]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/intel_dp.c
drm/i915: enable HDMI on Cougarpoint
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_dp.c
CommitLineData
a4fc5ed6
KP
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include "drmP.h"
30#include "drm.h"
31#include "drm_crtc.h"
32#include "drm_crtc_helper.h"
33#include "intel_drv.h"
34#include "i915_drm.h"
35#include "i915_drv.h"
ab2c0672 36#include "drm_dp_helper.h"
a4fc5ed6 37
ae266c98 38
a4fc5ed6
KP
39#define DP_LINK_STATUS_SIZE 6
40#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
41
42#define DP_LINK_CONFIGURATION_SIZE 9
43
32f9d658
ZW
44#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
45
a4fc5ed6
KP
46struct intel_dp_priv {
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
a4fc5ed6 50 bool has_audio;
c8110e52 51 int dpms_mode;
a4fc5ed6
KP
52 uint8_t link_bw;
53 uint8_t lane_count;
54 uint8_t dpcd[4];
21d40d37 55 struct intel_encoder *intel_encoder;
a4fc5ed6
KP
56 struct i2c_adapter adapter;
57 struct i2c_algo_dp_aux_data algo;
58};
59
60static void
21d40d37 61intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
a4fc5ed6
KP
62 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
63
64static void
21d40d37 65intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
a4fc5ed6 66
32f9d658 67void
21d40d37 68intel_edp_link_config (struct intel_encoder *intel_encoder,
32f9d658
ZW
69 int *lane_num, int *link_bw)
70{
21d40d37 71 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
32f9d658
ZW
72
73 *lane_num = dp_priv->lane_count;
74 if (dp_priv->link_bw == DP_LINK_BW_1_62)
75 *link_bw = 162000;
76 else if (dp_priv->link_bw == DP_LINK_BW_2_7)
77 *link_bw = 270000;
78}
79
a4fc5ed6 80static int
21d40d37 81intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
a4fc5ed6 82{
21d40d37 83 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
84 int max_lane_count = 4;
85
86 if (dp_priv->dpcd[0] >= 0x11) {
87 max_lane_count = dp_priv->dpcd[2] & 0x1f;
88 switch (max_lane_count) {
89 case 1: case 2: case 4:
90 break;
91 default:
92 max_lane_count = 4;
93 }
94 }
95 return max_lane_count;
96}
97
98static int
21d40d37 99intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
a4fc5ed6 100{
21d40d37 101 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
102 int max_link_bw = dp_priv->dpcd[1];
103
104 switch (max_link_bw) {
105 case DP_LINK_BW_1_62:
106 case DP_LINK_BW_2_7:
107 break;
108 default:
109 max_link_bw = DP_LINK_BW_1_62;
110 break;
111 }
112 return max_link_bw;
113}
114
115static int
116intel_dp_link_clock(uint8_t link_bw)
117{
118 if (link_bw == DP_LINK_BW_2_7)
119 return 270000;
120 else
121 return 162000;
122}
123
124/* I think this is a fiction */
125static int
885a5fb5 126intel_dp_link_required(struct drm_device *dev,
21d40d37 127 struct intel_encoder *intel_encoder, int pixel_clock)
a4fc5ed6 128{
885a5fb5
ZW
129 struct drm_i915_private *dev_priv = dev->dev_private;
130
21d40d37 131 if (IS_eDP(intel_encoder))
885a5fb5
ZW
132 return (pixel_clock * dev_priv->edp_bpp) / 8;
133 else
134 return pixel_clock * 3;
a4fc5ed6
KP
135}
136
137static int
138intel_dp_mode_valid(struct drm_connector *connector,
139 struct drm_display_mode *mode)
140{
21d40d37
EA
141 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
142 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
143 int max_lanes = intel_dp_max_lane_count(intel_encoder);
a4fc5ed6 144
21d40d37 145 if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
885a5fb5 146 > max_link_clock * max_lanes)
a4fc5ed6
KP
147 return MODE_CLOCK_HIGH;
148
149 if (mode->clock < 10000)
150 return MODE_CLOCK_LOW;
151
152 return MODE_OK;
153}
154
155static uint32_t
156pack_aux(uint8_t *src, int src_bytes)
157{
158 int i;
159 uint32_t v = 0;
160
161 if (src_bytes > 4)
162 src_bytes = 4;
163 for (i = 0; i < src_bytes; i++)
164 v |= ((uint32_t) src[i]) << ((3-i) * 8);
165 return v;
166}
167
168static void
169unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
170{
171 int i;
172 if (dst_bytes > 4)
173 dst_bytes = 4;
174 for (i = 0; i < dst_bytes; i++)
175 dst[i] = src >> ((3-i) * 8);
176}
177
fb0f8fbf
KP
178/* hrawclock is 1/4 the FSB frequency */
179static int
180intel_hrawclk(struct drm_device *dev)
181{
182 struct drm_i915_private *dev_priv = dev->dev_private;
183 uint32_t clkcfg;
184
185 clkcfg = I915_READ(CLKCFG);
186 switch (clkcfg & CLKCFG_FSB_MASK) {
187 case CLKCFG_FSB_400:
188 return 100;
189 case CLKCFG_FSB_533:
190 return 133;
191 case CLKCFG_FSB_667:
192 return 166;
193 case CLKCFG_FSB_800:
194 return 200;
195 case CLKCFG_FSB_1067:
196 return 266;
197 case CLKCFG_FSB_1333:
198 return 333;
199 /* these two are just a guess; one of them might be right */
200 case CLKCFG_FSB_1600:
201 case CLKCFG_FSB_1600_ALT:
202 return 400;
203 default:
204 return 133;
205 }
206}
207
a4fc5ed6 208static int
21d40d37 209intel_dp_aux_ch(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
210 uint8_t *send, int send_bytes,
211 uint8_t *recv, int recv_size)
212{
21d40d37 213 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 214 uint32_t output_reg = dp_priv->output_reg;
21d40d37 215 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6
KP
216 struct drm_i915_private *dev_priv = dev->dev_private;
217 uint32_t ch_ctl = output_reg + 0x10;
218 uint32_t ch_data = ch_ctl + 4;
219 int i;
220 int recv_bytes;
221 uint32_t ctl;
222 uint32_t status;
fb0f8fbf
KP
223 uint32_t aux_clock_divider;
224 int try;
