]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/firewire/fw-ohci.c
firewire: fw-ohci: remove unnecessary macro
[net-next-2.6.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
48
49struct descriptor {
50 __le16 req_count;
51 __le16 control;
52 __le32 data_address;
53 __le32 branch_address;
54 __le16 res_count;
55 __le16 transfer_status;
56} __attribute__((aligned(16)));
57
58struct ar_context {
59 struct fw_ohci *ohci;
60 struct descriptor descriptor;
61 __le32 buffer[512];
62 dma_addr_t descriptor_bus;
63 dma_addr_t buffer_bus;
64
65 u32 command_ptr;
66 u32 control_set;
67 u32 control_clear;
68
69 struct tasklet_struct tasklet;
70};
71
72struct at_context {
73 struct fw_ohci *ohci;
74 dma_addr_t descriptor_bus;
75 dma_addr_t buffer_bus;
76
77 struct list_head list;
78
79 struct {
80 struct descriptor more;
81 __le32 header[4];
82 struct descriptor last;
83 } d;
84
85 u32 command_ptr;
86 u32 control_set;
87 u32 control_clear;
88
89 struct tasklet_struct tasklet;
90};
91
92#define it_header_sy(v) ((v) << 0)
93#define it_header_tcode(v) ((v) << 4)
94#define it_header_channel(v) ((v) << 8)
95#define it_header_tag(v) ((v) << 14)
96#define it_header_speed(v) ((v) << 16)
97#define it_header_data_length(v) ((v) << 16)
98
99struct iso_context {
100 struct fw_iso_context base;
101 struct tasklet_struct tasklet;
102 u32 control_set;
103 u32 control_clear;
104 u32 command_ptr;
105 u32 context_match;
106
107 struct descriptor *buffer;
108 dma_addr_t buffer_bus;
109 struct descriptor *head_descriptor;
110 struct descriptor *tail_descriptor;
111 struct descriptor *tail_descriptor_last;
112 struct descriptor *prev_descriptor;
113};
114
115#define CONFIG_ROM_SIZE 1024
116
117struct fw_ohci {
118 struct fw_card card;
119
120 __iomem char *registers;
121 dma_addr_t self_id_bus;
122 __le32 *self_id_cpu;
123 struct tasklet_struct bus_reset_tasklet;
124 int generation;
125 int request_generation;
126
127 /* Spinlock for accessing fw_ohci data. Never call out of
128 * this driver with this lock held. */
129 spinlock_t lock;
130 u32 self_id_buffer[512];
131
132 /* Config rom buffers */
133 __be32 *config_rom;
134 dma_addr_t config_rom_bus;
135 __be32 *next_config_rom;
136 dma_addr_t next_config_rom_bus;
137 u32 next_header;
138
139 struct ar_context ar_request_ctx;
140 struct ar_context ar_response_ctx;
141 struct at_context at_request_ctx;
142 struct at_context at_response_ctx;
143
144 u32 it_context_mask;
145 struct iso_context *it_context_list;
146 u32 ir_context_mask;
147 struct iso_context *ir_context_list;
148};
149
95688e97 150static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
151{
152 return container_of(card, struct fw_ohci, card);
153}
154
155#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
156
157#define CONTEXT_RUN 0x8000
158#define CONTEXT_WAKE 0x1000
159#define CONTEXT_DEAD 0x0800
160#define CONTEXT_ACTIVE 0x0400
161
162#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
163#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
164#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
165
166#define FW_OHCI_MAJOR 240
167#define OHCI1394_REGISTER_SIZE 0x800
168#define OHCI_LOOP_COUNT 500
169#define OHCI1394_PCI_HCI_Control 0x40
170#define SELF_ID_BUF_SIZE 0x800
171
ed568912
KH
172static char ohci_driver_name[] = KBUILD_MODNAME;
173
95688e97 174static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
175{
176 writel(data, ohci->registers + offset);
177}
178
95688e97 179static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
180{
181 return readl(ohci->registers + offset);
182}
183
95688e97 184static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
185{
186 /* Do a dummy read to flush writes. */
187 reg_read(ohci, OHCI1394_Version);
188}
189
190static int
191ohci_update_phy_reg(struct fw_card *card, int addr,
192 int clear_bits, int set_bits)
193{
194 struct fw_ohci *ohci = fw_ohci(card);
195 u32 val, old;
196
197 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
198 msleep(2);
199 val = reg_read(ohci, OHCI1394_PhyControl);
200 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
201 fw_error("failed to set phy reg bits.\n");
202 return -EBUSY;
203 }
204
205 old = OHCI1394_PhyControl_ReadData(val);
206 old = (old & ~clear_bits) | set_bits;
207 reg_write(ohci, OHCI1394_PhyControl,
208 OHCI1394_PhyControl_Write(addr, old));
209
210 return 0;
211}
212
213static void ar_context_run(struct ar_context *ctx)
214{
215 reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
216 reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
217 flush_writes(ctx->ohci);
218}
219
220static void ar_context_tasklet(unsigned long data)
221{
222 struct ar_context *ctx = (struct ar_context *)data;
223 struct fw_ohci *ohci = ctx->ohci;
224 u32 status;
225 int length, speed, ack, timestamp, tcode;
226
227 /* FIXME: What to do about evt_* errors? */
228 length = le16_to_cpu(ctx->descriptor.req_count) -
229 le16_to_cpu(ctx->descriptor.res_count) - 4;
230 status = le32_to_cpu(ctx->buffer[length / 4]);
231 ack = ((status >> 16) & 0x1f) - 16;
232 speed = (status >> 21) & 0x7;
233 timestamp = status & 0xffff;
