]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix fbcon setup to align display pitch to 64b.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
c0d90829
KP
37static void
38i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
e47c68e9
EA
41static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
44static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45 int write);
46static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47 uint64_t offset,
48 uint64_t size);
49static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b
EA
50static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55static void i915_gem_object_get_fence_reg(struct drm_gem_object *obj);
56static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57static int i915_gem_evict_something(struct drm_device *dev);
673a394b 58
79e53945
JB
59int i915_gem_do_init(struct drm_device *dev, unsigned long start,
60 unsigned long end)
673a394b
EA
61{
62 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 63
79e53945
JB
64 if (start >= end ||
65 (start & (PAGE_SIZE - 1)) != 0 ||
66 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
67 return -EINVAL;
68 }
69
79e53945
JB
70 drm_mm_init(&dev_priv->mm.gtt_space, start,
71 end - start);
673a394b 72
79e53945
JB
73 dev->gtt_total = (uint32_t) (end - start);
74
75 return 0;
76}
673a394b 77
79e53945
JB
78int
79i915_gem_init_ioctl(struct drm_device *dev, void *data,
80 struct drm_file *file_priv)
81{
82 struct drm_i915_gem_init *args = data;
83 int ret;
84
85 mutex_lock(&dev->struct_mutex);
86 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
87 mutex_unlock(&dev->struct_mutex);
88
79e53945 89 return ret;
673a394b
EA
90}
91
5a125c3c
EA
92int
93i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
94 struct drm_file *file_priv)
95{
5a125c3c 96 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
97
98 if (!(dev->driver->driver_features & DRIVER_GEM))
99 return -ENODEV;
100
101 args->aper_size = dev->gtt_total;
2678d9d6
KP
102 args->aper_available_size = (args->aper_size -
103 atomic_read(&dev->pin_memory));
5a125c3c
EA
104
105 return 0;
106}
107
673a394b
EA
108
109/**
110 * Creates a new mm object and returns a handle to it.
111 */
112int
113i915_gem_create_ioctl(struct drm_device *dev, void *data,
114 struct drm_file *file_priv)
115{
116 struct drm_i915_gem_create *args = data;
117 struct drm_gem_object *obj;
118 int handle, ret;
119
120 args->size = roundup(args->size, PAGE_SIZE);
121
122 /* Allocate the new object */
123 obj = drm_gem_object_alloc(dev, args->size);
124 if (obj == NULL)
125 return -ENOMEM;
126
127 ret = drm_gem_handle_create(file_priv, obj, &handle);
128 mutex_lock(&dev->struct_mutex);
129 drm_gem_object_handle_unreference(obj);
130 mutex_unlock(&dev->struct_mutex);
131
132 if (ret)
133 return ret;
134
135 args->handle = handle;
136
137 return 0;
138}
139
140/**
141 * Reads data from the object referenced by handle.
142 *
143 * On error, the contents of *data are undefined.
144 */
145int
146i915_gem_pread_ioctl(struct drm_device *dev, void *data,
147 struct drm_file *file_priv)
148{
149 struct drm_i915_gem_pread *args = data;
150 struct drm_gem_object *obj;
151 struct drm_i915_gem_object *obj_priv;
152 ssize_t read;
153 loff_t offset;
154 int ret;
155
156 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
157 if (obj == NULL)
158 return -EBADF;
159 obj_priv = obj->driver_private;
160
161 /* Bounds check source.
162 *
163 * XXX: This could use review for overflow issues...
164 */
165 if (args->offset > obj->size || args->size > obj->size ||
166 args->offset + args->size > obj->size) {
167 drm_gem_object_unreference(obj);
168 return -EINVAL;
169 }
170
171 mutex_lock(&dev->struct_mutex);
172
e47c68e9
EA
173 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
174 args->size);
673a394b
EA
175 if (ret != 0) {
176 drm_gem_object_unreference(obj);
177 mutex_unlock(&dev->struct_mutex);
e7d22bc3 178 return ret;
673a394b
EA
179 }
180
181 offset = args->offset;
182
183 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
184 args->size, &offset);
185 if (read != args->size) {
186 drm_gem_object_unreference(obj);
187 mutex_unlock(&dev->struct_mutex);
188 if (read < 0)
189 return read;
190 else
191 return -EINVAL;
192 }
193
194 drm_gem_object_unreference(obj);
195 mutex_unlock(&dev->struct_mutex);
196
197 return 0;
198}
199
0839ccb8
KP
200/* This is the fast write path which cannot handle
201 * page faults in the source data
9b7530cc 202 */
0839ccb8
KP
203
204static inline int
205fast_user_write(struct io_mapping *mapping,
206 loff_t page_base, int page_offset,
207 char __user *user_data,
208 int length)
9b7530cc 209{
9b7530cc 210 char *vaddr_atomic;
0839ccb8 211 unsigned long unwritten;
9b7530cc 212
0839ccb8
KP
213 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
214 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
215 user_data, length);
216 io_mapping_unmap_atomic(vaddr_atomic);
217 if (unwritten)
218 return -EFAULT;
219 return 0;
220}
221
222/* Here's the write path which can sleep for
223 * page faults
224 */
225
226static inline int
227slow_user_write(struct io_mapping *mapping,
228 loff_t page_base, int page_offset,
229 char __user *user_data,
230 int length)
231{
232 char __iomem *vaddr;
233 unsigned long unwritten;
234
235 vaddr = io_mapping_map_wc(mapping, page_base);
236 if (vaddr == NULL)
237 return -EFAULT;
238 unwritten = __copy_from_user(vaddr + page_offset,
239 user_data, length);
240 io_mapping_unmap(vaddr);
241 if (unwritten)
242 return -EFAULT;
9b7530cc 243 return 0;
9b7530cc
LT
244}
245
673a394b
EA
246static int
247i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
248 struct drm_i915_gem_pwrite *args,
249 struct drm_file *file_priv)
250{
251 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 252 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 253 ssize_t remain;
0839ccb8 254 loff_t offset, page_base;
673a394b 255 char __user *user_data;
0839ccb8
KP
256 int page_offset, page_length;
257 int ret;
673a394b
EA
258
259 user_data = (char __user *) (uintptr_t) args->data_ptr;
260 remain = args->size;
261 if (!access_ok(VERIFY_READ, user_data, remain))
262 return -EFAULT;
263
264
265 mutex_lock(&dev->struct_mutex);
266 ret = i915_gem_object_pin(obj, 0);
267 if (ret) {
268 mutex_unlock(&dev->struct_mutex);
269 return ret;
270 }
2ef7eeaa 271 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
272 if (ret)
273 goto fail;
274
275 obj_priv = obj->driver_private;
276 offset = obj_priv->gtt_offset + args->offset;
277 obj_priv->dirty = 1;
278
279 while (remain > 0) {
280 /* Operation in this page
281 *
0839ccb8
KP
282 * page_base = page offset within aperture
283 * page_offset = offset within page
284 * page_length = bytes to copy for this page
673a394b 285 */
0839ccb8
KP
286 page_base = (offset & ~(PAGE_SIZE-1));
287 page_offset = offset & (PAGE_SIZE-1);
288 page_length = remain;
289 if ((page_offset + remain) > PAGE_SIZE)
290 page_length = PAGE_SIZE - page_offset;
291
292 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
293 page_offset, user_data, page_length);
294
295 /* If we get a fault while copying data, then (presumably) our
296 * source page isn't available. In this case, use the
297 * non-atomic function
298 */
299 if (ret) {
300 ret = slow_user_write (dev_priv->mm.gtt_mapping,
301 page_base, page_offset,
302 user_data, page_length);
303 if (ret)
673a394b 304 goto fail;
673a394b
EA
305 }
306
0839ccb8
KP
307 remain -= page_length;
308 user_data += page_length;
309 offset += page_length;
673a394b 310 }
673a394b
EA
311
312fail:
313 i915_gem_object_unpin(obj);
314 mutex_unlock(&dev->struct_mutex);
315
316 return ret;
317}
318
3043c60c 319static int
673a394b
EA
320i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
321 struct drm_i915_gem_pwrite *args,
322 struct drm_file *file_priv)
323{
324 int ret;
325 loff_t offset;
326 ssize_t written;
327
328 mutex_lock(&dev->struct_mutex);
329
e47c68e9 330 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b
EA
331 if (ret) {
332 mutex_unlock(&dev->struct_mutex);
333 return ret;
334 }
335
336 offset = args->offset;
337
338 written = vfs_write(obj->filp,
339 (char __user *)(uintptr_t) args->data_ptr,
340 args->size, &offset);
341 if (written != args->size) {
342 mutex_unlock(&dev->struct_mutex);
343 if (written < 0)
344 return written;
345 else
346 return -EINVAL;
347 }
348
349 mutex_unlock(&dev->struct_mutex);
350
351 return 0;
352}
353
354/**
355 * Writes data to the object referenced by handle.
356 *
357 * On error, the contents of the buffer that were to be modified are undefined.
358 */
359int
360i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
361 struct drm_file *file_priv)
362{
363 struct drm_i915_gem_pwrite *args = data;
364 struct drm_gem_object *obj;
365 struct drm_i915_gem_object *obj_priv;
366 int ret = 0;
367
368 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
369 if (obj == NULL)
370 return -EBADF;
371 obj_priv = obj->driver_private;
372
373 /* Bounds check destination.
374 *
375 * XXX: This could use review for overflow issues...
376 */
377 if (args->offset > obj->size || args->size > obj->size ||
378 args->offset + args->size > obj->size) {
379 drm_gem_object_unreference(obj);
380 return -EINVAL;
381 }
382
383 /* We can only do the GTT pwrite on untiled buffers, as otherwise
384 * it would end up going through the fenced access, and we'll get
385 * different detiling behavior between reading and writing.
386 * pread/pwrite currently are reading and writing from the CPU
387 * perspective, requiring manual detiling by the client.
388 */
389 if (obj_priv->tiling_mode == I915_TILING_NONE &&
390 dev->gtt_total != 0)
391 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
392 else
393 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
394
395#if WATCH_PWRITE
396 if (ret)
397 DRM_INFO("pwrite failed %d\n", ret);
398#endif
399
400 drm_gem_object_unreference(obj);
401
402 return ret;
403}
404
405/**
2ef7eeaa
EA
406 * Called when user space prepares to use an object with the CPU, either
407 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
408 */
409int
410i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
411 struct drm_file *file_priv)
412{
413 struct drm_i915_gem_set_domain *args = data;
414 struct drm_gem_object *obj;
2ef7eeaa
EA
415 uint32_t read_domains = args->read_domains;
416 uint32_t write_domain = args->write_domain;
673a394b
EA
417 int ret;
418
419 if (!(dev->driver->driver_features & DRIVER_GEM))
420 return -ENODEV;
421
2ef7eeaa
EA
422 /* Only handle setting domains to types used by the CPU. */
423 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
424 return -EINVAL;
425
426 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
427 return -EINVAL;
428
429 /* Having something in the write domain implies it's in the read
430 * domain, and only that read domain. Enforce that in the request.
431 */
432 if (write_domain != 0 && read_domains != write_domain)
433 return -EINVAL;
434
673a394b
EA
435 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
436 if (obj == NULL)
437 return -EBADF;
438
439 mutex_lock(&dev->struct_mutex);
440#if WATCH_BUF
441 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 442 obj, obj->size, read_domains, write_domain);
673a394b 443#endif
2ef7eeaa
EA
444 if (read_domains & I915_GEM_DOMAIN_GTT) {
445 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
446
447 /* Silently promote "you're not bound, there was nothing to do"
448 * to success, since the client was just asking us to
449 * make sure everything was done.
450 */
451 if (ret == -EINVAL)
452 ret = 0;
2ef7eeaa 453 } else {
e47c68e9 454 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
455 }
456
673a394b
EA
457 drm_gem_object_unreference(obj);
458 mutex_unlock(&dev->struct_mutex);
459 return ret;
460}
461
462/**
463 * Called when user space has done writes to this buffer
464 */
465int
466i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
467 struct drm_file *file_priv)
468{
469 struct drm_i915_gem_sw_finish *args = data;
470 struct drm_gem_object *obj;
471 struct drm_i915_gem_object *obj_priv;
472 int ret = 0;
473
474 if (!(dev->driver->driver_features & DRIVER_GEM))
475 return -ENODEV;
476
477 mutex_lock(&dev->struct_mutex);
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL) {
480 mutex_unlock(&dev->struct_mutex);
481 return -EBADF;
482 }
483
484#if WATCH_BUF
485 DRM_INFO("%s: sw_finish %d (%p %d)\n",
486 __func__, args->handle, obj, obj->size);
487#endif
488 obj_priv = obj->driver_private;
489
490 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
491 if (obj_priv->pin_count)
492 i915_gem_object_flush_cpu_write_domain(obj);
493
673a394b
EA
494 drm_gem_object_unreference(obj);
495 mutex_unlock(&dev->struct_mutex);
496 return ret;
497}
498
499/**
500 * Maps the contents of an object, returning the address it is mapped
501 * into.
