]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/firewire/fw-ohci.c
firewire: Add lock transaction opcodes to fw-device-cdev.h.
[net-next-2.6.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
48
49struct descriptor {
50 __le16 req_count;
51 __le16 control;
52 __le32 data_address;
53 __le32 branch_address;
54 __le16 res_count;
55 __le16 transfer_status;
56} __attribute__((aligned(16)));
57
58struct ar_context {
59 struct fw_ohci *ohci;
60 struct descriptor descriptor;
61 __le32 buffer[512];
62 dma_addr_t descriptor_bus;
63 dma_addr_t buffer_bus;
64
65 u32 command_ptr;
66 u32 control_set;
67 u32 control_clear;
68
69 struct tasklet_struct tasklet;
70};
71
72struct at_context {
73 struct fw_ohci *ohci;
74 dma_addr_t descriptor_bus;
75 dma_addr_t buffer_bus;
76
77 struct list_head list;
78
79 struct {
80 struct descriptor more;
81 __le32 header[4];
82 struct descriptor last;
83 } d;
84
85 u32 command_ptr;
86 u32 control_set;
87 u32 control_clear;
88
89 struct tasklet_struct tasklet;
90};
91
92#define it_header_sy(v) ((v) << 0)
93#define it_header_tcode(v) ((v) << 4)
94#define it_header_channel(v) ((v) << 8)
95#define it_header_tag(v) ((v) << 14)
96#define it_header_speed(v) ((v) << 16)
97#define it_header_data_length(v) ((v) << 16)
98
99struct iso_context {
100 struct fw_iso_context base;
101 struct tasklet_struct tasklet;
102 u32 control_set;
103 u32 control_clear;
104 u32 command_ptr;
105 u32 context_match;
106
107 struct descriptor *buffer;
108 dma_addr_t buffer_bus;
109 struct descriptor *head_descriptor;
110 struct descriptor *tail_descriptor;
111 struct descriptor *tail_descriptor_last;
112 struct descriptor *prev_descriptor;
113};
114
115#define CONFIG_ROM_SIZE 1024
116
117struct fw_ohci {
118 struct fw_card card;
119
120 __iomem char *registers;
121 dma_addr_t self_id_bus;
122 __le32 *self_id_cpu;
123 struct tasklet_struct bus_reset_tasklet;
e636fe25 124 int node_id;
ed568912
KH
125 int generation;
126 int request_generation;
127
128 /* Spinlock for accessing fw_ohci data. Never call out of
129 * this driver with this lock held. */
130 spinlock_t lock;
131 u32 self_id_buffer[512];
132
133 /* Config rom buffers */
134 __be32 *config_rom;
135 dma_addr_t config_rom_bus;
136 __be32 *next_config_rom;
137 dma_addr_t next_config_rom_bus;
138 u32 next_header;
139
140 struct ar_context ar_request_ctx;
141 struct ar_context ar_response_ctx;
142 struct at_context at_request_ctx;
143 struct at_context at_response_ctx;
144
145 u32 it_context_mask;
146 struct iso_context *it_context_list;
147 u32 ir_context_mask;
148 struct iso_context *ir_context_list;
149};
150
95688e97 151static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
152{
153 return container_of(card, struct fw_ohci, card);
154}
155
156#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
157
158#define CONTEXT_RUN 0x8000
159#define CONTEXT_WAKE 0x1000
160#define CONTEXT_DEAD 0x0800
161#define CONTEXT_ACTIVE 0x0400
162
163#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
164#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
165#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
166
167#define FW_OHCI_MAJOR 240
168#define OHCI1394_REGISTER_SIZE 0x800
169#define OHCI_LOOP_COUNT 500
170#define OHCI1394_PCI_HCI_Control 0x40
171#define SELF_ID_BUF_SIZE 0x800
172
ed568912
KH
173static char ohci_driver_name[] = KBUILD_MODNAME;
174
95688e97 175static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
176{
177 writel(data, ohci->registers + offset);
178}
179
95688e97 180static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
181{
182 return readl(ohci->registers + offset);
183}
184
95688e97 185static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
186{
187 /* Do a dummy read to flush writes. */
188 reg_read(ohci, OHCI1394_Version);
189}
190
191static int
192ohci_update_phy_reg(struct fw_card *card, int addr,
193 int clear_bits, int set_bits)
194{
195 struct fw_ohci *ohci = fw_ohci(card);
196 u32 val, old;
197
198 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
199 msleep(2);
200 val = reg_read(ohci, OHCI1394_PhyControl);
201 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
202 fw_error("failed to set phy reg bits.\n");
203 return -EBUSY;
204 }
205
206 old = OHCI1394_PhyControl_ReadData(val);
207 old = (old & ~clear_bits) | set_bits;
208 reg_write(ohci, OHCI1394_PhyControl,
209 OHCI1394_PhyControl_Write(addr, old));
210
211 return 0;
212}
213
214static void ar_context_run(struct ar_context *ctx)
215{
216 reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
217 reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
218 flush_writes(ctx->ohci);
219}
220
221static void ar_context_tasklet(unsigned long data)
222{
223 struct ar_context *ctx = (struct ar_context *)data;
224 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
225 struct fw_packet p;
226 u32 status, length, tcode;
ed568912
KH
227
228 /* FIXME: What to do about evt_* errors? */
229 length = le16_to_cpu(ctx->descriptor.req_count) -
230 le16_to_cpu(ctx->descriptor.res_count) - 4;
231 status = le32_to_cpu(ctx->buffer[length / 4]);
ed568912 232
2639a6fb
KH
233 p.ack = ((status >> 16) & 0x1f) - 16;
234 p.speed = (status >> 21) & 0x7;
235 p.timestamp = status & 0xffff;
236 p.generation = ohci->request_generation;
237
238 p.header[0] = le32_to_cpu(ctx->buffer[0]);
