]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ide/ide-tape.c
[PATCH] ide: add missing __init tags to device drivers
[net-next-2.6.git] / drivers / ide / ide-tape.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
36 * ...
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
64 * device interface).
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
68 * buffer cache.
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
76 * ide tapes :-)
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
85 * and irq.
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
134 * requests.
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
199 * bounce buffers.
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 * it in the code!
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
302 * cause DMA errors.
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
312 * already unlocked!
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended. Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
367 *
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
389 *
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
393 *
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 * Possible improvements.
403 *
404 * 1. Support for the ATAPI overlap protocol.
405 *
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
411 * isn't ready.
412 *
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
418 *
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
427#include <linux/config.h>
428#include <linux/module.h>
429#include <linux/types.h>
430#include <linux/string.h>
431#include <linux/kernel.h>
432#include <linux/delay.h>
433#include <linux/timer.h>
434#include <linux/mm.h>
435#include <linux/interrupt.h>
436#include <linux/major.h>
437#include <linux/devfs_fs_kernel.h>
438#include <linux/errno.h>
439#include <linux/genhd.h>
440#include <linux/slab.h>
441#include <linux/pci.h>
442#include <linux/ide.h>
443#include <linux/smp_lock.h>
444#include <linux/completion.h>
445#include <linux/bitops.h>
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457 __u8 partition_num;
458 __u8 par_desc_ver;
459 __u16 wrt_pass_cntr;
460 __u32 first_frame_addr;
461 __u32 last_frame_addr;
462 __u32 eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469 __u32 blk_sz;
470 __u16 blk_cnt;
471 __u8 flags;
472 __u8 reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA (0xc)
479#define OS_DAT_FLAGS_MARK (0x1)
480
481typedef struct os_dat_s {
482 __u8 dat_sz;
483 __u8 reserved1;
484 __u8 entry_cnt;
485 __u8 reserved3;
486 os_dat_entry_t dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 * Pipelined mode parameters.
496 *
497 * We try to use the minimum number of stages which is enough to
498 * keep the tape constantly streaming. To accomplish that, we implement
499 * a feedback loop around the maximum number of stages:
500 *
501 * We start from MIN maximum stages (we will not even use MIN stages
502 * if we don't need them), increment it by RATE*(MAX-MIN)
503 * whenever we sense that the pipeline is empty, until we reach
504 * the optimum value or until we reach MAX.
505 *
506 * Setting the following parameter to 0 is illegal: the pipelined mode
507 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES 1
510#define IDETAPE_MAX_PIPELINE_STAGES 400
511#define IDETAPE_INCREASE_STAGES_RATE 20
512
513/*
514 * The following are used to debug the driver:
515 *
516 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 * some places.
520 *
521 * Setting them to 0 will restore normal operation mode:
522 *
523 * 1. Disable logging normal successful operations.
524 * 2. Disable self-sanity checks.
525 * 3. Errors will still be logged, of course.
526 *
527 * All the #if DEBUG code will be removed some day, when the driver
528 * is verified to be stable enough. This will make it much more
529 * esthetic.
530 */
531#define IDETAPE_DEBUG_INFO 0
532#define IDETAPE_DEBUG_LOG 0
533#define IDETAPE_DEBUG_BUGS 1
534
535/*
536 * After each failed packet command we issue a request sense command
537 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES 3
542
543/*
544 * With each packet command, we allocate a buffer of
545 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 * commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE 256
549
550/*
551 * In various places in the driver, we need to allocate storage
552 * for packet commands and requests, which will remain valid while
553 * we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD (900*HZ)
563
564/*
565 * The following parameter is used to select the point in the internal
566 * tape fifo in which we will start to refill the buffer. Decreasing
567 * the following parameter will improve the system's latency and
568 * interactive response, while using a high value might improve sytem
569 * throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 2
572
573/*
574 * DSC polling parameters.
575 *
576 * Polling for DSC (a single bit in the status register) is a very
577 * important function in ide-tape. There are two cases in which we
578 * poll for DSC:
579 *
580 * 1. Before a read/write packet command, to ensure that we
581 * can transfer data from/to the tape's data buffers, without
582 * causing an actual media access. In case the tape is not
583 * ready yet, we take out our request from the device
584 * request queue, so that ide.c will service requests from
585 * the other device on the same interface meanwhile.
586 *
587 * 2. After the successful initialization of a "media access
588 * packet command", which is a command which can take a long
589 * time to complete (it can be several seconds or even an hour).
590 *
591 * Again, we postpone our request in the middle to free the bus
592 * for the other device. The polling frequency here should be
593 * lower than the read/write frequency since those media access
594 * commands are slow. We start from a "fast" frequency -
595 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 * We also set a timeout for the timer, in case something goes wrong.
600 * The timeout should be longer then the maximum execution time of a
601 * tape operation.
602 */
603
604/*
605 * DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
608#define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
610#define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
617/*
618 * Debugging/Performance analysis
619 *
620 * I/O trace support
621 */
622#define USE_IOTRACE 0
623#if USE_IOTRACE
624#include <linux/io_trace.h>
625#define IO_IDETAPE_FIFO 500
626#endif
627
628/*
629 * Read/Write error simulation
630 */
631#define SIMULATE_ERRORS 0
632
633/*
634 * For general magnetic tape device compatibility.
635 */
636typedef enum {
637 idetape_direction_none,
638 idetape_direction_read,
639 idetape_direction_write
640} idetape_chrdev_direction_t;
641
642struct idetape_bh {
643 unsigned short b_size;
644 atomic_t b_count;
645 struct idetape_bh *b_reqnext;
646 char *b_data;
647};
648
649/*
650 * Our view of a packet command.
651 */
652typedef struct idetape_packet_command_s {
653 u8 c[12]; /* Actual packet bytes */
654 int retries; /* On each retry, we increment retries */
655 int error; /* Error code */
656 int request_transfer; /* Bytes to transfer */
657 int actually_transferred; /* Bytes actually transferred */
658 int buffer_size; /* Size of our data buffer */
659 struct idetape_bh *bh;
660 char *b_data;
661 int b_count;
662 u8 *buffer; /* Data buffer */
663 u8 *current_position; /* Pointer into the above buffer */
664 ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */
665 u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */
666 unsigned long flags; /* Status/Action bit flags: long for set_bit */
667} idetape_pc_t;
668
669/*
670 * Packet command flag bits.
671 */
672/* Set when an error is considered normal - We won't retry */
673#define PC_ABORT 0
674/* 1 When polling for DSC on a media access command */
675#define PC_WAIT_FOR_DSC 1
676/* 1 when we prefer to use DMA if possible */
677#define PC_DMA_RECOMMENDED 2
678/* 1 while DMA in progress */
679#define PC_DMA_IN_PROGRESS 3
680/* 1 when encountered problem during DMA */
681#define PC_DMA_ERROR 4
682/* Data direction */
683#define PC_WRITING 5
684
685/*
686 * Capabilities and Mechanical Status Page
687 */
688typedef struct {
689 unsigned page_code :6; /* Page code - Should be 0x2a */
690 __u8 reserved0_6 :1;
691 __u8 ps :1; /* parameters saveable */
692 __u8 page_length; /* Page Length - Should be 0x12 */
693 __u8 reserved2, reserved3;
694 unsigned ro :1; /* Read Only Mode */
695 unsigned reserved4_1234 :4;
696 unsigned sprev :1; /* Supports SPACE in the reverse direction */
697 unsigned reserved4_67 :2;
698 unsigned reserved5_012 :3;
699 unsigned efmt :1; /* Supports ERASE command initiated formatting */
700 unsigned reserved5_4 :1;
701 unsigned qfa :1; /* Supports the QFA two partition formats */
702 unsigned reserved5_67 :2;
703 unsigned lock :1; /* Supports locking the volume */
704 unsigned locked :1; /* The volume is locked */
705 unsigned prevent :1; /* The device defaults in the prevent state after power up */
706 unsigned eject :1; /* The device can eject the volume */
707 __u8 disconnect :1; /* The device can break request > ctl */
708 __u8 reserved6_5 :1;
709 unsigned ecc :1; /* Supports error correction */
710 unsigned cmprs :1; /* Supports data compression */
711 unsigned reserved7_0 :1;
712 unsigned blk512 :1; /* Supports 512 bytes block size */
713 unsigned blk1024 :1; /* Supports 1024 bytes block size */
714 unsigned reserved7_3_6 :4;
715 unsigned blk32768 :1; /* slowb - the device restricts the byte count for PIO */
716 /* transfers for slow buffer memory ??? */
717 /* Also 32768 block size in some cases */
718 __u16 max_speed; /* Maximum speed supported in KBps */
719 __u8 reserved10, reserved11;
720 __u16 ctl; /* Continuous Transfer Limit in blocks */
721 __u16 speed; /* Current Speed, in KBps */
722 __u16 buffer_size; /* Buffer Size, in 512 bytes */
723 __u8 reserved18, reserved19;
724} idetape_capabilities_page_t;
725
726/*
727 * Block Size Page
728 */
729typedef struct {
730 unsigned page_code :6; /* Page code - Should be 0x30 */
731 unsigned reserved1_6 :1;
732 unsigned ps :1;
733 __u8 page_length; /* Page Length - Should be 2 */
734 __u8 reserved2;
735 unsigned play32 :1;
736 unsigned play32_5 :1;
737 unsigned reserved2_23 :2;
738 unsigned record32 :1;
739 unsigned record32_5 :1;
740 unsigned reserved2_6 :1;
741 unsigned one :1;
742} idetape_block_size_page_t;
743
744/*
745 * A pipeline stage.
746 */
747typedef struct idetape_stage_s {
748 struct request rq; /* The corresponding request */
749 struct idetape_bh *bh; /* The data buffers */
750 struct idetape_stage_s *next; /* Pointer to the next stage */
751} idetape_stage_t;
752
753/*
754 * REQUEST SENSE packet command result - Data Format.
755 */
756typedef struct {
757 unsigned error_code :7; /* Current of deferred errors */
758 unsigned valid :1; /* The information field conforms to QIC-157C */
759 __u8 reserved1 :8; /* Segment Number - Reserved */
760 unsigned sense_key :4; /* Sense Key */
761 unsigned reserved2_4 :1; /* Reserved */
762 unsigned ili :1; /* Incorrect Length Indicator */
763 unsigned eom :1; /* End Of Medium */
764 unsigned filemark :1; /* Filemark */
765 __u32 information __attribute__ ((packed));
766 __u8 asl; /* Additional sense length (n-7) */
767 __u32 command_specific; /* Additional command specific information */
768 __u8 asc; /* Additional Sense Code */
769 __u8 ascq; /* Additional Sense Code Qualifier */
770 __u8 replaceable_unit_code; /* Field Replaceable Unit Code */
771 unsigned sk_specific1 :7; /* Sense Key Specific */
772 unsigned sksv :1; /* Sense Key Specific information is valid */
773 __u8 sk_specific2; /* Sense Key Specific */
774 __u8 sk_specific3; /* Sense Key Specific */
775 __u8 pad[2]; /* Padding to 20 bytes */
776} idetape_request_sense_result_t;
777
778
779/*
780 * Most of our global data which we need to save even as we leave the
781 * driver due to an interrupt or a timer event is stored in a variable
782 * of type idetape_tape_t, defined below.
783 */
784typedef struct ide_tape_obj {
785 ide_drive_t *drive;
786 ide_driver_t *driver;
787 struct gendisk *disk;
788 struct kref kref;
789
790 /*
791 * Since a typical character device operation requires more
792 * than one packet command, we provide here enough memory
793 * for the maximum of interconnected packet commands.
794 * The packet commands are stored in the circular array pc_stack.
795 * pc_stack_index points to the last used entry, and warps around
796 * to the start when we get to the last array entry.
797 *
798 * pc points to the current processed packet command.
799 *
800 * failed_pc points to the last failed packet command, or contains
801 * NULL if we do not need to retry any packet command. This is
802 * required since an additional packet command is needed before the
803 * retry, to get detailed information on what went wrong.
804 */
805 /* Current packet command */
806 idetape_pc_t *pc;
807 /* Last failed packet command */
808 idetape_pc_t *failed_pc;
809 /* Packet command stack */
810 idetape_pc_t pc_stack[IDETAPE_PC_STACK];
811 /* Next free packet command storage space */
812 int pc_stack_index;
813 struct request rq_stack[IDETAPE_PC_STACK];
814 /* We implement a circular array */
815 int rq_stack_index;
816
817 /*
818 * DSC polling variables.
819 *
820 * While polling for DSC we use postponed_rq to postpone the
821 * current request so that ide.c will be able to service
822 * pending requests on the other device. Note that at most
823 * we will have only one DSC (usually data transfer) request
824 * in the device request queue. Additional requests can be
825 * queued in our internal pipeline, but they will be visible
826 * to ide.c only one at a time.
827 */
828 struct request *postponed_rq;
829 /* The time in which we started polling for DSC */
830 unsigned long dsc_polling_start;
831 /* Timer used to poll for dsc */
832 struct timer_list dsc_timer;
833 /* Read/Write dsc polling frequency */
834 unsigned long best_dsc_rw_frequency;
835 /* The current polling frequency */
836 unsigned long dsc_polling_frequency;
837 /* Maximum waiting time */
838 unsigned long dsc_timeout;
839
840 /*
841 * Read position information
842 */
843 u8 partition;
844 /* Current block */
845 unsigned int first_frame_position;
846 unsigned int last_frame_position;
847 unsigned int blocks_in_buffer;
848
849 /*
850 * Last error information
851 */
852 u8 sense_key, asc, ascq;
853
854 /*
855 * Character device operation
856 */
857 unsigned int minor;
858 /* device name */
859 char name[4];
860 /* Current character device data transfer direction */
861 idetape_chrdev_direction_t chrdev_direction;
862
863 /*
864 * Device information
865 */
866 /* Usually 512 or 1024 bytes */
867 unsigned short tape_block_size;
868 int user_bs_factor;
869 /* Copy of the tape's Capabilities and Mechanical Page */
870 idetape_capabilities_page_t capabilities;
871
872 /*
873 * Active data transfer request parameters.
874 *
875 * At most, there is only one ide-tape originated data transfer
876 * request in the device request queue. This allows ide.c to
877 * easily service requests from the other device when we
878 * postpone our active request. In the pipelined operation
879 * mode, we use our internal pipeline structure to hold
880 * more data requests.
881 *
882 * The data buffer size is chosen based on the tape's
883 * recommendation.
884 */
885 /* Pointer to the request which is waiting in the device request queue */
886 struct request *active_data_request;
887 /* Data buffer size (chosen based on the tape's recommendation */
888 int stage_size;
889 idetape_stage_t *merge_stage;
890 int merge_stage_size;
891 struct idetape_bh *bh;
892 char *b_data;
893 int b_count;
894
895 /*
896 * Pipeline parameters.
897 *
898 * To accomplish non-pipelined mode, we simply set the following
899 * variables to zero (or NULL, where appropriate).
900 */
901 /* Number of currently used stages */
902 int nr_stages;
903 /* Number of pending stages */
904 int nr_pending_stages;
905 /* We will not allocate more than this number of stages */
906 int max_stages, min_pipeline, max_pipeline;
907 /* The first stage which will be removed from the pipeline */
908 idetape_stage_t *first_stage;
909 /* The currently active stage */
910 idetape_stage_t *active_stage;
911 /* Will be serviced after the currently active request */
912 idetape_stage_t *next_stage;
913 /* New requests will be added to the pipeline here */
914 idetape_stage_t *last_stage;
915 /* Optional free stage which we can use */
916 idetape_stage_t *cache_stage;
917 int pages_per_stage;
918 /* Wasted space in each stage */
919 int excess_bh_size;
920
921 /* Status/Action flags: long for set_bit */
922 unsigned long flags;
923 /* protects the ide-tape queue */
924 spinlock_t spinlock;
925
926 /*
927 * Measures average tape speed
928 */
929 unsigned long avg_time;
930 int avg_size;
931 int avg_speed;
932
933 /* last sense information */
934 idetape_request_sense_result_t sense;
935
936 char vendor_id[10];
937 char product_id[18];
938 char firmware_revision[6];
939 int firmware_revision_num;
940
941 /* the door is currently locked */
942 int door_locked;
943 /* the tape hardware is write protected */
944 char drv_write_prot;
945 /* the tape is write protected (hardware or opened as read-only) */
946 char write_prot;
947
948 /*
949 * Limit the number of times a request can
950 * be postponed, to avoid an infinite postpone
951 * deadlock.
952 */
953 /* request postpone count limit */
954 int postpone_cnt;
955
956 /*
957 * Measures number of frames:
958 *
959 * 1. written/read to/from the driver pipeline (pipeline_head).
960 * 2. written/read to/from the tape buffers (idetape_bh).
961 * 3. written/read by the tape to/from the media (tape_head).
962 */
963 int pipeline_head;
964 int buffer_head;
965 int tape_head;
966 int last_tape_head;
967
968 /*
969 * Speed control at the tape buffers input/output
970 */
971 unsigned long insert_time;
972 int insert_size;
973 int insert_speed;
974 int max_insert_speed;
975 int measure_insert_time;
976
977 /*
978 * Measure tape still time, in milliseconds
979 */
980 unsigned long tape_still_time_begin;
981 int tape_still_time;
982
983 /*
984 * Speed regulation negative feedback loop
985 */
986 int speed_control;
987 int pipeline_head_speed;
988 int controlled_pipeline_head_speed;
989 int uncontrolled_pipeline_head_speed;
990 int controlled_last_pipeline_head;
991 int uncontrolled_last_pipeline_head;
992 unsigned long uncontrolled_pipeline_head_time;
993 unsigned long controlled_pipeline_head_time;
994 int controlled_previous_pipeline_head;
995 int uncontrolled_previous_pipeline_head;
996 unsigned long controlled_previous_head_time;
997 unsigned long uncontrolled_previous_head_time;
998 int restart_speed_control_req;
999
1000 /*
1001 * Debug_level determines amount of debugging output;
1002 * can be changed using /proc/ide/hdx/settings
1003 * 0 : almost no debugging output
1004 * 1 : 0+output errors only
1005 * 2 : 1+output all sensekey/asc
1006 * 3 : 2+follow all chrdev related procedures
1007 * 4 : 3+follow all procedures
1008 * 5 : 4+include pc_stack rq_stack info
1009 * 6 : 5+USE_COUNT updates
1010 */
1011 int debug_level;
1012} idetape_tape_t;
1013
1014static DECLARE_MUTEX(idetape_ref_sem);
1015
d5dee80a
WD
1016static struct class *idetape_sysfs_class;
1017
1da177e4
LT
1018#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1019
1020#define ide_tape_g(disk) \
1021 container_of((disk)->private_data, struct ide_tape_obj, driver)
1022
1023static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1024{
1025 struct ide_tape_obj *tape = NULL;
1026
1027 down(&idetape_ref_sem);
1028 tape = ide_tape_g(disk);
1029 if (tape)
1030 kref_get(&tape->kref);
1031 up(&idetape_ref_sem);
1032 return tape;
1033}
1034
1035static void ide_tape_release(struct kref *);
1036
1037static void ide_tape_put(struct ide_tape_obj *tape)
1038{
1039 down(&idetape_ref_sem);
1040 kref_put(&tape->kref, ide_tape_release);
1041 up(&idetape_ref_sem);
1042}
1043
1044/*
1045 * Tape door status
1046 */
1047#define DOOR_UNLOCKED 0
1048#define DOOR_LOCKED 1
1049#define DOOR_EXPLICITLY_LOCKED 2
1050
1051/*
1052 * Tape flag bits values.
