]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Cut two args to set_to_gpu_domain that confused this tricky path.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b
EA
46static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
47static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
0f973f27 51static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
79e53945
JB
58int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
673a394b
EA
60{
61 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 62
79e53945
JB
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
66 return -EINVAL;
67 }
68
79e53945
JB
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
673a394b 71
79e53945
JB
72 dev->gtt_total = (uint32_t) (end - start);
73
74 return 0;
75}
673a394b 76
79e53945
JB
77int
78i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
80{
81 struct drm_i915_gem_init *args = data;
82 int ret;
83
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
86 mutex_unlock(&dev->struct_mutex);
87
79e53945 88 return ret;
673a394b
EA
89}
90
5a125c3c
EA
91int
92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
5a125c3c 95 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
96
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
99
100 args->aper_size = dev->gtt_total;
2678d9d6
KP
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
5a125c3c
EA
103
104 return 0;
105}
106
673a394b
EA
107
108/**
109 * Creates a new mm object and returns a handle to it.
110 */
111int
112i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
114{
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
118
119 args->size = roundup(args->size, PAGE_SIZE);
120
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
125
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
130
131 if (ret)
132 return ret;
133
134 args->handle = handle;
135
136 return 0;
137}
138
139/**
140 * Reads data from the object referenced by handle.
141 *
142 * On error, the contents of *data are undefined.
143 */
144int
145i915_gem_pread_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file_priv)
147{
148 struct drm_i915_gem_pread *args = data;
149 struct drm_gem_object *obj;
150 struct drm_i915_gem_object *obj_priv;
151 ssize_t read;
152 loff_t offset;
153 int ret;
154
155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
156 if (obj == NULL)
157 return -EBADF;
158 obj_priv = obj->driver_private;
159
160 /* Bounds check source.
161 *
162 * XXX: This could use review for overflow issues...
163 */
164 if (args->offset > obj->size || args->size > obj->size ||
165 args->offset + args->size > obj->size) {
166 drm_gem_object_unreference(obj);
167 return -EINVAL;
168 }
169
170 mutex_lock(&dev->struct_mutex);
171
e47c68e9
EA
172 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
173 args->size);
673a394b
EA
174 if (ret != 0) {
175 drm_gem_object_unreference(obj);
176 mutex_unlock(&dev->struct_mutex);
e7d22bc3 177 return ret;
673a394b
EA
178 }
179
180 offset = args->offset;
181
182 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
183 args->size, &offset);
184 if (read != args->size) {
185 drm_gem_object_unreference(obj);
186 mutex_unlock(&dev->struct_mutex);
187 if (read < 0)
188 return read;
189 else
190 return -EINVAL;
191 }
192
193 drm_gem_object_unreference(obj);
194 mutex_unlock(&dev->struct_mutex);
195
196 return 0;
197}
198
0839ccb8
KP
199/* This is the fast write path which cannot handle
200 * page faults in the source data
9b7530cc 201 */
0839ccb8
KP
202
203static inline int
204fast_user_write(struct io_mapping *mapping,
205 loff_t page_base, int page_offset,
206 char __user *user_data,
207 int length)
9b7530cc 208{
9b7530cc 209 char *vaddr_atomic;
0839ccb8 210 unsigned long unwritten;
9b7530cc 211
0839ccb8
KP
212 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
213 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
214 user_data, length);
215 io_mapping_unmap_atomic(vaddr_atomic);
216 if (unwritten)
217 return -EFAULT;
218 return 0;
219}
220
221/* Here's the write path which can sleep for
222 * page faults
223 */
224
225static inline int
226slow_user_write(struct io_mapping *mapping,
227 loff_t page_base, int page_offset,
228 char __user *user_data,
229 int length)
230{
231 char __iomem *vaddr;
232 unsigned long unwritten;
233
234 vaddr = io_mapping_map_wc(mapping, page_base);
235 if (vaddr == NULL)
236 return -EFAULT;
237 unwritten = __copy_from_user(vaddr + page_offset,
238 user_data, length);
239 io_mapping_unmap(vaddr);
240 if (unwritten)
241 return -EFAULT;
9b7530cc 242 return 0;
9b7530cc
LT
243}
244
673a394b
EA
245static int
246i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
247 struct drm_i915_gem_pwrite *args,
248 struct drm_file *file_priv)
249{
250 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 251 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 252 ssize_t remain;
0839ccb8 253 loff_t offset, page_base;
673a394b 254 char __user *user_data;
0839ccb8
KP
255 int page_offset, page_length;
256 int ret;
673a394b
EA
257
258 user_data = (char __user *) (uintptr_t) args->data_ptr;
259 remain = args->size;
260 if (!access_ok(VERIFY_READ, user_data, remain))
261 return -EFAULT;
262
263
264 mutex_lock(&dev->struct_mutex);
265 ret = i915_gem_object_pin(obj, 0);
266 if (ret) {
267 mutex_unlock(&dev->struct_mutex);
268 return ret;
269 }
2ef7eeaa 270 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
271 if (ret)
272 goto fail;
273
274 obj_priv = obj->driver_private;
275 offset = obj_priv->gtt_offset + args->offset;
276 obj_priv->dirty = 1;
277
278 while (remain > 0) {
279 /* Operation in this page
280 *
0839ccb8
KP
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
673a394b 284 */
0839ccb8
KP
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
290
291 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
292 page_offset, user_data, page_length);
293
294 /* If we get a fault while copying data, then (presumably) our
295 * source page isn't available. In this case, use the
296 * non-atomic function
297 */
298 if (ret) {
299 ret = slow_user_write (dev_priv->mm.gtt_mapping,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
673a394b 303 goto fail;
673a394b
EA
304 }
305
0839ccb8
KP
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
673a394b 309 }
673a394b
EA
310
311fail:
312 i915_gem_object_unpin(obj);
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316}
317
3043c60c 318static int
673a394b
EA
319i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
320 struct drm_i915_gem_pwrite *args,
321 struct drm_file *file_priv)
322{
323 int ret;
324 loff_t offset;
325 ssize_t written;
326
327 mutex_lock(&dev->struct_mutex);
328
e47c68e9 329 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b
EA
330 if (ret) {
331 mutex_unlock(&dev->struct_mutex);
332 return ret;
333 }
334
335 offset = args->offset;
336
337 written = vfs_write(obj->filp,
338 (char __user *)(uintptr_t) args->data_ptr,
339 args->size, &offset);
340 if (written != args->size) {
341 mutex_unlock(&dev->struct_mutex);
342 if (written < 0)
343 return written;
344 else
345 return -EINVAL;
346 }
347
348 mutex_unlock(&dev->struct_mutex);
349
350 return 0;
351}
352
353/**
354 * Writes data to the object referenced by handle.
355 *
356 * On error, the contents of the buffer that were to be modified are undefined.
357 */
358int
359i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
360 struct drm_file *file_priv)
361{
362 struct drm_i915_gem_pwrite *args = data;
363 struct drm_gem_object *obj;
364 struct drm_i915_gem_object *obj_priv;
365 int ret = 0;
366
367 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
368 if (obj == NULL)
369 return -EBADF;
370 obj_priv = obj->driver_private;
371
372 /* Bounds check destination.
373 *
374 * XXX: This could use review for overflow issues...
375 */
376 if (args->offset > obj->size || args->size > obj->size ||
377 args->offset + args->size > obj->size) {
378 drm_gem_object_unreference(obj);
379 return -EINVAL;
380 }
381
382 /* We can only do the GTT pwrite on untiled buffers, as otherwise
383 * it would end up going through the fenced access, and we'll get
384 * different detiling behavior between reading and writing.
385 * pread/pwrite currently are reading and writing from the CPU
386 * perspective, requiring manual detiling by the client.
387 */
71acb5eb
DA
388 if (obj_priv->phys_obj)
389 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
390 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
391 dev->gtt_total != 0)
673a394b
EA
392 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
393 else
394 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
395
396#if WATCH_PWRITE
397 if (ret)
398 DRM_INFO("pwrite failed %d\n", ret);
399#endif
400
401 drm_gem_object_unreference(obj);
402
403 return ret;
404}
405
406/**
2ef7eeaa
EA
407 * Called when user space prepares to use an object with the CPU, either
408 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
409 */
410int
411i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
412 struct drm_file *file_priv)
413{
414 struct drm_i915_gem_set_domain *args = data;
415 struct drm_gem_object *obj;
2ef7eeaa
EA
416 uint32_t read_domains = args->read_domains;
417 uint32_t write_domain = args->write_domain;
673a394b
EA
418 int ret;
419
420 if (!(dev->driver->driver_features & DRIVER_GEM))
421 return -ENODEV;
422
2ef7eeaa
EA
423 /* Only handle setting domains to types used by the CPU. */
424 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
425 return -EINVAL;
426
427 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
428 return -EINVAL;
429
430 /* Having something in the write domain implies it's in the read
431 * domain, and only that read domain. Enforce that in the request.
432 */
433 if (write_domain != 0 && read_domains != write_domain)
434 return -EINVAL;
435
673a394b
EA
436 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
437 if (obj == NULL)
438 return -EBADF;
439
440 mutex_lock(&dev->struct_mutex);
441#if WATCH_BUF
442 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 443 obj, obj->size, read_domains, write_domain);
673a394b 444#endif
2ef7eeaa
EA
445 if (read_domains & I915_GEM_DOMAIN_GTT) {
446 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
447
448 /* Silently promote "you're not bound, there was nothing to do"
449 * to success, since the client was just asking us to
450 * make sure everything was done.
451 */
452 if (ret == -EINVAL)
453 ret = 0;
2ef7eeaa 454 } else {
e47c68e9 455 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
456 }
457
673a394b
EA
458 drm_gem_object_unreference(obj);
459 mutex_unlock(&dev->struct_mutex);
460 return ret;
461}
462
463/**
464 * Called when user space has done writes to this buffer
465 */
466int
467i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
468 struct drm_file *file_priv)
469{
470 struct drm_i915_gem_sw_finish *args = data;
471 struct drm_gem_object *obj;
472 struct drm_i915_gem_object *obj_priv;
473 int ret = 0;
474
475 if (!(dev->driver->driver_features & DRIVER_GEM))
476 return -ENODEV;
477
478 mutex_lock(&dev->struct_mutex);
479 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480 if (obj == NULL) {
481 mutex_unlock(&dev->struct_mutex);
482 return -EBADF;
483 }
484
485#if WATCH_BUF
486 DRM_INFO("%s: sw_finish %d (%p %d)\n",
487 __func__, args->handle, obj, obj->size);
488#endif
489 obj_priv = obj->driver_private;
490
491 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
492 if (obj_priv->pin_count)
493 i915_gem_object_flush_cpu_write_domain(obj);
494
673a394b
EA
495 drm_gem_object_unreference(obj);
496 mutex_unlock(&dev->struct_mutex);
497 return ret;
498}
499
500/**
501 * Maps the contents of an object, returning the address it is mapped
502 * into.
503 *
504 * While the mapping holds a reference on the contents of the object, it doesn't
505 * imply a ref on the object itself.
506 */
507int
508i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
509 struct drm_file *file_priv)
510{
511 struct drm_i915_gem_mmap *args = data;
512 struct drm_gem_object *obj;
513 loff_t offset;
514 unsigned long addr;
515
516 if (!(dev->driver->driver_features & DRIVER_GEM))
517 return -ENODEV;
518
519 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
520 if (obj == NULL)
521 return -EBADF;
522
523 offset = args->offset;
524
525 down_write(&current->mm->mmap_sem);
526 addr = do_mmap(obj->filp, 0, args->size,
527 PROT_READ | PROT_WRITE, MAP_SHARED,
528 args->offset);
529 up_write(&current->mm->mmap_sem);
530 mutex_lock(&dev->struct_mutex);
531 drm_gem_object_unreference(obj);
532 mutex_unlock(&dev->struct_mutex);
533 if (IS_ERR((void *)addr))
534 return addr;
535
536 args->addr_ptr = (uint64_t) addr;
537
538 return 0;
539}
540
de151cf6
JB
541/**
542 * i915_gem_fault - fault a page into the GTT
543 * vma: VMA in question
544 * vmf: fault info
545 *
546 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
547 * from userspace. The fault handler takes care of binding the object to
548 * the GTT (if needed), allocating and programming a fence register (again,
549 * only if needed based on whether the old reg is still valid or the object
550 * is tiled) and inserting a new PTE into the faulting process.
551 *
552 * Note that the faulting process may involve evicting existing objects
553 * from the GTT and/or fence registers to make room. So performance may
554 * suffer if the GTT working set is large or there are few fence registers
555 * left.