502 *
503 * While the mapping holds a reference on the contents of the object, it doesn't
504 * imply a ref on the object itself.
505 */
506int
507i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file_priv)
509{
510 struct drm_i915_gem_mmap *args = data;
511 struct drm_gem_object *obj;
512 loff_t offset;
513 unsigned long addr;
514
515 if (!(dev->driver->driver_features & DRIVER_GEM))
516 return -ENODEV;
517
518 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
519 if (obj == NULL)
520 return -EBADF;
521
522 offset = args->offset;
523
524 down_write(&current->mm->mmap_sem);
525 addr = do_mmap(obj->filp, 0, args->size,
526 PROT_READ | PROT_WRITE, MAP_SHARED,
527 args->offset);
528 up_write(&current->mm->mmap_sem);
529 mutex_lock(&dev->struct_mutex);
530 drm_gem_object_unreference(obj);
531 mutex_unlock(&dev->struct_mutex);
532 if (IS_ERR((void *)addr))
533 return addr;
534
535 args->addr_ptr = (uint64_t) addr;
536
537 return 0;
538}
539
de151cf6
JB
540/**
541 * i915_gem_fault - fault a page into the GTT
542 * vma: VMA in question
543 * vmf: fault info
544 *
545 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
546 * from userspace. The fault handler takes care of binding the object to
547 * the GTT (if needed), allocating and programming a fence register (again,
548 * only if needed based on whether the old reg is still valid or the object
549 * is tiled) and inserting a new PTE into the faulting process.
550 *
551 * Note that the faulting process may involve evicting existing objects
552 * from the GTT and/or fence registers to make room. So performance may
553 * suffer if the GTT working set is large or there are few fence registers
554 * left.
555 */
556int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
557{
558 struct drm_gem_object *obj = vma->vm_private_data;
559 struct drm_device *dev = obj->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct drm_i915_gem_object *obj_priv = obj->driver_private;
562 pgoff_t page_offset;
563 unsigned long pfn;
564 int ret = 0;
565
566 /* We don't use vmf->pgoff since that has the fake offset */
567 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
568 PAGE_SHIFT;
569
570 /* Now bind it into the GTT if needed */
571 mutex_lock(&dev->struct_mutex);
572 if (!obj_priv->gtt_space) {
573 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
574 if (ret) {
575 mutex_unlock(&dev->struct_mutex);
576 return VM_FAULT_SIGBUS;
577 }
578 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
579 }
580
581 /* Need a new fence register? */
582 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
583 obj_priv->tiling_mode != I915_TILING_NONE)
584 i915_gem_object_get_fence_reg(obj);
585
586 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
587 page_offset;
588
589 /* Finally, remap it using the new GTT offset */
590 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
591
592 mutex_unlock(&dev->struct_mutex);
593
594 switch (ret) {
595 case -ENOMEM:
596 case -EAGAIN:
597 return VM_FAULT_OOM;
598 case -EFAULT:
599 case -EBUSY:
600 DRM_ERROR("can't insert pfn?? fault or busy...\n");
601 return VM_FAULT_SIGBUS;
602 default:
603 return VM_FAULT_NOPAGE;
604 }
605}
606
607/**
608 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
609 * @obj: obj in question
610 *
611 * GEM memory mapping works by handing back to userspace a fake mmap offset
612 * it can use in a subsequent mmap(2) call. The DRM core code then looks
613 * up the object based on the offset and sets up the various memory mapping
614 * structures.
615 *
616 * This routine allocates and attaches a fake offset for @obj.
617 */
618static int
619i915_gem_create_mmap_offset(struct drm_gem_object *obj)
620{
621 struct drm_device *dev = obj->dev;
622 struct drm_gem_mm *mm = dev->mm_private;
623 struct drm_i915_gem_object *obj_priv = obj->driver_private;
624 struct drm_map_list *list;
625 struct drm_map *map;
626 int ret = 0;
627
628 /* Set the object up for mmap'ing */
629 list = &obj->map_list;
630 list->map = drm_calloc(1, sizeof(struct drm_map_list),
631 DRM_MEM_DRIVER);
632 if (!list->map)
633 return -ENOMEM;
634
635 map = list->map;
636 map->type = _DRM_GEM;
637 map->size = obj->size;
638 map->handle = obj;
639
640 /* Get a DRM GEM mmap offset allocated... */
641 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
642 obj->size / PAGE_SIZE, 0, 0);
643 if (!list->file_offset_node) {
644 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
645 ret = -ENOMEM;
646 goto out_free_list;
647 }
648
649 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
650 obj->size / PAGE_SIZE, 0);
651 if (!list->file_offset_node) {
652 ret = -ENOMEM;
653 goto out_free_list;
654 }
655
656 list->hash.key = list->file_offset_node->start;
657 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
658 DRM_ERROR("failed to add to map hash\n");
659 goto out_free_mm;
660 }
661
662 /* By now we should be all set, any drm_mmap request on the offset
663 * below will get to our mmap & fault handler */
664 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
665
666 return 0;
667
668out_free_mm:
669 drm_mm_put_block(list->file_offset_node);
670out_free_list:
671 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
672
673 return ret;
674}
675
676/**
677 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
678 * @obj: object to check
679 *
680 * Return the required GTT alignment for an object, taking into account
681 * potential fence register mapping if needed.
682 */
683static uint32_t
684i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
685{
686 struct drm_device *dev = obj->dev;
687 struct drm_i915_gem_object *obj_priv = obj->driver_private;
688 int start, i;
689
690 /*
691 * Minimum alignment is 4k (GTT page size), but might be greater
692 * if a fence register is needed for the object.
693 */
694 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
695 return 4096;
696
697 /*
698 * Previous chips need to be aligned to the size of the smallest
699 * fence register that can contain the object.
700 */
701 if (IS_I9XX(dev))
702 start = 1024*1024;
703 else
704 start = 512*1024;
705
706 for (i = start; i < obj->size; i <<= 1)
707 ;
708
709 return i;
710}
711
712/**
713 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
714 * @dev: DRM device
715 * @data: GTT mapping ioctl data
716 * @file_priv: GEM object info
717 *
718 * Simply returns the fake offset to userspace so it can mmap it.
719 * The mmap call will end up in drm_gem_mmap(), which will set things
720 * up so we can get faults in the handler above.
721 *
722 * The fault handler will take care of binding the object into the GTT
723 * (since it may have been evicted to make room for something), allocating
724 * a fence register, and mapping the appropriate aperture address into
725 * userspace.
726 */
727int
728i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
729 struct drm_file *file_priv)
730{
731 struct drm_i915_gem_mmap_gtt *args = data;
732 struct drm_i915_private *dev_priv = dev->dev_private;
733 struct drm_gem_object *obj;
734 struct drm_i915_gem_object *obj_priv;
735 int ret;
736
737 if (!(dev->driver->driver_features & DRIVER_GEM))
738 return -ENODEV;
739
740 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
741 if (obj == NULL)
742 return -EBADF;
743
744 mutex_lock(&dev->struct_mutex);
745
746 obj_priv = obj->driver_private;
747
748 if (!obj_priv->mmap_offset) {
749 ret = i915_gem_create_mmap_offset(obj);
750 if (ret)
751 return ret;
752 }
753
754 args->offset = obj_priv->mmap_offset;
755
756 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
757
758 /* Make sure the alignment is correct for fence regs etc */
759 if (obj_priv->agp_mem &&
760 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
761 drm_gem_object_unreference(obj);
762 mutex_unlock(&dev->struct_mutex);
763 return -EINVAL;
764 }
765
766 /*
767 * Pull it into the GTT so that we have a page list (makes the
768 * initial fault faster and any subsequent flushing possible).
769 */
770 if (!obj_priv->agp_mem) {
771 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
772 if (ret) {
773 drm_gem_object_unreference(obj);
774 mutex_unlock(&dev->struct_mutex);
775 return ret;
776 }
777 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
778 }
779
780 drm_gem_object_unreference(obj);
781 mutex_unlock(&dev->struct_mutex);
782
783 return 0;
784}
785
673a394b
EA
786static void
787i915_gem_object_free_page_list(struct drm_gem_object *obj)
788{
789 struct drm_i915_gem_object *obj_priv = obj->driver_private;
790 int page_count = obj->size / PAGE_SIZE;
791 int i;
792
793 if (obj_priv->page_list == NULL)
794 return;
795
796
797 for (i = 0; i < page_count; i++)
798 if (obj_priv->page_list[i] != NULL) {
799 if (obj_priv->dirty)
800 set_page_dirty(obj_priv->page_list[i]);
801 mark_page_accessed(obj_priv->page_list[i]);
802 page_cache_release(obj_priv->page_list[i]);
803 }
804 obj_priv->dirty = 0;
805
806 drm_free(obj_priv->page_list,
807 page_count * sizeof(struct page *),
808 DRM_MEM_DRIVER);
809 obj_priv->page_list = NULL;
810}
811
812static void
ce44b0ea 813i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
814{
815 struct drm_device *dev = obj->dev;
816 drm_i915_private_t *dev_priv = dev->dev_private;
817 struct drm_i915_gem_object *obj_priv = obj->driver_private;
818
819 /* Add a reference if we're newly entering the active list. */
820 if (!obj_priv->active) {
821 drm_gem_object_reference(obj);
822 obj_priv->active = 1;
823 }
824 /* Move from whatever list we were on to the tail of execution. */
825 list_move_tail(&obj_priv->list,
826 &dev_priv->mm.active_list);
ce44b0ea 827 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
828}
829
ce44b0ea
EA
830static void
831i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
832{
833 struct drm_device *dev = obj->dev;
834 drm_i915_private_t *dev_priv = dev->dev_private;
835 struct drm_i915_gem_object *obj_priv = obj->driver_private;
836
837 BUG_ON(!obj_priv->active);
838 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
839 obj_priv->last_rendering_seqno = 0;
840}
673a394b
EA
841
842static void
843i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
844{
845 struct drm_device *dev = obj->dev;
846 drm_i915_private_t *dev_priv = dev->dev_private;
847 struct drm_i915_gem_object *obj_priv = obj->driver_private;
848
849 i915_verify_inactive(dev, __FILE__, __LINE__);
850 if (obj_priv->pin_count != 0)
851 list_del_init(&obj_priv->list);
852 else
853 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
854
ce44b0ea 855 obj_priv->last_rendering_seqno = 0;
673a394b
EA
856 if (obj_priv->active) {
857 obj_priv->active = 0;
858 drm_gem_object_unreference(obj);
859 }
860 i915_verify_inactive(dev, __FILE__, __LINE__);
861}
862
863/**
864 * Creates a new sequence number, emitting a write of it to the status page
865 * plus an interrupt, which will trigger i915_user_interrupt_handler.
866 *
867 * Must be called with struct_lock held.
868 *
869 * Returned sequence numbers are nonzero on success.
870 */
871static uint32_t
872i915_add_request(struct drm_device *dev, uint32_t flush_domains)
873{
874 drm_i915_private_t *dev_priv = dev->dev_private;
875 struct drm_i915_gem_request *request;
876 uint32_t seqno;
877 int was_empty;
878 RING_LOCALS;
879
880 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
881 if (request == NULL)
882 return 0;
883
884 /* Grab the seqno we're going to make this request be, and bump the
885 * next (skipping 0 so it can be the reserved no-seqno value).
886 */
887 seqno = dev_priv->mm.next_gem_seqno;
888 dev_priv->mm.next_gem_seqno++;
889 if (dev_priv->mm.next_gem_seqno == 0)
890 dev_priv->mm.next_gem_seqno++;
891
892 BEGIN_LP_RING(4);
893 OUT_RING(MI_STORE_DWORD_INDEX);
894 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
895 OUT_RING(seqno);
896
897 OUT_RING(MI_USER_INTERRUPT);
898 ADVANCE_LP_RING();
899
900 DRM_DEBUG("%d\n", seqno);
901
902 request->seqno = seqno;
903 request->emitted_jiffies = jiffies;
673a394b
EA
904 was_empty = list_empty(&dev_priv->mm.request_list);
905 list_add_tail(&request->list, &dev_priv->mm.request_list);
906
ce44b0ea
EA
907 /* Associate any objects on the flushing list matching the write
908 * domain we're flushing with our flush.
