]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/rs600/690: use autogenerated safe register tables.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 46static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
47static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
de151cf6
JB
49static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
51static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file_priv);
673a394b 54
79e53945
JB
55int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56 unsigned long end)
673a394b
EA
57{
58 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 59
79e53945
JB
60 if (start >= end ||
61 (start & (PAGE_SIZE - 1)) != 0 ||
62 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
63 return -EINVAL;
64 }
65
79e53945
JB
66 drm_mm_init(&dev_priv->mm.gtt_space, start,
67 end - start);
673a394b 68
79e53945
JB
69 dev->gtt_total = (uint32_t) (end - start);
70
71 return 0;
72}
673a394b 73
79e53945
JB
74int
75i915_gem_init_ioctl(struct drm_device *dev, void *data,
76 struct drm_file *file_priv)
77{
78 struct drm_i915_gem_init *args = data;
79 int ret;
80
81 mutex_lock(&dev->struct_mutex);
82 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
83 mutex_unlock(&dev->struct_mutex);
84
79e53945 85 return ret;
673a394b
EA
86}
87
5a125c3c
EA
88int
89i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91{
5a125c3c 92 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
93
94 if (!(dev->driver->driver_features & DRIVER_GEM))
95 return -ENODEV;
96
97 args->aper_size = dev->gtt_total;
2678d9d6
KP
98 args->aper_available_size = (args->aper_size -
99 atomic_read(&dev->pin_memory));
5a125c3c
EA
100
101 return 0;
102}
103
673a394b
EA
104
105/**
106 * Creates a new mm object and returns a handle to it.
107 */
108int
109i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
111{
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
114 int handle, ret;
115
116 args->size = roundup(args->size, PAGE_SIZE);
117
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
120 if (obj == NULL)
121 return -ENOMEM;
122
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
127
128 if (ret)
129 return ret;
130
131 args->handle = handle;
132
133 return 0;
134}
135
eb01459f
EA
136static inline int
137fast_shmem_read(struct page **pages,
138 loff_t page_base, int page_offset,
139 char __user *data,
140 int length)
141{
142 char __iomem *vaddr;
2bc43b5c 143 int unwritten;
eb01459f
EA
144
145 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146 if (vaddr == NULL)
147 return -ENOMEM;
2bc43b5c 148 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
149 kunmap_atomic(vaddr, KM_USER0);
150
2bc43b5c
FM
151 if (unwritten)
152 return -EFAULT;
153
154 return 0;
eb01459f
EA
155}
156
280b713b
EA
157static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158{
159 drm_i915_private_t *dev_priv = obj->dev->dev_private;
160 struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163 obj_priv->tiling_mode != I915_TILING_NONE;
164}
165
40123c1f
EA
166static inline int
167slow_shmem_copy(struct page *dst_page,
168 int dst_offset,
169 struct page *src_page,
170 int src_offset,
171 int length)
172{
173 char *dst_vaddr, *src_vaddr;
174
175 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176 if (dst_vaddr == NULL)
177 return -ENOMEM;
178
179 src_vaddr = kmap_atomic(src_page, KM_USER1);
180 if (src_vaddr == NULL) {
181 kunmap_atomic(dst_vaddr, KM_USER0);
182 return -ENOMEM;
183 }
184
185 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187 kunmap_atomic(src_vaddr, KM_USER1);
188 kunmap_atomic(dst_vaddr, KM_USER0);
189
190 return 0;
191}
192
280b713b
EA
193static inline int
194slow_shmem_bit17_copy(struct page *gpu_page,
195 int gpu_offset,
196 struct page *cpu_page,
197 int cpu_offset,
198 int length,
199 int is_read)
200{
201 char *gpu_vaddr, *cpu_vaddr;
202
203 /* Use the unswizzled path if this page isn't affected. */
204 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205 if (is_read)
206 return slow_shmem_copy(cpu_page, cpu_offset,
207 gpu_page, gpu_offset, length);
208 else
209 return slow_shmem_copy(gpu_page, gpu_offset,
210 cpu_page, cpu_offset, length);
211 }
212
213 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214 if (gpu_vaddr == NULL)
215 return -ENOMEM;
216
217 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218 if (cpu_vaddr == NULL) {
219 kunmap_atomic(gpu_vaddr, KM_USER0);
220 return -ENOMEM;
221 }
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
245 kunmap_atomic(cpu_vaddr, KM_USER1);
246 kunmap_atomic(gpu_vaddr, KM_USER0);
247
248 return 0;
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
273 ret = i915_gem_object_get_pages(obj);
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
282 obj_priv = obj->driver_private;
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
317/**
318 * This is the fallback shmem pread path, which allocates temporary storage
319 * in kernel space to copy_to_user into outside of the struct_mutex, so we
320 * can copy out of the object's backing pages while holding the struct mutex
321 * and not take page faults.
322 */
323static int
324i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325 struct drm_i915_gem_pread *args,
326 struct drm_file *file_priv)
327{
328 struct drm_i915_gem_object *obj_priv = obj->driver_private;
329 struct mm_struct *mm = current->mm;
330 struct page **user_pages;
331 ssize_t remain;
332 loff_t offset, pinned_pages, i;
333 loff_t first_data_page, last_data_page, num_pages;
334 int shmem_page_index, shmem_page_offset;
335 int data_page_index, data_page_offset;
336 int page_length;
337 int ret;
338 uint64_t data_ptr = args->data_ptr;
280b713b 339 int do_bit17_swizzling;
eb01459f
EA
340
341 remain = args->size;
342
343 /* Pin the user pages containing the data. We can't fault while
344 * holding the struct mutex, yet we want to hold it while
345 * dereferencing the user data.
346 */
347 first_data_page = data_ptr / PAGE_SIZE;
348 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349 num_pages = last_data_page - first_data_page + 1;
350
8e7d2b2c 351 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
352 if (user_pages == NULL)
353 return -ENOMEM;
354
355 down_read(&mm->mmap_sem);
356 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 357 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
358 up_read(&mm->mmap_sem);
359 if (pinned_pages < num_pages) {
360 ret = -EFAULT;
361 goto fail_put_user_pages;
362 }
363
280b713b
EA
364 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
eb01459f
EA
366 mutex_lock(&dev->struct_mutex);
367
368 ret = i915_gem_object_get_pages(obj);
369 if (ret != 0)
370 goto fail_unlock;
371
372 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373 args->size);
374 if (ret != 0)
375 goto fail_put_pages;
376
377 obj_priv = obj->driver_private;
378 offset = args->offset;
379
380 while (remain > 0) {
381 /* Operation in this page
382 *
383 * shmem_page_index = page number within shmem file
384 * shmem_page_offset = offset within page in shmem file
385 * data_page_index = page number in get_user_pages return
386 * data_page_offset = offset with data_page_index page.
387 * page_length = bytes to copy for this page
388 */
389 shmem_page_index = offset / PAGE_SIZE;
390 shmem_page_offset = offset & ~PAGE_MASK;
391 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392 data_page_offset = data_ptr & ~PAGE_MASK;
393
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
397 if ((data_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - data_page_offset;
399
280b713b
EA
400 if (do_bit17_swizzling) {
401 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402 shmem_page_offset,
403 user_pages[data_page_index],
404 data_page_offset,
405 page_length,
406 1);
407 } else {
408 ret = slow_shmem_copy(user_pages[data_page_index],
409 data_page_offset,
410 obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 page_length);
413 }
eb01459f
EA
414 if (ret)
415 goto fail_put_pages;
416
417 remain -= page_length;
418 data_ptr += page_length;
419 offset += page_length;
420 }
421
422fail_put_pages:
423 i915_gem_object_put_pages(obj);
424fail_unlock:
425 mutex_unlock(&dev->struct_mutex);
426fail_put_user_pages:
427 for (i = 0; i < pinned_pages; i++) {
428 SetPageDirty(user_pages[i]);
429 page_cache_release(user_pages[i]);
430 }
8e7d2b2c 431 drm_free_large(user_pages);
eb01459f
EA
432
433 return ret;
434}
435
673a394b
EA
436/**
437 * Reads data from the object referenced by handle.
438 *
439 * On error, the contents of *data are undefined.
440 */
441int
442i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443 struct drm_file *file_priv)
444{
445 struct drm_i915_gem_pread *args = data;
446 struct drm_gem_object *obj;
447 struct drm_i915_gem_object *obj_priv;
673a394b
EA
448 int ret;
449
450 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451 if (obj == NULL)
452 return -EBADF;
453 obj_priv = obj->driver_private;
454
455 /* Bounds check source.
456 *
457 * XXX: This could use review for overflow issues...
458 */
459 if (args->offset > obj->size || args->size > obj->size ||
460 args->offset + args->size > obj->size) {
461 drm_gem_object_unreference(obj);
462 return -EINVAL;
463 }
464
280b713b 465 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 466 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
467 } else {
468 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469 if (ret != 0)
470 ret = i915_gem_shmem_pread_slow(dev, obj, args,
471 file_priv);
472 }
673a394b
EA
473
474 drm_gem_object_unreference(obj);
673a394b 475
eb01459f 476 return ret;
673a394b
EA
477}
478
0839ccb8
KP
479/* This is the fast write path which cannot handle
480 * page faults in the source data
9b7530cc 481 */
0839ccb8
KP
482
483static inline int
484fast_user_write(struct io_mapping *mapping,
485 loff_t page_base, int page_offset,
486 char __user *user_data,
487 int length)
9b7530cc 488{
9b7530cc 489 char *vaddr_atomic;
0839ccb8 490 unsigned long unwritten;
9b7530cc 491
0839ccb8
KP
492 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494 user_data, length);
495 io_mapping_unmap_atomic(vaddr_atomic);
496 if (unwritten)
497 return -EFAULT;
498 return 0;
499}
500
501/* Here's the write path which can sleep for
502 * page faults
503 */
504
505static inline int
3de09aa3
EA
506slow_kernel_write(struct io_mapping *mapping,
507 loff_t gtt_base, int gtt_offset,
508 struct page *user_page, int user_offset,
509 int length)
0839ccb8 510{
3de09aa3 511 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
512 unsigned long unwritten;
513
3de09aa3
EA
514 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515 src_vaddr = kmap_atomic(user_page, KM_USER1);
516 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517 src_vaddr + user_offset,
518 length);
519 kunmap_atomic(src_vaddr, KM_USER1);
520 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
521 if (unwritten)
522 return -EFAULT;
9b7530cc 523 return 0;
9b7530cc
LT
524}
525
40123c1f
EA
526static inline int
527fast_shmem_write(struct page **pages,
528 loff_t page_base, int page_offset,
529 char __user *data,
530 int length)
531{
532 char __iomem *vaddr;
d0088775 533 unsigned long unwritten;
40123c1f
EA
534
535 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536 if (vaddr == NULL)
537 return -ENOMEM;
d0088775 538 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
539 kunmap_atomic(vaddr, KM_USER0);
540
d0088775
DA
541 if (unwritten)
542 return -EFAULT;
40123c1f
EA
543 return 0;
544}
545
3de09aa3
EA
546/**
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
549 */
673a394b 550static int
3de09aa3
EA
551i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552 struct drm_i915_gem_pwrite *args,
553 struct drm_file *file_priv)
673a394b
EA
554{
555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 556 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 557 ssize_t remain;
0839ccb8 558 loff_t offset, page_base;
673a394b 559 char __user *user_data;
0839ccb8
KP
560 int page_offset, page_length;
561 int ret;
673a394b
EA
562
563 user_data = (char __user *) (uintptr_t) args->data_ptr;
564 remain = args->size;
565 if (!access_ok(VERIFY_READ, user_data, remain))
566 return -EFAULT;
567
568
569 mutex_lock(&dev->struct_mutex);
570 ret = i915_gem_object_pin(obj, 0);
571 if (ret) {
572 mutex_unlock(&dev->struct_mutex);
573 return ret;
574 }
2ef7eeaa 575 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
576 if (ret)
577 goto fail;
578
579 obj_priv = obj->driver_private;
580 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
581
582 while (remain > 0) {
583 /* Operation in this page
584 *
0839ccb8
KP
585 * page_base = page offset within aperture
586 * page_offset = offset within page
587 * page_length = bytes to copy for this page
673a394b 588 */
0839ccb8
KP
589 page_base = (offset & ~(PAGE_SIZE-1));
590 page_offset = offset & (PAGE_SIZE-1);
591 page_length = remain;
592 if ((page_offset + remain) > PAGE_SIZE)
593 page_length = PAGE_SIZE - page_offset;
594
595 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596 page_offset, user_data, page_length);
597
598 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
0839ccb8 601 */
3de09aa3
EA
602 if (ret)
603 goto fail;
673a394b 604
0839ccb8
KP
605 remain -= page_length;
606 user_data += page_length;
607 offset += page_length;
673a394b 608 }
673a394b
EA
609
610fail:
611 i915_gem_object_unpin(obj);
612 mutex_unlock(&dev->struct_mutex);
613
614 return ret;
615}
616
3de09aa3
EA
617/**
618 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619 * the memory and maps it using kmap_atomic for copying.
620 *
621 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623 */
3043c60c 624static int
3de09aa3
EA
625i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file_priv)
673a394b 628{
3de09aa3
EA
629 struct drm_i915_gem_object *obj_priv = obj->driver_private;
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 ssize_t remain;
632 loff_t gtt_page_base, offset;
633 loff_t first_data_page, last_data_page, num_pages;
634 loff_t pinned_pages, i;
635 struct page **user_pages;
636 struct mm_struct *mm = current->mm;
637 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 638 int ret;
3de09aa3
EA
639 uint64_t data_ptr = args->data_ptr;
640
641 remain = args->size;
642
643 /* Pin the user pages containing the data. We can't fault while
644 * holding the struct mutex, and all of the pwrite implementations
645 * want to hold it while dereferencing the user data.
646 */
647 first_data_page = data_ptr / PAGE_SIZE;
648 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649 num_pages = last_data_page - first_data_page + 1;
650
8e7d2b2c 651 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
652 if (user_pages == NULL)
653 return -ENOMEM;
654
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 if (pinned_pages < num_pages) {
660 ret = -EFAULT;
661 goto out_unpin_pages;
662 }
673a394b
EA
663
664 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
665 ret = i915_gem_object_pin(obj, 0);
666 if (ret)
667 goto out_unlock;
668
669 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670 if (ret)
671 goto out_unpin_object;
672
673 obj_priv = obj->driver_private;
674 offset = obj_priv->gtt_offset + args->offset;
675
676 while (remain > 0) {
677 /* Operation in this page
678 *
679 * gtt_page_base = page offset within aperture
680 * gtt_page_offset = offset within page in aperture
681 * data_page_index = page number in get_user_pages return
682 * data_page_offset = offset with data_page_index page.
683 * page_length = bytes to copy for this page
684 */
685 gtt_page_base = offset & PAGE_MASK;
686 gtt_page_offset = offset & ~PAGE_MASK;
687 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688 data_page_offset = data_ptr & ~PAGE_MASK;
689
690 page_length = remain;
691 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692 page_length = PAGE_SIZE - gtt_page_offset;
693 if ((data_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - data_page_offset;
695
696 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697 gtt_page_base, gtt_page_offset,
698 user_pages[data_page_index],
699 data_page_offset,
700 page_length);
701
702 /* If we get a fault while copying data, then (presumably) our
703 * source page isn't available. Return the error and we'll
704 * retry in the slow path.
705 */
706 if (ret)
707 goto out_unpin_object;
708
709 remain -= page_length;
710 offset += page_length;
711 data_ptr += page_length;
712 }
713
714out_unpin_object:
715 i915_gem_object_unpin(obj);
716out_unlock:
717 mutex_unlock(&dev->struct_mutex);
718out_unpin_pages:
719 for (i = 0; i < pinned_pages; i++)
720 page_cache_release(user_pages[i]);
8e7d2b2c 721 drm_free_large(user_pages);
3de09aa3
EA
722
723 return ret;
724}
725
40123c1f
EA
726/**
727 * This is the fast shmem pwrite path, which attempts to directly
728 * copy_from_user into the kmapped pages backing the object.
729 */
3043c60c 730static int
40123c1f
EA
731i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
673a394b 734{
40123c1f
EA
735 struct drm_i915_gem_object *obj_priv = obj->driver_private;
736 ssize_t remain;
737 loff_t offset, page_base;
738 char __user *user_data;
739 int page_offset, page_length;
673a394b 740 int ret;
40123c1f
EA
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
673a394b
EA
744
745 mutex_lock(&dev->struct_mutex);
746
40123c1f
EA
747 ret = i915_gem_object_get_pages(obj);
748 if (ret != 0)
749 goto fail_unlock;
673a394b 750
e47c68e9 751 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
752 if (ret != 0)
753 goto fail_put_pages;
754
755 obj_priv = obj->driver_private;
756 offset = args->offset;
757 obj_priv->dirty = 1;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 ret = fast_shmem_write(obj_priv->pages,
773 page_base, page_offset,
774 user_data, page_length);
775 if (ret)
776 goto fail_put_pages;
777
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
781 }
782
783fail_put_pages:
784 i915_gem_object_put_pages(obj);
785fail_unlock:
786 mutex_unlock(&dev->struct_mutex);
787
788 return ret;
789}
790
791/**
792 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793 * the memory and maps it using kmap_atomic for copying.