556 */
557int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
558{
559 struct drm_gem_object *obj = vma->vm_private_data;
560 struct drm_device *dev = obj->dev;
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 struct drm_i915_gem_object *obj_priv = obj->driver_private;
563 pgoff_t page_offset;
564 unsigned long pfn;
565 int ret = 0;
0f973f27 566 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
567
568 /* We don't use vmf->pgoff since that has the fake offset */
569 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
570 PAGE_SHIFT;
571
572 /* Now bind it into the GTT if needed */
573 mutex_lock(&dev->struct_mutex);
574 if (!obj_priv->gtt_space) {
575 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
576 if (ret) {
577 mutex_unlock(&dev->struct_mutex);
578 return VM_FAULT_SIGBUS;
579 }
580 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
581 }
582
583 /* Need a new fence register? */
584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 585 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 586 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
587 if (ret) {
588 mutex_unlock(&dev->struct_mutex);
d9ddcb96 589 return VM_FAULT_SIGBUS;
7d8d58b2 590 }
d9ddcb96 591 }
de151cf6
JB
592
593 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
594 page_offset;
595
596 /* Finally, remap it using the new GTT offset */
597 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
598
599 mutex_unlock(&dev->struct_mutex);
600
601 switch (ret) {
602 case -ENOMEM:
603 case -EAGAIN:
604 return VM_FAULT_OOM;
605 case -EFAULT:
de151cf6
JB
606 return VM_FAULT_SIGBUS;
607 default:
608 return VM_FAULT_NOPAGE;
609 }
610}
611
612/**
613 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
614 * @obj: obj in question
615 *
616 * GEM memory mapping works by handing back to userspace a fake mmap offset
617 * it can use in a subsequent mmap(2) call. The DRM core code then looks
618 * up the object based on the offset and sets up the various memory mapping
619 * structures.
620 *
621 * This routine allocates and attaches a fake offset for @obj.
622 */
623static int
624i915_gem_create_mmap_offset(struct drm_gem_object *obj)
625{
626 struct drm_device *dev = obj->dev;
627 struct drm_gem_mm *mm = dev->mm_private;
628 struct drm_i915_gem_object *obj_priv = obj->driver_private;
629 struct drm_map_list *list;
630 struct drm_map *map;
631 int ret = 0;
632
633 /* Set the object up for mmap'ing */
634 list = &obj->map_list;
635 list->map = drm_calloc(1, sizeof(struct drm_map_list),
636 DRM_MEM_DRIVER);
637 if (!list->map)
638 return -ENOMEM;
639
640 map = list->map;
641 map->type = _DRM_GEM;
642 map->size = obj->size;
643 map->handle = obj;
644
645 /* Get a DRM GEM mmap offset allocated... */
646 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
647 obj->size / PAGE_SIZE, 0, 0);
648 if (!list->file_offset_node) {
649 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
650 ret = -ENOMEM;
651 goto out_free_list;
652 }
653
654 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
655 obj->size / PAGE_SIZE, 0);
656 if (!list->file_offset_node) {
657 ret = -ENOMEM;
658 goto out_free_list;
659 }
660
661 list->hash.key = list->file_offset_node->start;
662 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
663 DRM_ERROR("failed to add to map hash\n");
664 goto out_free_mm;
665 }
666
667 /* By now we should be all set, any drm_mmap request on the offset
668 * below will get to our mmap & fault handler */
669 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
670
671 return 0;
672
673out_free_mm:
674 drm_mm_put_block(list->file_offset_node);
675out_free_list:
676 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
677
678 return ret;
679}
680
ab00b3e5
JB
681static void
682i915_gem_free_mmap_offset(struct drm_gem_object *obj)
683{
684 struct drm_device *dev = obj->dev;
685 struct drm_i915_gem_object *obj_priv = obj->driver_private;
686 struct drm_gem_mm *mm = dev->mm_private;
687 struct drm_map_list *list;
688
689 list = &obj->map_list;
690 drm_ht_remove_item(&mm->offset_hash, &list->hash);
691
692 if (list->file_offset_node) {
693 drm_mm_put_block(list->file_offset_node);
694 list->file_offset_node = NULL;
695 }
696
697 if (list->map) {
698 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
699 list->map = NULL;
700 }
701
702 obj_priv->mmap_offset = 0;
703}
704
de151cf6
JB
705/**
706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
707 * @obj: object to check
708 *
709 * Return the required GTT alignment for an object, taking into account
710 * potential fence register mapping if needed.
711 */
712static uint32_t
713i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
714{
715 struct drm_device *dev = obj->dev;
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 int start, i;
718
719 /*
720 * Minimum alignment is 4k (GTT page size), but might be greater
721 * if a fence register is needed for the object.
722 */
723 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
724 return 4096;
725
726 /*
727 * Previous chips need to be aligned to the size of the smallest
728 * fence register that can contain the object.
729 */
730 if (IS_I9XX(dev))
731 start = 1024*1024;
732 else
733 start = 512*1024;
734
735 for (i = start; i < obj->size; i <<= 1)
736 ;
737
738 return i;
739}
740
741/**
742 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
743 * @dev: DRM device
744 * @data: GTT mapping ioctl data
745 * @file_priv: GEM object info
746 *
747 * Simply returns the fake offset to userspace so it can mmap it.
748 * The mmap call will end up in drm_gem_mmap(), which will set things
749 * up so we can get faults in the handler above.
750 *
751 * The fault handler will take care of binding the object into the GTT
752 * (since it may have been evicted to make room for something), allocating
753 * a fence register, and mapping the appropriate aperture address into
754 * userspace.
755 */
756int
757i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
758 struct drm_file *file_priv)
759{
760 struct drm_i915_gem_mmap_gtt *args = data;
761 struct drm_i915_private *dev_priv = dev->dev_private;
762 struct drm_gem_object *obj;
763 struct drm_i915_gem_object *obj_priv;
764 int ret;
765
766 if (!(dev->driver->driver_features & DRIVER_GEM))
767 return -ENODEV;
768
769 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
770 if (obj == NULL)
771 return -EBADF;
772
773 mutex_lock(&dev->struct_mutex);
774
775 obj_priv = obj->driver_private;
776
777 if (!obj_priv->mmap_offset) {
778 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
779 if (ret) {
780 drm_gem_object_unreference(obj);
781 mutex_unlock(&dev->struct_mutex);
de151cf6 782 return ret;
13af1062 783 }
de151cf6
JB
784 }
785
786 args->offset = obj_priv->mmap_offset;
787
788 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
789
790 /* Make sure the alignment is correct for fence regs etc */
791 if (obj_priv->agp_mem &&
792 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
793 drm_gem_object_unreference(obj);
794 mutex_unlock(&dev->struct_mutex);
795 return -EINVAL;
796 }
797
798 /*
799 * Pull it into the GTT so that we have a page list (makes the
800 * initial fault faster and any subsequent flushing possible).
801 */
802 if (!obj_priv->agp_mem) {
803 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
804 if (ret) {
805 drm_gem_object_unreference(obj);
806 mutex_unlock(&dev->struct_mutex);
807 return ret;
808 }
809 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
810 }
811
812 drm_gem_object_unreference(obj);
813 mutex_unlock(&dev->struct_mutex);
814
815 return 0;
816}
817
673a394b
EA
818static void
819i915_gem_object_free_page_list(struct drm_gem_object *obj)
820{
821 struct drm_i915_gem_object *obj_priv = obj->driver_private;
822 int page_count = obj->size / PAGE_SIZE;
823 int i;
824
825 if (obj_priv->page_list == NULL)
826 return;
827
828
829 for (i = 0; i < page_count; i++)
830 if (obj_priv->page_list[i] != NULL) {
831 if (obj_priv->dirty)
832 set_page_dirty(obj_priv->page_list[i]);
833 mark_page_accessed(obj_priv->page_list[i]);
834 page_cache_release(obj_priv->page_list[i]);
835 }
836 obj_priv->dirty = 0;
837
838 drm_free(obj_priv->page_list,
839 page_count * sizeof(struct page *),
840 DRM_MEM_DRIVER);
841 obj_priv->page_list = NULL;
842}
843
844static void
ce44b0ea 845i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
846{
847 struct drm_device *dev = obj->dev;
848 drm_i915_private_t *dev_priv = dev->dev_private;
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850
851 /* Add a reference if we're newly entering the active list. */
852 if (!obj_priv->active) {
853 drm_gem_object_reference(obj);
854 obj_priv->active = 1;
855 }
856 /* Move from whatever list we were on to the tail of execution. */
857 list_move_tail(&obj_priv->list,
858 &dev_priv->mm.active_list);
ce44b0ea 859 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
860}
861
ce44b0ea
EA
862static void
863i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
864{
865 struct drm_device *dev = obj->dev;
866 drm_i915_private_t *dev_priv = dev->dev_private;
867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
868
869 BUG_ON(!obj_priv->active);
870 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
871 obj_priv->last_rendering_seqno = 0;
872}
673a394b
EA
873
874static void
875i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
876{
877 struct drm_device *dev = obj->dev;
878 drm_i915_private_t *dev_priv = dev->dev_private;
879 struct drm_i915_gem_object *obj_priv = obj->driver_private;
880
881 i915_verify_inactive(dev, __FILE__, __LINE__);
882 if (obj_priv->pin_count != 0)
883 list_del_init(&obj_priv->list);
884 else
885 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
886
ce44b0ea 887 obj_priv->last_rendering_seqno = 0;
673a394b
EA
888 if (obj_priv->active) {
889 obj_priv->active = 0;
890 drm_gem_object_unreference(obj);
891 }
892 i915_verify_inactive(dev, __FILE__, __LINE__);
893}
894
895/**
896 * Creates a new sequence number, emitting a write of it to the status page
897 * plus an interrupt, which will trigger i915_user_interrupt_handler.
898 *
899 * Must be called with struct_lock held.
900 *
901 * Returned sequence numbers are nonzero on success.
902 */
903static uint32_t
904i915_add_request(struct drm_device *dev, uint32_t flush_domains)
905{
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 struct drm_i915_gem_request *request;
908 uint32_t seqno;
909 int was_empty;
910 RING_LOCALS;
911
912 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
913 if (request == NULL)
914 return 0;
915
916 /* Grab the seqno we're going to make this request be, and bump the
917 * next (skipping 0 so it can be the reserved no-seqno value).
918 */
919 seqno = dev_priv->mm.next_gem_seqno;
920 dev_priv->mm.next_gem_seqno++;
921 if (dev_priv->mm.next_gem_seqno == 0)
922 dev_priv->mm.next_gem_seqno++;
923
924 BEGIN_LP_RING(4);
925 OUT_RING(MI_STORE_DWORD_INDEX);
926 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
927 OUT_RING(seqno);
928
929 OUT_RING(MI_USER_INTERRUPT);
930 ADVANCE_LP_RING();
931
932 DRM_DEBUG("%d\n", seqno);
933
934 request->seqno = seqno;
935 request->emitted_jiffies = jiffies;
673a394b
EA
936 was_empty = list_empty(&dev_priv->mm.request_list);
937 list_add_tail(&request->list, &dev_priv->mm.request_list);
938
ce44b0ea
EA
939 /* Associate any objects on the flushing list matching the write
940 * domain we're flushing with our flush.
941 */
942 if (flush_domains != 0) {
943 struct drm_i915_gem_object *obj_priv, *next;
944
945 list_for_each_entry_safe(obj_priv, next,
946 &dev_priv->mm.flushing_list, list) {
947 struct drm_gem_object *obj = obj_priv->obj;
948
949 if ((obj->write_domain & flush_domains) ==
950 obj->write_domain) {
951 obj->write_domain = 0;
952 i915_gem_object_move_to_active(obj, seqno);
953 }
954 }
955
956 }
957
6dbe2772 958 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
959 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
960 return seqno;
961}
962
963/**
964 * Command execution barrier
965 *
966 * Ensures that all commands in the ring are finished
967 * before signalling the CPU
968 */
3043c60c 969static uint32_t
673a394b
EA
970i915_retire_commands(struct drm_device *dev)
971{
972 drm_i915_private_t *dev_priv = dev->dev_private;
973 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
974 uint32_t flush_domains = 0;
975 RING_LOCALS;
976
977 /* The sampler always gets flushed on i965 (sigh) */
978 if (IS_I965G(dev))
979 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
980 BEGIN_LP_RING(2);
981 OUT_RING(cmd);
982 OUT_RING(0); /* noop */
983 ADVANCE_LP_RING();
984 return flush_domains;
985}
986
987/**
988 * Moves buffers associated only with the given active seqno from the active
989 * to inactive list, potentially freeing them.
990 */
991static void
992i915_gem_retire_request(struct drm_device *dev,
993 struct drm_i915_gem_request *request)
994{
995 drm_i915_private_t *dev_priv = dev->dev_private;
996
997 /* Move any buffers on the active list that are no longer referenced
998 * by the ringbuffer to the flushing/inactive lists as appropriate.
999 */
1000 while (!list_empty(&dev_priv->mm.active_list)) {
1001 struct drm_gem_object *obj;
1002 struct drm_i915_gem_object *obj_priv;
1003
1004 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1005 struct drm_i915_gem_object,
1006 list);
1007 obj = obj_priv->obj;
1008
1009 /* If the seqno being retired doesn't match the oldest in the
1010 * list, then the oldest in the list must still be newer than
1011 * this seqno.
1012 */
1013 if (obj_priv->last_rendering_seqno != request->seqno)
1014 return;
de151cf6 1015
673a394b
EA
1016#if WATCH_LRU
1017 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1018 __func__, request->seqno, obj);
1019#endif
1020
ce44b0ea
EA
1021 if (obj->write_domain != 0)
1022 i915_gem_object_move_to_flushing(obj);
1023 else
673a394b 1024 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1025 }
1026}
1027
1028/**
1029 * Returns true if seq1 is later than seq2.
1030 */
1031static int
1032i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1033{
1034 return (int32_t)(seq1 - seq2) >= 0;
1035}
1036
1037uint32_t
1038i915_get_gem_seqno(struct drm_device *dev)
1039{
1040 drm_i915_private_t *dev_priv = dev->dev_private;
1041
1042 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1043}
1044
1045/**
1046 * This function clears the request list as sequence numbers are passed.
