]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Use hotplug callback to retrain DP link
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_dp.c
CommitLineData
a4fc5ed6
KP
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include "drmP.h"
30#include "drm.h"
31#include "drm_crtc.h"
32#include "drm_crtc_helper.h"
33#include "intel_drv.h"
34#include "i915_drm.h"
35#include "i915_drv.h"
36#include "intel_dp.h"
37
38#define DP_LINK_STATUS_SIZE 6
39#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41#define DP_LINK_CONFIGURATION_SIZE 9
42
43struct intel_dp_priv {
44 uint32_t output_reg;
45 uint32_t DP;
46 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
47 uint32_t save_DP;
48 uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
49 bool has_audio;
c8110e52 50 int dpms_mode;
a4fc5ed6
KP
51 uint8_t link_bw;
52 uint8_t lane_count;
53 uint8_t dpcd[4];
54 struct intel_output *intel_output;
55 struct i2c_adapter adapter;
56 struct i2c_algo_dp_aux_data algo;
57};
58
59static void
60intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
61 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
62
63static void
64intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
65
66static int
67intel_dp_max_lane_count(struct intel_output *intel_output)
68{
69 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
70 int max_lane_count = 4;
71
72 if (dp_priv->dpcd[0] >= 0x11) {
73 max_lane_count = dp_priv->dpcd[2] & 0x1f;
74 switch (max_lane_count) {
75 case 1: case 2: case 4:
76 break;
77 default:
78 max_lane_count = 4;
79 }
80 }
81 return max_lane_count;
82}
83
84static int
85intel_dp_max_link_bw(struct intel_output *intel_output)
86{
87 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
88 int max_link_bw = dp_priv->dpcd[1];
89
90 switch (max_link_bw) {
91 case DP_LINK_BW_1_62:
92 case DP_LINK_BW_2_7:
93 break;
94 default:
95 max_link_bw = DP_LINK_BW_1_62;
96 break;
97 }
98 return max_link_bw;
99}
100
101static int
102intel_dp_link_clock(uint8_t link_bw)
103{
104 if (link_bw == DP_LINK_BW_2_7)
105 return 270000;
106 else
107 return 162000;
108}
109
110/* I think this is a fiction */
111static int
112intel_dp_link_required(int pixel_clock)
113{
114 return pixel_clock * 3;
115}
116
117static int
118intel_dp_mode_valid(struct drm_connector *connector,
119 struct drm_display_mode *mode)
120{
121 struct intel_output *intel_output = to_intel_output(connector);
122 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
123 int max_lanes = intel_dp_max_lane_count(intel_output);
124
125 if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
126 return MODE_CLOCK_HIGH;
127
128 if (mode->clock < 10000)
129 return MODE_CLOCK_LOW;
130
131 return MODE_OK;
132}
133
134static uint32_t
135pack_aux(uint8_t *src, int src_bytes)
136{
137 int i;
138 uint32_t v = 0;
139
140 if (src_bytes > 4)
141 src_bytes = 4;
142 for (i = 0; i < src_bytes; i++)
143 v |= ((uint32_t) src[i]) << ((3-i) * 8);
144 return v;
145}
146
147static void
148unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
149{
150 int i;
151 if (dst_bytes > 4)
152 dst_bytes = 4;
153 for (i = 0; i < dst_bytes; i++)
154 dst[i] = src >> ((3-i) * 8);
155}
156
157static int
158intel_dp_aux_ch(struct intel_output *intel_output,
159 uint8_t *send, int send_bytes,
160 uint8_t *recv, int recv_size)
161{
162 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
163 uint32_t output_reg = dp_priv->output_reg;
164 struct drm_device *dev = intel_output->base.dev;
165 struct drm_i915_private *dev_priv = dev->dev_private;
166 uint32_t ch_ctl = output_reg + 0x10;
167 uint32_t ch_data = ch_ctl + 4;
168 int i;
169 int recv_bytes;
170 uint32_t ctl;
171 uint32_t status;
172
173 /* Load the send data into the aux channel data registers */
174 for (i = 0; i < send_bytes; i += 4) {
175 uint32_t d = pack_aux(send + i, send_bytes - i);;
176
177 I915_WRITE(ch_data + i, d);
178 }
179
180 /* The clock divider is based off the hrawclk,
181 * and would like to run at 2MHz. The 133 below assumes
182 * a 266MHz hrawclk; need to figure out how we're supposed
183 * to know what hrawclk is...