909 */
910 if (flush_domains != 0) {
911 struct drm_i915_gem_object *obj_priv, *next;
912
913 list_for_each_entry_safe(obj_priv, next,
914 &dev_priv->mm.flushing_list, list) {
915 struct drm_gem_object *obj = obj_priv->obj;
916
917 if ((obj->write_domain & flush_domains) ==
918 obj->write_domain) {
919 obj->write_domain = 0;
920 i915_gem_object_move_to_active(obj, seqno);
921 }
922 }
923
924 }
925
6dbe2772 926 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
927 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
928 return seqno;
929}
930
931/**
932 * Command execution barrier
933 *
934 * Ensures that all commands in the ring are finished
935 * before signalling the CPU
936 */
3043c60c 937static uint32_t
673a394b
EA
938i915_retire_commands(struct drm_device *dev)
939{
940 drm_i915_private_t *dev_priv = dev->dev_private;
941 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
942 uint32_t flush_domains = 0;
943 RING_LOCALS;
944
945 /* The sampler always gets flushed on i965 (sigh) */
946 if (IS_I965G(dev))
947 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
948 BEGIN_LP_RING(2);
949 OUT_RING(cmd);
950 OUT_RING(0); /* noop */
951 ADVANCE_LP_RING();
952 return flush_domains;
953}
954
955/**
956 * Moves buffers associated only with the given active seqno from the active
957 * to inactive list, potentially freeing them.
958 */
959static void
960i915_gem_retire_request(struct drm_device *dev,
961 struct drm_i915_gem_request *request)
962{
963 drm_i915_private_t *dev_priv = dev->dev_private;
964
965 /* Move any buffers on the active list that are no longer referenced
966 * by the ringbuffer to the flushing/inactive lists as appropriate.
967 */
968 while (!list_empty(&dev_priv->mm.active_list)) {
969 struct drm_gem_object *obj;
970 struct drm_i915_gem_object *obj_priv;
971
972 obj_priv = list_first_entry(&dev_priv->mm.active_list,
973 struct drm_i915_gem_object,
974 list);
975 obj = obj_priv->obj;
976
977 /* If the seqno being retired doesn't match the oldest in the
978 * list, then the oldest in the list must still be newer than
979 * this seqno.
980 */
981 if (obj_priv->last_rendering_seqno != request->seqno)
982 return;
de151cf6 983
673a394b
EA
984#if WATCH_LRU
985 DRM_INFO("%s: retire %d moves to inactive list %p\n",
986 __func__, request->seqno, obj);
987#endif
988
ce44b0ea
EA
989 if (obj->write_domain != 0)
990 i915_gem_object_move_to_flushing(obj);
991 else
673a394b 992 i915_gem_object_move_to_inactive(obj);
673a394b
EA
993 }
994}
995
996/**
997 * Returns true if seq1 is later than seq2.
998 */
999static int
1000i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1001{
1002 return (int32_t)(seq1 - seq2) >= 0;
1003}
1004
1005uint32_t
1006i915_get_gem_seqno(struct drm_device *dev)
1007{
1008 drm_i915_private_t *dev_priv = dev->dev_private;
1009
1010 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1011}
1012
1013/**
1014 * This function clears the request list as sequence numbers are passed.
1015 */
1016void
1017i915_gem_retire_requests(struct drm_device *dev)
1018{
1019 drm_i915_private_t *dev_priv = dev->dev_private;
1020 uint32_t seqno;
1021
1022 seqno = i915_get_gem_seqno(dev);
1023
1024 while (!list_empty(&dev_priv->mm.request_list)) {
1025 struct drm_i915_gem_request *request;
1026 uint32_t retiring_seqno;
1027
1028 request = list_first_entry(&dev_priv->mm.request_list,
1029 struct drm_i915_gem_request,
1030 list);
1031 retiring_seqno = request->seqno;
1032
1033 if (i915_seqno_passed(seqno, retiring_seqno) ||
1034 dev_priv->mm.wedged) {
1035 i915_gem_retire_request(dev, request);
1036
1037 list_del(&request->list);
1038 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1039 } else
1040 break;
1041 }
1042}
1043
1044void
1045i915_gem_retire_work_handler(struct work_struct *work)
1046{
1047 drm_i915_private_t *dev_priv;
1048 struct drm_device *dev;
1049
1050 dev_priv = container_of(work, drm_i915_private_t,
1051 mm.retire_work.work);
1052 dev = dev_priv->dev;
1053
1054 mutex_lock(&dev->struct_mutex);
1055 i915_gem_retire_requests(dev);
6dbe2772
KP
1056 if (!dev_priv->mm.suspended &&
1057 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1058 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1059 mutex_unlock(&dev->struct_mutex);
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
3043c60c 1066static int
673a394b
EA
1067i915_wait_request(struct drm_device *dev, uint32_t seqno)
1068{
1069 drm_i915_private_t *dev_priv = dev->dev_private;
1070 int ret = 0;
1071
1072 BUG_ON(seqno == 0);
1073
1074 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1075 dev_priv->mm.waiting_gem_seqno = seqno;
1076 i915_user_irq_get(dev);
1077 ret = wait_event_interruptible(dev_priv->irq_queue,
1078 i915_seqno_passed(i915_get_gem_seqno(dev),
1079 seqno) ||
1080 dev_priv->mm.wedged);
1081 i915_user_irq_put(dev);
1082 dev_priv->mm.waiting_gem_seqno = 0;
1083 }
1084 if (dev_priv->mm.wedged)
1085 ret = -EIO;
1086
1087 if (ret && ret != -ERESTARTSYS)
1088 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1089 __func__, ret, seqno, i915_get_gem_seqno(dev));
1090
1091 /* Directly dispatch request retiring. While we have the work queue
1092 * to handle this, the waiter on a request often wants an associated
1093 * buffer to have made it to the inactive list, and we would need
1094 * a separate wait queue to handle that.
1095 */
1096 if (ret == 0)
1097 i915_gem_retire_requests(dev);
1098
1099 return ret;
1100}
1101
1102static void
1103i915_gem_flush(struct drm_device *dev,
1104 uint32_t invalidate_domains,
1105 uint32_t flush_domains)
1106{
1107 drm_i915_private_t *dev_priv = dev->dev_private;
1108 uint32_t cmd;
1109 RING_LOCALS;
1110
1111#if WATCH_EXEC
1112 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1113 invalidate_domains, flush_domains);
1114#endif
1115
1116 if (flush_domains & I915_GEM_DOMAIN_CPU)
1117 drm_agp_chipset_flush(dev);
1118
1119 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1120 I915_GEM_DOMAIN_GTT)) {
1121 /*
1122 * read/write caches:
1123 *
1124 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1125 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1126 * also flushed at 2d versus 3d pipeline switches.
1127 *
1128 * read-only caches:
1129 *
1130 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1131 * MI_READ_FLUSH is set, and is always flushed on 965.
1132 *
1133 * I915_GEM_DOMAIN_COMMAND may not exist?
1134 *
1135 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1136 * invalidated when MI_EXE_FLUSH is set.
1137 *
1138 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1139 * invalidated with every MI_FLUSH.
1140 *
1141 * TLBs:
1142 *
1143 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1144 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1145 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1146 * are flushed at any MI_FLUSH.
1147 */
1148
1149 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1150 if ((invalidate_domains|flush_domains) &
1151 I915_GEM_DOMAIN_RENDER)
1152 cmd &= ~MI_NO_WRITE_FLUSH;
1153 if (!IS_I965G(dev)) {
1154 /*
1155 * On the 965, the sampler cache always gets flushed
1156 * and this bit is reserved.
1157 */
1158 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1159 cmd |= MI_READ_FLUSH;
1160 }
1161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1162 cmd |= MI_EXE_FLUSH;
1163
1164#if WATCH_EXEC
1165 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1166#endif
1167 BEGIN_LP_RING(2);
1168 OUT_RING(cmd);
1169 OUT_RING(0); /* noop */
1170 ADVANCE_LP_RING();
1171 }
1172}
1173
1174/**
1175 * Ensures that all rendering to the object has completed and the object is
1176 * safe to unbind from the GTT or access from the CPU.
1177 */
1178static int
1179i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1180{
1181 struct drm_device *dev = obj->dev;
1182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1183 int ret;
1184
e47c68e9
EA
1185 /* This function only exists to support waiting for existing rendering,
1186 * not for emitting required flushes.
673a394b 1187 */
e47c68e9 1188 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1189
1190 /* If there is rendering queued on the buffer being evicted, wait for
1191 * it.
1192 */
1193 if (obj_priv->active) {
1194#if WATCH_BUF
1195 DRM_INFO("%s: object %p wait for seqno %08x\n",
1196 __func__, obj, obj_priv->last_rendering_seqno);
1197#endif
1198 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1199 if (ret != 0)
1200 return ret;
1201 }
1202
1203 return 0;
1204}
1205
1206/**
1207 * Unbinds an object from the GTT aperture.
1208 */
1209static int
1210i915_gem_object_unbind(struct drm_gem_object *obj)
1211{
1212 struct drm_device *dev = obj->dev;
1213 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1214 loff_t offset;
673a394b
EA
1215 int ret = 0;
1216
1217#if WATCH_BUF
1218 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1219 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1220#endif
1221 if (obj_priv->gtt_space == NULL)
1222 return 0;
1223
1224 if (obj_priv->pin_count != 0) {
1225 DRM_ERROR("Attempting to unbind pinned buffer\n");
1226 return -EINVAL;
1227 }
1228
673a394b
EA
1229 /* Move the object to the CPU domain to ensure that
1230 * any possible CPU writes while it's not in the GTT
1231 * are flushed when we go to remap it. This will
1232 * also ensure that all pending GPU writes are finished
1233 * before we unbind.
1234 */
e47c68e9 1235 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1236 if (ret) {
e47c68e9
EA
1237 if (ret != -ERESTARTSYS)
1238 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1239 return ret;
1240 }
1241
1242 if (obj_priv->agp_mem != NULL) {
1243 drm_unbind_agp(obj_priv->agp_mem);
1244 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1245 obj_priv->agp_mem = NULL;
1246 }
1247
1248 BUG_ON(obj_priv->active);
1249
de151cf6
JB
1250 /* blow away mappings if mapped through GTT */
1251 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1252 if (dev->dev_mapping)
1253 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1254
1255 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1256 i915_gem_clear_fence_reg(obj);
1257
673a394b
EA
1258 i915_gem_object_free_page_list(obj);
1259
1260 if (obj_priv->gtt_space) {
1261 atomic_dec(&dev->gtt_count);
1262 atomic_sub(obj->size, &dev->gtt_memory);
1263
1264 drm_mm_put_block(obj_priv->gtt_space);
1265 obj_priv->gtt_space = NULL;
1266 }
1267
1268 /* Remove ourselves from the LRU list if present. */
1269 if (!list_empty(&obj_priv->list))
1270 list_del_init(&obj_priv->list);
1271
1272 return 0;
1273}
1274
1275static int
1276i915_gem_evict_something(struct drm_device *dev)
1277{
1278 drm_i915_private_t *dev_priv = dev->dev_private;
1279 struct drm_gem_object *obj;
1280 struct drm_i915_gem_object *obj_priv;
1281 int ret = 0;
1282
1283 for (;;) {
1284 /* If there's an inactive buffer available now, grab it
1285 * and be done.
1286 */
1287 if (!list_empty(&dev_priv->mm.inactive_list)) {
1288 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1289 struct drm_i915_gem_object,
1290 list);
1291 obj = obj_priv->obj;
1292 BUG_ON(obj_priv->pin_count != 0);
1293#if WATCH_LRU
1294 DRM_INFO("%s: evicting %p\n", __func__, obj);
1295#endif
1296 BUG_ON(obj_priv->active);
1297
1298 /* Wait on the rendering and unbind the buffer. */
1299 ret = i915_gem_object_unbind(obj);
1300 break;
1301 }
1302
1303 /* If we didn't get anything, but the ring is still processing
1304 * things, wait for one of those things to finish and hopefully
1305 * leave us a buffer to evict.
1306 */
1307 if (!list_empty(&dev_priv->mm.request_list)) {
1308 struct drm_i915_gem_request *request;
1309
1310 request = list_first_entry(&dev_priv->mm.request_list,
1311 struct drm_i915_gem_request,
1312 list);
1313
1314 ret = i915_wait_request(dev, request->seqno);
1315 if (ret)
1316 break;
1317
1318 /* if waiting caused an object to become inactive,
1319 * then loop around and wait for it. Otherwise, we
1320 * assume that waiting freed and unbound something,
1321 * so there should now be some space in the GTT
1322 */
1323 if (!list_empty(&dev_priv->mm.inactive_list))
1324 continue;
1325 break;
1326 }
1327
1328 /* If we didn't have anything on the request list but there
1329 * are buffers awaiting a flush, emit one and try again.