239 p.header[1] = le32_to_cpu(ctx->buffer[1]);
240 p.header[2] = le32_to_cpu(ctx->buffer[2]);
241
242 tcode = (p.header[0] >> 4) & 0x0f;
243 switch (tcode) {
244 case TCODE_WRITE_QUADLET_REQUEST:
245 case TCODE_READ_QUADLET_RESPONSE:
246 p.header[3] = ctx->buffer[3];
247 p.header_length = 16;
248 break;
249
250 case TCODE_WRITE_BLOCK_REQUEST:
251 case TCODE_READ_BLOCK_REQUEST :
252 case TCODE_READ_BLOCK_RESPONSE:
253 case TCODE_LOCK_REQUEST:
254 case TCODE_LOCK_RESPONSE:
255 p.header[3] = le32_to_cpu(ctx->buffer[3]);
256 p.header_length = 16;
257 break;
258
259 case TCODE_WRITE_RESPONSE:
260 case TCODE_READ_QUADLET_REQUEST:
261 p.header_length = 12;
262 break;
263 }
ed568912 264
2639a6fb
KH
265 p.payload = (void *) ctx->buffer + p.header_length;
266 p.payload_length = length - p.header_length;
ed568912
KH
267
268 /* The OHCI bus reset handler synthesizes a phy packet with
269 * the new generation number when a bus reset happens (see
270 * section 8.4.2.3). This helps us determine when a request
271 * was received and make sure we send the response in the same
272 * generation. We only need this for requests; for responses
273 * we use the unique tlabel for finding the matching
274 * request. */
275
2639a6fb 276 if (p.ack + 16 == 0x09)
ed568912
KH
277 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
278 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 279 fw_core_handle_request(&ohci->card, &p);
ed568912 280 else
2639a6fb 281 fw_core_handle_response(&ohci->card, &p);
ed568912
KH
282
283 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
284 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
285 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
286
287 dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
288 sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
289
290 /* FIXME: We stop and restart the ar context here, what if we
291 * stop while a receive is in progress? Maybe we could just
292 * loop the context back to itself and use it in buffer fill
293 * mode as intended... */
294
295 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
296 ar_context_run(ctx);
297}
298
299static int
300ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
301{
302 ctx->descriptor_bus =
303 dma_map_single(ohci->card.device, &ctx->descriptor,
304 sizeof ctx->descriptor, DMA_TO_DEVICE);
305 if (ctx->descriptor_bus == 0)
306 return -ENOMEM;
307
308 if (ctx->descriptor_bus & 0xf)
fcf7770a
AM
309 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
310 (unsigned long)ctx->descriptor_bus);
ed568912
KH
311
312 ctx->buffer_bus =
313 dma_map_single(ohci->card.device, ctx->buffer,
314 sizeof ctx->buffer, DMA_FROM_DEVICE);
315
316 if (ctx->buffer_bus == 0) {
317 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
318 sizeof ctx->descriptor, DMA_TO_DEVICE);
319 return -ENOMEM;
320 }
321
322 memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
323 ctx->descriptor.control = cpu_to_le16(descriptor_input_more |
324 descriptor_status |
325 descriptor_branch_always);
326 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
327 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
328 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
329
330 ctx->control_set = control_set;
331 ctx->control_clear = control_set + 4;
332 ctx->command_ptr = control_set + 12;
333 ctx->ohci = ohci;
334
335 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
336
337 ar_context_run(ctx);
338
339 return 0;
340}
341
342static void
343do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
344{
345 struct fw_packet *p, *next;
346
347 list_for_each_entry_safe(p, next, list, link)
2639a6fb 348 p->callback(p, &ohci->card, p->ack);
ed568912
KH
349}
350
351static void
352complete_transmission(struct fw_packet *packet,
2639a6fb 353 int ack, struct list_head *list)
ed568912
KH
354{
355 list_move_tail(&packet->link, list);
2639a6fb 356 packet->ack = ack;
ed568912
KH
357}
358
359/* This function prepares the first packet in the context queue for
360 * transmission. Must always be called with the ochi->lock held to
361 * ensure proper generation handling and locking around packet queue
362 * manipulation. */
363static void
364at_context_setup_packet(struct at_context *ctx, struct list_head *list)
365{
366 struct fw_packet *packet;
367 struct fw_ohci *ohci = ctx->ohci;
368 int z, tcode;
369
370 packet = fw_packet(ctx->list.next);
371
372 memset(&ctx->d, 0, sizeof ctx->d);
373 if (packet->payload_length > 0) {
374 packet->payload_bus = dma_map_single(ohci->card.device,
375 packet->payload,
376 packet->payload_length,
377 DMA_TO_DEVICE);
378 if (packet->payload_bus == 0) {
379 complete_transmission(packet, -ENOMEM, list);
380 return;
381 }
382
383 ctx->d.more.control =
384 cpu_to_le16(descriptor_output_more |
385 descriptor_key_immediate);
386 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
387 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
388 ctx->d.last.control =
389 cpu_to_le16(descriptor_output_last |
390 descriptor_irq_always |
391 descriptor_branch_always);
392 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
393 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
394 z = 3;
395 } else {
396 ctx->d.more.control =
397 cpu_to_le16(descriptor_output_last |
398 descriptor_key_immediate |
399 descriptor_irq_always |
400 descriptor_branch_always);