234
235 ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
236 ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
237 ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
238
239 tcode = (ctx->buffer[0] >> 4) & 0x0f;
240 if (TCODE_IS_BLOCK_PACKET(tcode))
241 ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
242
243 /* The OHCI bus reset handler synthesizes a phy packet with
244 * the new generation number when a bus reset happens (see
245 * section 8.4.2.3). This helps us determine when a request
246 * was received and make sure we send the response in the same
247 * generation. We only need this for requests; for responses
248 * we use the unique tlabel for finding the matching
249 * request. */
250
251 if (ack + 16 == 0x09)
252 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
253 else if (ctx == &ohci->ar_request_ctx)
254 fw_core_handle_request(&ohci->card, speed, ack, timestamp,
255 ohci->request_generation,
256 length, ctx->buffer);
257 else
258 fw_core_handle_response(&ohci->card, speed, ack, timestamp,
259 length, ctx->buffer);
260
261 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
262 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
263 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
264
265 dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
266 sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
267
268 /* FIXME: We stop and restart the ar context here, what if we
269 * stop while a receive is in progress? Maybe we could just
270 * loop the context back to itself and use it in buffer fill
271 * mode as intended... */
272
273 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
274 ar_context_run(ctx);
275}
276
277static int
278ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
279{
280 ctx->descriptor_bus =
281 dma_map_single(ohci->card.device, &ctx->descriptor,
282 sizeof ctx->descriptor, DMA_TO_DEVICE);
283 if (ctx->descriptor_bus == 0)
284 return -ENOMEM;
285
286 if (ctx->descriptor_bus & 0xf)
fcf7770a
AM
287 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
288 (unsigned long)ctx->descriptor_bus);
ed568912
KH
289
290 ctx->buffer_bus =
291 dma_map_single(ohci->card.device, ctx->buffer,
292 sizeof ctx->buffer, DMA_FROM_DEVICE);
293
294 if (ctx->buffer_bus == 0) {
295 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
296 sizeof ctx->descriptor, DMA_TO_DEVICE);
297 return -ENOMEM;
298 }
299
300 memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
301 ctx->descriptor.control = cpu_to_le16(descriptor_input_more |
302 descriptor_status |
303 descriptor_branch_always);
304 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
305 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
306 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
307
308 ctx->control_set = control_set;
309 ctx->control_clear = control_set + 4;
310 ctx->command_ptr = control_set + 12;
311 ctx->ohci = ohci;
312
313 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
314
315 ar_context_run(ctx);
316
317 return 0;
318}
319
320static void
321do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
322{
323 struct fw_packet *p, *next;
324
325 list_for_each_entry_safe(p, next, list, link)
326 p->callback(p, &ohci->card, p->status);
327}
328
329static void
330complete_transmission(struct fw_packet *packet,
331 int status, struct list_head *list)
332{
333 list_move_tail(&packet->link, list);
334 packet->status = status;
335}
336
337/* This function prepares the first packet in the context queue for
338 * transmission. Must always be called with the ochi->lock held to
339 * ensure proper generation handling and locking around packet queue
340 * manipulation. */
341static void
342at_context_setup_packet(struct at_context *ctx, struct list_head *list)
343{
344 struct fw_packet *packet;
345 struct fw_ohci *ohci = ctx->ohci;
346 int z, tcode;
347
348 packet = fw_packet(ctx->list.next);
349
350 memset(&ctx->d, 0, sizeof ctx->d);
351 if (packet->payload_length > 0) {
352 packet->payload_bus = dma_map_single(ohci->card.device,
353 packet->payload,
354 packet->payload_length,
355 DMA_TO_DEVICE);
356 if (packet->payload_bus == 0) {
357 complete_transmission(packet, -ENOMEM, list);
358 return;
359 }
360
361 ctx->d.more.control =
362 cpu_to_le16(descriptor_output_more |
363 descriptor_key_immediate);
364 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
365 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
366 ctx->d.last.control =
367 cpu_to_le16(descriptor_output_last |
368 descriptor_irq_always |
369 descriptor_branch_always);
370 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
371 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
372 z = 3;
373 } else {
374 ctx->d.more.control =
375 cpu_to_le16(descriptor_output_last |
376 descriptor_key_immediate |
377 descriptor_irq_always |
378 descriptor_branch_always);
379 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
380 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
381 z = 2;
382 }
383
384 /* The DMA format for asyncronous link packets is different
385 * from the IEEE1394 layout, so shift the fields around