794 *
795 * This avoids taking mmap_sem for faulting on the user's address while the
796 * struct_mutex is held.
797 */
798static int
799i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800 struct drm_i915_gem_pwrite *args,
801 struct drm_file *file_priv)
802{
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 struct mm_struct *mm = current->mm;
805 struct page **user_pages;
806 ssize_t remain;
807 loff_t offset, pinned_pages, i;
808 loff_t first_data_page, last_data_page, num_pages;
809 int shmem_page_index, shmem_page_offset;
810 int data_page_index, data_page_offset;
811 int page_length;
812 int ret;
813 uint64_t data_ptr = args->data_ptr;
280b713b 814 int do_bit17_swizzling;
40123c1f
EA
815
816 remain = args->size;
817
818 /* Pin the user pages containing the data. We can't fault while
819 * holding the struct mutex, and all of the pwrite implementations
820 * want to hold it while dereferencing the user data.
821 */
822 first_data_page = data_ptr / PAGE_SIZE;
823 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824 num_pages = last_data_page - first_data_page + 1;
825
8e7d2b2c 826 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
827 if (user_pages == NULL)
828 return -ENOMEM;
829
830 down_read(&mm->mmap_sem);
831 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832 num_pages, 0, 0, user_pages, NULL);
833 up_read(&mm->mmap_sem);
834 if (pinned_pages < num_pages) {
835 ret = -EFAULT;
836 goto fail_put_user_pages;
673a394b
EA
837 }
838
280b713b
EA
839 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
40123c1f
EA
841 mutex_lock(&dev->struct_mutex);
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret != 0)
845 goto fail_unlock;
846
847 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848 if (ret != 0)
849 goto fail_put_pages;
850
851 obj_priv = obj->driver_private;
673a394b 852 offset = args->offset;
40123c1f 853 obj_priv->dirty = 1;
673a394b 854
40123c1f
EA
855 while (remain > 0) {
856 /* Operation in this page
857 *
858 * shmem_page_index = page number within shmem file
859 * shmem_page_offset = offset within page in shmem file
860 * data_page_index = page number in get_user_pages return
861 * data_page_offset = offset with data_page_index page.
862 * page_length = bytes to copy for this page
863 */
864 shmem_page_index = offset / PAGE_SIZE;
865 shmem_page_offset = offset & ~PAGE_MASK;
866 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867 data_page_offset = data_ptr & ~PAGE_MASK;
868
869 page_length = remain;
870 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871 page_length = PAGE_SIZE - shmem_page_offset;
872 if ((data_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - data_page_offset;
874
280b713b
EA
875 if (do_bit17_swizzling) {
876 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877 shmem_page_offset,
878 user_pages[data_page_index],
879 data_page_offset,
880 page_length,
881 0);
882 } else {
883 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
887 page_length);
888 }
40123c1f
EA
889 if (ret)
890 goto fail_put_pages;
891
892 remain -= page_length;
893 data_ptr += page_length;
894 offset += page_length;
673a394b
EA
895 }
896
40123c1f
EA
897fail_put_pages:
898 i915_gem_object_put_pages(obj);
899fail_unlock:
673a394b 900 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
901fail_put_user_pages:
902 for (i = 0; i < pinned_pages; i++)
903 page_cache_release(user_pages[i]);
8e7d2b2c 904 drm_free_large(user_pages);
673a394b 905
40123c1f 906 return ret;
673a394b
EA
907}
908
909/**
910 * Writes data to the object referenced by handle.
911 *
912 * On error, the contents of the buffer that were to be modified are undefined.
913 */
914int
915i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916 struct drm_file *file_priv)
917{
918 struct drm_i915_gem_pwrite *args = data;
919 struct drm_gem_object *obj;
920 struct drm_i915_gem_object *obj_priv;
921 int ret = 0;
922
923 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924 if (obj == NULL)
925 return -EBADF;
926 obj_priv = obj->driver_private;
927
928 /* Bounds check destination.
929 *
930 * XXX: This could use review for overflow issues...
931 */
932 if (args->offset > obj->size || args->size > obj->size ||
933 args->offset + args->size > obj->size) {
934 drm_gem_object_unreference(obj);
935 return -EINVAL;
936 }
937
938 /* We can only do the GTT pwrite on untiled buffers, as otherwise
939 * it would end up going through the fenced access, and we'll get
940 * different detiling behavior between reading and writing.
941 * pread/pwrite currently are reading and writing from the CPU
942 * perspective, requiring manual detiling by the client.
943 */
71acb5eb
DA
944 if (obj_priv->phys_obj)
945 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
947 dev->gtt_total != 0) {
948 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949 if (ret == -EFAULT) {
950 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951 file_priv);
952 }
280b713b
EA
953 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
955 } else {
956 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959 file_priv);
960 }
961 }
673a394b
EA
962
963#if WATCH_PWRITE
964 if (ret)
965 DRM_INFO("pwrite failed %d\n", ret);
966#endif
967
968 drm_gem_object_unreference(obj);
969
970 return ret;
971}
972
973/**
2ef7eeaa
EA
974 * Called when user space prepares to use an object with the CPU, either
975 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
976 */
977int
978i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file_priv)
980{
981 struct drm_i915_gem_set_domain *args = data;
982 struct drm_gem_object *obj;
2ef7eeaa
EA
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
673a394b
EA
985 int ret;
986
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
989
2ef7eeaa 990 /* Only handle setting domains to types used by the CPU. */
21d509e3 991 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
992 return -EINVAL;
993
21d509e3 994 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
995 return -EINVAL;
996
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
999 */
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1002
673a394b
EA
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
1006
1007 mutex_lock(&dev->struct_mutex);
1008#if WATCH_BUF
cfd43c02 1009 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1010 obj, obj->size, read_domains, write_domain);
673a394b 1011#endif
2ef7eeaa
EA
1012 if (read_domains & I915_GEM_DOMAIN_GTT) {
1013 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1014
1015 /* Silently promote "you're not bound, there was nothing to do"
1016 * to success, since the client was just asking us to
1017 * make sure everything was done.
1018 */
1019 if (ret == -EINVAL)
1020 ret = 0;
2ef7eeaa 1021 } else {
e47c68e9 1022 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1023 }
1024
673a394b
EA
1025 drm_gem_object_unreference(obj);
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028}
1029
1030/**
1031 * Called when user space has done writes to this buffer
1032 */
1033int
1034i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1035 struct drm_file *file_priv)
1036{
1037 struct drm_i915_gem_sw_finish *args = data;
1038 struct drm_gem_object *obj;
1039 struct drm_i915_gem_object *obj_priv;
1040 int ret = 0;
1041
1042 if (!(dev->driver->driver_features & DRIVER_GEM))
1043 return -ENODEV;
1044
1045 mutex_lock(&dev->struct_mutex);
1046 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1047 if (obj == NULL) {
1048 mutex_unlock(&dev->struct_mutex);
1049 return -EBADF;
1050 }
1051
1052#if WATCH_BUF
cfd43c02 1053 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1054 __func__, args->handle, obj, obj->size);
1055#endif
1056 obj_priv = obj->driver_private;
1057
1058 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1059 if (obj_priv->pin_count)
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
673a394b
EA
1062 drm_gem_object_unreference(obj);
1063 mutex_unlock(&dev->struct_mutex);
1064 return ret;
1065}
1066
1067/**
1068 * Maps the contents of an object, returning the address it is mapped
1069 * into.
1070 *
1071 * While the mapping holds a reference on the contents of the object, it doesn't
1072 * imply a ref on the object itself.
1073 */
1074int
1075i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file_priv)
1077{
1078 struct drm_i915_gem_mmap *args = data;
1079 struct drm_gem_object *obj;
1080 loff_t offset;
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
1086 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1087 if (obj == NULL)
1088 return -EBADF;
1089
1090 offset = args->offset;
1091
1092 down_write(&current->mm->mmap_sem);
1093 addr = do_mmap(obj->filp, 0, args->size,
1094 PROT_READ | PROT_WRITE, MAP_SHARED,
1095 args->offset);
1096 up_write(&current->mm->mmap_sem);
1097 mutex_lock(&dev->struct_mutex);
1098 drm_gem_object_unreference(obj);
1099 mutex_unlock(&dev->struct_mutex);
1100 if (IS_ERR((void *)addr))
1101 return addr;
1102
1103 args->addr_ptr = (uint64_t) addr;
1104
1105 return 0;
1106}
1107
de151cf6
JB
1108/**
1109 * i915_gem_fault - fault a page into the GTT
1110 * vma: VMA in question
1111 * vmf: fault info
1112 *
1113 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1114 * from userspace. The fault handler takes care of binding the object to
1115 * the GTT (if needed), allocating and programming a fence register (again,
1116 * only if needed based on whether the old reg is still valid or the object
1117 * is tiled) and inserting a new PTE into the faulting process.
1118 *
1119 * Note that the faulting process may involve evicting existing objects
1120 * from the GTT and/or fence registers to make room. So performance may
1121 * suffer if the GTT working set is large or there are few fence registers
1122 * left.
1123 */
1124int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1125{
1126 struct drm_gem_object *obj = vma->vm_private_data;
1127 struct drm_device *dev = obj->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1130 pgoff_t page_offset;
1131 unsigned long pfn;
1132 int ret = 0;
0f973f27 1133 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1134
1135 /* We don't use vmf->pgoff since that has the fake offset */
1136 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1137 PAGE_SHIFT;
1138
1139 /* Now bind it into the GTT if needed */
1140 mutex_lock(&dev->struct_mutex);
1141 if (!obj_priv->gtt_space) {
1142 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1143 if (ret) {
1144 mutex_unlock(&dev->struct_mutex);
1145 return VM_FAULT_SIGBUS;
1146 }
07f4f3e8
KH
1147
1148 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1149 if (ret) {
1150 mutex_unlock(&dev->struct_mutex);
1151 return VM_FAULT_SIGBUS;
1152 }
1153
14b60391 1154 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1155 }
1156
1157 /* Need a new fence register? */
1158 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 1159 obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1160 ret = i915_gem_object_get_fence_reg(obj);
7d8d58b2
CW
1161 if (ret) {
1162 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1163 return VM_FAULT_SIGBUS;
7d8d58b2 1164 }
d9ddcb96 1165 }
de151cf6
JB
1166
1167 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1168 page_offset;
1169
1170 /* Finally, remap it using the new GTT offset */
1171 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1172
1173 mutex_unlock(&dev->struct_mutex);
1174
1175 switch (ret) {
1176 case -ENOMEM:
1177 case -EAGAIN:
1178 return VM_FAULT_OOM;
1179 case -EFAULT:
959b887c 1180 case -EINVAL:
de151cf6
JB
1181 return VM_FAULT_SIGBUS;
1182 default:
1183 return VM_FAULT_NOPAGE;
1184 }
1185}
1186
1187/**
1188 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1189 * @obj: obj in question
1190 *
1191 * GEM memory mapping works by handing back to userspace a fake mmap offset
1192 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1193 * up the object based on the offset and sets up the various memory mapping
1194 * structures.
1195 *
1196 * This routine allocates and attaches a fake offset for @obj.
1197 */
1198static int
1199i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1200{
1201 struct drm_device *dev = obj->dev;
1202 struct drm_gem_mm *mm = dev->mm_private;
1203 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204 struct drm_map_list *list;
f77d390c 1205 struct drm_local_map *map;
de151cf6
JB
1206 int ret = 0;
1207
1208 /* Set the object up for mmap'ing */
1209 list = &obj->map_list;
9a298b2a 1210 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1211 if (!list->map)
1212 return -ENOMEM;
1213
1214 map = list->map;
1215 map->type = _DRM_GEM;
1216 map->size = obj->size;
1217 map->handle = obj;
1218
1219 /* Get a DRM GEM mmap offset allocated... */
1220 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1221 obj->size / PAGE_SIZE, 0, 0);
1222 if (!list->file_offset_node) {
1223 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1224 ret = -ENOMEM;
1225 goto out_free_list;
1226 }
1227
1228 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1229 obj->size / PAGE_SIZE, 0);
1230 if (!list->file_offset_node) {
1231 ret = -ENOMEM;
1232 goto out_free_list;
1233 }
1234
1235 list->hash.key = list->file_offset_node->start;
1236 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1237 DRM_ERROR("failed to add to map hash\n");
1238 goto out_free_mm;
1239 }
1240
1241 /* By now we should be all set, any drm_mmap request on the offset
1242 * below will get to our mmap & fault handler */
1243 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1244
1245 return 0;
1246
1247out_free_mm:
1248 drm_mm_put_block(list->file_offset_node);
1249out_free_list:
9a298b2a 1250 kfree(list->map);
de151cf6
JB
1251
1252 return ret;
1253}
1254
901782b2
CW
1255/**
1256 * i915_gem_release_mmap - remove physical page mappings
1257 * @obj: obj in question
1258 *
1259 * Preserve the reservation of the mmaping with the DRM core code, but
1260 * relinquish ownership of the pages back to the system.
1261 *
1262 * It is vital that we remove the page mapping if we have mapped a tiled
1263 * object through the GTT and then lose the fence register due to
1264 * resource pressure. Similarly if the object has been moved out of the
1265 * aperture, than pages mapped into userspace must be revoked. Removing the
1266 * mapping will then trigger a page fault on the next user access, allowing
1267 * fixup by i915_gem_fault().
1268 */
d05ca301 1269void
901782b2
CW
1270i915_gem_release_mmap(struct drm_gem_object *obj)
1271{
1272 struct drm_device *dev = obj->dev;
1273 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1274
1275 if (dev->dev_mapping)
1276 unmap_mapping_range(dev->dev_mapping,
1277 obj_priv->mmap_offset, obj->size, 1);
1278}
1279
ab00b3e5
JB
1280static void
1281i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1282{
1283 struct drm_device *dev = obj->dev;
1284 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1285 struct drm_gem_mm *mm = dev->mm_private;
1286 struct drm_map_list *list;
1287
1288 list = &obj->map_list;
1289 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1290
1291 if (list->file_offset_node) {
1292 drm_mm_put_block(list->file_offset_node);
1293 list->file_offset_node = NULL;
1294 }
1295
1296 if (list->map) {
9a298b2a 1297 kfree(list->map);
ab00b3e5
JB
1298 list->map = NULL;
1299 }
1300
1301 obj_priv->mmap_offset = 0;
1302}
1303
de151cf6
JB
1304/**
1305 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1306 * @obj: object to check
1307 *
1308 * Return the required GTT alignment for an object, taking into account
1309 * potential fence register mapping if needed.
1310 */
1311static uint32_t
1312i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1313{
1314 struct drm_device *dev = obj->dev;
1315 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1316 int start, i;
1317
1318 /*
1319 * Minimum alignment is 4k (GTT page size), but might be greater
1320 * if a fence register is needed for the object.
1321 */
1322 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1323 return 4096;
1324
1325 /*
1326 * Previous chips need to be aligned to the size of the smallest
1327 * fence register that can contain the object.
1328 */
1329 if (IS_I9XX(dev))
1330 start = 1024*1024;
1331 else
1332 start = 512*1024;
1333
1334 for (i = start; i < obj->size; i <<= 1)
1335 ;
1336
1337 return i;
1338}
1339
1340/**
1341 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1342 * @dev: DRM device
1343 * @data: GTT mapping ioctl data
1344 * @file_priv: GEM object info
1345 *
1346 * Simply returns the fake offset to userspace so it can mmap it.
1347 * The mmap call will end up in drm_gem_mmap(), which will set things
1348 * up so we can get faults in the handler above.
1349 *
1350 * The fault handler will take care of binding the object into the GTT
1351 * (since it may have been evicted to make room for something), allocating
1352 * a fence register, and mapping the appropriate aperture address into
1353 * userspace.