184 */
185 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
186 DP_AUX_CH_CTL_TIME_OUT_1600us |
187 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
188 (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
189 (133 << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
190 DP_AUX_CH_CTL_TIME_OUT_ERROR |
191 DP_AUX_CH_CTL_RECEIVE_ERROR);
192
193 /* Send the command and wait for it to complete */
194 I915_WRITE(ch_ctl, ctl);
195 (void) I915_READ(ch_ctl);
196 for (;;) {
197 udelay(100);
198 status = I915_READ(ch_ctl);
199 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
200 break;
201 }
202
203 /* Clear done status and any errors */
204 I915_WRITE(ch_ctl, (ctl |
205 DP_AUX_CH_CTL_DONE |
206 DP_AUX_CH_CTL_TIME_OUT_ERROR |
207 DP_AUX_CH_CTL_RECEIVE_ERROR));
208 (void) I915_READ(ch_ctl);
209
210 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
211 printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
212 return -1;
213 }
214
215 /* Check for timeout or receive error.
216 * Timeouts occur when the sink is not connected
217 */
218 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) {
219 printk(KERN_ERR "dp_aux_ch error status 0x%08x\n", status);
220 return -1;
221 }
222
223 /* Unload any bytes sent back from the other side */
224 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
225 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
226
227 if (recv_bytes > recv_size)
228 recv_bytes = recv_size;
229
230 for (i = 0; i < recv_bytes; i += 4) {
231 uint32_t d = I915_READ(ch_data + i);
232
233 unpack_aux(d, recv + i, recv_bytes - i);
234 }
235
236 return recv_bytes;
237}
238
239/* Write data to the aux channel in native mode */
240static int
241intel_dp_aux_native_write(struct intel_output *intel_output,
242 uint16_t address, uint8_t *send, int send_bytes)
243{
244 int ret;
245 uint8_t msg[20];
246 int msg_bytes;
247 uint8_t ack;
248
249 if (send_bytes > 16)
250 return -1;
251 msg[0] = AUX_NATIVE_WRITE << 4;
252 msg[1] = address >> 8;
253 msg[2] = address;
254 msg[3] = send_bytes - 1;
255 memcpy(&msg[4], send, send_bytes);
256 msg_bytes = send_bytes + 4;
257 for (;;) {
258 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
259 if (ret < 0)
260 return ret;
261 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
262 break;
263 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
264 udelay(100);
265 else
266 return -1;
267 }
268 return send_bytes;
269}
270
271/* Write a single byte to the aux channel in native mode */
272static int
273intel_dp_aux_native_write_1(struct intel_output *intel_output,
274 uint16_t address, uint8_t byte)
275{
276 return intel_dp_aux_native_write(intel_output, address, &byte, 1);
277}
278
279/* read bytes from a native aux channel */
280static int
281intel_dp_aux_native_read(struct intel_output *intel_output,
282 uint16_t address, uint8_t *recv, int recv_bytes)
283{
284 uint8_t msg[4];
285 int msg_bytes;
286 uint8_t reply[20];
287 int reply_bytes;
288 uint8_t ack;
289 int ret;
290
291 msg[0] = AUX_NATIVE_READ << 4;
292 msg[1] = address >> 8;
293 msg[2] = address & 0xff;
294 msg[3] = recv_bytes - 1;
295
296 msg_bytes = 4;
297 reply_bytes = recv_bytes + 1;
298
299 for (;;) {
300 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
301 reply, reply_bytes);
302 if (ret <= 0)
303 return ret;
304 ack = reply[0];
305 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
306 memcpy(recv, reply + 1, ret - 1);
307 return ret - 1;
308 }
309 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
310 udelay(100);
311 else
312 return -1;
313 }
314}
315
316static int
317intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
318 uint8_t *send, int send_bytes,
319 uint8_t *recv, int recv_bytes)
320{
321 struct intel_dp_priv *dp_priv = container_of(adapter,
322 struct intel_dp_priv,