401 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
402 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
403 z = 2;
404 }
405
406 /* The DMA format for asyncronous link packets is different
407 * from the IEEE1394 layout, so shift the fields around
408 * accordingly. If header_length is 8, it's a PHY packet, to
409 * which we need to prepend an extra quadlet. */
410 if (packet->header_length > 8) {
411 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
412 (packet->speed << 16));
413 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
414 (packet->header[0] & 0xffff0000));
415 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
416
417 tcode = (packet->header[0] >> 4) & 0x0f;
418 if (TCODE_IS_BLOCK_PACKET(tcode))
419 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
420 else
421 ctx->d.header[3] = packet->header[3];
422 } else {
423 ctx->d.header[0] =
424 cpu_to_le32((OHCI1394_phy_tcode << 4) |
425 (packet->speed << 16));
426 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
427 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
428 ctx->d.more.req_count = cpu_to_le16(12);
429 }
430
431 /* FIXME: Document how the locking works. */
432 if (ohci->generation == packet->generation) {
433 reg_write(ctx->ohci, ctx->command_ptr,
434 ctx->descriptor_bus | z);
435 reg_write(ctx->ohci, ctx->control_set,
436 CONTEXT_RUN | CONTEXT_WAKE);
437 } else {
438 /* We dont return error codes from this function; all
439 * transmission errors are reported through the
440 * callback. */
441 complete_transmission(packet, -ESTALE, list);
442 }
443}
444
445static void at_context_stop(struct at_context *ctx)
446{
447 u32 reg;
448
449 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
450
451 reg = reg_read(ctx->ohci, ctx->control_set);
452 if (reg & CONTEXT_ACTIVE)
453 fw_notify("Tried to stop context, but it is still active "
454 "(0x%08x).\n", reg);
455}
456
457static void at_context_tasklet(unsigned long data)
458{
459 struct at_context *ctx = (struct at_context *)data;
460 struct fw_ohci *ohci = ctx->ohci;
461 struct fw_packet *packet;
462 LIST_HEAD(list);
463 unsigned long flags;
464 int evt;
465
466 spin_lock_irqsave(&ohci->lock, flags);
467
468 packet = fw_packet(ctx->list.next);
469
470 at_context_stop(ctx);
471
472 if (packet->payload_length > 0) {
473 dma_unmap_single(ohci->card.device, packet->payload_bus,
474 packet->payload_length, DMA_TO_DEVICE);
475 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
476 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
477 }
478 else {
479 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
480 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
481 }
482
483 if (evt < 16) {
484 switch (evt) {
485 case OHCI1394_evt_timeout:
486 /* Async response transmit timed out. */
487 complete_transmission(packet, -ETIMEDOUT, &list);
488 break;
489
490 case OHCI1394_evt_flushed:
491 /* The packet was flushed should give same
492 * error as when we try to use a stale
493 * generation count. */
494 complete_transmission(packet, -ESTALE, &list);
495 break;
496
497 case OHCI1394_evt_missing_ack:
498 /* This would be a higher level software
499 * error, it is using a valid (current)
500 * generation count, but the node is not on
501 * the bus. */
502 complete_transmission(packet, -ENODEV, &list);
503 break;
504
505 default:
506 complete_transmission(packet, -EIO, &list);
507 break;
508 }
509 } else
510 complete_transmission(packet, evt - 16, &list);
511
512 /* If more packets are queued, set up the next one. */
513 if (!list_empty(&ctx->list))
514 at_context_setup_packet(ctx, &list);
515
516 spin_unlock_irqrestore(&ohci->lock, flags);
517
518 do_packet_callbacks(ohci, &list);
519}
520
521static int
522at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
523{
524 INIT_LIST_HEAD(&ctx->list);
525
526 ctx->descriptor_bus =
527 dma_map_single(ohci->card.device, &ctx->d,
528 sizeof ctx->d, DMA_TO_DEVICE);
529 if (ctx->descriptor_bus == 0)
530 return -ENOMEM;
531
532 ctx->control_set = control_set;
533 ctx->control_clear = control_set + 4;
534 ctx->command_ptr = control_set + 12;
535 ctx->ohci = ohci;
536
537 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
538
539 return 0;
540}
541
e636fe25
KH
542#define header_get_destination(q) (((q) >> 16) & 0xffff)
543
ed568912
KH
544static void
545at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
546{
547 LIST_HEAD(list);
548 unsigned long flags;
e636fe25 549 int local;
ed568912
KH
550
551 spin_lock_irqsave(&ctx->ohci->lock, flags);
552
e636fe25
KH
553 if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
554 ctx->ohci->generation == packet->generation) {
555 local = 1;
556 } else {
557 list_add_tail(&packet->link, &ctx->list);
558 if (ctx->list.next == &packet->link)
559 at_context_setup_packet(ctx, &list);
560 local = 0;
561 }
ed568912
KH
562
563 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
564
565 do_packet_callbacks(ctx->ohci, &list);
e636fe25
KH
566
567 if (local) {
568 packet->ack = ACK_PENDING;
569 packet->callback(packet, &ctx->ohci->card, packet->ack);
570 if (ctx == &ctx->ohci->at_request_ctx)
571 fw_core_handle_request(&ctx->ohci->card, packet);
572 else
573 fw_core_handle_response(&ctx->ohci->card, packet);
574 }
ed568912
KH
575}
576
577static void bus_reset_tasklet(unsigned long data)
578{