1354 */
1355int
1356i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1357 struct drm_file *file_priv)
1358{
1359 struct drm_i915_gem_mmap_gtt *args = data;
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 struct drm_gem_object *obj;
1362 struct drm_i915_gem_object *obj_priv;
1363 int ret;
1364
1365 if (!(dev->driver->driver_features & DRIVER_GEM))
1366 return -ENODEV;
1367
1368 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1369 if (obj == NULL)
1370 return -EBADF;
1371
1372 mutex_lock(&dev->struct_mutex);
1373
1374 obj_priv = obj->driver_private;
1375
1376 if (!obj_priv->mmap_offset) {
1377 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1378 if (ret) {
1379 drm_gem_object_unreference(obj);
1380 mutex_unlock(&dev->struct_mutex);
de151cf6 1381 return ret;
13af1062 1382 }
de151cf6
JB
1383 }
1384
1385 args->offset = obj_priv->mmap_offset;
1386
1387 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1388
1389 /* Make sure the alignment is correct for fence regs etc */
1390 if (obj_priv->agp_mem &&
1391 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1392 drm_gem_object_unreference(obj);
1393 mutex_unlock(&dev->struct_mutex);
1394 return -EINVAL;
1395 }
1396
1397 /*
1398 * Pull it into the GTT so that we have a page list (makes the
1399 * initial fault faster and any subsequent flushing possible).
1400 */
1401 if (!obj_priv->agp_mem) {
1402 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1403 if (ret) {
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return ret;
1407 }
14b60391 1408 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1409 }
1410
1411 drm_gem_object_unreference(obj);
1412 mutex_unlock(&dev->struct_mutex);
1413
1414 return 0;
1415}
1416
6911a9b8 1417void
856fa198 1418i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1419{
1420 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1421 int page_count = obj->size / PAGE_SIZE;
1422 int i;
1423
856fa198 1424 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1425
856fa198
EA
1426 if (--obj_priv->pages_refcount != 0)
1427 return;
673a394b 1428
280b713b
EA
1429 if (obj_priv->tiling_mode != I915_TILING_NONE)
1430 i915_gem_object_save_bit_17_swizzle(obj);
1431
673a394b 1432 for (i = 0; i < page_count; i++)
856fa198 1433 if (obj_priv->pages[i] != NULL) {
673a394b 1434 if (obj_priv->dirty)
856fa198
EA
1435 set_page_dirty(obj_priv->pages[i]);
1436 mark_page_accessed(obj_priv->pages[i]);
1437 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1438 }
1439 obj_priv->dirty = 0;
1440
8e7d2b2c 1441 drm_free_large(obj_priv->pages);
856fa198 1442 obj_priv->pages = NULL;
673a394b
EA
1443}
1444
1445static void
ce44b0ea 1446i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1447{
1448 struct drm_device *dev = obj->dev;
1449 drm_i915_private_t *dev_priv = dev->dev_private;
1450 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1451
1452 /* Add a reference if we're newly entering the active list. */
1453 if (!obj_priv->active) {
1454 drm_gem_object_reference(obj);
1455 obj_priv->active = 1;
1456 }
1457 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1458 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1459 list_move_tail(&obj_priv->list,
1460 &dev_priv->mm.active_list);
5e118f41 1461 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1462 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1463}
1464
ce44b0ea
EA
1465static void
1466i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1467{
1468 struct drm_device *dev = obj->dev;
1469 drm_i915_private_t *dev_priv = dev->dev_private;
1470 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1471
1472 BUG_ON(!obj_priv->active);
1473 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1474 obj_priv->last_rendering_seqno = 0;
1475}
673a394b
EA
1476
1477static void
1478i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1479{
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1483
1484 i915_verify_inactive(dev, __FILE__, __LINE__);
1485 if (obj_priv->pin_count != 0)
1486 list_del_init(&obj_priv->list);
1487 else
1488 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1489
ce44b0ea 1490 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1491 if (obj_priv->active) {
1492 obj_priv->active = 0;
1493 drm_gem_object_unreference(obj);
1494 }
1495 i915_verify_inactive(dev, __FILE__, __LINE__);
1496}
1497
1498/**
1499 * Creates a new sequence number, emitting a write of it to the status page
1500 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1501 *
1502 * Must be called with struct_lock held.
1503 *
1504 * Returned sequence numbers are nonzero on success.
1505 */
1506static uint32_t
b962442e
EA
1507i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1508 uint32_t flush_domains)
673a394b
EA
1509{
1510 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1511 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1512 struct drm_i915_gem_request *request;
1513 uint32_t seqno;
1514 int was_empty;
1515 RING_LOCALS;
1516
b962442e
EA
1517 if (file_priv != NULL)
1518 i915_file_priv = file_priv->driver_priv;
1519
9a298b2a 1520 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1521 if (request == NULL)
1522 return 0;
1523
1524 /* Grab the seqno we're going to make this request be, and bump the
1525 * next (skipping 0 so it can be the reserved no-seqno value).
1526 */
1527 seqno = dev_priv->mm.next_gem_seqno;
1528 dev_priv->mm.next_gem_seqno++;
1529 if (dev_priv->mm.next_gem_seqno == 0)
1530 dev_priv->mm.next_gem_seqno++;
1531
1532 BEGIN_LP_RING(4);
1533 OUT_RING(MI_STORE_DWORD_INDEX);
1534 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1535 OUT_RING(seqno);
1536
1537 OUT_RING(MI_USER_INTERRUPT);
1538 ADVANCE_LP_RING();
1539
1540 DRM_DEBUG("%d\n", seqno);
1541
1542 request->seqno = seqno;
1543 request->emitted_jiffies = jiffies;
673a394b
EA
1544 was_empty = list_empty(&dev_priv->mm.request_list);
1545 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1546 if (i915_file_priv) {
1547 list_add_tail(&request->client_list,
1548 &i915_file_priv->mm.request_list);
1549 } else {
1550 INIT_LIST_HEAD(&request->client_list);
1551 }
673a394b 1552
ce44b0ea
EA
1553 /* Associate any objects on the flushing list matching the write
1554 * domain we're flushing with our flush.
1555 */
1556 if (flush_domains != 0) {
1557 struct drm_i915_gem_object *obj_priv, *next;
1558
1559 list_for_each_entry_safe(obj_priv, next,
1560 &dev_priv->mm.flushing_list, list) {
1561 struct drm_gem_object *obj = obj_priv->obj;
1562
1563 if ((obj->write_domain & flush_domains) ==
1564 obj->write_domain) {
1565 obj->write_domain = 0;
1566 i915_gem_object_move_to_active(obj, seqno);
1567 }
1568 }
1569
1570 }
1571
6dbe2772 1572 if (was_empty && !dev_priv->mm.suspended)
9c9fe1f8 1573 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1574 return seqno;
1575}
1576
1577/**
1578 * Command execution barrier
1579 *
1580 * Ensures that all commands in the ring are finished
1581 * before signalling the CPU
1582 */
3043c60c 1583static uint32_t
673a394b
EA
1584i915_retire_commands(struct drm_device *dev)
1585{
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1588 uint32_t flush_domains = 0;
1589 RING_LOCALS;
1590
1591 /* The sampler always gets flushed on i965 (sigh) */
1592 if (IS_I965G(dev))
1593 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1594 BEGIN_LP_RING(2);
1595 OUT_RING(cmd);
1596 OUT_RING(0); /* noop */
1597 ADVANCE_LP_RING();
1598 return flush_domains;
1599}
1600
1601/**
1602 * Moves buffers associated only with the given active seqno from the active
1603 * to inactive list, potentially freeing them.
1604 */
1605static void
1606i915_gem_retire_request(struct drm_device *dev,
1607 struct drm_i915_gem_request *request)
1608{
1609 drm_i915_private_t *dev_priv = dev->dev_private;
1610
1611 /* Move any buffers on the active list that are no longer referenced
1612 * by the ringbuffer to the flushing/inactive lists as appropriate.
1613 */
5e118f41 1614 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1615 while (!list_empty(&dev_priv->mm.active_list)) {
1616 struct drm_gem_object *obj;
1617 struct drm_i915_gem_object *obj_priv;
1618
1619 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1620 struct drm_i915_gem_object,
1621 list);
1622 obj = obj_priv->obj;
1623
1624 /* If the seqno being retired doesn't match the oldest in the
1625 * list, then the oldest in the list must still be newer than
1626 * this seqno.
1627 */
1628 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1629 goto out;
de151cf6 1630
673a394b
EA
1631#if WATCH_LRU
1632 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1633 __func__, request->seqno, obj);
1634#endif
1635
ce44b0ea
EA
1636 if (obj->write_domain != 0)
1637 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1638 else {
1639 /* Take a reference on the object so it won't be
1640 * freed while the spinlock is held. The list
1641 * protection for this spinlock is safe when breaking
1642 * the lock like this since the next thing we do
1643 * is just get the head of the list again.
1644 */
1645 drm_gem_object_reference(obj);
673a394b 1646 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1647 spin_unlock(&dev_priv->mm.active_list_lock);
1648 drm_gem_object_unreference(obj);
1649 spin_lock(&dev_priv->mm.active_list_lock);
1650 }
673a394b 1651 }
5e118f41
CW
1652out:
1653 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1654}
1655
1656/**
1657 * Returns true if seq1 is later than seq2.
1658 */
1659static int
1660i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1661{
1662 return (int32_t)(seq1 - seq2) >= 0;
1663}
1664
1665uint32_t
1666i915_get_gem_seqno(struct drm_device *dev)
1667{
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669
1670 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1671}
1672
1673/**
1674 * This function clears the request list as sequence numbers are passed.
1675 */
1676void
1677i915_gem_retire_requests(struct drm_device *dev)
1678{
1679 drm_i915_private_t *dev_priv = dev->dev_private;
1680 uint32_t seqno;
1681
6c0594a3
KW
1682 if (!dev_priv->hw_status_page)
1683 return;
1684
673a394b
EA
1685 seqno = i915_get_gem_seqno(dev);
1686
1687 while (!list_empty(&dev_priv->mm.request_list)) {
1688 struct drm_i915_gem_request *request;
1689 uint32_t retiring_seqno;
1690
1691 request = list_first_entry(&dev_priv->mm.request_list,
1692 struct drm_i915_gem_request,
1693 list);
1694 retiring_seqno = request->seqno;
1695
1696 if (i915_seqno_passed(seqno, retiring_seqno) ||
1697 dev_priv->mm.wedged) {
1698 i915_gem_retire_request(dev, request);
1699
1700 list_del(&request->list);
b962442e 1701 list_del(&request->client_list);
9a298b2a 1702 kfree(request);
673a394b
EA
1703 } else
1704 break;
1705 }
1706}
1707
1708void
1709i915_gem_retire_work_handler(struct work_struct *work)
1710{
1711 drm_i915_private_t *dev_priv;
1712 struct drm_device *dev;
1713
1714 dev_priv = container_of(work, drm_i915_private_t,
1715 mm.retire_work.work);
1716 dev = dev_priv->dev;
1717
1718 mutex_lock(&dev->struct_mutex);
1719 i915_gem_retire_requests(dev);
6dbe2772
KP
1720 if (!dev_priv->mm.suspended &&
1721 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1722 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1723 mutex_unlock(&dev->struct_mutex);
1724}
1725
1726/**
1727 * Waits for a sequence number to be signaled, and cleans up the
1728 * request and object lists appropriately for that event.
1729 */
3043c60c 1730static int
673a394b
EA
1731i915_wait_request(struct drm_device *dev, uint32_t seqno)
1732{
1733 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1734 u32 ier;
673a394b
EA
1735 int ret = 0;
1736
1737 BUG_ON(seqno == 0);
1738
1739 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
036a4a7d
ZW
1740 if (IS_IGDNG(dev))
1741 ier = I915_READ(DEIER) | I915_READ(GTIER);
1742 else
1743 ier = I915_READ(IER);
802c7eb6
JB
1744 if (!ier) {
1745 DRM_ERROR("something (likely vbetool) disabled "
1746 "interrupts, re-enabling\n");
1747 i915_driver_irq_preinstall(dev);
1748 i915_driver_irq_postinstall(dev);
1749 }
1750
673a394b
EA
1751 dev_priv->mm.waiting_gem_seqno = seqno;
1752 i915_user_irq_get(dev);
1753 ret = wait_event_interruptible(dev_priv->irq_queue,
1754 i915_seqno_passed(i915_get_gem_seqno(dev),
1755 seqno) ||
1756 dev_priv->mm.wedged);
1757 i915_user_irq_put(dev);
1758 dev_priv->mm.waiting_gem_seqno = 0;
1759 }
1760 if (dev_priv->mm.wedged)
1761 ret = -EIO;
1762
1763 if (ret && ret != -ERESTARTSYS)
1764 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1765 __func__, ret, seqno, i915_get_gem_seqno(dev));
1766
1767 /* Directly dispatch request retiring. While we have the work queue
1768 * to handle this, the waiter on a request often wants an associated
1769 * buffer to have made it to the inactive list, and we would need
1770 * a separate wait queue to handle that.
1771 */
1772 if (ret == 0)
1773 i915_gem_retire_requests(dev);
1774
1775 return ret;
1776}
1777
1778static void
1779i915_gem_flush(struct drm_device *dev,
1780 uint32_t invalidate_domains,
1781 uint32_t flush_domains)
1782{
1783 drm_i915_private_t *dev_priv = dev->dev_private;
1784 uint32_t cmd;
1785 RING_LOCALS;
1786
1787#if WATCH_EXEC
1788 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1789 invalidate_domains, flush_domains);
1790#endif
1791
1792 if (flush_domains & I915_GEM_DOMAIN_CPU)
1793 drm_agp_chipset_flush(dev);
1794
21d509e3 1795 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1796 /*
1797 * read/write caches:
1798 *
1799 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1800 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1801 * also flushed at 2d versus 3d pipeline switches.
1802 *
1803 * read-only caches:
1804 *
1805 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1806 * MI_READ_FLUSH is set, and is always flushed on 965.
1807 *
1808 * I915_GEM_DOMAIN_COMMAND may not exist?
1809 *
1810 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1811 * invalidated when MI_EXE_FLUSH is set.
1812 *
1813 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1814 * invalidated with every MI_FLUSH.
1815 *
1816 * TLBs:
1817 *
1818 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1819 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1820 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1821 * are flushed at any MI_FLUSH.
1822 */
1823
1824 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1825 if ((invalidate_domains|flush_domains) &
1826 I915_GEM_DOMAIN_RENDER)
1827 cmd &= ~MI_NO_WRITE_FLUSH;
1828 if (!IS_I965G(dev)) {
1829 /*
1830 * On the 965, the sampler cache always gets flushed
1831 * and this bit is reserved.
1832 */
1833 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1834 cmd |= MI_READ_FLUSH;
1835 }
1836 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1837 cmd |= MI_EXE_FLUSH;
1838
1839#if WATCH_EXEC
1840 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1841#endif
1842 BEGIN_LP_RING(2);
1843 OUT_RING(cmd);
1844 OUT_RING(0); /* noop */
1845 ADVANCE_LP_RING();
1846 }
1847}
1848
1849/**
1850 * Ensures that all rendering to the object has completed and the object is
1851 * safe to unbind from the GTT or access from the CPU.
1852 */
1853static int
1854i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1855{
1856 struct drm_device *dev = obj->dev;
1857 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1858 int ret;
1859
e47c68e9
EA
1860 /* This function only exists to support waiting for existing rendering,
1861 * not for emitting required flushes.
673a394b 1862 */
e47c68e9 1863 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1864
1865 /* If there is rendering queued on the buffer being evicted, wait for
1866 * it.
1867 */
1868 if (obj_priv->active) {
1869#if WATCH_BUF
1870 DRM_INFO("%s: object %p wait for seqno %08x\n",
1871 __func__, obj, obj_priv->last_rendering_seqno);
1872#endif
1873 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1874 if (ret != 0)
1875 return ret;
1876 }
1877
1878 return 0;
1879}
1880
1881/**
1882 * Unbinds an object from the GTT aperture.
1883 */
0f973f27 1884int
673a394b
EA
1885i915_gem_object_unbind(struct drm_gem_object *obj)
1886{
1887 struct drm_device *dev = obj->dev;
1888 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1889 int ret = 0;
1890
1891#if WATCH_BUF
1892 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1893 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1894#endif
1895 if (obj_priv->gtt_space == NULL)
1896 return 0;
1897
1898 if (obj_priv->pin_count != 0) {
1899 DRM_ERROR("Attempting to unbind pinned buffer\n");
1900 return -EINVAL;
1901 }
1902
673a394b
EA
1903 /* Move the object to the CPU domain to ensure that
1904 * any possible CPU writes while it's not in the GTT
1905 * are flushed when we go to remap it. This will
1906 * also ensure that all pending GPU writes are finished
1907 * before we unbind.
