014
3015 if (d->buf_cpu[i] != NULL) {
3016 memset(d->buf_cpu[i], 0, d->buf_size);
3017 } else {
3018 PRINT(KERN_ERR,
3019 "Failed to allocate dma buffer");
3020 free_dma_rcv_ctx(d);
3021 return -ENOMEM;
3022 }
3023
3024 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3025 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3026
3027 if (d->prg_cpu[i] != NULL) {
3028 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3029 } else {
3030 PRINT(KERN_ERR,
3031 "Failed to allocate dma prg");
3032 free_dma_rcv_ctx(d);
3033 return -ENOMEM;
3034 }
3035 }
3036
3037 spin_lock_init(&d->lock);
3038
3039 if (type == DMA_CTX_ISO) {
3040 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3041 OHCI_ISO_MULTICHANNEL_RECEIVE,
3042 dma_rcv_tasklet, (unsigned long) d);
1da177e4
LT
3043 } else {
3044 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3045 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3046 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3047
3048 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3049 }
3050
3051 return 0;
3052}
3053
3054static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3055{
3056 int i;
3057 struct ti_ohci *ohci = d->ohci;
3058
3059 if (ohci == NULL)
3060 return;
3061
3062 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3063
3064 if (d->prg_cpu) {
3065 for (i=0; i<d->num_desc; i++)
3066 if (d->prg_cpu[i] && d->prg_bus[i]) {
3067 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3068 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3069 }
3070 pci_pool_destroy(d->prg_pool);
3071 OHCI_DMA_FREE("dma_trm prg pool");
3072 kfree(d->prg_cpu);
3073 kfree(d->prg_bus);
3074 }
3075
3076 /* Mark this context as freed. */
3077 d->ohci = NULL;
3078}
3079
3080static int
3081alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3082 enum context_type type, int ctx, int num_desc,
3083 int context_base)
3084{
3085 int i, len;
3086 static char pool_name[20];
3087 static int num_allocs=0;
3088
3089 d->ohci = ohci;
3090 d->type = type;
3091 d->ctx = ctx;
3092 d->num_desc = num_desc;
3093 d->ctrlSet = 0;
3094 d->ctrlClear = 0;
3095 d->cmdPtr = 0;
3096
8551158a
SR
3097 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3098 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
1da177e4
LT
3099
3100 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3101 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3102 free_dma_trm_ctx(d);
3103 return -ENOMEM;
3104 }
1da177e4
LT
3105
3106 len = sprintf(pool_name, "ohci1394_trm_prg");
3107 sprintf(pool_name+len, "%d", num_allocs);
3108 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3109 sizeof(struct at_dma_prg), 4, 0);
3110 if (d->prg_pool == NULL) {
3111 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3112 free_dma_trm_ctx(d);
3113 return -ENOMEM;
3114 }
3115 num_allocs++;
3116
3117 OHCI_DMA_ALLOC("dma_rcv prg pool");
3118
3119 for (i = 0; i < d->num_desc; i++) {
3120 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3121 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3122
3123 if (d->prg_cpu[i] != NULL) {
3124 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3125 } else {
3126 PRINT(KERN_ERR,
3127 "Failed to allocate at dma prg");
3128 free_dma_trm_ctx(d);
3129 return -ENOMEM;
3130 }
3131 }
3132
3133 spin_lock_init(&d->lock);
3134
3135 /* initialize tasklet */
3136 if (type == DMA_CTX_ISO) {
3137 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3138 dma_trm_tasklet, (unsigned long) d);
3139 if (ohci1394_register_iso_tasklet(ohci,
3140 &ohci->it_legacy_tasklet) < 0) {
3141 PRINT(KERN_ERR, "No IT DMA context available");
3142 free_dma_trm_ctx(d);
3143 return -EBUSY;
3144 }
3145
3146 /* IT can be assigned to any context by register_iso_tasklet */
3147 d->ctx = ohci->it_legacy_tasklet.context;
3148 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3149 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3150 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3151 } else {
3152 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3153 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3154 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3155 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3156 }
3157
3158 return 0;
3159}
3160
3161static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3162{
3163 struct ti_ohci *ohci = host->hostdata;
3164
3165 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3166 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3167
3168 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3169}
3170
3171
3172static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3173 quadlet_t data, quadlet_t compare)
3174{
3175 struct ti_ohci *ohci = host->hostdata;
3176 int i;
3177
3178 reg_write(ohci, OHCI1394_CSRData, data);
