]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/firewire/fw-ohci.c
firewire: fw-ohci: make sure HCControl register LPS bit is set
[net-next-2.6.git] / drivers / firewire / fw-ohci.c
CommitLineData
c781c06d
KH
1/*
2 * Driver for OHCI 1394 controllers
ed568912 3 *
ed568912
KH
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
e524f616 21#include <linux/compiler.h>
ed568912 22#include <linux/delay.h>
cf3e72fd 23#include <linux/dma-mapping.h>
c26f0234 24#include <linux/gfp.h>
a7fb60db
SR
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/kernel.h>
faa2fb4e 28#include <linux/mm.h>
a7fb60db 29#include <linux/module.h>
ad3c0fe8 30#include <linux/moduleparam.h>
a7fb60db 31#include <linux/pci.h>
c26f0234 32#include <linux/spinlock.h>
cf3e72fd 33
c26f0234 34#include <asm/page.h>
ee71c2f9 35#include <asm/system.h>
ed568912 36
ea8d006b
SR
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
ed568912 41#include "fw-ohci.h"
a7fb60db 42#include "fw-transaction.h"
ed568912 43
a77754a7
KH
44#define DESCRIPTOR_OUTPUT_MORE 0
45#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46#define DESCRIPTOR_INPUT_MORE (2 << 12)
47#define DESCRIPTOR_INPUT_LAST (3 << 12)
48#define DESCRIPTOR_STATUS (1 << 11)
49#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50#define DESCRIPTOR_PING (1 << 7)
51#define DESCRIPTOR_YY (1 << 6)
52#define DESCRIPTOR_NO_IRQ (0 << 4)
53#define DESCRIPTOR_IRQ_ERROR (1 << 4)
54#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56#define DESCRIPTOR_WAIT (3 << 0)
ed568912
KH
57
58struct descriptor {
59 __le16 req_count;
60 __le16 control;
61 __le32 data_address;
62 __le32 branch_address;
63 __le16 res_count;
64 __le16 transfer_status;
65} __attribute__((aligned(16)));
66
295e3feb
KH
67struct db_descriptor {
68 __le16 first_size;
69 __le16 control;
70 __le16 second_req_count;
71 __le16 first_req_count;
72 __le32 branch_address;
73 __le16 second_res_count;
74 __le16 first_res_count;
75 __le32 reserved0;
76 __le32 first_buffer;
77 __le32 second_buffer;
78 __le32 reserved1;
79} __attribute__((aligned(16)));
80
a77754a7
KH
81#define CONTROL_SET(regs) (regs)
82#define CONTROL_CLEAR(regs) ((regs) + 4)
83#define COMMAND_PTR(regs) ((regs) + 12)
84#define CONTEXT_MATCH(regs) ((regs) + 16)
72e318e0 85
32b46093 86struct ar_buffer {
ed568912 87 struct descriptor descriptor;
32b46093
KH
88 struct ar_buffer *next;
89 __le32 data[0];
90};
ed568912 91
32b46093
KH
92struct ar_context {
93 struct fw_ohci *ohci;
94 struct ar_buffer *current_buffer;
95 struct ar_buffer *last_buffer;
96 void *pointer;
72e318e0 97 u32 regs;
ed568912
KH
98 struct tasklet_struct tasklet;
99};
100
30200739
KH
101struct context;
102
103typedef int (*descriptor_callback_t)(struct context *ctx,
104 struct descriptor *d,
105 struct descriptor *last);
fe5ca634
DM
106
107/*
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
110 */
111struct descriptor_buffer {
112 struct list_head list;
113 dma_addr_t buffer_bus;
114 size_t buffer_size;
115 size_t used;
116 struct descriptor buffer[0];
117};
118
30200739 119struct context {
373b2edd 120 struct fw_ohci *ohci;
30200739 121 u32 regs;
fe5ca634 122 int total_allocation;
373b2edd 123
fe5ca634
DM
124 /*
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
127 * free buffers.
128 */
129 struct list_head buffer_list;
130
131 /*
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
134 */
135 struct descriptor_buffer *buffer_tail;
136
137 /*
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
140 */
141 struct descriptor *last;
142
143 /*
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
146 */
147 struct descriptor *prev;
30200739
KH
148
149 descriptor_callback_t callback;
150
373b2edd 151 struct tasklet_struct tasklet;
30200739 152};
30200739 153
a77754a7
KH
154#define IT_HEADER_SY(v) ((v) << 0)
155#define IT_HEADER_TCODE(v) ((v) << 4)
156#define IT_HEADER_CHANNEL(v) ((v) << 8)
157#define IT_HEADER_TAG(v) ((v) << 14)
158#define IT_HEADER_SPEED(v) ((v) << 16)
159#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
ed568912
KH
160
161struct iso_context {
162 struct fw_iso_context base;
30200739 163 struct context context;
0642b657 164 int excess_bytes;
9b32d5f3
KH
165 void *header;
166 size_t header_length;
ed568912
KH
167};
168
169#define CONFIG_ROM_SIZE 1024
170
171struct fw_ohci {
172 struct fw_card card;
173
e364cf4e 174 u32 version;
ed568912
KH
175 __iomem char *registers;
176 dma_addr_t self_id_bus;
177 __le32 *self_id_cpu;
178 struct tasklet_struct bus_reset_tasklet;
e636fe25 179 int node_id;
ed568912
KH
180 int generation;
181 int request_generation;
d60d7f1d 182 u32 bus_seconds;
11bf20ad 183 bool old_uninorth;
ed568912 184
c781c06d
KH
185 /*
186 * Spinlock for accessing fw_ohci data. Never call out of
187 * this driver with this lock held.
188 */
ed568912
KH
189 spinlock_t lock;
190 u32 self_id_buffer[512];
191
192 /* Config rom buffers */
193 __be32 *config_rom;
194 dma_addr_t config_rom_bus;
195 __be32 *next_config_rom;
196 dma_addr_t next_config_rom_bus;
197 u32 next_header;
198
199 struct ar_context ar_request_ctx;
200 struct ar_context ar_response_ctx;
f319b6a0
KH
201 struct context at_request_ctx;
202 struct context at_response_ctx;
ed568912
KH
203
204 u32 it_context_mask;
205 struct iso_context *it_context_list;
206 u32 ir_context_mask;
207 struct iso_context *ir_context_list;
208};
209
95688e97 210static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
211{
212 return container_of(card, struct fw_ohci, card);
213}
214
295e3feb
KH
215#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
216#define IR_CONTEXT_BUFFER_FILL 0x80000000
217#define IR_CONTEXT_ISOCH_HEADER 0x40000000
218#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
219#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
220#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
221
222#define CONTEXT_RUN 0x8000
223#define CONTEXT_WAKE 0x1000
224#define CONTEXT_DEAD 0x0800
225#define CONTEXT_ACTIVE 0x0400
226
227#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
228#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
229#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230
231#define FW_OHCI_MAJOR 240
232#define OHCI1394_REGISTER_SIZE 0x800
233#define OHCI_LOOP_COUNT 500
234#define OHCI1394_PCI_HCI_Control 0x40
235#define SELF_ID_BUF_SIZE 0x800
32b46093 236#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 237#define OHCI_VERSION_1_1 0x010010
0edeefd9 238
ed568912
KH
239static char ohci_driver_name[] = KBUILD_MODNAME;
240
ad3c0fe8
SR
241#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243#define OHCI_PARAM_DEBUG_IRQS 1
244#define OHCI_PARAM_DEBUG_SELFIDS 2
245#define OHCI_PARAM_DEBUG_AT_AR 4
246
247static int param_debug;
248module_param_named(debug, param_debug, int, 0644);
249MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
250 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
251 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
252 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
253 ", or a combination, or all = -1)");
254
255static void log_irqs(u32 evt)
256{
257 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
258 return;
259
260 printk(KERN_DEBUG KBUILD_MODNAME ": IRQ %08x%s%s%s%s%s%s%s%s%s%s%s\n",
261 evt,
262 evt & OHCI1394_selfIDComplete ? " selfID" : "",
263 evt & OHCI1394_RQPkt ? " AR_req" : "",
264 evt & OHCI1394_RSPkt ? " AR_resp" : "",
265 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
266 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
267 evt & OHCI1394_isochRx ? " IR" : "",
268 evt & OHCI1394_isochTx ? " IT" : "",
269 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
270 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
271 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
272 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
273 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
274 OHCI1394_respTxComplete | OHCI1394_isochRx |
275 OHCI1394_isochTx | OHCI1394_postedWriteErr |
276 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds)
277 ? " ?" : "");
278}
279
280static const char *speed[] = {
281 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
282};
283static const char *power[] = {
284 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
285 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
286};
287static const char port[] = { '.', '-', 'p', 'c', };
288
289static char _p(u32 *s, int shift)
290{
291 return port[*s >> shift & 3];
292}
293
294static void log_selfids(int generation, int self_id_count, u32 *s)
295{
296 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
297 return;
298
299 printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
300 self_id_count, generation);
301