1908 */
e47c68e9 1909 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1910 if (ret) {
e47c68e9
EA
1911 if (ret != -ERESTARTSYS)
1912 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1913 return ret;
1914 }
1915
1916 if (obj_priv->agp_mem != NULL) {
1917 drm_unbind_agp(obj_priv->agp_mem);
1918 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1919 obj_priv->agp_mem = NULL;
1920 }
1921
1922 BUG_ON(obj_priv->active);
1923
de151cf6 1924 /* blow away mappings if mapped through GTT */
901782b2 1925 i915_gem_release_mmap(obj);
de151cf6
JB
1926
1927 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1928 i915_gem_clear_fence_reg(obj);
1929
856fa198 1930 i915_gem_object_put_pages(obj);
673a394b
EA
1931
1932 if (obj_priv->gtt_space) {
1933 atomic_dec(&dev->gtt_count);
1934 atomic_sub(obj->size, &dev->gtt_memory);
1935
1936 drm_mm_put_block(obj_priv->gtt_space);
1937 obj_priv->gtt_space = NULL;
1938 }
1939
1940 /* Remove ourselves from the LRU list if present. */
1941 if (!list_empty(&obj_priv->list))
1942 list_del_init(&obj_priv->list);
1943
1944 return 0;
1945}
1946
1947static int
1948i915_gem_evict_something(struct drm_device *dev)
1949{
1950 drm_i915_private_t *dev_priv = dev->dev_private;
1951 struct drm_gem_object *obj;
1952 struct drm_i915_gem_object *obj_priv;
1953 int ret = 0;
1954
1955 for (;;) {
1956 /* If there's an inactive buffer available now, grab it
1957 * and be done.
1958 */
1959 if (!list_empty(&dev_priv->mm.inactive_list)) {
1960 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1961 struct drm_i915_gem_object,
1962 list);
1963 obj = obj_priv->obj;
1964 BUG_ON(obj_priv->pin_count != 0);
1965#if WATCH_LRU
1966 DRM_INFO("%s: evicting %p\n", __func__, obj);
1967#endif
1968 BUG_ON(obj_priv->active);
1969
1970 /* Wait on the rendering and unbind the buffer. */
1971 ret = i915_gem_object_unbind(obj);
1972 break;
1973 }
1974
1975 /* If we didn't get anything, but the ring is still processing
1976 * things, wait for one of those things to finish and hopefully
1977 * leave us a buffer to evict.
1978 */
1979 if (!list_empty(&dev_priv->mm.request_list)) {
1980 struct drm_i915_gem_request *request;
1981
1982 request = list_first_entry(&dev_priv->mm.request_list,
1983 struct drm_i915_gem_request,
1984 list);
1985
1986 ret = i915_wait_request(dev, request->seqno);
1987 if (ret)
1988 break;
1989
1990 /* if waiting caused an object to become inactive,
1991 * then loop around and wait for it. Otherwise, we
1992 * assume that waiting freed and unbound something,
1993 * so there should now be some space in the GTT
1994 */
1995 if (!list_empty(&dev_priv->mm.inactive_list))
1996 continue;
1997 break;
1998 }
1999
2000 /* If we didn't have anything on the request list but there
2001 * are buffers awaiting a flush, emit one and try again.
2002 * When we wait on it, those buffers waiting for that flush
2003 * will get moved to inactive.
2004 */
2005 if (!list_empty(&dev_priv->mm.flushing_list)) {
2006 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2007 struct drm_i915_gem_object,
2008 list);
2009 obj = obj_priv->obj;
2010
2011 i915_gem_flush(dev,
2012 obj->write_domain,
2013 obj->write_domain);
b962442e 2014 i915_add_request(dev, NULL, obj->write_domain);
673a394b
EA
2015
2016 obj = NULL;
2017 continue;
2018 }
2019
2020 DRM_ERROR("inactive empty %d request empty %d "
2021 "flushing empty %d\n",
2022 list_empty(&dev_priv->mm.inactive_list),
2023 list_empty(&dev_priv->mm.request_list),
2024 list_empty(&dev_priv->mm.flushing_list));
2025 /* If we didn't do any of the above, there's nothing to be done
2026 * and we just can't fit it in.
2027 */
2939e1f5 2028 return -ENOSPC;
673a394b
EA
2029 }
2030 return ret;
2031}
2032
ac94a962
KP
2033static int
2034i915_gem_evict_everything(struct drm_device *dev)
2035{
2036 int ret;
2037
2038 for (;;) {
2039 ret = i915_gem_evict_something(dev);
2040 if (ret != 0)
2041 break;
2042 }
2939e1f5 2043 if (ret == -ENOSPC)
15c35334 2044 return 0;
ac94a962
KP
2045 return ret;
2046}
2047
6911a9b8 2048int
856fa198 2049i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
2050{
2051 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2052 int page_count, i;
2053 struct address_space *mapping;
2054 struct inode *inode;
2055 struct page *page;
2056 int ret;
2057
856fa198 2058 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2059 return 0;
2060
2061 /* Get the list of pages out of our struct file. They'll be pinned
2062 * at this point until we release them.
2063 */
2064 page_count = obj->size / PAGE_SIZE;
856fa198 2065 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2066 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2067 if (obj_priv->pages == NULL) {
673a394b 2068 DRM_ERROR("Faled to allocate page list\n");
856fa198 2069 obj_priv->pages_refcount--;
673a394b
EA
2070 return -ENOMEM;
2071 }
2072
2073 inode = obj->filp->f_path.dentry->d_inode;
2074 mapping = inode->i_mapping;
2075 for (i = 0; i < page_count; i++) {
2076 page = read_mapping_page(mapping, i, NULL);
2077 if (IS_ERR(page)) {
2078 ret = PTR_ERR(page);
2079 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 2080 i915_gem_object_put_pages(obj);
673a394b
EA
2081 return ret;
2082 }
856fa198 2083 obj_priv->pages[i] = page;
673a394b 2084 }
280b713b
EA
2085
2086 if (obj_priv->tiling_mode != I915_TILING_NONE)
2087 i915_gem_object_do_bit_17_swizzle(obj);
2088
673a394b
EA
2089 return 0;
2090}
2091
de151cf6
JB
2092static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2093{
2094 struct drm_gem_object *obj = reg->obj;
2095 struct drm_device *dev = obj->dev;
2096 drm_i915_private_t *dev_priv = dev->dev_private;
2097 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2098 int regnum = obj_priv->fence_reg;
2099 uint64_t val;
2100
2101 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2102 0xfffff000) << 32;
2103 val |= obj_priv->gtt_offset & 0xfffff000;
2104 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2105 if (obj_priv->tiling_mode == I915_TILING_Y)
2106 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2107 val |= I965_FENCE_REG_VALID;
2108
2109 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2110}
2111
2112static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2113{
2114 struct drm_gem_object *obj = reg->obj;
2115 struct drm_device *dev = obj->dev;
2116 drm_i915_private_t *dev_priv = dev->dev_private;
2117 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2118 int regnum = obj_priv->fence_reg;
0f973f27 2119 int tile_width;
dc529a4f 2120 uint32_t fence_reg, val;
de151cf6
JB
2121 uint32_t pitch_val;
2122
2123 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2124 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2125 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2126 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2127 return;
2128 }
2129
0f973f27
JB
2130 if (obj_priv->tiling_mode == I915_TILING_Y &&
2131 HAS_128_BYTE_Y_TILING(dev))
2132 tile_width = 128;
de151cf6 2133 else
0f973f27
JB
2134 tile_width = 512;
2135
2136 /* Note: pitch better be a power of two tile widths */
2137 pitch_val = obj_priv->stride / tile_width;
2138 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2139
2140 val = obj_priv->gtt_offset;
2141 if (obj_priv->tiling_mode == I915_TILING_Y)
2142 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2143 val |= I915_FENCE_SIZE_BITS(obj->size);
2144 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2145 val |= I830_FENCE_REG_VALID;
2146
dc529a4f
EA
2147 if (regnum < 8)
2148 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2149 else
2150 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2151 I915_WRITE(fence_reg, val);
de151cf6
JB
2152}
2153
2154static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2155{
2156 struct drm_gem_object *obj = reg->obj;
2157 struct drm_device *dev = obj->dev;
2158 drm_i915_private_t *dev_priv = dev->dev_private;
2159 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2160 int regnum = obj_priv->fence_reg;
2161 uint32_t val;
2162 uint32_t pitch_val;
8d7773a3 2163 uint32_t fence_size_bits;
de151cf6 2164
8d7773a3 2165 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2166 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2167 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2168 __func__, obj_priv->gtt_offset);
de151cf6
JB
2169 return;
2170 }
2171
e76a16de
EA
2172 pitch_val = obj_priv->stride / 128;
2173 pitch_val = ffs(pitch_val) - 1;
2174 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2175
de151cf6
JB
2176 val = obj_priv->gtt_offset;
2177 if (obj_priv->tiling_mode == I915_TILING_Y)
2178 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2179 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2180 WARN_ON(fence_size_bits & ~0x00000f00);
2181 val |= fence_size_bits;
de151cf6
JB
2182 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2183 val |= I830_FENCE_REG_VALID;
2184
2185 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2186}
2187
2188/**
2189 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2190 * @obj: object to map through a fence reg
2191 *
2192 * When mapping objects through the GTT, userspace wants to be able to write
2193 * to them without having to worry about swizzling if the object is tiled.
2194 *
2195 * This function walks the fence regs looking for a free one for @obj,
2196 * stealing one if it can't find any.
2197 *
2198 * It then sets up the reg based on the object's properties: address, pitch
2199 * and tiling format.
2200 */
8c4b8c3f
CW
2201int
2202i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2203{
2204 struct drm_device *dev = obj->dev;
79e53945 2205 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2206 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2207 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2208 struct drm_i915_gem_object *old_obj_priv = NULL;
2209 int i, ret, avail;
de151cf6
JB
2210
2211 switch (obj_priv->tiling_mode) {
2212 case I915_TILING_NONE:
2213 WARN(1, "allocating a fence for non-tiled object?\n");
2214 break;
2215 case I915_TILING_X:
0f973f27
JB
2216 if (!obj_priv->stride)
2217 return -EINVAL;
2218 WARN((obj_priv->stride & (512 - 1)),
2219 "object 0x%08x is X tiled but has non-512B pitch\n",
2220 obj_priv->gtt_offset);
de151cf6
JB
2221 break;
2222 case I915_TILING_Y:
0f973f27
JB
2223 if (!obj_priv->stride)
2224 return -EINVAL;
2225 WARN((obj_priv->stride & (128 - 1)),
2226 "object 0x%08x is Y tiled but has non-128B pitch\n",
2227 obj_priv->gtt_offset);
de151cf6
JB
2228 break;
2229 }
2230
2231 /* First try to find a free reg */
9b2412f9 2232try_again:
fc7170ba 2233 avail = 0;
de151cf6
JB
2234 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2235 reg = &dev_priv->fence_regs[i];
2236 if (!reg->obj)
2237 break;
fc7170ba
CW
2238
2239 old_obj_priv = reg->obj->driver_private;
2240 if (!old_obj_priv->pin_count)
2241 avail++;
de151cf6
JB
2242 }
2243
2244 /* None available, try to steal one or wait for a user to finish */
2245 if (i == dev_priv->num_fence_regs) {
d7619c4b 2246 uint32_t seqno = dev_priv->mm.next_gem_seqno;
de151cf6 2247
fc7170ba 2248 if (avail == 0)
2939e1f5 2249 return -ENOSPC;
fc7170ba 2250
de151cf6
JB
2251 for (i = dev_priv->fence_reg_start;
2252 i < dev_priv->num_fence_regs; i++) {
d7619c4b
CW
2253 uint32_t this_seqno;
2254
de151cf6
JB
2255 reg = &dev_priv->fence_regs[i];
2256 old_obj_priv = reg->obj->driver_private;
d7619c4b
CW
2257
2258 if (old_obj_priv->pin_count)
2259 continue;
2260
2261 /* i915 uses fences for GPU access to tiled buffers */
2262 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2263 break;
d7619c4b
CW
2264
2265 /* find the seqno of the first available fence */
2266 this_seqno = old_obj_priv->last_rendering_seqno;
2267 if (this_seqno != 0 &&
2268 reg->obj->write_domain == 0 &&
2269 i915_seqno_passed(seqno, this_seqno))
2270 seqno = this_seqno;
de151cf6
JB
2271 }
2272
2273 /*
2274 * Now things get ugly... we have to wait for one of the
2275 * objects to finish before trying again.
2276 */
2277 if (i == dev_priv->num_fence_regs) {
d7619c4b
CW
2278 if (seqno == dev_priv->mm.next_gem_seqno) {
2279 i915_gem_flush(dev,
2280 I915_GEM_GPU_DOMAINS,
2281 I915_GEM_GPU_DOMAINS);
b962442e 2282 seqno = i915_add_request(dev, NULL,
d7619c4b
CW
2283 I915_GEM_GPU_DOMAINS);
2284 if (seqno == 0)
2285 return -ENOMEM;
de151cf6 2286 }
d7619c4b
CW
2287
2288 ret = i915_wait_request(dev, seqno);
2289 if (ret)
2290 return ret;
de151cf6
JB
2291 goto try_again;
2292 }
2293
2294 /*
2295 * Zap this virtual mapping so we can set up a fence again
2296 * for this object next time we need it.
2297 */
901782b2 2298 i915_gem_release_mmap(reg->obj);
de151cf6
JB
2299 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2300 }
2301
2302 obj_priv->fence_reg = i;
2303 reg->obj = obj;
2304
2305 if (IS_I965G(dev))
2306 i965_write_fence_reg(reg);
2307 else if (IS_I9XX(dev))
2308 i915_write_fence_reg(reg);
2309 else
2310 i830_write_fence_reg(reg);
d9ddcb96
EA
2311
2312 return 0;
de151cf6
JB
2313}
2314
2315/**
2316 * i915_gem_clear_fence_reg - clear out fence register info
2317 * @obj: object to clear
2318 *
2319 * Zeroes out the fence register itself and clears out the associated
2320 * data structures in dev_priv and obj_priv.
2321 */
2322static void
2323i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2324{
2325 struct drm_device *dev = obj->dev;
79e53945 2326 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2327 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2328
2329 if (IS_I965G(dev))
2330 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2331 else {
2332 uint32_t fence_reg;
2333
2334 if (obj_priv->fence_reg < 8)
2335 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2336 else
2337 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2338 8) * 4;
2339
2340 I915_WRITE(fence_reg, 0);
2341 }
de151cf6
JB
2342
2343 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2344 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2345}
2346
52dc7d32
CW
2347/**
2348 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2349 * to the buffer to finish, and then resets the fence register.
2350 * @obj: tiled object holding a fence register.
2351 *
2352 * Zeroes out the fence register itself and clears out the associated
2353 * data structures in dev_priv and obj_priv.
2354 */
2355int
2356i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2357{
2358 struct drm_device *dev = obj->dev;
2359 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2360
2361 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2362 return 0;
2363
2364 /* On the i915, GPU access to tiled buffers is via a fence,
2365 * therefore we must wait for any outstanding access to complete
2366 * before clearing the fence.
2367 */
2368 if (!IS_I965G(dev)) {
2369 int ret;
2370
2371 i915_gem_object_flush_gpu_write_domain(obj);
2372 i915_gem_object_flush_gtt_write_domain(obj);
2373 ret = i915_gem_object_wait_rendering(obj);
2374 if (ret != 0)
2375 return ret;
2376 }
2377
2378 i915_gem_clear_fence_reg (obj);
2379
2380 return 0;
2381}
2382
673a394b
EA
2383/**
2384 * Finds free space in the GTT aperture and binds the object there.
2385 */
2386static int
2387i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2388{
2389 struct drm_device *dev = obj->dev;
2390 drm_i915_private_t *dev_priv = dev->dev_private;
2391 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2392 struct drm_mm_node *free_space;
2393 int page_count, ret;
2394
9bb2d6f9
EA
2395 if (dev_priv->mm.suspended)
2396 return -EBUSY;
673a394b 2397 if (alignment == 0)
0f973f27 2398 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2399 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2400 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2401 return -EINVAL;
2402 }
2403
2404 search_free:
2405 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2406 obj->size, alignment, 0);
2407 if (free_space != NULL) {
2408 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2409 alignment);
2410 if (obj_priv->gtt_space != NULL) {
2411 obj_priv->gtt_space->private = obj;
2412 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2413 }
2414 }
2415 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2416 bool lists_empty;
2417
673a394b
EA
2418 /* If the gtt is empty and we're still having trouble
2419 * fitting our object in, we're out of memory.