579 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 580 int self_id_count, i, j, reg;
ed568912
KH
581 int generation, new_generation;
582 unsigned long flags;
583
584 reg = reg_read(ohci, OHCI1394_NodeID);
585 if (!(reg & OHCI1394_NodeID_idValid)) {
586 fw_error("node ID not valid, new bus reset in progress\n");
587 return;
588 }
e636fe25 589 ohci->node_id = reg & 0xffff;
ed568912
KH
590
591 /* The count in the SelfIDCount register is the number of
592 * bytes in the self ID receive buffer. Since we also receive
593 * the inverted quadlets and a header quadlet, we shift one
594 * bit extra to get the actual number of self IDs. */
595
596 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
597 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
598
599 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
600 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
601 fw_error("inconsistent self IDs\n");
602 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
603 }
604
605 /* Check the consistency of the self IDs we just read. The
606 * problem we face is that a new bus reset can start while we
607 * read out the self IDs from the DMA buffer. If this happens,
608 * the DMA buffer will be overwritten with new self IDs and we
609 * will read out inconsistent data. The OHCI specification
610 * (section 11.2) recommends a technique similar to
611 * linux/seqlock.h, where we remember the generation of the
612 * self IDs in the buffer before reading them out and compare
613 * it to the current generation after reading them out. If
614 * the two generations match we know we have a consistent set
615 * of self IDs. */
616
617 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
618 if (new_generation != generation) {
619 fw_notify("recursive bus reset detected, "
620 "discarding self ids\n");
621 return;
622 }
623
624 /* FIXME: Document how the locking works. */
625 spin_lock_irqsave(&ohci->lock, flags);
626
627 ohci->generation = generation;
628 at_context_stop(&ohci->at_request_ctx);
629 at_context_stop(&ohci->at_response_ctx);
630 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
631
632 /* This next bit is unrelated to the AT context stuff but we
633 * have to do it under the spinlock also. If a new config rom
634 * was set up before this reset, the old one is now no longer
635 * in use and we can free it. Update the config rom pointers
636 * to point to the current config rom and clear the
637 * next_config_rom pointer so a new udpate can take place. */
638
639 if (ohci->next_config_rom != NULL) {
640 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
641 ohci->config_rom, ohci->config_rom_bus);
642 ohci->config_rom = ohci->next_config_rom;
643 ohci->config_rom_bus = ohci->next_config_rom_bus;
644 ohci->next_config_rom = NULL;
645
646 /* Restore config_rom image and manually update
647 * config_rom registers. Writing the header quadlet
648 * will indicate that the config rom is ready, so we
649 * do that last. */
650 reg_write(ohci, OHCI1394_BusOptions,
651 be32_to_cpu(ohci->config_rom[2]));
652 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
653 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
654 }
655
656 spin_unlock_irqrestore(&ohci->lock, flags);
657
e636fe25 658 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
659 self_id_count, ohci->self_id_buffer);
660}
661
662static irqreturn_t irq_handler(int irq, void *data)
663{
664 struct fw_ohci *ohci = data;
665 u32 event, iso_event;
666 int i;
667
668 event = reg_read(ohci, OHCI1394_IntEventClear);
669
670 if (!event)
671 return IRQ_NONE;
672
673 reg_write(ohci, OHCI1394_IntEventClear, event);
674
675 if (event & OHCI1394_selfIDComplete)
676 tasklet_schedule(&ohci->bus_reset_tasklet);
677
678 if (event & OHCI1394_RQPkt)
679 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
680
681 if (event & OHCI1394_RSPkt)
682 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
683
684 if (event & OHCI1394_reqTxComplete)
685 tasklet_schedule(&ohci->at_request_ctx.tasklet);
686
687 if (event & OHCI1394_respTxComplete)
688 tasklet_schedule(&ohci->at_response_ctx.tasklet);
689
690 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
691 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
692
693 while (iso_event) {
694 i = ffs(iso_event) - 1;
695 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
696 iso_event &= ~(1 << i);
697 }
698
699 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
700 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
701
702 while (iso_event) {
703 i = ffs(iso_event) - 1;
704 tasklet_schedule(&ohci->it_context_list[i].tasklet);
705 iso_event &= ~(1 << i);
706 }
707
708 return IRQ_HANDLED;
709}
710
711static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
712{
713 struct fw_ohci *ohci = fw_ohci(card);
714 struct pci_dev *dev = to_pci_dev(card->device);
715
716 /* When the link is not yet enabled, the atomic config rom
717 * update mechanism described below in ohci_set_config_rom()
718 * is not active. We have to update ConfigRomHeader and
719 * BusOptions manually, and the write to ConfigROMmap takes
720 * effect immediately. We tie this to the enabling of the
721 * link, so we have a valid config rom before enabling - the
722 * OHCI requires that ConfigROMhdr and BusOptions have valid
723 * values before enabling.