302 for (; self_id_count--; ++s)
303 if ((*s & 1 << 23) == 0)
304 printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
305 "%s gc=%d %s %s%s%s\n",
306 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
307 speed[*s >> 14 & 3], *s >> 16 & 63,
308 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
309 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
310 else
311 printk(KERN_DEBUG "selfID n: %08x, phy %d "
312 "[%c%c%c%c%c%c%c%c]\n",
313 *s, *s >> 24 & 63,
314 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
315 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
316}
317
318static const char *evts[] = {
319 [0x00] = "evt_no_status", [0x01] = "-reserved-",
320 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
321 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
322 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
323 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
324 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
325 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
326 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
327 [0x10] = "-reserved-", [0x11] = "ack_complete",
328 [0x12] = "ack_pending ", [0x13] = "-reserved-",
329 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
330 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
331 [0x18] = "-reserved-", [0x19] = "-reserved-",
332 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
333 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
334 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
335 [0x20] = "pending/cancelled",
336};
337static const char *tcodes[] = {
338 [0x0] = "QW req", [0x1] = "BW req",
339 [0x2] = "W resp", [0x3] = "-reserved-",
340 [0x4] = "QR req", [0x5] = "BR req",
341 [0x6] = "QR resp", [0x7] = "BR resp",
342 [0x8] = "cycle start", [0x9] = "Lk req",
343 [0xa] = "async stream packet", [0xb] = "Lk resp",
344 [0xc] = "-reserved-", [0xd] = "-reserved-",
345 [0xe] = "link internal", [0xf] = "-reserved-",
346};
347static const char *phys[] = {
348 [0x0] = "phy config packet", [0x1] = "link-on packet",
349 [0x2] = "self-id packet", [0x3] = "-reserved-",
350};
351
352static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
353{
354 int tcode = header[0] >> 4 & 0xf;
355 char specific[12];
356
357 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
358 return;
359
360 if (unlikely(evt >= ARRAY_SIZE(evts)))
361 evt = 0x1f;
362
363 if (header[0] == ~header[1]) {
364 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
365 dir, evts[evt], phys[header[0] >> 30 & 0x3],
366 header[0]);
367 return;
368 }
369
370 switch (tcode) {
371 case 0x0: case 0x6: case 0x8:
372 snprintf(specific, sizeof(specific), " = %08x",
373 be32_to_cpu((__force __be32)header[3]));
374 break;
375 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
376 snprintf(specific, sizeof(specific), " %x,%x",
377 header[3] >> 16, header[3] & 0xffff);
378 break;
379 default:
380 specific[0] = '\0';
381 }
382
383 switch (tcode) {
384 case 0xe: case 0xa:
385 printk(KERN_DEBUG "A%c %s, %s\n",
386 dir, evts[evt], tcodes[tcode]);
387 break;
388 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
389 printk(KERN_DEBUG "A%c spd %x tl %02x, "
390 "%04x -> %04x, %s, "
391 "%s, %04x%08x%s\n",
392 dir, speed, header[0] >> 10 & 0x3f,
393 header[1] >> 16, header[0] >> 16, evts[evt],
394 tcodes[tcode], header[1] & 0xffff, header[2], specific);
395 break;
396 default:
397 printk(KERN_DEBUG "A%c spd %x tl %02x, "
398 "%04x -> %04x, %s, "
399 "%s%s\n",
400 dir, speed, header[0] >> 10 & 0x3f,
401 header[1] >> 16, header[0] >> 16, evts[evt],
402 tcodes[tcode], specific);
403 }
404}
405
406#else
407
408#define log_irqs(evt)
409#define log_selfids(generation, self_id_count, sid)
410#define log_ar_at_event(dir, speed, header, evt)
411
412#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
413
95688e97 414static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
415{
416 writel(data, ohci->registers + offset);
417}
418
95688e97 419static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
420{
421 return readl(ohci->registers + offset);
422}
423
95688e97 424static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
425{
426 /* Do a dummy read to flush writes. */
427 reg_read(ohci, OHCI1394_Version);
428}
429
430static int
431ohci_update_phy_reg(struct fw_card *card, int addr,
432 int clear_bits, int set_bits)
433{
434 struct fw_ohci *ohci = fw_ohci(card);
435 u32 val, old;
436
437 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
362e901c 438 flush_writes(ohci);
ed568912
KH
439 msleep(2);
440 val = reg_read(ohci, OHCI1394_PhyControl);
441 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
442 fw_error("failed to set phy reg bits.\n");
443 return -EBUSY;
444 }
445
446 old = OHCI1394_PhyControl_ReadData(val);
447 old = (old & ~clear_bits) | set_bits;
448 reg_write(ohci, OHCI1394_PhyControl,
449 OHCI1394_PhyControl_Write(addr, old));
450
451 return 0;
452}
453
32b46093 454static int ar_context_add_page(struct ar_context *ctx)
ed568912 455{
32b46093
KH
456 struct device *dev = ctx->ohci->card.device;
457 struct ar_buffer *ab;
f5101d58 458 dma_addr_t uninitialized_var(ab_bus);
32b46093
KH
459 size_t offset;
460
bde1709a 461 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
32b46093
KH
462 if (ab == NULL)
463 return -ENOMEM;
464
2d826cc5 465 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
a77754a7
KH
466 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
467 DESCRIPTOR_STATUS |
468 DESCRIPTOR_BRANCH_ALWAYS);
32b46093
KH
469 offset = offsetof(struct ar_buffer, data);
470 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
471 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
472 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
473 ab->descriptor.branch_address = 0;
474
ec839e43 475 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
32b46093
KH
476 ctx->last_buffer->next = ab;
477 ctx->last_buffer = ab;
478
a77754a7 479 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
ed568912 480 flush_writes(ctx->ohci);
32b46093
KH
481
482 return 0;
ed568912
KH
483}
484
11bf20ad
SR
485#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
486#define cond_le32_to_cpu(v) \
487 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
488#else
489#define cond_le32_to_cpu(v) le32_to_cpu(v)
490#endif
491
32b46093 492static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 493{
ed568912 494 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
495 struct fw_packet p;
496 u32 status, length, tcode;
43286568 497 int evt;
2639a6fb 498
11bf20ad
SR
499 p.header[0] = cond_le32_to_cpu(buffer[0]);
500 p.header[1] = cond_le32_to_cpu(buffer[1]);
501 p.header[2] = cond_le32_to_cpu(buffer[2]);
2639a6fb
KH
502
503 tcode = (p.header[0] >> 4) & 0x0f;
504 switch (tcode) {
505 case TCODE_WRITE_QUADLET_REQUEST:
506 case TCODE_READ_QUADLET_RESPONSE:
32b46093 507 p.header[3] = (__force __u32) buffer[3];
2639a6fb 508 p.header_length = 16;
32b46093 509 p.payload_length = 0;
2639a6fb
KH
510 break;
511
2639a6fb 512 case TCODE_READ_BLOCK_REQUEST :
11bf20ad 513 p.header[3] = cond_le32_to_cpu(buffer[3]);
32b46093
KH
514 p.header_length = 16;
515 p.payload_length = 0;
516 break;
517
518 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
519 case TCODE_READ_BLOCK_RESPONSE:
520 case TCODE_LOCK_REQUEST:
521 case TCODE_LOCK_RESPONSE:
11bf20ad 522 p.header[3] = cond_le32_to_cpu(buffer[3]);
2639a6fb 523 p.header_length = 16;
32b46093 524 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
525 break;
526
527 case TCODE_WRITE_RESPONSE:
528 case TCODE_READ_QUADLET_REQUEST:
32b46093 529 case OHCI_TCODE_PHY_PACKET:
2639a6fb 530 p.header_length = 12;
32b46093 531 p.payload_length = 0;
2639a6fb
KH
532 break;
533 }
ed568912 534
32b46093
KH
535 p.payload = (void *) buffer + p.header_length;
536
537 /* FIXME: What to do about evt_* errors? */
538 length = (p.header_length + p.payload_length + 3) / 4;
11bf20ad 539 status = cond_le32_to_cpu(buffer[length]);
43286568 540 evt = (status >> 16) & 0x1f;
32b46093 541
43286568 542 p.ack = evt - 16;
32b46093
KH
543 p.speed = (status >> 21) & 0x7;
544 p.timestamp = status & 0xffff;
545 p.generation = ohci->request_generation;
ed568912 546
43286568 547 log_ar_at_event('R', p.speed, p.header, evt);
ad3c0fe8 548
c781c06d
KH
549 /*
550 * The OHCI bus reset handler synthesizes a phy packet with
ed568912
KH
551 * the new generation number when a bus reset happens (see
552 * section 8.4.2.3). This helps us determine when a request
553 * was received and make sure we send the response in the same
554 * generation. We only need this for requests; for responses
555 * we use the unique tlabel for finding the matching
c781c06d
KH
556 * request.