2420 */
2421#if WATCH_LRU
2422 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2423#endif
5e118f41
CW
2424 spin_lock(&dev_priv->mm.active_list_lock);
2425 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2426 list_empty(&dev_priv->mm.flushing_list) &&
2427 list_empty(&dev_priv->mm.active_list));
2428 spin_unlock(&dev_priv->mm.active_list_lock);
2429 if (lists_empty) {
673a394b 2430 DRM_ERROR("GTT full, but LRU list empty\n");
2939e1f5 2431 return -ENOSPC;
673a394b
EA
2432 }
2433
2434 ret = i915_gem_evict_something(dev);
2435 if (ret != 0) {
ac94a962
KP
2436 if (ret != -ERESTARTSYS)
2437 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2438 return ret;
2439 }
2440 goto search_free;
2441 }
2442
2443#if WATCH_BUF
cfd43c02 2444 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2445 obj->size, obj_priv->gtt_offset);
2446#endif
856fa198 2447 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2448 if (ret) {
2449 drm_mm_put_block(obj_priv->gtt_space);
2450 obj_priv->gtt_space = NULL;
2451 return ret;
2452 }
2453
2454 page_count = obj->size / PAGE_SIZE;
2455 /* Create an AGP memory structure pointing at our pages, and bind it
2456 * into the GTT.
2457 */
2458 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2459 obj_priv->pages,
673a394b 2460 page_count,
ba1eb1d8
KP
2461 obj_priv->gtt_offset,
2462 obj_priv->agp_type);
673a394b 2463 if (obj_priv->agp_mem == NULL) {
856fa198 2464 i915_gem_object_put_pages(obj);
673a394b
EA
2465 drm_mm_put_block(obj_priv->gtt_space);
2466 obj_priv->gtt_space = NULL;
2467 return -ENOMEM;
2468 }
2469 atomic_inc(&dev->gtt_count);
2470 atomic_add(obj->size, &dev->gtt_memory);
2471
2472 /* Assert that the object is not currently in any GPU domain. As it
2473 * wasn't in the GTT, there shouldn't be any way it could have been in
2474 * a GPU cache
2475 */
21d509e3
CW
2476 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2477 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b
EA
2478
2479 return 0;
2480}
2481
2482void
2483i915_gem_clflush_object(struct drm_gem_object *obj)
2484{
2485 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2486
2487 /* If we don't have a page list set up, then we're not pinned
2488 * to GPU, and we can ignore the cache flush because it'll happen
2489 * again at bind time.
2490 */
856fa198 2491 if (obj_priv->pages == NULL)
673a394b
EA
2492 return;
2493
cfa16a0d
EA
2494 /* XXX: The 865 in particular appears to be weird in how it handles
2495 * cache flushing. We haven't figured it out, but the
2496 * clflush+agp_chipset_flush doesn't appear to successfully get the
2497 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2498 */
2499 if (IS_I865G(obj->dev)) {
2500 wbinvd();
2501 return;
2502 }
2503
856fa198 2504 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2505}
2506
e47c68e9
EA
2507/** Flushes any GPU write domain for the object if it's dirty. */
2508static void
2509i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2510{
2511 struct drm_device *dev = obj->dev;
2512 uint32_t seqno;
2513
2514 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2515 return;
2516
2517 /* Queue the GPU write cache flushing we need. */
2518 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2519 seqno = i915_add_request(dev, NULL, obj->write_domain);
e47c68e9
EA
2520 obj->write_domain = 0;
2521 i915_gem_object_move_to_active(obj, seqno);
2522}
2523
2524/** Flushes the GTT write domain for the object if it's dirty. */
2525static void
2526i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2527{
2528 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2529 return;
2530
2531 /* No actual flushing is required for the GTT write domain. Writes
2532 * to it immediately go to main memory as far as we know, so there's
2533 * no chipset flush. It also doesn't land in render cache.
2534 */
2535 obj->write_domain = 0;
2536}
2537
2538/** Flushes the CPU write domain for the object if it's dirty. */
2539static void
2540i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2541{
2542 struct drm_device *dev = obj->dev;
2543
2544 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2545 return;
2546
2547 i915_gem_clflush_object(obj);
2548 drm_agp_chipset_flush(dev);
2549 obj->write_domain = 0;
2550}
2551
2ef7eeaa
EA
2552/**
2553 * Moves a single object to the GTT read, and possibly write domain.
2554 *
2555 * This function returns when the move is complete, including waiting on
2556 * flushes to occur.
2557 */
79e53945 2558int
2ef7eeaa
EA
2559i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2560{
2ef7eeaa 2561 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2562 int ret;
2ef7eeaa 2563
02354392
EA
2564 /* Not valid to be called on unbound objects. */
2565 if (obj_priv->gtt_space == NULL)
2566 return -EINVAL;
2567
e47c68e9
EA
2568 i915_gem_object_flush_gpu_write_domain(obj);
2569 /* Wait on any GPU rendering and flushing to occur. */
2570 ret = i915_gem_object_wait_rendering(obj);
2571 if (ret != 0)
2572 return ret;
2573
2574 /* If we're writing through the GTT domain, then CPU and GPU caches
2575 * will need to be invalidated at next use.
2ef7eeaa 2576 */
e47c68e9
EA
2577 if (write)
2578 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2579
e47c68e9 2580 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2581
e47c68e9
EA
2582 /* It should now be out of any other write domains, and we can update
2583 * the domain values for our changes.
2584 */
2585 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2586 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2587 if (write) {
2588 obj->write_domain = I915_GEM_DOMAIN_GTT;
2589 obj_priv->dirty = 1;
2ef7eeaa
EA
2590 }
2591
e47c68e9
EA
2592 return 0;
2593}
2594
2595/**
2596 * Moves a single object to the CPU read, and possibly write domain.
2597 *
2598 * This function returns when the move is complete, including waiting on
2599 * flushes to occur.
2600 */
2601static int
2602i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2603{
e47c68e9
EA
2604 int ret;
2605
2606 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2607 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2608 ret = i915_gem_object_wait_rendering(obj);
2609 if (ret != 0)
2610 return ret;
2ef7eeaa 2611
e47c68e9 2612 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2613
e47c68e9
EA
2614 /* If we have a partially-valid cache of the object in the CPU,
2615 * finish invalidating it and free the per-page flags.
2ef7eeaa 2616 */
e47c68e9 2617 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2618
e47c68e9
EA
2619 /* Flush the CPU cache if it's still invalid. */
2620 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2621 i915_gem_clflush_object(obj);
2ef7eeaa 2622
e47c68e9 2623 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2624 }
2625
2626 /* It should now be out of any other write domains, and we can update
2627 * the domain values for our changes.
2628 */
e47c68e9
EA
2629 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2630
2631 /* If we're writing through the CPU, then the GPU read domains will
2632 * need to be invalidated at next use.
2633 */
2634 if (write) {
2635 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2636 obj->write_domain = I915_GEM_DOMAIN_CPU;
2637 }
2ef7eeaa
EA
2638
2639 return 0;
2640}
2641
673a394b
EA
2642/*
2643 * Set the next domain for the specified object. This
2644 * may not actually perform the necessary flushing/invaliding though,
2645 * as that may want to be batched with other set_domain operations
2646 *
2647 * This is (we hope) the only really tricky part of gem. The goal
2648 * is fairly simple -- track which caches hold bits of the object
2649 * and make sure they remain coherent. A few concrete examples may
2650 * help to explain how it works. For shorthand, we use the notation
2651 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2652 * a pair of read and write domain masks.
2653 *
2654 * Case 1: the batch buffer
2655 *
2656 * 1. Allocated
2657 * 2. Written by CPU
2658 * 3. Mapped to GTT
2659 * 4. Read by GPU
2660 * 5. Unmapped from GTT
2661 * 6. Freed
2662 *
2663 * Let's take these a step at a time
2664 *
2665 * 1. Allocated
2666 * Pages allocated from the kernel may still have
2667 * cache contents, so we set them to (CPU, CPU) always.
2668 * 2. Written by CPU (using pwrite)
2669 * The pwrite function calls set_domain (CPU, CPU) and
2670 * this function does nothing (as nothing changes)
2671 * 3. Mapped by GTT
2672 * This function asserts that the object is not
2673 * currently in any GPU-based read or write domains
2674 * 4. Read by GPU
2675 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2676 * As write_domain is zero, this function adds in the
2677 * current read domains (CPU+COMMAND, 0).
2678 * flush_domains is set to CPU.
2679 * invalidate_domains is set to COMMAND
2680 * clflush is run to get data out of the CPU caches
2681 * then i915_dev_set_domain calls i915_gem_flush to
2682 * emit an MI_FLUSH and drm_agp_chipset_flush
2683 * 5. Unmapped from GTT
2684 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2685 * flush_domains and invalidate_domains end up both zero
2686 * so no flushing/invalidating happens
2687 * 6. Freed
2688 * yay, done
2689 *
2690 * Case 2: The shared render buffer
2691 *
2692 * 1. Allocated
2693 * 2. Mapped to GTT
2694 * 3. Read/written by GPU
2695 * 4. set_domain to (CPU,CPU)
2696 * 5. Read/written by CPU
2697 * 6. Read/written by GPU
2698 *
2699 * 1. Allocated
2700 * Same as last example, (CPU, CPU)
2701 * 2. Mapped to GTT
2702 * Nothing changes (assertions find that it is not in the GPU)
2703 * 3. Read/written by GPU
2704 * execbuffer calls set_domain (RENDER, RENDER)
2705 * flush_domains gets CPU
2706 * invalidate_domains gets GPU
2707 * clflush (obj)
2708 * MI_FLUSH and drm_agp_chipset_flush
2709 * 4. set_domain (CPU, CPU)
2710 * flush_domains gets GPU
2711 * invalidate_domains gets CPU
2712 * wait_rendering (obj) to make sure all drawing is complete.
2713 * This will include an MI_FLUSH to get the data from GPU
2714 * to memory
2715 * clflush (obj) to invalidate the CPU cache
2716 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2717 * 5. Read/written by CPU
2718 * cache lines are loaded and dirtied
2719 * 6. Read written by GPU
2720 * Same as last GPU access
2721 *
2722 * Case 3: The constant buffer
2723 *
2724 * 1. Allocated
2725 * 2. Written by CPU
2726 * 3. Read by GPU
2727 * 4. Updated (written) by CPU again
2728 * 5. Read by GPU
2729 *
2730 * 1. Allocated
2731 * (CPU, CPU)
2732 * 2. Written by CPU
2733 * (CPU, CPU)
2734 * 3. Read by GPU
2735 * (CPU+RENDER, 0)
2736 * flush_domains = CPU
2737 * invalidate_domains = RENDER
2738 * clflush (obj)
2739 * MI_FLUSH
2740 * drm_agp_chipset_flush
2741 * 4. Updated (written) by CPU again
2742 * (CPU, CPU)
2743 * flush_domains = 0 (no previous write domain)
2744 * invalidate_domains = 0 (no new read domains)
2745 * 5. Read by GPU
2746 * (CPU+RENDER, 0)
2747 * flush_domains = CPU
2748 * invalidate_domains = RENDER
2749 * clflush (obj)
2750 * MI_FLUSH
2751 * drm_agp_chipset_flush
2752 */
c0d90829 2753static void
8b0e378a 2754i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2755{
2756 struct drm_device *dev = obj->dev;
2757 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2758 uint32_t invalidate_domains = 0;
2759 uint32_t flush_domains = 0;
e47c68e9 2760
8b0e378a
EA
2761 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2762 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2763
2764#if WATCH_BUF
2765 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2766 __func__, obj,
8b0e378a
EA
2767 obj->read_domains, obj->pending_read_domains,
2768 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2769#endif
2770 /*
2771 * If the object isn't moving to a new write domain,
2772 * let the object stay in multiple read domains
2773 */
8b0e378a
EA
2774 if (obj->pending_write_domain == 0)
2775 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2776 else
2777 obj_priv->dirty = 1;
2778
2779 /*
2780 * Flush the current write domain if
2781 * the new read domains don't match. Invalidate
2782 * any read domains which differ from the old
2783 * write domain
2784 */
8b0e378a
EA
2785 if (obj->write_domain &&
2786 obj->write_domain != obj->pending_read_domains) {
673a394b 2787 flush_domains |= obj->write_domain;
8b0e378a
EA
2788 invalidate_domains |=
2789 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2790 }
2791 /*
2792 * Invalidate any read caches which may have
2793 * stale data. That is, any new read domains.
2794 */
8b0e378a 2795 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2796 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2797#if WATCH_BUF
2798 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2799 __func__, flush_domains, invalidate_domains);
2800#endif
673a394b
EA
2801 i915_gem_clflush_object(obj);
2802 }
2803
efbeed96
EA
2804 /* The actual obj->write_domain will be updated with
2805 * pending_write_domain after we emit the accumulated flush for all
2806 * of our domain changes in execbuffers (which clears objects'
2807 * write_domains). So if we have a current write domain that we
2808 * aren't changing, set pending_write_domain to that.
2809 */
2810 if (flush_domains == 0 && obj->pending_write_domain == 0)
2811 obj->pending_write_domain = obj->write_domain;
8b0e378a 2812 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2813
2814 dev->invalidate_domains |= invalidate_domains;
2815 dev->flush_domains |= flush_domains;
2816#if WATCH_BUF
2817 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2818 __func__,
2819 obj->read_domains, obj->write_domain,
2820 dev->invalidate_domains, dev->flush_domains);
2821#endif
673a394b
EA
2822}
2823
2824/**
e47c68e9 2825 * Moves the object from a partially CPU read to a full one.
673a394b 2826 *
e47c68e9
EA
2827 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2828 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2829 */
e47c68e9
EA
2830static void
2831i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2832{
2833 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2834
e47c68e9
EA
2835 if (!obj_priv->page_cpu_valid)
2836 return;
2837
2838 /* If we're partially in the CPU read domain, finish moving it in.
2839 */
2840 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2841 int i;
2842
2843 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2844 if (obj_priv->page_cpu_valid[i])
2845 continue;
856fa198 2846 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2847 }
e47c68e9
EA
2848 }
2849
2850 /* Free the page_cpu_valid mappings which are now stale, whether
2851 * or not we've got I915_GEM_DOMAIN_CPU.
2852 */
9a298b2a 2853 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
2854 obj_priv->page_cpu_valid = NULL;
2855}
2856
2857/**
2858 * Set the CPU read domain on a range of the object.
2859 *
2860 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2861 * not entirely valid. The page_cpu_valid member of the object flags which
2862 * pages have been flushed, and will be respected by
2863 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2864 * of the whole object.
2865 *
2866 * This function returns when the move is complete, including waiting on
2867 * flushes to occur.
2868 */
2869static int
2870i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2871 uint64_t offset, uint64_t size)
2872{
2873 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2874 int i, ret;
673a394b 2875
e47c68e9
EA
2876 if (offset == 0 && size == obj->size)
2877 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2878
e47c68e9
EA
2879 i915_gem_object_flush_gpu_write_domain(obj);
2880 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2881 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2882 if (ret != 0)
6a47baa6 2883 return ret;
e47c68e9
EA
2884 i915_gem_object_flush_gtt_write_domain(obj);
2885
2886 /* If we're already fully in the CPU read domain, we're done. */
2887 if (obj_priv->page_cpu_valid == NULL &&
2888 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2889 return 0;
673a394b 2890
e47c68e9
EA
2891 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2892 * newly adding I915_GEM_DOMAIN_CPU
2893 */
673a394b 2894 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
2895 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2896 GFP_KERNEL);
e47c68e9
EA
2897 if (obj_priv->page_cpu_valid == NULL)
2898 return -ENOMEM;
2899 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2900 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2901
2902 /* Flush the cache on any pages that are still invalid from the CPU's
2903 * perspective.
2904 */
e47c68e9
EA
2905 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2906 i++) {
673a394b
EA
2907 if (obj_priv->page_cpu_valid[i])
2908 continue;
2909
856fa198 2910 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2911
2912 obj_priv->page_cpu_valid[i] = 1;
2913 }
2914
e47c68e9
EA
2915 /* It should now be out of any other write domains, and we can update
2916 * the domain values for our changes.
2917 */
2918 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2919
2920 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2921
673a394b
EA
2922 return 0;
2923}
2924
673a394b
EA
2925/**
2926 * Pin an object to the GTT and evaluate the relocations landing in it.
2927 */
2928static int
2929i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2930 struct drm_file *file_priv,
40a5f0de
EA
2931 struct drm_i915_gem_exec_object *entry,
2932 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2933{
2934 struct drm_device *dev = obj->dev;
0839ccb8 2935 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2936 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2937 int i, ret;
0839ccb8 2938 void __iomem *reloc_page;
673a394b
EA
2939
2940 /* Choose the GTT offset for our buffer and put it there. */
2941 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2942 if (ret)
2943 return ret;
2944
2945 entry->offset = obj_priv->gtt_offset;
2946
673a394b
EA
2947 /* Apply the relocations, using the GTT aperture to avoid cache
2948 * flushing requirements.