386 * accordingly. If header_length is 8, it's a PHY packet, to
387 * which we need to prepend an extra quadlet. */
388 if (packet->header_length > 8) {
389 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
390 (packet->speed << 16));
391 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
392 (packet->header[0] & 0xffff0000));
393 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
394
395 tcode = (packet->header[0] >> 4) & 0x0f;
396 if (TCODE_IS_BLOCK_PACKET(tcode))
397 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
398 else
399 ctx->d.header[3] = packet->header[3];
400 } else {
401 ctx->d.header[0] =
402 cpu_to_le32((OHCI1394_phy_tcode << 4) |
403 (packet->speed << 16));
404 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
405 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
406 ctx->d.more.req_count = cpu_to_le16(12);
407 }
408
409 /* FIXME: Document how the locking works. */
410 if (ohci->generation == packet->generation) {
411 reg_write(ctx->ohci, ctx->command_ptr,
412 ctx->descriptor_bus | z);
413 reg_write(ctx->ohci, ctx->control_set,
414 CONTEXT_RUN | CONTEXT_WAKE);
415 } else {
416 /* We dont return error codes from this function; all
417 * transmission errors are reported through the
418 * callback. */
419 complete_transmission(packet, -ESTALE, list);
420 }
421}
422
423static void at_context_stop(struct at_context *ctx)
424{
425 u32 reg;
426
427 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
428
429 reg = reg_read(ctx->ohci, ctx->control_set);
430 if (reg & CONTEXT_ACTIVE)
431 fw_notify("Tried to stop context, but it is still active "
432 "(0x%08x).\n", reg);
433}
434
435static void at_context_tasklet(unsigned long data)
436{
437 struct at_context *ctx = (struct at_context *)data;
438 struct fw_ohci *ohci = ctx->ohci;
439 struct fw_packet *packet;
440 LIST_HEAD(list);
441 unsigned long flags;
442 int evt;
443
444 spin_lock_irqsave(&ohci->lock, flags);
445
446 packet = fw_packet(ctx->list.next);
447
448 at_context_stop(ctx);
449
450 if (packet->payload_length > 0) {
451 dma_unmap_single(ohci->card.device, packet->payload_bus,
452 packet->payload_length, DMA_TO_DEVICE);
453 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
454 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
455 }
456 else {
457 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
458 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
459 }
460
461 if (evt < 16) {
462 switch (evt) {
463 case OHCI1394_evt_timeout:
464 /* Async response transmit timed out. */
465 complete_transmission(packet, -ETIMEDOUT, &list);
466 break;
467
468 case OHCI1394_evt_flushed:
469 /* The packet was flushed should give same
470 * error as when we try to use a stale
471 * generation count. */
472 complete_transmission(packet, -ESTALE, &list);
473 break;
474
475 case OHCI1394_evt_missing_ack:
476 /* This would be a higher level software
477 * error, it is using a valid (current)
478 * generation count, but the node is not on
479 * the bus. */
480 complete_transmission(packet, -ENODEV, &list);
481 break;
482
483 default:
484 complete_transmission(packet, -EIO, &list);
485 break;
486 }
487 } else
488 complete_transmission(packet, evt - 16, &list);
489
490 /* If more packets are queued, set up the next one. */
491 if (!list_empty(&ctx->list))
492 at_context_setup_packet(ctx, &list);
493
494 spin_unlock_irqrestore(&ohci->lock, flags);
495
496 do_packet_callbacks(ohci, &list);
497}
498
499static int
500at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
501{
502 INIT_LIST_HEAD(&ctx->list);
503
504 ctx->descriptor_bus =
505 dma_map_single(ohci->card.device, &ctx->d,
506 sizeof ctx->d, DMA_TO_DEVICE);
507 if (ctx->descriptor_bus == 0)
508 return -ENOMEM;
509
510 ctx->control_set = control_set;
511 ctx->control_clear = control_set + 4;
512 ctx->command_ptr = control_set + 12;
513 ctx->ohci = ohci;
514
515 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
516
517 return 0;
518}
519
520static void
521at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
522{
523 LIST_HEAD(list);
524 unsigned long flags;
525 int was_empty;
526
527 spin_lock_irqsave(&ctx->ohci->lock, flags);
528
529 was_empty = list_empty(&ctx->list);
530 list_add_tail(&packet->link, &ctx->list);
531 if (was_empty)
532 at_context_setup_packet(ctx, &list);
533
534 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
535
536 do_packet_callbacks(ctx->ohci, &list);
537}
538
539static void bus_reset_tasklet(unsigned long data)
540{
541 struct fw_ohci *ohci = (struct fw_ohci *)data;
542 int self_id_count, i, j, reg, node_id;
543 int generation, new_generation;
544 unsigned long flags;
545
546 reg = reg_read(ohci, OHCI1394_NodeID);
547 if (!(reg & OHCI1394_NodeID_idValid)) {
548 fw_error("node ID not valid, new bus reset in progress\n");
549 return;
550 }
551 node_id = reg & 0xffff;
552
553 /* The count in the SelfIDCount register is the number of
554 * bytes in the self ID receive buffer. Since we also receive
555 * the inverted quadlets and a header quadlet, we shift one
556 * bit extra to get the actual number of self IDs. */
557