557 */
ed568912 558
43286568 559 if (evt == OHCI1394_evt_bus_reset)
25df287d 560 ohci->request_generation = (p.header[2] >> 16) & 0xff;
ed568912 561 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 562 fw_core_handle_request(&ohci->card, &p);
ed568912 563 else
2639a6fb 564 fw_core_handle_response(&ohci->card, &p);
ed568912 565
32b46093
KH
566 return buffer + length + 1;
567}
ed568912 568
32b46093
KH
569static void ar_context_tasklet(unsigned long data)
570{
571 struct ar_context *ctx = (struct ar_context *)data;
572 struct fw_ohci *ohci = ctx->ohci;
573 struct ar_buffer *ab;
574 struct descriptor *d;
575 void *buffer, *end;
576
577 ab = ctx->current_buffer;
578 d = &ab->descriptor;
579
580 if (d->res_count == 0) {
581 size_t size, rest, offset;
6b84236d
JW
582 dma_addr_t start_bus;
583 void *start;
32b46093 584
c781c06d
KH
585 /*
586 * This descriptor is finished and we may have a
32b46093 587 * packet split across this and the next buffer. We
c781c06d
KH
588 * reuse the page for reassembling the split packet.
589 */
32b46093
KH
590
591 offset = offsetof(struct ar_buffer, data);
6b84236d
JW
592 start = buffer = ab;
593 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
32b46093 594
32b46093
KH
595 ab = ab->next;
596 d = &ab->descriptor;
597 size = buffer + PAGE_SIZE - ctx->pointer;
598 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
599 memmove(buffer, ctx->pointer, size);
600 memcpy(buffer + size, ab->data, rest);
601 ctx->current_buffer = ab;
602 ctx->pointer = (void *) ab->data + rest;
603 end = buffer + size + rest;
604
605 while (buffer < end)
606 buffer = handle_ar_packet(ctx, buffer);
607
bde1709a 608 dma_free_coherent(ohci->card.device, PAGE_SIZE,
6b84236d 609 start, start_bus);
32b46093
KH
610 ar_context_add_page(ctx);
611 } else {
612 buffer = ctx->pointer;
613 ctx->pointer = end =
614 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
615
616 while (buffer < end)
617 buffer = handle_ar_packet(ctx, buffer);
618 }
ed568912
KH
619}
620
621static int
72e318e0 622ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 623{
32b46093 624 struct ar_buffer ab;
ed568912 625
72e318e0
KH
626 ctx->regs = regs;
627 ctx->ohci = ohci;
628 ctx->last_buffer = &ab;
ed568912
KH
629 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
630
32b46093
KH
631 ar_context_add_page(ctx);
632 ar_context_add_page(ctx);
633 ctx->current_buffer = ab.next;
634 ctx->pointer = ctx->current_buffer->data;
635
2aef469a
KH
636 return 0;
637}
638
639static void ar_context_run(struct ar_context *ctx)
640{
641 struct ar_buffer *ab = ctx->current_buffer;
642 dma_addr_t ab_bus;
643 size_t offset;
644
645 offset = offsetof(struct ar_buffer, data);
0a9972ba 646 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
2aef469a
KH
647
648 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
a77754a7 649 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
32b46093 650 flush_writes(ctx->ohci);
ed568912 651}
373b2edd 652
a186b4a6
JW
653static struct descriptor *
654find_branch_descriptor(struct descriptor *d, int z)
655{
656 int b, key;
657
658 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
659 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
660
661 /* figure out which descriptor the branch address goes in */
662 if (z == 2 && (b == 3 || key == 2))
663 return d;
664 else
665 return d + z - 1;
666}
667
30200739
KH
668static void context_tasklet(unsigned long data)
669{
670 struct context *ctx = (struct context *) data;
30200739
KH
671 struct descriptor *d, *last;
672 u32 address;
673 int z;
fe5ca634 674 struct descriptor_buffer *desc;
30200739 675
fe5ca634
DM
676 desc = list_entry(ctx->buffer_list.next,
677 struct descriptor_buffer, list);
678 last = ctx->last;
30200739 679 while (last->branch_address != 0) {
fe5ca634 680 struct descriptor_buffer *old_desc = desc;
30200739
KH
681 address = le32_to_cpu(last->branch_address);
682 z = address & 0xf;
fe5ca634
DM
683 address &= ~0xf;
684
685 /* If the branch address points to a buffer outside of the
686 * current buffer, advance to the next buffer. */
687 if (address < desc->buffer_bus ||
688 address >= desc->buffer_bus + desc->used)
689 desc = list_entry(desc->list.next,
690 struct descriptor_buffer, list);
691 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
a186b4a6 692 last = find_branch_descriptor(d, z);
30200739
KH
693
694 if (!ctx->callback(ctx, d, last))
695 break;
696
fe5ca634
DM
697 if (old_desc != desc) {
698 /* If we've advanced to the next buffer, move the
699 * previous buffer to the free list. */
700 unsigned long flags;
701 old_desc->used = 0;
702 spin_lock_irqsave(&ctx->ohci->lock, flags);
703 list_move_tail(&old_desc->list, &ctx->buffer_list);
704 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
705 }
706 ctx->last = last;
30200739
KH
707 }
708}
709
fe5ca634
DM
710/*
711 * Allocate a new buffer and add it to the list of free buffers for this
712 * context. Must be called with ohci->lock held.
713 */
714static int
715context_add_buffer(struct context *ctx)
716{
717 struct descriptor_buffer *desc;
f5101d58 718 dma_addr_t uninitialized_var(bus_addr);
fe5ca634
DM
719 int offset;
720
721 /*
722 * 16MB of descriptors should be far more than enough for any DMA
723 * program. This will catch run-away userspace or DoS attacks.
724 */
725 if (ctx->total_allocation >= 16*1024*1024)
726 return -ENOMEM;
727
728 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
729 &bus_addr, GFP_ATOMIC);
730 if (!desc)
731 return -ENOMEM;
732
733 offset = (void *)&desc->buffer - (void *)desc;
734 desc->buffer_size = PAGE_SIZE - offset;
735 desc->buffer_bus = bus_addr + offset;
736 desc->used = 0;
737
738 list_add_tail(&desc->list, &ctx->buffer_list);
739 ctx->total_allocation += PAGE_SIZE;
740
741 return 0;
742}
743
30200739
KH
744static int
745context_init(struct context *ctx, struct fw_ohci *ohci,
fe5ca634 746 u32 regs, descriptor_callback_t callback)
30200739
KH
747{
748 ctx->ohci = ohci;
749 ctx->regs = regs;
fe5ca634
DM
750 ctx->total_allocation = 0;
751
752 INIT_LIST_HEAD(&ctx->buffer_list);
753 if (context_add_buffer(ctx) < 0)
30200739
KH
754 return -ENOMEM;
755
fe5ca634
DM
756 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
757 struct descriptor_buffer, list);
758
30200739
KH
759 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
760 ctx->callback = callback;
761
c781c06d
KH
762 /*
763 * We put a dummy descriptor in the buffer that has a NULL
30200739 764 * branch address and looks like it's been sent. That way we
fe5ca634 765 * have a descriptor to append DMA programs to.