323 adapter);
324 struct intel_output *intel_output = dp_priv->intel_output;
325
326 return intel_dp_aux_ch(intel_output,
327 send, send_bytes, recv, recv_bytes);
328}
329
330static int
331intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
332{
333 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
334
335 DRM_ERROR("i2c_init %s\n", name);
336 dp_priv->algo.running = false;
337 dp_priv->algo.address = 0;
338 dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
339
340 memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
341 dp_priv->adapter.owner = THIS_MODULE;
342 dp_priv->adapter.class = I2C_CLASS_DDC;
343 strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
344 dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
345 dp_priv->adapter.algo_data = &dp_priv->algo;
346 dp_priv->adapter.dev.parent = &intel_output->base.kdev;
347
348 return i2c_dp_aux_add_bus(&dp_priv->adapter);
349}
350
351static bool
352intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
353 struct drm_display_mode *adjusted_mode)
354{
355 struct intel_output *intel_output = enc_to_intel_output(encoder);
356 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
357 int lane_count, clock;
358 int max_lane_count = intel_dp_max_lane_count(intel_output);
359 int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
360 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
361
362 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
363 for (clock = 0; clock <= max_clock; clock++) {
364 int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
365
366 if (intel_dp_link_required(mode->clock) <= link_avail) {
367 dp_priv->link_bw = bws[clock];
368 dp_priv->lane_count = lane_count;
369 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
370 printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
371 dp_priv->link_bw, dp_priv->lane_count,
372 adjusted_mode->clock);
373 return true;
374 }
375 }
376 }
377 return false;
378}
379
380struct intel_dp_m_n {
381 uint32_t tu;
382 uint32_t gmch_m;
383 uint32_t gmch_n;
384 uint32_t link_m;
385 uint32_t link_n;
386};
387
388static void
389intel_reduce_ratio(uint32_t *num, uint32_t *den)
390{
391 while (*num > 0xffffff || *den > 0xffffff) {
392 *num >>= 1;
393 *den >>= 1;
394 }
395}
396
397static void
398intel_dp_compute_m_n(int bytes_per_pixel,
399 int nlanes,
400 int pixel_clock,
401 int link_clock,
402 struct intel_dp_m_n *m_n)
403{
404 m_n->tu = 64;
405 m_n->gmch_m = pixel_clock * bytes_per_pixel;
406 m_n->gmch_n = link_clock * nlanes;
407 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
408 m_n->link_m = pixel_clock;
409 m_n->link_n = link_clock;
410 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
411}
412
413void
414intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
415 struct drm_display_mode *adjusted_mode)
416{
417 struct drm_device *dev = crtc->dev;
418 struct drm_mode_config *mode_config = &dev->mode_config;
419 struct drm_connector *connector;
420 struct drm_i915_private *dev_priv = dev->dev_private;
421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
422 int lane_count = 4;
423 struct intel_dp_m_n m_n;
424
425 /*
426 * Find the lane count in the intel_output private
427 */
428 list_for_each_entry(connector, &mode_config->connector_list, head) {
429 struct intel_output *intel_output = to_intel_output(connector);
430 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
431
432 if (!connector->encoder || connector->encoder->crtc != crtc)
433 continue;
434
435 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
436 lane_count = dp_priv->lane_count;
437 break;
438 }
439 }
440
441 /*
442 * Compute the GMCH and Link ratios. The '3' here is
443 * the number of bytes_per_pixel post-LUT, which we always
444 * set up for 8-bits of R/G/B, or 3 bytes total.