558 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
559 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
560
561 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
562 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
563 fw_error("inconsistent self IDs\n");
564 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
565 }
566
567 /* Check the consistency of the self IDs we just read. The
568 * problem we face is that a new bus reset can start while we
569 * read out the self IDs from the DMA buffer. If this happens,
570 * the DMA buffer will be overwritten with new self IDs and we
571 * will read out inconsistent data. The OHCI specification
572 * (section 11.2) recommends a technique similar to
573 * linux/seqlock.h, where we remember the generation of the
574 * self IDs in the buffer before reading them out and compare
575 * it to the current generation after reading them out. If
576 * the two generations match we know we have a consistent set
577 * of self IDs. */
578
579 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
580 if (new_generation != generation) {
581 fw_notify("recursive bus reset detected, "
582 "discarding self ids\n");
583 return;
584 }
585
586 /* FIXME: Document how the locking works. */
587 spin_lock_irqsave(&ohci->lock, flags);
588
589 ohci->generation = generation;
590 at_context_stop(&ohci->at_request_ctx);
591 at_context_stop(&ohci->at_response_ctx);
592 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
593
594 /* This next bit is unrelated to the AT context stuff but we
595 * have to do it under the spinlock also. If a new config rom
596 * was set up before this reset, the old one is now no longer
597 * in use and we can free it. Update the config rom pointers
598 * to point to the current config rom and clear the
599 * next_config_rom pointer so a new udpate can take place. */
600
601 if (ohci->next_config_rom != NULL) {
602 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
603 ohci->config_rom, ohci->config_rom_bus);
604 ohci->config_rom = ohci->next_config_rom;
605 ohci->config_rom_bus = ohci->next_config_rom_bus;
606 ohci->next_config_rom = NULL;
607
608 /* Restore config_rom image and manually update
609 * config_rom registers. Writing the header quadlet
610 * will indicate that the config rom is ready, so we
611 * do that last. */
612 reg_write(ohci, OHCI1394_BusOptions,
613 be32_to_cpu(ohci->config_rom[2]));
614 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
615 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
616 }
617
618 spin_unlock_irqrestore(&ohci->lock, flags);
619
620 fw_core_handle_bus_reset(&ohci->card, node_id, generation,
621 self_id_count, ohci->self_id_buffer);
622}
623
624static irqreturn_t irq_handler(int irq, void *data)
625{
626 struct fw_ohci *ohci = data;
627 u32 event, iso_event;
628 int i;
629
630 event = reg_read(ohci, OHCI1394_IntEventClear);
631
632 if (!event)
633 return IRQ_NONE;
634
635 reg_write(ohci, OHCI1394_IntEventClear, event);
636
637 if (event & OHCI1394_selfIDComplete)
638 tasklet_schedule(&ohci->bus_reset_tasklet);
639
640 if (event & OHCI1394_RQPkt)
641 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
642
643 if (event & OHCI1394_RSPkt)
644 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
645
646 if (event & OHCI1394_reqTxComplete)
647 tasklet_schedule(&ohci->at_request_ctx.tasklet);
648
649 if (event & OHCI1394_respTxComplete)
650 tasklet_schedule(&ohci->at_response_ctx.tasklet);
651
652 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
653 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
654
655 while (iso_event) {
656 i = ffs(iso_event) - 1;
657 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
658 iso_event &= ~(1 << i);
659 }
660
661 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
662 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
663
664 while (iso_event) {
665 i = ffs(iso_event) - 1;
666 tasklet_schedule(&ohci->it_context_list[i].tasklet);
667 iso_event &= ~(1 << i);
668 }
669
670 return IRQ_HANDLED;
671}
672
673static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
674{
675 struct fw_ohci *ohci = fw_ohci(card);
676 struct pci_dev *dev = to_pci_dev(card->device);
677
678 /* When the link is not yet enabled, the atomic config rom
679 * update mechanism described below in ohci_set_config_rom()
680 * is not active. We have to update ConfigRomHeader and
681 * BusOptions manually, and the write to ConfigROMmap takes
682 * effect immediately. We tie this to the enabling of the
683 * link, so we have a valid config rom before enabling - the
684 * OHCI requires that ConfigROMhdr and BusOptions have valid
685 * values before enabling.
686 *
687 * However, when the ConfigROMmap is written, some controllers
688 * always read back quadlets 0 and 2 from the config rom to
689 * the ConfigRomHeader and BusOptions registers on bus reset.
690 * They shouldn't do that in this initial case where the link
691 * isn't enabled. This means we have to use the same
692 * workaround here, setting the bus header to 0 and then write
693 * the right values in the bus reset tasklet.