3179 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3180 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3181
3182 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3183 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3184 break;
3185
3186 mdelay(1);
3187 }
3188
3189 return reg_read(ohci, OHCI1394_CSRData);
3190}
3191
3192static struct hpsb_host_driver ohci1394_driver = {
3193 .owner = THIS_MODULE,
3194 .name = OHCI1394_DRIVER_NAME,
3195 .set_hw_config_rom = ohci_set_hw_config_rom,
3196 .transmit_packet = ohci_transmit,
3197 .devctl = ohci_devctl,
3198 .isoctl = ohci_isoctl,
3199 .hw_csr_reg = ohci_hw_csr_reg,
3200};
3201
1da177e4
LT
3202/***********************************
3203 * PCI Driver Interface functions *
3204 ***********************************/
3205
3206#define FAIL(err, fmt, args...) \
3207do { \
3208 PRINT_G(KERN_ERR, fmt , ## args); \
3209 ohci1394_pci_remove(dev); \
3210 return err; \
3211} while (0)
3212
3213static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3214 const struct pci_device_id *ent)
3215{
1da177e4
LT
3216 struct hpsb_host *host;
3217 struct ti_ohci *ohci; /* shortcut to currently handled device */
2427ddd8 3218 resource_size_t ohci_base;
1da177e4 3219
1da177e4
LT
3220 if (pci_enable_device(dev))
3221 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3222 pci_set_master(dev);
3223
3224 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3225 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3226
3227 ohci = host->hostdata;
3228 ohci->dev = dev;
3229 ohci->host = host;
3230 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3231 host->pdev = dev;
3232 pci_set_drvdata(dev, ohci);
3233
3234 /* We don't want hardware swapping */
3235 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3236
3237 /* Some oddball Apple controllers do not order the selfid
3238 * properly, so we make up for it here. */
3239#ifndef __LITTLE_ENDIAN
3240 /* XXX: Need a better way to check this. I'm wondering if we can
3241 * read the values of the OHCI1394_PCI_HCI_Control and the
3242 * noByteSwapData registers to see if they were not cleared to
3243 * zero. Should this work? Obviously it's not defined what these
3244 * registers will read when they aren't supported. Bleh! */
3245 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3246 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3247 ohci->no_swap_incoming = 1;
3248 ohci->selfid_swap = 0;
3249 } else
3250 ohci->selfid_swap = 1;
3251#endif
3252
3253
3254#ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3255#define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3256#endif
3257
3258 /* These chipsets require a bit of extra care when checking after
3259 * a busreset. */
3260 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3261 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3262 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3263 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3264 ohci->check_busreset = 1;
3265
3266 /* We hardwire the MMIO length, since some CardBus adaptors
3267 * fail to report the right length. Anyway, the ohci spec
3268 * clearly says it's 2kb, so this shouldn't be a problem. */
3269 ohci_base = pci_resource_start(dev, 0);
94c2d01a 3270 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
e29419ff
GKH
3271 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3272 (unsigned long long)pci_resource_len(dev, 0));
1da177e4
LT
3273
3274 /* Seems PCMCIA handles this internally. Not sure why. Seems
3275 * pretty bogus to force a driver to special case this. */
3276#ifndef PCMCIA
3277 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
e29419ff
GKH
3278 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3279 (unsigned long long)ohci_base,
3280 (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
1da177e4
LT
3281#endif
3282 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3283
3284 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3285 if (ohci->registers == NULL)
3286 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3287 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3288 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3289
3290 /* csr_config rom allocation */
3291 ohci->csr_config_rom_cpu =
3292 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3293 &ohci->csr_config_rom_bus);
3294 OHCI_DMA_ALLOC("consistent csr_config_rom");
3295 if (ohci->csr_config_rom_cpu == NULL)
3296 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3297 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3298
3299 /* self-id dma buffer allocation */
3300 ohci->selfid_buf_cpu =
3301 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3302 &ohci->selfid_buf_bus);
3303 OHCI_DMA_ALLOC("consistent selfid_buf");
3304
3305 if (ohci->selfid_buf_cpu == NULL)