1330 * When we wait on it, those buffers waiting for that flush
1331 * will get moved to inactive.
1332 */
1333 if (!list_empty(&dev_priv->mm.flushing_list)) {
1334 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1335 struct drm_i915_gem_object,
1336 list);
1337 obj = obj_priv->obj;
1338
1339 i915_gem_flush(dev,
1340 obj->write_domain,
1341 obj->write_domain);
1342 i915_add_request(dev, obj->write_domain);
1343
1344 obj = NULL;
1345 continue;
1346 }
1347
1348 DRM_ERROR("inactive empty %d request empty %d "
1349 "flushing empty %d\n",
1350 list_empty(&dev_priv->mm.inactive_list),
1351 list_empty(&dev_priv->mm.request_list),
1352 list_empty(&dev_priv->mm.flushing_list));
1353 /* If we didn't do any of the above, there's nothing to be done
1354 * and we just can't fit it in.
1355 */
1356 return -ENOMEM;
1357 }
1358 return ret;
1359}
1360
ac94a962
KP
1361static int
1362i915_gem_evict_everything(struct drm_device *dev)
1363{
1364 int ret;
1365
1366 for (;;) {
1367 ret = i915_gem_evict_something(dev);
1368 if (ret != 0)
1369 break;
1370 }
15c35334
OA
1371 if (ret == -ENOMEM)
1372 return 0;
ac94a962
KP
1373 return ret;
1374}
1375
673a394b
EA
1376static int
1377i915_gem_object_get_page_list(struct drm_gem_object *obj)
1378{
1379 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1380 int page_count, i;
1381 struct address_space *mapping;
1382 struct inode *inode;
1383 struct page *page;
1384 int ret;
1385
1386 if (obj_priv->page_list)
1387 return 0;
1388
1389 /* Get the list of pages out of our struct file. They'll be pinned
1390 * at this point until we release them.
1391 */
1392 page_count = obj->size / PAGE_SIZE;
1393 BUG_ON(obj_priv->page_list != NULL);
1394 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1395 DRM_MEM_DRIVER);
1396 if (obj_priv->page_list == NULL) {
1397 DRM_ERROR("Faled to allocate page list\n");
1398 return -ENOMEM;
1399 }
1400
1401 inode = obj->filp->f_path.dentry->d_inode;
1402 mapping = inode->i_mapping;
1403 for (i = 0; i < page_count; i++) {
1404 page = read_mapping_page(mapping, i, NULL);
1405 if (IS_ERR(page)) {
1406 ret = PTR_ERR(page);
1407 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1408 i915_gem_object_free_page_list(obj);
1409 return ret;
1410 }
1411 obj_priv->page_list[i] = page;
1412 }
1413 return 0;
1414}
1415
de151cf6
JB
1416static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1417{
1418 struct drm_gem_object *obj = reg->obj;
1419 struct drm_device *dev = obj->dev;
1420 drm_i915_private_t *dev_priv = dev->dev_private;
1421 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1422 int regnum = obj_priv->fence_reg;
1423 uint64_t val;
1424
1425 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1426 0xfffff000) << 32;
1427 val |= obj_priv->gtt_offset & 0xfffff000;
1428 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1429 if (obj_priv->tiling_mode == I915_TILING_Y)
1430 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1431 val |= I965_FENCE_REG_VALID;
1432
1433 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1434}
1435
1436static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1437{
1438 struct drm_gem_object *obj = reg->obj;
1439 struct drm_device *dev = obj->dev;
1440 drm_i915_private_t *dev_priv = dev->dev_private;
1441 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1442 int regnum = obj_priv->fence_reg;
1443 uint32_t val;
1444 uint32_t pitch_val;
1445
1446 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1447 (obj_priv->gtt_offset & (obj->size - 1))) {
1448 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1449 return;
1450 }
1451
1452 if (obj_priv->tiling_mode == I915_TILING_Y && (IS_I945G(dev) ||
1453 IS_I945GM(dev) ||
1454 IS_G33(dev)))
1455 pitch_val = (obj_priv->stride / 128) - 1;
1456 else
1457 pitch_val = (obj_priv->stride / 512) - 1;
1458
1459 val = obj_priv->gtt_offset;
1460 if (obj_priv->tiling_mode == I915_TILING_Y)
1461 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1462 val |= I915_FENCE_SIZE_BITS(obj->size);
1463 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1464 val |= I830_FENCE_REG_VALID;
1465
1466 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1467}
1468
1469static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1470{
1471 struct drm_gem_object *obj = reg->obj;
1472 struct drm_device *dev = obj->dev;
1473 drm_i915_private_t *dev_priv = dev->dev_private;
1474 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1475 int regnum = obj_priv->fence_reg;
1476 uint32_t val;
1477 uint32_t pitch_val;
1478
1479 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1480 (obj_priv->gtt_offset & (obj->size - 1))) {
1481 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1482 return;
1483 }
1484
1485 pitch_val = (obj_priv->stride / 128) - 1;
1486
1487 val = obj_priv->gtt_offset;
1488 if (obj_priv->tiling_mode == I915_TILING_Y)
1489 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1490 val |= I830_FENCE_SIZE_BITS(obj->size);
1491 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1492 val |= I830_FENCE_REG_VALID;
1493
1494 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1495
1496}
1497
1498/**
1499 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1500 * @obj: object to map through a fence reg
1501 *
1502 * When mapping objects through the GTT, userspace wants to be able to write
1503 * to them without having to worry about swizzling if the object is tiled.
1504 *
1505 * This function walks the fence regs looking for a free one for @obj,
1506 * stealing one if it can't find any.
1507 *
1508 * It then sets up the reg based on the object's properties: address, pitch
1509 * and tiling format.
1510 */
1511static void
1512i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
1513{
1514 struct drm_device *dev = obj->dev;
79e53945 1515 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1516 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1517 struct drm_i915_fence_reg *reg = NULL;
1518 int i, ret;
1519
1520 switch (obj_priv->tiling_mode) {
1521 case I915_TILING_NONE:
1522 WARN(1, "allocating a fence for non-tiled object?\n");
1523 break;
1524 case I915_TILING_X:
1525 WARN(obj_priv->stride & (512 - 1),
1526 "object is X tiled but has non-512B pitch\n");
1527 break;
1528 case I915_TILING_Y:
1529 WARN(obj_priv->stride & (128 - 1),
1530 "object is Y tiled but has non-128B pitch\n");
1531 break;
1532 }
1533
1534 /* First try to find a free reg */
1535 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1536 reg = &dev_priv->fence_regs[i];
1537 if (!reg->obj)
1538 break;
1539 }
1540
1541 /* None available, try to steal one or wait for a user to finish */
1542 if (i == dev_priv->num_fence_regs) {
1543 struct drm_i915_gem_object *old_obj_priv = NULL;
1544 loff_t offset;
1545
1546try_again:
1547 /* Could try to use LRU here instead... */
1548 for (i = dev_priv->fence_reg_start;
1549 i < dev_priv->num_fence_regs; i++) {
1550 reg = &dev_priv->fence_regs[i];
1551 old_obj_priv = reg->obj->driver_private;
1552 if (!old_obj_priv->pin_count)
1553 break;
1554 }
1555
1556 /*
1557 * Now things get ugly... we have to wait for one of the
1558 * objects to finish before trying again.
1559 */
1560 if (i == dev_priv->num_fence_regs) {
1561 ret = i915_gem_object_wait_rendering(reg->obj);
1562 if (ret) {
1563 WARN(ret, "wait_rendering failed: %d\n", ret);
1564 return;
1565 }
1566 goto try_again;
1567 }
1568
1569 /*
1570 * Zap this virtual mapping so we can set up a fence again
1571 * for this object next time we need it.
1572 */
1573 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1574 if (dev->dev_mapping)
1575 unmap_mapping_range(dev->dev_mapping, offset,
1576 reg->obj->size, 1);
de151cf6
JB
1577 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1578 }
1579
1580 obj_priv->fence_reg = i;
1581 reg->obj = obj;
1582
1583 if (IS_I965G(dev))
1584 i965_write_fence_reg(reg);
1585 else if (IS_I9XX(dev))
1586 i915_write_fence_reg(reg);
1587 else
1588 i830_write_fence_reg(reg);
1589}
1590
1591/**
1592 * i915_gem_clear_fence_reg - clear out fence register info
1593 * @obj: object to clear
1594 *
1595 * Zeroes out the fence register itself and clears out the associated
1596 * data structures in dev_priv and obj_priv.
1597 */
1598static void
1599i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1600{
1601 struct drm_device *dev = obj->dev;
79e53945 1602 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1603 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1604
1605 if (IS_I965G(dev))
1606 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1607 else
1608 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1609
1610 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1611 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1612}
1613
673a394b
EA
1614/**
1615 * Finds free space in the GTT aperture and binds the object there.
1616 */
1617static int
1618i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1619{
1620 struct drm_device *dev = obj->dev;
1621 drm_i915_private_t *dev_priv = dev->dev_private;
1622 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1623 struct drm_mm_node *free_space;
1624 int page_count, ret;
1625
1626 if (alignment == 0)
1627 alignment = PAGE_SIZE;
1628 if (alignment & (PAGE_SIZE - 1)) {
1629 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1630 return -EINVAL;
1631 }
1632
1633 search_free:
1634 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1635 obj->size, alignment, 0);
1636 if (free_space != NULL) {
1637 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1638 alignment);
1639 if (obj_priv->gtt_space != NULL) {
1640 obj_priv->gtt_space->private = obj;
1641 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1642 }
1643 }
1644 if (obj_priv->gtt_space == NULL) {
1645 /* If the gtt is empty and we're still having trouble
1646 * fitting our object in, we're out of memory.
1647 */
1648#if WATCH_LRU
1649 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1650#endif
1651 if (list_empty(&dev_priv->mm.inactive_list) &&
1652 list_empty(&dev_priv->mm.flushing_list) &&
1653 list_empty(&dev_priv->mm.active_list)) {
1654 DRM_ERROR("GTT full, but LRU list empty\n");
1655 return -ENOMEM;
1656 }
1657
1658 ret = i915_gem_evict_something(dev);
1659 if (ret != 0) {
ac94a962
KP
1660 if (ret != -ERESTARTSYS)
1661 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
1662 return ret;
1663 }
1664 goto search_free;
1665 }
1666
1667#if WATCH_BUF
1668 DRM_INFO("Binding object of size %d at 0x%08x\n",
1669 obj->size, obj_priv->gtt_offset);
1670#endif
1671 ret = i915_gem_object_get_page_list(obj);
1672 if (ret) {
1673 drm_mm_put_block(obj_priv->gtt_space);
1674 obj_priv->gtt_space = NULL;
1675 return ret;
1676 }
1677
1678 page_count = obj->size / PAGE_SIZE;
1679 /* Create an AGP memory structure pointing at our pages, and bind it
1680 * into the GTT.
1681 */
1682 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1683 obj_priv->page_list,
1684 page_count,
ba1eb1d8
KP
1685 obj_priv->gtt_offset,
1686 obj_priv->agp_type);
673a394b
EA
1687 if (obj_priv->agp_mem == NULL) {
1688 i915_gem_object_free_page_list(obj);
1689 drm_mm_put_block(obj_priv->gtt_space);
1690 obj_priv->gtt_space = NULL;
1691 return -ENOMEM;
1692 }
1693 atomic_inc(&dev->gtt_count);
1694 atomic_add(obj->size, &dev->gtt_memory);
1695
1696 /* Assert that the object is not currently in any GPU domain. As it
1697 * wasn't in the GTT, there shouldn't be any way it could have been in
1698 * a GPU cache
1699 */
1700 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1701 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1702
1703 return 0;
1704}
1705
1706void
1707i915_gem_clflush_object(struct drm_gem_object *obj)
1708{
1709 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1710
1711 /* If we don't have a page list set up, then we're not pinned
1712 * to GPU, and we can ignore the cache flush because it'll happen
1713 * again at bind time.
1714 */
1715 if (obj_priv->page_list == NULL)
1716 return;
1717
1718 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1719}
1720
e47c68e9
EA
1721/** Flushes any GPU write domain for the object if it's dirty. */
1722static void
1723i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1724{
1725 struct drm_device *dev = obj->dev;
1726 uint32_t seqno;
1727
1728 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1729 return;
1730
1731 /* Queue the GPU write cache flushing we need. */
1732 i915_gem_flush(dev, 0, obj->write_domain);
1733 seqno = i915_add_request(dev, obj->write_domain);
1734 obj->write_domain = 0;
1735 i915_gem_object_move_to_active(obj, seqno);
1736}
1737
1738/** Flushes the GTT write domain for the object if it's dirty. */
1739static void
1740i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1741{
1742 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1743 return;
1744
1745 /* No actual flushing is required for the GTT write domain. Writes
1746 * to it immediately go to main memory as far as we know, so there's
1747 * no chipset flush. It also doesn't land in render cache.