2949 */
2950 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2951 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2952 struct drm_gem_object *target_obj;
2953 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2954 uint32_t reloc_val, reloc_offset;
2955 uint32_t __iomem *reloc_entry;
673a394b 2956
673a394b 2957 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2958 reloc->target_handle);
673a394b
EA
2959 if (target_obj == NULL) {
2960 i915_gem_object_unpin(obj);
2961 return -EBADF;
2962 }
2963 target_obj_priv = target_obj->driver_private;
2964
2965 /* The target buffer should have appeared before us in the
2966 * exec_object list, so it should have a GTT space bound by now.
2967 */
2968 if (target_obj_priv->gtt_space == NULL) {
2969 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2970 reloc->target_handle);
673a394b
EA
2971 drm_gem_object_unreference(target_obj);
2972 i915_gem_object_unpin(obj);
2973 return -EINVAL;
2974 }
2975
40a5f0de 2976 if (reloc->offset > obj->size - 4) {
673a394b
EA
2977 DRM_ERROR("Relocation beyond object bounds: "
2978 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2979 obj, reloc->target_handle,
2980 (int) reloc->offset, (int) obj->size);
673a394b
EA
2981 drm_gem_object_unreference(target_obj);
2982 i915_gem_object_unpin(obj);
2983 return -EINVAL;
2984 }
40a5f0de 2985 if (reloc->offset & 3) {
673a394b
EA
2986 DRM_ERROR("Relocation not 4-byte aligned: "
2987 "obj %p target %d offset %d.\n",
40a5f0de
EA
2988 obj, reloc->target_handle,
2989 (int) reloc->offset);
673a394b
EA
2990 drm_gem_object_unreference(target_obj);
2991 i915_gem_object_unpin(obj);
2992 return -EINVAL;
2993 }
2994
40a5f0de
EA
2995 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2996 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
2997 DRM_ERROR("reloc with read/write CPU domains: "
2998 "obj %p target %d offset %d "
2999 "read %08x write %08x",
40a5f0de
EA
3000 obj, reloc->target_handle,
3001 (int) reloc->offset,
3002 reloc->read_domains,
3003 reloc->write_domain);
491152b8
CW
3004 drm_gem_object_unreference(target_obj);
3005 i915_gem_object_unpin(obj);
e47c68e9
EA
3006 return -EINVAL;
3007 }
3008
40a5f0de
EA
3009 if (reloc->write_domain && target_obj->pending_write_domain &&
3010 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3011 DRM_ERROR("Write domain conflict: "
3012 "obj %p target %d offset %d "
3013 "new %08x old %08x\n",
40a5f0de
EA
3014 obj, reloc->target_handle,
3015 (int) reloc->offset,
3016 reloc->write_domain,
673a394b
EA
3017 target_obj->pending_write_domain);
3018 drm_gem_object_unreference(target_obj);
3019 i915_gem_object_unpin(obj);
3020 return -EINVAL;
3021 }
3022
3023#if WATCH_RELOC
3024 DRM_INFO("%s: obj %p offset %08x target %d "
3025 "read %08x write %08x gtt %08x "
3026 "presumed %08x delta %08x\n",
3027 __func__,
3028 obj,
40a5f0de
EA
3029 (int) reloc->offset,
3030 (int) reloc->target_handle,
3031 (int) reloc->read_domains,
3032 (int) reloc->write_domain,
673a394b 3033 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
3034 (int) reloc->presumed_offset,
3035 reloc->delta);
673a394b
EA
3036#endif
3037
40a5f0de
EA
3038 target_obj->pending_read_domains |= reloc->read_domains;
3039 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3040
3041 /* If the relocation already has the right value in it, no
3042 * more work needs to be done.
3043 */
40a5f0de 3044 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3045 drm_gem_object_unreference(target_obj);
3046 continue;
3047 }
3048
2ef7eeaa
EA
3049 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3050 if (ret != 0) {
3051 drm_gem_object_unreference(target_obj);
3052 i915_gem_object_unpin(obj);
3053 return -EINVAL;
673a394b
EA
3054 }
3055
3056 /* Map the page containing the relocation we're going to
3057 * perform.
3058 */
40a5f0de 3059 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3060 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3061 (reloc_offset &
3062 ~(PAGE_SIZE - 1)));
3043c60c 3063 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3064 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3065 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3066
3067#if WATCH_BUF
3068 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3069 obj, (unsigned int) reloc->offset,
673a394b
EA
3070 readl(reloc_entry), reloc_val);
3071#endif
3072 writel(reloc_val, reloc_entry);
0839ccb8 3073 io_mapping_unmap_atomic(reloc_page);
673a394b 3074
40a5f0de
EA
3075 /* The updated presumed offset for this entry will be
3076 * copied back out to the user.
673a394b 3077 */
40a5f0de 3078 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3079
3080 drm_gem_object_unreference(target_obj);
3081 }
3082
673a394b
EA
3083#if WATCH_BUF
3084 if (0)
3085 i915_gem_dump_object(obj, 128, __func__, ~0);
3086#endif
3087 return 0;
3088}
3089
3090/** Dispatch a batchbuffer to the ring
3091 */
3092static int
3093i915_dispatch_gem_execbuffer(struct drm_device *dev,
3094 struct drm_i915_gem_execbuffer *exec,
201361a5 3095 struct drm_clip_rect *cliprects,
673a394b
EA
3096 uint64_t exec_offset)
3097{
3098 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3099 int nbox = exec->num_cliprects;
3100 int i = 0, count;
83d60795 3101 uint32_t exec_start, exec_len;
673a394b
EA
3102 RING_LOCALS;
3103
3104 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3105 exec_len = (uint32_t) exec->batch_len;
3106
673a394b
EA
3107 count = nbox ? nbox : 1;
3108
3109 for (i = 0; i < count; i++) {
3110 if (i < nbox) {
201361a5 3111 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3112 exec->DR1, exec->DR4);
3113 if (ret)
3114 return ret;
3115 }
3116
3117 if (IS_I830(dev) || IS_845G(dev)) {
3118 BEGIN_LP_RING(4);
3119 OUT_RING(MI_BATCH_BUFFER);
3120 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3121 OUT_RING(exec_start + exec_len - 4);
3122 OUT_RING(0);
3123 ADVANCE_LP_RING();
3124 } else {
3125 BEGIN_LP_RING(2);
3126 if (IS_I965G(dev)) {
3127 OUT_RING(MI_BATCH_BUFFER_START |
3128 (2 << 6) |
3129 MI_BATCH_NON_SECURE_I965);
3130 OUT_RING(exec_start);
3131 } else {
3132 OUT_RING(MI_BATCH_BUFFER_START |
3133 (2 << 6));
3134 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3135 }
3136 ADVANCE_LP_RING();
3137 }
3138 }
3139
3140 /* XXX breadcrumb */
3141 return 0;
3142}
3143
3144/* Throttle our rendering by waiting until the ring has completed our requests
3145 * emitted over 20 msec ago.
3146 *
b962442e
EA
3147 * Note that if we were to use the current jiffies each time around the loop,
3148 * we wouldn't escape the function with any frames outstanding if the time to
3149 * render a frame was over 20ms.
3150 *
673a394b
EA
3151 * This should get us reasonable parallelism between CPU and GPU but also
3152 * relatively low latency when blocking on a particular request to finish.
3153 */
3154static int
3155i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3156{
3157 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3158 int ret = 0;
b962442e 3159 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3160
3161 mutex_lock(&dev->struct_mutex);
b962442e
EA
3162 while (!list_empty(&i915_file_priv->mm.request_list)) {
3163 struct drm_i915_gem_request *request;
3164
3165 request = list_first_entry(&i915_file_priv->mm.request_list,
3166 struct drm_i915_gem_request,
3167 client_list);
3168
3169 if (time_after_eq(request->emitted_jiffies, recent_enough))
3170 break;
3171
3172 ret = i915_wait_request(dev, request->seqno);
3173 if (ret != 0)
3174 break;
3175 }
673a394b 3176 mutex_unlock(&dev->struct_mutex);
b962442e 3177
673a394b
EA
3178 return ret;
3179}
3180
40a5f0de
EA
3181static int
3182i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3183 uint32_t buffer_count,
3184 struct drm_i915_gem_relocation_entry **relocs)
3185{
3186 uint32_t reloc_count = 0, reloc_index = 0, i;
3187 int ret;
3188
3189 *relocs = NULL;
3190 for (i = 0; i < buffer_count; i++) {
3191 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3192 return -EINVAL;
3193 reloc_count += exec_list[i].relocation_count;
3194 }
3195
8e7d2b2c 3196 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
40a5f0de
EA
3197 if (*relocs == NULL)
3198 return -ENOMEM;
3199
3200 for (i = 0; i < buffer_count; i++) {
3201 struct drm_i915_gem_relocation_entry __user *user_relocs;
3202
3203 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3204
3205 ret = copy_from_user(&(*relocs)[reloc_index],
3206 user_relocs,
3207 exec_list[i].relocation_count *
3208 sizeof(**relocs));
3209 if (ret != 0) {
8e7d2b2c 3210 drm_free_large(*relocs);
40a5f0de 3211 *relocs = NULL;
2bc43b5c 3212 return -EFAULT;
40a5f0de
EA
3213 }
3214
3215 reloc_index += exec_list[i].relocation_count;
3216 }
3217
2bc43b5c 3218 return 0;
40a5f0de
EA
3219}
3220
3221static int
3222i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3223 uint32_t buffer_count,
3224 struct drm_i915_gem_relocation_entry *relocs)
3225{
3226 uint32_t reloc_count = 0, i;
2bc43b5c 3227 int ret = 0;
40a5f0de
EA
3228
3229 for (i = 0; i < buffer_count; i++) {
3230 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3231 int unwritten;
40a5f0de
EA
3232
3233 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3234
2bc43b5c
FM
3235 unwritten = copy_to_user(user_relocs,
3236 &relocs[reloc_count],
3237 exec_list[i].relocation_count *
3238 sizeof(*relocs));
3239
3240 if (unwritten) {
3241 ret = -EFAULT;
3242 goto err;
40a5f0de
EA
3243 }
3244
3245 reloc_count += exec_list[i].relocation_count;
3246 }
3247
2bc43b5c 3248err:
8e7d2b2c 3249 drm_free_large(relocs);
40a5f0de
EA
3250
3251 return ret;
3252}
3253
83d60795
CW
3254static int
3255i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3256 uint64_t exec_offset)
3257{
3258 uint32_t exec_start, exec_len;
3259
3260 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3261 exec_len = (uint32_t) exec->batch_len;
3262
3263 if ((exec_start | exec_len) & 0x7)
3264 return -EINVAL;
3265
3266 if (!exec_start)
3267 return -EINVAL;
3268
3269 return 0;
3270}
3271
673a394b
EA
3272int
3273i915_gem_execbuffer(struct drm_device *dev, void *data,
3274 struct drm_file *file_priv)
3275{
3276 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3277 struct drm_i915_gem_execbuffer *args = data;
3278 struct drm_i915_gem_exec_object *exec_list = NULL;
3279 struct drm_gem_object **object_list = NULL;
3280 struct drm_gem_object *batch_obj;
b70d11da 3281 struct drm_i915_gem_object *obj_priv;
201361a5 3282 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3283 struct drm_i915_gem_relocation_entry *relocs;
3284 int ret, ret2, i, pinned = 0;
673a394b 3285 uint64_t exec_offset;
40a5f0de 3286 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3287 int pin_tries;
673a394b
EA
3288
3289#if WATCH_EXEC
3290 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3291 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3292#endif
3293
4f481ed2
EA
3294 if (args->buffer_count < 1) {
3295 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3296 return -EINVAL;
3297 }
673a394b 3298 /* Copy in the exec list from userland */
8e7d2b2c
JB
3299 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3300 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
673a394b
EA
3301 if (exec_list == NULL || object_list == NULL) {
3302 DRM_ERROR("Failed to allocate exec or object list "
3303 "for %d buffers\n",
3304 args->buffer_count);
3305 ret = -ENOMEM;
3306 goto pre_mutex_err;
3307 }
3308 ret = copy_from_user(exec_list,
3309 (struct drm_i915_relocation_entry __user *)
3310 (uintptr_t) args->buffers_ptr,
3311 sizeof(*exec_list) * args->buffer_count);
3312 if (ret != 0) {
3313 DRM_ERROR("copy %d exec entries failed %d\n",
3314 args->buffer_count, ret);
3315 goto pre_mutex_err;
3316 }
3317
201361a5 3318 if (args->num_cliprects != 0) {
9a298b2a
EA
3319 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3320 GFP_KERNEL);
201361a5
EA
3321 if (cliprects == NULL)
3322 goto pre_mutex_err;
3323
3324 ret = copy_from_user(cliprects,
3325 (struct drm_clip_rect __user *)
3326 (uintptr_t) args->cliprects_ptr,
3327 sizeof(*cliprects) * args->num_cliprects);
3328 if (ret != 0) {
3329 DRM_ERROR("copy %d cliprects failed: %d\n",
3330 args->num_cliprects, ret);
3331 goto pre_mutex_err;
3332 }
3333 }
3334
40a5f0de
EA
3335 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3336 &relocs);
3337 if (ret != 0)
3338 goto pre_mutex_err;
3339
673a394b
EA
3340 mutex_lock(&dev->struct_mutex);
3341
3342 i915_verify_inactive(dev, __FILE__, __LINE__);
3343
3344 if (dev_priv->mm.wedged) {
3345 DRM_ERROR("Execbuf while wedged\n");
3346 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3347 ret = -EIO;
3348 goto pre_mutex_err;
673a394b
EA
3349 }
3350
3351 if (dev_priv->mm.suspended) {
3352 DRM_ERROR("Execbuf while VT-switched.\n");
3353 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3354 ret = -EBUSY;
3355 goto pre_mutex_err;
673a394b
EA
3356 }
3357
ac94a962 3358 /* Look up object handles */
673a394b
EA
3359 for (i = 0; i < args->buffer_count; i++) {
3360 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3361 exec_list[i].handle);
3362 if (object_list[i] == NULL) {
3363 DRM_ERROR("Invalid object handle %d at index %d\n",
3364 exec_list[i].handle, i);
3365 ret = -EBADF;
3366 goto err;
3367 }
b70d11da
KH
3368
3369 obj_priv = object_list[i]->driver_private;
3370 if (obj_priv->in_execbuffer) {
3371 DRM_ERROR("Object %p appears more than once in object list\n",
3372 object_list[i]);
3373 ret = -EBADF;
3374 goto err;
3375 }
3376 obj_priv->in_execbuffer = true;
ac94a962 3377 }
673a394b 3378
ac94a962
KP
3379 /* Pin and relocate */
3380 for (pin_tries = 0; ; pin_tries++) {
3381 ret = 0;
40a5f0de
EA
3382 reloc_index = 0;
3383
ac94a962
KP
3384 for (i = 0; i < args->buffer_count; i++) {
3385 object_list[i]->pending_read_domains = 0;
3386 object_list[i]->pending_write_domain = 0;
3387 ret = i915_gem_object_pin_and_relocate(object_list[i],
3388 file_priv,
40a5f0de
EA
3389 &exec_list[i],
3390 &relocs[reloc_index]);
ac94a962
KP
3391 if (ret)
3392 break;
3393 pinned = i + 1;
40a5f0de 3394 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3395 }
3396 /* success */
3397 if (ret == 0)
3398 break;
3399
3400 /* error other than GTT full, or we've already tried again */
2939e1f5 3401 if (ret != -ENOSPC || pin_tries >= 1) {
f1acec93
EA
3402 if (ret != -ERESTARTSYS)
3403 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3404 goto err;
3405 }
ac94a962
KP
3406
3407 /* unpin all of our buffers */
3408 for (i = 0; i < pinned; i++)
3409 i915_gem_object_unpin(object_list[i]);
b1177636 3410 pinned = 0;
ac94a962
KP
3411
3412 /* evict everyone we can from the aperture */
3413 ret = i915_gem_evict_everything(dev);
3414 if (ret)
3415 goto err;
673a394b
EA
3416 }
3417
3418 /* Set the pending read domains for the batch buffer to COMMAND */
3419 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3420 if (batch_obj->pending_write_domain) {
3421 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3422 ret = -EINVAL;
3423 goto err;
3424 }
3425 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3426
83d60795
CW
3427 /* Sanity check the batch buffer, prior to moving objects */
3428 exec_offset = exec_list[args->buffer_count - 1].offset;
3429 ret = i915_gem_check_execbuffer (args, exec_offset);
3430 if (ret != 0) {
3431 DRM_ERROR("execbuf with invalid offset/length\n");
3432 goto err;
3433 }
3434
673a394b
EA
3435 i915_verify_inactive(dev, __FILE__, __LINE__);
3436
646f0f6e
KP
3437 /* Zero the global flush/invalidate flags. These
3438 * will be modified as new domains are computed
3439 * for each object
3440 */
3441 dev->invalidate_domains = 0;
3442 dev->flush_domains = 0;
3443
673a394b
EA
3444 for (i = 0; i < args->buffer_count; i++) {
3445 struct drm_gem_object *obj = object_list[i];
673a394b 3446
646f0f6e 3447 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3448 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3449 }
3450
3451 i915_verify_inactive(dev, __FILE__, __LINE__);
3452
646f0f6e
KP
3453 if (dev->invalidate_domains | dev->flush_domains) {
3454#if WATCH_EXEC
3455 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3456 __func__,
3457 dev->invalidate_domains,
3458 dev->flush_domains);
3459#endif
3460 i915_gem_flush(dev,
3461 dev->invalidate_domains,
3462 dev->flush_domains);
3463 if (dev->flush_domains)
b962442e
EA
3464 (void)i915_add_request(dev, file_priv,
3465 dev->flush_domains);
646f0f6e 3466 }
673a394b 3467
efbeed96
EA
3468 for (i = 0; i < args->buffer_count; i++) {
3469 struct drm_gem_object *obj = object_list[i];
3470
3471 obj->write_domain = obj->pending_write_domain;
3472 }
3473
673a394b
EA
3474 i915_verify_inactive(dev, __FILE__, __LINE__);
3475
3476#if WATCH_COHERENCY
3477 for (i = 0; i < args->buffer_count; i++) {
3478 i915_gem_object_check_coherency(object_list[i],
3479 exec_list[i].handle);
3480 }
3481#endif
3482
673a394b 3483#if WATCH_EXEC
6911a9b8 3484 i915_gem_dump_object(batch_obj,
673a394b
EA
3485 args->batch_len,
3486 __func__,
3487 ~0);
3488#endif
3489
673a394b 3490 /* Exec the batchbuffer */
201361a5 3491 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3492 if (ret) {
3493 DRM_ERROR("dispatch failed %d\n", ret);
3494 goto err;
3495 }
3496
3497 /*
3498 * Ensure that the commands in the batch buffer are
3499 * finished before the interrupt fires
3500 */
3501 flush_domains = i915_retire_commands(dev);
3502
3503 i915_verify_inactive(dev, __FILE__, __LINE__);
3504
3505 /*
3506 * Get a seqno representing the execution of the current buffer,
3507 * which we can wait on. We would like to mitigate these interrupts,
3508 * likely by only creating seqnos occasionally (so that we have
3509 * *some* interrupts representing completion of buffers that we can
3510 * wait on when trying to clear up gtt space).