c781c06d 766 */
fe5ca634
DM
767 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
768 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
769 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
770 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
771 ctx->last = ctx->buffer_tail->buffer;
772 ctx->prev = ctx->buffer_tail->buffer;
30200739
KH
773
774 return 0;
775}
776
9b32d5f3 777static void
30200739
KH
778context_release(struct context *ctx)
779{
780 struct fw_card *card = &ctx->ohci->card;
fe5ca634 781 struct descriptor_buffer *desc, *tmp;
30200739 782
fe5ca634
DM
783 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
784 dma_free_coherent(card->device, PAGE_SIZE, desc,
785 desc->buffer_bus -
786 ((void *)&desc->buffer - (void *)desc));
30200739
KH
787}
788
fe5ca634 789/* Must be called with ohci->lock held */
30200739
KH
790static struct descriptor *
791context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
792{
fe5ca634
DM
793 struct descriptor *d = NULL;
794 struct descriptor_buffer *desc = ctx->buffer_tail;
795
796 if (z * sizeof(*d) > desc->buffer_size)
797 return NULL;
798
799 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
800 /* No room for the descriptor in this buffer, so advance to the
801 * next one. */
30200739 802
fe5ca634
DM
803 if (desc->list.next == &ctx->buffer_list) {
804 /* If there is no free buffer next in the list,
805 * allocate one. */
806 if (context_add_buffer(ctx) < 0)
807 return NULL;
808 }
809 desc = list_entry(desc->list.next,
810 struct descriptor_buffer, list);
811 ctx->buffer_tail = desc;
812 }
30200739 813
fe5ca634 814 d = desc->buffer + desc->used / sizeof(*d);
2d826cc5 815 memset(d, 0, z * sizeof(*d));
fe5ca634 816 *d_bus = desc->buffer_bus + desc->used;
30200739
KH
817
818 return d;
819}
820
295e3feb 821static void context_run(struct context *ctx, u32 extra)
30200739
KH
822{
823 struct fw_ohci *ohci = ctx->ohci;
824
a77754a7 825 reg_write(ohci, COMMAND_PTR(ctx->regs),
fe5ca634 826 le32_to_cpu(ctx->last->branch_address));
a77754a7
KH
827 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
828 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
829 flush_writes(ohci);
830}
831
832static void context_append(struct context *ctx,
833 struct descriptor *d, int z, int extra)
834{
835 dma_addr_t d_bus;
fe5ca634 836 struct descriptor_buffer *desc = ctx->buffer_tail;
30200739 837
fe5ca634 838 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
30200739 839
fe5ca634
DM
840 desc->used += (z + extra) * sizeof(*d);
841 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
842 ctx->prev = find_branch_descriptor(d, z);
30200739 843
a77754a7 844 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
30200739
KH
845 flush_writes(ctx->ohci);
846}
847
848static void context_stop(struct context *ctx)
849{
850 u32 reg;
b8295668 851 int i;
30200739 852
a77754a7 853 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
b8295668 854 flush_writes(ctx->ohci);
30200739 855
b8295668 856 for (i = 0; i < 10; i++) {
a77754a7 857 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
b8295668
KH
858 if ((reg & CONTEXT_ACTIVE) == 0)
859 break;
860
861 fw_notify("context_stop: still active (0x%08x)\n", reg);
b980f5a2 862 mdelay(1);
b8295668 863 }
30200739 864}
ed568912 865
f319b6a0
KH
866struct driver_data {
867 struct fw_packet *packet;
868};
ed568912 869
c781c06d
KH
870/*
871 * This function apppends a packet to the DMA queue for transmission.
f319b6a0 872 * Must always be called with the ochi->lock held to ensure proper
c781c06d
KH
873 * generation handling and locking around packet queue manipulation.
874 */
f319b6a0
KH
875static int
876at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
ed568912 877{
ed568912 878 struct fw_ohci *ohci = ctx->ohci;
4b6d51ec 879 dma_addr_t d_bus, uninitialized_var(payload_bus);
f319b6a0
KH
880 struct driver_data *driver_data;
881 struct descriptor *d, *last;
882 __le32 *header;
ed568912 883 int z, tcode;
f319b6a0 884 u32 reg;
ed568912 885
f319b6a0
KH
886 d = context_get_descriptors(ctx, 4, &d_bus);
887 if (d == NULL) {
888 packet->ack = RCODE_SEND_ERROR;
889 return -1;
ed568912
KH
890 }
891
a77754a7 892 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
f319b6a0
KH
893 d[0].res_count = cpu_to_le16(packet->timestamp);
894
c781c06d
KH
895 /*
896 * The DMA format for asyncronous link packets is different
ed568912
KH
897 * from the IEEE1394 layout, so shift the fields around
898 * accordingly. If header_length is 8, it's a PHY packet, to
c781c06d
KH
899 * which we need to prepend an extra quadlet.
900 */
f319b6a0
KH
901
902 header = (__le32 *) &d[1];
ed568912 903 if (packet->header_length > 8) {
f319b6a0
KH
904 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
905 (packet->speed << 16));
906 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
907 (packet->header[0] & 0xffff0000));
908 header[2] = cpu_to_le32(packet->header[2]);
ed568912
KH
909
910 tcode = (packet->header[0] >> 4) & 0x0f;
911 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 912 header[3] = cpu_to_le32(packet->header[3]);
ed568912 913 else
f319b6a0
KH
914 header[3] = (__force __le32) packet->header[3];
915
916 d[0].req_count = cpu_to_le16(packet->header_length);
ed568912 917 } else {
f319b6a0
KH
918 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
919 (packet->speed << 16));
920 header[1] = cpu_to_le32(packet->header[0]);
921 header[2] = cpu_to_le32(packet->header[1]);
922 d[0].req_count = cpu_to_le16(12);
ed568912
KH
923 }
924
f319b6a0
KH
925 driver_data = (struct driver_data *) &d[3];
926 driver_data->packet = packet;
20d11673 927 packet->driver_data = driver_data;
a186b4a6 928
f319b6a0
KH
929 if (packet->payload_length > 0) {
930 payload_bus =
931 dma_map_single(ohci->card.device, packet->payload,
932 packet->payload_length, DMA_TO_DEVICE);
933 if (dma_mapping_error(payload_bus)) {
934 packet->ack = RCODE_SEND_ERROR;
935 return -1;
936 }
937
938 d[2].req_count = cpu_to_le16(packet->payload_length);
939 d[2].data_address = cpu_to_le32(payload_bus);
940 last = &d[2];
941 z = 3;
ed568912 942 } else {
f319b6a0
KH
943 last = &d[0];
944 z = 2;
ed568912 945 }
ed568912 946
a77754a7
KH
947 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
948 DESCRIPTOR_IRQ_ALWAYS |
949 DESCRIPTOR_BRANCH_ALWAYS);
ed568912 950
f319b6a0
KH
951 /* FIXME: Document how the locking works. */
952 if (ohci->generation != packet->generation) {
ab88ca48
SR
953 if (packet->payload_length > 0)
954 dma_unmap_single(ohci->card.device, payload_bus,
955 packet->payload_length, DMA_TO_DEVICE);
f319b6a0
KH
956 packet->ack = RCODE_GENERATION;
957 return -1;
958 }
959
960 context_append(ctx, d, z, 4 - z);
ed568912 961
f319b6a0 962 /* If the context isn't already running, start it up. */
a77754a7 963 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
053b3080 964 if ((reg & CONTEXT_RUN) == 0)
f319b6a0
KH
965 context_run(ctx, 0);
966
967 return 0;
ed568912
KH
968}
969
f319b6a0
KH
970static int handle_at_packet(struct context *context,
971 struct descriptor *d,
972 struct descriptor *last)
ed568912 973{
f319b6a0 974 struct driver_data *driver_data;
ed568912 975 struct fw_packet *packet;
f319b6a0
KH
976 struct fw_ohci *ohci = context->ohci;
977 dma_addr_t payload_bus;
ed568912
KH
978 int evt;
979
f319b6a0
KH
980 if (last->transfer_status == 0)
981 /* This descriptor isn't done yet, stop iteration. */
982 return 0;
ed568912 983
f319b6a0
KH
984 driver_data = (struct driver_data *) &d[3];
985 packet = driver_data->packet;
986 if (packet == NULL)
987 /* This packet was cancelled, just continue. */
988 return 1;
730c32f5 989
f319b6a0
KH
990 payload_bus = le32_to_cpu(last->data_address);
991 if (payload_bus != 0)
992 dma_unmap_single(ohci->card.device, payload_bus,
ed568912 993 packet->payload_length, DMA_TO_DEVICE);
ed568912 994
f319b6a0
KH
995 evt = le16_to_cpu(last->transfer_status) & 0x1f;
996 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 997
ad3c0fe8
SR
998 log_ar_at_event('T', packet->speed, packet->header, evt);
999
f319b6a0
KH
1000 switch (evt) {
1001 case OHCI1394_evt_timeout:
1002 /* Async response transmit timed out. */
1003 packet->ack = RCODE_CANCELLED;
1004 break;
ed568912 1005
f319b6a0 1006 case OHCI1394_evt_flushed:
c781c06d
KH
1007 /*
1008 * The packet was flushed should give same error as
1009 * when we try to use a stale generation count.