1047 */
1048void
1049i915_gem_retire_requests(struct drm_device *dev)
1050{
1051 drm_i915_private_t *dev_priv = dev->dev_private;
1052 uint32_t seqno;
1053
1054 seqno = i915_get_gem_seqno(dev);
1055
1056 while (!list_empty(&dev_priv->mm.request_list)) {
1057 struct drm_i915_gem_request *request;
1058 uint32_t retiring_seqno;
1059
1060 request = list_first_entry(&dev_priv->mm.request_list,
1061 struct drm_i915_gem_request,
1062 list);
1063 retiring_seqno = request->seqno;
1064
1065 if (i915_seqno_passed(seqno, retiring_seqno) ||
1066 dev_priv->mm.wedged) {
1067 i915_gem_retire_request(dev, request);
1068
1069 list_del(&request->list);
1070 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1071 } else
1072 break;
1073 }
1074}
1075
1076void
1077i915_gem_retire_work_handler(struct work_struct *work)
1078{
1079 drm_i915_private_t *dev_priv;
1080 struct drm_device *dev;
1081
1082 dev_priv = container_of(work, drm_i915_private_t,
1083 mm.retire_work.work);
1084 dev = dev_priv->dev;
1085
1086 mutex_lock(&dev->struct_mutex);
1087 i915_gem_retire_requests(dev);
6dbe2772
KP
1088 if (!dev_priv->mm.suspended &&
1089 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1090 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1091 mutex_unlock(&dev->struct_mutex);
1092}
1093
1094/**
1095 * Waits for a sequence number to be signaled, and cleans up the
1096 * request and object lists appropriately for that event.
1097 */
3043c60c 1098static int
673a394b
EA
1099i915_wait_request(struct drm_device *dev, uint32_t seqno)
1100{
1101 drm_i915_private_t *dev_priv = dev->dev_private;
1102 int ret = 0;
1103
1104 BUG_ON(seqno == 0);
1105
1106 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1107 dev_priv->mm.waiting_gem_seqno = seqno;
1108 i915_user_irq_get(dev);
1109 ret = wait_event_interruptible(dev_priv->irq_queue,
1110 i915_seqno_passed(i915_get_gem_seqno(dev),
1111 seqno) ||
1112 dev_priv->mm.wedged);
1113 i915_user_irq_put(dev);
1114 dev_priv->mm.waiting_gem_seqno = 0;
1115 }
1116 if (dev_priv->mm.wedged)
1117 ret = -EIO;
1118
1119 if (ret && ret != -ERESTARTSYS)
1120 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1121 __func__, ret, seqno, i915_get_gem_seqno(dev));
1122
1123 /* Directly dispatch request retiring. While we have the work queue
1124 * to handle this, the waiter on a request often wants an associated
1125 * buffer to have made it to the inactive list, and we would need
1126 * a separate wait queue to handle that.
1127 */
1128 if (ret == 0)
1129 i915_gem_retire_requests(dev);
1130
1131 return ret;
1132}
1133
1134static void
1135i915_gem_flush(struct drm_device *dev,
1136 uint32_t invalidate_domains,
1137 uint32_t flush_domains)
1138{
1139 drm_i915_private_t *dev_priv = dev->dev_private;
1140 uint32_t cmd;
1141 RING_LOCALS;
1142
1143#if WATCH_EXEC
1144 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1145 invalidate_domains, flush_domains);
1146#endif
1147
1148 if (flush_domains & I915_GEM_DOMAIN_CPU)
1149 drm_agp_chipset_flush(dev);
1150
1151 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1152 I915_GEM_DOMAIN_GTT)) {
1153 /*
1154 * read/write caches:
1155 *
1156 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1157 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1158 * also flushed at 2d versus 3d pipeline switches.
1159 *
1160 * read-only caches:
1161 *
1162 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1163 * MI_READ_FLUSH is set, and is always flushed on 965.
1164 *
1165 * I915_GEM_DOMAIN_COMMAND may not exist?
1166 *
1167 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1168 * invalidated when MI_EXE_FLUSH is set.
1169 *
1170 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1171 * invalidated with every MI_FLUSH.
1172 *
1173 * TLBs:
1174 *
1175 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1176 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1177 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1178 * are flushed at any MI_FLUSH.
1179 */
1180
1181 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1182 if ((invalidate_domains|flush_domains) &
1183 I915_GEM_DOMAIN_RENDER)
1184 cmd &= ~MI_NO_WRITE_FLUSH;
1185 if (!IS_I965G(dev)) {
1186 /*
1187 * On the 965, the sampler cache always gets flushed
1188 * and this bit is reserved.
1189 */
1190 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1191 cmd |= MI_READ_FLUSH;
1192 }
1193 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1194 cmd |= MI_EXE_FLUSH;
1195
1196#if WATCH_EXEC
1197 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1198#endif
1199 BEGIN_LP_RING(2);
1200 OUT_RING(cmd);
1201 OUT_RING(0); /* noop */
1202 ADVANCE_LP_RING();
1203 }
1204}
1205
1206/**
1207 * Ensures that all rendering to the object has completed and the object is
1208 * safe to unbind from the GTT or access from the CPU.
1209 */
1210static int
1211i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1212{
1213 struct drm_device *dev = obj->dev;
1214 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1215 int ret;
1216
e47c68e9
EA
1217 /* This function only exists to support waiting for existing rendering,
1218 * not for emitting required flushes.
673a394b 1219 */
e47c68e9 1220 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1221
1222 /* If there is rendering queued on the buffer being evicted, wait for
1223 * it.
1224 */
1225 if (obj_priv->active) {
1226#if WATCH_BUF
1227 DRM_INFO("%s: object %p wait for seqno %08x\n",
1228 __func__, obj, obj_priv->last_rendering_seqno);
1229#endif
1230 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1231 if (ret != 0)
1232 return ret;
1233 }
1234
1235 return 0;
1236}
1237
1238/**
1239 * Unbinds an object from the GTT aperture.
1240 */
0f973f27 1241int
673a394b
EA
1242i915_gem_object_unbind(struct drm_gem_object *obj)
1243{
1244 struct drm_device *dev = obj->dev;
1245 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1246 loff_t offset;
673a394b
EA
1247 int ret = 0;
1248
1249#if WATCH_BUF
1250 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1251 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1252#endif
1253 if (obj_priv->gtt_space == NULL)
1254 return 0;
1255
1256 if (obj_priv->pin_count != 0) {
1257 DRM_ERROR("Attempting to unbind pinned buffer\n");
1258 return -EINVAL;
1259 }
1260
673a394b
EA
1261 /* Move the object to the CPU domain to ensure that
1262 * any possible CPU writes while it's not in the GTT
1263 * are flushed when we go to remap it. This will
1264 * also ensure that all pending GPU writes are finished
1265 * before we unbind.
1266 */
e47c68e9 1267 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1268 if (ret) {
e47c68e9
EA
1269 if (ret != -ERESTARTSYS)
1270 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1271 return ret;
1272 }
1273
1274 if (obj_priv->agp_mem != NULL) {
1275 drm_unbind_agp(obj_priv->agp_mem);
1276 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1277 obj_priv->agp_mem = NULL;
1278 }
1279
1280 BUG_ON(obj_priv->active);
1281
de151cf6
JB
1282 /* blow away mappings if mapped through GTT */
1283 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1284 if (dev->dev_mapping)
1285 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1286
1287 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1288 i915_gem_clear_fence_reg(obj);
1289
673a394b
EA
1290 i915_gem_object_free_page_list(obj);
1291
1292 if (obj_priv->gtt_space) {
1293 atomic_dec(&dev->gtt_count);
1294 atomic_sub(obj->size, &dev->gtt_memory);
1295
1296 drm_mm_put_block(obj_priv->gtt_space);
1297 obj_priv->gtt_space = NULL;
1298 }
1299
1300 /* Remove ourselves from the LRU list if present. */
1301 if (!list_empty(&obj_priv->list))
1302 list_del_init(&obj_priv->list);
1303
1304 return 0;
1305}
1306
1307static int
1308i915_gem_evict_something(struct drm_device *dev)
1309{
1310 drm_i915_private_t *dev_priv = dev->dev_private;
1311 struct drm_gem_object *obj;
1312 struct drm_i915_gem_object *obj_priv;
1313 int ret = 0;
1314
1315 for (;;) {
1316 /* If there's an inactive buffer available now, grab it
1317 * and be done.
1318 */
1319 if (!list_empty(&dev_priv->mm.inactive_list)) {
1320 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1321 struct drm_i915_gem_object,
1322 list);
1323 obj = obj_priv->obj;
1324 BUG_ON(obj_priv->pin_count != 0);
1325#if WATCH_LRU
1326 DRM_INFO("%s: evicting %p\n", __func__, obj);
1327#endif
1328 BUG_ON(obj_priv->active);
1329
1330 /* Wait on the rendering and unbind the buffer. */
1331 ret = i915_gem_object_unbind(obj);
1332 break;
1333 }
1334
1335 /* If we didn't get anything, but the ring is still processing
1336 * things, wait for one of those things to finish and hopefully
1337 * leave us a buffer to evict.
1338 */
1339 if (!list_empty(&dev_priv->mm.request_list)) {
1340 struct drm_i915_gem_request *request;
1341
1342 request = list_first_entry(&dev_priv->mm.request_list,
1343 struct drm_i915_gem_request,
1344 list);
1345
1346 ret = i915_wait_request(dev, request->seqno);
1347 if (ret)
1348 break;
1349
1350 /* if waiting caused an object to become inactive,
1351 * then loop around and wait for it. Otherwise, we
1352 * assume that waiting freed and unbound something,
1353 * so there should now be some space in the GTT
1354 */
1355 if (!list_empty(&dev_priv->mm.inactive_list))
1356 continue;
1357 break;
1358 }
1359
1360 /* If we didn't have anything on the request list but there
1361 * are buffers awaiting a flush, emit one and try again.
1362 * When we wait on it, those buffers waiting for that flush
1363 * will get moved to inactive.
1364 */
1365 if (!list_empty(&dev_priv->mm.flushing_list)) {
1366 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1367 struct drm_i915_gem_object,
1368 list);
1369 obj = obj_priv->obj;
1370
1371 i915_gem_flush(dev,
1372 obj->write_domain,
1373 obj->write_domain);
1374 i915_add_request(dev, obj->write_domain);
1375
1376 obj = NULL;
1377 continue;
1378 }
1379
1380 DRM_ERROR("inactive empty %d request empty %d "
1381 "flushing empty %d\n",
1382 list_empty(&dev_priv->mm.inactive_list),
1383 list_empty(&dev_priv->mm.request_list),
1384 list_empty(&dev_priv->mm.flushing_list));
1385 /* If we didn't do any of the above, there's nothing to be done
1386 * and we just can't fit it in.
1387 */
1388 return -ENOMEM;
1389 }
1390 return ret;
1391}
1392
ac94a962
KP
1393static int
1394i915_gem_evict_everything(struct drm_device *dev)
1395{
1396 int ret;
1397
1398 for (;;) {
1399 ret = i915_gem_evict_something(dev);
1400 if (ret != 0)
1401 break;
1402 }
15c35334
OA
1403 if (ret == -ENOMEM)
1404 return 0;
ac94a962
KP
1405 return ret;
1406}
1407
673a394b
EA
1408static int
1409i915_gem_object_get_page_list(struct drm_gem_object *obj)
1410{
1411 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1412 int page_count, i;
1413 struct address_space *mapping;
1414 struct inode *inode;
1415 struct page *page;
1416 int ret;
1417
1418 if (obj_priv->page_list)
1419 return 0;
1420
1421 /* Get the list of pages out of our struct file. They'll be pinned
1422 * at this point until we release them.