1053 */
1054#define IDETAPE_IGNORE_DSC 0
1055#define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1056#define IDETAPE_BUSY 2 /* Device already opened */
1057#define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1058#define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1059#define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1060#define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1061#define IDETAPE_READ_ERROR 7
1062#define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1063/* 0 = no tape is loaded, so we don't rewind after ejecting */
1064#define IDETAPE_MEDIUM_PRESENT 9
1065
1066/*
1067 * Supported ATAPI tape drives packet commands
1068 */
1069#define IDETAPE_TEST_UNIT_READY_CMD 0x00
1070#define IDETAPE_REWIND_CMD 0x01
1071#define IDETAPE_REQUEST_SENSE_CMD 0x03
1072#define IDETAPE_READ_CMD 0x08
1073#define IDETAPE_WRITE_CMD 0x0a
1074#define IDETAPE_WRITE_FILEMARK_CMD 0x10
1075#define IDETAPE_SPACE_CMD 0x11
1076#define IDETAPE_INQUIRY_CMD 0x12
1077#define IDETAPE_ERASE_CMD 0x19
1078#define IDETAPE_MODE_SENSE_CMD 0x1a
1079#define IDETAPE_MODE_SELECT_CMD 0x15
1080#define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1081#define IDETAPE_PREVENT_CMD 0x1e
1082#define IDETAPE_LOCATE_CMD 0x2b
1083#define IDETAPE_READ_POSITION_CMD 0x34
1084#define IDETAPE_READ_BUFFER_CMD 0x3c
1085#define IDETAPE_SET_SPEED_CMD 0xbb
1086
1087/*
1088 * Some defines for the READ BUFFER command
1089 */
1090#define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1091
1092/*
1093 * Some defines for the SPACE command
1094 */
1095#define IDETAPE_SPACE_OVER_FILEMARK 1
1096#define IDETAPE_SPACE_TO_EOD 3
1097
1098/*
1099 * Some defines for the LOAD UNLOAD command
1100 */
1101#define IDETAPE_LU_LOAD_MASK 1
1102#define IDETAPE_LU_RETENSION_MASK 2
1103#define IDETAPE_LU_EOT_MASK 4
1104
1105/*
1106 * Special requests for our block device strategy routine.
1107 *
1108 * In order to service a character device command, we add special
1109 * requests to the tail of our block device request queue and wait
1110 * for their completion.
1111 */
1112
1113enum {
1114 REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */
1115 REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */
1116 REQ_IDETAPE_READ = (1 << 2),
1117 REQ_IDETAPE_WRITE = (1 << 3),
1118 REQ_IDETAPE_READ_BUFFER = (1 << 4),
1119};
1120
1121/*
1122 * Error codes which are returned in rq->errors to the higher part
1123 * of the driver.
1124 */
1125#define IDETAPE_ERROR_GENERAL 101
1126#define IDETAPE_ERROR_FILEMARK 102
1127#define IDETAPE_ERROR_EOD 103
1128
1129/*
1130 * The following is used to format the general configuration word of
1131 * the ATAPI IDENTIFY DEVICE command.
1132 */
1133struct idetape_id_gcw {
1134 unsigned packet_size :2; /* Packet Size */
1135 unsigned reserved234 :3; /* Reserved */
1136 unsigned drq_type :2; /* Command packet DRQ type */
1137 unsigned removable :1; /* Removable media */
1138 unsigned device_type :5; /* Device type */
1139 unsigned reserved13 :1; /* Reserved */
1140 unsigned protocol :2; /* Protocol type */
1141};
1142
1143/*
1144 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1145 */
1146typedef struct {
1147 unsigned device_type :5; /* Peripheral Device Type */
1148 unsigned reserved0_765 :3; /* Peripheral Qualifier - Reserved */
1149 unsigned reserved1_6t0 :7; /* Reserved */
1150 unsigned rmb :1; /* Removable Medium Bit */
1151 unsigned ansi_version :3; /* ANSI Version */
1152 unsigned ecma_version :3; /* ECMA Version */
1153 unsigned iso_version :2; /* ISO Version */
1154 unsigned response_format :4; /* Response Data Format */
1155 unsigned reserved3_45 :2; /* Reserved */
1156 unsigned reserved3_6 :1; /* TrmIOP - Reserved */
1157 unsigned reserved3_7 :1; /* AENC - Reserved */
1158 __u8 additional_length; /* Additional Length (total_length-4) */
1159 __u8 rsv5, rsv6, rsv7; /* Reserved */
1160 __u8 vendor_id[8]; /* Vendor Identification */
1161 __u8 product_id[16]; /* Product Identification */
1162 __u8 revision_level[4]; /* Revision Level */
1163 __u8 vendor_specific[20]; /* Vendor Specific - Optional */
1164 __u8 reserved56t95[40]; /* Reserved - Optional */
1165 /* Additional information may be returned */
1166} idetape_inquiry_result_t;
1167
1168/*
1169 * READ POSITION packet command - Data Format (From Table 6-57)
1170 */
1171typedef struct {
1172 unsigned reserved0_10 :2; /* Reserved */
1173 unsigned bpu :1; /* Block Position Unknown */
1174 unsigned reserved0_543 :3; /* Reserved */
1175 unsigned eop :1; /* End Of Partition */
1176 unsigned bop :1; /* Beginning Of Partition */
1177 u8 partition; /* Partition Number */
1178 u8 reserved2, reserved3; /* Reserved */
1179 u32 first_block; /* First Block Location */
1180 u32 last_block; /* Last Block Location (Optional) */
1181 u8 reserved12; /* Reserved */
1182 u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */
1183 u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */
1184} idetape_read_position_result_t;
1185
1186/*
1187 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1188 * packet commands. Those packet commands are still not supported
1189 * by ide-tape.
1190 */
1191#define IDETAPE_BLOCK_DESCRIPTOR 0
1192#define IDETAPE_CAPABILITIES_PAGE 0x2a
1193#define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1194#define IDETAPE_BLOCK_SIZE_PAGE 0x30
1195#define IDETAPE_BUFFER_FILLING_PAGE 0x33
1196
1197/*
1198 * Mode Parameter Header for the MODE SENSE packet command
1199 */
1200typedef struct {
1201 __u8 mode_data_length; /* Length of the following data transfer */
1202 __u8 medium_type; /* Medium Type */
1203 __u8 dsp; /* Device Specific Parameter */
1204 __u8 bdl; /* Block Descriptor Length */
1205#if 0
1206 /* data transfer page */
1207 __u8 page_code :6;
1208 __u8 reserved0_6 :1;
1209 __u8 ps :1; /* parameters saveable */
1210 __u8 page_length; /* page Length == 0x02 */
1211 __u8 reserved2;
1212 __u8 read32k :1; /* 32k blk size (data only) */
1213 __u8 read32k5 :1; /* 32.5k blk size (data&AUX) */
1214 __u8 reserved3_23 :2;
1215 __u8 write32k :1; /* 32k blk size (data only) */
1216 __u8 write32k5 :1; /* 32.5k blk size (data&AUX) */
1217 __u8 reserved3_6 :1;
1218 __u8 streaming :1; /* streaming mode enable */
1219#endif
1220} idetape_mode_parameter_header_t;
1221
1222/*
1223 * Mode Parameter Block Descriptor the MODE SENSE packet command
1224 *
1225 * Support for block descriptors is optional.
1226 */
1227typedef struct {
1228 __u8 density_code; /* Medium density code */
1229 __u8 blocks[3]; /* Number of blocks */
1230 __u8 reserved4; /* Reserved */
1231 __u8 length[3]; /* Block Length */
1232} idetape_parameter_block_descriptor_t;
1233
1234/*
1235 * The Data Compression Page, as returned by the MODE SENSE packet command.
1236 */
1237typedef struct {
1238 unsigned page_code :6; /* Page Code - Should be 0xf */
1239 unsigned reserved0 :1; /* Reserved */
1240 unsigned ps :1;
1241 __u8 page_length; /* Page Length - Should be 14 */
1242 unsigned reserved2 :6; /* Reserved */
1243 unsigned dcc :1; /* Data Compression Capable */
1244 unsigned dce :1; /* Data Compression Enable */
1245 unsigned reserved3 :5; /* Reserved */
1246 unsigned red :2; /* Report Exception on Decompression */
1247 unsigned dde :1; /* Data Decompression Enable */
1248 __u32 ca; /* Compression Algorithm */
1249 __u32 da; /* Decompression Algorithm */
1250 __u8 reserved[4]; /* Reserved */
1251} idetape_data_compression_page_t;
1252
1253/*
1254 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1255 */
1256typedef struct {
1257 unsigned page_code :6; /* Page Code - Should be 0x11 */
1258 unsigned reserved1_6 :1; /* Reserved */
1259 unsigned ps :1;
1260 __u8 page_length; /* Page Length - Should be 6 */
1261 __u8 map; /* Maximum Additional Partitions - Should be 0 */
1262 __u8 apd; /* Additional Partitions Defined - Should be 0 */
1263 unsigned reserved4_012 :3; /* Reserved */
1264 unsigned psum :2; /* Should be 0 */
1265 unsigned idp :1; /* Should be 0 */
1266 unsigned sdp :1; /* Should be 0 */
1267 unsigned fdp :1; /* Fixed Data Partitions */
1268 __u8 mfr; /* Medium Format Recognition */
1269 __u8 reserved[2]; /* Reserved */
1270} idetape_medium_partition_page_t;
1271
1272/*
1273 * Run time configurable parameters.
1274 */
1275typedef struct {
1276 int dsc_rw_frequency;
1277 int dsc_media_access_frequency;
1278 int nr_stages;
1279} idetape_config_t;
1280
1281/*
1282 * The variables below are used for the character device interface.
1283 * Additional state variables are defined in our ide_drive_t structure.
1284 */
1285static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1286
1287#define ide_tape_f(file) ((file)->private_data)
1288
1289static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1290{
1291 struct ide_tape_obj *tape = NULL;
1292
1293 down(&idetape_ref_sem);
1294 tape = idetape_devs[i];
1295 if (tape)
1296 kref_get(&tape->kref);
1297 up(&idetape_ref_sem);
1298 return tape;
1299}
1300
1301/*
1302 * Function declarations
1303 *
1304 */
1305static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1306static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1307
1308/*
1309 * Too bad. The drive wants to send us data which we are not ready to accept.
1310 * Just throw it away.
1311 */
1312static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1313{
1314 while (bcount--)
1315 (void) HWIF(drive)->INB(IDE_DATA_REG);
1316}
1317
1318static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1319{
1320 struct idetape_bh *bh = pc->bh;
1321 int count;
1322
1323 while (bcount) {
1324#if IDETAPE_DEBUG_BUGS
1325 if (bh == NULL) {
1326 printk(KERN_ERR "ide-tape: bh == NULL in "
1327 "idetape_input_buffers\n");
1328 idetape_discard_data(drive, bcount);
1329 return;
1330 }
1331#endif /* IDETAPE_DEBUG_BUGS */
1332 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1333 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1334 bcount -= count;
1335 atomic_add(count, &bh->b_count);
1336 if (atomic_read(&bh->b_count) == bh->b_size) {
1337 bh = bh->b_reqnext;
1338 if (bh)
1339 atomic_set(&bh->b_count, 0);
1340 }
1341 }
1342 pc->bh = bh;
1343}
1344
1345static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1346{
1347 struct idetape_bh *bh = pc->bh;
1348 int count;
1349
1350 while (bcount) {
1351#if IDETAPE_DEBUG_BUGS
1352 if (bh == NULL) {
1353 printk(KERN_ERR "ide-tape: bh == NULL in "
1354 "idetape_output_buffers\n");
1355 return;
1356 }
1357#endif /* IDETAPE_DEBUG_BUGS */
1358 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1359 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1360 bcount -= count;
1361 pc->b_data += count;
1362 pc->b_count -= count;
1363 if (!pc->b_count) {
1364 pc->bh = bh = bh->b_reqnext;
1365 if (bh) {
1366 pc->b_data = bh->b_data;
1367 pc->b_count = atomic_read(&bh->b_count);
1368 }
1369 }
1370 }
1371}
1372
1373static void idetape_update_buffers (idetape_pc_t *pc)
1374{
1375 struct idetape_bh *bh = pc->bh;
1376 int count;
1377 unsigned int bcount = pc->actually_transferred;
1378
1379 if (test_bit(PC_WRITING, &pc->flags))
1380 return;
1381 while (bcount) {
1382#if IDETAPE_DEBUG_BUGS
1383 if (bh == NULL) {
1384 printk(KERN_ERR "ide-tape: bh == NULL in "
1385 "idetape_update_buffers\n");
1386 return;
1387 }
1388#endif /* IDETAPE_DEBUG_BUGS */
1389 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1390 atomic_set(&bh->b_count, count);
1391 if (atomic_read(&bh->b_count) == bh->b_size)
1392 bh = bh->b_reqnext;
1393 bcount -= count;
1394 }
1395 pc->bh = bh;
1396}
1397
1398/*
1399 * idetape_next_pc_storage returns a pointer to a place in which we can
1400 * safely store a packet command, even though we intend to leave the
1401 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1402 * commands is allocated at initialization time.
1403 */
1404static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1405{
1406 idetape_tape_t *tape = drive->driver_data;
1407
1408#if IDETAPE_DEBUG_LOG
1409 if (tape->debug_level >= 5)
1410 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1411 tape->pc_stack_index);
1412#endif /* IDETAPE_DEBUG_LOG */
1413 if (tape->pc_stack_index == IDETAPE_PC_STACK)
1414 tape->pc_stack_index=0;
1415 return (&tape->pc_stack[tape->pc_stack_index++]);
1416}
1417
1418/*
1419 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1420 * Since we queue packet commands in the request queue, we need to
1421 * allocate a request, along with the allocation of a packet command.
1422 */
1423
1424/**************************************************************
1425 * *
1426 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1427 * followed later on by kfree(). -ml *
1428 * *
1429 **************************************************************/
1430
1431static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1432{
1433 idetape_tape_t *tape = drive->driver_data;
1434
1435#if IDETAPE_DEBUG_LOG
1436 if (tape->debug_level >= 5)
1437 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1438 tape->rq_stack_index);
1439#endif /* IDETAPE_DEBUG_LOG */
1440 if (tape->rq_stack_index == IDETAPE_PC_STACK)
1441 tape->rq_stack_index=0;
1442 return (&tape->rq_stack[tape->rq_stack_index++]);
1443}
1444
1445/*
1446 * idetape_init_pc initializes a packet command.
1447 */
1448static void idetape_init_pc (idetape_pc_t *pc)
1449{
1450 memset(pc->c, 0, 12);
1451 pc->retries = 0;
1452 pc->flags = 0;
1453 pc->request_transfer = 0;
1454 pc->buffer = pc->pc_buffer;
1455 pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1456 pc->bh = NULL;
1457 pc->b_data = NULL;
1458}
1459
1460/*
1461 * idetape_analyze_error is called on each failed packet command retry
1462 * to analyze the request sense. We currently do not utilize this
1463 * information.
1464 */
1465static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1466{
1467 idetape_tape_t *tape = drive->driver_data;
1468 idetape_pc_t *pc = tape->failed_pc;
1469
1470 tape->sense = *result;
1471 tape->sense_key = result->sense_key;
1472 tape->asc = result->asc;
1473 tape->ascq = result->ascq;
1474#if IDETAPE_DEBUG_LOG
1475 /*
1476 * Without debugging, we only log an error if we decided to
1477 * give up retrying.
1478 */
1479 if (tape->debug_level >= 1)
1480 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1481 "asc = %x, ascq = %x\n",
1482 pc->c[0], result->sense_key,
1483 result->asc, result->ascq);
1484#endif /* IDETAPE_DEBUG_LOG */
1485
1486 /*
1487 * Correct pc->actually_transferred by asking the tape.
1488 */
1489 if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1490 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1491 idetape_update_buffers(pc);
1492 }
1493
1494 /*
1495 * If error was the result of a zero-length read or write command,
1496 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1497 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1498 */
1499 if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1500 && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1501 if (result->sense_key == 5) {
1502 /* don't report an error, everything's ok */
1503 pc->error = 0;
1504 /* don't retry read/write */
1505 set_bit(PC_ABORT, &pc->flags);
1506 }
1507 }
1508 if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1509 pc->error = IDETAPE_ERROR_FILEMARK;
1510 set_bit(PC_ABORT, &pc->flags);
1511 }
1512 if (pc->c[0] == IDETAPE_WRITE_CMD) {
1513 if (result->eom ||
1514 (result->sense_key == 0xd && result->asc == 0x0 &&
1515 result->ascq == 0x2)) {
1516 pc->error = IDETAPE_ERROR_EOD;
1517 set_bit(PC_ABORT, &pc->flags);
1518 }
1519 }
1520 if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1521 if (result->sense_key == 8) {
1522 pc->error = IDETAPE_ERROR_EOD;
1523 set_bit(PC_ABORT, &pc->flags);
1524 }
1525 if (!test_bit(PC_ABORT, &pc->flags) &&
1526 pc->actually_transferred)
1527 pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1528 }
1529}
1530
1531/*
1532 * idetape_active_next_stage will declare the next stage as "active".