1010 */
f319b6a0
KH
1011 packet->ack = RCODE_GENERATION;
1012 break;
ed568912 1013
f319b6a0 1014 case OHCI1394_evt_missing_ack:
c781c06d
KH
1015 /*
1016 * Using a valid (current) generation count, but the
1017 * node is not on the bus or not sending acks.
1018 */
f319b6a0
KH
1019 packet->ack = RCODE_NO_ACK;
1020 break;
ed568912 1021
f319b6a0
KH
1022 case ACK_COMPLETE + 0x10:
1023 case ACK_PENDING + 0x10:
1024 case ACK_BUSY_X + 0x10:
1025 case ACK_BUSY_A + 0x10:
1026 case ACK_BUSY_B + 0x10:
1027 case ACK_DATA_ERROR + 0x10:
1028 case ACK_TYPE_ERROR + 0x10:
1029 packet->ack = evt - 0x10;
1030 break;
ed568912 1031
f319b6a0
KH
1032 default:
1033 packet->ack = RCODE_SEND_ERROR;
1034 break;
1035 }
ed568912 1036
f319b6a0 1037 packet->callback(packet, &ohci->card, packet->ack);
ed568912 1038
f319b6a0 1039 return 1;
ed568912
KH
1040}
1041
a77754a7
KH
1042#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1043#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1044#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1045#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1046#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
93c4cceb
KH
1047
1048static void
1049handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1050{
1051 struct fw_packet response;
1052 int tcode, length, i;
1053
a77754a7 1054 tcode = HEADER_GET_TCODE(packet->header[0]);
93c4cceb 1055 if (TCODE_IS_BLOCK_PACKET(tcode))
a77754a7 1056 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb
KH
1057 else
1058 length = 4;
1059
1060 i = csr - CSR_CONFIG_ROM;
1061 if (i + length > CONFIG_ROM_SIZE) {
1062 fw_fill_response(&response, packet->header,
1063 RCODE_ADDRESS_ERROR, NULL, 0);
1064 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1065 fw_fill_response(&response, packet->header,
1066 RCODE_TYPE_ERROR, NULL, 0);
1067 } else {
1068 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1069 (void *) ohci->config_rom + i, length);
1070 }
1071
1072 fw_core_handle_response(&ohci->card, &response);
1073}
1074
1075static void
1076handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1077{
1078 struct fw_packet response;
1079 int tcode, length, ext_tcode, sel;
1080 __be32 *payload, lock_old;
1081 u32 lock_arg, lock_data;
1082
a77754a7
KH
1083 tcode = HEADER_GET_TCODE(packet->header[0]);
1084 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
93c4cceb 1085 payload = packet->payload;
a77754a7 1086 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
93c4cceb
KH
1087
1088 if (tcode == TCODE_LOCK_REQUEST &&
1089 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1090 lock_arg = be32_to_cpu(payload[0]);
1091 lock_data = be32_to_cpu(payload[1]);
1092 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1093 lock_arg = 0;
1094 lock_data = 0;
1095 } else {
1096 fw_fill_response(&response, packet->header,
1097 RCODE_TYPE_ERROR, NULL, 0);
1098 goto out;
1099 }
1100
1101 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1102 reg_write(ohci, OHCI1394_CSRData, lock_data);
1103 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1104 reg_write(ohci, OHCI1394_CSRControl, sel);
1105
1106 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1107 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1108 else
1109 fw_notify("swap not done yet\n");
1110
1111 fw_fill_response(&response, packet->header,
2d826cc5 1112 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
93c4cceb
KH
1113 out:
1114 fw_core_handle_response(&ohci->card, &response);
1115}
1116
1117static void
f319b6a0 1118handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb
KH
1119{
1120 u64 offset;
1121 u32 csr;
1122
473d28c7
KH
1123 if (ctx == &ctx->ohci->at_request_ctx) {
1124 packet->ack = ACK_PENDING;
1125 packet->callback(packet, &ctx->ohci->card, packet->ack);
1126 }
93c4cceb
KH
1127
1128 offset =
1129 ((unsigned long long)
a77754a7 1130 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
93c4cceb
KH
1131 packet->header[2];
1132 csr = offset - CSR_REGISTER_BASE;
1133
1134 /* Handle config rom reads. */
1135 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1136 handle_local_rom(ctx->ohci, packet, csr);
1137 else switch (csr) {
1138 case CSR_BUS_MANAGER_ID:
1139 case CSR_BANDWIDTH_AVAILABLE:
1140 case CSR_CHANNELS_AVAILABLE_HI:
1141 case CSR_CHANNELS_AVAILABLE_LO:
1142 handle_local_lock(ctx->ohci, packet, csr);
1143 break;
1144 default:
1145 if (ctx == &ctx->ohci->at_request_ctx)
1146 fw_core_handle_request(&ctx->ohci->card, packet);
1147 else
1148 fw_core_handle_response(&ctx->ohci->card, packet);
1149 break;
1150 }
473d28c7
KH
1151
1152 if (ctx == &ctx->ohci->at_response_ctx) {
1153 packet->ack = ACK_COMPLETE;
1154 packet->callback(packet, &ctx->ohci->card, packet->ack);
1155 }
93c4cceb 1156}
e636fe25 1157
ed568912 1158static void
f319b6a0 1159at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 1160{
ed568912 1161 unsigned long flags;
f319b6a0 1162 int retval;
ed568912
KH
1163
1164 spin_lock_irqsave(&ctx->ohci->lock, flags);
1165
a77754a7 1166 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
e636fe25 1167 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
1168 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1169 handle_local_request(ctx, packet);
1170 return;
e636fe25 1171 }
ed568912 1172
f319b6a0 1173 retval = at_context_queue_packet(ctx, packet);
ed568912
KH
1174 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1175
f319b6a0
KH
1176 if (retval < 0)
1177 packet->callback(packet, &ctx->ohci->card, packet->ack);
a186b4a6 1178
ed568912
KH
1179}
1180
1181static void bus_reset_tasklet(unsigned long data)
1182{
1183 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 1184 int self_id_count, i, j, reg;
ed568912
KH
1185 int generation, new_generation;
1186 unsigned long flags;
4eaff7d6
SR
1187 void *free_rom = NULL;
1188 dma_addr_t free_rom_bus = 0;
ed568912
KH
1189
1190 reg = reg_read(ohci, OHCI1394_NodeID);
1191 if (!(reg & OHCI1394_NodeID_idValid)) {
02ff8f8e 1192 fw_notify("node ID not valid, new bus reset in progress\n");
ed568912
KH
1193 return;
1194 }
02ff8f8e
SR
1195 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1196 fw_notify("malconfigured bus\n");
1197 return;
1198 }
1199 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1200 OHCI1394_NodeID_nodeNumber);
ed568912 1201
c8a9a498
SR
1202 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1203 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1204 fw_notify("inconsistent self IDs\n");
1205 return;
1206 }
c781c06d
KH
1207 /*
1208 * The count in the SelfIDCount register is the number of
ed568912
KH
1209 * bytes in the self ID receive buffer. Since we also receive
1210 * the inverted quadlets and a header quadlet, we shift one
c781c06d
KH
1211 * bit extra to get the actual number of self IDs.
1212 */
c8a9a498 1213 self_id_count = (reg >> 3) & 0x3ff;
016bf3df
SR
1214 if (self_id_count == 0) {
1215 fw_notify("inconsistent self IDs\n");
1216 return;
1217 }
11bf20ad 1218 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
ee71c2f9 1219 rmb();
ed568912
KH
1220
1221 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
c8a9a498
SR
1222 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1223 fw_notify("inconsistent self IDs\n");
1224 return;
1225 }
11bf20ad
SR
1226 ohci->self_id_buffer[j] =
1227 cond_le32_to_cpu(ohci->self_id_cpu[i]);
ed568912 1228 }
ee71c2f9 1229 rmb();
ed568912 1230
c781c06d
KH
1231 /*
1232 * Check the consistency of the self IDs we just read. The
ed568912
KH
1233 * problem we face is that a new bus reset can start while we
1234 * read out the self IDs from the DMA buffer. If this happens,
1235 * the DMA buffer will be overwritten with new self IDs and we
1236 * will read out inconsistent data. The OHCI specification
1237 * (section 11.2) recommends a technique similar to
1238 * linux/seqlock.h, where we remember the generation of the
1239 * self IDs in the buffer before reading them out and compare
1240 * it to the current generation after reading them out. If
1241 * the two generations match we know we have a consistent set
c781c06d
KH
1242 * of self IDs.