1748 */
1749 obj->write_domain = 0;
1750}
1751
1752/** Flushes the CPU write domain for the object if it's dirty. */
1753static void
1754i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1755{
1756 struct drm_device *dev = obj->dev;
1757
1758 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1759 return;
1760
1761 i915_gem_clflush_object(obj);
1762 drm_agp_chipset_flush(dev);
1763 obj->write_domain = 0;
1764}
1765
2ef7eeaa
EA
1766/**
1767 * Moves a single object to the GTT read, and possibly write domain.
1768 *
1769 * This function returns when the move is complete, including waiting on
1770 * flushes to occur.
1771 */
79e53945 1772int
2ef7eeaa
EA
1773i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1774{
2ef7eeaa 1775 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 1776 int ret;
2ef7eeaa 1777
02354392
EA
1778 /* Not valid to be called on unbound objects. */
1779 if (obj_priv->gtt_space == NULL)
1780 return -EINVAL;
1781
e47c68e9
EA
1782 i915_gem_object_flush_gpu_write_domain(obj);
1783 /* Wait on any GPU rendering and flushing to occur. */
1784 ret = i915_gem_object_wait_rendering(obj);
1785 if (ret != 0)
1786 return ret;
1787
1788 /* If we're writing through the GTT domain, then CPU and GPU caches
1789 * will need to be invalidated at next use.
2ef7eeaa 1790 */
e47c68e9
EA
1791 if (write)
1792 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 1793
e47c68e9 1794 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 1795
e47c68e9
EA
1796 /* It should now be out of any other write domains, and we can update
1797 * the domain values for our changes.
1798 */
1799 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1800 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1801 if (write) {
1802 obj->write_domain = I915_GEM_DOMAIN_GTT;
1803 obj_priv->dirty = 1;
2ef7eeaa
EA
1804 }
1805
e47c68e9
EA
1806 return 0;
1807}
1808
1809/**
1810 * Moves a single object to the CPU read, and possibly write domain.
1811 *
1812 * This function returns when the move is complete, including waiting on
1813 * flushes to occur.
1814 */
1815static int
1816i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1817{
1818 struct drm_device *dev = obj->dev;
1819 int ret;
1820
1821 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 1822 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
1823 ret = i915_gem_object_wait_rendering(obj);
1824 if (ret != 0)
1825 return ret;
2ef7eeaa 1826
e47c68e9 1827 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 1828
e47c68e9
EA
1829 /* If we have a partially-valid cache of the object in the CPU,
1830 * finish invalidating it and free the per-page flags.
2ef7eeaa 1831 */
e47c68e9 1832 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 1833
e47c68e9
EA
1834 /* Flush the CPU cache if it's still invalid. */
1835 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa
EA
1836 i915_gem_clflush_object(obj);
1837 drm_agp_chipset_flush(dev);
1838
e47c68e9 1839 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
1840 }
1841
1842 /* It should now be out of any other write domains, and we can update
1843 * the domain values for our changes.
1844 */
e47c68e9
EA
1845 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1846
1847 /* If we're writing through the CPU, then the GPU read domains will
1848 * need to be invalidated at next use.
1849 */
1850 if (write) {
1851 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1852 obj->write_domain = I915_GEM_DOMAIN_CPU;
1853 }
2ef7eeaa
EA
1854
1855 return 0;
1856}
1857
673a394b
EA
1858/*
1859 * Set the next domain for the specified object. This
1860 * may not actually perform the necessary flushing/invaliding though,
1861 * as that may want to be batched with other set_domain operations
1862 *
1863 * This is (we hope) the only really tricky part of gem. The goal
1864 * is fairly simple -- track which caches hold bits of the object
1865 * and make sure they remain coherent. A few concrete examples may
1866 * help to explain how it works. For shorthand, we use the notation
1867 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1868 * a pair of read and write domain masks.
1869 *
1870 * Case 1: the batch buffer
1871 *
1872 * 1. Allocated
1873 * 2. Written by CPU
1874 * 3. Mapped to GTT
1875 * 4. Read by GPU
1876 * 5. Unmapped from GTT
1877 * 6. Freed
1878 *
1879 * Let's take these a step at a time
1880 *
1881 * 1. Allocated
1882 * Pages allocated from the kernel may still have
1883 * cache contents, so we set them to (CPU, CPU) always.
1884 * 2. Written by CPU (using pwrite)
1885 * The pwrite function calls set_domain (CPU, CPU) and
1886 * this function does nothing (as nothing changes)
1887 * 3. Mapped by GTT
1888 * This function asserts that the object is not
1889 * currently in any GPU-based read or write domains
1890 * 4. Read by GPU
1891 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1892 * As write_domain is zero, this function adds in the
1893 * current read domains (CPU+COMMAND, 0).
1894 * flush_domains is set to CPU.
1895 * invalidate_domains is set to COMMAND
1896 * clflush is run to get data out of the CPU caches
1897 * then i915_dev_set_domain calls i915_gem_flush to
1898 * emit an MI_FLUSH and drm_agp_chipset_flush
1899 * 5. Unmapped from GTT
1900 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1901 * flush_domains and invalidate_domains end up both zero
1902 * so no flushing/invalidating happens
1903 * 6. Freed
1904 * yay, done
1905 *
1906 * Case 2: The shared render buffer
1907 *
1908 * 1. Allocated
1909 * 2. Mapped to GTT
1910 * 3. Read/written by GPU
1911 * 4. set_domain to (CPU,CPU)
1912 * 5. Read/written by CPU
1913 * 6. Read/written by GPU
1914 *
1915 * 1. Allocated
1916 * Same as last example, (CPU, CPU)
1917 * 2. Mapped to GTT
1918 * Nothing changes (assertions find that it is not in the GPU)
1919 * 3. Read/written by GPU
1920 * execbuffer calls set_domain (RENDER, RENDER)
1921 * flush_domains gets CPU
1922 * invalidate_domains gets GPU
1923 * clflush (obj)
1924 * MI_FLUSH and drm_agp_chipset_flush
1925 * 4. set_domain (CPU, CPU)
1926 * flush_domains gets GPU
1927 * invalidate_domains gets CPU
1928 * wait_rendering (obj) to make sure all drawing is complete.
1929 * This will include an MI_FLUSH to get the data from GPU
1930 * to memory
1931 * clflush (obj) to invalidate the CPU cache
1932 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1933 * 5. Read/written by CPU
1934 * cache lines are loaded and dirtied
1935 * 6. Read written by GPU
1936 * Same as last GPU access
1937 *
1938 * Case 3: The constant buffer
1939 *
1940 * 1. Allocated
1941 * 2. Written by CPU
1942 * 3. Read by GPU
1943 * 4. Updated (written) by CPU again
1944 * 5. Read by GPU
1945 *
1946 * 1. Allocated
1947 * (CPU, CPU)
1948 * 2. Written by CPU
1949 * (CPU, CPU)
1950 * 3. Read by GPU
1951 * (CPU+RENDER, 0)
1952 * flush_domains = CPU
1953 * invalidate_domains = RENDER
1954 * clflush (obj)
1955 * MI_FLUSH
1956 * drm_agp_chipset_flush
1957 * 4. Updated (written) by CPU again
1958 * (CPU, CPU)
1959 * flush_domains = 0 (no previous write domain)
1960 * invalidate_domains = 0 (no new read domains)
1961 * 5. Read by GPU
1962 * (CPU+RENDER, 0)
1963 * flush_domains = CPU
1964 * invalidate_domains = RENDER
1965 * clflush (obj)
1966 * MI_FLUSH
1967 * drm_agp_chipset_flush
1968 */
c0d90829
KP
1969static void
1970i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1971 uint32_t read_domains,
1972 uint32_t write_domain)
673a394b
EA
1973{
1974 struct drm_device *dev = obj->dev;
1975 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1976 uint32_t invalidate_domains = 0;
1977 uint32_t flush_domains = 0;
e47c68e9
EA
1978
1979 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1980 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
1981
1982#if WATCH_BUF
1983 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1984 __func__, obj,
1985 obj->read_domains, read_domains,
1986 obj->write_domain, write_domain);
1987#endif
1988 /*
1989 * If the object isn't moving to a new write domain,
1990 * let the object stay in multiple read domains
1991 */
1992 if (write_domain == 0)
1993 read_domains |= obj->read_domains;
1994 else
1995 obj_priv->dirty = 1;
1996
1997 /*
1998 * Flush the current write domain if
1999 * the new read domains don't match. Invalidate
2000 * any read domains which differ from the old
2001 * write domain
2002 */
2003 if (obj->write_domain && obj->write_domain != read_domains) {
2004 flush_domains |= obj->write_domain;
2005 invalidate_domains |= read_domains & ~obj->write_domain;
2006 }
2007 /*
2008 * Invalidate any read caches which may have
2009 * stale data. That is, any new read domains.
2010 */
2011 invalidate_domains |= read_domains & ~obj->read_domains;
2012 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2013#if WATCH_BUF
2014 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2015 __func__, flush_domains, invalidate_domains);
2016#endif
673a394b
EA
2017 i915_gem_clflush_object(obj);
2018 }
2019
2020 if ((write_domain | flush_domains) != 0)
2021 obj->write_domain = write_domain;
673a394b
EA
2022 obj->read_domains = read_domains;
2023
2024 dev->invalidate_domains |= invalidate_domains;
2025 dev->flush_domains |= flush_domains;
2026#if WATCH_BUF
2027 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2028 __func__,
2029 obj->read_domains, obj->write_domain,
2030 dev->invalidate_domains, dev->flush_domains);
2031#endif
673a394b
EA
2032}
2033
2034/**
e47c68e9 2035 * Moves the object from a partially CPU read to a full one.
673a394b 2036 *
e47c68e9
EA
2037 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2038 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2039 */
e47c68e9
EA
2040static void
2041i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2042{
e47c68e9 2043 struct drm_device *dev = obj->dev;
673a394b 2044 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2045
e47c68e9
EA
2046 if (!obj_priv->page_cpu_valid)
2047 return;
2048
2049 /* If we're partially in the CPU read domain, finish moving it in.
2050 */
2051 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2052 int i;
2053
2054 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2055 if (obj_priv->page_cpu_valid[i])
2056 continue;
2057 drm_clflush_pages(obj_priv->page_list + i, 1);
2058 }
2059 drm_agp_chipset_flush(dev);
2060 }
2061
2062 /* Free the page_cpu_valid mappings which are now stale, whether
2063 * or not we've got I915_GEM_DOMAIN_CPU.
2064 */
2065 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2066 DRM_MEM_DRIVER);
2067 obj_priv->page_cpu_valid = NULL;
2068}
2069
2070/**
2071 * Set the CPU read domain on a range of the object.
2072 *
2073 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2074 * not entirely valid. The page_cpu_valid member of the object flags which
2075 * pages have been flushed, and will be respected by
2076 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2077 * of the whole object.
2078 *
2079 * This function returns when the move is complete, including waiting on
2080 * flushes to occur.
2081 */
2082static int
2083i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2084 uint64_t offset, uint64_t size)
2085{
2086 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2087 int i, ret;
673a394b 2088
e47c68e9
EA
2089 if (offset == 0 && size == obj->size)
2090 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2091
e47c68e9
EA
2092 i915_gem_object_flush_gpu_write_domain(obj);
2093 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2094 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2095 if (ret != 0)
6a47baa6 2096 return ret;
e47c68e9
EA
2097 i915_gem_object_flush_gtt_write_domain(obj);
2098
2099 /* If we're already fully in the CPU read domain, we're done. */
2100 if (obj_priv->page_cpu_valid == NULL &&
2101 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2102 return 0;
673a394b 2103
e47c68e9
EA
2104 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2105 * newly adding I915_GEM_DOMAIN_CPU
2106 */
673a394b
EA
2107 if (obj_priv->page_cpu_valid == NULL) {
2108 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2109 DRM_MEM_DRIVER);
e47c68e9
EA
2110 if (obj_priv->page_cpu_valid == NULL)
2111 return -ENOMEM;
2112 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2113 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2114
2115 /* Flush the cache on any pages that are still invalid from the CPU's
2116 * perspective.
2117 */
e47c68e9
EA
2118 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2119 i++) {
673a394b
EA
2120 if (obj_priv->page_cpu_valid[i])
2121 continue;
2122
2123 drm_clflush_pages(obj_priv->page_list + i, 1);
2124
2125 obj_priv->page_cpu_valid[i] = 1;
2126 }
2127
e47c68e9
EA
2128 /* It should now be out of any other write domains, and we can update
2129 * the domain values for our changes.