724 *
725 * However, when the ConfigROMmap is written, some controllers
726 * always read back quadlets 0 and 2 from the config rom to
727 * the ConfigRomHeader and BusOptions registers on bus reset.
728 * They shouldn't do that in this initial case where the link
729 * isn't enabled. This means we have to use the same
730 * workaround here, setting the bus header to 0 and then write
731 * the right values in the bus reset tasklet.
732 */
733
734 ohci->next_config_rom =
735 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
736 &ohci->next_config_rom_bus, GFP_KERNEL);
737 if (ohci->next_config_rom == NULL)
738 return -ENOMEM;
739
740 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
741 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
742
743 ohci->next_header = config_rom[0];
744 ohci->next_config_rom[0] = 0;
745 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
746 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
747 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
748
749 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
750
751 if (request_irq(dev->irq, irq_handler,
752 SA_SHIRQ, ohci_driver_name, ohci)) {
753 fw_error("Failed to allocate shared interrupt %d.\n",
754 dev->irq);
755 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
756 ohci->config_rom, ohci->config_rom_bus);
757 return -EIO;
758 }
759
760 reg_write(ohci, OHCI1394_HCControlSet,
761 OHCI1394_HCControl_linkEnable |
762 OHCI1394_HCControl_BIBimageValid);
763 flush_writes(ohci);
764
765 /* We are ready to go, initiate bus reset to finish the
766 * initialization. */
767
768 fw_core_initiate_bus_reset(&ohci->card, 1);
769
770 return 0;
771}
772
773static int
774ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
775{
776 struct fw_ohci *ohci;
777 unsigned long flags;
778 int retval = 0;
779 __be32 *next_config_rom;
780 dma_addr_t next_config_rom_bus;
781
782 ohci = fw_ohci(card);
783
784 /* When the OHCI controller is enabled, the config rom update
785 * mechanism is a bit tricky, but easy enough to use. See
786 * section 5.5.6 in the OHCI specification.
787 *
788 * The OHCI controller caches the new config rom address in a
789 * shadow register (ConfigROMmapNext) and needs a bus reset
790 * for the changes to take place. When the bus reset is
791 * detected, the controller loads the new values for the
792 * ConfigRomHeader and BusOptions registers from the specified
793 * config rom and loads ConfigROMmap from the ConfigROMmapNext
794 * shadow register. All automatically and atomically.
795 *
796 * Now, there's a twist to this story. The automatic load of
797 * ConfigRomHeader and BusOptions doesn't honor the
798 * noByteSwapData bit, so with a be32 config rom, the
799 * controller will load be32 values in to these registers
800 * during the atomic update, even on litte endian
801 * architectures. The workaround we use is to put a 0 in the
802 * header quadlet; 0 is endian agnostic and means that the
803 * config rom isn't ready yet. In the bus reset tasklet we
804 * then set up the real values for the two registers.
805 *
806 * We use ohci->lock to avoid racing with the code that sets
807 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
808 */
809
810 next_config_rom =
811 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
812 &next_config_rom_bus, GFP_KERNEL);
813 if (next_config_rom == NULL)
814 return -ENOMEM;
815
816 spin_lock_irqsave(&ohci->lock, flags);
817
818 if (ohci->next_config_rom == NULL) {
819 ohci->next_config_rom = next_config_rom;
820 ohci->next_config_rom_bus = next_config_rom_bus;
821
822 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
823 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
824 length * 4);
825
826 ohci->next_header = config_rom[0];
827 ohci->next_config_rom[0] = 0;
828
829 reg_write(ohci, OHCI1394_ConfigROMmap,
830 ohci->next_config_rom_bus);
831 } else {
832 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
833 next_config_rom, next_config_rom_bus);
834 retval = -EBUSY;
835 }
836
837 spin_unlock_irqrestore(&ohci->lock, flags);
838
839 /* Now initiate a bus reset to have the changes take
840 * effect. We clean up the old config rom memory and DMA
841 * mappings in the bus reset tasklet, since the OHCI
842 * controller could need to access it before the bus reset
843 * takes effect. */
844 if (retval == 0)
845 fw_core_initiate_bus_reset(&ohci->card, 1);
846
847 return retval;
848}
849
850static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
851{
852 struct fw_ohci *ohci = fw_ohci(card);
853
854 at_context_transmit(&ohci->at_request_ctx, packet);
855}
856
857static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
858{
859 struct fw_ohci *ohci = fw_ohci(card);
860
861 at_context_transmit(&ohci->at_response_ctx, packet);
862}
863
864static int
865ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
866{
867 struct fw_ohci *ohci = fw_ohci(card);
868 unsigned long flags;
907293d7 869 int n, retval = 0;
ed568912 870
907293d7
SR
871 /* FIXME: Make sure this bitmask is cleared when we clear the busReset
872 * interrupt bit. Clear physReqResourceAllBuses on bus reset. */
ed568912
KH
873
874 spin_lock_irqsave(&ohci->lock, flags);
875
876 if (ohci->generation != generation) {
877 retval = -ESTALE;
878 goto out;
879 }
880
907293d7
SR
881 /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
882 * enabled for _all_ nodes on remote buses. */
883
884 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
885 if (n < 32)
886 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
887 else