445 */
446 intel_dp_compute_m_n(3, lane_count,
447 mode->clock, adjusted_mode->clock, &m_n);
448
449 if (intel_crtc->pipe == 0) {
450 I915_WRITE(PIPEA_GMCH_DATA_M,
451 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
452 m_n.gmch_m);
453 I915_WRITE(PIPEA_GMCH_DATA_N,
454 m_n.gmch_n);
455 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
456 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
457 } else {
458 I915_WRITE(PIPEB_GMCH_DATA_M,
459 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
460 m_n.gmch_m);
461 I915_WRITE(PIPEB_GMCH_DATA_N,
462 m_n.gmch_n);
463 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
464 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
465 }
466}
467
468static void
469intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
470 struct drm_display_mode *adjusted_mode)
471{
472 struct intel_output *intel_output = enc_to_intel_output(encoder);
473 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
474 struct drm_crtc *crtc = intel_output->enc.crtc;
475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
476
477 dp_priv->DP = (DP_LINK_TRAIN_OFF |
478 DP_VOLTAGE_0_4 |
479 DP_PRE_EMPHASIS_0 |
480 DP_SYNC_VS_HIGH |
481 DP_SYNC_HS_HIGH);
482
483 switch (dp_priv->lane_count) {
484 case 1:
485 dp_priv->DP |= DP_PORT_WIDTH_1;
486 break;
487 case 2:
488 dp_priv->DP |= DP_PORT_WIDTH_2;
489 break;
490 case 4:
491 dp_priv->DP |= DP_PORT_WIDTH_4;
492 break;
493 }
494 if (dp_priv->has_audio)
495 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
496
497 memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
498 dp_priv->link_configuration[0] = dp_priv->link_bw;
499 dp_priv->link_configuration[1] = dp_priv->lane_count;
500
501 /*
502 * Check for DPCD version > 1.1,
503 * enable enahanced frame stuff in that case
504 */
505 if (dp_priv->dpcd[0] >= 0x11) {
506 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
507 dp_priv->DP |= DP_ENHANCED_FRAMING;
508 }
509
510 if (intel_crtc->pipe == 1)
511 dp_priv->DP |= DP_PIPEB_SELECT;
512}
513
514
515static void
516intel_dp_dpms(struct drm_encoder *encoder, int mode)
517{
518 struct intel_output *intel_output = enc_to_intel_output(encoder);
519 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
520 struct drm_device *dev = intel_output->base.dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 uint32_t dp_reg = I915_READ(dp_priv->output_reg);
523
524 if (mode != DRM_MODE_DPMS_ON) {
525 if (dp_reg & DP_PORT_EN)
526 intel_dp_link_down(intel_output, dp_priv->DP);
527 } else {
528 if (!(dp_reg & DP_PORT_EN))
529 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
530 }
c8110e52 531 dp_priv->dpms_mode = mode;
a4fc5ed6
KP
532}
533
534/*
535 * Fetch AUX CH registers 0x202 - 0x207 which contain
536 * link status information
537 */
538static bool
539intel_dp_get_link_status(struct intel_output *intel_output,
540 uint8_t link_status[DP_LINK_STATUS_SIZE])
541{
542 int ret;
543
544 ret = intel_dp_aux_native_read(intel_output,
545 DP_LANE0_1_STATUS,
546 link_status, DP_LINK_STATUS_SIZE);
547 if (ret != DP_LINK_STATUS_SIZE)
548 return false;
549 return true;
550}
551
552static uint8_t
553intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
554 int r)
555{
556 return link_status[r - DP_LANE0_1_STATUS];
557}
558
559static void
560intel_dp_save(struct drm_connector *connector)
561{
562 struct intel_output *intel_output = to_intel_output(connector);
563 struct drm_device *dev = intel_output->base.dev;
564 struct drm_i915_private *dev_priv = dev->dev_private;
565 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
566
567 dp_priv->save_DP = I915_READ(dp_priv->output_reg);
568 intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
569 dp_priv->save_link_configuration,
570 sizeof (dp_priv->save_link_configuration));
571}
572
573static uint8_t
574intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
575 int lane)
576{
577 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
578 int s = ((lane & 1) ?