2130 */
2131 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2132
2133 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2134
673a394b
EA
2135 return 0;
2136}
2137
673a394b
EA
2138/**
2139 * Pin an object to the GTT and evaluate the relocations landing in it.
2140 */
2141static int
2142i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2143 struct drm_file *file_priv,
2144 struct drm_i915_gem_exec_object *entry)
2145{
2146 struct drm_device *dev = obj->dev;
0839ccb8 2147 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2148 struct drm_i915_gem_relocation_entry reloc;
2149 struct drm_i915_gem_relocation_entry __user *relocs;
2150 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2151 int i, ret;
0839ccb8 2152 void __iomem *reloc_page;
673a394b
EA
2153
2154 /* Choose the GTT offset for our buffer and put it there. */
2155 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2156 if (ret)
2157 return ret;
2158
2159 entry->offset = obj_priv->gtt_offset;
2160
2161 relocs = (struct drm_i915_gem_relocation_entry __user *)
2162 (uintptr_t) entry->relocs_ptr;
2163 /* Apply the relocations, using the GTT aperture to avoid cache
2164 * flushing requirements.
2165 */
2166 for (i = 0; i < entry->relocation_count; i++) {
2167 struct drm_gem_object *target_obj;
2168 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2169 uint32_t reloc_val, reloc_offset;
2170 uint32_t __iomem *reloc_entry;
673a394b
EA
2171
2172 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2173 if (ret != 0) {
2174 i915_gem_object_unpin(obj);
2175 return ret;
2176 }
2177
2178 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2179 reloc.target_handle);
2180 if (target_obj == NULL) {
2181 i915_gem_object_unpin(obj);
2182 return -EBADF;
2183 }
2184 target_obj_priv = target_obj->driver_private;
2185
2186 /* The target buffer should have appeared before us in the
2187 * exec_object list, so it should have a GTT space bound by now.
2188 */
2189 if (target_obj_priv->gtt_space == NULL) {
2190 DRM_ERROR("No GTT space found for object %d\n",
2191 reloc.target_handle);
2192 drm_gem_object_unreference(target_obj);
2193 i915_gem_object_unpin(obj);
2194 return -EINVAL;
2195 }
2196
2197 if (reloc.offset > obj->size - 4) {
2198 DRM_ERROR("Relocation beyond object bounds: "
2199 "obj %p target %d offset %d size %d.\n",
2200 obj, reloc.target_handle,
2201 (int) reloc.offset, (int) obj->size);
2202 drm_gem_object_unreference(target_obj);
2203 i915_gem_object_unpin(obj);
2204 return -EINVAL;
2205 }
2206 if (reloc.offset & 3) {
2207 DRM_ERROR("Relocation not 4-byte aligned: "
2208 "obj %p target %d offset %d.\n",
2209 obj, reloc.target_handle,
2210 (int) reloc.offset);
2211 drm_gem_object_unreference(target_obj);
2212 i915_gem_object_unpin(obj);
2213 return -EINVAL;
2214 }
2215
e47c68e9
EA
2216 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2217 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2218 DRM_ERROR("reloc with read/write CPU domains: "
2219 "obj %p target %d offset %d "
2220 "read %08x write %08x",
2221 obj, reloc.target_handle,
2222 (int) reloc.offset,
2223 reloc.read_domains,
2224 reloc.write_domain);
2225 return -EINVAL;
2226 }
2227
673a394b
EA
2228 if (reloc.write_domain && target_obj->pending_write_domain &&
2229 reloc.write_domain != target_obj->pending_write_domain) {
2230 DRM_ERROR("Write domain conflict: "
2231 "obj %p target %d offset %d "
2232 "new %08x old %08x\n",
2233 obj, reloc.target_handle,
2234 (int) reloc.offset,
2235 reloc.write_domain,
2236 target_obj->pending_write_domain);
2237 drm_gem_object_unreference(target_obj);
2238 i915_gem_object_unpin(obj);
2239 return -EINVAL;
2240 }
2241
2242#if WATCH_RELOC
2243 DRM_INFO("%s: obj %p offset %08x target %d "
2244 "read %08x write %08x gtt %08x "
2245 "presumed %08x delta %08x\n",
2246 __func__,
2247 obj,
2248 (int) reloc.offset,
2249 (int) reloc.target_handle,
2250 (int) reloc.read_domains,
2251 (int) reloc.write_domain,
2252 (int) target_obj_priv->gtt_offset,
2253 (int) reloc.presumed_offset,
2254 reloc.delta);
2255#endif
2256
2257 target_obj->pending_read_domains |= reloc.read_domains;
2258 target_obj->pending_write_domain |= reloc.write_domain;
2259
2260 /* If the relocation already has the right value in it, no
2261 * more work needs to be done.
2262 */
2263 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2264 drm_gem_object_unreference(target_obj);
2265 continue;
2266 }
2267
2ef7eeaa
EA
2268 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2269 if (ret != 0) {
2270 drm_gem_object_unreference(target_obj);
2271 i915_gem_object_unpin(obj);
2272 return -EINVAL;
673a394b
EA
2273 }
2274
2275 /* Map the page containing the relocation we're going to
2276 * perform.
2277 */
2278 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
2279 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2280 (reloc_offset &
2281 ~(PAGE_SIZE - 1)));
3043c60c 2282 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2283 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
2284 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2285
2286#if WATCH_BUF
2287 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2288 obj, (unsigned int) reloc.offset,
2289 readl(reloc_entry), reloc_val);
2290#endif
2291 writel(reloc_val, reloc_entry);
0839ccb8 2292 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
2293
2294 /* Write the updated presumed offset for this entry back out
2295 * to the user.
2296 */
2297 reloc.presumed_offset = target_obj_priv->gtt_offset;
2298 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2299 if (ret != 0) {
2300 drm_gem_object_unreference(target_obj);
2301 i915_gem_object_unpin(obj);
2302 return ret;
2303 }
2304
2305 drm_gem_object_unreference(target_obj);
2306 }
2307
673a394b
EA
2308#if WATCH_BUF
2309 if (0)
2310 i915_gem_dump_object(obj, 128, __func__, ~0);
2311#endif
2312 return 0;
2313}
2314
2315/** Dispatch a batchbuffer to the ring
2316 */
2317static int
2318i915_dispatch_gem_execbuffer(struct drm_device *dev,
2319 struct drm_i915_gem_execbuffer *exec,
2320 uint64_t exec_offset)
2321{
2322 drm_i915_private_t *dev_priv = dev->dev_private;
2323 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2324 (uintptr_t) exec->cliprects_ptr;
2325 int nbox = exec->num_cliprects;
2326 int i = 0, count;
2327 uint32_t exec_start, exec_len;
2328 RING_LOCALS;
2329
2330 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2331 exec_len = (uint32_t) exec->batch_len;
2332
2333 if ((exec_start | exec_len) & 0x7) {
2334 DRM_ERROR("alignment\n");
2335 return -EINVAL;
2336 }
2337
2338 if (!exec_start)
2339 return -EINVAL;
2340
2341 count = nbox ? nbox : 1;
2342
2343 for (i = 0; i < count; i++) {
2344 if (i < nbox) {
2345 int ret = i915_emit_box(dev, boxes, i,
2346 exec->DR1, exec->DR4);
2347 if (ret)
2348 return ret;
2349 }
2350
2351 if (IS_I830(dev) || IS_845G(dev)) {
2352 BEGIN_LP_RING(4);
2353 OUT_RING(MI_BATCH_BUFFER);
2354 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2355 OUT_RING(exec_start + exec_len - 4);
2356 OUT_RING(0);
2357 ADVANCE_LP_RING();
2358 } else {
2359 BEGIN_LP_RING(2);
2360 if (IS_I965G(dev)) {
2361 OUT_RING(MI_BATCH_BUFFER_START |
2362 (2 << 6) |
2363 MI_BATCH_NON_SECURE_I965);
2364 OUT_RING(exec_start);
2365 } else {
2366 OUT_RING(MI_BATCH_BUFFER_START |
2367 (2 << 6));
2368 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2369 }
2370 ADVANCE_LP_RING();
2371 }
2372 }
2373
2374 /* XXX breadcrumb */
2375 return 0;
2376}
2377
2378/* Throttle our rendering by waiting until the ring has completed our requests
2379 * emitted over 20 msec ago.
2380 *
2381 * This should get us reasonable parallelism between CPU and GPU but also
2382 * relatively low latency when blocking on a particular request to finish.
2383 */
2384static int
2385i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2386{
2387 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2388 int ret = 0;
2389 uint32_t seqno;
2390
2391 mutex_lock(&dev->struct_mutex);
2392 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2393 i915_file_priv->mm.last_gem_throttle_seqno =
2394 i915_file_priv->mm.last_gem_seqno;
2395 if (seqno)
2396 ret = i915_wait_request(dev, seqno);
2397 mutex_unlock(&dev->struct_mutex);
2398 return ret;
2399}
2400
2401int
2402i915_gem_execbuffer(struct drm_device *dev, void *data,
2403 struct drm_file *file_priv)
2404{
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2407 struct drm_i915_gem_execbuffer *args = data;
2408 struct drm_i915_gem_exec_object *exec_list = NULL;
2409 struct drm_gem_object **object_list = NULL;
2410 struct drm_gem_object *batch_obj;
2411 int ret, i, pinned = 0;
2412 uint64_t exec_offset;
2413 uint32_t seqno, flush_domains;
ac94a962 2414 int pin_tries;
673a394b
EA
2415
2416#if WATCH_EXEC
2417 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2418 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2419#endif
2420
4f481ed2
EA
2421 if (args->buffer_count < 1) {
2422 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2423 return -EINVAL;
2424 }
673a394b
EA
2425 /* Copy in the exec list from userland */
2426 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2427 DRM_MEM_DRIVER);
2428 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2429 DRM_MEM_DRIVER);
2430 if (exec_list == NULL || object_list == NULL) {
2431 DRM_ERROR("Failed to allocate exec or object list "
2432 "for %d buffers\n",
2433 args->buffer_count);
2434 ret = -ENOMEM;
2435 goto pre_mutex_err;
2436 }
2437 ret = copy_from_user(exec_list,
2438 (struct drm_i915_relocation_entry __user *)
2439 (uintptr_t) args->buffers_ptr,
2440 sizeof(*exec_list) * args->buffer_count);
2441 if (ret != 0) {
2442 DRM_ERROR("copy %d exec entries failed %d\n",
2443 args->buffer_count, ret);
2444 goto pre_mutex_err;
2445 }
2446
2447 mutex_lock(&dev->struct_mutex);
2448
2449 i915_verify_inactive(dev, __FILE__, __LINE__);
2450
2451 if (dev_priv->mm.wedged) {
2452 DRM_ERROR("Execbuf while wedged\n");
2453 mutex_unlock(&dev->struct_mutex);
2454 return -EIO;
2455 }
2456
2457 if (dev_priv->mm.suspended) {
2458 DRM_ERROR("Execbuf while VT-switched.\n");
2459 mutex_unlock(&dev->struct_mutex);
2460 return -EBUSY;
2461 }
2462
ac94a962 2463 /* Look up object handles */
673a394b
EA
2464 for (i = 0; i < args->buffer_count; i++) {
2465 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2466 exec_list[i].handle);
2467 if (object_list[i] == NULL) {
2468 DRM_ERROR("Invalid object handle %d at index %d\n",
2469 exec_list[i].handle, i);
2470 ret = -EBADF;
2471 goto err;
2472 }
ac94a962 2473 }
673a394b 2474
ac94a962
KP
2475 /* Pin and relocate */
2476 for (pin_tries = 0; ; pin_tries++) {
2477 ret = 0;
2478 for (i = 0; i < args->buffer_count; i++) {
2479 object_list[i]->pending_read_domains = 0;
2480 object_list[i]->pending_write_domain = 0;
2481 ret = i915_gem_object_pin_and_relocate(object_list[i],
2482 file_priv,
2483 &exec_list[i]);
2484 if (ret)
2485 break;
2486 pinned = i + 1;
2487 }
2488 /* success */
2489 if (ret == 0)
2490 break;
2491
2492 /* error other than GTT full, or we've already tried again */
2493 if (ret != -ENOMEM || pin_tries >= 1) {
2494 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
2495 goto err;
2496 }
ac94a962
KP
2497
2498 /* unpin all of our buffers */
2499 for (i = 0; i < pinned; i++)
2500 i915_gem_object_unpin(object_list[i]);
2501
2502 /* evict everyone we can from the aperture */
2503 ret = i915_gem_evict_everything(dev);
2504 if (ret)
2505 goto err;
673a394b
EA
2506 }
2507
2508 /* Set the pending read domains for the batch buffer to COMMAND */
2509 batch_obj = object_list[args->buffer_count-1];
2510 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2511 batch_obj->pending_write_domain = 0;
2512
2513 i915_verify_inactive(dev, __FILE__, __LINE__);
2514
646f0f6e
KP
2515 /* Zero the global flush/invalidate flags. These
2516 * will be modified as new domains are computed
2517 * for each object
2518 */
2519 dev->invalidate_domains = 0;
2520 dev->flush_domains = 0;
2521
673a394b
EA
2522 for (i = 0; i < args->buffer_count; i++) {
2523 struct drm_gem_object *obj = object_list[i];
673a394b 2524
646f0f6e 2525 /* Compute new gpu domains and update invalidate/flush */
c0d90829
KP
2526 i915_gem_object_set_to_gpu_domain(obj,
2527 obj->pending_read_domains,
2528 obj->pending_write_domain);
673a394b
EA
2529 }
2530
2531 i915_verify_inactive(dev, __FILE__, __LINE__);
2532
646f0f6e
KP
2533 if (dev->invalidate_domains | dev->flush_domains) {
2534#if WATCH_EXEC
2535 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2536 __func__,
2537 dev->invalidate_domains,
2538 dev->flush_domains);
2539#endif
2540 i915_gem_flush(dev,
2541 dev->invalidate_domains,
2542 dev->flush_domains);
2543 if (dev->flush_domains)
2544 (void)i915_add_request(dev, dev->flush_domains);
2545 }
673a394b
EA
2546
2547 i915_verify_inactive(dev, __FILE__, __LINE__);
2548
2549#if WATCH_COHERENCY
2550 for (i = 0; i < args->buffer_count; i++) {
2551 i915_gem_object_check_coherency(object_list[i],
2552 exec_list[i].handle);
2553 }
2554#endif
2555
2556 exec_offset = exec_list[args->buffer_count - 1].offset;
2557
2558#if WATCH_EXEC
2559 i915_gem_dump_object(object_list[args->buffer_count - 1],
2560 args->batch_len,
2561 __func__,
2562 ~0);
2563#endif
2564
673a394b
EA
2565 /* Exec the batchbuffer */
2566 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2567 if (ret) {
2568 DRM_ERROR("dispatch failed %d\n", ret);
2569 goto err;
2570 }
2571
2572 /*
2573 * Ensure that the commands in the batch buffer are
2574 * finished before the interrupt fires
2575 */
2576 flush_domains = i915_retire_commands(dev);
2577
2578 i915_verify_inactive(dev, __FILE__, __LINE__);
2579
2580 /*
2581 * Get a seqno representing the execution of the current buffer,
2582 * which we can wait on. We would like to mitigate these interrupts,
2583 * likely by only creating seqnos occasionally (so that we have
2584 * *some* interrupts representing completion of buffers that we can
2585 * wait on when trying to clear up gtt space).