1243 */
ed568912
KH
1244
1245 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1246 if (new_generation != generation) {
1247 fw_notify("recursive bus reset detected, "
1248 "discarding self ids\n");
1249 return;
1250 }
1251
1252 /* FIXME: Document how the locking works. */
1253 spin_lock_irqsave(&ohci->lock, flags);
1254
1255 ohci->generation = generation;
f319b6a0
KH
1256 context_stop(&ohci->at_request_ctx);
1257 context_stop(&ohci->at_response_ctx);
ed568912
KH
1258 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1259
c781c06d
KH
1260 /*
1261 * This next bit is unrelated to the AT context stuff but we
ed568912
KH
1262 * have to do it under the spinlock also. If a new config rom
1263 * was set up before this reset, the old one is now no longer
1264 * in use and we can free it. Update the config rom pointers
1265 * to point to the current config rom and clear the
c781c06d
KH
1266 * next_config_rom pointer so a new udpate can take place.
1267 */
ed568912
KH
1268
1269 if (ohci->next_config_rom != NULL) {
0bd243c4
KH
1270 if (ohci->next_config_rom != ohci->config_rom) {
1271 free_rom = ohci->config_rom;
1272 free_rom_bus = ohci->config_rom_bus;
1273 }
ed568912
KH
1274 ohci->config_rom = ohci->next_config_rom;
1275 ohci->config_rom_bus = ohci->next_config_rom_bus;
1276 ohci->next_config_rom = NULL;
1277
c781c06d
KH
1278 /*
1279 * Restore config_rom image and manually update
ed568912
KH
1280 * config_rom registers. Writing the header quadlet
1281 * will indicate that the config rom is ready, so we
c781c06d
KH
1282 * do that last.
1283 */
ed568912
KH
1284 reg_write(ohci, OHCI1394_BusOptions,
1285 be32_to_cpu(ohci->config_rom[2]));
1286 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1287 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1288 }
1289
080de8c2
SR
1290#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1291 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1292 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1293#endif
1294
ed568912
KH
1295 spin_unlock_irqrestore(&ohci->lock, flags);
1296
4eaff7d6
SR
1297 if (free_rom)
1298 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1299 free_rom, free_rom_bus);
1300
ad3c0fe8
SR
1301 log_selfids(generation, self_id_count, ohci->self_id_buffer);
1302
e636fe25 1303 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
1304 self_id_count, ohci->self_id_buffer);
1305}
1306
1307static irqreturn_t irq_handler(int irq, void *data)
1308{
1309 struct fw_ohci *ohci = data;
d60d7f1d 1310 u32 event, iso_event, cycle_time;
ed568912
KH
1311 int i;
1312
1313 event = reg_read(ohci, OHCI1394_IntEventClear);
1314
a515958d 1315 if (!event || !~event)
ed568912
KH
1316 return IRQ_NONE;
1317
1318 reg_write(ohci, OHCI1394_IntEventClear, event);
ad3c0fe8 1319 log_irqs(event);
ed568912
KH
1320
1321 if (event & OHCI1394_selfIDComplete)
1322 tasklet_schedule(&ohci->bus_reset_tasklet);
1323
1324 if (event & OHCI1394_RQPkt)
1325 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1326
1327 if (event & OHCI1394_RSPkt)
1328 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1329
1330 if (event & OHCI1394_reqTxComplete)
1331 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1332
1333 if (event & OHCI1394_respTxComplete)
1334 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1335
c889475f 1336 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
1337 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1338
1339 while (iso_event) {
1340 i = ffs(iso_event) - 1;
30200739 1341 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
1342 iso_event &= ~(1 << i);
1343 }
1344
c889475f 1345 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
1346 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1347
1348 while (iso_event) {
1349 i = ffs(iso_event) - 1;
30200739 1350 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1351 iso_event &= ~(1 << i);
1352 }
1353
e524f616
SR
1354 if (unlikely(event & OHCI1394_postedWriteErr))
1355 fw_error("PCI posted write error\n");
1356
bb9f2206
SR
1357 if (unlikely(event & OHCI1394_cycleTooLong)) {
1358 if (printk_ratelimit())
1359 fw_notify("isochronous cycle too long\n");
1360 reg_write(ohci, OHCI1394_LinkControlSet,
1361 OHCI1394_LinkControl_cycleMaster);
1362 }
1363
d60d7f1d
KH
1364 if (event & OHCI1394_cycle64Seconds) {
1365 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1366 if ((cycle_time & 0x80000000) == 0)
1367 ohci->bus_seconds++;
1368 }
1369
ed568912
KH
1370 return IRQ_HANDLED;
1371}
1372
2aef469a
KH
1373static int software_reset(struct fw_ohci *ohci)
1374{
1375 int i;
1376
1377 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1378
1379 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1380 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1381 OHCI1394_HCControl_softReset) == 0)
1382 return 0;
1383 msleep(1);
1384 }
1385
1386 return -EBUSY;
1387}
1388
ed568912
KH
1389static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1390{
1391 struct fw_ohci *ohci = fw_ohci(card);
1392 struct pci_dev *dev = to_pci_dev(card->device);
02214724
JW
1393 u32 lps;
1394 int i;
ed568912 1395
2aef469a
KH
1396 if (software_reset(ohci)) {
1397 fw_error("Failed to reset ohci card.\n");
1398 return -EBUSY;
1399 }
1400
1401 /*
1402 * Now enable LPS, which we need in order to start accessing
1403 * most of the registers. In fact, on some cards (ALI M5251),
1404 * accessing registers in the SClk domain without LPS enabled
1405 * will lock up the machine. Wait 50msec to make sure we have
02214724
JW
1406 * full link enabled. However, with some cards (well, at least
1407 * a JMicron PCIe card), we have to try again sometimes.
2aef469a
KH
1408 */
1409 reg_write(ohci, OHCI1394_HCControlSet,
1410 OHCI1394_HCControl_LPS |
1411 OHCI1394_HCControl_postedWriteEnable);
1412 flush_writes(ohci);
02214724
JW
1413
1414 for (lps = 0, i = 0; !lps && i < 3; i++) {
1415 msleep(50);
1416 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1417 OHCI1394_HCControl_LPS;
1418 }
1419
1420 if (!lps) {
1421 fw_error("Failed to set Link Power Status\n");
1422 return -EIO;
1423 }
2aef469a
KH
1424
1425 reg_write(ohci, OHCI1394_HCControlClear,
1426 OHCI1394_HCControl_noByteSwapData);
1427
1428 reg_write(ohci, OHCI1394_LinkControlSet,
1429 OHCI1394_LinkControl_rcvSelfID |
1430 OHCI1394_LinkControl_cycleTimerEnable |
1431 OHCI1394_LinkControl_cycleMaster);
1432
1433 reg_write(ohci, OHCI1394_ATRetries,
1434 OHCI1394_MAX_AT_REQ_RETRIES |
1435 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1436 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1437
1438 ar_context_run(&ohci->ar_request_ctx);
1439 ar_context_run(&ohci->ar_response_ctx);
1440
1441 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1442 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1443 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1444 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1445 reg_write(ohci, OHCI1394_IntMaskSet,
1446 OHCI1394_selfIDComplete |
1447 OHCI1394_RQPkt | OHCI1394_RSPkt |
1448 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1449 OHCI1394_isochRx | OHCI1394_isochTx |
bb9f2206
SR
1450 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1451 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
2aef469a
KH
1452
1453 /* Activate link_on bit and contender bit in our self ID packets.*/
1454 if (ohci_update_phy_reg(card, 4, 0,
1455 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1456 return -EIO;
1457
c781c06d
KH
1458 /*
1459 * When the link is not yet enabled, the atomic config rom
ed568912
KH
1460 * update mechanism described below in ohci_set_config_rom()
1461 * is not active. We have to update ConfigRomHeader and
1462 * BusOptions manually, and the write to ConfigROMmap takes
1463 * effect immediately. We tie this to the enabling of the
1464 * link, so we have a valid config rom before enabling - the
1465 * OHCI requires that ConfigROMhdr and BusOptions have valid
1466 * values before enabling.
1467 *
1468 * However, when the ConfigROMmap is written, some controllers
1469 * always read back quadlets 0 and 2 from the config rom to
1470 * the ConfigRomHeader and BusOptions registers on bus reset.