888 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
889
ed568912 890 flush_writes(ohci);
ed568912 891 out:
6cad95fe 892 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
893 return retval;
894}
895
896static void ir_context_tasklet(unsigned long data)
897{
898 struct iso_context *ctx = (struct iso_context *)data;
899
900 (void)ctx;
901}
902
903#define ISO_BUFFER_SIZE (64 * 1024)
904
905static void flush_iso_context(struct iso_context *ctx)
906{
907 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
908 struct descriptor *d, *last;
909 u32 address;
910 int z;
911
912 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
913 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
914
915 d = ctx->tail_descriptor;
916 last = ctx->tail_descriptor_last;
917
918 while (last->branch_address != 0 && last->transfer_status != 0) {
919 address = le32_to_cpu(last->branch_address);
920 z = address & 0xf;
921 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
922
923 if (z == 2)
924 last = d;
925 else
926 last = d + z - 1;
927
928 if (le16_to_cpu(last->control) & descriptor_irq_always)
929 ctx->base.callback(&ctx->base,
930 0, le16_to_cpu(last->res_count),
931 ctx->base.callback_data);
932 }
933
934 ctx->tail_descriptor = d;
935 ctx->tail_descriptor_last = last;
936}
937
938static void it_context_tasklet(unsigned long data)
939{
940 struct iso_context *ctx = (struct iso_context *)data;
941
942 flush_iso_context(ctx);
943}
944
945static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
946 int type)
947{
948 struct fw_ohci *ohci = fw_ohci(card);
949 struct iso_context *ctx, *list;
950 void (*tasklet) (unsigned long data);
951 u32 *mask;
952 unsigned long flags;
953 int index;
954
955 if (type == FW_ISO_CONTEXT_TRANSMIT) {
956 mask = &ohci->it_context_mask;
957 list = ohci->it_context_list;
958 tasklet = it_context_tasklet;
959 } else {
960 mask = &ohci->ir_context_mask;
961 list = ohci->ir_context_list;
962 tasklet = ir_context_tasklet;
963 }
964
965 spin_lock_irqsave(&ohci->lock, flags);
966 index = ffs(*mask) - 1;
967 if (index >= 0)
968 *mask &= ~(1 << index);
969 spin_unlock_irqrestore(&ohci->lock, flags);
970
971 if (index < 0)
972 return ERR_PTR(-EBUSY);
973
974 ctx = &list[index];
975 memset(ctx, 0, sizeof *ctx);
976 tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
977
978 ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
979 if (ctx->buffer == NULL) {
980 spin_lock_irqsave(&ohci->lock, flags);
981 *mask |= 1 << index;
982 spin_unlock_irqrestore(&ohci->lock, flags);
983 return ERR_PTR(-ENOMEM);
984 }
985
986 ctx->buffer_bus =
987 dma_map_single(card->device, ctx->buffer,
988 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
989
990 ctx->head_descriptor = ctx->buffer;
991 ctx->prev_descriptor = ctx->buffer;
992 ctx->tail_descriptor = ctx->buffer;
993 ctx->tail_descriptor_last = ctx->buffer;
994
995 /* We put a dummy descriptor in the buffer that has a NULL
996 * branch address and looks like it's been sent. That way we
997 * have a descriptor to append DMA programs to. Also, the
998 * ring buffer invariant is that it always has at least one
999 * element so that head == tail means buffer full. */
1000
1001 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
5e20c282
SR
1002 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
1003 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ed568912
KH
1004 ctx->head_descriptor++;
1005
1006 return &ctx->base;
1007}
1008
1009static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1010{
1011 struct iso_context *ctx = (struct iso_context *)base;
1012 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1013 u32 cycle_match = 0;
1014 int index;
1015
1016 index = ctx - ohci->it_context_list;
1017 if (cycle > 0)
1018 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1019 (cycle & 0x7fff) << 16;
1020
1021 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1022 reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1023 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1024 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1025 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1026 CONTEXT_RUN | cycle_match);
1027 flush_writes(ohci);
1028
1029 return 0;
1030}
1031
1032static void ohci_free_iso_context(struct fw_iso_context *base)
1033{
1034 struct fw_ohci *ohci = fw_ohci(base->card);
1035 struct iso_context *ctx = (struct iso_context *)base;
1036 unsigned long flags;
1037 int index;
1038
1039 flush_iso_context(ctx);
1040
1041 spin_lock_irqsave(&ohci->lock, flags);
1042
1043 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1044 index = ctx - ohci->it_context_list;
1045 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1046 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1047 ohci->it_context_mask |= 1 << index;
1048 } else {
1049 index = ctx - ohci->ir_context_list;
1050 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1051 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1052 ohci->ir_context_mask |= 1 << index;
1053 }
1054 flush_writes(ohci);
1055
1056 dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1057 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1058
1059 spin_unlock_irqrestore(&ohci->lock, flags);
1060}
1061
1062static int
1063ohci_queue_iso(struct fw_iso_context *base,
1064 struct fw_iso_packet *packet, void *payload)
1065{
1066 struct iso_context *ctx = (struct iso_context *)base;
1067 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1068 struct descriptor *d, *end, *last, *tail, *pd;
1069 struct fw_iso_packet *p;
1070 __le32 *header;