579 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
580 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
581 uint8_t l = intel_dp_link_status(link_status, i);
582
583 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
584}
585
586static uint8_t
587intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
588 int lane)
589{
590 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
591 int s = ((lane & 1) ?
592 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
593 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
594 uint8_t l = intel_dp_link_status(link_status, i);
595
596 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
597}
598
599
600#if 0
601static char *voltage_names[] = {
602 "0.4V", "0.6V", "0.8V", "1.2V"
603};
604static char *pre_emph_names[] = {
605 "0dB", "3.5dB", "6dB", "9.5dB"
606};
607static char *link_train_names[] = {
608 "pattern 1", "pattern 2", "idle", "off"
609};
610#endif
611
612/*
613 * These are source-specific values; current Intel hardware supports
614 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
615 */
616#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
617
618static uint8_t
619intel_dp_pre_emphasis_max(uint8_t voltage_swing)
620{
621 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
622 case DP_TRAIN_VOLTAGE_SWING_400:
623 return DP_TRAIN_PRE_EMPHASIS_6;
624 case DP_TRAIN_VOLTAGE_SWING_600:
625 return DP_TRAIN_PRE_EMPHASIS_6;
626 case DP_TRAIN_VOLTAGE_SWING_800:
627 return DP_TRAIN_PRE_EMPHASIS_3_5;
628 case DP_TRAIN_VOLTAGE_SWING_1200:
629 default:
630 return DP_TRAIN_PRE_EMPHASIS_0;
631 }
632}
633
634static void
635intel_get_adjust_train(struct intel_output *intel_output,
636 uint8_t link_status[DP_LINK_STATUS_SIZE],
637 int lane_count,
638 uint8_t train_set[4])
639{
640 uint8_t v = 0;
641 uint8_t p = 0;
642 int lane;
643
644 for (lane = 0; lane < lane_count; lane++) {
645 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
646 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
647
648 if (this_v > v)
649 v = this_v;
650 if (this_p > p)
651 p = this_p;
652 }
653
654 if (v >= I830_DP_VOLTAGE_MAX)
655 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
656
657 if (p >= intel_dp_pre_emphasis_max(v))
658 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
659
660 for (lane = 0; lane < 4; lane++)
661 train_set[lane] = v | p;
662}
663
664static uint32_t
665intel_dp_signal_levels(uint8_t train_set, int lane_count)
666{
667 uint32_t signal_levels = 0;
668
669 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
670 case DP_TRAIN_VOLTAGE_SWING_400:
671 default:
672 signal_levels |= DP_VOLTAGE_0_4;
673 break;
674 case DP_TRAIN_VOLTAGE_SWING_600:
675 signal_levels |= DP_VOLTAGE_0_6;
676 break;
677 case DP_TRAIN_VOLTAGE_SWING_800:
678 signal_levels |= DP_VOLTAGE_0_8;
679 break;
680 case DP_TRAIN_VOLTAGE_SWING_1200:
681 signal_levels |= DP_VOLTAGE_1_2;
682 break;
683 }
684 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
685 case DP_TRAIN_PRE_EMPHASIS_0:
686 default:
687 signal_levels |= DP_PRE_EMPHASIS_0;
688 break;
689 case DP_TRAIN_PRE_EMPHASIS_3_5:
690 signal_levels |= DP_PRE_EMPHASIS_3_5;
691 break;
692 case DP_TRAIN_PRE_EMPHASIS_6:
693 signal_levels |= DP_PRE_EMPHASIS_6;
694 break;
695 case DP_TRAIN_PRE_EMPHASIS_9_5:
696 signal_levels |= DP_PRE_EMPHASIS_9_5;
697 break;
698 }
699 return signal_levels;
700}
701
702static uint8_t
703intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
704 int lane)
705{
706 int i = DP_LANE0_1_STATUS + (lane >> 1);
707 int s = (lane & 1) * 4;
708 uint8_t l = intel_dp_link_status(link_status, i);
709
710 return (l >> s) & 0xf;
711}
712
713/* Check for clock recovery is done on all channels */
714static bool
715intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
716{
717 int lane;
718 uint8_t lane_status;
719