a4fc5ed6
KP
225
226 /* The clock divider is based off the hrawclk,
fb0f8fbf
KP
227 * and would like to run at 2MHz. So, take the
228 * hrawclk value and divide by 2 and use that
a4fc5ed6 229 */
21d40d37 230 if (IS_eDP(intel_encoder))
32f9d658 231 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
c619eed4 232 else if (HAS_PCH_SPLIT(dev))
f2b115e6 233 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
5eb08b69
ZW
234 else
235 aux_clock_divider = intel_hrawclk(dev) / 2;
236
fb0f8fbf
KP
237 /* Must try at least 3 times according to DP spec */
238 for (try = 0; try < 5; try++) {
239 /* Load the send data into the aux channel data registers */
240 for (i = 0; i < send_bytes; i += 4) {
a419aef8 241 uint32_t d = pack_aux(send + i, send_bytes - i);
fb0f8fbf
KP
242
243 I915_WRITE(ch_data + i, d);
244 }
245
246 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
247 DP_AUX_CH_CTL_TIME_OUT_400us |
248 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
249 (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
250 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
251 DP_AUX_CH_CTL_DONE |
252 DP_AUX_CH_CTL_TIME_OUT_ERROR |
253 DP_AUX_CH_CTL_RECEIVE_ERROR);
254
255 /* Send the command and wait for it to complete */
256 I915_WRITE(ch_ctl, ctl);
257 (void) I915_READ(ch_ctl);
258 for (;;) {
259 udelay(100);
260 status = I915_READ(ch_ctl);
261 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
262 break;
263 }
264
265 /* Clear done status and any errors */
eebc863e 266 I915_WRITE(ch_ctl, (status |
fb0f8fbf
KP
267 DP_AUX_CH_CTL_DONE |
268 DP_AUX_CH_CTL_TIME_OUT_ERROR |
269 DP_AUX_CH_CTL_RECEIVE_ERROR));
270 (void) I915_READ(ch_ctl);
271 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
a4fc5ed6
KP
272 break;
273 }
274
a4fc5ed6 275 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1ae8c0a5 276 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
a5b3da54 277 return -EBUSY;
a4fc5ed6
KP
278 }
279
280 /* Check for timeout or receive error.
281 * Timeouts occur when the sink is not connected
282 */
a5b3da54 283 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1ae8c0a5 284 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
a5b3da54
KP
285 return -EIO;
286 }
1ae8c0a5
KP
287
288 /* Timeouts occur when the device isn't connected, so they're
289 * "normal" -- don't fill the kernel log with these */
a5b3da54 290 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
28c97730 291 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
a5b3da54 292 return -ETIMEDOUT;
a4fc5ed6
KP
293 }
294
295 /* Unload any bytes sent back from the other side */
296 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
297 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
298
299 if (recv_bytes > recv_size)
300 recv_bytes = recv_size;
301
302 for (i = 0; i < recv_bytes; i += 4) {
303 uint32_t d = I915_READ(ch_data + i);
304
305 unpack_aux(d, recv + i, recv_bytes - i);
306 }
307
308 return recv_bytes;
309}
310
311/* Write data to the aux channel in native mode */
312static int
21d40d37 313intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
314 uint16_t address, uint8_t *send, int send_bytes)
315{
316 int ret;
317 uint8_t msg[20];
318 int msg_bytes;
319 uint8_t ack;
320
321 if (send_bytes > 16)
322 return -1;
323 msg[0] = AUX_NATIVE_WRITE << 4;
324 msg[1] = address >> 8;
eebc863e 325 msg[2] = address & 0xff;
a4fc5ed6
KP
326 msg[3] = send_bytes - 1;
327 memcpy(&msg[4], send, send_bytes);
328 msg_bytes = send_bytes + 4;
329 for (;;) {
21d40d37 330 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
a4fc5ed6
KP
331 if (ret < 0)
332 return ret;
333 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
334 break;
335 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
336 udelay(100);
337 else
a5b3da54 338 return -EIO;
a4fc5ed6
KP
339 }
340 return send_bytes;
341}
342
343/* Write a single byte to the aux channel in native mode */
344static int
21d40d37 345intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
346 uint16_t address, uint8_t byte)
347{
21d40d37 348 return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
a4fc5ed6
KP
349}
350
351/* read bytes from a native aux channel */
352static int
21d40d37 353intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
354 uint16_t address, uint8_t *recv, int recv_bytes)
355{
356 uint8_t msg[4];
357 int msg_bytes;
358 uint8_t reply[20];
359 int reply_bytes;
360 uint8_t ack;
361 int ret;
362
363 msg[0] = AUX_NATIVE_READ << 4;
364 msg[1] = address >> 8;
365 msg[2] = address & 0xff;
366 msg[3] = recv_bytes - 1;
367
368 msg_bytes = 4;
369 reply_bytes = recv_bytes + 1;
370
371 for (;;) {
21d40d37 372 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
a4fc5ed6 373 reply, reply_bytes);
a5b3da54
KP
374 if (ret == 0)
375 return -EPROTO;
376 if (ret < 0)
a4fc5ed6
KP
377 return ret;
378 ack = reply[0];
379 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
380 memcpy(recv, reply + 1, ret - 1);
381 return ret - 1;
382 }
383 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
384 udelay(100);
385 else
a5b3da54 386 return -EIO;
a4fc5ed6
KP
387 }
388}
389
390static int
ab2c0672
DA
391intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
392 uint8_t write_byte, uint8_t *read_byte)
a4fc5ed6 393{
ab2c0672 394 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
a4fc5ed6
KP
395 struct intel_dp_priv *dp_priv = container_of(adapter,
396 struct intel_dp_priv,
397 adapter);