1071 dma_addr_t d_bus;
1072 u32 z, header_z, payload_z, irq;
1073 u32 payload_index, payload_end_index, next_page_index;
1074 int index, page, end_page, i, length, offset;
1075
1076 /* FIXME: Cycle lost behavior should be configurable: lose
1077 * packet, retransmit or terminate.. */
1078
1079 p = packet;
1080 payload_index = payload - ctx->base.buffer;
1081 d = ctx->head_descriptor;
1082 tail = ctx->tail_descriptor;
1083 end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1084
1085 if (p->skip)
1086 z = 1;
1087 else
1088 z = 2;
1089 if (p->header_length > 0)
1090 z++;
1091
1092 /* Determine the first page the payload isn't contained in. */
1093 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1094 if (p->payload_length > 0)
1095 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1096 else
1097 payload_z = 0;
1098
1099 z += payload_z;
1100
1101 /* Get header size in number of descriptors. */
1102 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1103
1104 if (d + z + header_z <= tail) {
1105 goto has_space;
1106 } else if (d > tail && d + z + header_z <= end) {
1107 goto has_space;
1108 } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1109 d = ctx->buffer;
1110 goto has_space;
1111 }
1112
1113 /* No space in buffer */
1114 return -1;
1115
1116 has_space:
1117 memset(d, 0, (z + header_z) * sizeof *d);
1118 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1119
1120 if (!p->skip) {
1121 d[0].control = cpu_to_le16(descriptor_key_immediate);
1122 d[0].req_count = cpu_to_le16(8);
1123
1124 header = (__le32 *) &d[1];
1125 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1126 it_header_tag(p->tag) |
1127 it_header_tcode(TCODE_STREAM_DATA) |
1128 it_header_channel(ctx->base.channel) |
1129 it_header_speed(ctx->base.speed));
1130 header[1] =
1131 cpu_to_le32(it_header_data_length(p->header_length +
1132 p->payload_length));
1133 }
1134
1135 if (p->header_length > 0) {
1136 d[2].req_count = cpu_to_le16(p->header_length);
1137 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1138 memcpy(&d[z], p->header, p->header_length);
1139 }
1140
1141 pd = d + z - payload_z;
1142 payload_end_index = payload_index + p->payload_length;
1143 for (i = 0; i < payload_z; i++) {
1144 page = payload_index >> PAGE_SHIFT;
1145 offset = payload_index & ~PAGE_MASK;
1146 next_page_index = (page + 1) << PAGE_SHIFT;
1147 length =
1148 min(next_page_index, payload_end_index) - payload_index;
1149 pd[i].req_count = cpu_to_le16(length);
1150 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1151
1152 payload_index += length;
1153 }
1154
1155 if (z == 2)
1156 last = d;
1157 else
1158 last = d + z - 1;
1159
1160 if (p->interrupt)
1161 irq = descriptor_irq_always;
1162 else
1163 irq = descriptor_no_irq;
1164
1165 last->control = cpu_to_le16(descriptor_output_last |
1166 descriptor_status |
1167 descriptor_branch_always |
1168 irq);
1169
1170 dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1171 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1172
1173 ctx->head_descriptor = d + z + header_z;
1174 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1175 ctx->prev_descriptor = last;
1176
1177 index = ctx - ohci->it_context_list;
1178 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1179 flush_writes(ohci);
1180
1181 return 0;
1182}
1183
21ebcd12 1184static const struct fw_card_driver ohci_driver = {
ed568912
KH
1185 .name = ohci_driver_name,
1186 .enable = ohci_enable,
1187 .update_phy_reg = ohci_update_phy_reg,
1188 .set_config_rom = ohci_set_config_rom,
1189 .send_request = ohci_send_request,
1190 .send_response = ohci_send_response,
1191 .enable_phys_dma = ohci_enable_phys_dma,
1192
1193 .allocate_iso_context = ohci_allocate_iso_context,
1194 .free_iso_context = ohci_free_iso_context,
1195 .queue_iso = ohci_queue_iso,
5af4e5ea 1196 .send_iso = ohci_send_iso,
ed568912
KH
1197};
1198
1199static int software_reset(struct fw_ohci *ohci)
1200{
1201 int i;
1202
1203 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1204
1205 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1206 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1207 OHCI1394_HCControl_softReset) == 0)
1208 return 0;
1209 msleep(1);
1210 }
1211
1212 return -EBUSY;
1213}
1214
1215/* ---------- pci subsystem interface ---------- */
1216
1217enum {
1218 CLEANUP_SELF_ID,
1219 CLEANUP_REGISTERS,
1220 CLEANUP_IOMEM,
1221 CLEANUP_DISABLE,
1222 CLEANUP_PUT_CARD,
1223};
1224
1225static int cleanup(struct fw_ohci *ohci, int stage, int code)
1226{
1227 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1228
1229 switch (stage) {
1230 case CLEANUP_SELF_ID:
1231 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1232 ohci->self_id_cpu, ohci->self_id_bus);
1233 case CLEANUP_REGISTERS:
1234 kfree(ohci->it_context_list);
1235 kfree(ohci->ir_context_list);
1236 pci_iounmap(dev, ohci->registers);
1237 case CLEANUP_IOMEM:
1238 pci_release_region(dev, 0);
1239 case CLEANUP_DISABLE:
1240 pci_disable_device(dev);
1241 case CLEANUP_PUT_CARD:
1242 fw_card_put(&ohci->card);
1243 }
1244
1245 return code;
1246}
1247
1248static int __devinit
1249pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1250{
1251 struct fw_ohci *ohci;
1252 u32 bus_options, max_receive, link_speed;
1253 u64 guid;
1254 int error_code;
1255 size_t size;
1256
1257 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1258 if (ohci == NULL) {
1259 fw_error("Could not malloc fw_ohci data.\n");
1260 return -ENOMEM;
1261 }
1262
1263 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1264
1265 if (pci_enable_device(dev)) {