3306 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3307 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3308
3309 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3310 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3311 "8Kb boundary... may cause problems on some CXD3222 chip",
3312 ohci->selfid_buf_cpu);
3313
3314 /* No self-id errors at startup */
3315 ohci->self_id_errors = 0;
3316
3317 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3318 /* AR DMA request context allocation */
3319 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3320 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3321 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3322 OHCI1394_AsReqRcvContextBase) < 0)
3323 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3324
3325 /* AR DMA response context allocation */
3326 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3327 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3328 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3329 OHCI1394_AsRspRcvContextBase) < 0)
3330 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3331
3332 /* AT DMA request context */
3333 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3334 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3335 OHCI1394_AsReqTrContextBase) < 0)
3336 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3337
3338 /* AT DMA response context */
3339 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3340 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3341 OHCI1394_AsRspTrContextBase) < 0)
3342 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3343
3344 /* Start off with a soft reset, to clear everything to a sane
3345 * state. */
3346 ohci_soft_reset(ohci);
3347
3348 /* Now enable LPS, which we need in order to start accessing
3349 * most of the registers. In fact, on some cards (ALI M5251),
3350 * accessing registers in the SClk domain without LPS enabled
3351 * will lock up the machine. Wait 50msec to make sure we have
3352 * full link enabled. */
3353 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3354
3355 /* Disable and clear interrupts */
3356 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3357 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3358
3359 mdelay(50);
3360
3361 /* Determine the number of available IR and IT contexts. */
3362 ohci->nb_iso_rcv_ctx =
3363 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
1da177e4
LT
3364 ohci->nb_iso_xmit_ctx =
3365 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
1da177e4
LT
3366
3367 /* Set the usage bits for non-existent contexts so they can't
3368 * be allocated */
3369 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3370 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3371
3372 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3373 spin_lock_init(&ohci->iso_tasklet_list_lock);
3374 ohci->ISO_channel_usage = 0;
3375 spin_lock_init(&ohci->IR_channel_lock);
3376
3377 /* Allocate the IR DMA context right here so we don't have
3378 * to do it in interrupt path - note that this doesn't
3379 * waste much memory and avoids the jugglery required to
3380 * allocate it in IRQ path. */
3381 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3382 DMA_CTX_ISO, 0, IR_NUM_DESC,
3383 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3384 OHCI1394_IsoRcvContextBase) < 0) {
3385 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3386 }
3387
3388 /* We hopefully don't have to pre-allocate IT DMA like we did
3389 * for IR DMA above. Allocate it on-demand and mark inactive. */
3390 ohci->it_legacy_context.ohci = NULL;
3515d016 3391 spin_lock_init(&ohci->event_lock);
1da177e4 3392
3515d016 3393 /*
272ee69c 3394 * interrupts are disabled, all right, but... due to IRQF_SHARED we
3515d016
AV
3395 * might get called anyway. We'll see no event, of course, but
3396 * we need to get to that "no event", so enough should be initialized
3397 * by that point.
3398 */
272ee69c 3399 if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
1da177e4
LT
3400 OHCI1394_DRIVER_NAME, ohci))
3401 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3402
3403 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3404 ohci_initialize(ohci);
3405
3406 /* Set certain csr values */
3407 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3408 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3409 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3410 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3411 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3412
4611ed38
BC
3413 if (phys_dma) {
3414 host->low_addr_space =
3415 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3416 if (!host->low_addr_space)
3417 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3418 }