21d40d37 398 struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
ab2c0672
DA
399 uint16_t address = algo_data->address;
400 uint8_t msg[5];
401 uint8_t reply[2];
402 int msg_bytes;
403 int reply_bytes;
404 int ret;
405
406 /* Set up the command byte */
407 if (mode & MODE_I2C_READ)
408 msg[0] = AUX_I2C_READ << 4;
409 else
410 msg[0] = AUX_I2C_WRITE << 4;
411
412 if (!(mode & MODE_I2C_STOP))
413 msg[0] |= AUX_I2C_MOT << 4;
a4fc5ed6 414
ab2c0672
DA
415 msg[1] = address >> 8;
416 msg[2] = address;
417
418 switch (mode) {
419 case MODE_I2C_WRITE:
420 msg[3] = 0;
421 msg[4] = write_byte;
422 msg_bytes = 5;
423 reply_bytes = 1;
424 break;
425 case MODE_I2C_READ:
426 msg[3] = 0;
427 msg_bytes = 4;
428 reply_bytes = 2;
429 break;
430 default:
431 msg_bytes = 3;
432 reply_bytes = 1;
433 break;
434 }
435
436 for (;;) {
21d40d37 437 ret = intel_dp_aux_ch(intel_encoder,
ab2c0672
DA
438 msg, msg_bytes,
439 reply, reply_bytes);
440 if (ret < 0) {
3ff99164 441 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
ab2c0672
DA
442 return ret;
443 }
444 switch (reply[0] & AUX_I2C_REPLY_MASK) {
445 case AUX_I2C_REPLY_ACK:
446 if (mode == MODE_I2C_READ) {
447 *read_byte = reply[1];
448 }
449 return reply_bytes - 1;
450 case AUX_I2C_REPLY_NACK:
3ff99164 451 DRM_DEBUG_KMS("aux_ch nack\n");
ab2c0672
DA
452 return -EREMOTEIO;
453 case AUX_I2C_REPLY_DEFER:
3ff99164 454 DRM_DEBUG_KMS("aux_ch defer\n");
ab2c0672
DA
455 udelay(100);
456 break;
457 default:
458 DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
459 return -EREMOTEIO;
460 }
461 }
a4fc5ed6
KP
462}
463
464static int
21d40d37 465intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
a4fc5ed6 466{
21d40d37 467 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 468
d54e9d28 469 DRM_DEBUG_KMS("i2c_init %s\n", name);
a4fc5ed6
KP
470 dp_priv->algo.running = false;
471 dp_priv->algo.address = 0;
472 dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
473
474 memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
475 dp_priv->adapter.owner = THIS_MODULE;
476 dp_priv->adapter.class = I2C_CLASS_DDC;
eebc863e
ZW
477 strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
478 dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
a4fc5ed6 479 dp_priv->adapter.algo_data = &dp_priv->algo;
21d40d37 480 dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
a4fc5ed6
KP
481
482 return i2c_dp_aux_add_bus(&dp_priv->adapter);
483}
484
485static bool
486intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
487 struct drm_display_mode *adjusted_mode)
488{
21d40d37
EA
489 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
490 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 491 int lane_count, clock;
21d40d37
EA
492 int max_lane_count = intel_dp_max_lane_count(intel_encoder);
493 int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
a4fc5ed6
KP
494 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
495
496 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
497 for (clock = 0; clock <= max_clock; clock++) {
498 int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
499
21d40d37 500 if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
885a5fb5 501 <= link_avail) {
a4fc5ed6
KP
502 dp_priv->link_bw = bws[clock];
503 dp_priv->lane_count = lane_count;
504 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
28c97730
ZY
505 DRM_DEBUG_KMS("Display port link bw %02x lane "
506 "count %d clock %d\n",
a4fc5ed6
KP
507 dp_priv->link_bw, dp_priv->lane_count,
508 adjusted_mode->clock);
509 return true;
510 }
511 }
512 }
513 return false;
514}
515
516struct intel_dp_m_n {
517 uint32_t tu;
518 uint32_t gmch_m;
519 uint32_t gmch_n;
520 uint32_t link_m;
521 uint32_t link_n;
522};
523
524static void
525intel_reduce_ratio(uint32_t *num, uint32_t *den)
526{
527 while (*num > 0xffffff || *den > 0xffffff) {
528 *num >>= 1;
529 *den >>= 1;
530 }
531}
532
533static void
534intel_dp_compute_m_n(int bytes_per_pixel,
535 int nlanes,
536 int pixel_clock,
537 int link_clock,
538 struct intel_dp_m_n *m_n)
539{
540 m_n->tu = 64;
541 m_n->gmch_m = pixel_clock * bytes_per_pixel;
542 m_n->gmch_n = link_clock * nlanes;
543 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
544 m_n->link_m = pixel_clock;
545 m_n->link_n = link_clock;
546 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
547}
548
549void
550intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
551 struct drm_display_mode *adjusted_mode)
552{
553 struct drm_device *dev = crtc->dev;
554 struct drm_mode_config *mode_config = &dev->mode_config;
555 struct drm_connector *connector;
556 struct drm_i915_private *dev_priv = dev->dev_private;
557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
558 int lane_count = 4;
559 struct intel_dp_m_n m_n;
560
561 /*
21d40d37 562 * Find the lane count in the intel_encoder private
a4fc5ed6
KP
563 */
564 list_for_each_entry(connector, &mode_config->connector_list, head) {
21d40d37
EA
565 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
566 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
567
568 if (!connector->encoder || connector->encoder->crtc != crtc)
569 continue;
570
21d40d37 571 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
a4fc5ed6
KP
572 lane_count = dp_priv->lane_count;
573 break;
574 }
575 }
576
577 /*
578 * Compute the GMCH and Link ratios. The '3' here is
579 * the number of bytes_per_pixel post-LUT, which we always
580 * set up for 8-bits of R/G/B, or 3 bytes total.