1423 */
1424 page_count = obj->size / PAGE_SIZE;
1425 BUG_ON(obj_priv->page_list != NULL);
1426 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1427 DRM_MEM_DRIVER);
1428 if (obj_priv->page_list == NULL) {
1429 DRM_ERROR("Faled to allocate page list\n");
1430 return -ENOMEM;
1431 }
1432
1433 inode = obj->filp->f_path.dentry->d_inode;
1434 mapping = inode->i_mapping;
1435 for (i = 0; i < page_count; i++) {
1436 page = read_mapping_page(mapping, i, NULL);
1437 if (IS_ERR(page)) {
1438 ret = PTR_ERR(page);
1439 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1440 i915_gem_object_free_page_list(obj);
1441 return ret;
1442 }
1443 obj_priv->page_list[i] = page;
1444 }
1445 return 0;
1446}
1447
de151cf6
JB
1448static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1449{
1450 struct drm_gem_object *obj = reg->obj;
1451 struct drm_device *dev = obj->dev;
1452 drm_i915_private_t *dev_priv = dev->dev_private;
1453 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1454 int regnum = obj_priv->fence_reg;
1455 uint64_t val;
1456
1457 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1458 0xfffff000) << 32;
1459 val |= obj_priv->gtt_offset & 0xfffff000;
1460 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1461 if (obj_priv->tiling_mode == I915_TILING_Y)
1462 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1463 val |= I965_FENCE_REG_VALID;
1464
1465 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1466}
1467
1468static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1469{
1470 struct drm_gem_object *obj = reg->obj;
1471 struct drm_device *dev = obj->dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
1473 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1474 int regnum = obj_priv->fence_reg;
0f973f27 1475 int tile_width;
de151cf6
JB
1476 uint32_t val;
1477 uint32_t pitch_val;
1478
1479 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1480 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 1481 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 1482 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
1483 return;
1484 }
1485
0f973f27
JB
1486 if (obj_priv->tiling_mode == I915_TILING_Y &&
1487 HAS_128_BYTE_Y_TILING(dev))
1488 tile_width = 128;
de151cf6 1489 else
0f973f27
JB
1490 tile_width = 512;
1491
1492 /* Note: pitch better be a power of two tile widths */
1493 pitch_val = obj_priv->stride / tile_width;
1494 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
1495
1496 val = obj_priv->gtt_offset;
1497 if (obj_priv->tiling_mode == I915_TILING_Y)
1498 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1499 val |= I915_FENCE_SIZE_BITS(obj->size);
1500 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1501 val |= I830_FENCE_REG_VALID;
1502
1503 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1504}
1505
1506static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1507{
1508 struct drm_gem_object *obj = reg->obj;
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512 int regnum = obj_priv->fence_reg;
1513 uint32_t val;
1514 uint32_t pitch_val;
1515
1516 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1517 (obj_priv->gtt_offset & (obj->size - 1))) {
0f973f27
JB
1518 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1519 __func__, obj_priv->gtt_offset);
de151cf6
JB
1520 return;
1521 }
1522
1523 pitch_val = (obj_priv->stride / 128) - 1;
1524
1525 val = obj_priv->gtt_offset;
1526 if (obj_priv->tiling_mode == I915_TILING_Y)
1527 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1528 val |= I830_FENCE_SIZE_BITS(obj->size);
1529 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1530 val |= I830_FENCE_REG_VALID;
1531
1532 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1533
1534}
1535
1536/**
1537 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1538 * @obj: object to map through a fence reg
0f973f27 1539 * @write: object is about to be written
de151cf6
JB
1540 *
1541 * When mapping objects through the GTT, userspace wants to be able to write
1542 * to them without having to worry about swizzling if the object is tiled.
1543 *
1544 * This function walks the fence regs looking for a free one for @obj,
1545 * stealing one if it can't find any.
1546 *
1547 * It then sets up the reg based on the object's properties: address, pitch
1548 * and tiling format.
1549 */
d9ddcb96 1550static int
0f973f27 1551i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
1552{
1553 struct drm_device *dev = obj->dev;
79e53945 1554 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1556 struct drm_i915_fence_reg *reg = NULL;
1557 int i, ret;
1558
1559 switch (obj_priv->tiling_mode) {
1560 case I915_TILING_NONE:
1561 WARN(1, "allocating a fence for non-tiled object?\n");
1562 break;
1563 case I915_TILING_X:
0f973f27
JB
1564 if (!obj_priv->stride)
1565 return -EINVAL;
1566 WARN((obj_priv->stride & (512 - 1)),
1567 "object 0x%08x is X tiled but has non-512B pitch\n",
1568 obj_priv->gtt_offset);
de151cf6
JB
1569 break;
1570 case I915_TILING_Y:
0f973f27
JB
1571 if (!obj_priv->stride)
1572 return -EINVAL;
1573 WARN((obj_priv->stride & (128 - 1)),
1574 "object 0x%08x is Y tiled but has non-128B pitch\n",
1575 obj_priv->gtt_offset);
de151cf6
JB
1576 break;
1577 }
1578
1579 /* First try to find a free reg */
1580 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1581 reg = &dev_priv->fence_regs[i];
1582 if (!reg->obj)
1583 break;
1584 }
1585
1586 /* None available, try to steal one or wait for a user to finish */
1587 if (i == dev_priv->num_fence_regs) {
1588 struct drm_i915_gem_object *old_obj_priv = NULL;
1589 loff_t offset;
1590
1591try_again:
1592 /* Could try to use LRU here instead... */
1593 for (i = dev_priv->fence_reg_start;
1594 i < dev_priv->num_fence_regs; i++) {
1595 reg = &dev_priv->fence_regs[i];
1596 old_obj_priv = reg->obj->driver_private;
1597 if (!old_obj_priv->pin_count)
1598 break;
1599 }
1600
1601 /*
1602 * Now things get ugly... we have to wait for one of the
1603 * objects to finish before trying again.
1604 */
1605 if (i == dev_priv->num_fence_regs) {
d9ddcb96 1606 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
de151cf6 1607 if (ret) {
d9ddcb96
EA
1608 WARN(ret != -ERESTARTSYS,
1609 "switch to GTT domain failed: %d\n", ret);
1610 return ret;
de151cf6
JB
1611 }
1612 goto try_again;
1613 }
1614
1615 /*
1616 * Zap this virtual mapping so we can set up a fence again
1617 * for this object next time we need it.
1618 */
1619 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1620 if (dev->dev_mapping)
1621 unmap_mapping_range(dev->dev_mapping, offset,
1622 reg->obj->size, 1);
de151cf6
JB
1623 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1624 }
1625
1626 obj_priv->fence_reg = i;
1627 reg->obj = obj;
1628
1629 if (IS_I965G(dev))
1630 i965_write_fence_reg(reg);
1631 else if (IS_I9XX(dev))
1632 i915_write_fence_reg(reg);
1633 else
1634 i830_write_fence_reg(reg);
d9ddcb96
EA
1635
1636 return 0;
de151cf6
JB
1637}
1638
1639/**
1640 * i915_gem_clear_fence_reg - clear out fence register info
1641 * @obj: object to clear
1642 *
1643 * Zeroes out the fence register itself and clears out the associated
1644 * data structures in dev_priv and obj_priv.
1645 */
1646static void
1647i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1648{
1649 struct drm_device *dev = obj->dev;
79e53945 1650 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1651 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1652
1653 if (IS_I965G(dev))
1654 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1655 else
1656 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1657
1658 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1659 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1660}
1661
673a394b
EA
1662/**
1663 * Finds free space in the GTT aperture and binds the object there.
1664 */
1665static int
1666i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1667{
1668 struct drm_device *dev = obj->dev;
1669 drm_i915_private_t *dev_priv = dev->dev_private;
1670 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1671 struct drm_mm_node *free_space;
1672 int page_count, ret;
1673
9bb2d6f9
EA
1674 if (dev_priv->mm.suspended)
1675 return -EBUSY;
673a394b 1676 if (alignment == 0)
0f973f27 1677 alignment = i915_gem_get_gtt_alignment(obj);
673a394b
EA
1678 if (alignment & (PAGE_SIZE - 1)) {
1679 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1680 return -EINVAL;
1681 }
1682
1683 search_free:
1684 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1685 obj->size, alignment, 0);
1686 if (free_space != NULL) {
1687 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1688 alignment);
1689 if (obj_priv->gtt_space != NULL) {
1690 obj_priv->gtt_space->private = obj;
1691 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1692 }
1693 }
1694 if (obj_priv->gtt_space == NULL) {
1695 /* If the gtt is empty and we're still having trouble
1696 * fitting our object in, we're out of memory.
1697 */
1698#if WATCH_LRU
1699 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1700#endif
1701 if (list_empty(&dev_priv->mm.inactive_list) &&
1702 list_empty(&dev_priv->mm.flushing_list) &&
1703 list_empty(&dev_priv->mm.active_list)) {
1704 DRM_ERROR("GTT full, but LRU list empty\n");
1705 return -ENOMEM;
1706 }
1707
1708 ret = i915_gem_evict_something(dev);
1709 if (ret != 0) {
ac94a962
KP
1710 if (ret != -ERESTARTSYS)
1711 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
1712 return ret;
1713 }
1714 goto search_free;
1715 }
1716
1717#if WATCH_BUF
1718 DRM_INFO("Binding object of size %d at 0x%08x\n",
1719 obj->size, obj_priv->gtt_offset);
1720#endif
1721 ret = i915_gem_object_get_page_list(obj);
1722 if (ret) {
1723 drm_mm_put_block(obj_priv->gtt_space);
1724 obj_priv->gtt_space = NULL;
1725 return ret;
1726 }
1727
1728 page_count = obj->size / PAGE_SIZE;
1729 /* Create an AGP memory structure pointing at our pages, and bind it
1730 * into the GTT.
1731 */
1732 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1733 obj_priv->page_list,
1734 page_count,
ba1eb1d8
KP
1735 obj_priv->gtt_offset,
1736 obj_priv->agp_type);
673a394b
EA
1737 if (obj_priv->agp_mem == NULL) {
1738 i915_gem_object_free_page_list(obj);
1739 drm_mm_put_block(obj_priv->gtt_space);
1740 obj_priv->gtt_space = NULL;
1741 return -ENOMEM;
1742 }
1743 atomic_inc(&dev->gtt_count);
1744 atomic_add(obj->size, &dev->gtt_memory);
1745
1746 /* Assert that the object is not currently in any GPU domain. As it
1747 * wasn't in the GTT, there shouldn't be any way it could have been in
1748 * a GPU cache
1749 */
1750 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1751 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1752
1753 return 0;
1754}
1755
1756void
1757i915_gem_clflush_object(struct drm_gem_object *obj)
1758{
1759 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1760
1761 /* If we don't have a page list set up, then we're not pinned
1762 * to GPU, and we can ignore the cache flush because it'll happen
1763 * again at bind time.
1764 */
1765 if (obj_priv->page_list == NULL)
1766 return;
1767
1768 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1769}
1770
e47c68e9
EA
1771/** Flushes any GPU write domain for the object if it's dirty. */
1772static void
1773i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1774{
1775 struct drm_device *dev = obj->dev;
1776 uint32_t seqno;
1777
1778 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1779 return;
1780
1781 /* Queue the GPU write cache flushing we need. */
1782 i915_gem_flush(dev, 0, obj->write_domain);
1783 seqno = i915_add_request(dev, obj->write_domain);
1784 obj->write_domain = 0;
1785 i915_gem_object_move_to_active(obj, seqno);
1786}
1787
1788/** Flushes the GTT write domain for the object if it's dirty. */
1789static void
1790i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1791{
1792 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1793 return;
1794
1795 /* No actual flushing is required for the GTT write domain. Writes
1796 * to it immediately go to main memory as far as we know, so there's
1797 * no chipset flush. It also doesn't land in render cache.
1798 */
1799 obj->write_domain = 0;
1800}
1801
1802/** Flushes the CPU write domain for the object if it's dirty. */
1803static void
1804i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1805{
1806 struct drm_device *dev = obj->dev;
1807
1808 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1809 return;
1810
1811 i915_gem_clflush_object(obj);
1812 drm_agp_chipset_flush(dev);
1813 obj->write_domain = 0;
1814}
1815
2ef7eeaa
EA
1816/**
1817 * Moves a single object to the GTT read, and possibly write domain.
1818 *
1819 * This function returns when the move is complete, including waiting on
1820 * flushes to occur.
1821 */
79e53945 1822int
2ef7eeaa
EA
1823i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1824{
2ef7eeaa 1825 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 1826 int ret;
2ef7eeaa 1827
02354392
EA
1828 /* Not valid to be called on unbound objects. */
1829 if (obj_priv->gtt_space == NULL)
1830 return -EINVAL;
1831
e47c68e9
EA
1832 i915_gem_object_flush_gpu_write_domain(obj);
1833 /* Wait on any GPU rendering and flushing to occur. */
1834 ret = i915_gem_object_wait_rendering(obj);
1835 if (ret != 0)
1836 return ret;
1837
1838 /* If we're writing through the GTT domain, then CPU and GPU caches
1839 * will need to be invalidated at next use.
2ef7eeaa 1840 */
e47c68e9
EA
1841 if (write)
1842 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 1843
e47c68e9 1844 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 1845
e47c68e9
EA
1846 /* It should now be out of any other write domains, and we can update
1847 * the domain values for our changes.
1848 */
1849 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1850 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1851 if (write) {
1852 obj->write_domain = I915_GEM_DOMAIN_GTT;
1853 obj_priv->dirty = 1;
2ef7eeaa
EA
1854 }
1855
e47c68e9
EA
1856 return 0;
1857}
1858
1859/**
1860 * Moves a single object to the CPU read, and possibly write domain.
1861 *
1862 * This function returns when the move is complete, including waiting on
1863 * flushes to occur.
1864 */
1865static int
1866i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1867{
1868 struct drm_device *dev = obj->dev;
1869 int ret;
1870
1871 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 1872 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
1873 ret = i915_gem_object_wait_rendering(obj);
1874 if (ret != 0)
1875 return ret;
2ef7eeaa 1876
e47c68e9 1877 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 1878
e47c68e9
EA
1879 /* If we have a partially-valid cache of the object in the CPU,
1880 * finish invalidating it and free the per-page flags.
2ef7eeaa 1881 */
e47c68e9 1882 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 1883
e47c68e9
EA
1884 /* Flush the CPU cache if it's still invalid. */
1885 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa
EA
1886 i915_gem_clflush_object(obj);
1887 drm_agp_chipset_flush(dev);
1888
e47c68e9 1889 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
1890 }
1891
1892 /* It should now be out of any other write domains, and we can update
1893 * the domain values for our changes.
1894 */
e47c68e9
EA
1895 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1896
1897 /* If we're writing through the CPU, then the GPU read domains will
1898 * need to be invalidated at next use.