1471 * They shouldn't do that in this initial case where the link
1472 * isn't enabled. This means we have to use the same
1473 * workaround here, setting the bus header to 0 and then write
1474 * the right values in the bus reset tasklet.
1475 */
1476
0bd243c4
KH
1477 if (config_rom) {
1478 ohci->next_config_rom =
1479 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1480 &ohci->next_config_rom_bus,
1481 GFP_KERNEL);
1482 if (ohci->next_config_rom == NULL)
1483 return -ENOMEM;
ed568912 1484
0bd243c4
KH
1485 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1486 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1487 } else {
1488 /*
1489 * In the suspend case, config_rom is NULL, which
1490 * means that we just reuse the old config rom.
1491 */
1492 ohci->next_config_rom = ohci->config_rom;
1493 ohci->next_config_rom_bus = ohci->config_rom_bus;
1494 }
ed568912 1495
0bd243c4 1496 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
ed568912
KH
1497 ohci->next_config_rom[0] = 0;
1498 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
0bd243c4
KH
1499 reg_write(ohci, OHCI1394_BusOptions,
1500 be32_to_cpu(ohci->next_config_rom[2]));
ed568912
KH
1501 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1502
1503 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1504
1505 if (request_irq(dev->irq, irq_handler,
65efffa8 1506 IRQF_SHARED, ohci_driver_name, ohci)) {
ed568912
KH
1507 fw_error("Failed to allocate shared interrupt %d.\n",
1508 dev->irq);
1509 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1510 ohci->config_rom, ohci->config_rom_bus);
1511 return -EIO;
1512 }
1513
1514 reg_write(ohci, OHCI1394_HCControlSet,
1515 OHCI1394_HCControl_linkEnable |
1516 OHCI1394_HCControl_BIBimageValid);
1517 flush_writes(ohci);
1518
c781c06d
KH
1519 /*
1520 * We are ready to go, initiate bus reset to finish the
1521 * initialization.
1522 */
ed568912
KH
1523
1524 fw_core_initiate_bus_reset(&ohci->card, 1);
1525
1526 return 0;
1527}
1528
1529static int
1530ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1531{
1532 struct fw_ohci *ohci;
1533 unsigned long flags;
4eaff7d6 1534 int retval = -EBUSY;
ed568912 1535 __be32 *next_config_rom;
f5101d58 1536 dma_addr_t uninitialized_var(next_config_rom_bus);
ed568912
KH
1537
1538 ohci = fw_ohci(card);
1539
c781c06d
KH
1540 /*
1541 * When the OHCI controller is enabled, the config rom update
ed568912
KH
1542 * mechanism is a bit tricky, but easy enough to use. See
1543 * section 5.5.6 in the OHCI specification.
1544 *
1545 * The OHCI controller caches the new config rom address in a
1546 * shadow register (ConfigROMmapNext) and needs a bus reset
1547 * for the changes to take place. When the bus reset is
1548 * detected, the controller loads the new values for the
1549 * ConfigRomHeader and BusOptions registers from the specified
1550 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1551 * shadow register. All automatically and atomically.
1552 *
1553 * Now, there's a twist to this story. The automatic load of
1554 * ConfigRomHeader and BusOptions doesn't honor the
1555 * noByteSwapData bit, so with a be32 config rom, the
1556 * controller will load be32 values in to these registers
1557 * during the atomic update, even on litte endian
1558 * architectures. The workaround we use is to put a 0 in the
1559 * header quadlet; 0 is endian agnostic and means that the
1560 * config rom isn't ready yet. In the bus reset tasklet we
1561 * then set up the real values for the two registers.
1562 *
1563 * We use ohci->lock to avoid racing with the code that sets
1564 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1565 */
1566
1567 next_config_rom =
1568 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1569 &next_config_rom_bus, GFP_KERNEL);
1570 if (next_config_rom == NULL)
1571 return -ENOMEM;
1572
1573 spin_lock_irqsave(&ohci->lock, flags);
1574
1575 if (ohci->next_config_rom == NULL) {
1576 ohci->next_config_rom = next_config_rom;
1577 ohci->next_config_rom_bus = next_config_rom_bus;
1578
1579 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1580 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1581 length * 4);
1582
1583 ohci->next_header = config_rom[0];
1584 ohci->next_config_rom[0] = 0;
1585
1586 reg_write(ohci, OHCI1394_ConfigROMmap,
1587 ohci->next_config_rom_bus);
4eaff7d6 1588 retval = 0;
ed568912
KH
1589 }
1590
1591 spin_unlock_irqrestore(&ohci->lock, flags);
1592
c781c06d
KH
1593 /*
1594 * Now initiate a bus reset to have the changes take
ed568912
KH
1595 * effect. We clean up the old config rom memory and DMA
1596 * mappings in the bus reset tasklet, since the OHCI
1597 * controller could need to access it before the bus reset
c781c06d
KH
1598 * takes effect.
1599 */
ed568912
KH
1600 if (retval == 0)
1601 fw_core_initiate_bus_reset(&ohci->card, 1);
4eaff7d6
SR
1602 else
1603 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1604 next_config_rom, next_config_rom_bus);
ed568912
KH
1605
1606 return retval;
1607}
1608
1609static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1610{
1611 struct fw_ohci *ohci = fw_ohci(card);
1612
1613 at_context_transmit(&ohci->at_request_ctx, packet);
1614}
1615
1616static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1617{
1618 struct fw_ohci *ohci = fw_ohci(card);
1619
1620 at_context_transmit(&ohci->at_response_ctx, packet);
1621}
1622
730c32f5
KH
1623static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1624{
1625 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
1626 struct context *ctx = &ohci->at_request_ctx;
1627 struct driver_data *driver_data = packet->driver_data;
1628 int retval = -ENOENT;
730c32f5 1629
f319b6a0 1630 tasklet_disable(&ctx->tasklet);
730c32f5 1631
f319b6a0
KH
1632 if (packet->ack != 0)
1633 goto out;
730c32f5 1634
ad3c0fe8 1635 log_ar_at_event('T', packet->speed, packet->header, 0x20);
f319b6a0
KH
1636 driver_data->packet = NULL;
1637 packet->ack = RCODE_CANCELLED;
1638 packet->callback(packet, &ohci->card, packet->ack);
1639 retval = 0;
730c32f5 1640
f319b6a0
KH
1641 out:
1642 tasklet_enable(&ctx->tasklet);
730c32f5 1643
f319b6a0 1644 return retval;
730c32f5
KH
1645}
1646
ed568912
KH
1647static int
1648ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1649{
080de8c2
SR
1650#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1651 return 0;
1652#else
ed568912
KH
1653 struct fw_ohci *ohci = fw_ohci(card);
1654 unsigned long flags;
907293d7 1655 int n, retval = 0;
ed568912 1656
c781c06d
KH
1657 /*
1658 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1659 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1660 */
ed568912
KH
1661
1662 spin_lock_irqsave(&ohci->lock, flags);
1663
1664 if (ohci->generation != generation) {
1665 retval = -ESTALE;
1666 goto out;
1667 }
1668
c781c06d
KH
1669 /*
1670 * Note, if the node ID contains a non-local bus ID, physical DMA is
1671 * enabled for _all_ nodes on remote buses.
1672 */
907293d7
SR
1673
1674 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1675 if (n < 32)
1676 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1677 else
1678 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1679
ed568912 1680 flush_writes(ohci);
ed568912 1681 out:
6cad95fe 1682 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912 1683 return retval;
080de8c2 1684#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
ed568912 1685}
373b2edd 1686
d60d7f1d
KH
1687static u64
1688ohci_get_bus_time(struct fw_card *card)
1689{
1690 struct fw_ohci *ohci = fw_ohci(card);
1691 u32 cycle_time;
1692 u64 bus_time;
1693
1694 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1695 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1696
1697 return bus_time;
1698}
1699
d2746dc1
KH
1700static int handle_ir_dualbuffer_packet(struct context *context,
1701 struct descriptor *d,
1702 struct descriptor *last)
ed568912 1703{
295e3feb
KH
1704 struct iso_context *ctx =
1705 container_of(context, struct iso_context, context);
1706 struct db_descriptor *db = (struct db_descriptor *) d;
c70dc788 1707 __le32 *ir_header;
9b32d5f3 1708 size_t header_length;
c70dc788
KH
1709 void *p, *end;
1710 int i;
d2746dc1 1711
efbf390a 1712 if (db->first_res_count != 0 && db->second_res_count != 0) {
0642b657
DM
1713 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1714 /* This descriptor isn't done yet, stop iteration. */
1715 return 0;
1716 }
1717 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1718 }
295e3feb 1719
c70dc788
KH
1720 header_length = le16_to_cpu(db->first_req_count) -
1721 le16_to_cpu(db->first_res_count);
1722
1723 i = ctx->header_length;
1724 p = db + 1;
1725 end = p + header_length;
1726 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
c781c06d
KH
1727 /*
1728 * The iso header is byteswapped to little endian by
15536221
KH
1729 * the controller, but the remaining header quadlets
1730 * are big endian. We want to present all the headers
1731 * as big endian, so we have to swap the first
c781c06d
KH
1732 * quadlet.