581 */
582 intel_dp_compute_m_n(3, lane_count,
583 mode->clock, adjusted_mode->clock, &m_n);
584
c619eed4 585 if (HAS_PCH_SPLIT(dev)) {
5eb08b69
ZW
586 if (intel_crtc->pipe == 0) {
587 I915_WRITE(TRANSA_DATA_M1,
588 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
589 m_n.gmch_m);
590 I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
591 I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
592 I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
593 } else {
594 I915_WRITE(TRANSB_DATA_M1,
595 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
596 m_n.gmch_m);
597 I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
598 I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
599 I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
600 }
a4fc5ed6 601 } else {
5eb08b69
ZW
602 if (intel_crtc->pipe == 0) {
603 I915_WRITE(PIPEA_GMCH_DATA_M,
604 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
605 m_n.gmch_m);
606 I915_WRITE(PIPEA_GMCH_DATA_N,
607 m_n.gmch_n);
608 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
609 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
610 } else {
611 I915_WRITE(PIPEB_GMCH_DATA_M,
612 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
613 m_n.gmch_m);
614 I915_WRITE(PIPEB_GMCH_DATA_N,
615 m_n.gmch_n);
616 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
617 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
618 }
a4fc5ed6
KP
619 }
620}
621
622static void
623intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
624 struct drm_display_mode *adjusted_mode)
625{
21d40d37
EA
626 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
627 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
628 struct drm_crtc *crtc = intel_encoder->enc.crtc;
a4fc5ed6
KP
629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
630
631 dp_priv->DP = (DP_LINK_TRAIN_OFF |
632 DP_VOLTAGE_0_4 |
633 DP_PRE_EMPHASIS_0 |
634 DP_SYNC_VS_HIGH |
635 DP_SYNC_HS_HIGH);
636
637 switch (dp_priv->lane_count) {
638 case 1:
639 dp_priv->DP |= DP_PORT_WIDTH_1;
640 break;
641 case 2:
642 dp_priv->DP |= DP_PORT_WIDTH_2;
643 break;
644 case 4:
645 dp_priv->DP |= DP_PORT_WIDTH_4;
646 break;
647 }
648 if (dp_priv->has_audio)
649 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
650
651 memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
652 dp_priv->link_configuration[0] = dp_priv->link_bw;
653 dp_priv->link_configuration[1] = dp_priv->lane_count;
654
655 /*
656 * Check for DPCD version > 1.1,
657 * enable enahanced frame stuff in that case
658 */
659 if (dp_priv->dpcd[0] >= 0x11) {
660 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
661 dp_priv->DP |= DP_ENHANCED_FRAMING;
662 }
663
664 if (intel_crtc->pipe == 1)
665 dp_priv->DP |= DP_PIPEB_SELECT;
32f9d658 666
21d40d37 667 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
668 /* don't miss out required setting for eDP */
669 dp_priv->DP |= DP_PLL_ENABLE;
670 if (adjusted_mode->clock < 200000)
671 dp_priv->DP |= DP_PLL_FREQ_160MHZ;
672 else
673 dp_priv->DP |= DP_PLL_FREQ_270MHZ;
674 }
a4fc5ed6
KP
675}
676
f2b115e6 677static void ironlake_edp_backlight_on (struct drm_device *dev)
32f9d658
ZW
678{
679 struct drm_i915_private *dev_priv = dev->dev_private;
680 u32 pp;
681
28c97730 682 DRM_DEBUG_KMS("\n");
32f9d658
ZW
683 pp = I915_READ(PCH_PP_CONTROL);
684 pp |= EDP_BLC_ENABLE;
685 I915_WRITE(PCH_PP_CONTROL, pp);
686}
687
f2b115e6 688static void ironlake_edp_backlight_off (struct drm_device *dev)
32f9d658
ZW
689{
690 struct drm_i915_private *dev_priv = dev->dev_private;
691 u32 pp;
692
28c97730 693 DRM_DEBUG_KMS("\n");
32f9d658
ZW
694 pp = I915_READ(PCH_PP_CONTROL);
695 pp &= ~EDP_BLC_ENABLE;
696 I915_WRITE(PCH_PP_CONTROL, pp);
697}
a4fc5ed6
KP
698
699static void
700intel_dp_dpms(struct drm_encoder *encoder, int mode)
701{
21d40d37
EA
702 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
703 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
704 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6
KP
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 uint32_t dp_reg = I915_READ(dp_priv->output_reg);
707
708 if (mode != DRM_MODE_DPMS_ON) {
32f9d658 709 if (dp_reg & DP_PORT_EN) {
21d40d37
EA
710 intel_dp_link_down(intel_encoder, dp_priv->DP);
711 if (IS_eDP(intel_encoder))
f2b115e6 712 ironlake_edp_backlight_off(dev);
32f9d658 713 }
a4fc5ed6 714 } else {
32f9d658 715 if (!(dp_reg & DP_PORT_EN)) {
21d40d37
EA
716 intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
717 if (IS_eDP(intel_encoder))
f2b115e6 718 ironlake_edp_backlight_on(dev);
32f9d658 719 }
a4fc5ed6 720 }
c8110e52 721 dp_priv->dpms_mode = mode;
a4fc5ed6
KP
722}
723
724/*
725 * Fetch AUX CH registers 0x202 - 0x207 which contain
726 * link status information
727 */
728static bool
21d40d37 729intel_dp_get_link_status(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
730 uint8_t link_status[DP_LINK_STATUS_SIZE])
731{
732 int ret;
733
21d40d37 734 ret = intel_dp_aux_native_read(intel_encoder,
a4fc5ed6
KP
735 DP_LANE0_1_STATUS,
736 link_status, DP_LINK_STATUS_SIZE);
737 if (ret != DP_LINK_STATUS_SIZE)
738 return false;
739 return true;
740}
741
742static uint8_t
743intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
744 int r)
745{
746 return link_status[r - DP_LANE0_1_STATUS];
747}
748
a4fc5ed6
KP
749static uint8_t
750intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
751 int lane)
752{
753 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
754 int s = ((lane & 1) ?