1533 */
1534static void idetape_active_next_stage (ide_drive_t *drive)
1535{
1536 idetape_tape_t *tape = drive->driver_data;
1537 idetape_stage_t *stage = tape->next_stage;
1538 struct request *rq = &stage->rq;
1539
1540#if IDETAPE_DEBUG_LOG
1541 if (tape->debug_level >= 4)
1542 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1543#endif /* IDETAPE_DEBUG_LOG */
1544#if IDETAPE_DEBUG_BUGS
1545 if (stage == NULL) {
1546 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1547 return;
1548 }
1549#endif /* IDETAPE_DEBUG_BUGS */
1550
1551 rq->rq_disk = tape->disk;
1552 rq->buffer = NULL;
1553 rq->special = (void *)stage->bh;
1554 tape->active_data_request = rq;
1555 tape->active_stage = stage;
1556 tape->next_stage = stage->next;
1557}
1558
1559/*
1560 * idetape_increase_max_pipeline_stages is a part of the feedback
1561 * loop which tries to find the optimum number of stages. In the
1562 * feedback loop, we are starting from a minimum maximum number of
1563 * stages, and if we sense that the pipeline is empty, we try to
1564 * increase it, until we reach the user compile time memory limit.
1565 */
1566static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1567{
1568 idetape_tape_t *tape = drive->driver_data;
1569 int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1570
1571#if IDETAPE_DEBUG_LOG
1572 if (tape->debug_level >= 4)
1573 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1574#endif /* IDETAPE_DEBUG_LOG */
1575
1576 tape->max_stages += max(increase, 1);
1577 tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1578 tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1579}
1580
1581/*
1582 * idetape_kfree_stage calls kfree to completely free a stage, along with
1583 * its related buffers.
1584 */
1585static void __idetape_kfree_stage (idetape_stage_t *stage)
1586{
1587 struct idetape_bh *prev_bh, *bh = stage->bh;
1588 int size;
1589
1590 while (bh != NULL) {
1591 if (bh->b_data != NULL) {
1592 size = (int) bh->b_size;
1593 while (size > 0) {
1594 free_page((unsigned long) bh->b_data);
1595 size -= PAGE_SIZE;
1596 bh->b_data += PAGE_SIZE;
1597 }
1598 }
1599 prev_bh = bh;
1600 bh = bh->b_reqnext;
1601 kfree(prev_bh);
1602 }
1603 kfree(stage);
1604}
1605
1606static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1607{
1608 __idetape_kfree_stage(stage);
1609}
1610
1611/*
1612 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1613 * The caller should avoid race conditions.
1614 */
1615static void idetape_remove_stage_head (ide_drive_t *drive)
1616{
1617 idetape_tape_t *tape = drive->driver_data;
1618 idetape_stage_t *stage;
1619
1620#if IDETAPE_DEBUG_LOG
1621 if (tape->debug_level >= 4)
1622 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1623#endif /* IDETAPE_DEBUG_LOG */
1624#if IDETAPE_DEBUG_BUGS
1625 if (tape->first_stage == NULL) {
1626 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1627 return;
1628 }
1629 if (tape->active_stage == tape->first_stage) {
1630 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1631 return;
1632 }
1633#endif /* IDETAPE_DEBUG_BUGS */
1634 stage = tape->first_stage;
1635 tape->first_stage = stage->next;
1636 idetape_kfree_stage(tape, stage);
1637 tape->nr_stages--;
1638 if (tape->first_stage == NULL) {
1639 tape->last_stage = NULL;
1640#if IDETAPE_DEBUG_BUGS
1641 if (tape->next_stage != NULL)
1642 printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1643 if (tape->nr_stages)
1644 printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1645#endif /* IDETAPE_DEBUG_BUGS */
1646 }
1647}
1648
1649/*
1650 * This will free all the pipeline stages starting from new_last_stage->next
1651 * to the end of the list, and point tape->last_stage to new_last_stage.
1652 */
1653static void idetape_abort_pipeline(ide_drive_t *drive,
1654 idetape_stage_t *new_last_stage)
1655{
1656 idetape_tape_t *tape = drive->driver_data;
1657 idetape_stage_t *stage = new_last_stage->next;
1658 idetape_stage_t *nstage;
1659
1660#if IDETAPE_DEBUG_LOG
1661 if (tape->debug_level >= 4)
1662 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1663#endif
1664 while (stage) {
1665 nstage = stage->next;
1666 idetape_kfree_stage(tape, stage);
1667 --tape->nr_stages;
1668 --tape->nr_pending_stages;
1669 stage = nstage;
1670 }
1671 if (new_last_stage)
1672 new_last_stage->next = NULL;
1673 tape->last_stage = new_last_stage;
1674 tape->next_stage = NULL;
1675}
1676
1677/*
1678 * idetape_end_request is used to finish servicing a request, and to
1679 * insert a pending pipeline request into the main device queue.
1680 */
1681static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1682{
1683 struct request *rq = HWGROUP(drive)->rq;
1684 idetape_tape_t *tape = drive->driver_data;
1685 unsigned long flags;
1686 int error;
1687 int remove_stage = 0;
1688 idetape_stage_t *active_stage;
1689
1690#if IDETAPE_DEBUG_LOG
1691 if (tape->debug_level >= 4)
1692 printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1693#endif /* IDETAPE_DEBUG_LOG */
1694
1695 switch (uptodate) {
1696 case 0: error = IDETAPE_ERROR_GENERAL; break;
1697 case 1: error = 0; break;
1698 default: error = uptodate;
1699 }
1700 rq->errors = error;
1701 if (error)
1702 tape->failed_pc = NULL;
1703
1704 spin_lock_irqsave(&tape->spinlock, flags);
1705
1706 /* The request was a pipelined data transfer request */
1707 if (tape->active_data_request == rq) {
1708 active_stage = tape->active_stage;
1709 tape->active_stage = NULL;
1710 tape->active_data_request = NULL;
1711 tape->nr_pending_stages--;
1712 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1713 remove_stage = 1;
1714 if (error) {
1715 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1716 if (error == IDETAPE_ERROR_EOD)
1717 idetape_abort_pipeline(drive, active_stage);
1718 }
1719 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1720 if (error == IDETAPE_ERROR_EOD) {
1721 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1722 idetape_abort_pipeline(drive, active_stage);
1723 }
1724 }
1725 if (tape->next_stage != NULL) {
1726 idetape_active_next_stage(drive);
1727
1728 /*
1729 * Insert the next request into the request queue.
1730 */
1731 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1732 } else if (!error) {
1733 idetape_increase_max_pipeline_stages(drive);
1734 }
1735 }
1736 ide_end_drive_cmd(drive, 0, 0);
1737// blkdev_dequeue_request(rq);
1738// drive->rq = NULL;
1739// end_that_request_last(rq);
1740
1741 if (remove_stage)
1742 idetape_remove_stage_head(drive);
1743 if (tape->active_data_request == NULL)
1744 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1745 spin_unlock_irqrestore(&tape->spinlock, flags);
1746 return 0;
1747}
1748
1749static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1750{
1751 idetape_tape_t *tape = drive->driver_data;
1752
1753#if IDETAPE_DEBUG_LOG
1754 if (tape->debug_level >= 4)
1755 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1756#endif /* IDETAPE_DEBUG_LOG */
1757 if (!tape->pc->error) {
1758 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1759 idetape_end_request(drive, 1, 0);
1760 } else {
1761 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1762 idetape_end_request(drive, 0, 0);
1763 }
1764 return ide_stopped;
1765}
1766
1767static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1768{
1769 idetape_init_pc(pc);
1770 pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1771 pc->c[4] = 20;
1772 pc->request_transfer = 20;
1773 pc->callback = &idetape_request_sense_callback;
1774}
1775
1776static void idetape_init_rq(struct request *rq, u8 cmd)
1777{
1778 memset(rq, 0, sizeof(*rq));
1779 rq->flags = REQ_SPECIAL;
1780 rq->cmd[0] = cmd;
1781}
1782
1783/*
1784 * idetape_queue_pc_head generates a new packet command request in front
1785 * of the request queue, before the current request, so that it will be
1786 * processed immediately, on the next pass through the driver.
1787 *
1788 * idetape_queue_pc_head is called from the request handling part of
1789 * the driver (the "bottom" part). Safe storage for the request should
1790 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1791 * before calling idetape_queue_pc_head.
1792 *
1793 * Memory for those requests is pre-allocated at initialization time, and
1794 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1795 * space for the maximum possible number of inter-dependent packet commands.
1796 *
1797 * The higher level of the driver - The ioctl handler and the character
1798 * device handling functions should queue request to the lower level part
1799 * and wait for their completion using idetape_queue_pc_tail or
1800 * idetape_queue_rw_tail.
1801 */
1802static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1803{
1804 struct ide_tape_obj *tape = drive->driver_data;
1805
1806 idetape_init_rq(rq, REQ_IDETAPE_PC1);
1807 rq->buffer = (char *) pc;
1808 rq->rq_disk = tape->disk;
1809 (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1810}
1811
1812/*
1813 * idetape_retry_pc is called when an error was detected during the
1814 * last packet command. We queue a request sense packet command in
1815 * the head of the request list.
1816 */
1817static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1818{
1819 idetape_tape_t *tape = drive->driver_data;
1820 idetape_pc_t *pc;
1821 struct request *rq;
1822 atapi_error_t error;
1823
1824 error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1825 pc = idetape_next_pc_storage(drive);
1826 rq = idetape_next_rq_storage(drive);
1827 idetape_create_request_sense_cmd(pc);
1828 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1829 idetape_queue_pc_head(drive, pc, rq);
1830 return ide_stopped;
1831}
1832
1833/*
1834 * idetape_postpone_request postpones the current request so that
1835 * ide.c will be able to service requests from another device on
1836 * the same hwgroup while we are polling for DSC.
1837 */
1838static void idetape_postpone_request (ide_drive_t *drive)
1839{
1840 idetape_tape_t *tape = drive->driver_data;
1841
1842#if IDETAPE_DEBUG_LOG
1843 if (tape->debug_level >= 4)
1844 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1845#endif
1846 tape->postponed_rq = HWGROUP(drive)->rq;
1847 ide_stall_queue(drive, tape->dsc_polling_frequency);
1848}
1849
1850/*
1851 * idetape_pc_intr is the usual interrupt handler which will be called
1852 * during a packet command. We will transfer some of the data (as
1853 * requested by the drive) and will re-point interrupt handler to us.
1854 * When data transfer is finished, we will act according to the
1855 * algorithm described before idetape_issue_packet_command.
1856 *
1857 */
1858static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1859{
1860 ide_hwif_t *hwif = drive->hwif;
1861 idetape_tape_t *tape = drive->driver_data;
1862 atapi_status_t status;
1863 atapi_bcount_t bcount;
1864 atapi_ireason_t ireason;
1865 idetape_pc_t *pc = tape->pc;
1866
1867 unsigned int temp;
1868#if SIMULATE_ERRORS
1869 static int error_sim_count = 0;
1870#endif
1871
1872#if IDETAPE_DEBUG_LOG
1873 if (tape->debug_level >= 4)
1874 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1875 "interrupt handler\n");
1876#endif /* IDETAPE_DEBUG_LOG */
1877
1878 /* Clear the interrupt */
1879 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1880
1881 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1882 if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1883 /*
1884 * A DMA error is sometimes expected. For example,
1885 * if the tape is crossing a filemark during a
1886 * READ command, it will issue an irq and position
1887 * itself before the filemark, so that only a partial
1888 * data transfer will occur (which causes the DMA
1889 * error). In that case, we will later ask the tape
1890 * how much bytes of the original request were
1891 * actually transferred (we can't receive that
1892 * information from the DMA engine on most chipsets).
1893 */
1894
1895 /*
1896 * On the contrary, a DMA error is never expected;
1897 * it usually indicates a hardware error or abort.
1898 * If the tape crosses a filemark during a READ
1899 * command, it will issue an irq and position itself
1900 * after the filemark (not before). Only a partial
1901 * data transfer will occur, but no DMA error.
1902 * (AS, 19 Apr 2001)
1903 */
1904 set_bit(PC_DMA_ERROR, &pc->flags);
1905 } else {
1906 pc->actually_transferred = pc->request_transfer;
1907 idetape_update_buffers(pc);
1908 }
1909#if IDETAPE_DEBUG_LOG
1910 if (tape->debug_level >= 4)
1911 printk(KERN_INFO "ide-tape: DMA finished\n");
1912#endif /* IDETAPE_DEBUG_LOG */
1913 }
1914
1915 /* No more interrupts */
1916 if (!status.b.drq) {
1917#if IDETAPE_DEBUG_LOG
1918 if (tape->debug_level >= 2)
1919 printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1920#endif /* IDETAPE_DEBUG_LOG */
1921 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1922
1923 local_irq_enable();
1924
1925#if SIMULATE_ERRORS
1926 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1927 pc->c[0] == IDETAPE_READ_CMD) &&
1928 (++error_sim_count % 100) == 0) {
1929 printk(KERN_INFO "ide-tape: %s: simulating error\n",
1930 tape->name);
1931 status.b.check = 1;
1932 }
1933#endif
1934 if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1935 status.b.check = 0;
1936 if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) { /* Error detected */
1937#if IDETAPE_DEBUG_LOG
1938 if (tape->debug_level >= 1)
1939 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1940 tape->name);
1941#endif /* IDETAPE_DEBUG_LOG */
1942 if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1943 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1944 return ide_do_reset(drive);
1945 }
1946#if IDETAPE_DEBUG_LOG
1947 if (tape->debug_level >= 1)
1948 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1949#endif
1950 /* Retry operation */
1951 return idetape_retry_pc(drive);
1952 }
1953 pc->error = 0;
1954 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1955 !status.b.dsc) {
1956 /* Media access command */
1957 tape->dsc_polling_start = jiffies;
1958 tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1959 tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1960 /* Allow ide.c to handle other requests */
1961 idetape_postpone_request(drive);
1962 return ide_stopped;
1963 }
1964 if (tape->failed_pc == pc)
1965 tape->failed_pc = NULL;
1966 /* Command finished - Call the callback function */
1967 return pc->callback(drive);
1968 }
1969 if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1970 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1971 "interrupts in DMA mode\n");
1972 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1973 (void)__ide_dma_off(drive);
1974 return ide_do_reset(drive);
1975 }
1976 /* Get the number of bytes to transfer on this interrupt. */
1977 bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1978 bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1979
1980 ireason.all = hwif->INB(IDE_IREASON_REG);
1981
1982 if (ireason.b.cod) {
1983 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1984 return ide_do_reset(drive);
1985 }
1986 if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1987 /* Hopefully, we will never get here */
1988 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1989 ireason.b.io ? "Write":"Read");
1990 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1991 ireason.b.io ? "Read":"Write");
1992 return ide_do_reset(drive);
1993 }
1994 if (!test_bit(PC_WRITING, &pc->flags)) {
1995 /* Reading - Check that we have enough space */
1996 temp = pc->actually_transferred + bcount.all;
1997 if (temp > pc->request_transfer) {
1998 if (temp > pc->buffer_size) {
1999 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
2000 idetape_discard_data(drive, bcount.all);
2001 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2002 return ide_started;
2003 }
2004#if IDETAPE_DEBUG_LOG
2005 if (tape->debug_level >= 2)
2006 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2007#endif /* IDETAPE_DEBUG_LOG */
2008 }
2009 }
2010 if (test_bit(PC_WRITING, &pc->flags)) {
2011 if (pc->bh != NULL)
2012 idetape_output_buffers(drive, pc, bcount.all);
2013 else
2014 /* Write the current buffer */
2015 HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2016 } else {
2017 if (pc->bh != NULL)
2018 idetape_input_buffers(drive, pc, bcount.all);
2019 else
2020 /* Read the current buffer */
2021 HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2022 }
2023 /* Update the current position */
2024 pc->actually_transferred += bcount.all;
2025 pc->current_position += bcount.all;
2026#if IDETAPE_DEBUG_LOG
2027 if (tape->debug_level >= 2)
2028 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2029#endif
2030 /* And set the interrupt handler again */
2031 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2032 return ide_started;
2033}
2034
2035/*
2036 * Packet Command Interface
2037 *
2038 * The current Packet Command is available in tape->pc, and will not
2039 * change until we finish handling it. Each packet command is associated
2040 * with a callback function that will be called when the command is
2041 * finished.
2042 *
2043 * The handling will be done in three stages:
2044 *
2045 * 1. idetape_issue_packet_command will send the packet command to the
2046 * drive, and will set the interrupt handler to idetape_pc_intr.
2047 *
2048 * 2. On each interrupt, idetape_pc_intr will be called. This step
2049 * will be repeated until the device signals us that no more
2050 * interrupts will be issued.
2051 *
2052 * 3. ATAPI Tape media access commands have immediate status with a
2053 * delayed process. In case of a successful initiation of a
2054 * media access packet command, the DSC bit will be set when the
2055 * actual execution of the command is finished.
2056 * Since the tape drive will not issue an interrupt, we have to
2057 * poll for this event. In this case, we define the request as
2058 * "low priority request" by setting rq_status to
2059 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2060 * the driver.
2061 *
2062 * ide.c will then give higher priority to requests which
2063 * originate from the other device, until will change rq_status
2064 * to RQ_ACTIVE.
2065 *
2066 * 4. When the packet command is finished, it will be checked for errors.
2067 *
2068 * 5. In case an error was found, we queue a request sense packet
2069 * command in front of the request queue and retry the operation
2070 * up to IDETAPE_MAX_PC_RETRIES times.
2071 *
2072 * 6. In case no error was found, or we decided to give up and not
2073 * to retry again, the callback function will be called and then
2074 * we will handle the next request.