3511 */
b962442e 3512 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3513 BUG_ON(seqno == 0);
673a394b
EA
3514 for (i = 0; i < args->buffer_count; i++) {
3515 struct drm_gem_object *obj = object_list[i];
673a394b 3516
ce44b0ea 3517 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3518#if WATCH_LRU
3519 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3520#endif
3521 }
3522#if WATCH_LRU
3523 i915_dump_lru(dev, __func__);
3524#endif
3525
3526 i915_verify_inactive(dev, __FILE__, __LINE__);
3527
673a394b 3528err:
aad87dff
JL
3529 for (i = 0; i < pinned; i++)
3530 i915_gem_object_unpin(object_list[i]);
3531
b70d11da
KH
3532 for (i = 0; i < args->buffer_count; i++) {
3533 if (object_list[i]) {
3534 obj_priv = object_list[i]->driver_private;
3535 obj_priv->in_execbuffer = false;
3536 }
aad87dff 3537 drm_gem_object_unreference(object_list[i]);
b70d11da 3538 }
673a394b 3539
673a394b
EA
3540 mutex_unlock(&dev->struct_mutex);
3541
a35f2e2b
RD
3542 if (!ret) {
3543 /* Copy the new buffer offsets back to the user's exec list. */
3544 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3545 (uintptr_t) args->buffers_ptr,
3546 exec_list,
3547 sizeof(*exec_list) * args->buffer_count);
2bc43b5c
FM
3548 if (ret) {
3549 ret = -EFAULT;
a35f2e2b
RD
3550 DRM_ERROR("failed to copy %d exec entries "
3551 "back to user (%d)\n",
3552 args->buffer_count, ret);
2bc43b5c 3553 }
a35f2e2b
RD
3554 }
3555
40a5f0de
EA
3556 /* Copy the updated relocations out regardless of current error
3557 * state. Failure to update the relocs would mean that the next
3558 * time userland calls execbuf, it would do so with presumed offset
3559 * state that didn't match the actual object state.
3560 */
3561 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3562 relocs);
3563 if (ret2 != 0) {
3564 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3565
3566 if (ret == 0)
3567 ret = ret2;
3568 }
3569
673a394b 3570pre_mutex_err:
8e7d2b2c
JB
3571 drm_free_large(object_list);
3572 drm_free_large(exec_list);
9a298b2a 3573 kfree(cliprects);
673a394b
EA
3574
3575 return ret;
3576}
3577
3578int
3579i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3580{
3581 struct drm_device *dev = obj->dev;
3582 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3583 int ret;
3584
3585 i915_verify_inactive(dev, __FILE__, __LINE__);
3586 if (obj_priv->gtt_space == NULL) {
3587 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3588 if (ret != 0) {
9bb2d6f9 3589 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3590 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3591 return ret;
3592 }
22c344e9
CW
3593 }
3594 /*
3595 * Pre-965 chips need a fence register set up in order to
3596 * properly handle tiled surfaces.
3597 */
3598 if (!IS_I965G(dev) &&
3599 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3600 obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 3601 ret = i915_gem_object_get_fence_reg(obj);
22c344e9
CW
3602 if (ret != 0) {
3603 if (ret != -EBUSY && ret != -ERESTARTSYS)
3604 DRM_ERROR("Failure to install fence: %d\n",
3605 ret);
3606 return ret;
3607 }
673a394b
EA
3608 }
3609 obj_priv->pin_count++;
3610
3611 /* If the object is not active and not pending a flush,
3612 * remove it from the inactive list
3613 */
3614 if (obj_priv->pin_count == 1) {
3615 atomic_inc(&dev->pin_count);
3616 atomic_add(obj->size, &dev->pin_memory);
3617 if (!obj_priv->active &&
21d509e3 3618 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
3619 !list_empty(&obj_priv->list))
3620 list_del_init(&obj_priv->list);
3621 }
3622 i915_verify_inactive(dev, __FILE__, __LINE__);
3623
3624 return 0;
3625}
3626
3627void
3628i915_gem_object_unpin(struct drm_gem_object *obj)
3629{
3630 struct drm_device *dev = obj->dev;
3631 drm_i915_private_t *dev_priv = dev->dev_private;
3632 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3633
3634 i915_verify_inactive(dev, __FILE__, __LINE__);
3635 obj_priv->pin_count--;
3636 BUG_ON(obj_priv->pin_count < 0);
3637 BUG_ON(obj_priv->gtt_space == NULL);
3638
3639 /* If the object is no longer pinned, and is
3640 * neither active nor being flushed, then stick it on
3641 * the inactive list
3642 */
3643 if (obj_priv->pin_count == 0) {
3644 if (!obj_priv->active &&
21d509e3 3645 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
3646 list_move_tail(&obj_priv->list,
3647 &dev_priv->mm.inactive_list);
3648 atomic_dec(&dev->pin_count);
3649 atomic_sub(obj->size, &dev->pin_memory);
3650 }
3651 i915_verify_inactive(dev, __FILE__, __LINE__);
3652}
3653
3654int
3655i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3656 struct drm_file *file_priv)
3657{
3658 struct drm_i915_gem_pin *args = data;
3659 struct drm_gem_object *obj;
3660 struct drm_i915_gem_object *obj_priv;
3661 int ret;
3662
3663 mutex_lock(&dev->struct_mutex);
3664
3665 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3666 if (obj == NULL) {
3667 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3668 args->handle);
3669 mutex_unlock(&dev->struct_mutex);
3670 return -EBADF;
3671 }
3672 obj_priv = obj->driver_private;
3673
79e53945
JB
3674 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3675 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3676 args->handle);
96dec61d 3677 drm_gem_object_unreference(obj);
673a394b 3678 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3679 return -EINVAL;
3680 }
3681
3682 obj_priv->user_pin_count++;
3683 obj_priv->pin_filp = file_priv;
3684 if (obj_priv->user_pin_count == 1) {
3685 ret = i915_gem_object_pin(obj, args->alignment);
3686 if (ret != 0) {
3687 drm_gem_object_unreference(obj);
3688 mutex_unlock(&dev->struct_mutex);
3689 return ret;
3690 }
673a394b
EA
3691 }
3692
3693 /* XXX - flush the CPU caches for pinned objects
3694 * as the X server doesn't manage domains yet
3695 */
e47c68e9 3696 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3697 args->offset = obj_priv->gtt_offset;
3698 drm_gem_object_unreference(obj);
3699 mutex_unlock(&dev->struct_mutex);
3700
3701 return 0;
3702}
3703
3704int
3705i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3706 struct drm_file *file_priv)
3707{
3708 struct drm_i915_gem_pin *args = data;
3709 struct drm_gem_object *obj;
79e53945 3710 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3711
3712 mutex_lock(&dev->struct_mutex);
3713
3714 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3715 if (obj == NULL) {
3716 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3717 args->handle);
3718 mutex_unlock(&dev->struct_mutex);
3719 return -EBADF;
3720 }
3721
79e53945
JB
3722 obj_priv = obj->driver_private;
3723 if (obj_priv->pin_filp != file_priv) {
3724 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3725 args->handle);
3726 drm_gem_object_unreference(obj);
3727 mutex_unlock(&dev->struct_mutex);
3728 return -EINVAL;
3729 }
3730 obj_priv->user_pin_count--;
3731 if (obj_priv->user_pin_count == 0) {
3732 obj_priv->pin_filp = NULL;
3733 i915_gem_object_unpin(obj);
3734 }
673a394b
EA
3735
3736 drm_gem_object_unreference(obj);
3737 mutex_unlock(&dev->struct_mutex);
3738 return 0;
3739}
3740
3741int
3742i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3743 struct drm_file *file_priv)
3744{
3745 struct drm_i915_gem_busy *args = data;
3746 struct drm_gem_object *obj;
3747 struct drm_i915_gem_object *obj_priv;
3748
673a394b
EA
3749 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3750 if (obj == NULL) {
3751 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3752 args->handle);
673a394b
EA
3753 return -EBADF;
3754 }
3755
b1ce786c 3756 mutex_lock(&dev->struct_mutex);
f21289b3
EA
3757 /* Update the active list for the hardware's current position.
3758 * Otherwise this only updates on a delayed timer or when irqs are
3759 * actually unmasked, and our working set ends up being larger than
3760 * required.
3761 */
3762 i915_gem_retire_requests(dev);
3763
673a394b 3764 obj_priv = obj->driver_private;
c4de0a5d
EA
3765 /* Don't count being on the flushing list against the object being
3766 * done. Otherwise, a buffer left on the flushing list but not getting
3767 * flushed (because nobody's flushing that domain) won't ever return
3768 * unbusy and get reused by libdrm's bo cache. The other expected
3769 * consumer of this interface, OpenGL's occlusion queries, also specs
3770 * that the objects get unbusy "eventually" without any interference.
3771 */
3772 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3773
3774 drm_gem_object_unreference(obj);
3775 mutex_unlock(&dev->struct_mutex);
3776 return 0;
3777}
3778
3779int
3780i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3781 struct drm_file *file_priv)
3782{
3783 return i915_gem_ring_throttle(dev, file_priv);
3784}
3785
3786int i915_gem_init_object(struct drm_gem_object *obj)
3787{
3788 struct drm_i915_gem_object *obj_priv;
3789
9a298b2a 3790 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
3791 if (obj_priv == NULL)
3792 return -ENOMEM;
3793
3794 /*
3795 * We've just allocated pages from the kernel,
3796 * so they've just been written by the CPU with
3797 * zeros. They'll need to be clflushed before we
3798 * use them with the GPU.
3799 */
3800 obj->write_domain = I915_GEM_DOMAIN_CPU;
3801 obj->read_domains = I915_GEM_DOMAIN_CPU;
3802
ba1eb1d8
KP
3803 obj_priv->agp_type = AGP_USER_MEMORY;
3804
673a394b
EA
3805 obj->driver_private = obj_priv;
3806 obj_priv->obj = obj;
de151cf6 3807 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3808 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 3809
673a394b
EA
3810 return 0;
3811}
3812
3813void i915_gem_free_object(struct drm_gem_object *obj)
3814{
de151cf6 3815 struct drm_device *dev = obj->dev;
673a394b
EA
3816 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3817
3818 while (obj_priv->pin_count > 0)
3819 i915_gem_object_unpin(obj);
3820
71acb5eb
DA
3821 if (obj_priv->phys_obj)
3822 i915_gem_detach_phys_object(dev, obj);
3823
673a394b
EA
3824 i915_gem_object_unbind(obj);
3825
ab00b3e5 3826 i915_gem_free_mmap_offset(obj);
de151cf6 3827
9a298b2a 3828 kfree(obj_priv->page_cpu_valid);
280b713b 3829 kfree(obj_priv->bit_17);
9a298b2a 3830 kfree(obj->driver_private);
673a394b
EA
3831}
3832
673a394b
EA
3833/** Unbinds all objects that are on the given buffer list. */
3834static int
3835i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3836{
3837 struct drm_gem_object *obj;
3838 struct drm_i915_gem_object *obj_priv;
3839 int ret;
3840
3841 while (!list_empty(head)) {
3842 obj_priv = list_first_entry(head,
3843 struct drm_i915_gem_object,
3844 list);
3845 obj = obj_priv->obj;
3846
3847 if (obj_priv->pin_count != 0) {
3848 DRM_ERROR("Pinned object in unbind list\n");
3849 mutex_unlock(&dev->struct_mutex);
3850 return -EINVAL;
3851 }
3852
3853 ret = i915_gem_object_unbind(obj);
3854 if (ret != 0) {
3855 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3856 ret);
3857 mutex_unlock(&dev->struct_mutex);
3858 return ret;
3859 }
3860 }
3861
3862
3863 return 0;
3864}
3865
5669fcac 3866int
673a394b
EA
3867i915_gem_idle(struct drm_device *dev)
3868{
3869 drm_i915_private_t *dev_priv = dev->dev_private;
3870 uint32_t seqno, cur_seqno, last_seqno;
3871 int stuck, ret;
3872
6dbe2772
KP
3873 mutex_lock(&dev->struct_mutex);
3874
3875 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3876 mutex_unlock(&dev->struct_mutex);
673a394b 3877 return 0;
6dbe2772 3878 }
673a394b
EA
3879
3880 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3881 * We need to replace this with a semaphore, or something.
3882 */
3883 dev_priv->mm.suspended = 1;
3884
6dbe2772
KP
3885 /* Cancel the retire work handler, wait for it to finish if running
3886 */
3887 mutex_unlock(&dev->struct_mutex);
3888 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3889 mutex_lock(&dev->struct_mutex);
3890
673a394b
EA
3891 i915_kernel_lost_context(dev);
3892
3893 /* Flush the GPU along with all non-CPU write domains
3894 */
21d509e3
CW
3895 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3896 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
673a394b
EA
3897
3898 if (seqno == 0) {
3899 mutex_unlock(&dev->struct_mutex);
3900 return -ENOMEM;
3901 }
3902
3903 dev_priv->mm.waiting_gem_seqno = seqno;
3904 last_seqno = 0;
3905 stuck = 0;
3906 for (;;) {
3907 cur_seqno = i915_get_gem_seqno(dev);
3908 if (i915_seqno_passed(cur_seqno, seqno))
3909 break;
3910 if (last_seqno == cur_seqno) {
3911 if (stuck++ > 100) {
3912 DRM_ERROR("hardware wedged\n");
3913 dev_priv->mm.wedged = 1;
3914 DRM_WAKEUP(&dev_priv->irq_queue);
3915 break;
3916 }
3917 }
3918 msleep(10);
3919 last_seqno = cur_seqno;
3920 }
3921 dev_priv->mm.waiting_gem_seqno = 0;
3922
3923 i915_gem_retire_requests(dev);
3924
5e118f41 3925 spin_lock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3926 if (!dev_priv->mm.wedged) {
3927 /* Active and flushing should now be empty as we've
3928 * waited for a sequence higher than any pending execbuffer
3929 */
3930 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3931 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3932 /* Request should now be empty as we've also waited
3933 * for the last request in the list
3934 */
3935 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3936 }
673a394b 3937
28dfe52a
EA
3938 /* Empty the active and flushing lists to inactive. If there's
3939 * anything left at this point, it means that we're wedged and
3940 * nothing good's going to happen by leaving them there. So strip
3941 * the GPU domains and just stuff them onto inactive.