755 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
756 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
757 uint8_t l = intel_dp_link_status(link_status, i);
758
759 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
760}
761
762static uint8_t
763intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
764 int lane)
765{
766 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
767 int s = ((lane & 1) ?
768 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
769 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
770 uint8_t l = intel_dp_link_status(link_status, i);
771
772 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
773}
774
775
776#if 0
777static char *voltage_names[] = {
778 "0.4V", "0.6V", "0.8V", "1.2V"
779};
780static char *pre_emph_names[] = {
781 "0dB", "3.5dB", "6dB", "9.5dB"
782};
783static char *link_train_names[] = {
784 "pattern 1", "pattern 2", "idle", "off"
785};
786#endif
787
788/*
789 * These are source-specific values; current Intel hardware supports
790 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
791 */
792#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
793
794static uint8_t
795intel_dp_pre_emphasis_max(uint8_t voltage_swing)
796{
797 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
798 case DP_TRAIN_VOLTAGE_SWING_400:
799 return DP_TRAIN_PRE_EMPHASIS_6;
800 case DP_TRAIN_VOLTAGE_SWING_600:
801 return DP_TRAIN_PRE_EMPHASIS_6;
802 case DP_TRAIN_VOLTAGE_SWING_800:
803 return DP_TRAIN_PRE_EMPHASIS_3_5;
804 case DP_TRAIN_VOLTAGE_SWING_1200:
805 default:
806 return DP_TRAIN_PRE_EMPHASIS_0;
807 }
808}
809
810static void
21d40d37 811intel_get_adjust_train(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
812 uint8_t link_status[DP_LINK_STATUS_SIZE],
813 int lane_count,
814 uint8_t train_set[4])
815{
816 uint8_t v = 0;
817 uint8_t p = 0;
818 int lane;
819
820 for (lane = 0; lane < lane_count; lane++) {
821 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
822 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
823
824 if (this_v > v)
825 v = this_v;
826 if (this_p > p)
827 p = this_p;
828 }
829
830 if (v >= I830_DP_VOLTAGE_MAX)
831 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
832
833 if (p >= intel_dp_pre_emphasis_max(v))
834 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
835
836 for (lane = 0; lane < 4; lane++)
837 train_set[lane] = v | p;
838}
839
840static uint32_t
841intel_dp_signal_levels(uint8_t train_set, int lane_count)
842{
843 uint32_t signal_levels = 0;
844
845 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
846 case DP_TRAIN_VOLTAGE_SWING_400:
847 default:
848 signal_levels |= DP_VOLTAGE_0_4;
849 break;
850 case DP_TRAIN_VOLTAGE_SWING_600:
851 signal_levels |= DP_VOLTAGE_0_6;
852 break;
853 case DP_TRAIN_VOLTAGE_SWING_800:
854 signal_levels |= DP_VOLTAGE_0_8;
855 break;
856 case DP_TRAIN_VOLTAGE_SWING_1200:
857 signal_levels |= DP_VOLTAGE_1_2;
858 break;
859 }
860 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
861 case DP_TRAIN_PRE_EMPHASIS_0:
862 default:
863 signal_levels |= DP_PRE_EMPHASIS_0;
864 break;
865 case DP_TRAIN_PRE_EMPHASIS_3_5:
866 signal_levels |= DP_PRE_EMPHASIS_3_5;
867 break;
868 case DP_TRAIN_PRE_EMPHASIS_6:
869 signal_levels |= DP_PRE_EMPHASIS_6;
870 break;
871 case DP_TRAIN_PRE_EMPHASIS_9_5:
872 signal_levels |= DP_PRE_EMPHASIS_9_5;
873 break;
874 }
875 return signal_levels;
876}
877
878static uint8_t
879intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
880 int lane)
881{
882 int i = DP_LANE0_1_STATUS + (lane >> 1);
883 int s = (lane & 1) * 4;
884 uint8_t l = intel_dp_link_status(link_status, i);
885
886 return (l >> s) & 0xf;
887}
888
889/* Check for clock recovery is done on all channels */
890static bool
891intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
892{
893 int lane;
894 uint8_t lane_status;
895
896 for (lane = 0; lane < lane_count; lane++) {
897 lane_status = intel_get_lane_status(link_status, lane);
898 if ((lane_status & DP_LANE_CR_DONE) == 0)
899 return false;
900 }
901 return true;
902}
903
904/* Check to see if channel eq is done on all channels */
905#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
906 DP_LANE_CHANNEL_EQ_DONE|\
907 DP_LANE_SYMBOL_LOCKED)
908static bool
909intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
910{
911 uint8_t lane_align;
912 uint8_t lane_status;
913 int lane;
914
915 lane_align = intel_dp_link_status(link_status,
916 DP_LANE_ALIGN_STATUS_UPDATED);
917 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
918 return false;
919 for (lane = 0; lane < lane_count; lane++) {
920 lane_status = intel_get_lane_status(link_status, lane);
921 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
922 return false;
923 }
924 return true;
925}
926
927static bool
21d40d37 928intel_dp_set_link_train(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
929 uint32_t dp_reg_value,
930 uint8_t dp_train_pat,