694 */
695
696 ohci->next_config_rom =
697 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
698 &ohci->next_config_rom_bus, GFP_KERNEL);
699 if (ohci->next_config_rom == NULL)
700 return -ENOMEM;
701
702 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
703 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
704
705 ohci->next_header = config_rom[0];
706 ohci->next_config_rom[0] = 0;
707 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
708 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
709 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
710
711 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
712
713 if (request_irq(dev->irq, irq_handler,
714 SA_SHIRQ, ohci_driver_name, ohci)) {
715 fw_error("Failed to allocate shared interrupt %d.\n",
716 dev->irq);
717 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
718 ohci->config_rom, ohci->config_rom_bus);
719 return -EIO;
720 }
721
722 reg_write(ohci, OHCI1394_HCControlSet,
723 OHCI1394_HCControl_linkEnable |
724 OHCI1394_HCControl_BIBimageValid);
725 flush_writes(ohci);
726
727 /* We are ready to go, initiate bus reset to finish the
728 * initialization. */
729
730 fw_core_initiate_bus_reset(&ohci->card, 1);
731
732 return 0;
733}
734
735static int
736ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
737{
738 struct fw_ohci *ohci;
739 unsigned long flags;
740 int retval = 0;
741 __be32 *next_config_rom;
742 dma_addr_t next_config_rom_bus;
743
744 ohci = fw_ohci(card);
745
746 /* When the OHCI controller is enabled, the config rom update
747 * mechanism is a bit tricky, but easy enough to use. See
748 * section 5.5.6 in the OHCI specification.
749 *
750 * The OHCI controller caches the new config rom address in a
751 * shadow register (ConfigROMmapNext) and needs a bus reset
752 * for the changes to take place. When the bus reset is
753 * detected, the controller loads the new values for the
754 * ConfigRomHeader and BusOptions registers from the specified
755 * config rom and loads ConfigROMmap from the ConfigROMmapNext
756 * shadow register. All automatically and atomically.
757 *
758 * Now, there's a twist to this story. The automatic load of
759 * ConfigRomHeader and BusOptions doesn't honor the
760 * noByteSwapData bit, so with a be32 config rom, the
761 * controller will load be32 values in to these registers
762 * during the atomic update, even on litte endian
763 * architectures. The workaround we use is to put a 0 in the
764 * header quadlet; 0 is endian agnostic and means that the
765 * config rom isn't ready yet. In the bus reset tasklet we
766 * then set up the real values for the two registers.
767 *
768 * We use ohci->lock to avoid racing with the code that sets
769 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
770 */
771
772 next_config_rom =
773 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
774 &next_config_rom_bus, GFP_KERNEL);
775 if (next_config_rom == NULL)
776 return -ENOMEM;
777
778 spin_lock_irqsave(&ohci->lock, flags);
779
780 if (ohci->next_config_rom == NULL) {
781 ohci->next_config_rom = next_config_rom;
782 ohci->next_config_rom_bus = next_config_rom_bus;
783
784 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
785 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
786 length * 4);
787
788 ohci->next_header = config_rom[0];
789 ohci->next_config_rom[0] = 0;
790
791 reg_write(ohci, OHCI1394_ConfigROMmap,
792 ohci->next_config_rom_bus);
793 } else {
794 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
795 next_config_rom, next_config_rom_bus);
796 retval = -EBUSY;
797 }
798
799 spin_unlock_irqrestore(&ohci->lock, flags);
800
801 /* Now initiate a bus reset to have the changes take
802 * effect. We clean up the old config rom memory and DMA
803 * mappings in the bus reset tasklet, since the OHCI
804 * controller could need to access it before the bus reset
805 * takes effect. */
806 if (retval == 0)
807 fw_core_initiate_bus_reset(&ohci->card, 1);
808
809 return retval;
810}
811
812static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
813{
814 struct fw_ohci *ohci = fw_ohci(card);
815
816 at_context_transmit(&ohci->at_request_ctx, packet);
817}
818
819static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
820{
821 struct fw_ohci *ohci = fw_ohci(card);
822
823 at_context_transmit(&ohci->at_response_ctx, packet);
824}
825
826static int
827ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
828{
829 struct fw_ohci *ohci = fw_ohci(card);
830 unsigned long flags;
831 int retval = 0;
832
833 /* FIXME: make sure this bitmask is cleared when we clear the
834 * busReset interrupt bit. */
835
836 spin_lock_irqsave(&ohci->lock, flags);
837
838 if (ohci->generation != generation) {
839 retval = -ESTALE;
840 goto out;
841 }
842
843 if (node_id < 32) {
844 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << node_id);
845 } else {
846 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
847 1 << (node_id - 32));
848 }
849 flush_writes(ohci);
ed568912 850 out:
6cad95fe 851 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
852 return retval;
853}
854
855static void ir_context_tasklet(unsigned long data)
856{
857 struct iso_context *ctx = (struct iso_context *)data;
858
859 (void)ctx;
860}
861
862#define ISO_BUFFER_SIZE (64 * 1024)
863
864static void flush_iso_context(struct iso_context *ctx)
865{
866 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