1899 */
1900 if (write) {
1901 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1902 obj->write_domain = I915_GEM_DOMAIN_CPU;
1903 }
2ef7eeaa
EA
1904
1905 return 0;
1906}
1907
673a394b
EA
1908/*
1909 * Set the next domain for the specified object. This
1910 * may not actually perform the necessary flushing/invaliding though,
1911 * as that may want to be batched with other set_domain operations
1912 *
1913 * This is (we hope) the only really tricky part of gem. The goal
1914 * is fairly simple -- track which caches hold bits of the object
1915 * and make sure they remain coherent. A few concrete examples may
1916 * help to explain how it works. For shorthand, we use the notation
1917 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1918 * a pair of read and write domain masks.
1919 *
1920 * Case 1: the batch buffer
1921 *
1922 * 1. Allocated
1923 * 2. Written by CPU
1924 * 3. Mapped to GTT
1925 * 4. Read by GPU
1926 * 5. Unmapped from GTT
1927 * 6. Freed
1928 *
1929 * Let's take these a step at a time
1930 *
1931 * 1. Allocated
1932 * Pages allocated from the kernel may still have
1933 * cache contents, so we set them to (CPU, CPU) always.
1934 * 2. Written by CPU (using pwrite)
1935 * The pwrite function calls set_domain (CPU, CPU) and
1936 * this function does nothing (as nothing changes)
1937 * 3. Mapped by GTT
1938 * This function asserts that the object is not
1939 * currently in any GPU-based read or write domains
1940 * 4. Read by GPU
1941 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1942 * As write_domain is zero, this function adds in the
1943 * current read domains (CPU+COMMAND, 0).
1944 * flush_domains is set to CPU.
1945 * invalidate_domains is set to COMMAND
1946 * clflush is run to get data out of the CPU caches
1947 * then i915_dev_set_domain calls i915_gem_flush to
1948 * emit an MI_FLUSH and drm_agp_chipset_flush
1949 * 5. Unmapped from GTT
1950 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1951 * flush_domains and invalidate_domains end up both zero
1952 * so no flushing/invalidating happens
1953 * 6. Freed
1954 * yay, done
1955 *
1956 * Case 2: The shared render buffer
1957 *
1958 * 1. Allocated
1959 * 2. Mapped to GTT
1960 * 3. Read/written by GPU
1961 * 4. set_domain to (CPU,CPU)
1962 * 5. Read/written by CPU
1963 * 6. Read/written by GPU
1964 *
1965 * 1. Allocated
1966 * Same as last example, (CPU, CPU)
1967 * 2. Mapped to GTT
1968 * Nothing changes (assertions find that it is not in the GPU)
1969 * 3. Read/written by GPU
1970 * execbuffer calls set_domain (RENDER, RENDER)
1971 * flush_domains gets CPU
1972 * invalidate_domains gets GPU
1973 * clflush (obj)
1974 * MI_FLUSH and drm_agp_chipset_flush
1975 * 4. set_domain (CPU, CPU)
1976 * flush_domains gets GPU
1977 * invalidate_domains gets CPU
1978 * wait_rendering (obj) to make sure all drawing is complete.
1979 * This will include an MI_FLUSH to get the data from GPU
1980 * to memory
1981 * clflush (obj) to invalidate the CPU cache
1982 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1983 * 5. Read/written by CPU
1984 * cache lines are loaded and dirtied
1985 * 6. Read written by GPU
1986 * Same as last GPU access
1987 *
1988 * Case 3: The constant buffer
1989 *
1990 * 1. Allocated
1991 * 2. Written by CPU
1992 * 3. Read by GPU
1993 * 4. Updated (written) by CPU again
1994 * 5. Read by GPU
1995 *
1996 * 1. Allocated
1997 * (CPU, CPU)
1998 * 2. Written by CPU
1999 * (CPU, CPU)
2000 * 3. Read by GPU
2001 * (CPU+RENDER, 0)
2002 * flush_domains = CPU
2003 * invalidate_domains = RENDER
2004 * clflush (obj)
2005 * MI_FLUSH
2006 * drm_agp_chipset_flush
2007 * 4. Updated (written) by CPU again
2008 * (CPU, CPU)
2009 * flush_domains = 0 (no previous write domain)
2010 * invalidate_domains = 0 (no new read domains)
2011 * 5. Read by GPU
2012 * (CPU+RENDER, 0)
2013 * flush_domains = CPU
2014 * invalidate_domains = RENDER
2015 * clflush (obj)
2016 * MI_FLUSH
2017 * drm_agp_chipset_flush
2018 */
c0d90829 2019static void
8b0e378a 2020i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2021{
2022 struct drm_device *dev = obj->dev;
2023 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2024 uint32_t invalidate_domains = 0;
2025 uint32_t flush_domains = 0;
e47c68e9 2026
8b0e378a
EA
2027 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2028 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2029
2030#if WATCH_BUF
2031 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2032 __func__, obj,
8b0e378a
EA
2033 obj->read_domains, obj->pending_read_domains,
2034 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2035#endif
2036 /*
2037 * If the object isn't moving to a new write domain,
2038 * let the object stay in multiple read domains
2039 */
8b0e378a
EA
2040 if (obj->pending_write_domain == 0)
2041 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2042 else
2043 obj_priv->dirty = 1;
2044
2045 /*
2046 * Flush the current write domain if
2047 * the new read domains don't match. Invalidate
2048 * any read domains which differ from the old
2049 * write domain
2050 */
8b0e378a
EA
2051 if (obj->write_domain &&
2052 obj->write_domain != obj->pending_read_domains) {
673a394b 2053 flush_domains |= obj->write_domain;
8b0e378a
EA
2054 invalidate_domains |=
2055 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2056 }
2057 /*
2058 * Invalidate any read caches which may have
2059 * stale data. That is, any new read domains.
2060 */
8b0e378a 2061 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2062 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2063#if WATCH_BUF
2064 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2065 __func__, flush_domains, invalidate_domains);
2066#endif
673a394b
EA
2067 i915_gem_clflush_object(obj);
2068 }
2069
8b0e378a
EA
2070 if ((obj->pending_write_domain | flush_domains) != 0)
2071 obj->write_domain = obj->pending_write_domain;
2072 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2073
2074 dev->invalidate_domains |= invalidate_domains;
2075 dev->flush_domains |= flush_domains;
2076#if WATCH_BUF
2077 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2078 __func__,
2079 obj->read_domains, obj->write_domain,
2080 dev->invalidate_domains, dev->flush_domains);
2081#endif
673a394b
EA
2082}
2083
2084/**
e47c68e9 2085 * Moves the object from a partially CPU read to a full one.
673a394b 2086 *
e47c68e9
EA
2087 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2088 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2089 */
e47c68e9
EA
2090static void
2091i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2092{
e47c68e9 2093 struct drm_device *dev = obj->dev;
673a394b 2094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2095
e47c68e9
EA
2096 if (!obj_priv->page_cpu_valid)
2097 return;
2098
2099 /* If we're partially in the CPU read domain, finish moving it in.
2100 */
2101 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2102 int i;
2103
2104 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2105 if (obj_priv->page_cpu_valid[i])
2106 continue;
2107 drm_clflush_pages(obj_priv->page_list + i, 1);
2108 }
2109 drm_agp_chipset_flush(dev);
2110 }
2111
2112 /* Free the page_cpu_valid mappings which are now stale, whether
2113 * or not we've got I915_GEM_DOMAIN_CPU.
2114 */
2115 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2116 DRM_MEM_DRIVER);
2117 obj_priv->page_cpu_valid = NULL;
2118}
2119
2120/**
2121 * Set the CPU read domain on a range of the object.
2122 *
2123 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2124 * not entirely valid. The page_cpu_valid member of the object flags which
2125 * pages have been flushed, and will be respected by
2126 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2127 * of the whole object.
2128 *
2129 * This function returns when the move is complete, including waiting on
2130 * flushes to occur.
2131 */
2132static int
2133i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2134 uint64_t offset, uint64_t size)
2135{
2136 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2137 int i, ret;
673a394b 2138
e47c68e9
EA
2139 if (offset == 0 && size == obj->size)
2140 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2141
e47c68e9
EA
2142 i915_gem_object_flush_gpu_write_domain(obj);
2143 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2144 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2145 if (ret != 0)
6a47baa6 2146 return ret;
e47c68e9
EA
2147 i915_gem_object_flush_gtt_write_domain(obj);
2148
2149 /* If we're already fully in the CPU read domain, we're done. */
2150 if (obj_priv->page_cpu_valid == NULL &&
2151 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2152 return 0;
673a394b 2153
e47c68e9
EA
2154 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2155 * newly adding I915_GEM_DOMAIN_CPU
2156 */
673a394b
EA
2157 if (obj_priv->page_cpu_valid == NULL) {
2158 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2159 DRM_MEM_DRIVER);
e47c68e9
EA
2160 if (obj_priv->page_cpu_valid == NULL)
2161 return -ENOMEM;
2162 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2163 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2164
2165 /* Flush the cache on any pages that are still invalid from the CPU's
2166 * perspective.
2167 */
e47c68e9
EA
2168 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2169 i++) {
673a394b
EA
2170 if (obj_priv->page_cpu_valid[i])
2171 continue;
2172
2173 drm_clflush_pages(obj_priv->page_list + i, 1);
2174
2175 obj_priv->page_cpu_valid[i] = 1;
2176 }
2177
e47c68e9
EA
2178 /* It should now be out of any other write domains, and we can update
2179 * the domain values for our changes.
2180 */
2181 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2182
2183 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2184
673a394b
EA
2185 return 0;
2186}
2187
673a394b
EA
2188/**
2189 * Pin an object to the GTT and evaluate the relocations landing in it.
2190 */
2191static int
2192i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2193 struct drm_file *file_priv,
2194 struct drm_i915_gem_exec_object *entry)
2195{
2196 struct drm_device *dev = obj->dev;
0839ccb8 2197 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2198 struct drm_i915_gem_relocation_entry reloc;
2199 struct drm_i915_gem_relocation_entry __user *relocs;
2200 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2201 int i, ret;
0839ccb8 2202 void __iomem *reloc_page;
673a394b
EA
2203
2204 /* Choose the GTT offset for our buffer and put it there. */
2205 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2206 if (ret)
2207 return ret;
2208
2209 entry->offset = obj_priv->gtt_offset;
2210
2211 relocs = (struct drm_i915_gem_relocation_entry __user *)
2212 (uintptr_t) entry->relocs_ptr;
2213 /* Apply the relocations, using the GTT aperture to avoid cache
2214 * flushing requirements.
2215 */
2216 for (i = 0; i < entry->relocation_count; i++) {
2217 struct drm_gem_object *target_obj;
2218 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2219 uint32_t reloc_val, reloc_offset;
2220 uint32_t __iomem *reloc_entry;
673a394b
EA
2221
2222 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2223 if (ret != 0) {
2224 i915_gem_object_unpin(obj);
2225 return ret;
2226 }
2227
2228 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2229 reloc.target_handle);
2230 if (target_obj == NULL) {
2231 i915_gem_object_unpin(obj);
2232 return -EBADF;
2233 }
2234 target_obj_priv = target_obj->driver_private;
2235
2236 /* The target buffer should have appeared before us in the
2237 * exec_object list, so it should have a GTT space bound by now.
2238 */
2239 if (target_obj_priv->gtt_space == NULL) {
2240 DRM_ERROR("No GTT space found for object %d\n",
2241 reloc.target_handle);
2242 drm_gem_object_unreference(target_obj);
2243 i915_gem_object_unpin(obj);
2244 return -EINVAL;
2245 }
2246
2247 if (reloc.offset > obj->size - 4) {
2248 DRM_ERROR("Relocation beyond object bounds: "
2249 "obj %p target %d offset %d size %d.\n",
2250 obj, reloc.target_handle,
2251 (int) reloc.offset, (int) obj->size);
2252 drm_gem_object_unreference(target_obj);
2253 i915_gem_object_unpin(obj);
2254 return -EINVAL;
2255 }
2256 if (reloc.offset & 3) {
2257 DRM_ERROR("Relocation not 4-byte aligned: "
2258 "obj %p target %d offset %d.\n",
2259 obj, reloc.target_handle,
2260 (int) reloc.offset);
2261 drm_gem_object_unreference(target_obj);
2262 i915_gem_object_unpin(obj);
2263 return -EINVAL;
2264 }
2265
e47c68e9
EA
2266 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2267 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2268 DRM_ERROR("reloc with read/write CPU domains: "
2269 "obj %p target %d offset %d "
2270 "read %08x write %08x",
2271 obj, reloc.target_handle,
2272 (int) reloc.offset,
2273 reloc.read_domains,
2274 reloc.write_domain);
491152b8
CW
2275 drm_gem_object_unreference(target_obj);
2276 i915_gem_object_unpin(obj);
e47c68e9
EA
2277 return -EINVAL;
2278 }
2279
673a394b
EA
2280 if (reloc.write_domain && target_obj->pending_write_domain &&
2281 reloc.write_domain != target_obj->pending_write_domain) {
2282 DRM_ERROR("Write domain conflict: "
2283 "obj %p target %d offset %d "
2284 "new %08x old %08x\n",
2285 obj, reloc.target_handle,
2286 (int) reloc.offset,
2287 reloc.write_domain,
2288 target_obj->pending_write_domain);
2289 drm_gem_object_unreference(target_obj);
2290 i915_gem_object_unpin(obj);
2291 return -EINVAL;
2292 }
2293
2294#if WATCH_RELOC
2295 DRM_INFO("%s: obj %p offset %08x target %d "
2296 "read %08x write %08x gtt %08x "
2297 "presumed %08x delta %08x\n",
2298 __func__,
2299 obj,
2300 (int) reloc.offset,
2301 (int) reloc.target_handle,
2302 (int) reloc.read_domains,
2303 (int) reloc.write_domain,
2304 (int) target_obj_priv->gtt_offset,
2305 (int) reloc.presumed_offset,
2306 reloc.delta);
2307#endif
2308
2309 target_obj->pending_read_domains |= reloc.read_domains;
2310 target_obj->pending_write_domain |= reloc.write_domain;
2311
2312 /* If the relocation already has the right value in it, no
2313 * more work needs to be done.