931 uint8_t train_set[4],
932 bool first)
933{
21d40d37 934 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 935 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 936 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
937 int ret;
938
939 I915_WRITE(dp_priv->output_reg, dp_reg_value);
940 POSTING_READ(dp_priv->output_reg);
941 if (first)
942 intel_wait_for_vblank(dev);
943
21d40d37 944 intel_dp_aux_native_write_1(intel_encoder,
a4fc5ed6
KP
945 DP_TRAINING_PATTERN_SET,
946 dp_train_pat);
947
21d40d37 948 ret = intel_dp_aux_native_write(intel_encoder,
a4fc5ed6
KP
949 DP_TRAINING_LANE0_SET, train_set, 4);
950 if (ret != 4)
951 return false;
952
953 return true;
954}
955
956static void
21d40d37 957intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
a4fc5ed6
KP
958 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
959{
21d40d37 960 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 961 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 962 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
963 uint8_t train_set[4];
964 uint8_t link_status[DP_LINK_STATUS_SIZE];
965 int i;
966 uint8_t voltage;
967 bool clock_recovery = false;
968 bool channel_eq = false;
969 bool first = true;
970 int tries;
971
972 /* Write the link configuration data */
21d40d37 973 intel_dp_aux_native_write(intel_encoder, 0x100,
a4fc5ed6
KP
974 link_configuration, DP_LINK_CONFIGURATION_SIZE);
975
976 DP |= DP_PORT_EN;
977 DP &= ~DP_LINK_TRAIN_MASK;
978 memset(train_set, 0, 4);
979 voltage = 0xff;
980 tries = 0;
981 clock_recovery = false;
982 for (;;) {
983 /* Use train_set[0] to set the voltage and pre emphasis values */
984 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
985 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
986
21d40d37 987 if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_1,
a4fc5ed6
KP
988 DP_TRAINING_PATTERN_1, train_set, first))
989 break;
990 first = false;
991 /* Set training pattern 1 */
992
993 udelay(100);
21d40d37 994 if (!intel_dp_get_link_status(intel_encoder, link_status))
a4fc5ed6
KP
995 break;
996
997 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
998 clock_recovery = true;
999 break;
1000 }
1001
1002 /* Check to see if we've tried the max voltage */
1003 for (i = 0; i < dp_priv->lane_count; i++)
1004 if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1005 break;
1006 if (i == dp_priv->lane_count)
1007 break;
1008
1009 /* Check to see if we've tried the same voltage 5 times */
1010 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1011 ++tries;
1012 if (tries == 5)
1013 break;
1014 } else
1015 tries = 0;
1016 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1017
1018 /* Compute new train_set as requested by target */
21d40d37 1019 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
a4fc5ed6
KP
1020 }
1021
1022 /* channel equalization */
1023 tries = 0;
1024 channel_eq = false;
1025 for (;;) {
1026 /* Use train_set[0] to set the voltage and pre emphasis values */
1027 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1028 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1029
1030 /* channel eq pattern */
21d40d37 1031 if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_2,
a4fc5ed6
KP
1032 DP_TRAINING_PATTERN_2, train_set,
1033 false))
1034 break;
1035
1036 udelay(400);
21d40d37 1037 if (!intel_dp_get_link_status(intel_encoder, link_status))
a4fc5ed6
KP
1038 break;
1039
1040 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1041 channel_eq = true;
1042 break;
1043 }
1044
1045 /* Try 5 times */
1046 if (tries > 5)
1047 break;
1048
1049 /* Compute new train_set as requested by target */
21d40d37 1050 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
a4fc5ed6
KP
1051 ++tries;
1052 }
1053
1054 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
1055 POSTING_READ(dp_priv->output_reg);
21d40d37 1056 intel_dp_aux_native_write_1(intel_encoder,
a4fc5ed6
KP
1057 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1058}
1059
1060static void
21d40d37 1061intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
a4fc5ed6 1062{
21d40d37 1063 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 1064 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 1065 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 1066
28c97730 1067 DRM_DEBUG_KMS("\n");
32f9d658 1068
21d40d37 1069 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
1070 DP &= ~DP_PLL_ENABLE;
1071 I915_WRITE(dp_priv->output_reg, DP);
1072 POSTING_READ(dp_priv->output_reg);
1073 udelay(100);
1074 }
1075
5eb08b69
ZW
1076 DP &= ~DP_LINK_TRAIN_MASK;
1077 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1078 POSTING_READ(dp_priv->output_reg);
1079
1080 udelay(17000);
1081
21d40d37 1082 if (IS_eDP(intel_encoder))
32f9d658 1083 DP |= DP_LINK_TRAIN_OFF;
a4fc5ed6
KP
1084 I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1085 POSTING_READ(dp_priv->output_reg);
1086}
1087
a4fc5ed6
KP
1088/*