1266 fw_error("Failed to enable OHCI hardware.\n");
1267 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1268 }
1269
1270 pci_set_master(dev);
1271 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1272 pci_set_drvdata(dev, ohci);
1273
1274 spin_lock_init(&ohci->lock);
1275
1276 tasklet_init(&ohci->bus_reset_tasklet,
1277 bus_reset_tasklet, (unsigned long)ohci);
1278
1279 if (pci_request_region(dev, 0, ohci_driver_name)) {
1280 fw_error("MMIO resource unavailable\n");
1281 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1282 }
1283
1284 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1285 if (ohci->registers == NULL) {
1286 fw_error("Failed to remap registers\n");
1287 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1288 }
1289
1290 if (software_reset(ohci)) {
1291 fw_error("Failed to reset ohci card.\n");
1292 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1293 }
1294
1295 /* Now enable LPS, which we need in order to start accessing
1296 * most of the registers. In fact, on some cards (ALI M5251),
1297 * accessing registers in the SClk domain without LPS enabled
1298 * will lock up the machine. Wait 50msec to make sure we have
1299 * full link enabled. */
1300 reg_write(ohci, OHCI1394_HCControlSet,
1301 OHCI1394_HCControl_LPS |
1302 OHCI1394_HCControl_postedWriteEnable);
1303 flush_writes(ohci);
1304 msleep(50);
1305
1306 reg_write(ohci, OHCI1394_HCControlClear,
1307 OHCI1394_HCControl_noByteSwapData);
1308
1309 reg_write(ohci, OHCI1394_LinkControlSet,
1310 OHCI1394_LinkControl_rcvSelfID |
1311 OHCI1394_LinkControl_cycleTimerEnable |
1312 OHCI1394_LinkControl_cycleMaster);
1313
1314 ar_context_init(&ohci->ar_request_ctx, ohci,
1315 OHCI1394_AsReqRcvContextControlSet);
1316
1317 ar_context_init(&ohci->ar_response_ctx, ohci,
1318 OHCI1394_AsRspRcvContextControlSet);
1319
1320 at_context_init(&ohci->at_request_ctx, ohci,
1321 OHCI1394_AsReqTrContextControlSet);
1322
1323 at_context_init(&ohci->at_response_ctx, ohci,
1324 OHCI1394_AsRspTrContextControlSet);
1325
1326 reg_write(ohci, OHCI1394_ATRetries,
1327 OHCI1394_MAX_AT_REQ_RETRIES |
1328 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1329 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1330
1331 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1332 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1333 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1334 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1335 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1336
1337 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1338 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1339 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1340 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1341 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1342
1343 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1344 fw_error("Out of memory for it/ir contexts.\n");
1345 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1346 }
1347
1348 /* self-id dma buffer allocation */
1349 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1350 SELF_ID_BUF_SIZE,
1351 &ohci->self_id_bus,
1352 GFP_KERNEL);
1353 if (ohci->self_id_cpu == NULL) {
1354 fw_error("Out of memory for self ID buffer.\n");
1355 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1356 }
1357
1358 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1359 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1360 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1361 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1362 reg_write(ohci, OHCI1394_IntMaskSet,
1363 OHCI1394_selfIDComplete |
1364 OHCI1394_RQPkt | OHCI1394_RSPkt |
1365 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1366 OHCI1394_isochRx | OHCI1394_isochTx |
1367 OHCI1394_masterIntEnable);
1368
1369 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1370 max_receive = (bus_options >> 12) & 0xf;
1371 link_speed = bus_options & 0x7;
1372 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1373 reg_read(ohci, OHCI1394_GUIDLo);
1374
1375 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1376 if (error_code < 0)
1377 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1378
1379 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1380
1381 return 0;
1382}
1383
1384static void pci_remove(struct pci_dev *dev)
1385{
1386 struct fw_ohci *ohci;
1387
1388 ohci = pci_get_drvdata(dev);
1389 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1390 fw_core_remove_card(&ohci->card);
1391
1392 /* FIXME: Fail all pending packets here, now that the upper
1393 * layers can't queue any more. */
1394
1395 software_reset(ohci);
1396 free_irq(dev->irq, ohci);
1397 cleanup(ohci, CLEANUP_SELF_ID, 0);
1398
1399 fw_notify("Removed fw-ohci device.\n");
1400}
1401
1402static struct pci_device_id pci_table[] = {
1403 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1404 { }
1405};
1406
1407MODULE_DEVICE_TABLE(pci, pci_table);
1408
1409static struct pci_driver fw_ohci_pci_driver = {
1410 .name = ohci_driver_name,
1411 .id_table = pci_table,
1412 .probe = pci_probe,
1413 .remove = pci_remove,
1414};
1415
1416MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1417MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1418MODULE_LICENSE("GPL");
1419
1420static int __init fw_ohci_init(void)
1421{
1422 return pci_register_driver(&fw_ohci_pci_driver);
1423}
1424
1425static void __exit fw_ohci_cleanup(void)
1426{
1427 pci_unregister_driver(&fw_ohci_pci_driver);
1428}
1429
1430module_init(fw_ohci_init);
1431module_exit(fw_ohci_cleanup);