2314 */
2315 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2316 drm_gem_object_unreference(target_obj);
2317 continue;
2318 }
2319
2ef7eeaa
EA
2320 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2321 if (ret != 0) {
2322 drm_gem_object_unreference(target_obj);
2323 i915_gem_object_unpin(obj);
2324 return -EINVAL;
673a394b
EA
2325 }
2326
2327 /* Map the page containing the relocation we're going to
2328 * perform.
2329 */
2330 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
2331 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2332 (reloc_offset &
2333 ~(PAGE_SIZE - 1)));
3043c60c 2334 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2335 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
2336 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2337
2338#if WATCH_BUF
2339 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2340 obj, (unsigned int) reloc.offset,
2341 readl(reloc_entry), reloc_val);
2342#endif
2343 writel(reloc_val, reloc_entry);
0839ccb8 2344 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
2345
2346 /* Write the updated presumed offset for this entry back out
2347 * to the user.
2348 */
2349 reloc.presumed_offset = target_obj_priv->gtt_offset;
2350 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2351 if (ret != 0) {
2352 drm_gem_object_unreference(target_obj);
2353 i915_gem_object_unpin(obj);
2354 return ret;
2355 }
2356
2357 drm_gem_object_unreference(target_obj);
2358 }
2359
673a394b
EA
2360#if WATCH_BUF
2361 if (0)
2362 i915_gem_dump_object(obj, 128, __func__, ~0);
2363#endif
2364 return 0;
2365}
2366
2367/** Dispatch a batchbuffer to the ring
2368 */
2369static int
2370i915_dispatch_gem_execbuffer(struct drm_device *dev,
2371 struct drm_i915_gem_execbuffer *exec,
2372 uint64_t exec_offset)
2373{
2374 drm_i915_private_t *dev_priv = dev->dev_private;
2375 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2376 (uintptr_t) exec->cliprects_ptr;
2377 int nbox = exec->num_cliprects;
2378 int i = 0, count;
2379 uint32_t exec_start, exec_len;
2380 RING_LOCALS;
2381
2382 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2383 exec_len = (uint32_t) exec->batch_len;
2384
2385 if ((exec_start | exec_len) & 0x7) {
2386 DRM_ERROR("alignment\n");
2387 return -EINVAL;
2388 }
2389
2390 if (!exec_start)
2391 return -EINVAL;
2392
2393 count = nbox ? nbox : 1;
2394
2395 for (i = 0; i < count; i++) {
2396 if (i < nbox) {
2397 int ret = i915_emit_box(dev, boxes, i,
2398 exec->DR1, exec->DR4);
2399 if (ret)
2400 return ret;
2401 }
2402
2403 if (IS_I830(dev) || IS_845G(dev)) {
2404 BEGIN_LP_RING(4);
2405 OUT_RING(MI_BATCH_BUFFER);
2406 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2407 OUT_RING(exec_start + exec_len - 4);
2408 OUT_RING(0);
2409 ADVANCE_LP_RING();
2410 } else {
2411 BEGIN_LP_RING(2);
2412 if (IS_I965G(dev)) {
2413 OUT_RING(MI_BATCH_BUFFER_START |
2414 (2 << 6) |
2415 MI_BATCH_NON_SECURE_I965);
2416 OUT_RING(exec_start);
2417 } else {
2418 OUT_RING(MI_BATCH_BUFFER_START |
2419 (2 << 6));
2420 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2421 }
2422 ADVANCE_LP_RING();
2423 }
2424 }
2425
2426 /* XXX breadcrumb */
2427 return 0;
2428}
2429
2430/* Throttle our rendering by waiting until the ring has completed our requests
2431 * emitted over 20 msec ago.
2432 *
2433 * This should get us reasonable parallelism between CPU and GPU but also
2434 * relatively low latency when blocking on a particular request to finish.
2435 */
2436static int
2437i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2438{
2439 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2440 int ret = 0;
2441 uint32_t seqno;
2442
2443 mutex_lock(&dev->struct_mutex);
2444 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2445 i915_file_priv->mm.last_gem_throttle_seqno =
2446 i915_file_priv->mm.last_gem_seqno;
2447 if (seqno)
2448 ret = i915_wait_request(dev, seqno);
2449 mutex_unlock(&dev->struct_mutex);
2450 return ret;
2451}
2452
2453int
2454i915_gem_execbuffer(struct drm_device *dev, void *data,
2455 struct drm_file *file_priv)
2456{
2457 drm_i915_private_t *dev_priv = dev->dev_private;
2458 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2459 struct drm_i915_gem_execbuffer *args = data;
2460 struct drm_i915_gem_exec_object *exec_list = NULL;
2461 struct drm_gem_object **object_list = NULL;
2462 struct drm_gem_object *batch_obj;
2463 int ret, i, pinned = 0;
2464 uint64_t exec_offset;
2465 uint32_t seqno, flush_domains;
ac94a962 2466 int pin_tries;
673a394b
EA
2467
2468#if WATCH_EXEC
2469 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2470 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2471#endif
2472
4f481ed2
EA
2473 if (args->buffer_count < 1) {
2474 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2475 return -EINVAL;
2476 }
673a394b
EA
2477 /* Copy in the exec list from userland */
2478 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2479 DRM_MEM_DRIVER);
2480 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2481 DRM_MEM_DRIVER);
2482 if (exec_list == NULL || object_list == NULL) {
2483 DRM_ERROR("Failed to allocate exec or object list "
2484 "for %d buffers\n",
2485 args->buffer_count);
2486 ret = -ENOMEM;
2487 goto pre_mutex_err;
2488 }
2489 ret = copy_from_user(exec_list,
2490 (struct drm_i915_relocation_entry __user *)
2491 (uintptr_t) args->buffers_ptr,
2492 sizeof(*exec_list) * args->buffer_count);
2493 if (ret != 0) {
2494 DRM_ERROR("copy %d exec entries failed %d\n",
2495 args->buffer_count, ret);
2496 goto pre_mutex_err;
2497 }
2498
2499 mutex_lock(&dev->struct_mutex);
2500
2501 i915_verify_inactive(dev, __FILE__, __LINE__);
2502
2503 if (dev_priv->mm.wedged) {
2504 DRM_ERROR("Execbuf while wedged\n");
2505 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
2506 ret = -EIO;
2507 goto pre_mutex_err;
673a394b
EA
2508 }
2509
2510 if (dev_priv->mm.suspended) {
2511 DRM_ERROR("Execbuf while VT-switched.\n");
2512 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
2513 ret = -EBUSY;
2514 goto pre_mutex_err;
673a394b
EA
2515 }
2516
ac94a962 2517 /* Look up object handles */
673a394b
EA
2518 for (i = 0; i < args->buffer_count; i++) {
2519 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2520 exec_list[i].handle);
2521 if (object_list[i] == NULL) {
2522 DRM_ERROR("Invalid object handle %d at index %d\n",
2523 exec_list[i].handle, i);
2524 ret = -EBADF;
2525 goto err;
2526 }
ac94a962 2527 }
673a394b 2528
ac94a962
KP
2529 /* Pin and relocate */
2530 for (pin_tries = 0; ; pin_tries++) {
2531 ret = 0;
2532 for (i = 0; i < args->buffer_count; i++) {
2533 object_list[i]->pending_read_domains = 0;
2534 object_list[i]->pending_write_domain = 0;
2535 ret = i915_gem_object_pin_and_relocate(object_list[i],
2536 file_priv,
2537 &exec_list[i]);
2538 if (ret)
2539 break;
2540 pinned = i + 1;
2541 }
2542 /* success */
2543 if (ret == 0)
2544 break;
2545
2546 /* error other than GTT full, or we've already tried again */
2547 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
2548 if (ret != -ERESTARTSYS)
2549 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
2550 goto err;
2551 }
ac94a962
KP
2552
2553 /* unpin all of our buffers */
2554 for (i = 0; i < pinned; i++)
2555 i915_gem_object_unpin(object_list[i]);
b1177636 2556 pinned = 0;
ac94a962
KP
2557
2558 /* evict everyone we can from the aperture */
2559 ret = i915_gem_evict_everything(dev);
2560 if (ret)
2561 goto err;
673a394b
EA
2562 }
2563
2564 /* Set the pending read domains for the batch buffer to COMMAND */
2565 batch_obj = object_list[args->buffer_count-1];
2566 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2567 batch_obj->pending_write_domain = 0;
2568
2569 i915_verify_inactive(dev, __FILE__, __LINE__);
2570
646f0f6e
KP
2571 /* Zero the global flush/invalidate flags. These
2572 * will be modified as new domains are computed
2573 * for each object
2574 */
2575 dev->invalidate_domains = 0;
2576 dev->flush_domains = 0;
2577
673a394b
EA
2578 for (i = 0; i < args->buffer_count; i++) {
2579 struct drm_gem_object *obj = object_list[i];
673a394b 2580
646f0f6e 2581 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 2582 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
2583 }
2584
2585 i915_verify_inactive(dev, __FILE__, __LINE__);
2586
646f0f6e
KP
2587 if (dev->invalidate_domains | dev->flush_domains) {
2588#if WATCH_EXEC
2589 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2590 __func__,
2591 dev->invalidate_domains,
2592 dev->flush_domains);
2593#endif
2594 i915_gem_flush(dev,
2595 dev->invalidate_domains,
2596 dev->flush_domains);
2597 if (dev->flush_domains)
2598 (void)i915_add_request(dev, dev->flush_domains);
2599 }
673a394b
EA
2600
2601 i915_verify_inactive(dev, __FILE__, __LINE__);
2602
2603#if WATCH_COHERENCY
2604 for (i = 0; i < args->buffer_count; i++) {
2605 i915_gem_object_check_coherency(object_list[i],
2606 exec_list[i].handle);
2607 }
2608#endif
2609
2610 exec_offset = exec_list[args->buffer_count - 1].offset;
2611
2612#if WATCH_EXEC
2613 i915_gem_dump_object(object_list[args->buffer_count - 1],
2614 args->batch_len,
2615 __func__,
2616 ~0);
2617#endif
2618
673a394b
EA
2619 /* Exec the batchbuffer */
2620 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2621 if (ret) {
2622 DRM_ERROR("dispatch failed %d\n", ret);
2623 goto err;
2624 }
2625
2626 /*
2627 * Ensure that the commands in the batch buffer are
2628 * finished before the interrupt fires
2629 */
2630 flush_domains = i915_retire_commands(dev);
2631
2632 i915_verify_inactive(dev, __FILE__, __LINE__);
2633
2634 /*
2635 * Get a seqno representing the execution of the current buffer,
2636 * which we can wait on. We would like to mitigate these interrupts,
2637 * likely by only creating seqnos occasionally (so that we have
2638 * *some* interrupts representing completion of buffers that we can
2639 * wait on when trying to clear up gtt space).
2640 */
2641 seqno = i915_add_request(dev, flush_domains);
2642 BUG_ON(seqno == 0);
2643 i915_file_priv->mm.last_gem_seqno = seqno;
2644 for (i = 0; i < args->buffer_count; i++) {
2645 struct drm_gem_object *obj = object_list[i];
673a394b 2646
ce44b0ea 2647 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
2648#if WATCH_LRU
2649 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2650#endif
2651 }
2652#if WATCH_LRU
2653 i915_dump_lru(dev, __func__);
2654#endif
2655
2656 i915_verify_inactive(dev, __FILE__, __LINE__);
2657
673a394b 2658err:
aad87dff
JL
2659 for (i = 0; i < pinned; i++)
2660 i915_gem_object_unpin(object_list[i]);
2661
2662 for (i = 0; i < args->buffer_count; i++)
2663 drm_gem_object_unreference(object_list[i]);
673a394b 2664
673a394b
EA
2665 mutex_unlock(&dev->struct_mutex);
2666
a35f2e2b
RD
2667 if (!ret) {
2668 /* Copy the new buffer offsets back to the user's exec list. */
2669 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2670 (uintptr_t) args->buffers_ptr,
2671 exec_list,
2672 sizeof(*exec_list) * args->buffer_count);
2673 if (ret)
2674 DRM_ERROR("failed to copy %d exec entries "
2675 "back to user (%d)\n",
2676 args->buffer_count, ret);
2677 }
2678
673a394b
EA
2679pre_mutex_err:
2680 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2681 DRM_MEM_DRIVER);
2682 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2683 DRM_MEM_DRIVER);
2684
2685 return ret;
2686}
2687
2688int
2689i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2690{
2691 struct drm_device *dev = obj->dev;
2692 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2693 int ret;
2694
2695 i915_verify_inactive(dev, __FILE__, __LINE__);
2696 if (obj_priv->gtt_space == NULL) {
2697 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2698 if (ret != 0) {
9bb2d6f9 2699 if (ret != -EBUSY && ret != -ERESTARTSYS)
f1acec93 2700 DRM_ERROR("Failure to bind: %d", ret);
673a394b
EA
2701 return ret;
2702 }
0f973f27
JB
2703 /*
2704 * Pre-965 chips need a fence register set up in order to
2705 * properly handle tiled surfaces.