867 struct descriptor *d, *last;
868 u32 address;
869 int z;
870
871 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
872 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
873
874 d = ctx->tail_descriptor;
875 last = ctx->tail_descriptor_last;
876
877 while (last->branch_address != 0 && last->transfer_status != 0) {
878 address = le32_to_cpu(last->branch_address);
879 z = address & 0xf;
880 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
881
882 if (z == 2)
883 last = d;
884 else
885 last = d + z - 1;
886
887 if (le16_to_cpu(last->control) & descriptor_irq_always)
888 ctx->base.callback(&ctx->base,
889 0, le16_to_cpu(last->res_count),
890 ctx->base.callback_data);
891 }
892
893 ctx->tail_descriptor = d;
894 ctx->tail_descriptor_last = last;
895}
896
897static void it_context_tasklet(unsigned long data)
898{
899 struct iso_context *ctx = (struct iso_context *)data;
900
901 flush_iso_context(ctx);
902}
903
904static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
905 int type)
906{
907 struct fw_ohci *ohci = fw_ohci(card);
908 struct iso_context *ctx, *list;
909 void (*tasklet) (unsigned long data);
910 u32 *mask;
911 unsigned long flags;
912 int index;
913
914 if (type == FW_ISO_CONTEXT_TRANSMIT) {
915 mask = &ohci->it_context_mask;
916 list = ohci->it_context_list;
917 tasklet = it_context_tasklet;
918 } else {
919 mask = &ohci->ir_context_mask;
920 list = ohci->ir_context_list;
921 tasklet = ir_context_tasklet;
922 }
923
924 spin_lock_irqsave(&ohci->lock, flags);
925 index = ffs(*mask) - 1;
926 if (index >= 0)
927 *mask &= ~(1 << index);
928 spin_unlock_irqrestore(&ohci->lock, flags);
929
930 if (index < 0)
931 return ERR_PTR(-EBUSY);
932
933 ctx = &list[index];
934 memset(ctx, 0, sizeof *ctx);
935 tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
936
937 ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
938 if (ctx->buffer == NULL) {
939 spin_lock_irqsave(&ohci->lock, flags);
940 *mask |= 1 << index;
941 spin_unlock_irqrestore(&ohci->lock, flags);
942 return ERR_PTR(-ENOMEM);
943 }
944
945 ctx->buffer_bus =
946 dma_map_single(card->device, ctx->buffer,
947 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
948
949 ctx->head_descriptor = ctx->buffer;
950 ctx->prev_descriptor = ctx->buffer;
951 ctx->tail_descriptor = ctx->buffer;
952 ctx->tail_descriptor_last = ctx->buffer;
953
954 /* We put a dummy descriptor in the buffer that has a NULL
955 * branch address and looks like it's been sent. That way we
956 * have a descriptor to append DMA programs to. Also, the
957 * ring buffer invariant is that it always has at least one
958 * element so that head == tail means buffer full. */
959
960 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
5e20c282
SR
961 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
962 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ed568912
KH
963 ctx->head_descriptor++;
964
965 return &ctx->base;
966}
967
968static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
969{
970 struct iso_context *ctx = (struct iso_context *)base;
971 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
972 u32 cycle_match = 0;
973 int index;
974
975 index = ctx - ohci->it_context_list;
976 if (cycle > 0)
977 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
978 (cycle & 0x7fff) << 16;
979
980 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
981 reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
982 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
983 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
984 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
985 CONTEXT_RUN | cycle_match);
986 flush_writes(ohci);
987
988 return 0;
989}
990
991static void ohci_free_iso_context(struct fw_iso_context *base)
992{
993 struct fw_ohci *ohci = fw_ohci(base->card);
994 struct iso_context *ctx = (struct iso_context *)base;
995 unsigned long flags;
996 int index;
997
998 flush_iso_context(ctx);
999
1000 spin_lock_irqsave(&ohci->lock, flags);
1001
1002 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1003 index = ctx - ohci->it_context_list;
1004 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1005 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1006 ohci->it_context_mask |= 1 << index;
1007 } else {
1008 index = ctx - ohci->ir_context_list;
1009 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1010 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1011 ohci->ir_context_mask |= 1 << index;
1012 }
1013 flush_writes(ohci);
1014
1015 dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1016 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1017
1018 spin_unlock_irqrestore(&ohci->lock, flags);
1019}
1020
1021static int
1022ohci_queue_iso(struct fw_iso_context *base,
1023 struct fw_iso_packet *packet, void *payload)
1024{
1025 struct iso_context *ctx = (struct iso_context *)base;
1026 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1027 struct descriptor *d, *end, *last, *tail, *pd;
1028 struct fw_iso_packet *p;
1029 __le32 *header;
1030 dma_addr_t d_bus;
1031 u32 z, header_z, payload_z, irq;
1032 u32 payload_index, payload_end_index, next_page_index;
1033 int index, page, end_page, i, length, offset;
1034
1035 /* FIXME: Cycle lost behavior should be configurable: lose
1036 * packet, retransmit or terminate.. */
1037
1038 p = packet;
1039 payload_index = payload - ctx->base.buffer;