2075 *
2076 */
2077static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2078{
2079 ide_hwif_t *hwif = drive->hwif;
2080 idetape_tape_t *tape = drive->driver_data;
2081 idetape_pc_t *pc = tape->pc;
2082 atapi_ireason_t ireason;
2083 int retries = 100;
2084 ide_startstop_t startstop;
2085
2086 if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2087 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2088 return startstop;
2089 }
2090 ireason.all = hwif->INB(IDE_IREASON_REG);
2091 while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2092 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2093 "a packet command, retrying\n");
2094 udelay(100);
2095 ireason.all = hwif->INB(IDE_IREASON_REG);
2096 if (retries == 0) {
2097 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2098 "issuing a packet command, ignoring\n");
2099 ireason.b.cod = 1;
2100 ireason.b.io = 0;
2101 }
2102 }
2103 if (!ireason.b.cod || ireason.b.io) {
2104 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2105 "a packet command\n");
2106 return ide_do_reset(drive);
2107 }
2108 /* Set the interrupt routine */
2109 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2110#ifdef CONFIG_BLK_DEV_IDEDMA
2111 /* Begin DMA, if necessary */
2112 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2113 hwif->dma_start(drive);
2114#endif
2115 /* Send the actual packet */
2116 HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2117 return ide_started;
2118}
2119
2120static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2121{
2122 ide_hwif_t *hwif = drive->hwif;
2123 idetape_tape_t *tape = drive->driver_data;
2124 atapi_bcount_t bcount;
2125 int dma_ok = 0;
2126
2127#if IDETAPE_DEBUG_BUGS
2128 if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2129 pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2130 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2131 "Two request sense in serial were issued\n");
2132 }
2133#endif /* IDETAPE_DEBUG_BUGS */
2134
2135 if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2136 tape->failed_pc = pc;
2137 /* Set the current packet command */
2138 tape->pc = pc;
2139
2140 if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2141 test_bit(PC_ABORT, &pc->flags)) {
2142 /*
2143 * We will "abort" retrying a packet command in case
2144 * a legitimate error code was received (crossing a
2145 * filemark, or end of the media, for example).
2146 */
2147 if (!test_bit(PC_ABORT, &pc->flags)) {
2148 if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2149 tape->sense_key == 2 && tape->asc == 4 &&
2150 (tape->ascq == 1 || tape->ascq == 8))) {
2151 printk(KERN_ERR "ide-tape: %s: I/O error, "
2152 "pc = %2x, key = %2x, "
2153 "asc = %2x, ascq = %2x\n",
2154 tape->name, pc->c[0],
2155 tape->sense_key, tape->asc,
2156 tape->ascq);
2157 }
2158 /* Giving up */
2159 pc->error = IDETAPE_ERROR_GENERAL;
2160 }
2161 tape->failed_pc = NULL;
2162 return pc->callback(drive);
2163 }
2164#if IDETAPE_DEBUG_LOG
2165 if (tape->debug_level >= 2)
2166 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2167#endif /* IDETAPE_DEBUG_LOG */
2168
2169 pc->retries++;
2170 /* We haven't transferred any data yet */
2171 pc->actually_transferred = 0;
2172 pc->current_position = pc->buffer;
2173 /* Request to transfer the entire buffer at once */
2174 bcount.all = pc->request_transfer;
2175
2176 if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2177 printk(KERN_WARNING "ide-tape: DMA disabled, "
2178 "reverting to PIO\n");
2179 (void)__ide_dma_off(drive);
2180 }
2181 if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2182 dma_ok = !hwif->dma_setup(drive);
2183
2184 if (IDE_CONTROL_REG)
2185 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2186 hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG); /* Use PIO/DMA */
2187 hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2188 hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2189 hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2190 if (dma_ok) /* Will begin DMA later */
2191 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2192 if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2193 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2194 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2195 return ide_started;
2196 } else {
2197 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2198 return idetape_transfer_pc(drive);
2199 }
2200}
2201
2202/*
2203 * General packet command callback function.
2204 */
2205static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2206{
2207 idetape_tape_t *tape = drive->driver_data;
2208
2209#if IDETAPE_DEBUG_LOG
2210 if (tape->debug_level >= 4)
2211 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2212#endif /* IDETAPE_DEBUG_LOG */
2213
2214 idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2215 return ide_stopped;
2216}
2217
2218/*
2219 * A mode sense command is used to "sense" tape parameters.
2220 */
2221static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2222{
2223 idetape_init_pc(pc);
2224 pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2225 if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2226 pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */
2227 pc->c[2] = page_code;
2228 /*
2229 * Changed pc->c[3] to 0 (255 will at best return unused info).
2230 *
2231 * For SCSI this byte is defined as subpage instead of high byte
2232 * of length and some IDE drives seem to interpret it this way
2233 * and return an error when 255 is used.
2234 */
2235 pc->c[3] = 0;
2236 pc->c[4] = 255; /* (We will just discard data in that case) */
2237 if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2238 pc->request_transfer = 12;
2239 else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2240 pc->request_transfer = 24;
2241 else
2242 pc->request_transfer = 50;
2243 pc->callback = &idetape_pc_callback;
2244}
2245
2246static void calculate_speeds(ide_drive_t *drive)
2247{
2248 idetape_tape_t *tape = drive->driver_data;
2249 int full = 125, empty = 75;
2250
2251 if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2252 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2253 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2254 tape->controlled_last_pipeline_head = tape->pipeline_head;
2255 tape->controlled_pipeline_head_time = jiffies;
2256 }
2257 if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2258 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2259 else if (time_after(jiffies, tape->controlled_previous_head_time))
2260 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2261
2262 if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2263 /* -1 for read mode error recovery */
2264 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2265 tape->uncontrolled_pipeline_head_time = jiffies;
2266 tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2267 }
2268 } else {
2269 tape->uncontrolled_previous_head_time = jiffies;
2270 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2271 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2272 tape->uncontrolled_pipeline_head_time = jiffies;
2273 }
2274 }
2275 tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2276 if (tape->speed_control == 0) {
2277 tape->max_insert_speed = 5000;
2278 } else if (tape->speed_control == 1) {
2279 if (tape->nr_pending_stages >= tape->max_stages / 2)
2280 tape->max_insert_speed = tape->pipeline_head_speed +
2281 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2282 else
2283 tape->max_insert_speed = 500 +
2284 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2285 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2286 tape->max_insert_speed = 5000;
2287 } else if (tape->speed_control == 2) {
2288 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2289 (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2290 } else
2291 tape->max_insert_speed = tape->speed_control;
2292 tape->max_insert_speed = max(tape->max_insert_speed, 500);
2293}
2294
2295static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2296{
2297 idetape_tape_t *tape = drive->driver_data;
2298 idetape_pc_t *pc = tape->pc;
2299 atapi_status_t status;
2300
2301 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2302 if (status.b.dsc) {
2303 if (status.b.check) {
2304 /* Error detected */
2305 if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2306 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2307 tape->name);
2308 /* Retry operation */
2309 return idetape_retry_pc(drive);
2310 }
2311 pc->error = 0;
2312 if (tape->failed_pc == pc)
2313 tape->failed_pc = NULL;
2314 } else {
2315 pc->error = IDETAPE_ERROR_GENERAL;
2316 tape->failed_pc = NULL;
2317 }
2318 return pc->callback(drive);
2319}
2320
2321static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2322{
2323 idetape_tape_t *tape = drive->driver_data;
2324 struct request *rq = HWGROUP(drive)->rq;
2325 int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2326
2327 tape->avg_size += blocks * tape->tape_block_size;
2328 tape->insert_size += blocks * tape->tape_block_size;
2329 if (tape->insert_size > 1024 * 1024)
2330 tape->measure_insert_time = 1;
2331 if (tape->measure_insert_time) {
2332 tape->measure_insert_time = 0;
2333 tape->insert_time = jiffies;
2334 tape->insert_size = 0;
2335 }
2336 if (time_after(jiffies, tape->insert_time))
2337 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2338 if (jiffies - tape->avg_time >= HZ) {
2339 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2340 tape->avg_size = 0;
2341 tape->avg_time = jiffies;
2342 }
2343
2344#if IDETAPE_DEBUG_LOG
2345 if (tape->debug_level >= 4)
2346 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2347#endif /* IDETAPE_DEBUG_LOG */
2348
2349 tape->first_frame_position += blocks;
2350 rq->current_nr_sectors -= blocks;
2351
2352 if (!tape->pc->error)
2353 idetape_end_request(drive, 1, 0);
2354 else
2355 idetape_end_request(drive, tape->pc->error, 0);
2356 return ide_stopped;
2357}
2358
2359static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2360{
2361 idetape_init_pc(pc);
2362 pc->c[0] = IDETAPE_READ_CMD;
2363 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2364 pc->c[1] = 1;
2365 pc->callback = &idetape_rw_callback;
2366 pc->bh = bh;
2367 atomic_set(&bh->b_count, 0);
2368 pc->buffer = NULL;
2369 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2370 if (pc->request_transfer == tape->stage_size)
2371 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2372}
2373
2374static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2375{
2376 int size = 32768;
2377 struct idetape_bh *p = bh;
2378
2379 idetape_init_pc(pc);
2380 pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2381 pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2382 pc->c[7] = size >> 8;
2383 pc->c[8] = size & 0xff;
2384 pc->callback = &idetape_pc_callback;
2385 pc->bh = bh;
2386 atomic_set(&bh->b_count, 0);
2387 pc->buffer = NULL;
2388 while (p) {
2389 atomic_set(&p->b_count, 0);
2390 p = p->b_reqnext;
2391 }
2392 pc->request_transfer = pc->buffer_size = size;
2393}
2394
2395static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2396{
2397 idetape_init_pc(pc);
2398 pc->c[0] = IDETAPE_WRITE_CMD;
2399 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2400 pc->c[1] = 1;
2401 pc->callback = &idetape_rw_callback;
2402 set_bit(PC_WRITING, &pc->flags);
2403 pc->bh = bh;
2404 pc->b_data = bh->b_data;
2405 pc->b_count = atomic_read(&bh->b_count);
2406 pc->buffer = NULL;
2407 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2408 if (pc->request_transfer == tape->stage_size)
2409 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2410}
2411
2412/*
2413 * idetape_do_request is our request handling function.
2414 */
2415static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2416 struct request *rq, sector_t block)
2417{
2418 idetape_tape_t *tape = drive->driver_data;
2419 idetape_pc_t *pc = NULL;
2420 struct request *postponed_rq = tape->postponed_rq;
2421 atapi_status_t status;
2422
2423#if IDETAPE_DEBUG_LOG
2424#if 0
2425 if (tape->debug_level >= 5)
2426 printk(KERN_INFO "ide-tape: rq_status: %d, "
2427 "dev: %s, cmd: %ld, errors: %d\n", rq->rq_status,
2428 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2429#endif
2430 if (tape->debug_level >= 2)
2431 printk(KERN_INFO "ide-tape: sector: %ld, "
2432 "nr_sectors: %ld, current_nr_sectors: %d\n",
2433 rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2434#endif /* IDETAPE_DEBUG_LOG */
2435
2436 if ((rq->flags & REQ_SPECIAL) == 0) {
2437 /*
2438 * We do not support buffer cache originated requests.
2439 */
2440 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2441 "request queue (%ld)\n", drive->name, rq->flags);
2442 ide_end_request(drive, 0, 0);
2443 return ide_stopped;
2444 }
2445
2446 /*
2447 * Retry a failed packet command
2448 */
2449 if (tape->failed_pc != NULL &&
2450 tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2451 return idetape_issue_packet_command(drive, tape->failed_pc);
2452 }
2453#if IDETAPE_DEBUG_BUGS
2454 if (postponed_rq != NULL)
2455 if (rq != postponed_rq) {
2456 printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2457 "Two DSC requests were queued\n");
2458 idetape_end_request(drive, 0, 0);
2459 return ide_stopped;
2460 }
2461#endif /* IDETAPE_DEBUG_BUGS */
2462
2463 tape->postponed_rq = NULL;
2464
2465 /*
2466 * If the tape is still busy, postpone our request and service
2467 * the other device meanwhile.
2468 */
2469 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2470
2471 if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2472 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2473
2474 if (drive->post_reset == 1) {
2475 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2476 drive->post_reset = 0;
2477 }
2478
2479 if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2480 tape->measure_insert_time = 1;
2481 if (time_after(jiffies, tape->insert_time))
2482 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2483 calculate_speeds(drive);
2484 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2485 !status.b.dsc) {
2486 if (postponed_rq == NULL) {
2487 tape->dsc_polling_start = jiffies;
2488 tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2489 tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2490 } else if (time_after(jiffies, tape->dsc_timeout)) {
2491 printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2492 tape->name);
2493 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2494 idetape_media_access_finished(drive);
2495 return ide_stopped;
2496 } else {
2497 return ide_do_reset(drive);
2498 }
2499 } else if (jiffies - tape->dsc_polling_start > IDETAPE_DSC_MA_THRESHOLD)
2500 tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2501 idetape_postpone_request(drive);
2502 return ide_stopped;
2503 }
2504 if (rq->cmd[0] & REQ_IDETAPE_READ) {
2505 tape->buffer_head++;
2506#if USE_IOTRACE
2507 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2508#endif
2509 tape->postpone_cnt = 0;
2510 pc = idetape_next_pc_storage(drive);
2511 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2512 goto out;
2513 }
2514 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2515 tape->buffer_head++;
2516#if USE_IOTRACE
2517 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2518#endif
2519 tape->postpone_cnt = 0;
2520 pc = idetape_next_pc_storage(drive);
2521 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2522 goto out;
2523 }
2524 if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2525 tape->postpone_cnt = 0;
2526 pc = idetape_next_pc_storage(drive);
2527 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2528 goto out;
2529 }
2530 if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2531 pc = (idetape_pc_t *) rq->buffer;
2532 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2533 rq->cmd[0] |= REQ_IDETAPE_PC2;
2534 goto out;
2535 }
2536 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2537 idetape_media_access_finished(drive);
2538 return ide_stopped;
2539 }
2540 BUG();
2541out:
2542 return idetape_issue_packet_command(drive, pc);
2543}
2544
2545/*
2546 * Pipeline related functions
2547 */
2548static inline int idetape_pipeline_active (idetape_tape_t *tape)
2549{
2550 int rc1, rc2;
2551
2552 rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2553 rc2 = (tape->active_data_request != NULL);
2554 return rc1;
2555}
2556
2557/*
2558 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2559 * stage, along with all the necessary small buffers which together make
2560 * a buffer of size tape->stage_size (or a bit more). We attempt to
2561 * combine sequential pages as much as possible.
2562 *
2563 * Returns a pointer to the new allocated stage, or NULL if we
2564 * can't (or don't want to) allocate a stage.
2565 *
2566 * Pipeline stages are optional and are used to increase performance.
2567 * If we can't allocate them, we'll manage without them.
2568 */
2569static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2570{
2571 idetape_stage_t *stage;
2572 struct idetape_bh *prev_bh, *bh;
2573 int pages = tape->pages_per_stage;
2574 char *b_data = NULL;
2575
2576 if ((stage = (idetape_stage_t *) kmalloc (sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2577 return NULL;
2578 stage->next = NULL;
2579
2580 bh = stage->bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2581 if (bh == NULL)
2582 goto abort;
2583 bh->b_reqnext = NULL;
2584 if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2585 goto abort;
2586 if (clear)
2587 memset(bh->b_data, 0, PAGE_SIZE);
2588 bh->b_size = PAGE_SIZE;
2589 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2590
2591 while (--pages) {
2592 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2593 goto abort;
2594 if (clear)
2595 memset(b_data, 0, PAGE_SIZE);
2596 if (bh->b_data == b_data + PAGE_SIZE) {
2597 bh->b_size += PAGE_SIZE;
2598 bh->b_data -= PAGE_SIZE;
2599 if (full)
2600 atomic_add(PAGE_SIZE, &bh->b_count);
2601 continue;
2602 }
2603 if (b_data == bh->b_data + bh->b_size) {
2604 bh->b_size += PAGE_SIZE;
2605 if (full)
2606 atomic_add(PAGE_SIZE, &bh->b_count);
2607 continue;
2608 }
2609 prev_bh = bh;
2610 if ((bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2611 free_page((unsigned long) b_data);
2612 goto abort;
2613 }
2614 bh->b_reqnext = NULL;
2615 bh->b_data = b_data;
2616 bh->b_size = PAGE_SIZE;
2617 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2618 prev_bh->b_reqnext = bh;
2619 }
2620 bh->b_size -= tape->excess_bh_size;
2621 if (full)
2622 atomic_sub(tape->excess_bh_size, &bh->b_count);
2623 return stage;
2624abort:
2625 __idetape_kfree_stage(stage);
2626 return NULL;
2627}
2628
2629static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2630{
2631 idetape_stage_t *cache_stage = tape->cache_stage;
2632
2633#if IDETAPE_DEBUG_LOG
2634 if (tape->debug_level >= 4)
2635 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2636#endif /* IDETAPE_DEBUG_LOG */
2637
2638 if (tape->nr_stages >= tape->max_stages)
2639 return NULL;
2640 if (cache_stage != NULL) {
2641 tape->cache_stage = NULL;
2642 return cache_stage;
2643 }
2644 return __idetape_kmalloc_stage(tape, 0, 0);
2645}
2646
2647static void idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2648{
2649 struct idetape_bh *bh = tape->bh;
2650 int count;
2651
2652 while (n) {
2653#if IDETAPE_DEBUG_BUGS
2654 if (bh == NULL) {
2655 printk(KERN_ERR "ide-tape: bh == NULL in "
2656 "idetape_copy_stage_from_user\n");
2657 return;
2658 }
2659#endif /* IDETAPE_DEBUG_BUGS */
2660 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2661 copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count);
2662 n -= count;
2663 atomic_add(count, &bh->b_count);
2664 buf += count;
2665 if (atomic_read(&bh->b_count) == bh->b_size) {
2666 bh = bh->b_reqnext;
2667 if (bh)
2668 atomic_set(&bh->b_count, 0);
2669 }
2670 }
2671 tape->bh = bh;
2672}
2673
2674static void idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2675{
2676 struct idetape_bh *bh = tape->bh;
2677 int count;
2678
2679 while (n) {
2680#if IDETAPE_DEBUG_BUGS
2681 if (bh == NULL) {
2682 printk(KERN_ERR "ide-tape: bh == NULL in "
2683 "idetape_copy_stage_to_user\n");
2684 return;
2685 }
2686#endif /* IDETAPE_DEBUG_BUGS */
2687 count = min(tape->b_count, n);
2688 copy_to_user(buf, tape->b_data, count);
2689 n -= count;
2690 tape->b_data += count;
2691 tape->b_count -= count;
2692 buf += count;
2693 if (!tape->b_count) {
2694 tape->bh = bh = bh->b_reqnext;
2695 if (bh) {
2696 tape->b_data = bh->b_data;
2697 tape->b_count = atomic_read(&bh->b_count);
2698 }
2699 }
2700 }
2701}
2702
2703static void idetape_init_merge_stage (idetape_tape_t *tape)
2704{
2705 struct idetape_bh *bh = tape->merge_stage->bh;
2706
2707 tape->bh = bh;
2708 if (tape->chrdev_direction == idetape_direction_write)
2709 atomic_set(&bh->b_count, 0);
2710 else {
2711 tape->b_data = bh->b_data;
2712 tape->b_count = atomic_read(&bh->b_count);
2713 }
2714}
2715
2716static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2717{
2718 struct idetape_bh *tmp;
2719
2720 tmp = stage->bh;
2721 stage->bh = tape->merge_stage->bh;
2722 tape->merge_stage->bh = tmp;
2723 idetape_init_merge_stage(tape);
2724}
2725
2726/*
2727 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2728 */
2729static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2730{
2731 idetape_tape_t *tape = drive->driver_data;
2732 unsigned long flags;
2733
2734#if IDETAPE_DEBUG_LOG
2735 if (tape->debug_level >= 4)
2736 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2737#endif /* IDETAPE_DEBUG_LOG */
2738 spin_lock_irqsave(&tape->spinlock, flags);
2739 stage->next = NULL;
2740 if (tape->last_stage != NULL)
2741 tape->last_stage->next=stage;
2742 else
2743 tape->first_stage = tape->next_stage=stage;
2744 tape->last_stage = stage;
2745 if (tape->next_stage == NULL)
2746 tape->next_stage = tape->last_stage;
2747 tape->nr_stages++;
2748 tape->nr_pending_stages++;
2749 spin_unlock_irqrestore(&tape->spinlock, flags);
2750}
2751
2752/*
2753 * idetape_wait_for_request installs a completion in a pending request
2754 * and sleeps until it is serviced.