720 for (lane = 0; lane < lane_count; lane++) {
721 lane_status = intel_get_lane_status(link_status, lane);
722 if ((lane_status & DP_LANE_CR_DONE) == 0)
723 return false;
724 }
725 return true;
726}
727
728/* Check to see if channel eq is done on all channels */
729#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
730 DP_LANE_CHANNEL_EQ_DONE|\
731 DP_LANE_SYMBOL_LOCKED)
732static bool
733intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
734{
735 uint8_t lane_align;
736 uint8_t lane_status;
737 int lane;
738
739 lane_align = intel_dp_link_status(link_status,
740 DP_LANE_ALIGN_STATUS_UPDATED);
741 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
742 return false;
743 for (lane = 0; lane < lane_count; lane++) {
744 lane_status = intel_get_lane_status(link_status, lane);
745 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
746 return false;
747 }
748 return true;
749}
750
751static bool
752intel_dp_set_link_train(struct intel_output *intel_output,
753 uint32_t dp_reg_value,
754 uint8_t dp_train_pat,
755 uint8_t train_set[4],
756 bool first)
757{
758 struct drm_device *dev = intel_output->base.dev;
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
761 int ret;
762
763 I915_WRITE(dp_priv->output_reg, dp_reg_value);
764 POSTING_READ(dp_priv->output_reg);
765 if (first)
766 intel_wait_for_vblank(dev);
767
768 intel_dp_aux_native_write_1(intel_output,
769 DP_TRAINING_PATTERN_SET,
770 dp_train_pat);
771
772 ret = intel_dp_aux_native_write(intel_output,
773 DP_TRAINING_LANE0_SET, train_set, 4);
774 if (ret != 4)
775 return false;
776
777 return true;
778}
779
780static void
781intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
782 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
783{
784 struct drm_device *dev = intel_output->base.dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
787 uint8_t train_set[4];
788 uint8_t link_status[DP_LINK_STATUS_SIZE];
789 int i;
790 uint8_t voltage;
791 bool clock_recovery = false;
792 bool channel_eq = false;
793 bool first = true;
794 int tries;
795
796 /* Write the link configuration data */
797 intel_dp_aux_native_write(intel_output, 0x100,
798 link_configuration, DP_LINK_CONFIGURATION_SIZE);
799
800 DP |= DP_PORT_EN;
801 DP &= ~DP_LINK_TRAIN_MASK;
802 memset(train_set, 0, 4);
803 voltage = 0xff;
804 tries = 0;
805 clock_recovery = false;
806 for (;;) {
807 /* Use train_set[0] to set the voltage and pre emphasis values */
808 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
809 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
810
811 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
812 DP_TRAINING_PATTERN_1, train_set, first))
813 break;
814 first = false;
815 /* Set training pattern 1 */
816
817 udelay(100);
818 if (!intel_dp_get_link_status(intel_output, link_status))
819 break;
820
821 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
822 clock_recovery = true;
823 break;
824 }
825
826 /* Check to see if we've tried the max voltage */
827 for (i = 0; i < dp_priv->lane_count; i++)
828 if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
829 break;
830 if (i == dp_priv->lane_count)
831 break;
832
833 /* Check to see if we've tried the same voltage 5 times */
834 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
835 ++tries;
836 if (tries == 5)
837 break;
838 } else
839 tries = 0;
840 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
841
842 /* Compute new train_set as requested by target */
843 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
844 }
845
846 /* channel equalization */
847 tries = 0;
848 channel_eq = false;
849 for (;;) {
850 /* Use train_set[0] to set the voltage and pre emphasis values */
851 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
852 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
853
854 /* channel eq pattern */