1040 d = ctx->head_descriptor;
1041 tail = ctx->tail_descriptor;
1042 end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1043
1044 if (p->skip)
1045 z = 1;
1046 else
1047 z = 2;
1048 if (p->header_length > 0)
1049 z++;
1050
1051 /* Determine the first page the payload isn't contained in. */
1052 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1053 if (p->payload_length > 0)
1054 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1055 else
1056 payload_z = 0;
1057
1058 z += payload_z;
1059
1060 /* Get header size in number of descriptors. */
1061 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1062
1063 if (d + z + header_z <= tail) {
1064 goto has_space;
1065 } else if (d > tail && d + z + header_z <= end) {
1066 goto has_space;
1067 } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1068 d = ctx->buffer;
1069 goto has_space;
1070 }
1071
1072 /* No space in buffer */
1073 return -1;
1074
1075 has_space:
1076 memset(d, 0, (z + header_z) * sizeof *d);
1077 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1078
1079 if (!p->skip) {
1080 d[0].control = cpu_to_le16(descriptor_key_immediate);
1081 d[0].req_count = cpu_to_le16(8);
1082
1083 header = (__le32 *) &d[1];
1084 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1085 it_header_tag(p->tag) |
1086 it_header_tcode(TCODE_STREAM_DATA) |
1087 it_header_channel(ctx->base.channel) |
1088 it_header_speed(ctx->base.speed));
1089 header[1] =
1090 cpu_to_le32(it_header_data_length(p->header_length +
1091 p->payload_length));
1092 }
1093
1094 if (p->header_length > 0) {
1095 d[2].req_count = cpu_to_le16(p->header_length);
1096 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1097 memcpy(&d[z], p->header, p->header_length);
1098 }
1099
1100 pd = d + z - payload_z;
1101 payload_end_index = payload_index + p->payload_length;
1102 for (i = 0; i < payload_z; i++) {
1103 page = payload_index >> PAGE_SHIFT;
1104 offset = payload_index & ~PAGE_MASK;
1105 next_page_index = (page + 1) << PAGE_SHIFT;
1106 length =
1107 min(next_page_index, payload_end_index) - payload_index;
1108 pd[i].req_count = cpu_to_le16(length);
1109 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1110
1111 payload_index += length;
1112 }
1113
1114 if (z == 2)
1115 last = d;
1116 else
1117 last = d + z - 1;
1118
1119 if (p->interrupt)
1120 irq = descriptor_irq_always;
1121 else
1122 irq = descriptor_no_irq;
1123
1124 last->control = cpu_to_le16(descriptor_output_last |
1125 descriptor_status |
1126 descriptor_branch_always |
1127 irq);
1128
1129 dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1130 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1131
1132 ctx->head_descriptor = d + z + header_z;
1133 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1134 ctx->prev_descriptor = last;
1135
1136 index = ctx - ohci->it_context_list;
1137 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1138 flush_writes(ohci);
1139
1140 return 0;
1141}
1142
21ebcd12 1143static const struct fw_card_driver ohci_driver = {
ed568912
KH
1144 .name = ohci_driver_name,
1145 .enable = ohci_enable,
1146 .update_phy_reg = ohci_update_phy_reg,
1147 .set_config_rom = ohci_set_config_rom,
1148 .send_request = ohci_send_request,
1149 .send_response = ohci_send_response,
1150 .enable_phys_dma = ohci_enable_phys_dma,
1151
1152 .allocate_iso_context = ohci_allocate_iso_context,
1153 .free_iso_context = ohci_free_iso_context,
1154 .queue_iso = ohci_queue_iso,
5af4e5ea 1155 .send_iso = ohci_send_iso,
ed568912
KH
1156};
1157
1158static int software_reset(struct fw_ohci *ohci)
1159{
1160 int i;
1161
1162 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1163
1164 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1165 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1166 OHCI1394_HCControl_softReset) == 0)
1167 return 0;
1168 msleep(1);
1169 }
1170
1171 return -EBUSY;
1172}
1173
1174/* ---------- pci subsystem interface ---------- */
1175
1176enum {
1177 CLEANUP_SELF_ID,
1178 CLEANUP_REGISTERS,
1179 CLEANUP_IOMEM,
1180 CLEANUP_DISABLE,
1181 CLEANUP_PUT_CARD,
1182};
1183
1184static int cleanup(struct fw_ohci *ohci, int stage, int code)
1185{
1186 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1187
1188 switch (stage) {
1189 case CLEANUP_SELF_ID:
1190 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1191 ohci->self_id_cpu, ohci->self_id_bus);
1192 case CLEANUP_REGISTERS:
1193 kfree(ohci->it_context_list);
1194 kfree(ohci->ir_context_list);
1195 pci_iounmap(dev, ohci->registers);
1196 case CLEANUP_IOMEM:
1197 pci_release_region(dev, 0);
1198 case CLEANUP_DISABLE:
1199 pci_disable_device(dev);
1200 case CLEANUP_PUT_CARD:
1201 fw_card_put(&ohci->card);
1202 }
1203
1204 return code;
1205}
1206
1207static int __devinit
1208pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1209{
1210 struct fw_ohci *ohci;
1211 u32 bus_options, max_receive, link_speed;
1212 u64 guid;
1213 int error_code;
1214 size_t size;
1215
1216 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1217 if (ohci == NULL) {
1218 fw_error("Could not malloc fw_ohci data.\n");
1219 return -ENOMEM;
1220 }
1221
1222 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1223
1224 if (pci_enable_device(dev)) {
1225 fw_error("Failed to enable OHCI hardware.\n");
1226 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1227 }
1228
1229 pci_set_master(dev);