2706 */
2707 if (!IS_I965G(dev) &&
2708 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2709 obj_priv->tiling_mode != I915_TILING_NONE)
2710 i915_gem_object_get_fence_reg(obj, true);
673a394b
EA
2711 }
2712 obj_priv->pin_count++;
2713
2714 /* If the object is not active and not pending a flush,
2715 * remove it from the inactive list
2716 */
2717 if (obj_priv->pin_count == 1) {
2718 atomic_inc(&dev->pin_count);
2719 atomic_add(obj->size, &dev->pin_memory);
2720 if (!obj_priv->active &&
2721 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2722 I915_GEM_DOMAIN_GTT)) == 0 &&
2723 !list_empty(&obj_priv->list))
2724 list_del_init(&obj_priv->list);
2725 }
2726 i915_verify_inactive(dev, __FILE__, __LINE__);
2727
2728 return 0;
2729}
2730
2731void
2732i915_gem_object_unpin(struct drm_gem_object *obj)
2733{
2734 struct drm_device *dev = obj->dev;
2735 drm_i915_private_t *dev_priv = dev->dev_private;
2736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2737
2738 i915_verify_inactive(dev, __FILE__, __LINE__);
2739 obj_priv->pin_count--;
2740 BUG_ON(obj_priv->pin_count < 0);
2741 BUG_ON(obj_priv->gtt_space == NULL);
2742
2743 /* If the object is no longer pinned, and is
2744 * neither active nor being flushed, then stick it on
2745 * the inactive list
2746 */
2747 if (obj_priv->pin_count == 0) {
2748 if (!obj_priv->active &&
2749 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2750 I915_GEM_DOMAIN_GTT)) == 0)
2751 list_move_tail(&obj_priv->list,
2752 &dev_priv->mm.inactive_list);
2753 atomic_dec(&dev->pin_count);
2754 atomic_sub(obj->size, &dev->pin_memory);
2755 }
2756 i915_verify_inactive(dev, __FILE__, __LINE__);
2757}
2758
2759int
2760i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2761 struct drm_file *file_priv)
2762{
2763 struct drm_i915_gem_pin *args = data;
2764 struct drm_gem_object *obj;
2765 struct drm_i915_gem_object *obj_priv;
2766 int ret;
2767
2768 mutex_lock(&dev->struct_mutex);
2769
2770 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2771 if (obj == NULL) {
2772 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2773 args->handle);
2774 mutex_unlock(&dev->struct_mutex);
2775 return -EBADF;
2776 }
2777 obj_priv = obj->driver_private;
2778
79e53945
JB
2779 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2780 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2781 args->handle);
96dec61d 2782 drm_gem_object_unreference(obj);
673a394b 2783 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2784 return -EINVAL;
2785 }
2786
2787 obj_priv->user_pin_count++;
2788 obj_priv->pin_filp = file_priv;
2789 if (obj_priv->user_pin_count == 1) {
2790 ret = i915_gem_object_pin(obj, args->alignment);
2791 if (ret != 0) {
2792 drm_gem_object_unreference(obj);
2793 mutex_unlock(&dev->struct_mutex);
2794 return ret;
2795 }
673a394b
EA
2796 }
2797
2798 /* XXX - flush the CPU caches for pinned objects
2799 * as the X server doesn't manage domains yet
2800 */
e47c68e9 2801 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
2802 args->offset = obj_priv->gtt_offset;
2803 drm_gem_object_unreference(obj);
2804 mutex_unlock(&dev->struct_mutex);
2805
2806 return 0;
2807}
2808
2809int
2810i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2811 struct drm_file *file_priv)
2812{
2813 struct drm_i915_gem_pin *args = data;
2814 struct drm_gem_object *obj;
79e53945 2815 struct drm_i915_gem_object *obj_priv;
673a394b
EA
2816
2817 mutex_lock(&dev->struct_mutex);
2818
2819 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2820 if (obj == NULL) {
2821 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2822 args->handle);
2823 mutex_unlock(&dev->struct_mutex);
2824 return -EBADF;
2825 }
2826
79e53945
JB
2827 obj_priv = obj->driver_private;
2828 if (obj_priv->pin_filp != file_priv) {
2829 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2830 args->handle);
2831 drm_gem_object_unreference(obj);
2832 mutex_unlock(&dev->struct_mutex);
2833 return -EINVAL;
2834 }
2835 obj_priv->user_pin_count--;
2836 if (obj_priv->user_pin_count == 0) {
2837 obj_priv->pin_filp = NULL;
2838 i915_gem_object_unpin(obj);
2839 }
673a394b
EA
2840
2841 drm_gem_object_unreference(obj);
2842 mutex_unlock(&dev->struct_mutex);
2843 return 0;
2844}
2845
2846int
2847i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2848 struct drm_file *file_priv)
2849{
2850 struct drm_i915_gem_busy *args = data;
2851 struct drm_gem_object *obj;
2852 struct drm_i915_gem_object *obj_priv;
2853
2854 mutex_lock(&dev->struct_mutex);
2855 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2856 if (obj == NULL) {
2857 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2858 args->handle);
2859 mutex_unlock(&dev->struct_mutex);
2860 return -EBADF;
2861 }
2862
2863 obj_priv = obj->driver_private;
c4de0a5d
EA
2864 /* Don't count being on the flushing list against the object being
2865 * done. Otherwise, a buffer left on the flushing list but not getting
2866 * flushed (because nobody's flushing that domain) won't ever return
2867 * unbusy and get reused by libdrm's bo cache. The other expected
2868 * consumer of this interface, OpenGL's occlusion queries, also specs
2869 * that the objects get unbusy "eventually" without any interference.
2870 */
2871 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
2872
2873 drm_gem_object_unreference(obj);
2874 mutex_unlock(&dev->struct_mutex);
2875 return 0;
2876}
2877
2878int
2879i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2880 struct drm_file *file_priv)
2881{
2882 return i915_gem_ring_throttle(dev, file_priv);
2883}
2884
2885int i915_gem_init_object(struct drm_gem_object *obj)
2886{
2887 struct drm_i915_gem_object *obj_priv;
2888
2889 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2890 if (obj_priv == NULL)
2891 return -ENOMEM;
2892
2893 /*
2894 * We've just allocated pages from the kernel,
2895 * so they've just been written by the CPU with
2896 * zeros. They'll need to be clflushed before we
2897 * use them with the GPU.
2898 */
2899 obj->write_domain = I915_GEM_DOMAIN_CPU;
2900 obj->read_domains = I915_GEM_DOMAIN_CPU;
2901
ba1eb1d8
KP
2902 obj_priv->agp_type = AGP_USER_MEMORY;
2903
673a394b
EA
2904 obj->driver_private = obj_priv;
2905 obj_priv->obj = obj;
de151cf6 2906 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 2907 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 2908
673a394b
EA
2909 return 0;
2910}
2911
2912void i915_gem_free_object(struct drm_gem_object *obj)
2913{
de151cf6 2914 struct drm_device *dev = obj->dev;
673a394b
EA
2915 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2916
2917 while (obj_priv->pin_count > 0)
2918 i915_gem_object_unpin(obj);
2919
71acb5eb
DA
2920 if (obj_priv->phys_obj)
2921 i915_gem_detach_phys_object(dev, obj);
2922
673a394b
EA
2923 i915_gem_object_unbind(obj);
2924
ab00b3e5 2925 i915_gem_free_mmap_offset(obj);
de151cf6 2926
673a394b
EA
2927 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2928 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2929}
2930
673a394b
EA
2931/** Unbinds all objects that are on the given buffer list. */
2932static int
2933i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2934{
2935 struct drm_gem_object *obj;
2936 struct drm_i915_gem_object *obj_priv;
2937 int ret;
2938
2939 while (!list_empty(head)) {
2940 obj_priv = list_first_entry(head,
2941 struct drm_i915_gem_object,
2942 list);
2943 obj = obj_priv->obj;
2944
2945 if (obj_priv->pin_count != 0) {
2946 DRM_ERROR("Pinned object in unbind list\n");
2947 mutex_unlock(&dev->struct_mutex);
2948 return -EINVAL;
2949 }
2950
2951 ret = i915_gem_object_unbind(obj);
2952 if (ret != 0) {
2953 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2954 ret);
2955 mutex_unlock(&dev->struct_mutex);
2956 return ret;
2957 }
2958 }
2959
2960
2961 return 0;
2962}
2963
2964static int
2965i915_gem_idle(struct drm_device *dev)
2966{
2967 drm_i915_private_t *dev_priv = dev->dev_private;
2968 uint32_t seqno, cur_seqno, last_seqno;
2969 int stuck, ret;
2970
6dbe2772
KP
2971 mutex_lock(&dev->struct_mutex);
2972
2973 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2974 mutex_unlock(&dev->struct_mutex);
673a394b 2975 return 0;
6dbe2772 2976 }
673a394b
EA
2977
2978 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2979 * We need to replace this with a semaphore, or something.
2980 */
2981 dev_priv->mm.suspended = 1;
2982
6dbe2772
KP
2983 /* Cancel the retire work handler, wait for it to finish if running
2984 */
2985 mutex_unlock(&dev->struct_mutex);
2986 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2987 mutex_lock(&dev->struct_mutex);
2988
673a394b
EA
2989 i915_kernel_lost_context(dev);
2990
2991 /* Flush the GPU along with all non-CPU write domains
2992 */
2993 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2994 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 2995 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
2996
2997 if (seqno == 0) {
2998 mutex_unlock(&dev->struct_mutex);
2999 return -ENOMEM;
3000 }
3001
3002 dev_priv->mm.waiting_gem_seqno = seqno;
3003 last_seqno = 0;
3004 stuck = 0;
3005 for (;;) {
3006 cur_seqno = i915_get_gem_seqno(dev);
3007 if (i915_seqno_passed(cur_seqno, seqno))
3008 break;
3009 if (last_seqno == cur_seqno) {
3010 if (stuck++ > 100) {
3011 DRM_ERROR("hardware wedged\n");
3012 dev_priv->mm.wedged = 1;
3013 DRM_WAKEUP(&dev_priv->irq_queue);
3014 break;
3015 }
3016 }
3017 msleep(10);
3018 last_seqno = cur_seqno;
3019 }
3020 dev_priv->mm.waiting_gem_seqno = 0;
3021
3022 i915_gem_retire_requests(dev);
3023
28dfe52a
EA
3024 if (!dev_priv->mm.wedged) {
3025 /* Active and flushing should now be empty as we've
3026 * waited for a sequence higher than any pending execbuffer
3027 */
3028 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3029 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3030 /* Request should now be empty as we've also waited
3031 * for the last request in the list
3032 */
3033 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3034 }
673a394b 3035
28dfe52a
EA
3036 /* Empty the active and flushing lists to inactive. If there's
3037 * anything left at this point, it means that we're wedged and
3038 * nothing good's going to happen by leaving them there. So strip
3039 * the GPU domains and just stuff them onto inactive.
673a394b 3040 */
28dfe52a
EA
3041 while (!list_empty(&dev_priv->mm.active_list)) {
3042 struct drm_i915_gem_object *obj_priv;
673a394b 3043
28dfe52a
EA
3044 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3045 struct drm_i915_gem_object,
3046 list);
3047 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3048 i915_gem_object_move_to_inactive(obj_priv->obj);
3049 }
3050
3051 while (!list_empty(&dev_priv->mm.flushing_list)) {
3052 struct drm_i915_gem_object *obj_priv;
3053
151903d5 3054 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3055 struct drm_i915_gem_object,
3056 list);
3057 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3058 i915_gem_object_move_to_inactive(obj_priv->obj);
3059 }
3060
3061
3062 /* Move all inactive buffers out of the GTT. */
673a394b 3063 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3064 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3065 if (ret) {
3066 mutex_unlock(&dev->struct_mutex);
673a394b 3067 return ret;
6dbe2772 3068 }
673a394b 3069
6dbe2772
KP
3070 i915_gem_cleanup_ringbuffer(dev);
3071 mutex_unlock(&dev->struct_mutex);
3072
673a394b
EA
3073 return 0;
3074}
3075
3076static int
3077i915_gem_init_hws(struct drm_device *dev)
3078{
3079 drm_i915_private_t *dev_priv = dev->dev_private;
3080 struct drm_gem_object *obj;
3081 struct drm_i915_gem_object *obj_priv;
3082 int ret;
3083
3084 /* If we need a physical address for the status page, it's already
3085 * initialized at driver load time.