855 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
856 DP_TRAINING_PATTERN_2, train_set,
857 false))
858 break;
859
860 udelay(400);
861 if (!intel_dp_get_link_status(intel_output, link_status))
862 break;
863
864 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
865 channel_eq = true;
866 break;
867 }
868
869 /* Try 5 times */
870 if (tries > 5)
871 break;
872
873 /* Compute new train_set as requested by target */
874 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
875 ++tries;
876 }
877
878 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
879 POSTING_READ(dp_priv->output_reg);
880 intel_dp_aux_native_write_1(intel_output,
881 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
882}
883
884static void
885intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
886{
887 struct drm_device *dev = intel_output->base.dev;
888 struct drm_i915_private *dev_priv = dev->dev_private;
889 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
890
891 I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
892 POSTING_READ(dp_priv->output_reg);
893}
894
895static void
896intel_dp_restore(struct drm_connector *connector)
897{
898 struct intel_output *intel_output = to_intel_output(connector);
899 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
900
901 if (dp_priv->save_DP & DP_PORT_EN)
902 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
903 else
904 intel_dp_link_down(intel_output, dp_priv->save_DP);
905}
906
a4fc5ed6
KP
907/*
908 * According to DP spec
909 * 5.1.2:
910 * 1. Read DPCD
911 * 2. Configure link according to Receiver Capabilities
912 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
913 * 4. Check link status on receipt of hot-plug interrupt
914 */
915
916static void
917intel_dp_check_link_status(struct intel_output *intel_output)
918{
919 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
920 uint8_t link_status[DP_LINK_STATUS_SIZE];
921
922 if (!intel_output->enc.crtc)
923 return;
924
925 if (!intel_dp_get_link_status(intel_output, link_status)) {
926 intel_dp_link_down(intel_output, dp_priv->DP);
927 return;
928 }
929
930 if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
931 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
932}
a4fc5ed6
KP
933
934/**
935 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
936 *
937 * \return true if DP port is connected.
938 * \return false if DP port is disconnected.
939 */
940static enum drm_connector_status
941intel_dp_detect(struct drm_connector *connector)
942{
943 struct intel_output *intel_output = to_intel_output(connector);
944 struct drm_device *dev = intel_output->base.dev;
945 struct drm_i915_private *dev_priv = dev->dev_private;
946 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
947 uint32_t temp, bit;
948 enum drm_connector_status status;
949
950 dp_priv->has_audio = false;
951
952 temp = I915_READ(PORT_HOTPLUG_EN);
953
954 I915_WRITE(PORT_HOTPLUG_EN,
955 temp |
956 DPB_HOTPLUG_INT_EN |
957 DPC_HOTPLUG_INT_EN |
958 DPD_HOTPLUG_INT_EN);
959
960 POSTING_READ(PORT_HOTPLUG_EN);
961
962 switch (dp_priv->output_reg) {
963 case DP_B:
964 bit = DPB_HOTPLUG_INT_STATUS;
965 break;
966 case DP_C:
967 bit = DPC_HOTPLUG_INT_STATUS;
968 break;
969 case DP_D:
970 bit = DPD_HOTPLUG_INT_STATUS;
971 break;
972 default:
973 return connector_status_unknown;
974 }
975
976 temp = I915_READ(PORT_HOTPLUG_STAT);
977
978 if ((temp & bit) == 0)
979 return connector_status_disconnected;
980
981 status = connector_status_disconnected;
982 if (intel_dp_aux_native_read(intel_output,
983 0x000, dp_priv->dpcd,
984 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
985 {
986 if (dp_priv->dpcd[0] != 0)
987 status = connector_status_connected;
988 }
989 return status;
990}
991
992static int intel_dp_get_modes(struct drm_connector *connector)
993{