2755 *
2756 * The caller should ensure that the request will not be serviced
2757 * before we install the completion (usually by disabling interrupts).
2758 */
2759static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2760{
2761 DECLARE_COMPLETION(wait);
2762 idetape_tape_t *tape = drive->driver_data;
2763
2764#if IDETAPE_DEBUG_BUGS
2765 if (rq == NULL || (rq->flags & REQ_SPECIAL) == 0) {
2766 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2767 return;
2768 }
2769#endif /* IDETAPE_DEBUG_BUGS */
2770 rq->waiting = &wait;
2771 rq->end_io = blk_end_sync_rq;
2772 spin_unlock_irq(&tape->spinlock);
2773 wait_for_completion(&wait);
2774 /* The stage and its struct request have been deallocated */
2775 spin_lock_irq(&tape->spinlock);
2776}
2777
2778static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2779{
2780 idetape_tape_t *tape = drive->driver_data;
2781 idetape_read_position_result_t *result;
2782
2783#if IDETAPE_DEBUG_LOG
2784 if (tape->debug_level >= 4)
2785 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2786#endif /* IDETAPE_DEBUG_LOG */
2787
2788 if (!tape->pc->error) {
2789 result = (idetape_read_position_result_t *) tape->pc->buffer;
2790#if IDETAPE_DEBUG_LOG
2791 if (tape->debug_level >= 2)
2792 printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2793 if (tape->debug_level >= 2)
2794 printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2795#endif /* IDETAPE_DEBUG_LOG */
2796 if (result->bpu) {
2797 printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2798 clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2799 idetape_end_request(drive, 0, 0);
2800 } else {
2801#if IDETAPE_DEBUG_LOG
2802 if (tape->debug_level >= 2)
2803 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2804#endif /* IDETAPE_DEBUG_LOG */
2805 tape->partition = result->partition;
2806 tape->first_frame_position = ntohl(result->first_block);
2807 tape->last_frame_position = ntohl(result->last_block);
2808 tape->blocks_in_buffer = result->blocks_in_buffer[2];
2809 set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2810 idetape_end_request(drive, 1, 0);
2811 }
2812 } else {
2813 idetape_end_request(drive, 0, 0);
2814 }
2815 return ide_stopped;
2816}
2817
2818/*
2819 * idetape_create_write_filemark_cmd will:
2820 *
2821 * 1. Write a filemark if write_filemark=1.
2822 * 2. Flush the device buffers without writing a filemark
2823 * if write_filemark=0.
2824 *
2825 */
2826static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2827{
2828 idetape_init_pc(pc);
2829 pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2830 pc->c[4] = write_filemark;
2831 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2832 pc->callback = &idetape_pc_callback;
2833}
2834
2835static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2836{
2837 idetape_init_pc(pc);
2838 pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2839 pc->callback = &idetape_pc_callback;
2840}
2841
2842/*
2843 * idetape_queue_pc_tail is based on the following functions:
2844 *
2845 * ide_do_drive_cmd from ide.c
2846 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2847 *
2848 * We add a special packet command request to the tail of the request
2849 * queue, and wait for it to be serviced.
2850 *
2851 * This is not to be called from within the request handling part
2852 * of the driver ! We allocate here data in the stack, and it is valid
2853 * until the request is finished. This is not the case for the bottom
2854 * part of the driver, where we are always leaving the functions to wait
2855 * for an interrupt or a timer event.
2856 *
2857 * From the bottom part of the driver, we should allocate safe memory
2858 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2859 * the request to the request list without waiting for it to be serviced !
2860 * In that case, we usually use idetape_queue_pc_head.
2861 */
2862static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2863{
2864 struct ide_tape_obj *tape = drive->driver_data;
2865 struct request rq;
2866
2867 idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2868 rq.buffer = (char *) pc;
2869 rq.rq_disk = tape->disk;
2870 return ide_do_drive_cmd(drive, &rq, ide_wait);
2871}
2872
2873static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2874{
2875 idetape_init_pc(pc);
2876 pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2877 pc->c[4] = cmd;
2878 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2879 pc->callback = &idetape_pc_callback;
2880}
2881
2882static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2883{
2884 idetape_tape_t *tape = drive->driver_data;
2885 idetape_pc_t pc;
2886 int load_attempted = 0;
2887
2888 /*
2889 * Wait for the tape to become ready
2890 */
2891 set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2892 timeout += jiffies;
2893 while (time_before(jiffies, timeout)) {
2894 idetape_create_test_unit_ready_cmd(&pc);
2895 if (!__idetape_queue_pc_tail(drive, &pc))
2896 return 0;
2897 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2898 || (tape->asc == 0x3A)) { /* no media */
2899 if (load_attempted)
2900 return -ENOMEDIUM;
2901 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2902 __idetape_queue_pc_tail(drive, &pc);
2903 load_attempted = 1;
2904 /* not about to be ready */
2905 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2906 (tape->ascq == 1 || tape->ascq == 8)))
2907 return -EIO;
80ce45fd 2908 msleep(100);
1da177e4
LT
2909 }
2910 return -EIO;
2911}
2912
2913static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2914{
2915 return __idetape_queue_pc_tail(drive, pc);
2916}
2917
2918static int idetape_flush_tape_buffers (ide_drive_t *drive)
2919{
2920 idetape_pc_t pc;
2921 int rc;
2922
2923 idetape_create_write_filemark_cmd(drive, &pc, 0);
2924 if ((rc = idetape_queue_pc_tail(drive, &pc)))
2925 return rc;
2926 idetape_wait_ready(drive, 60 * 5 * HZ);
2927 return 0;
2928}
2929
2930static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2931{
2932 idetape_init_pc(pc);
2933 pc->c[0] = IDETAPE_READ_POSITION_CMD;
2934 pc->request_transfer = 20;
2935 pc->callback = &idetape_read_position_callback;
2936}
2937
2938static int idetape_read_position (ide_drive_t *drive)
2939{
2940 idetape_tape_t *tape = drive->driver_data;
2941 idetape_pc_t pc;
2942 int position;
2943
2944#if IDETAPE_DEBUG_LOG
2945 if (tape->debug_level >= 4)
2946 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2947#endif /* IDETAPE_DEBUG_LOG */
2948
2949 idetape_create_read_position_cmd(&pc);
2950 if (idetape_queue_pc_tail(drive, &pc))
2951 return -1;
2952 position = tape->first_frame_position;
2953 return position;
2954}
2955
2956static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2957{
2958 idetape_init_pc(pc);
2959 pc->c[0] = IDETAPE_LOCATE_CMD;
2960 pc->c[1] = 2;
2961 put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2962 pc->c[8] = partition;
2963 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2964 pc->callback = &idetape_pc_callback;
2965}
2966
2967static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2968{
2969 idetape_tape_t *tape = drive->driver_data;
2970
2971 if (!tape->capabilities.lock)
2972 return 0;
2973
2974 idetape_init_pc(pc);
2975 pc->c[0] = IDETAPE_PREVENT_CMD;
2976 pc->c[4] = prevent;
2977 pc->callback = &idetape_pc_callback;
2978 return 1;
2979}
2980
2981static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2982{
2983 idetape_tape_t *tape = drive->driver_data;
2984 unsigned long flags;
2985 int cnt;
2986
2987 if (tape->chrdev_direction != idetape_direction_read)
2988 return 0;
2989
2990 /* Remove merge stage. */
2991 cnt = tape->merge_stage_size / tape->tape_block_size;
2992 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2993 ++cnt; /* Filemarks count as 1 sector */
2994 tape->merge_stage_size = 0;
2995 if (tape->merge_stage != NULL) {
2996 __idetape_kfree_stage(tape->merge_stage);
2997 tape->merge_stage = NULL;
2998 }
2999
3000 /* Clear pipeline flags. */
3001 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3002 tape->chrdev_direction = idetape_direction_none;
3003
3004 /* Remove pipeline stages. */
3005 if (tape->first_stage == NULL)
3006 return 0;
3007
3008 spin_lock_irqsave(&tape->spinlock, flags);
3009 tape->next_stage = NULL;
3010 if (idetape_pipeline_active(tape))
3011 idetape_wait_for_request(drive, tape->active_data_request);
3012 spin_unlock_irqrestore(&tape->spinlock, flags);
3013
3014 while (tape->first_stage != NULL) {
3015 struct request *rq_ptr = &tape->first_stage->rq;
3016
3017 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3018 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3019 ++cnt;
3020 idetape_remove_stage_head(drive);
3021 }
3022 tape->nr_pending_stages = 0;
3023 tape->max_stages = tape->min_pipeline;
3024 return cnt;
3025}
3026
3027/*
3028 * idetape_position_tape positions the tape to the requested block
3029 * using the LOCATE packet command. A READ POSITION command is then
3030 * issued to check where we are positioned.
3031 *
3032 * Like all higher level operations, we queue the commands at the tail
3033 * of the request queue and wait for their completion.
3034 *
3035 */
3036static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3037{
3038 idetape_tape_t *tape = drive->driver_data;
3039 int retval;
3040 idetape_pc_t pc;
3041
3042 if (tape->chrdev_direction == idetape_direction_read)
3043 __idetape_discard_read_pipeline(drive);
3044 idetape_wait_ready(drive, 60 * 5 * HZ);
3045 idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3046 retval = idetape_queue_pc_tail(drive, &pc);
3047 if (retval)
3048 return (retval);
3049
3050 idetape_create_read_position_cmd(&pc);
3051 return (idetape_queue_pc_tail(drive, &pc));
3052}
3053
3054static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3055{
3056 idetape_tape_t *tape = drive->driver_data;
3057 int cnt;
3058 int seek, position;
3059
3060 cnt = __idetape_discard_read_pipeline(drive);
3061 if (restore_position) {
3062 position = idetape_read_position(drive);
3063 seek = position > cnt ? position - cnt : 0;
3064 if (idetape_position_tape(drive, seek, 0, 0)) {
3065 printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3066 return;
3067 }
3068 }
3069}
3070
3071/*
3072 * idetape_queue_rw_tail generates a read/write request for the block
3073 * device interface and wait for it to be serviced.
3074 */
3075static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3076{
3077 idetape_tape_t *tape = drive->driver_data;
3078 struct request rq;
3079
3080#if IDETAPE_DEBUG_LOG
3081 if (tape->debug_level >= 2)
3082 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3083#endif /* IDETAPE_DEBUG_LOG */
3084#if IDETAPE_DEBUG_BUGS
3085 if (idetape_pipeline_active(tape)) {
3086 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3087 return (0);
3088 }
3089#endif /* IDETAPE_DEBUG_BUGS */
3090
3091 idetape_init_rq(&rq, cmd);
3092 rq.rq_disk = tape->disk;
3093 rq.special = (void *)bh;
3094 rq.sector = tape->first_frame_position;
3095 rq.nr_sectors = rq.current_nr_sectors = blocks;
3096 (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3097
3098 if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3099 return 0;
3100
3101 if (tape->merge_stage)
3102 idetape_init_merge_stage(tape);
3103 if (rq.errors == IDETAPE_ERROR_GENERAL)
3104 return -EIO;
3105 return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3106}
3107
3108/*
3109 * idetape_insert_pipeline_into_queue is used to start servicing the
3110 * pipeline stages, starting from tape->next_stage.
3111 */
3112static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3113{
3114 idetape_tape_t *tape = drive->driver_data;
3115
3116 if (tape->next_stage == NULL)
3117 return;
3118 if (!idetape_pipeline_active(tape)) {
3119 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3120 idetape_active_next_stage(drive);
3121 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3122 }
3123}
3124
3125static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3126{
3127 idetape_init_pc(pc);
3128 pc->c[0] = IDETAPE_INQUIRY_CMD;
3129 pc->c[4] = pc->request_transfer = 254;
3130 pc->callback = &idetape_pc_callback;
3131}
3132
3133static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3134{
3135 idetape_init_pc(pc);
3136 pc->c[0] = IDETAPE_REWIND_CMD;
3137 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3138 pc->callback = &idetape_pc_callback;
3139}
3140
3141#if 0
3142static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3143{
3144 idetape_init_pc(pc);
3145 set_bit(PC_WRITING, &pc->flags);
3146 pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3147 pc->c[1] = 0x10;
3148 put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3149 pc->request_transfer = 255;
3150 pc->callback = &idetape_pc_callback;
3151}
3152#endif
3153
3154static void idetape_create_erase_cmd (idetape_pc_t *pc)
3155{
3156 idetape_init_pc(pc);
3157 pc->c[0] = IDETAPE_ERASE_CMD;
3158 pc->c[1] = 1;
3159 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3160 pc->callback = &idetape_pc_callback;
3161}
3162
3163static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3164{
3165 idetape_init_pc(pc);
3166 pc->c[0] = IDETAPE_SPACE_CMD;
3167 put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3168 pc->c[1] = cmd;
3169 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3170 pc->callback = &idetape_pc_callback;
3171}
3172
3173static void idetape_wait_first_stage (ide_drive_t *drive)
3174{
3175 idetape_tape_t *tape = drive->driver_data;
3176 unsigned long flags;
3177
3178 if (tape->first_stage == NULL)
3179 return;
3180 spin_lock_irqsave(&tape->spinlock, flags);
3181 if (tape->active_stage == tape->first_stage)
3182 idetape_wait_for_request(drive, tape->active_data_request);
3183 spin_unlock_irqrestore(&tape->spinlock, flags);
3184}
3185
3186/*
3187 * idetape_add_chrdev_write_request tries to add a character device
3188 * originated write request to our pipeline. In case we don't succeed,
3189 * we revert to non-pipelined operation mode for this request.
3190 *
3191 * 1. Try to allocate a new pipeline stage.
3192 * 2. If we can't, wait for more and more requests to be serviced
3193 * and try again each time.
3194 * 3. If we still can't allocate a stage, fallback to
3195 * non-pipelined operation mode for this request.
3196 */
3197static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3198{
3199 idetape_tape_t *tape = drive->driver_data;
3200 idetape_stage_t *new_stage;
3201 unsigned long flags;
3202 struct request *rq;
3203
3204#if IDETAPE_DEBUG_LOG
3205 if (tape->debug_level >= 3)
3206 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3207#endif /* IDETAPE_DEBUG_LOG */
3208
3209 /*
3210 * Attempt to allocate a new stage.
3211 * Pay special attention to possible race conditions.
3212 */
3213 while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3214 spin_lock_irqsave(&tape->spinlock, flags);
3215 if (idetape_pipeline_active(tape)) {
3216 idetape_wait_for_request(drive, tape->active_data_request);
3217 spin_unlock_irqrestore(&tape->spinlock, flags);
3218 } else {
3219 spin_unlock_irqrestore(&tape->spinlock, flags);
3220 idetape_insert_pipeline_into_queue(drive);
3221 if (idetape_pipeline_active(tape))
3222 continue;
3223 /*
3224 * Linux is short on memory. Fallback to
3225 * non-pipelined operation mode for this request.
3226 */
3227 return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3228 }
3229 }
3230 rq = &new_stage->rq;
3231 idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3232 /* Doesn't actually matter - We always assume sequential access */
3233 rq->sector = tape->first_frame_position;
3234 rq->nr_sectors = rq->current_nr_sectors = blocks;
3235
3236 idetape_switch_buffers(tape, new_stage);
3237 idetape_add_stage_tail(drive, new_stage);
3238 tape->pipeline_head++;
3239#if USE_IOTRACE
3240 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3241#endif
3242 calculate_speeds(drive);
3243
3244 /*
3245 * Estimate whether the tape has stopped writing by checking
3246 * if our write pipeline is currently empty. If we are not
3247 * writing anymore, wait for the pipeline to be full enough
3248 * (90%) before starting to service requests, so that we will
3249 * be able to keep up with the higher speeds of the tape.