1230 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1231 pci_set_drvdata(dev, ohci);
1232
1233 spin_lock_init(&ohci->lock);
1234
1235 tasklet_init(&ohci->bus_reset_tasklet,
1236 bus_reset_tasklet, (unsigned long)ohci);
1237
1238 if (pci_request_region(dev, 0, ohci_driver_name)) {
1239 fw_error("MMIO resource unavailable\n");
1240 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1241 }
1242
1243 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1244 if (ohci->registers == NULL) {
1245 fw_error("Failed to remap registers\n");
1246 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1247 }
1248
1249 if (software_reset(ohci)) {
1250 fw_error("Failed to reset ohci card.\n");
1251 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1252 }
1253
1254 /* Now enable LPS, which we need in order to start accessing
1255 * most of the registers. In fact, on some cards (ALI M5251),
1256 * accessing registers in the SClk domain without LPS enabled
1257 * will lock up the machine. Wait 50msec to make sure we have
1258 * full link enabled. */
1259 reg_write(ohci, OHCI1394_HCControlSet,
1260 OHCI1394_HCControl_LPS |
1261 OHCI1394_HCControl_postedWriteEnable);
1262 flush_writes(ohci);
1263 msleep(50);
1264
1265 reg_write(ohci, OHCI1394_HCControlClear,
1266 OHCI1394_HCControl_noByteSwapData);
1267
1268 reg_write(ohci, OHCI1394_LinkControlSet,
1269 OHCI1394_LinkControl_rcvSelfID |
1270 OHCI1394_LinkControl_cycleTimerEnable |
1271 OHCI1394_LinkControl_cycleMaster);
1272
1273 ar_context_init(&ohci->ar_request_ctx, ohci,
1274 OHCI1394_AsReqRcvContextControlSet);
1275
1276 ar_context_init(&ohci->ar_response_ctx, ohci,
1277 OHCI1394_AsRspRcvContextControlSet);
1278
1279 at_context_init(&ohci->at_request_ctx, ohci,
1280 OHCI1394_AsReqTrContextControlSet);
1281
1282 at_context_init(&ohci->at_response_ctx, ohci,
1283 OHCI1394_AsRspTrContextControlSet);
1284
1285 reg_write(ohci, OHCI1394_ATRetries,
1286 OHCI1394_MAX_AT_REQ_RETRIES |
1287 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1288 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1289
1290 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1291 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1292 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1293 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1294 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1295
1296 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1297 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1298 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1299 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1300 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1301
1302 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1303 fw_error("Out of memory for it/ir contexts.\n");
1304 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1305 }
1306
1307 /* self-id dma buffer allocation */
1308 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1309 SELF_ID_BUF_SIZE,
1310 &ohci->self_id_bus,
1311 GFP_KERNEL);
1312 if (ohci->self_id_cpu == NULL) {
1313 fw_error("Out of memory for self ID buffer.\n");
1314 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1315 }
1316
1317 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1318 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1319 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1320 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1321 reg_write(ohci, OHCI1394_IntMaskSet,
1322 OHCI1394_selfIDComplete |
1323 OHCI1394_RQPkt | OHCI1394_RSPkt |
1324 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1325 OHCI1394_isochRx | OHCI1394_isochTx |
1326 OHCI1394_masterIntEnable);
1327
1328 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1329 max_receive = (bus_options >> 12) & 0xf;
1330 link_speed = bus_options & 0x7;
1331 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1332 reg_read(ohci, OHCI1394_GUIDLo);
1333
1334 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1335 if (error_code < 0)
1336 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1337
1338 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1339
1340 return 0;
1341}
1342
1343static void pci_remove(struct pci_dev *dev)
1344{
1345 struct fw_ohci *ohci;
1346
1347 ohci = pci_get_drvdata(dev);
1348 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1349 fw_core_remove_card(&ohci->card);
1350
1351 /* FIXME: Fail all pending packets here, now that the upper
1352 * layers can't queue any more. */
1353
1354 software_reset(ohci);
1355 free_irq(dev->irq, ohci);
1356 cleanup(ohci, CLEANUP_SELF_ID, 0);
1357
1358 fw_notify("Removed fw-ohci device.\n");
1359}
1360
1361static struct pci_device_id pci_table[] = {
1362 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1363 { }
1364};
1365
1366MODULE_DEVICE_TABLE(pci, pci_table);
1367
1368static struct pci_driver fw_ohci_pci_driver = {
1369 .name = ohci_driver_name,
1370 .id_table = pci_table,
1371 .probe = pci_probe,
1372 .remove = pci_remove,
1373};
1374
1375MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1376MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1377MODULE_LICENSE("GPL");
1378
1379static int __init fw_ohci_init(void)
1380{
1381 return pci_register_driver(&fw_ohci_pci_driver);
1382}
1383
1384static void __exit fw_ohci_cleanup(void)
1385{
1386 pci_unregister_driver(&fw_ohci_pci_driver);
1387}
1388
1389module_init(fw_ohci_init);
1390module_exit(fw_ohci_cleanup);