3086 */
3087 if (!I915_NEED_GFX_HWS(dev))
3088 return 0;
3089
3090 obj = drm_gem_object_alloc(dev, 4096);
3091 if (obj == NULL) {
3092 DRM_ERROR("Failed to allocate status page\n");
3093 return -ENOMEM;
3094 }
3095 obj_priv = obj->driver_private;
ba1eb1d8 3096 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3097
3098 ret = i915_gem_object_pin(obj, 4096);
3099 if (ret != 0) {
3100 drm_gem_object_unreference(obj);
3101 return ret;
3102 }
3103
3104 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3105
ba1eb1d8
KP
3106 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3107 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3108 DRM_ERROR("Failed to map status page.\n");
3109 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3110 i915_gem_object_unpin(obj);
673a394b
EA
3111 drm_gem_object_unreference(obj);
3112 return -EINVAL;
3113 }
3114 dev_priv->hws_obj = obj;
673a394b
EA
3115 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3116 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3117 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3118 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3119
3120 return 0;
3121}
3122
85a7bb98
CW
3123static void
3124i915_gem_cleanup_hws(struct drm_device *dev)
3125{
3126 drm_i915_private_t *dev_priv = dev->dev_private;
3127 struct drm_gem_object *obj = dev_priv->hws_obj;
3128 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3129
3130 if (dev_priv->hws_obj == NULL)
3131 return;
3132
3133 kunmap(obj_priv->page_list[0]);
3134 i915_gem_object_unpin(obj);
3135 drm_gem_object_unreference(obj);
3136 dev_priv->hws_obj = NULL;
3137 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3138 dev_priv->hw_status_page = NULL;
3139
3140 /* Write high address into HWS_PGA when disabling. */
3141 I915_WRITE(HWS_PGA, 0x1ffff000);
3142}
3143
79e53945 3144int
673a394b
EA
3145i915_gem_init_ringbuffer(struct drm_device *dev)
3146{
3147 drm_i915_private_t *dev_priv = dev->dev_private;
3148 struct drm_gem_object *obj;
3149 struct drm_i915_gem_object *obj_priv;
79e53945 3150 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3151 int ret;
50aa253d 3152 u32 head;
673a394b
EA
3153
3154 ret = i915_gem_init_hws(dev);
3155 if (ret != 0)
3156 return ret;
3157
3158 obj = drm_gem_object_alloc(dev, 128 * 1024);
3159 if (obj == NULL) {
3160 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 3161 i915_gem_cleanup_hws(dev);
673a394b
EA
3162 return -ENOMEM;
3163 }
3164 obj_priv = obj->driver_private;
3165
3166 ret = i915_gem_object_pin(obj, 4096);
3167 if (ret != 0) {
3168 drm_gem_object_unreference(obj);
85a7bb98 3169 i915_gem_cleanup_hws(dev);
673a394b
EA
3170 return ret;
3171 }
3172
3173 /* Set up the kernel mapping for the ring. */
79e53945
JB
3174 ring->Size = obj->size;
3175 ring->tail_mask = obj->size - 1;
673a394b 3176
79e53945
JB
3177 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3178 ring->map.size = obj->size;
3179 ring->map.type = 0;
3180 ring->map.flags = 0;
3181 ring->map.mtrr = 0;
673a394b 3182
79e53945
JB
3183 drm_core_ioremap_wc(&ring->map, dev);
3184 if (ring->map.handle == NULL) {
673a394b
EA
3185 DRM_ERROR("Failed to map ringbuffer.\n");
3186 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 3187 i915_gem_object_unpin(obj);
673a394b 3188 drm_gem_object_unreference(obj);
85a7bb98 3189 i915_gem_cleanup_hws(dev);
673a394b
EA
3190 return -EINVAL;
3191 }
79e53945
JB
3192 ring->ring_obj = obj;
3193 ring->virtual_start = ring->map.handle;
673a394b
EA
3194
3195 /* Stop the ring if it's running. */
3196 I915_WRITE(PRB0_CTL, 0);
673a394b 3197 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3198 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3199
3200 /* Initialize the ring. */
3201 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3202 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3203
3204 /* G45 ring initialization fails to reset head to zero */
3205 if (head != 0) {
3206 DRM_ERROR("Ring head not reset to zero "
3207 "ctl %08x head %08x tail %08x start %08x\n",
3208 I915_READ(PRB0_CTL),
3209 I915_READ(PRB0_HEAD),
3210 I915_READ(PRB0_TAIL),
3211 I915_READ(PRB0_START));
3212 I915_WRITE(PRB0_HEAD, 0);
3213
3214 DRM_ERROR("Ring head forced to zero "
3215 "ctl %08x head %08x tail %08x start %08x\n",
3216 I915_READ(PRB0_CTL),
3217 I915_READ(PRB0_HEAD),
3218 I915_READ(PRB0_TAIL),
3219 I915_READ(PRB0_START));
3220 }
3221
673a394b
EA
3222 I915_WRITE(PRB0_CTL,
3223 ((obj->size - 4096) & RING_NR_PAGES) |
3224 RING_NO_REPORT |
3225 RING_VALID);
3226
50aa253d
KP
3227 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3228
3229 /* If the head is still not zero, the ring is dead */
3230 if (head != 0) {
3231 DRM_ERROR("Ring initialization failed "
3232 "ctl %08x head %08x tail %08x start %08x\n",
3233 I915_READ(PRB0_CTL),
3234 I915_READ(PRB0_HEAD),
3235 I915_READ(PRB0_TAIL),
3236 I915_READ(PRB0_START));
3237 return -EIO;
3238 }
3239
673a394b 3240 /* Update our cache of the ring state */
79e53945
JB
3241 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3242 i915_kernel_lost_context(dev);
3243 else {
3244 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3245 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3246 ring->space = ring->head - (ring->tail + 8);
3247 if (ring->space < 0)
3248 ring->space += ring->Size;
3249 }
673a394b
EA
3250
3251 return 0;
3252}
3253
79e53945 3254void
673a394b
EA
3255i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3256{
3257 drm_i915_private_t *dev_priv = dev->dev_private;
3258
3259 if (dev_priv->ring.ring_obj == NULL)
3260 return;
3261
3262 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3263
3264 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3265 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3266 dev_priv->ring.ring_obj = NULL;
3267 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3268
85a7bb98 3269 i915_gem_cleanup_hws(dev);
673a394b
EA
3270}
3271
3272int
3273i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3274 struct drm_file *file_priv)
3275{
3276 drm_i915_private_t *dev_priv = dev->dev_private;
3277 int ret;
3278
79e53945
JB
3279 if (drm_core_check_feature(dev, DRIVER_MODESET))
3280 return 0;
3281
673a394b
EA
3282 if (dev_priv->mm.wedged) {
3283 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3284 dev_priv->mm.wedged = 0;
3285 }
3286
673a394b 3287 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3288 dev_priv->mm.suspended = 0;
3289
3290 ret = i915_gem_init_ringbuffer(dev);
3291 if (ret != 0)
3292 return ret;
3293
673a394b
EA
3294 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3295 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3296 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3297 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 3298 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3299
3300 drm_irq_install(dev);
3301
673a394b
EA
3302 return 0;
3303}
3304
3305int
3306i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3307 struct drm_file *file_priv)
3308{
3309 int ret;
3310
79e53945
JB
3311 if (drm_core_check_feature(dev, DRIVER_MODESET))
3312 return 0;
3313
673a394b 3314 ret = i915_gem_idle(dev);
dbb19d30
KH
3315 drm_irq_uninstall(dev);
3316
6dbe2772 3317 return ret;
673a394b
EA
3318}
3319
3320void
3321i915_gem_lastclose(struct drm_device *dev)
3322{
3323 int ret;
673a394b 3324
e806b495
EA
3325 if (drm_core_check_feature(dev, DRIVER_MODESET))
3326 return;
3327
6dbe2772
KP
3328 ret = i915_gem_idle(dev);
3329 if (ret)
3330 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3331}
3332
3333void
3334i915_gem_load(struct drm_device *dev)
3335{
3336 drm_i915_private_t *dev_priv = dev->dev_private;
3337
3338 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3339 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3340 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3341 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3342 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3343 i915_gem_retire_work_handler);
3344 dev_priv->mm.next_gem_seqno = 1;
3345
de151cf6
JB
3346 /* Old X drivers will take 0-2 for front, back, depth buffers */
3347 dev_priv->fence_reg_start = 3;
3348
0f973f27 3349 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3350 dev_priv->num_fence_regs = 16;
3351 else
3352 dev_priv->num_fence_regs = 8;
3353
673a394b
EA
3354 i915_gem_detect_bit_6_swizzle(dev);
3355}
71acb5eb
DA
3356
3357/*
3358 * Create a physically contiguous memory object for this object
3359 * e.g. for cursor + overlay regs
3360 */
3361int i915_gem_init_phys_object(struct drm_device *dev,
3362 int id, int size)
3363{
3364 drm_i915_private_t *dev_priv = dev->dev_private;
3365 struct drm_i915_gem_phys_object *phys_obj;
3366 int ret;
3367
3368 if (dev_priv->mm.phys_objs[id - 1] || !size)
3369 return 0;
3370
3371 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3372 if (!phys_obj)
3373 return -ENOMEM;
3374
3375 phys_obj->id = id;
3376
3377 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3378 if (!phys_obj->handle) {
3379 ret = -ENOMEM;
3380 goto kfree_obj;
3381 }
3382#ifdef CONFIG_X86
3383 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3384#endif
3385
3386 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3387
3388 return 0;
3389kfree_obj:
3390 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3391 return ret;
3392}
3393
3394void i915_gem_free_phys_object(struct drm_device *dev, int id)
3395{
3396 drm_i915_private_t *dev_priv = dev->dev_private;
3397 struct drm_i915_gem_phys_object *phys_obj;
3398
3399 if (!dev_priv->mm.phys_objs[id - 1])
3400 return;
3401
3402 phys_obj = dev_priv->mm.phys_objs[id - 1];
3403 if (phys_obj->cur_obj) {
3404 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3405 }
3406
3407#ifdef CONFIG_X86
3408 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3409#endif
3410 drm_pci_free(dev, phys_obj->handle);
3411 kfree(phys_obj);
3412 dev_priv->mm.phys_objs[id - 1] = NULL;
3413}
3414
3415void i915_gem_free_all_phys_object(struct drm_device *dev)
3416{
3417 int i;
3418
260883c8 3419 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3420 i915_gem_free_phys_object(dev, i);
3421}
3422
3423void i915_gem_detach_phys_object(struct drm_device *dev,
3424 struct drm_gem_object *obj)
3425{
3426 struct drm_i915_gem_object *obj_priv;
3427 int i;
3428 int ret;
3429 int page_count;
3430
3431 obj_priv = obj->driver_private;
3432 if (!obj_priv->phys_obj)
3433 return;
3434
3435 ret = i915_gem_object_get_page_list(obj);
3436 if (ret)
3437 goto out;
3438
3439 page_count = obj->size / PAGE_SIZE;
3440
3441 for (i = 0; i < page_count; i++) {
3442 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3443 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3444
3445 memcpy(dst, src, PAGE_SIZE);
3446 kunmap_atomic(dst, KM_USER0);
3447 }
3448 drm_clflush_pages(obj_priv->page_list, page_count);
3449 drm_agp_chipset_flush(dev);
3450out:
3451 obj_priv->phys_obj->cur_obj = NULL;
3452 obj_priv->phys_obj = NULL;
3453}
3454
3455int
3456i915_gem_attach_phys_object(struct drm_device *dev,
3457 struct drm_gem_object *obj, int id)
3458{
3459 drm_i915_private_t *dev_priv = dev->dev_private;
3460 struct drm_i915_gem_object *obj_priv;
3461 int ret = 0;
3462 int page_count;
3463 int i;
3464
3465 if (id > I915_MAX_PHYS_OBJECT)
3466 return -EINVAL;
3467
3468 obj_priv = obj->driver_private;
3469
3470 if (obj_priv->phys_obj) {
3471 if (obj_priv->phys_obj->id == id)
3472 return 0;
3473 i915_gem_detach_phys_object(dev, obj);
3474 }
3475
3476
3477 /* create a new object */
3478 if (!dev_priv->mm.phys_objs[id - 1]) {
3479 ret = i915_gem_init_phys_object(dev, id,
3480 obj->size);
3481 if (ret) {
aeb565df 3482 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
3483 goto out;
3484 }
3485 }
3486
3487 /* bind to the object */
3488 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3489 obj_priv->phys_obj->cur_obj = obj;
3490
3491 ret = i915_gem_object_get_page_list(obj);
3492 if (ret) {
3493 DRM_ERROR("failed to get page list\n");
3494 goto out;
3495 }
3496
3497 page_count = obj->size / PAGE_SIZE;
3498
3499 for (i = 0; i < page_count; i++) {
3500 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3501 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3502
3503 memcpy(dst, src, PAGE_SIZE);
3504 kunmap_atomic(src, KM_USER0);
3505 }
3506
3507 return 0;
3508out:
3509 return ret;
3510}
3511
3512static int
3513i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3514 struct drm_i915_gem_pwrite *args,
3515 struct drm_file *file_priv)
3516{
3517 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3518 void *obj_addr;
3519 int ret;
3520 char __user *user_data;
3521
3522 user_data = (char __user *) (uintptr_t) args->data_ptr;
3523 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3524
3525 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3526 ret = copy_from_user(obj_addr, user_data, args->size);
3527 if (ret)
3528 return -EFAULT;
3529
3530 drm_agp_chipset_flush(dev);
3531 return 0;
3532}