3250 */
3251 if (!idetape_pipeline_active(tape)) {
3252 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3253 tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3254 tape->measure_insert_time = 1;
3255 tape->insert_time = jiffies;
3256 tape->insert_size = 0;
3257 tape->insert_speed = 0;
3258 idetape_insert_pipeline_into_queue(drive);
3259 }
3260 }
3261 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3262 /* Return a deferred error */
3263 return -EIO;
3264 return blocks;
3265}
3266
3267/*
3268 * idetape_wait_for_pipeline will wait until all pending pipeline
3269 * requests are serviced. Typically called on device close.
3270 */
3271static void idetape_wait_for_pipeline (ide_drive_t *drive)
3272{
3273 idetape_tape_t *tape = drive->driver_data;
3274 unsigned long flags;
3275
3276 while (tape->next_stage || idetape_pipeline_active(tape)) {
3277 idetape_insert_pipeline_into_queue(drive);
3278 spin_lock_irqsave(&tape->spinlock, flags);
3279 if (idetape_pipeline_active(tape))
3280 idetape_wait_for_request(drive, tape->active_data_request);
3281 spin_unlock_irqrestore(&tape->spinlock, flags);
3282 }
3283}
3284
3285static void idetape_empty_write_pipeline (ide_drive_t *drive)
3286{
3287 idetape_tape_t *tape = drive->driver_data;
3288 int blocks, min;
3289 struct idetape_bh *bh;
3290
3291#if IDETAPE_DEBUG_BUGS
3292 if (tape->chrdev_direction != idetape_direction_write) {
3293 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3294 return;
3295 }
3296 if (tape->merge_stage_size > tape->stage_size) {
3297 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3298 tape->merge_stage_size = tape->stage_size;
3299 }
3300#endif /* IDETAPE_DEBUG_BUGS */
3301 if (tape->merge_stage_size) {
3302 blocks = tape->merge_stage_size / tape->tape_block_size;
3303 if (tape->merge_stage_size % tape->tape_block_size) {
3304 unsigned int i;
3305
3306 blocks++;
3307 i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3308 bh = tape->bh->b_reqnext;
3309 while (bh) {
3310 atomic_set(&bh->b_count, 0);
3311 bh = bh->b_reqnext;
3312 }
3313 bh = tape->bh;
3314 while (i) {
3315 if (bh == NULL) {
3316
3317 printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3318 break;
3319 }
3320 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3321 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3322 atomic_add(min, &bh->b_count);
3323 i -= min;
3324 bh = bh->b_reqnext;
3325 }
3326 }
3327 (void) idetape_add_chrdev_write_request(drive, blocks);
3328 tape->merge_stage_size = 0;
3329 }
3330 idetape_wait_for_pipeline(drive);
3331 if (tape->merge_stage != NULL) {
3332 __idetape_kfree_stage(tape->merge_stage);
3333 tape->merge_stage = NULL;
3334 }
3335 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3336 tape->chrdev_direction = idetape_direction_none;
3337
3338 /*
3339 * On the next backup, perform the feedback loop again.
3340 * (I don't want to keep sense information between backups,
3341 * as some systems are constantly on, and the system load
3342 * can be totally different on the next backup).
3343 */
3344 tape->max_stages = tape->min_pipeline;
3345#if IDETAPE_DEBUG_BUGS
3346 if (tape->first_stage != NULL ||
3347 tape->next_stage != NULL ||
3348 tape->last_stage != NULL ||
3349 tape->nr_stages != 0) {
3350 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3351 "first_stage %p, next_stage %p, "
3352 "last_stage %p, nr_stages %d\n",
3353 tape->first_stage, tape->next_stage,
3354 tape->last_stage, tape->nr_stages);
3355 }
3356#endif /* IDETAPE_DEBUG_BUGS */
3357}
3358
3359static void idetape_restart_speed_control (ide_drive_t *drive)
3360{
3361 idetape_tape_t *tape = drive->driver_data;
3362
3363 tape->restart_speed_control_req = 0;
3364 tape->pipeline_head = 0;
3365 tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3366 tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3367 tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3368 tape->uncontrolled_pipeline_head_speed = 0;
3369 tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3370 tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3371}
3372
3373static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3374{
3375 idetape_tape_t *tape = drive->driver_data;
3376 idetape_stage_t *new_stage;
3377 struct request rq;
3378 int bytes_read;
3379 int blocks = tape->capabilities.ctl;
3380
3381 /* Initialize read operation */
3382 if (tape->chrdev_direction != idetape_direction_read) {
3383 if (tape->chrdev_direction == idetape_direction_write) {
3384 idetape_empty_write_pipeline(drive);
3385 idetape_flush_tape_buffers(drive);
3386 }
3387#if IDETAPE_DEBUG_BUGS
3388 if (tape->merge_stage || tape->merge_stage_size) {
3389 printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3390 tape->merge_stage_size = 0;
3391 }
3392#endif /* IDETAPE_DEBUG_BUGS */
3393 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3394 return -ENOMEM;
3395 tape->chrdev_direction = idetape_direction_read;
3396
3397 /*
3398 * Issue a read 0 command to ensure that DSC handshake
3399 * is switched from completion mode to buffer available
3400 * mode.
3401 * No point in issuing this if DSC overlap isn't supported,
3402 * some drives (Seagate STT3401A) will return an error.
3403 */
3404 if (drive->dsc_overlap) {
3405 bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3406 if (bytes_read < 0) {
3407 __idetape_kfree_stage(tape->merge_stage);
3408 tape->merge_stage = NULL;
3409 tape->chrdev_direction = idetape_direction_none;
3410 return bytes_read;
3411 }
3412 }
3413 }
3414 if (tape->restart_speed_control_req)
3415 idetape_restart_speed_control(drive);
3416 idetape_init_rq(&rq, REQ_IDETAPE_READ);
3417 rq.sector = tape->first_frame_position;
3418 rq.nr_sectors = rq.current_nr_sectors = blocks;
3419 if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3420 tape->nr_stages < max_stages) {
3421 new_stage = idetape_kmalloc_stage(tape);
3422 while (new_stage != NULL) {
3423 new_stage->rq = rq;
3424 idetape_add_stage_tail(drive, new_stage);
3425 if (tape->nr_stages >= max_stages)
3426 break;
3427 new_stage = idetape_kmalloc_stage(tape);
3428 }
3429 }
3430 if (!idetape_pipeline_active(tape)) {
3431 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3432 tape->measure_insert_time = 1;
3433 tape->insert_time = jiffies;
3434 tape->insert_size = 0;
3435 tape->insert_speed = 0;
3436 idetape_insert_pipeline_into_queue(drive);
3437 }
3438 }
3439 return 0;
3440}
3441
3442/*
3443 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3444 * to service a character device read request and add read-ahead
3445 * requests to our pipeline.
3446 */
3447static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3448{
3449 idetape_tape_t *tape = drive->driver_data;
3450 unsigned long flags;
3451 struct request *rq_ptr;
3452 int bytes_read;
3453
3454#if IDETAPE_DEBUG_LOG
3455 if (tape->debug_level >= 4)
3456 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3457#endif /* IDETAPE_DEBUG_LOG */
3458
3459 /*
3460 * If we are at a filemark, return a read length of 0
3461 */
3462 if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3463 return 0;
3464
3465 /*
3466 * Wait for the next block to be available at the head
3467 * of the pipeline
3468 */
3469 idetape_initiate_read(drive, tape->max_stages);
3470 if (tape->first_stage == NULL) {
3471 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3472 return 0;
3473 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3474 }
3475 idetape_wait_first_stage(drive);
3476 rq_ptr = &tape->first_stage->rq;
3477 bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3478 rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3479
3480
3481 if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3482 return 0;
3483 else {
3484 idetape_switch_buffers(tape, tape->first_stage);
3485 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3486 set_bit(IDETAPE_FILEMARK, &tape->flags);
3487 spin_lock_irqsave(&tape->spinlock, flags);
3488 idetape_remove_stage_head(drive);
3489 spin_unlock_irqrestore(&tape->spinlock, flags);
3490 tape->pipeline_head++;
3491#if USE_IOTRACE
3492 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3493#endif
3494 calculate_speeds(drive);
3495 }
3496#if IDETAPE_DEBUG_BUGS
3497 if (bytes_read > blocks * tape->tape_block_size) {
3498 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3499 bytes_read = blocks * tape->tape_block_size;
3500 }
3501#endif /* IDETAPE_DEBUG_BUGS */
3502 return (bytes_read);
3503}
3504
3505static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3506{
3507 idetape_tape_t *tape = drive->driver_data;
3508 struct idetape_bh *bh;
3509 int blocks;
3510
3511 while (bcount) {
3512 unsigned int count;
3513
3514 bh = tape->merge_stage->bh;
3515 count = min(tape->stage_size, bcount);
3516 bcount -= count;
3517 blocks = count / tape->tape_block_size;
3518 while (count) {
3519 atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3520 memset(bh->b_data, 0, atomic_read(&bh->b_count));
3521 count -= atomic_read(&bh->b_count);
3522 bh = bh->b_reqnext;
3523 }
3524 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3525 }
3526}
3527
3528static int idetape_pipeline_size (ide_drive_t *drive)
3529{
3530 idetape_tape_t *tape = drive->driver_data;
3531 idetape_stage_t *stage;
3532 struct request *rq;
3533 int size = 0;
3534
3535 idetape_wait_for_pipeline(drive);
3536 stage = tape->first_stage;
3537 while (stage != NULL) {
3538 rq = &stage->rq;
3539 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3540 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3541 size += tape->tape_block_size;
3542 stage = stage->next;
3543 }
3544 size += tape->merge_stage_size;
3545 return size;
3546}
3547
3548/*
3549 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3550 *
3551 * We currently support only one partition.
3552 */
3553static int idetape_rewind_tape (ide_drive_t *drive)
3554{
3555 int retval;
3556 idetape_pc_t pc;
3557#if IDETAPE_DEBUG_LOG
3558 idetape_tape_t *tape = drive->driver_data;
3559 if (tape->debug_level >= 2)
3560 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3561#endif /* IDETAPE_DEBUG_LOG */
3562
3563 idetape_create_rewind_cmd(drive, &pc);
3564 retval = idetape_queue_pc_tail(drive, &pc);
3565 if (retval)
3566 return retval;
3567
3568 idetape_create_read_position_cmd(&pc);
3569 retval = idetape_queue_pc_tail(drive, &pc);
3570 if (retval)
3571 return retval;
3572 return 0;
3573}
3574
3575/*
3576 * Our special ide-tape ioctl's.
3577 *
3578 * Currently there aren't any ioctl's.
3579 * mtio.h compatible commands should be issued to the character device
3580 * interface.
3581 */
3582static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3583{
3584 idetape_tape_t *tape = drive->driver_data;
3585 idetape_config_t config;
3586 void __user *argp = (void __user *)arg;
3587
3588#if IDETAPE_DEBUG_LOG
3589 if (tape->debug_level >= 4)
3590 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3591#endif /* IDETAPE_DEBUG_LOG */
3592 switch (cmd) {
3593 case 0x0340:
3594 if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3595 return -EFAULT;
3596 tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3597 tape->max_stages = config.nr_stages;
3598 break;
3599 case 0x0350:
3600 config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3601 config.nr_stages = tape->max_stages;
3602 if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3603 return -EFAULT;
3604 break;
3605 default:
3606 return -EIO;
3607 }
3608 return 0;
3609}
3610
3611/*
3612 * idetape_space_over_filemarks is now a bit more complicated than just
3613 * passing the command to the tape since we may have crossed some
3614 * filemarks during our pipelined read-ahead mode.
3615 *
3616 * As a minor side effect, the pipeline enables us to support MTFSFM when
3617 * the filemark is in our internal pipeline even if the tape doesn't
3618 * support spacing over filemarks in the reverse direction.
3619 */
3620static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3621{
3622 idetape_tape_t *tape = drive->driver_data;
3623 idetape_pc_t pc;
3624 unsigned long flags;
3625 int retval,count=0;
3626
3627 if (mt_count == 0)
3628 return 0;
3629 if (MTBSF == mt_op || MTBSFM == mt_op) {
3630 if (!tape->capabilities.sprev)
3631 return -EIO;
3632 mt_count = - mt_count;
3633 }
3634
3635 if (tape->chrdev_direction == idetape_direction_read) {
3636 /*
3637 * We have a read-ahead buffer. Scan it for crossed
3638 * filemarks.
3639 */
3640 tape->merge_stage_size = 0;
3641 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3642 ++count;
3643 while (tape->first_stage != NULL) {
3644 if (count == mt_count) {
3645 if (mt_op == MTFSFM)
3646 set_bit(IDETAPE_FILEMARK, &tape->flags);
3647 return 0;
3648 }
3649 spin_lock_irqsave(&tape->spinlock, flags);
3650 if (tape->first_stage == tape->active_stage) {
3651 /*
3652 * We have reached the active stage in the read pipeline.
3653 * There is no point in allowing the drive to continue
3654 * reading any farther, so we stop the pipeline.
3655 *
3656 * This section should be moved to a separate subroutine,
3657 * because a similar function is performed in
3658 * __idetape_discard_read_pipeline(), for example.
3659 */
3660 tape->next_stage = NULL;
3661 spin_unlock_irqrestore(&tape->spinlock, flags);
3662 idetape_wait_first_stage(drive);
3663 tape->next_stage = tape->first_stage->next;
3664 } else
3665 spin_unlock_irqrestore(&tape->spinlock, flags);
3666 if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3667 ++count;
3668 idetape_remove_stage_head(drive);
3669 }
3670 idetape_discard_read_pipeline(drive, 0);
3671 }
3672
3673 /*
3674 * The filemark was not found in our internal pipeline.
3675 * Now we can issue the space command.
3676 */
3677 switch (mt_op) {
3678 case MTFSF:
3679 case MTBSF:
3680 idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3681 return (idetape_queue_pc_tail(drive, &pc));
3682 case MTFSFM:
3683 case MTBSFM:
3684 if (!tape->capabilities.sprev)
3685 return (-EIO);
3686 retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3687 if (retval) return (retval);
3688 count = (MTBSFM == mt_op ? 1 : -1);
3689 return (idetape_space_over_filemarks(drive, MTFSF, count));
3690 default:
3691 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3692 return (-EIO);
3693 }
3694}
3695
3696
3697/*
3698 * Our character device read / write functions.
3699 *
3700 * The tape is optimized to maximize throughput when it is transferring
3701 * an integral number of the "continuous transfer limit", which is
3702 * a parameter of the specific tape (26 KB on my particular tape).
3703 * (32 kB for Onstream)
3704 *
3705 * As of version 1.3 of the driver, the character device provides an
3706 * abstract continuous view of the media - any mix of block sizes (even 1
3707 * byte) on the same backup/restore procedure is supported. The driver
3708 * will internally convert the requests to the recommended transfer unit,
3709 * so that an unmatch between the user's block size to the recommended
3710 * size will only result in a (slightly) increased driver overhead, but
3711 * will no longer hit performance.
3712 * This is not applicable to Onstream.
3713 */
3714static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3715 size_t count, loff_t *ppos)
3716{
3717 struct ide_tape_obj *tape = ide_tape_f(file);
3718 ide_drive_t *drive = tape->drive;
3719 ssize_t bytes_read,temp, actually_read = 0, rc;
3720
3721#if IDETAPE_DEBUG_LOG
3722 if (tape->debug_level >= 3)
3723 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3724#endif /* IDETAPE_DEBUG_LOG */
3725
3726 if (tape->chrdev_direction != idetape_direction_read) {
3727 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3728 if (count > tape->tape_block_size &&
3729 (count % tape->tape_block_size) == 0)
3730 tape->user_bs_factor = count / tape->tape_block_size;
3731 }
3732 if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3733 return rc;
3734 if (count == 0)
3735 return (0);
3736 if (tape->merge_stage_size) {
3737 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3738 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read);
3739 buf += actually_read;
3740 tape->merge_stage_size -= actually_read;
3741 count -= actually_read;
3742 }
3743 while (count >= tape->stage_size) {
3744 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3745 if (bytes_read <= 0)
3746 goto finish;
3747 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read);
3748 buf += bytes_read;
3749 count -= bytes_read;
3750 actually_read += bytes_read;
3751 }
3752 if (count) {
3753 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3754 if (bytes_read <= 0)
3755 goto finish;
3756 temp = min((unsigned long)count, (unsigned long)bytes_read);
3757 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp);
3758 actually_read += temp;
3759 tape->merge_stage_size = bytes_read-temp;
3760 }
3761finish:
3762 if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3763#if IDETAPE_DEBUG_LOG
3764 if (tape->debug_level >= 2)
3765 printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3766#endif
3767 idetape_space_over_filemarks(drive, MTFSF, 1);
3768 return 0;
3769 }
3770 return actually_read;
3771}
3772
3773static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3774 size_t count, loff_t *ppos)
3775{
3776 struct ide_tape_obj *tape = ide_tape_f(file);
3777 ide_drive_t *drive = tape->drive;
3778 ssize_t retval, actually_written = 0;
3779
3780 /* The drive is write protected. */
3781 if (tape->write_prot)
3782 return -EACCES;
3783
3784#if IDETAPE_DEBUG_LOG
3785 if (tape->debug_level >= 3)
3786 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3787 "count %Zd\n", count);
3788#endif /* IDETAPE_DEBUG_LOG */
3789
3790 /* Initialize write operation */
3791 if (tape->chrdev_direction != idetape_direction_write) {
3792 if (tape->chrdev_direction == idetape_direction_read)
3793 idetape_discard_read_pipeline(drive, 1);
3794#if IDETAPE_DEBUG_BUGS
3795 if (tape->merge_stage || tape->merge_stage_size) {
3796 printk(KERN_ERR "ide-tape: merge_stage_size "
3797 "should be 0 now\n");
3798 tape->merge_stage_size = 0;
3799 }
3800#endif /* IDETAPE_DEBUG_BUGS */
3801 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3802 return -ENOMEM;
3803 tape->chrdev_direction = idetape_direction_write;
3804 idetape_init_merge_stage(tape);
3805
3806 /*
3807 * Issue a write 0 command to ensure that DSC handshake
3808 * is switched from completion mode to buffer available
3809 * mode.
3810 * No point in issuing this if DSC overlap isn't supported,
3811 * some drives (Seagate STT3401A) will return an error.