2586 */
2587 seqno = i915_add_request(dev, flush_domains);
2588 BUG_ON(seqno == 0);
2589 i915_file_priv->mm.last_gem_seqno = seqno;
2590 for (i = 0; i < args->buffer_count; i++) {
2591 struct drm_gem_object *obj = object_list[i];
673a394b 2592
ce44b0ea 2593 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
2594#if WATCH_LRU
2595 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2596#endif
2597 }
2598#if WATCH_LRU
2599 i915_dump_lru(dev, __func__);
2600#endif
2601
2602 i915_verify_inactive(dev, __FILE__, __LINE__);
2603
2604 /* Copy the new buffer offsets back to the user's exec list. */
2605 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2606 (uintptr_t) args->buffers_ptr,
2607 exec_list,
2608 sizeof(*exec_list) * args->buffer_count);
2609 if (ret)
2610 DRM_ERROR("failed to copy %d exec entries "
2611 "back to user (%d)\n",
2612 args->buffer_count, ret);
2613err:
2614 if (object_list != NULL) {
2615 for (i = 0; i < pinned; i++)
2616 i915_gem_object_unpin(object_list[i]);
2617
2618 for (i = 0; i < args->buffer_count; i++)
2619 drm_gem_object_unreference(object_list[i]);
2620 }
2621 mutex_unlock(&dev->struct_mutex);
2622
2623pre_mutex_err:
2624 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2625 DRM_MEM_DRIVER);
2626 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2627 DRM_MEM_DRIVER);
2628
2629 return ret;
2630}
2631
2632int
2633i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2634{
2635 struct drm_device *dev = obj->dev;
2636 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2637 int ret;
2638
2639 i915_verify_inactive(dev, __FILE__, __LINE__);
2640 if (obj_priv->gtt_space == NULL) {
2641 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2642 if (ret != 0) {
2643 DRM_ERROR("Failure to bind: %d", ret);
2644 return ret;
2645 }
2646 }
2647 obj_priv->pin_count++;
2648
2649 /* If the object is not active and not pending a flush,
2650 * remove it from the inactive list
2651 */
2652 if (obj_priv->pin_count == 1) {
2653 atomic_inc(&dev->pin_count);
2654 atomic_add(obj->size, &dev->pin_memory);
2655 if (!obj_priv->active &&
2656 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2657 I915_GEM_DOMAIN_GTT)) == 0 &&
2658 !list_empty(&obj_priv->list))
2659 list_del_init(&obj_priv->list);
2660 }
2661 i915_verify_inactive(dev, __FILE__, __LINE__);
2662
2663 return 0;
2664}
2665
2666void
2667i915_gem_object_unpin(struct drm_gem_object *obj)
2668{
2669 struct drm_device *dev = obj->dev;
2670 drm_i915_private_t *dev_priv = dev->dev_private;
2671 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2672
2673 i915_verify_inactive(dev, __FILE__, __LINE__);
2674 obj_priv->pin_count--;
2675 BUG_ON(obj_priv->pin_count < 0);
2676 BUG_ON(obj_priv->gtt_space == NULL);
2677
2678 /* If the object is no longer pinned, and is
2679 * neither active nor being flushed, then stick it on
2680 * the inactive list
2681 */
2682 if (obj_priv->pin_count == 0) {
2683 if (!obj_priv->active &&
2684 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2685 I915_GEM_DOMAIN_GTT)) == 0)
2686 list_move_tail(&obj_priv->list,
2687 &dev_priv->mm.inactive_list);
2688 atomic_dec(&dev->pin_count);
2689 atomic_sub(obj->size, &dev->pin_memory);
2690 }
2691 i915_verify_inactive(dev, __FILE__, __LINE__);
2692}
2693
2694int
2695i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2696 struct drm_file *file_priv)
2697{
2698 struct drm_i915_gem_pin *args = data;
2699 struct drm_gem_object *obj;
2700 struct drm_i915_gem_object *obj_priv;
2701 int ret;
2702
2703 mutex_lock(&dev->struct_mutex);
2704
2705 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2706 if (obj == NULL) {
2707 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2708 args->handle);
2709 mutex_unlock(&dev->struct_mutex);
2710 return -EBADF;
2711 }
2712 obj_priv = obj->driver_private;
2713
79e53945
JB
2714 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2715 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2716 args->handle);
673a394b 2717 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2718 return -EINVAL;
2719 }
2720
2721 obj_priv->user_pin_count++;
2722 obj_priv->pin_filp = file_priv;
2723 if (obj_priv->user_pin_count == 1) {
2724 ret = i915_gem_object_pin(obj, args->alignment);
2725 if (ret != 0) {
2726 drm_gem_object_unreference(obj);
2727 mutex_unlock(&dev->struct_mutex);
2728 return ret;
2729 }
673a394b
EA
2730 }
2731
2732 /* XXX - flush the CPU caches for pinned objects
2733 * as the X server doesn't manage domains yet
2734 */
e47c68e9 2735 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
2736 args->offset = obj_priv->gtt_offset;
2737 drm_gem_object_unreference(obj);
2738 mutex_unlock(&dev->struct_mutex);
2739
2740 return 0;
2741}
2742
2743int
2744i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2745 struct drm_file *file_priv)
2746{
2747 struct drm_i915_gem_pin *args = data;
2748 struct drm_gem_object *obj;
79e53945 2749 struct drm_i915_gem_object *obj_priv;
673a394b
EA
2750
2751 mutex_lock(&dev->struct_mutex);
2752
2753 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2754 if (obj == NULL) {
2755 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2756 args->handle);
2757 mutex_unlock(&dev->struct_mutex);
2758 return -EBADF;
2759 }
2760
79e53945
JB
2761 obj_priv = obj->driver_private;
2762 if (obj_priv->pin_filp != file_priv) {
2763 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2764 args->handle);
2765 drm_gem_object_unreference(obj);
2766 mutex_unlock(&dev->struct_mutex);
2767 return -EINVAL;
2768 }
2769 obj_priv->user_pin_count--;
2770 if (obj_priv->user_pin_count == 0) {
2771 obj_priv->pin_filp = NULL;
2772 i915_gem_object_unpin(obj);
2773 }
673a394b
EA
2774
2775 drm_gem_object_unreference(obj);
2776 mutex_unlock(&dev->struct_mutex);
2777 return 0;
2778}
2779
2780int
2781i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2782 struct drm_file *file_priv)
2783{
2784 struct drm_i915_gem_busy *args = data;
2785 struct drm_gem_object *obj;
2786 struct drm_i915_gem_object *obj_priv;
2787
2788 mutex_lock(&dev->struct_mutex);
2789 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2790 if (obj == NULL) {
2791 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2792 args->handle);
2793 mutex_unlock(&dev->struct_mutex);
2794 return -EBADF;
2795 }
2796
2797 obj_priv = obj->driver_private;
c4de0a5d
EA
2798 /* Don't count being on the flushing list against the object being
2799 * done. Otherwise, a buffer left on the flushing list but not getting
2800 * flushed (because nobody's flushing that domain) won't ever return
2801 * unbusy and get reused by libdrm's bo cache. The other expected
2802 * consumer of this interface, OpenGL's occlusion queries, also specs
2803 * that the objects get unbusy "eventually" without any interference.
2804 */
2805 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
2806
2807 drm_gem_object_unreference(obj);
2808 mutex_unlock(&dev->struct_mutex);
2809 return 0;
2810}
2811
2812int
2813i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2814 struct drm_file *file_priv)
2815{
2816 return i915_gem_ring_throttle(dev, file_priv);
2817}
2818
2819int i915_gem_init_object(struct drm_gem_object *obj)
2820{
2821 struct drm_i915_gem_object *obj_priv;
2822
2823 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2824 if (obj_priv == NULL)
2825 return -ENOMEM;
2826
2827 /*
2828 * We've just allocated pages from the kernel,
2829 * so they've just been written by the CPU with
2830 * zeros. They'll need to be clflushed before we
2831 * use them with the GPU.
2832 */
2833 obj->write_domain = I915_GEM_DOMAIN_CPU;
2834 obj->read_domains = I915_GEM_DOMAIN_CPU;
2835
ba1eb1d8
KP
2836 obj_priv->agp_type = AGP_USER_MEMORY;
2837
673a394b
EA
2838 obj->driver_private = obj_priv;
2839 obj_priv->obj = obj;
de151cf6 2840 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 2841 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 2842
673a394b
EA
2843 return 0;
2844}
2845
2846void i915_gem_free_object(struct drm_gem_object *obj)
2847{
de151cf6
JB
2848 struct drm_device *dev = obj->dev;
2849 struct drm_gem_mm *mm = dev->mm_private;
2850 struct drm_map_list *list;
2851 struct drm_map *map;
673a394b
EA
2852 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2853
2854 while (obj_priv->pin_count > 0)
2855 i915_gem_object_unpin(obj);
2856
2857 i915_gem_object_unbind(obj);
2858
de151cf6
JB
2859 list = &obj->map_list;
2860 drm_ht_remove_item(&mm->offset_hash, &list->hash);
2861
2862 if (list->file_offset_node) {
2863 drm_mm_put_block(list->file_offset_node);
2864 list->file_offset_node = NULL;
2865 }
2866
2867 map = list->map;
2868 if (map) {
2869 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2870 list->map = NULL;
2871 }
2872
673a394b
EA
2873 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2874 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2875}
2876
673a394b
EA
2877/** Unbinds all objects that are on the given buffer list. */
2878static int
2879i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2880{
2881 struct drm_gem_object *obj;
2882 struct drm_i915_gem_object *obj_priv;
2883 int ret;
2884
2885 while (!list_empty(head)) {
2886 obj_priv = list_first_entry(head,
2887 struct drm_i915_gem_object,
2888 list);
2889 obj = obj_priv->obj;
2890
2891 if (obj_priv->pin_count != 0) {
2892 DRM_ERROR("Pinned object in unbind list\n");
2893 mutex_unlock(&dev->struct_mutex);
2894 return -EINVAL;
2895 }
2896
2897 ret = i915_gem_object_unbind(obj);
2898 if (ret != 0) {
2899 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2900 ret);
2901 mutex_unlock(&dev->struct_mutex);
2902 return ret;
2903 }
2904 }
2905
2906
2907 return 0;
2908}
2909
2910static int
2911i915_gem_idle(struct drm_device *dev)
2912{
2913 drm_i915_private_t *dev_priv = dev->dev_private;
2914 uint32_t seqno, cur_seqno, last_seqno;
2915 int stuck, ret;
2916
6dbe2772
KP
2917 mutex_lock(&dev->struct_mutex);
2918
2919 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2920 mutex_unlock(&dev->struct_mutex);
673a394b 2921 return 0;
6dbe2772 2922 }
673a394b
EA
2923
2924 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2925 * We need to replace this with a semaphore, or something.