1089 * According to DP spec
1090 * 5.1.2:
1091 * 1. Read DPCD
1092 * 2. Configure link according to Receiver Capabilities
1093 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1094 * 4. Check link status on receipt of hot-plug interrupt
1095 */
1096
1097static void
21d40d37 1098intel_dp_check_link_status(struct intel_encoder *intel_encoder)
a4fc5ed6 1099{
21d40d37 1100 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
1101 uint8_t link_status[DP_LINK_STATUS_SIZE];
1102
21d40d37 1103 if (!intel_encoder->enc.crtc)
a4fc5ed6
KP
1104 return;
1105
21d40d37
EA
1106 if (!intel_dp_get_link_status(intel_encoder, link_status)) {
1107 intel_dp_link_down(intel_encoder, dp_priv->DP);
a4fc5ed6
KP
1108 return;
1109 }
1110
1111 if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
21d40d37 1112 intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
a4fc5ed6 1113}
a4fc5ed6 1114
5eb08b69 1115static enum drm_connector_status
f2b115e6 1116ironlake_dp_detect(struct drm_connector *connector)
5eb08b69 1117{
21d40d37
EA
1118 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1119 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
5eb08b69
ZW
1120 enum drm_connector_status status;
1121
1122 status = connector_status_disconnected;
21d40d37 1123 if (intel_dp_aux_native_read(intel_encoder,
5eb08b69
ZW
1124 0x000, dp_priv->dpcd,
1125 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1126 {
1127 if (dp_priv->dpcd[0] != 0)
1128 status = connector_status_connected;
1129 }
1130 return status;
1131}
1132
a4fc5ed6
KP
1133/**
1134 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1135 *
1136 * \return true if DP port is connected.
1137 * \return false if DP port is disconnected.
1138 */
1139static enum drm_connector_status
1140intel_dp_detect(struct drm_connector *connector)
1141{
21d40d37
EA
1142 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1143 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 1144 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 1145 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
1146 uint32_t temp, bit;
1147 enum drm_connector_status status;
1148
1149 dp_priv->has_audio = false;
1150
c619eed4 1151 if (HAS_PCH_SPLIT(dev))
f2b115e6 1152 return ironlake_dp_detect(connector);
5eb08b69 1153
a4fc5ed6
KP
1154 temp = I915_READ(PORT_HOTPLUG_EN);
1155
1156 I915_WRITE(PORT_HOTPLUG_EN,
1157 temp |
1158 DPB_HOTPLUG_INT_EN |
1159 DPC_HOTPLUG_INT_EN |
1160 DPD_HOTPLUG_INT_EN);
1161
1162 POSTING_READ(PORT_HOTPLUG_EN);
1163
1164 switch (dp_priv->output_reg) {
1165 case DP_B:
1166 bit = DPB_HOTPLUG_INT_STATUS;
1167 break;
1168 case DP_C:
1169 bit = DPC_HOTPLUG_INT_STATUS;
1170 break;
1171 case DP_D:
1172 bit = DPD_HOTPLUG_INT_STATUS;
1173 break;
1174 default:
1175 return connector_status_unknown;
1176 }
1177
1178 temp = I915_READ(PORT_HOTPLUG_STAT);
1179
1180 if ((temp & bit) == 0)
1181 return connector_status_disconnected;
1182
1183 status = connector_status_disconnected;
21d40d37 1184 if (intel_dp_aux_native_read(intel_encoder,
a4fc5ed6
KP
1185 0x000, dp_priv->dpcd,
1186 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1187 {
1188 if (dp_priv->dpcd[0] != 0)
1189 status = connector_status_connected;
1190 }
1191 return status;
1192}
1193
1194static int intel_dp_get_modes(struct drm_connector *connector)
1195{
21d40d37
EA
1196 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1197 struct drm_device *dev = intel_encoder->base.dev;
32f9d658
ZW
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 int ret;
a4fc5ed6
KP
1200
1201 /* We should parse the EDID data and find out if it has an audio sink
1202 */
1203
335af9a2 1204 ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
32f9d658
ZW
1205 if (ret)
1206 return ret;
1207
1208 /* if eDP has no EDID, try to use fixed panel mode from VBT */
21d40d37 1209 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
1210 if (dev_priv->panel_fixed_mode != NULL) {
1211 struct drm_display_mode *mode;
1212 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1213 drm_mode_probed_add(connector, mode);
1214 return 1;
1215 }
1216 }
1217 return 0;
a4fc5ed6
KP
1218}
1219
1220static void
1221intel_dp_destroy (struct drm_connector *connector)
1222{
21d40d37 1223 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
a4fc5ed6 1224
21d40d37
EA
1225 if (intel_encoder->i2c_bus)
1226 intel_i2c_destroy(intel_encoder->i2c_bus);
a4fc5ed6
KP
1227 drm_sysfs_connector_remove(connector);
1228 drm_connector_cleanup(connector);
21d40d37 1229 kfree(intel_encoder);
a4fc5ed6
KP
1230}
1231
1232static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1233 .dpms = intel_dp_dpms,
1234 .mode_fixup = intel_dp_mode_fixup,
1235 .prepare = intel_encoder_prepare,
1236 .mode_set = intel_dp_mode_set,
1237 .commit = intel_encoder_commit,
1238};
1239
1240static const struct drm_connector_funcs intel_dp_connector_funcs = {
1241 .dpms = drm_helper_connector_dpms,
a4fc5ed6
KP