3812 */
3813 if (drive->dsc_overlap) {
3814 retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3815 if (retval < 0) {
3816 __idetape_kfree_stage(tape->merge_stage);
3817 tape->merge_stage = NULL;
3818 tape->chrdev_direction = idetape_direction_none;
3819 return retval;
3820 }
3821 }
3822 }
3823 if (count == 0)
3824 return (0);
3825 if (tape->restart_speed_control_req)
3826 idetape_restart_speed_control(drive);
3827 if (tape->merge_stage_size) {
3828#if IDETAPE_DEBUG_BUGS
3829 if (tape->merge_stage_size >= tape->stage_size) {
3830 printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3831 tape->merge_stage_size = 0;
3832 }
3833#endif /* IDETAPE_DEBUG_BUGS */
3834 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3835 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written);
3836 buf += actually_written;
3837 tape->merge_stage_size += actually_written;
3838 count -= actually_written;
3839
3840 if (tape->merge_stage_size == tape->stage_size) {
3841 tape->merge_stage_size = 0;
3842 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3843 if (retval <= 0)
3844 return (retval);
3845 }
3846 }
3847 while (count >= tape->stage_size) {
3848 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size);
3849 buf += tape->stage_size;
3850 count -= tape->stage_size;
3851 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3852 actually_written += tape->stage_size;
3853 if (retval <= 0)
3854 return (retval);
3855 }
3856 if (count) {
3857 actually_written += count;
3858 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count);
3859 tape->merge_stage_size += count;
3860 }
3861 return (actually_written);
3862}
3863
3864static int idetape_write_filemark (ide_drive_t *drive)
3865{
3866 idetape_pc_t pc;
3867
3868 /* Write a filemark */
3869 idetape_create_write_filemark_cmd(drive, &pc, 1);
3870 if (idetape_queue_pc_tail(drive, &pc)) {
3871 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3872 return -EIO;
3873 }
3874 return 0;
3875}
3876
3877/*
3878 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3879 * the general mtio MTIOCTOP ioctl is requested.
3880 *
3881 * We currently support the following mtio.h operations:
3882 *
3883 * MTFSF - Space over mt_count filemarks in the positive direction.
3884 * The tape is positioned after the last spaced filemark.
3885 *
3886 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3887 * last filemark.
3888 *
3889 * MTBSF - Steps background over mt_count filemarks, tape is
3890 * positioned before the last filemark.
3891 *
3892 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3893 *
3894 * Note:
3895 *
3896 * MTBSF and MTBSFM are not supported when the tape doesn't
3897 * support spacing over filemarks in the reverse direction.
3898 * In this case, MTFSFM is also usually not supported (it is
3899 * supported in the rare case in which we crossed the filemark
3900 * during our read-ahead pipelined operation mode).
3901 *
3902 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3903 * the last written filemark.
3904 *
3905 * MTREW - Rewinds tape.
3906 *
3907 * MTLOAD - Loads the tape.
3908 *
3909 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3910 * MTUNLOAD prevents further access until the media is replaced.
3911 *
3912 * MTNOP - Flushes tape buffers.
3913 *
3914 * MTRETEN - Retension media. This typically consists of one end
3915 * to end pass on the media.
3916 *
3917 * MTEOM - Moves to the end of recorded data.
3918 *
3919 * MTERASE - Erases tape.
3920 *
3921 * MTSETBLK - Sets the user block size to mt_count bytes. If
3922 * mt_count is 0, we will attempt to autodetect
3923 * the block size.
3924 *
3925 * MTSEEK - Positions the tape in a specific block number, where
3926 * each block is assumed to contain which user_block_size
3927 * bytes.
3928 *
3929 * MTSETPART - Switches to another tape partition.
3930 *
3931 * MTLOCK - Locks the tape door.
3932 *
3933 * MTUNLOCK - Unlocks the tape door.
3934 *
3935 * The following commands are currently not supported:
3936 *
3937 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3938 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3939 */
3940static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3941{
3942 idetape_tape_t *tape = drive->driver_data;
3943 idetape_pc_t pc;
3944 int i,retval;
3945
3946#if IDETAPE_DEBUG_LOG
3947 if (tape->debug_level >= 1)
3948 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3949 "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3950#endif /* IDETAPE_DEBUG_LOG */
3951 /*
3952 * Commands which need our pipelined read-ahead stages.
3953 */
3954 switch (mt_op) {
3955 case MTFSF:
3956 case MTFSFM:
3957 case MTBSF:
3958 case MTBSFM:
3959 if (!mt_count)
3960 return (0);
3961 return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3962 default:
3963 break;
3964 }
3965 switch (mt_op) {
3966 case MTWEOF:
3967 if (tape->write_prot)
3968 return -EACCES;
3969 idetape_discard_read_pipeline(drive, 1);
3970 for (i = 0; i < mt_count; i++) {
3971 retval = idetape_write_filemark(drive);
3972 if (retval)
3973 return retval;
3974 }
3975 return (0);
3976 case MTREW:
3977 idetape_discard_read_pipeline(drive, 0);
3978 if (idetape_rewind_tape(drive))
3979 return -EIO;
3980 return 0;
3981 case MTLOAD:
3982 idetape_discard_read_pipeline(drive, 0);
3983 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3984 return (idetape_queue_pc_tail(drive, &pc));
3985 case MTUNLOAD:
3986 case MTOFFL:
3987 /*
3988 * If door is locked, attempt to unlock before
3989 * attempting to eject.
3990 */
3991 if (tape->door_locked) {
3992 if (idetape_create_prevent_cmd(drive, &pc, 0))
3993 if (!idetape_queue_pc_tail(drive, &pc))
3994 tape->door_locked = DOOR_UNLOCKED;
3995 }
3996 idetape_discard_read_pipeline(drive, 0);
3997 idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3998 retval = idetape_queue_pc_tail(drive, &pc);
3999 if (!retval)
4000 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
4001 return retval;
4002 case MTNOP:
4003 idetape_discard_read_pipeline(drive, 0);
4004 return (idetape_flush_tape_buffers(drive));
4005 case MTRETEN:
4006 idetape_discard_read_pipeline(drive, 0);
4007 idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4008 return (idetape_queue_pc_tail(drive, &pc));
4009 case MTEOM:
4010 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4011 return (idetape_queue_pc_tail(drive, &pc));
4012 case MTERASE:
4013 (void) idetape_rewind_tape(drive);
4014 idetape_create_erase_cmd(&pc);
4015 return (idetape_queue_pc_tail(drive, &pc));
4016 case MTSETBLK:
4017 if (mt_count) {
4018 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4019 return -EIO;
4020 tape->user_bs_factor = mt_count / tape->tape_block_size;
4021 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4022 } else
4023 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4024 return 0;
4025 case MTSEEK:
4026 idetape_discard_read_pipeline(drive, 0);
4027 return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4028 case MTSETPART:
4029 idetape_discard_read_pipeline(drive, 0);
4030 return (idetape_position_tape(drive, 0, mt_count, 0));
4031 case MTFSR:
4032 case MTBSR:
4033 case MTLOCK:
4034 if (!idetape_create_prevent_cmd(drive, &pc, 1))
4035 return 0;
4036 retval = idetape_queue_pc_tail(drive, &pc);
4037 if (retval) return retval;
4038 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4039 return 0;
4040 case MTUNLOCK:
4041 if (!idetape_create_prevent_cmd(drive, &pc, 0))
4042 return 0;
4043 retval = idetape_queue_pc_tail(drive, &pc);
4044 if (retval) return retval;
4045 tape->door_locked = DOOR_UNLOCKED;
4046 return 0;
4047 default:
4048 printk(KERN_ERR "ide-tape: MTIO operation %d not "
4049 "supported\n", mt_op);
4050 return (-EIO);
4051 }
4052}
4053
4054/*
4055 * Our character device ioctls.
4056 *
4057 * General mtio.h magnetic io commands are supported here, and not in
4058 * the corresponding block interface.
4059 *
4060 * The following ioctls are supported:
4061 *
4062 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4063 *
4064 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4065 * will be set to (user block size in bytes <<
4066 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4067 *
4068 * The mt_blkno is set to the current user block number.
4069 * The other mtget fields are not supported.
4070 *
4071 * MTIOCPOS - The current tape "block position" is returned. We
4072 * assume that each block contains user_block_size
4073 * bytes.
4074 *
4075 * Our own ide-tape ioctls are supported on both interfaces.
4076 */
4077static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4078{
4079 struct ide_tape_obj *tape = ide_tape_f(file);
4080 ide_drive_t *drive = tape->drive;
4081 struct mtop mtop;
4082 struct mtget mtget;
4083 struct mtpos mtpos;
4084 int block_offset = 0, position = tape->first_frame_position;
4085 void __user *argp = (void __user *)arg;
4086
4087#if IDETAPE_DEBUG_LOG
4088 if (tape->debug_level >= 3)
4089 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4090 "cmd=%u\n", cmd);
4091#endif /* IDETAPE_DEBUG_LOG */
4092
4093 tape->restart_speed_control_req = 1;
4094 if (tape->chrdev_direction == idetape_direction_write) {
4095 idetape_empty_write_pipeline(drive);
4096 idetape_flush_tape_buffers(drive);
4097 }
4098 if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4099 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4100 if ((position = idetape_read_position(drive)) < 0)
4101 return -EIO;
4102 }
4103 switch (cmd) {
4104 case MTIOCTOP:
4105 if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4106 return -EFAULT;
4107 return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4108 case MTIOCGET:
4109 memset(&mtget, 0, sizeof (struct mtget));
4110 mtget.mt_type = MT_ISSCSI2;
4111 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4112 mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4113 if (tape->drv_write_prot) {
4114 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4115 }
4116 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4117 return -EFAULT;
4118 return 0;
4119 case MTIOCPOS:
4120 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4121 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4122 return -EFAULT;
4123 return 0;
4124 default:
4125 if (tape->chrdev_direction == idetape_direction_read)
4126 idetape_discard_read_pipeline(drive, 1);
4127 return idetape_blkdev_ioctl(drive, cmd, arg);
4128 }
4129}
4130
4131static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4132
4133/*
4134 * Our character device open function.
4135 */
4136static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4137{
4138 unsigned int minor = iminor(inode), i = minor & ~0xc0;
4139 ide_drive_t *drive;
4140 idetape_tape_t *tape;
4141 idetape_pc_t pc;
4142 int retval;
4143
4144 /*
4145 * We really want to do nonseekable_open(inode, filp); here, but some
4146 * versions of tar incorrectly call lseek on tapes and bail out if that
4147 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4148 */
4149 filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4150
4151#if IDETAPE_DEBUG_LOG
4152 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4153#endif /* IDETAPE_DEBUG_LOG */
4154
4155 if (i >= MAX_HWIFS * MAX_DRIVES)
4156 return -ENXIO;
4157
4158 if (!(tape = ide_tape_chrdev_get(i)))
4159 return -ENXIO;
4160
4161 drive = tape->drive;
4162
4163 filp->private_data = tape;
4164
4165 if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4166 retval = -EBUSY;
4167 goto out_put_tape;
4168 }
4169
4170 retval = idetape_wait_ready(drive, 60 * HZ);
4171 if (retval) {
4172 clear_bit(IDETAPE_BUSY, &tape->flags);
4173 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4174 goto out_put_tape;
4175 }
4176
4177 idetape_read_position(drive);
4178 if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4179 (void)idetape_rewind_tape(drive);
4180
4181 if (tape->chrdev_direction != idetape_direction_read)
4182 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4183
4184 /* Read block size and write protect status from drive. */
4185 idetape_get_blocksize_from_block_descriptor(drive);
4186
4187 /* Set write protect flag if device is opened as read-only. */
4188 if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4189 tape->write_prot = 1;
4190 else
4191 tape->write_prot = tape->drv_write_prot;
4192
4193 /* Make sure drive isn't write protected if user wants to write. */
4194 if (tape->write_prot) {
4195 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4196 (filp->f_flags & O_ACCMODE) == O_RDWR) {
4197 clear_bit(IDETAPE_BUSY, &tape->flags);
4198 retval = -EROFS;
4199 goto out_put_tape;
4200 }
4201 }
4202
4203 /*
4204 * Lock the tape drive door so user can't eject.
4205 */
4206 if (tape->chrdev_direction == idetape_direction_none) {
4207 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4208 if (!idetape_queue_pc_tail(drive, &pc)) {
4209 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4210 tape->door_locked = DOOR_LOCKED;
4211 }
4212 }
4213 }
4214 idetape_restart_speed_control(drive);
4215 tape->restart_speed_control_req = 0;
4216 return 0;
4217
4218out_put_tape:
4219 ide_tape_put(tape);
4220 return retval;
4221}
4222
4223static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4224{
4225 idetape_tape_t *tape = drive->driver_data;
4226
4227 idetape_empty_write_pipeline(drive);
4228 tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4229 if (tape->merge_stage != NULL) {
4230 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4231 __idetape_kfree_stage(tape->merge_stage);
4232 tape->merge_stage = NULL;
4233 }
4234 idetape_write_filemark(drive);
4235 idetape_flush_tape_buffers(drive);
4236 idetape_flush_tape_buffers(drive);
4237}
4238
4239/*
4240 * Our character device release function.
4241 */
4242static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4243{
4244 struct ide_tape_obj *tape = ide_tape_f(filp);
4245 ide_drive_t *drive = tape->drive;
4246 idetape_pc_t pc;
4247 unsigned int minor = iminor(inode);
4248
4249 lock_kernel();
4250 tape = drive->driver_data;
4251#if IDETAPE_DEBUG_LOG
4252 if (tape->debug_level >= 3)
4253 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4254#endif /* IDETAPE_DEBUG_LOG */
4255
4256 if (tape->chrdev_direction == idetape_direction_write)
4257 idetape_write_release(drive, minor);
4258 if (tape->chrdev_direction == idetape_direction_read) {
4259 if (minor < 128)
4260 idetape_discard_read_pipeline(drive, 1);
4261 else
4262 idetape_wait_for_pipeline(drive);
4263 }
4264 if (tape->cache_stage != NULL) {
4265 __idetape_kfree_stage(tape->cache_stage);
4266 tape->cache_stage = NULL;
4267 }
4268 if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4269 (void) idetape_rewind_tape(drive);
4270 if (tape->chrdev_direction == idetape_direction_none) {
4271 if (tape->door_locked == DOOR_LOCKED) {
4272 if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4273 if (!idetape_queue_pc_tail(drive, &pc))
4274 tape->door_locked = DOOR_UNLOCKED;
4275 }
4276 }
4277 }
4278 clear_bit(IDETAPE_BUSY, &tape->flags);
4279 ide_tape_put(tape);
4280 unlock_kernel();
4281 return 0;
4282}
4283
4284/*
4285 * idetape_identify_device is called to check the contents of the
4286 * ATAPI IDENTIFY command results. We return:
4287 *
4288 * 1 If the tape can be supported by us, based on the information
4289 * we have so far.
4290 *
4291 * 0 If this tape driver is not currently supported by us.
4292 */
4293static int idetape_identify_device (ide_drive_t *drive)
4294{
4295 struct idetape_id_gcw gcw;
4296 struct hd_driveid *id = drive->id;
4297#if IDETAPE_DEBUG_INFO
4298 unsigned short mask,i;
4299#endif /* IDETAPE_DEBUG_INFO */
4300
4301 if (drive->id_read == 0)
4302 return 1;
4303
4304 *((unsigned short *) &gcw) = id->config;
4305
4306#if IDETAPE_DEBUG_INFO
4307 printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4308 printk(KERN_INFO "ide-tape: Protocol Type: ");
4309 switch (gcw.protocol) {
4310 case 0: case 1: printk("ATA\n");break;
4311 case 2: printk("ATAPI\n");break;
4312 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4313 }
4314 printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4315 switch (gcw.device_type) {
4316 case 0: printk("Direct-access Device\n");break;
4317 case 1: printk("Streaming Tape Device\n");break;
4318 case 2: case 3: case 4: printk("Reserved\n");break;
4319 case 5: printk("CD-ROM Device\n");break;
4320 case 6: printk("Reserved\n");
4321 case 7: printk("Optical memory Device\n");break;
4322 case 0x1f: printk("Unknown or no Device type\n");break;
4323 default: printk("Reserved\n");
4324 }
4325 printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4326 printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4327 switch (gcw.drq_type) {
4328 case 0: printk("Microprocessor DRQ\n");break;
4329 case 1: printk("Interrupt DRQ\n");break;
4330 case 2: printk("Accelerated DRQ\n");break;
4331 case 3: printk("Reserved\n");break;
4332 }
4333 printk(KERN_INFO "ide-tape: Command Packet Size: ");
4334 switch (gcw.packet_size) {
4335 case 0: printk("12 bytes\n");break;
4336 case 1: printk("16 bytes\n");break;
4337 default: printk("Reserved\n");break;
4338 }
4339 printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4340 printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4341 printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4342 printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4343 printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4344 printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4345 printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4346 printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4347 printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4348 printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4349 printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4350 printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4351 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4352 if (id->dma_1word & mask)
4353 printk("%d ",i);
4354 if (id->dma_1word & (mask << 8))
4355 printk("(active) ");
4356 }
4357 printk("\n");
4358 printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4359 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4360 if (id->dma_mword & mask)
4361 printk("%d ",i);
4362 if (id->dma_mword & (mask << 8))
4363 printk("(active) ");
4364 }
4365 printk("\n");
4366 if (id->field_valid & 0x0002) {
4367 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4368 id->eide_pio_modes & 1 ? "Mode 3":"None");
4369 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4370 if (id->eide_dma_min == 0)
4371 printk("Not supported\n");
4372 else
4373 printk("%d ns\n",id->eide_dma_min);
4374
4375 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4376 if (id->eide_dma_time == 0)
4377 printk("Not supported\n");
4378 else
4379 printk("%d ns\n",id->eide_dma_time);
4380
4381 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4382 if (id->eide_pio == 0)
4383 printk("Not supported\n");
4384 else
4385 printk("%d ns\n",id->eide_pio);
4386
4387 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4388 if (id->eide_pio_iordy == 0)
4389 printk("Not supported\n");
4390 else
4391 printk("%d ns\n",id->eide_pio_iordy);
4392
4393 } else
4394 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4395#endif /* IDETAPE_DEBUG_INFO */
4396
4397 /* Check that we can support this device */
4398
4399 if (gcw.protocol !=2 )
4400 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4401 else if (gcw.device_type != 1)
4402 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4403 else if (!gcw.removable)
4404 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4405 else if (gcw.packet_size != 0) {
4406 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4407 if (gcw.packet_size == 1)
4408 printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4409 } else
4410 return 1;
4411 return 0;
4412}
4413
4414/*
4415 * Use INQUIRY to get the firmware revision
4416 */
4417static void idetape_get_inquiry_results (ide_drive_t *drive)
4418{
4419 char *r;
4420 idetape_tape_t *tape = drive->driver_data;
4421 idetape_pc_t pc;
4422 idetape_inquiry_result_t *inquiry;
4423
4424 idetape_create_inquiry_cmd(&pc);
4425 if (idetape_queue_pc_tail(drive, &pc)) {
4426 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4427 return;
4428 }
4429 inquiry = (idetape_inquiry_result_t *) pc.buffer;
4430 memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4431 memcpy(tape->product_id, inquiry->product_id, 16);
4432 memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4433 ide_fixstring(tape->vendor_id, 10, 0);
4434 ide_fixstring(tape->product_id, 18, 0);
4435 ide_fixstring(tape->firmware_revision, 6, 0);
4436 r = tape->firmware_revision;
4437 if (*(r + 1) == '.')