3419 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3420
1da177e4
LT
3421 /* Tell the highlevel this host is ready */
3422 if (hpsb_add_host(host))
3423 FAIL(-ENOMEM, "Failed to register host with highlevel");
3424
3425 ohci->init_state = OHCI_INIT_DONE;
3426
3427 return 0;
3428#undef FAIL
3429}
3430
3431static void ohci1394_pci_remove(struct pci_dev *pdev)
3432{
3433 struct ti_ohci *ohci;
3434 struct device *dev;
3435
3436 ohci = pci_get_drvdata(pdev);
3437 if (!ohci)
3438 return;
3439
3440 dev = get_device(&ohci->host->device);
3441
3442 switch (ohci->init_state) {
3443 case OHCI_INIT_DONE:
1da177e4
LT
3444 hpsb_remove_host(ohci->host);
3445
3446 /* Clear out BUS Options */
3447 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3448 reg_write(ohci, OHCI1394_BusOptions,
3449 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3450 0x00ff0000);
3451 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3452
3453 case OHCI_INIT_HAVE_IRQ:
3454 /* Clear interrupt registers */
3455 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3456 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3457 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3458 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3459 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3460 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3461
3462 /* Disable IRM Contender */
3463 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3464
3465 /* Clear link control register */
3466 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3467
3468 /* Let all other nodes know to ignore us */
3469 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3470
3471 /* Soft reset before we start - this disables
3472 * interrupts and clears linkEnable and LPS. */
3473 ohci_soft_reset(ohci);
3474 free_irq(ohci->dev->irq, ohci);
3475
3476 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3477 /* The ohci_soft_reset() stops all DMA contexts, so we
3478 * dont need to do this. */
1da177e4
LT
3479 free_dma_rcv_ctx(&ohci->ar_req_context);
3480 free_dma_rcv_ctx(&ohci->ar_resp_context);
1da177e4
LT
3481 free_dma_trm_ctx(&ohci->at_req_context);
3482 free_dma_trm_ctx(&ohci->at_resp_context);
1da177e4 3483 free_dma_rcv_ctx(&ohci->ir_legacy_context);
1da177e4
LT
3484 free_dma_trm_ctx(&ohci->it_legacy_context);
3485
1da177e4
LT
3486 case OHCI_INIT_HAVE_SELFID_BUFFER:
3487 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3488 ohci->selfid_buf_cpu,
3489 ohci->selfid_buf_bus);
3490 OHCI_DMA_FREE("consistent selfid_buf");
3491
3492 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3493 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3494 ohci->csr_config_rom_cpu,
3495 ohci->csr_config_rom_bus);
3496 OHCI_DMA_FREE("consistent csr_config_rom");
3497
3498 case OHCI_INIT_HAVE_IOMAPPING:
3499 iounmap(ohci->registers);
3500
3501 case OHCI_INIT_HAVE_MEM_REGION:
3502#ifndef PCMCIA
3503 release_mem_region(pci_resource_start(ohci->dev, 0),
3504 OHCI1394_REGISTER_SIZE);
3505#endif
3506
3507#ifdef CONFIG_PPC_PMAC
3508 /* On UniNorth, power down the cable and turn off the chip
3509 * clock when the module is removed to save power on
3510 * laptops. Turning it back ON is done by the arch code when
3511 * pci_enable_device() is called */
3512 {
3513 struct device_node* of_node;
3514
3515 of_node = pci_device_to_OF_node(ohci->dev);
3516 if (of_node) {
3517 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3518 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3519 }
3520 }
3521#endif /* CONFIG_PPC_PMAC */
3522
3523 case OHCI_INIT_ALLOC_HOST:
3524 pci_set_drvdata(ohci->dev, NULL);
3525 }
3526
3527 if (dev)
3528 put_device(dev);
3529}
3530
2a874182 3531#ifdef CONFIG_PM
1da177e4
LT
3532static int ohci1394_pci_resume (struct pci_dev *pdev)
3533{
f0645e77 3534/* PowerMac resume code comes first */
8c870933 3535#ifdef CONFIG_PPC_PMAC
e8222502 3536 if (machine_is(powermac)) {
1da177e4
LT
3537 struct device_node *of_node;
3538
3539 /* Re-enable 1394 */
3540 of_node = pci_device_to_OF_node (pdev);
3541 if (of_node)
3542 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3543 }
8c870933 3544#endif /* CONFIG_PPC_PMAC */
1da177e4 3545
f0645e77 3546 pci_set_power_state(pdev, PCI_D0);
b21efb59 3547 pci_restore_state(pdev);
ea6104c2 3548 return pci_enable_device(pdev);
1da177e4
LT
3549}
3550
1da177e4
LT
3551static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3552{
ea6104c2
SR
3553 int err;
3554
3555 err = pci_save_state(pdev);
3556 if (err)
3557 goto out;
3558 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3559 if (err)
3560 goto out;
7334bb4a 3561
f0645e77 3562/* PowerMac suspend code comes last */
8c870933 3563#ifdef CONFIG_PPC_PMAC
e8222502 3564 if (machine_is(powermac)) {
1da177e4
LT
3565 struct device_node *of_node;
3566
3567 /* Disable 1394 */