1242 .detect = intel_dp_detect,
1243 .fill_modes = drm_helper_probe_single_connector_modes,
1244 .destroy = intel_dp_destroy,
1245};
1246
1247static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1248 .get_modes = intel_dp_get_modes,
1249 .mode_valid = intel_dp_mode_valid,
1250 .best_encoder = intel_best_encoder,
1251};
1252
1253static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1254{
1255 drm_encoder_cleanup(encoder);
1256}
1257
1258static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1259 .destroy = intel_dp_enc_destroy,
1260};
1261
c8110e52 1262void
21d40d37 1263intel_dp_hot_plug(struct intel_encoder *intel_encoder)
c8110e52 1264{
21d40d37 1265 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
c8110e52
KP
1266
1267 if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
21d40d37 1268 intel_dp_check_link_status(intel_encoder);
c8110e52 1269}
6207937d 1270
a4fc5ed6
KP
1271void
1272intel_dp_init(struct drm_device *dev, int output_reg)
1273{
1274 struct drm_i915_private *dev_priv = dev->dev_private;
1275 struct drm_connector *connector;
21d40d37 1276 struct intel_encoder *intel_encoder;
a4fc5ed6 1277 struct intel_dp_priv *dp_priv;
5eb08b69 1278 const char *name = NULL;
a4fc5ed6 1279
21d40d37 1280 intel_encoder = kcalloc(sizeof(struct intel_encoder) +
a4fc5ed6 1281 sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
21d40d37 1282 if (!intel_encoder)
a4fc5ed6
KP
1283 return;
1284
21d40d37 1285 dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
a4fc5ed6 1286
21d40d37 1287 connector = &intel_encoder->base;
a4fc5ed6
KP
1288 drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1289 DRM_MODE_CONNECTOR_DisplayPort);
1290 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1291
32f9d658 1292 if (output_reg == DP_A)
21d40d37 1293 intel_encoder->type = INTEL_OUTPUT_EDP;
32f9d658 1294 else
21d40d37 1295 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
a4fc5ed6 1296
652af9d7 1297 if (output_reg == DP_B || output_reg == PCH_DP_B)
21d40d37 1298 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
652af9d7 1299 else if (output_reg == DP_C || output_reg == PCH_DP_C)
21d40d37 1300 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
652af9d7 1301 else if (output_reg == DP_D || output_reg == PCH_DP_D)
21d40d37 1302 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
f8aed700 1303
21d40d37
EA
1304 if (IS_eDP(intel_encoder))
1305 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
6251ec0a 1306
21d40d37 1307 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
a4fc5ed6
KP
1308 connector->interlace_allowed = true;
1309 connector->doublescan_allowed = 0;
1310
21d40d37 1311 dp_priv->intel_encoder = intel_encoder;
a4fc5ed6
KP
1312 dp_priv->output_reg = output_reg;
1313 dp_priv->has_audio = false;
c8110e52 1314 dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
21d40d37 1315 intel_encoder->dev_priv = dp_priv;
a4fc5ed6 1316
21d40d37 1317 drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
a4fc5ed6 1318 DRM_MODE_ENCODER_TMDS);
21d40d37 1319 drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
a4fc5ed6 1320
21d40d37
EA
1321 drm_mode_connector_attach_encoder(&intel_encoder->base,
1322 &intel_encoder->enc);
a4fc5ed6
KP
1323 drm_sysfs_connector_add(connector);
1324
1325 /* Set up the DDC bus. */
5eb08b69 1326 switch (output_reg) {
32f9d658
ZW
1327 case DP_A:
1328 name = "DPDDC-A";
1329 break;
5eb08b69
ZW
1330 case DP_B:
1331 case PCH_DP_B:
b01f2c3a
JB
1332 dev_priv->hotplug_supported_mask |=
1333 HDMIB_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1334 name = "DPDDC-B";
1335 break;
1336 case DP_C:
1337 case PCH_DP_C:
b01f2c3a
JB
1338 dev_priv->hotplug_supported_mask |=
1339 HDMIC_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1340 name = "DPDDC-C";
1341 break;
1342 case DP_D:
1343 case PCH_DP_D:
b01f2c3a
JB
1344 dev_priv->hotplug_supported_mask |=
1345 HDMID_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1346 name = "DPDDC-D";
1347 break;
1348 }
1349
21d40d37 1350 intel_dp_i2c_init(intel_encoder, name);
32f9d658 1351
21d40d37
EA
1352 intel_encoder->ddc_bus = &dp_priv->adapter;
1353 intel_encoder->hot_plug = intel_dp_hot_plug;
a4fc5ed6 1354
32f9d658
ZW
1355 if (output_reg == DP_A) {
1356 /* initialize panel mode from VBT if available for eDP */
1357 if (dev_priv->lfp_lvds_vbt_mode) {
1358 dev_priv->panel_fixed_mode =
1359 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1360 if (dev_priv->panel_fixed_mode) {
1361 dev_priv->panel_fixed_mode->type |=
1362 DRM_MODE_TYPE_PREFERRED;
1363 }
1364 }
1365 }
1366
a4fc5ed6
KP
1367 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1368 * 0xd. Failure to do so will result in spurious interrupts being
1369 * generated on the port when a cable is not attached.
1370 */
1371 if (IS_G4X(dev) && !IS_GM45(dev)) {
1372 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1373 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1374 }
1375}