673a394b 3942 */
28dfe52a
EA
3943 while (!list_empty(&dev_priv->mm.active_list)) {
3944 struct drm_i915_gem_object *obj_priv;
673a394b 3945
28dfe52a
EA
3946 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3947 struct drm_i915_gem_object,
3948 list);
3949 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3950 i915_gem_object_move_to_inactive(obj_priv->obj);
3951 }
5e118f41 3952 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3953
3954 while (!list_empty(&dev_priv->mm.flushing_list)) {
3955 struct drm_i915_gem_object *obj_priv;
3956
151903d5 3957 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3958 struct drm_i915_gem_object,
3959 list);
3960 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3961 i915_gem_object_move_to_inactive(obj_priv->obj);
3962 }
3963
3964
3965 /* Move all inactive buffers out of the GTT. */
673a394b 3966 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3967 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3968 if (ret) {
3969 mutex_unlock(&dev->struct_mutex);
673a394b 3970 return ret;
6dbe2772 3971 }
673a394b 3972
6dbe2772
KP
3973 i915_gem_cleanup_ringbuffer(dev);
3974 mutex_unlock(&dev->struct_mutex);
3975
673a394b
EA
3976 return 0;
3977}
3978
3979static int
3980i915_gem_init_hws(struct drm_device *dev)
3981{
3982 drm_i915_private_t *dev_priv = dev->dev_private;
3983 struct drm_gem_object *obj;
3984 struct drm_i915_gem_object *obj_priv;
3985 int ret;
3986
3987 /* If we need a physical address for the status page, it's already
3988 * initialized at driver load time.
3989 */
3990 if (!I915_NEED_GFX_HWS(dev))
3991 return 0;
3992
3993 obj = drm_gem_object_alloc(dev, 4096);
3994 if (obj == NULL) {
3995 DRM_ERROR("Failed to allocate status page\n");
3996 return -ENOMEM;
3997 }
3998 obj_priv = obj->driver_private;
ba1eb1d8 3999 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4000
4001 ret = i915_gem_object_pin(obj, 4096);
4002 if (ret != 0) {
4003 drm_gem_object_unreference(obj);
4004 return ret;
4005 }
4006
4007 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4008
856fa198 4009 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4010 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4011 DRM_ERROR("Failed to map status page.\n");
4012 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4013 i915_gem_object_unpin(obj);
673a394b
EA
4014 drm_gem_object_unreference(obj);
4015 return -EINVAL;
4016 }
4017 dev_priv->hws_obj = obj;
673a394b
EA
4018 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4019 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 4020 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
4021 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4022
4023 return 0;
4024}
4025
85a7bb98
CW
4026static void
4027i915_gem_cleanup_hws(struct drm_device *dev)
4028{
4029 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4030 struct drm_gem_object *obj;
4031 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4032
4033 if (dev_priv->hws_obj == NULL)
4034 return;
4035
bab2d1f6
CW
4036 obj = dev_priv->hws_obj;
4037 obj_priv = obj->driver_private;
4038
856fa198 4039 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4040 i915_gem_object_unpin(obj);
4041 drm_gem_object_unreference(obj);
4042 dev_priv->hws_obj = NULL;
bab2d1f6 4043
85a7bb98
CW
4044 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4045 dev_priv->hw_status_page = NULL;
4046
4047 /* Write high address into HWS_PGA when disabling. */
4048 I915_WRITE(HWS_PGA, 0x1ffff000);
4049}
4050
79e53945 4051int
673a394b
EA
4052i915_gem_init_ringbuffer(struct drm_device *dev)
4053{
4054 drm_i915_private_t *dev_priv = dev->dev_private;
4055 struct drm_gem_object *obj;
4056 struct drm_i915_gem_object *obj_priv;
79e53945 4057 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4058 int ret;
50aa253d 4059 u32 head;
673a394b
EA
4060
4061 ret = i915_gem_init_hws(dev);
4062 if (ret != 0)
4063 return ret;
4064
4065 obj = drm_gem_object_alloc(dev, 128 * 1024);
4066 if (obj == NULL) {
4067 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4068 i915_gem_cleanup_hws(dev);
673a394b
EA
4069 return -ENOMEM;
4070 }
4071 obj_priv = obj->driver_private;
4072
4073 ret = i915_gem_object_pin(obj, 4096);
4074 if (ret != 0) {
4075 drm_gem_object_unreference(obj);
85a7bb98 4076 i915_gem_cleanup_hws(dev);
673a394b
EA
4077 return ret;
4078 }
4079
4080 /* Set up the kernel mapping for the ring. */
79e53945
JB
4081 ring->Size = obj->size;
4082 ring->tail_mask = obj->size - 1;
673a394b 4083
79e53945
JB
4084 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4085 ring->map.size = obj->size;
4086 ring->map.type = 0;
4087 ring->map.flags = 0;
4088 ring->map.mtrr = 0;
673a394b 4089
79e53945
JB
4090 drm_core_ioremap_wc(&ring->map, dev);
4091 if (ring->map.handle == NULL) {
673a394b
EA
4092 DRM_ERROR("Failed to map ringbuffer.\n");
4093 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4094 i915_gem_object_unpin(obj);
673a394b 4095 drm_gem_object_unreference(obj);
85a7bb98 4096 i915_gem_cleanup_hws(dev);
673a394b
EA
4097 return -EINVAL;
4098 }
79e53945
JB
4099 ring->ring_obj = obj;
4100 ring->virtual_start = ring->map.handle;
673a394b
EA
4101
4102 /* Stop the ring if it's running. */
4103 I915_WRITE(PRB0_CTL, 0);
673a394b 4104 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4105 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4106
4107 /* Initialize the ring. */
4108 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4109 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4110
4111 /* G45 ring initialization fails to reset head to zero */
4112 if (head != 0) {
4113 DRM_ERROR("Ring head not reset to zero "
4114 "ctl %08x head %08x tail %08x start %08x\n",
4115 I915_READ(PRB0_CTL),
4116 I915_READ(PRB0_HEAD),
4117 I915_READ(PRB0_TAIL),
4118 I915_READ(PRB0_START));
4119 I915_WRITE(PRB0_HEAD, 0);
4120
4121 DRM_ERROR("Ring head forced to zero "
4122 "ctl %08x head %08x tail %08x start %08x\n",
4123 I915_READ(PRB0_CTL),
4124 I915_READ(PRB0_HEAD),
4125 I915_READ(PRB0_TAIL),
4126 I915_READ(PRB0_START));
4127 }
4128
673a394b
EA
4129 I915_WRITE(PRB0_CTL,
4130 ((obj->size - 4096) & RING_NR_PAGES) |
4131 RING_NO_REPORT |
4132 RING_VALID);
4133
50aa253d
KP
4134 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4135
4136 /* If the head is still not zero, the ring is dead */
4137 if (head != 0) {
4138 DRM_ERROR("Ring initialization failed "
4139 "ctl %08x head %08x tail %08x start %08x\n",
4140 I915_READ(PRB0_CTL),
4141 I915_READ(PRB0_HEAD),
4142 I915_READ(PRB0_TAIL),
4143 I915_READ(PRB0_START));
4144 return -EIO;
4145 }
4146
673a394b 4147 /* Update our cache of the ring state */
79e53945
JB
4148 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4149 i915_kernel_lost_context(dev);
4150 else {
4151 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4152 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4153 ring->space = ring->head - (ring->tail + 8);
4154 if (ring->space < 0)
4155 ring->space += ring->Size;
4156 }
673a394b
EA
4157
4158 return 0;
4159}
4160
79e53945 4161void
673a394b
EA
4162i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4163{
4164 drm_i915_private_t *dev_priv = dev->dev_private;
4165
4166 if (dev_priv->ring.ring_obj == NULL)
4167 return;
4168
4169 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4170
4171 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4172 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4173 dev_priv->ring.ring_obj = NULL;
4174 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4175
85a7bb98 4176 i915_gem_cleanup_hws(dev);
673a394b
EA
4177}
4178
4179int
4180i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4181 struct drm_file *file_priv)
4182{
4183 drm_i915_private_t *dev_priv = dev->dev_private;
4184 int ret;
4185
79e53945
JB
4186 if (drm_core_check_feature(dev, DRIVER_MODESET))
4187 return 0;
4188
673a394b
EA
4189 if (dev_priv->mm.wedged) {
4190 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4191 dev_priv->mm.wedged = 0;
4192 }
4193
673a394b 4194 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4195 dev_priv->mm.suspended = 0;
4196
4197 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4198 if (ret != 0) {
4199 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4200 return ret;
d816f6ac 4201 }
9bb2d6f9 4202
5e118f41 4203 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4204 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4205 spin_unlock(&dev_priv->mm.active_list_lock);
4206
673a394b
EA
4207 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4208 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4209 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4210 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4211
4212 drm_irq_install(dev);
4213
673a394b
EA
4214 return 0;
4215}
4216
4217int
4218i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4219 struct drm_file *file_priv)
4220{
4221 int ret;
4222
79e53945
JB
4223 if (drm_core_check_feature(dev, DRIVER_MODESET))
4224 return 0;
4225
673a394b 4226 ret = i915_gem_idle(dev);
dbb19d30
KH
4227 drm_irq_uninstall(dev);
4228
6dbe2772 4229 return ret;
673a394b
EA
4230}
4231
4232void
4233i915_gem_lastclose(struct drm_device *dev)
4234{
4235 int ret;
673a394b 4236
e806b495
EA
4237 if (drm_core_check_feature(dev, DRIVER_MODESET))
4238 return;
4239
6dbe2772
KP
4240 ret = i915_gem_idle(dev);
4241 if (ret)
4242 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4243}
4244
4245void
4246i915_gem_load(struct drm_device *dev)
4247{
b5aa8a0f 4248 int i;
673a394b
EA
4249 drm_i915_private_t *dev_priv = dev->dev_private;
4250
5e118f41 4251 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4252 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4253 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4254 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4255 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4256 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4257 i915_gem_retire_work_handler);
4258 dev_priv->mm.next_gem_seqno = 1;
4259
de151cf6
JB
4260 /* Old X drivers will take 0-2 for front, back, depth buffers */
4261 dev_priv->fence_reg_start = 3;
4262
0f973f27 4263 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4264 dev_priv->num_fence_regs = 16;
4265 else
4266 dev_priv->num_fence_regs = 8;
4267
b5aa8a0f
GH
4268 /* Initialize fence registers to zero */
4269 if (IS_I965G(dev)) {
4270 for (i = 0; i < 16; i++)
4271 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4272 } else {
4273 for (i = 0; i < 8; i++)
4274 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4275 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4276 for (i = 0; i < 8; i++)
4277 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4278 }
4279
673a394b
EA
4280 i915_gem_detect_bit_6_swizzle(dev);
4281}
71acb5eb
DA
4282
4283/*
4284 * Create a physically contiguous memory object for this object
4285 * e.g. for cursor + overlay regs
4286 */
4287int i915_gem_init_phys_object(struct drm_device *dev,
4288 int id, int size)
4289{
4290 drm_i915_private_t *dev_priv = dev->dev_private;
4291 struct drm_i915_gem_phys_object *phys_obj;
4292 int ret;
4293
4294 if (dev_priv->mm.phys_objs[id - 1] || !size)
4295 return 0;
4296
9a298b2a 4297 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4298 if (!phys_obj)
4299 return -ENOMEM;
4300
4301 phys_obj->id = id;
4302
4303 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4304 if (!phys_obj->handle) {
4305 ret = -ENOMEM;
4306 goto kfree_obj;
4307 }
4308#ifdef CONFIG_X86
4309 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4310#endif
4311
4312 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4313
4314 return 0;
4315kfree_obj:
9a298b2a 4316 kfree(phys_obj);
71acb5eb
DA
4317 return ret;
4318}
4319
4320void i915_gem_free_phys_object(struct drm_device *dev, int id)
4321{
4322 drm_i915_private_t *dev_priv = dev->dev_private;
4323 struct drm_i915_gem_phys_object *phys_obj;
4324
4325 if (!dev_priv->mm.phys_objs[id - 1])
4326 return;
4327
4328 phys_obj = dev_priv->mm.phys_objs[id - 1];
4329 if (phys_obj->cur_obj) {
4330 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4331 }
4332
4333#ifdef CONFIG_X86
4334 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4335#endif
4336 drm_pci_free(dev, phys_obj->handle);
4337 kfree(phys_obj);
4338 dev_priv->mm.phys_objs[id - 1] = NULL;
4339}
4340
4341void i915_gem_free_all_phys_object(struct drm_device *dev)
4342{
4343 int i;
4344
260883c8 4345 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4346 i915_gem_free_phys_object(dev, i);
4347}
4348
4349void i915_gem_detach_phys_object(struct drm_device *dev,
4350 struct drm_gem_object *obj)
4351{
4352 struct drm_i915_gem_object *obj_priv;
4353 int i;
4354 int ret;
4355 int page_count;
4356
4357 obj_priv = obj->driver_private;
4358 if (!obj_priv->phys_obj)
4359 return;
4360
856fa198 4361 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4362 if (ret)
4363 goto out;
4364
4365 page_count = obj->size / PAGE_SIZE;
4366
4367 for (i = 0; i < page_count; i++) {
856fa198 4368 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4369 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4370
4371 memcpy(dst, src, PAGE_SIZE);
4372 kunmap_atomic(dst, KM_USER0);
4373 }
856fa198 4374 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4375 drm_agp_chipset_flush(dev);
d78b47b9
CW
4376
4377 i915_gem_object_put_pages(obj);
71acb5eb
DA
4378out:
4379 obj_priv->phys_obj->cur_obj = NULL;
4380 obj_priv->phys_obj = NULL;
4381}
4382
4383int
4384i915_gem_attach_phys_object(struct drm_device *dev,
4385 struct drm_gem_object *obj, int id)
4386{
4387 drm_i915_private_t *dev_priv = dev->dev_private;
4388 struct drm_i915_gem_object *obj_priv;
4389 int ret = 0;
4390 int page_count;
4391 int i;
4392
4393 if (id > I915_MAX_PHYS_OBJECT)
4394 return -EINVAL;
4395
4396 obj_priv = obj->driver_private;
4397
4398 if (obj_priv->phys_obj) {
4399 if (obj_priv->phys_obj->id == id)
4400 return 0;
4401 i915_gem_detach_phys_object(dev, obj);
4402 }
4403
4404
4405 /* create a new object */
4406 if (!dev_priv->mm.phys_objs[id - 1]) {
4407 ret = i915_gem_init_phys_object(dev, id,
4408 obj->size);
4409 if (ret) {
aeb565df 4410 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4411 goto out;
4412 }
4413 }
4414
4415 /* bind to the object */
4416 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4417 obj_priv->phys_obj->cur_obj = obj;
4418
856fa198 4419 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4420 if (ret) {
4421 DRM_ERROR("failed to get page list\n");
4422 goto out;
4423 }
4424
4425 page_count = obj->size / PAGE_SIZE;
4426
4427 for (i = 0; i < page_count; i++) {
856fa198 4428 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4429 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4430
4431 memcpy(dst, src, PAGE_SIZE);
4432 kunmap_atomic(src, KM_USER0);
4433 }
4434
d78b47b9
CW
4435 i915_gem_object_put_pages(obj);
4436
71acb5eb
DA
4437 return 0;
4438out:
4439 return ret;
4440}
4441
4442static int
4443i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4444 struct drm_i915_gem_pwrite *args,
4445 struct drm_file *file_priv)
4446{
4447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4448 void *obj_addr;
4449 int ret;
4450 char __user *user_data;
4451
4452 user_data = (char __user *) (uintptr_t) args->data_ptr;
4453 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4454
e08fb4f6 4455 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4456 ret = copy_from_user(obj_addr, user_data, args->size);
4457 if (ret)
4458 return -EFAULT;
4459
4460 drm_agp_chipset_flush(dev);
4461 return 0;
4462}
b962442e
EA
4463
4464void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4465{
4466 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4467
4468 /* Clean up our request list when the client is going away, so that
4469 * later retire_requests won't dereference our soon-to-be-gone
4470 * file_priv.
4471 */
4472 mutex_lock(&dev->struct_mutex);
4473 while (!list_empty(&i915_file_priv->mm.request_list))
4474 list_del_init(i915_file_priv->mm.request_list.next);
4475 mutex_unlock(&dev->struct_mutex);
4476}