2926 */
2927 dev_priv->mm.suspended = 1;
2928
6dbe2772
KP
2929 /* Cancel the retire work handler, wait for it to finish if running
2930 */
2931 mutex_unlock(&dev->struct_mutex);
2932 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2933 mutex_lock(&dev->struct_mutex);
2934
673a394b
EA
2935 i915_kernel_lost_context(dev);
2936
2937 /* Flush the GPU along with all non-CPU write domains
2938 */
2939 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2940 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 2941 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
2942
2943 if (seqno == 0) {
2944 mutex_unlock(&dev->struct_mutex);
2945 return -ENOMEM;
2946 }
2947
2948 dev_priv->mm.waiting_gem_seqno = seqno;
2949 last_seqno = 0;
2950 stuck = 0;
2951 for (;;) {
2952 cur_seqno = i915_get_gem_seqno(dev);
2953 if (i915_seqno_passed(cur_seqno, seqno))
2954 break;
2955 if (last_seqno == cur_seqno) {
2956 if (stuck++ > 100) {
2957 DRM_ERROR("hardware wedged\n");
2958 dev_priv->mm.wedged = 1;
2959 DRM_WAKEUP(&dev_priv->irq_queue);
2960 break;
2961 }
2962 }
2963 msleep(10);
2964 last_seqno = cur_seqno;
2965 }
2966 dev_priv->mm.waiting_gem_seqno = 0;
2967
2968 i915_gem_retire_requests(dev);
2969
28dfe52a
EA
2970 if (!dev_priv->mm.wedged) {
2971 /* Active and flushing should now be empty as we've
2972 * waited for a sequence higher than any pending execbuffer
2973 */
2974 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2975 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2976 /* Request should now be empty as we've also waited
2977 * for the last request in the list
2978 */
2979 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2980 }
673a394b 2981
28dfe52a
EA
2982 /* Empty the active and flushing lists to inactive. If there's
2983 * anything left at this point, it means that we're wedged and
2984 * nothing good's going to happen by leaving them there. So strip
2985 * the GPU domains and just stuff them onto inactive.
673a394b 2986 */
28dfe52a
EA
2987 while (!list_empty(&dev_priv->mm.active_list)) {
2988 struct drm_i915_gem_object *obj_priv;
673a394b 2989
28dfe52a
EA
2990 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2991 struct drm_i915_gem_object,
2992 list);
2993 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2994 i915_gem_object_move_to_inactive(obj_priv->obj);
2995 }
2996
2997 while (!list_empty(&dev_priv->mm.flushing_list)) {
2998 struct drm_i915_gem_object *obj_priv;
2999
151903d5 3000 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3001 struct drm_i915_gem_object,
3002 list);
3003 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3004 i915_gem_object_move_to_inactive(obj_priv->obj);
3005 }
3006
3007
3008 /* Move all inactive buffers out of the GTT. */
673a394b 3009 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3010 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3011 if (ret) {
3012 mutex_unlock(&dev->struct_mutex);
673a394b 3013 return ret;
6dbe2772 3014 }
673a394b 3015
6dbe2772
KP
3016 i915_gem_cleanup_ringbuffer(dev);
3017 mutex_unlock(&dev->struct_mutex);
3018
673a394b
EA
3019 return 0;
3020}
3021
3022static int
3023i915_gem_init_hws(struct drm_device *dev)
3024{
3025 drm_i915_private_t *dev_priv = dev->dev_private;
3026 struct drm_gem_object *obj;
3027 struct drm_i915_gem_object *obj_priv;
3028 int ret;
3029
3030 /* If we need a physical address for the status page, it's already
3031 * initialized at driver load time.
3032 */
3033 if (!I915_NEED_GFX_HWS(dev))
3034 return 0;
3035
3036 obj = drm_gem_object_alloc(dev, 4096);
3037 if (obj == NULL) {
3038 DRM_ERROR("Failed to allocate status page\n");
3039 return -ENOMEM;
3040 }
3041 obj_priv = obj->driver_private;
ba1eb1d8 3042 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3043
3044 ret = i915_gem_object_pin(obj, 4096);
3045 if (ret != 0) {
3046 drm_gem_object_unreference(obj);
3047 return ret;
3048 }
3049
3050 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3051
ba1eb1d8
KP
3052 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3053 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3054 DRM_ERROR("Failed to map status page.\n");
3055 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3056 drm_gem_object_unreference(obj);
3057 return -EINVAL;
3058 }
3059 dev_priv->hws_obj = obj;
673a394b
EA
3060 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3061 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3062 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3063 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3064
3065 return 0;
3066}
3067
79e53945 3068int
673a394b
EA
3069i915_gem_init_ringbuffer(struct drm_device *dev)
3070{
3071 drm_i915_private_t *dev_priv = dev->dev_private;
3072 struct drm_gem_object *obj;
3073 struct drm_i915_gem_object *obj_priv;
79e53945 3074 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3075 int ret;
50aa253d 3076 u32 head;
673a394b
EA
3077
3078 ret = i915_gem_init_hws(dev);
3079 if (ret != 0)
3080 return ret;
3081
3082 obj = drm_gem_object_alloc(dev, 128 * 1024);
3083 if (obj == NULL) {
3084 DRM_ERROR("Failed to allocate ringbuffer\n");
3085 return -ENOMEM;
3086 }
3087 obj_priv = obj->driver_private;
3088
3089 ret = i915_gem_object_pin(obj, 4096);
3090 if (ret != 0) {
3091 drm_gem_object_unreference(obj);
3092 return ret;
3093 }
3094
3095 /* Set up the kernel mapping for the ring. */
79e53945
JB
3096 ring->Size = obj->size;
3097 ring->tail_mask = obj->size - 1;
673a394b 3098
79e53945
JB
3099 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3100 ring->map.size = obj->size;
3101 ring->map.type = 0;
3102 ring->map.flags = 0;
3103 ring->map.mtrr = 0;
673a394b 3104
79e53945
JB
3105 drm_core_ioremap_wc(&ring->map, dev);
3106 if (ring->map.handle == NULL) {
673a394b
EA
3107 DRM_ERROR("Failed to map ringbuffer.\n");
3108 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3109 drm_gem_object_unreference(obj);
3110 return -EINVAL;
3111 }
79e53945
JB
3112 ring->ring_obj = obj;
3113 ring->virtual_start = ring->map.handle;
673a394b
EA
3114
3115 /* Stop the ring if it's running. */
3116 I915_WRITE(PRB0_CTL, 0);
673a394b 3117 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3118 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3119
3120 /* Initialize the ring. */
3121 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3122 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3123
3124 /* G45 ring initialization fails to reset head to zero */
3125 if (head != 0) {
3126 DRM_ERROR("Ring head not reset to zero "
3127 "ctl %08x head %08x tail %08x start %08x\n",
3128 I915_READ(PRB0_CTL),
3129 I915_READ(PRB0_HEAD),
3130 I915_READ(PRB0_TAIL),
3131 I915_READ(PRB0_START));
3132 I915_WRITE(PRB0_HEAD, 0);
3133
3134 DRM_ERROR("Ring head forced to zero "
3135 "ctl %08x head %08x tail %08x start %08x\n",
3136 I915_READ(PRB0_CTL),
3137 I915_READ(PRB0_HEAD),
3138 I915_READ(PRB0_TAIL),
3139 I915_READ(PRB0_START));
3140 }
3141
673a394b
EA
3142 I915_WRITE(PRB0_CTL,
3143 ((obj->size - 4096) & RING_NR_PAGES) |
3144 RING_NO_REPORT |
3145 RING_VALID);
3146
50aa253d
KP
3147 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3148
3149 /* If the head is still not zero, the ring is dead */
3150 if (head != 0) {
3151 DRM_ERROR("Ring initialization failed "
3152 "ctl %08x head %08x tail %08x start %08x\n",
3153 I915_READ(PRB0_CTL),
3154 I915_READ(PRB0_HEAD),
3155 I915_READ(PRB0_TAIL),
3156 I915_READ(PRB0_START));
3157 return -EIO;
3158 }
3159
673a394b 3160 /* Update our cache of the ring state */
79e53945
JB
3161 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3162 i915_kernel_lost_context(dev);
3163 else {
3164 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3165 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3166 ring->space = ring->head - (ring->tail + 8);
3167 if (ring->space < 0)
3168 ring->space += ring->Size;
3169 }
673a394b
EA
3170
3171 return 0;
3172}
3173
79e53945 3174void
673a394b
EA
3175i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3176{
3177 drm_i915_private_t *dev_priv = dev->dev_private;
3178
3179 if (dev_priv->ring.ring_obj == NULL)
3180 return;
3181
3182 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3183
3184 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3185 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3186 dev_priv->ring.ring_obj = NULL;
3187 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3188
3189 if (dev_priv->hws_obj != NULL) {
ba1eb1d8
KP
3190 struct drm_gem_object *obj = dev_priv->hws_obj;
3191 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3192
3193 kunmap(obj_priv->page_list[0]);
3194 i915_gem_object_unpin(obj);
3195 drm_gem_object_unreference(obj);
673a394b
EA
3196 dev_priv->hws_obj = NULL;
3197 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
ba1eb1d8 3198 dev_priv->hw_status_page = NULL;
673a394b
EA
3199
3200 /* Write high address into HWS_PGA when disabling. */
3201 I915_WRITE(HWS_PGA, 0x1ffff000);
3202 }
3203}
3204
3205int
3206i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3207 struct drm_file *file_priv)
3208{
3209 drm_i915_private_t *dev_priv = dev->dev_private;
3210 int ret;
3211
79e53945
JB
3212 if (drm_core_check_feature(dev, DRIVER_MODESET))
3213 return 0;
3214
673a394b
EA
3215 if (dev_priv->mm.wedged) {
3216 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3217 dev_priv->mm.wedged = 0;
3218 }
3219
3220 ret = i915_gem_init_ringbuffer(dev);
3221 if (ret != 0)
3222 return ret;
3223
0839ccb8
KP
3224 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
3225 dev->agp->agp_info.aper_size
3226 * 1024 * 1024);
3227
673a394b
EA
3228 mutex_lock(&dev->struct_mutex);
3229 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3230 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3231 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3232 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3233 dev_priv->mm.suspended = 0;
3234 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3235
3236 drm_irq_install(dev);
3237
673a394b
EA
3238 return 0;
3239}
3240
3241int
3242i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3243 struct drm_file *file_priv)
3244{
0839ccb8 3245 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3246 int ret;
3247
79e53945
JB
3248 if (drm_core_check_feature(dev, DRIVER_MODESET))
3249 return 0;
3250
673a394b 3251 ret = i915_gem_idle(dev);
dbb19d30
KH
3252 drm_irq_uninstall(dev);
3253
0839ccb8 3254 io_mapping_free(dev_priv->mm.gtt_mapping);
6dbe2772 3255 return ret;
673a394b
EA
3256}
3257
3258void
3259i915_gem_lastclose(struct drm_device *dev)
3260{
3261 int ret;
673a394b 3262
6dbe2772
KP
3263 ret = i915_gem_idle(dev);
3264 if (ret)
3265 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3266}
3267
3268void
3269i915_gem_load(struct drm_device *dev)
3270{
3271 drm_i915_private_t *dev_priv = dev->dev_private;
3272
3273 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3274 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3275 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3276 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3277 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3278 i915_gem_retire_work_handler);
3279 dev_priv->mm.next_gem_seqno = 1;
3280
de151cf6
JB
3281 /* Old X drivers will take 0-2 for front, back, depth buffers */
3282 dev_priv->fence_reg_start = 3;
3283
3284 if (IS_I965G(dev))
3285 dev_priv->num_fence_regs = 16;
3286 else
3287 dev_priv->num_fence_regs = 8;
3288
673a394b
EA
3289 i915_gem_detect_bit_6_swizzle(dev);
3290}