994 struct intel_output *intel_output = to_intel_output(connector);
995
996 /* We should parse the EDID data and find out if it has an audio sink
997 */
998
999 return intel_ddc_get_modes(intel_output);
1000}
1001
1002static void
1003intel_dp_destroy (struct drm_connector *connector)
1004{
1005 struct intel_output *intel_output = to_intel_output(connector);
1006
1007 if (intel_output->i2c_bus)
1008 intel_i2c_destroy(intel_output->i2c_bus);
1009 drm_sysfs_connector_remove(connector);
1010 drm_connector_cleanup(connector);
1011 kfree(intel_output);
1012}
1013
1014static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1015 .dpms = intel_dp_dpms,
1016 .mode_fixup = intel_dp_mode_fixup,
1017 .prepare = intel_encoder_prepare,
1018 .mode_set = intel_dp_mode_set,
1019 .commit = intel_encoder_commit,
1020};
1021
1022static const struct drm_connector_funcs intel_dp_connector_funcs = {
1023 .dpms = drm_helper_connector_dpms,
1024 .save = intel_dp_save,
1025 .restore = intel_dp_restore,
1026 .detect = intel_dp_detect,
1027 .fill_modes = drm_helper_probe_single_connector_modes,
1028 .destroy = intel_dp_destroy,
1029};
1030
1031static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1032 .get_modes = intel_dp_get_modes,
1033 .mode_valid = intel_dp_mode_valid,
1034 .best_encoder = intel_best_encoder,
1035};
1036
1037static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1038{
1039 drm_encoder_cleanup(encoder);
1040}
1041
1042static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1043 .destroy = intel_dp_enc_destroy,
1044};
1045
c8110e52
KP
1046void
1047intel_dp_hot_plug(struct intel_output *intel_output)
1048{
1049 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1050
1051 if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1052 intel_dp_check_link_status(intel_output);
1053}
1054
a4fc5ed6
KP
1055void
1056intel_dp_init(struct drm_device *dev, int output_reg)
1057{
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 struct drm_connector *connector;
1060 struct intel_output *intel_output;
1061 struct intel_dp_priv *dp_priv;
1062
1063 intel_output = kcalloc(sizeof(struct intel_output) +
1064 sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1065 if (!intel_output)
1066 return;
1067
1068 dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1069
1070 connector = &intel_output->base;
1071 drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1072 DRM_MODE_CONNECTOR_DisplayPort);
1073 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1074
1075 intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1076
1077 connector->interlace_allowed = true;
1078 connector->doublescan_allowed = 0;
1079
1080 dp_priv->intel_output = intel_output;
1081 dp_priv->output_reg = output_reg;
1082 dp_priv->has_audio = false;
c8110e52 1083 dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
a4fc5ed6
KP
1084 intel_output->dev_priv = dp_priv;
1085
1086 drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1087 DRM_MODE_ENCODER_TMDS);
1088 drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1089
1090 drm_mode_connector_attach_encoder(&intel_output->base,
1091 &intel_output->enc);
1092 drm_sysfs_connector_add(connector);
1093
1094 /* Set up the DDC bus. */
1095 intel_dp_i2c_init(intel_output,
1096 (output_reg == DP_B) ? "DPDDC-B" :
1097 (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
1098 intel_output->ddc_bus = &dp_priv->adapter;
c8110e52 1099 intel_output->hot_plug = intel_dp_hot_plug;
a4fc5ed6
KP
1100
1101 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1102 * 0xd. Failure to do so will result in spurious interrupts being
1103 * generated on the port when a cable is not attached.
1104 */
1105 if (IS_G4X(dev) && !IS_GM45(dev)) {
1106 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1107 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1108 }
1109}