3568 of_node = pci_device_to_OF_node (pdev);
3569 if (of_node)
3570 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3571 }
f0645e77 3572#endif /* CONFIG_PPC_PMAC */
ea6104c2
SR
3573out:
3574 return err;
1da177e4 3575}
f0645e77 3576#endif /* CONFIG_PM */
1da177e4
LT
3577
3578#define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3579
3580static struct pci_device_id ohci1394_pci_tbl[] = {
3581 {
3582 .class = PCI_CLASS_FIREWIRE_OHCI,
3583 .class_mask = PCI_ANY_ID,
3584 .vendor = PCI_ANY_ID,
3585 .device = PCI_ANY_ID,
3586 .subvendor = PCI_ANY_ID,
3587 .subdevice = PCI_ANY_ID,
3588 },
3589 { 0, },
3590};
3591
3592MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3593
3594static struct pci_driver ohci1394_pci_driver = {
3595 .name = OHCI1394_DRIVER_NAME,
3596 .id_table = ohci1394_pci_tbl,
3597 .probe = ohci1394_pci_probe,
3598 .remove = ohci1394_pci_remove,
2a874182 3599#ifdef CONFIG_PM
1da177e4
LT
3600 .resume = ohci1394_pci_resume,
3601 .suspend = ohci1394_pci_suspend,
2a874182 3602#endif
1da177e4
LT
3603};
3604
1da177e4
LT
3605/***********************************
3606 * OHCI1394 Video Interface *
3607 ***********************************/
3608
3609/* essentially the only purpose of this code is to allow another
3610 module to hook into ohci's interrupt handler */
3611
3612int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3613{
3614 int i=0;
3615
3616 /* stop the channel program if it's still running */
3617 reg_write(ohci, reg, 0x8000);
3618
3619 /* Wait until it effectively stops */
3620 while (reg_read(ohci, reg) & 0x400) {
3621 i++;
3622 if (i>5000) {
3623 PRINT(KERN_ERR,
3624 "Runaway loop while stopping context: %s...", msg ? msg : "");
3625 return 1;
3626 }
3627
3628 mb();
3629 udelay(10);
3630 }
3631 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3632 return 0;
3633}
3634
3635void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3636 void (*func)(unsigned long), unsigned long data)
3637{
3638 tasklet_init(&tasklet->tasklet, func, data);
3639 tasklet->type = type;
3640 /* We init the tasklet->link field, so we can list_del() it
3641 * without worrying whether it was added to the list or not. */
3642 INIT_LIST_HEAD(&tasklet->link);
3643}
3644
3645int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3646 struct ohci1394_iso_tasklet *tasklet)
3647{
3648 unsigned long flags, *usage;
3649 int n, i, r = -EBUSY;
3650
3651 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3652 n = ohci->nb_iso_xmit_ctx;
3653 usage = &ohci->it_ctx_usage;
3654 }
3655 else {
3656 n = ohci->nb_iso_rcv_ctx;
3657 usage = &ohci->ir_ctx_usage;
3658
3659 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3660 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3661 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3662 return r;
3663 }
3664 }
3665 }
3666
3667 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3668
3669 for (i = 0; i < n; i++)
3670 if (!test_and_set_bit(i, usage)) {
3671 tasklet->context = i;
3672 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3673 r = 0;
3674 break;
3675 }
3676
3677 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3678
3679 return r;
3680}
3681
3682void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3683 struct ohci1394_iso_tasklet *tasklet)
3684{
3685 unsigned long flags;
3686
3687 tasklet_kill(&tasklet->tasklet);
3688
3689 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3690
3691 if (tasklet->type == OHCI_ISO_TRANSMIT)
3692 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3693 else {
3694 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3695
3696 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3697 clear_bit(0, &ohci->ir_multichannel_used);
3698 }
3699 }
3700
3701 list_del(&tasklet->link);
3702
3703 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3704}
3705
3706EXPORT_SYMBOL(ohci1394_stop_context);
3707EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3708EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3709EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3710
1da177e4
LT
3711/***********************************
3712 * General module initialization *
3713 ***********************************/
3714
3715MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3716MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3717MODULE_LICENSE("GPL");
3718
3719static void __exit ohci1394_cleanup (void)
3720{
3721 pci_unregister_driver(&ohci1394_pci_driver);
3722}
3723
3724static int __init ohci1394_init(void)
3725{
3726 return pci_register_driver(&ohci1394_pci_driver);
3727}
3728
8df4083c
AK
3729/* Register before most other device drivers.
3730 * Useful for remote debugging via physical DMA, e.g. using firescope. */
3731fs_initcall(ohci1394_init);
1da177e4 3732module_exit(ohci1394_cleanup);