4438 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4439 printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4440}
4441
4442/*
4443 * idetape_get_mode_sense_results asks the tape about its various
4444 * parameters. In particular, we will adjust our data transfer buffer
4445 * size to the recommended value as returned by the tape.
4446 */
4447static void idetape_get_mode_sense_results (ide_drive_t *drive)
4448{
4449 idetape_tape_t *tape = drive->driver_data;
4450 idetape_pc_t pc;
4451 idetape_mode_parameter_header_t *header;
4452 idetape_capabilities_page_t *capabilities;
4453
4454 idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4455 if (idetape_queue_pc_tail(drive, &pc)) {
4456 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4457 tape->tape_block_size = 512;
4458 tape->capabilities.ctl = 52;
4459 tape->capabilities.speed = 450;
4460 tape->capabilities.buffer_size = 6 * 52;
4461 return;
4462 }
4463 header = (idetape_mode_parameter_header_t *) pc.buffer;
4464 capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4465
4466 capabilities->max_speed = ntohs(capabilities->max_speed);
4467 capabilities->ctl = ntohs(capabilities->ctl);
4468 capabilities->speed = ntohs(capabilities->speed);
4469 capabilities->buffer_size = ntohs(capabilities->buffer_size);
4470
4471 if (!capabilities->speed) {
4472 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4473 capabilities->speed = 650;
4474 }
4475 if (!capabilities->max_speed) {
4476 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4477 capabilities->max_speed = 650;
4478 }
4479
4480 tape->capabilities = *capabilities; /* Save us a copy */
4481 if (capabilities->blk512)
4482 tape->tape_block_size = 512;
4483 else if (capabilities->blk1024)
4484 tape->tape_block_size = 1024;
4485
4486#if IDETAPE_DEBUG_INFO
4487 printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4488 printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4489 printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4490 printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4491 printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4492 printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4493
4494 printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4495 printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4496 printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4497 printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4498 printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4499 printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4500 printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4501 printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4502 printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4503 printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4504 printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4505 printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4506 printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4507 printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4508 printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4509 printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4510 printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4511 printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4512 printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4513 printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4514#endif /* IDETAPE_DEBUG_INFO */
4515}
4516
4517/*
4518 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4519 * and if it succeeds sets the tape block size with the reported value
4520 */
4521static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4522{
4523
4524 idetape_tape_t *tape = drive->driver_data;
4525 idetape_pc_t pc;
4526 idetape_mode_parameter_header_t *header;
4527 idetape_parameter_block_descriptor_t *block_descrp;
4528
4529 idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4530 if (idetape_queue_pc_tail(drive, &pc)) {
4531 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4532 if (tape->tape_block_size == 0) {
4533 printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4534 tape->tape_block_size = 32768;
4535 }
4536 return;
4537 }
4538 header = (idetape_mode_parameter_header_t *) pc.buffer;
4539 block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4540 tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4541 tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4542
4543#if IDETAPE_DEBUG_INFO
4544 printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4545#endif /* IDETAPE_DEBUG_INFO */
4546}
4547static void idetape_add_settings (ide_drive_t *drive)
4548{
4549 idetape_tape_t *tape = drive->driver_data;
4550
4551/*
4552 * drive setting name read/write ioctl ioctl data type min max mul_factor div_factor data pointer set function
4553 */
4554 ide_add_setting(drive, "buffer", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 2, &tape->capabilities.buffer_size, NULL);
4555 ide_add_setting(drive, "pipeline_min", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
4556 ide_add_setting(drive, "pipeline", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL);
4557 ide_add_setting(drive, "pipeline_max", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
4558 ide_add_setting(drive, "pipeline_used",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL);
4559 ide_add_setting(drive, "pipeline_pending",SETTING_READ,-1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL);
4560 ide_add_setting(drive, "speed", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 1, &tape->capabilities.speed, NULL);
4561 ide_add_setting(drive, "stage", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL);
4562 ide_add_setting(drive, "tdsc", SETTING_RW, -1, -1, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL);
4563 ide_add_setting(drive, "dsc_overlap", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL);
4564 ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL);
4565 ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed, NULL);
4566 ide_add_setting(drive, "avg_speed", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL);
4567 ide_add_setting(drive, "debug_level",SETTING_RW, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL);
4568}
4569
4570/*
4571 * ide_setup is called to:
4572 *
4573 * 1. Initialize our various state variables.
4574 * 2. Ask the tape for its capabilities.
4575 * 3. Allocate a buffer which will be used for data
4576 * transfer. The buffer size is chosen based on
4577 * the recommendation which we received in step (2).
4578 *
4579 * Note that at this point ide.c already assigned us an irq, so that
4580 * we can queue requests here and wait for their completion.
4581 */
4582static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4583{
4584 unsigned long t1, tmid, tn, t;
4585 int speed;
4586 struct idetape_id_gcw gcw;
4587 int stage_size;
4588 struct sysinfo si;
4589
4590 spin_lock_init(&tape->spinlock);
4591 drive->dsc_overlap = 1;
4592#ifdef CONFIG_BLK_DEV_IDEPCI
4593 if (HWIF(drive)->pci_dev != NULL) {
4594 /*
4595 * These two ide-pci host adapters appear to need DSC overlap disabled.
4596 * This probably needs further analysis.
4597 */
4598 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4599 (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4600 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4601 drive->dsc_overlap = 0;
4602 }
4603 }
4604#endif /* CONFIG_BLK_DEV_IDEPCI */
4605 /* Seagate Travan drives do not support DSC overlap. */
4606 if (strstr(drive->id->model, "Seagate STT3401"))
4607 drive->dsc_overlap = 0;
4608 tape->minor = minor;
4609 tape->name[0] = 'h';
4610 tape->name[1] = 't';
4611 tape->name[2] = '0' + minor;
4612 tape->chrdev_direction = idetape_direction_none;
4613 tape->pc = tape->pc_stack;
4614 tape->max_insert_speed = 10000;
4615 tape->speed_control = 1;
4616 *((unsigned short *) &gcw) = drive->id->config;
4617 if (gcw.drq_type == 1)
4618 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4619
4620 tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4621
4622 idetape_get_inquiry_results(drive);
4623 idetape_get_mode_sense_results(drive);
4624 idetape_get_blocksize_from_block_descriptor(drive);
4625 tape->user_bs_factor = 1;
4626 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4627 while (tape->stage_size > 0xffff) {
4628 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4629 tape->capabilities.ctl /= 2;
4630 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4631 }
4632 stage_size = tape->stage_size;
4633 tape->pages_per_stage = stage_size / PAGE_SIZE;
4634 if (stage_size % PAGE_SIZE) {
4635 tape->pages_per_stage++;
4636 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4637 }
4638
4639 /*
4640 * Select the "best" DSC read/write polling frequency
4641 * and pipeline size.
4642 */
4643 speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4644
4645 tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4646
4647 /*
4648 * Limit memory use for pipeline to 10% of physical memory
4649 */
4650 si_meminfo(&si);
4651 if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4652 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4653 tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4654 tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4655 tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4656 if (tape->max_stages == 0)
4657 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4658
4659 t1 = (tape->stage_size * HZ) / (speed * 1000);
4660 tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4661 tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4662
4663 if (tape->max_stages)
4664 t = tn;
4665 else
4666 t = t1;
4667
4668 /*
4669 * Ensure that the number we got makes sense; limit
4670 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4671 */
4672 tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4673 printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4674 "%dkB pipeline, %lums tDSC%s\n",
4675 drive->name, tape->name, tape->capabilities.speed,
4676 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4677 tape->stage_size / 1024,
4678 tape->max_stages * tape->stage_size / 1024,
4679 tape->best_dsc_rw_frequency * 1000 / HZ,
4680 drive->using_dma ? ", DMA":"");
4681
4682 idetape_add_settings(drive);
4683}
4684
8604affd 4685static int ide_tape_remove(struct device *dev)
1da177e4 4686{
8604affd 4687 ide_drive_t *drive = to_ide_device(dev);
1da177e4 4688 idetape_tape_t *tape = drive->driver_data;
1da177e4 4689
8604affd 4690 ide_unregister_subdriver(drive, tape->driver);
1da177e4
LT
4691
4692 ide_unregister_region(tape->disk);
4693
4694 ide_tape_put(tape);
4695
4696 return 0;
4697}
4698
4699static void ide_tape_release(struct kref *kref)
4700{
4701 struct ide_tape_obj *tape = to_ide_tape(kref);
4702 ide_drive_t *drive = tape->drive;
4703 struct gendisk *g = tape->disk;
4704
8604affd
BZ
4705 BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4706
1da177e4
LT
4707 drive->dsc_overlap = 0;
4708 drive->driver_data = NULL;
d5dee80a
WD
4709 class_device_destroy(idetape_sysfs_class,
4710 MKDEV(IDETAPE_MAJOR, tape->minor));
4711 class_device_destroy(idetape_sysfs_class,
4712 MKDEV(IDETAPE_MAJOR, tape->minor + 128));
1da177e4
LT
4713 devfs_remove("%s/mt", drive->devfs_name);
4714 devfs_remove("%s/mtn", drive->devfs_name);
4715 devfs_unregister_tape(g->number);
4716 idetape_devs[tape->minor] = NULL;
4717 g->private_data = NULL;
4718 put_disk(g);
4719 kfree(tape);
4720}
4721
4722#ifdef CONFIG_PROC_FS
4723
4724static int proc_idetape_read_name
4725 (char *page, char **start, off_t off, int count, int *eof, void *data)
4726{
4727 ide_drive_t *drive = (ide_drive_t *) data;
4728 idetape_tape_t *tape = drive->driver_data;
4729 char *out = page;
4730 int len;
4731
4732 len = sprintf(out, "%s\n", tape->name);
4733 PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4734}
4735
4736static ide_proc_entry_t idetape_proc[] = {
4737 { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL },
4738 { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL },
4739 { NULL, 0, NULL, NULL }
4740};
4741
4742#else
4743
4744#define idetape_proc NULL
4745
4746#endif
4747
8604affd 4748static int ide_tape_probe(struct device *);
1da177e4 4749
1da177e4 4750static ide_driver_t idetape_driver = {
8604affd 4751 .gen_driver = {
4ef3b8f4 4752 .owner = THIS_MODULE,
8604affd
BZ
4753 .name = "ide-tape",
4754 .bus = &ide_bus_type,
4755 .probe = ide_tape_probe,
4756 .remove = ide_tape_remove,
4757 },
1da177e4
LT
4758 .version = IDETAPE_VERSION,
4759 .media = ide_tape,
1da177e4 4760 .supports_dsc_overlap = 1,
1da177e4
LT
4761 .do_request = idetape_do_request,
4762 .end_request = idetape_end_request,
4763 .error = __ide_error,
4764 .abort = __ide_abort,
4765 .proc = idetape_proc,
1da177e4
LT
4766};
4767
4768/*
4769 * Our character device supporting functions, passed to register_chrdev.
4770 */
4771static struct file_operations idetape_fops = {
4772 .owner = THIS_MODULE,
4773 .read = idetape_chrdev_read,
4774 .write = idetape_chrdev_write,
4775 .ioctl = idetape_chrdev_ioctl,
4776 .open = idetape_chrdev_open,
4777 .release = idetape_chrdev_release,
4778};
4779
4780static int idetape_open(struct inode *inode, struct file *filp)
4781{
4782 struct gendisk *disk = inode->i_bdev->bd_disk;
4783 struct ide_tape_obj *tape;
4784 ide_drive_t *drive;
4785
4786 if (!(tape = ide_tape_get(disk)))
4787 return -ENXIO;
4788
4789 drive = tape->drive;
4790
4791 drive->usage++;
4792
4793 return 0;
4794}
4795
4796static int idetape_release(struct inode *inode, struct file *filp)
4797{
4798 struct gendisk *disk = inode->i_bdev->bd_disk;
4799 struct ide_tape_obj *tape = ide_tape_g(disk);
4800 ide_drive_t *drive = tape->drive;
4801
4802 drive->usage--;
4803
4804 ide_tape_put(tape);
4805
4806 return 0;
4807}
4808
4809static int idetape_ioctl(struct inode *inode, struct file *file,
4810 unsigned int cmd, unsigned long arg)
4811{
4812 struct block_device *bdev = inode->i_bdev;
4813 struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4814 ide_drive_t *drive = tape->drive;
4815 int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4816 if (err == -EINVAL)
4817 err = idetape_blkdev_ioctl(drive, cmd, arg);
4818 return err;
4819}
4820
4821static struct block_device_operations idetape_block_ops = {
4822 .owner = THIS_MODULE,
4823 .open = idetape_open,
4824 .release = idetape_release,
4825 .ioctl = idetape_ioctl,
4826};
4827
8604affd 4828static int ide_tape_probe(struct device *dev)
1da177e4 4829{
8604affd 4830 ide_drive_t *drive = to_ide_device(dev);
1da177e4
LT
4831 idetape_tape_t *tape;
4832 struct gendisk *g;
4833 int minor;
4834
4835 if (!strstr("ide-tape", drive->driver_req))
4836 goto failed;
4837 if (!drive->present)
4838 goto failed;
4839 if (drive->media != ide_tape)
4840 goto failed;
4841 if (!idetape_identify_device (drive)) {
4842 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4843 goto failed;
4844 }
4845 if (drive->scsi) {
4846 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4847 goto failed;
4848 }
4849 if (strstr(drive->id->model, "OnStream DI-")) {
4850 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4851 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4852 }
f5e3c2fa 4853 tape = (idetape_tape_t *) kzalloc (sizeof (idetape_tape_t), GFP_KERNEL);
1da177e4
LT
4854 if (tape == NULL) {
4855 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4856 goto failed;
4857 }
4858
4859 g = alloc_disk(1 << PARTN_BITS);
4860 if (!g)
4861 goto out_free_tape;
4862
4863 ide_init_disk(g, drive);
4864
8604affd 4865 ide_register_subdriver(drive, &idetape_driver);
1da177e4 4866
1da177e4
LT
4867 kref_init(&tape->kref);
4868
4869 tape->drive = drive;
4870 tape->driver = &idetape_driver;
4871 tape->disk = g;
4872
4873 g->private_data = &tape->driver;
4874
4875 drive->driver_data = tape;
4876
4877 down(&idetape_ref_sem);
4878 for (minor = 0; idetape_devs[minor]; minor++)
4879 ;
4880 idetape_devs[minor] = tape;
4881 up(&idetape_ref_sem);
4882
4883 idetape_setup(drive, tape, minor);
4884
53f46542 4885 class_device_create(idetape_sysfs_class, NULL,
d5dee80a 4886 MKDEV(IDETAPE_MAJOR, minor), dev, "%s", tape->name);
53f46542 4887 class_device_create(idetape_sysfs_class, NULL,
d5dee80a
WD
4888 MKDEV(IDETAPE_MAJOR, minor + 128), dev, "n%s", tape->name);
4889
1da177e4
LT
4890 devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor),
4891 S_IFCHR | S_IRUGO | S_IWUGO,
4892 "%s/mt", drive->devfs_name);
4893 devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor + 128),
4894 S_IFCHR | S_IRUGO | S_IWUGO,
4895 "%s/mtn", drive->devfs_name);
4896
4897 g->number = devfs_register_tape(drive->devfs_name);
4898 g->fops = &idetape_block_ops;
4899 ide_register_region(g);
4900
4901 return 0;
8604affd 4902
1da177e4
LT
4903out_free_tape:
4904 kfree(tape);
4905failed:
8604affd 4906 return -ENODEV;
1da177e4
LT
4907}
4908
4909MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4910MODULE_LICENSE("GPL");
4911
4912static void __exit idetape_exit (void)
4913{
8604affd 4914 driver_unregister(&idetape_driver.gen_driver);
d5dee80a 4915 class_destroy(idetape_sysfs_class);
1da177e4
LT
4916 unregister_chrdev(IDETAPE_MAJOR, "ht");
4917}
4918
17514e8a 4919static int __init idetape_init(void)
1da177e4 4920{
d5dee80a
WD
4921 int error = 1;
4922 idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4923 if (IS_ERR(idetape_sysfs_class)) {
4924 idetape_sysfs_class = NULL;
4925 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4926 error = -EBUSY;
4927 goto out;
4928 }
4929
1da177e4
LT
4930 if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4931 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
d5dee80a
WD
4932 error = -EBUSY;
4933 goto out_free_class;
1da177e4 4934 }
d5dee80a
WD
4935
4936 error = driver_register(&idetape_driver.gen_driver);
4937 if (error)
4938 goto out_free_driver;
4939
4940 return 0;
4941
4942out_free_driver:
4943 driver_unregister(&idetape_driver.gen_driver);
4944out_free_class:
4945 class_destroy(idetape_sysfs_class);
4946out:
4947 return error;
1da177e4
LT
4948}
4949
4950module_init(idetape_init);
4951module_exit(idetape_exit);
4952MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);