1733 */
15536221
KH
1734 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1735 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
c70dc788 1736 i += ctx->base.header_size;
0642b657 1737 ctx->excess_bytes +=
efbf390a 1738 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
c70dc788
KH
1739 p += ctx->base.header_size + 4;
1740 }
c70dc788 1741 ctx->header_length = i;
9b32d5f3 1742
0642b657
DM
1743 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1744 le16_to_cpu(db->second_res_count);
1745
a77754a7 1746 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
c70dc788
KH
1747 ir_header = (__le32 *) (db + 1);
1748 ctx->base.callback(&ctx->base,
1749 le32_to_cpu(ir_header[0]) & 0xffff,
9b32d5f3 1750 ctx->header_length, ctx->header,
295e3feb 1751 ctx->base.callback_data);
9b32d5f3
KH
1752 ctx->header_length = 0;
1753 }
ed568912 1754
295e3feb 1755 return 1;
ed568912
KH
1756}
1757
a186b4a6
JW
1758static int handle_ir_packet_per_buffer(struct context *context,
1759 struct descriptor *d,
1760 struct descriptor *last)
1761{
1762 struct iso_context *ctx =
1763 container_of(context, struct iso_context, context);
bcee893c 1764 struct descriptor *pd;
a186b4a6 1765 __le32 *ir_header;
bcee893c
DM
1766 void *p;
1767 int i;
a186b4a6 1768
bcee893c
DM
1769 for (pd = d; pd <= last; pd++) {
1770 if (pd->transfer_status)
1771 break;
1772 }
1773 if (pd > last)
a186b4a6
JW
1774 /* Descriptor(s) not done yet, stop iteration */
1775 return 0;
1776
a186b4a6 1777 i = ctx->header_length;
bcee893c 1778 p = last + 1;
a186b4a6 1779
bcee893c
DM
1780 if (ctx->base.header_size > 0 &&
1781 i + ctx->base.header_size <= PAGE_SIZE) {
a186b4a6
JW
1782 /*
1783 * The iso header is byteswapped to little endian by
1784 * the controller, but the remaining header quadlets
1785 * are big endian. We want to present all the headers
1786 * as big endian, so we have to swap the first quadlet.
1787 */
1788 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1789 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
bcee893c 1790 ctx->header_length += ctx->base.header_size;
a186b4a6
JW
1791 }
1792
bcee893c
DM
1793 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1794 ir_header = (__le32 *) p;
a186b4a6
JW
1795 ctx->base.callback(&ctx->base,
1796 le32_to_cpu(ir_header[0]) & 0xffff,
1797 ctx->header_length, ctx->header,
1798 ctx->base.callback_data);
1799 ctx->header_length = 0;
1800 }
1801
a186b4a6
JW
1802 return 1;
1803}
1804
30200739
KH
1805static int handle_it_packet(struct context *context,
1806 struct descriptor *d,
1807 struct descriptor *last)
ed568912 1808{
30200739
KH
1809 struct iso_context *ctx =
1810 container_of(context, struct iso_context, context);
373b2edd 1811
30200739
KH
1812 if (last->transfer_status == 0)
1813 /* This descriptor isn't done yet, stop iteration. */
1814 return 0;
1815
a77754a7 1816 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
9b32d5f3
KH
1817 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1818 0, NULL, ctx->base.callback_data);
30200739
KH
1819
1820 return 1;
ed568912
KH
1821}
1822
30200739 1823static struct fw_iso_context *
eb0306ea 1824ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
ed568912
KH
1825{
1826 struct fw_ohci *ohci = fw_ohci(card);
1827 struct iso_context *ctx, *list;
30200739 1828 descriptor_callback_t callback;
295e3feb 1829 u32 *mask, regs;
ed568912 1830 unsigned long flags;
9b32d5f3 1831 int index, retval = -ENOMEM;
ed568912
KH
1832
1833 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1834 mask = &ohci->it_context_mask;
1835 list = ohci->it_context_list;
30200739 1836 callback = handle_it_packet;
ed568912 1837 } else {
373b2edd
SR
1838 mask = &ohci->ir_context_mask;
1839 list = ohci->ir_context_list;
a186b4a6
JW
1840 if (ohci->version >= OHCI_VERSION_1_1)
1841 callback = handle_ir_dualbuffer_packet;
1842 else
1843 callback = handle_ir_packet_per_buffer;
ed568912
KH
1844 }
1845
1846 spin_lock_irqsave(&ohci->lock, flags);
1847 index = ffs(*mask) - 1;
1848 if (index >= 0)
1849 *mask &= ~(1 << index);
1850 spin_unlock_irqrestore(&ohci->lock, flags);
1851
1852 if (index < 0)
1853 return ERR_PTR(-EBUSY);
1854
373b2edd
SR
1855 if (type == FW_ISO_CONTEXT_TRANSMIT)
1856 regs = OHCI1394_IsoXmitContextBase(index);
1857 else
1858 regs = OHCI1394_IsoRcvContextBase(index);
1859
ed568912 1860 ctx = &list[index];
2d826cc5 1861 memset(ctx, 0, sizeof(*ctx));
9b32d5f3
KH
1862 ctx->header_length = 0;
1863 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1864 if (ctx->header == NULL)
1865 goto out;
1866
fe5ca634 1867 retval = context_init(&ctx->context, ohci, regs, callback);
9b32d5f3
KH
1868 if (retval < 0)
1869 goto out_with_header;
ed568912
KH
1870
1871 return &ctx->base;
9b32d5f3
KH
1872
1873 out_with_header:
1874 free_page((unsigned long)ctx->header);
1875 out:
1876 spin_lock_irqsave(&ohci->lock, flags);
1877 *mask |= 1 << index;
1878 spin_unlock_irqrestore(&ohci->lock, flags);
1879
1880 return ERR_PTR(retval);
ed568912
KH
1881}
1882
eb0306ea
KH
1883static int ohci_start_iso(struct fw_iso_context *base,
1884 s32 cycle, u32 sync, u32 tags)
ed568912 1885{
373b2edd 1886 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1887 struct fw_ohci *ohci = ctx->context.ohci;
8a2f7d93 1888 u32 control, match;
ed568912
KH
1889 int index;
1890
295e3feb
KH
1891 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1892 index = ctx - ohci->it_context_list;
8a2f7d93
KH
1893 match = 0;
1894 if (cycle >= 0)
1895 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
295e3feb 1896 (cycle & 0x7fff) << 16;
21efb3cf 1897
295e3feb
KH
1898 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1899 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
8a2f7d93 1900 context_run(&ctx->context, match);
295e3feb
KH
1901 } else {
1902 index = ctx - ohci->ir_context_list;
a186b4a6
JW
1903 control = IR_CONTEXT_ISOCH_HEADER;
1904 if (ohci->version >= OHCI_VERSION_1_1)
1905 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
8a2f7d93
KH
1906 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1907 if (cycle >= 0) {
1908 match |= (cycle & 0x07fff) << 12;
1909 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1910 }
ed568912 1911
295e3feb
KH
1912 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1913 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
a77754a7 1914 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
8a2f7d93 1915 context_run(&ctx->context, control);
295e3feb 1916 }
ed568912
KH
1917
1918 return 0;
1919}
1920
b8295668
KH
1921static int ohci_stop_iso(struct fw_iso_context *base)
1922{
1923 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1924 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
1925 int index;
1926
1927 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1928 index = ctx - ohci->it_context_list;
1929 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1930 } else {
1931 index = ctx - ohci->ir_context_list;
1932 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1933 }
1934 flush_writes(ohci);
1935 context_stop(&ctx->context);
1936
1937 return 0;
1938}
1939
ed568912
KH
1940static void ohci_free_iso_context(struct fw_iso_context *base)
1941{
1942 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1943 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
1944 unsigned long flags;
1945 int index;
1946
b8295668
KH
1947 ohci_stop_iso(base);
1948 context_release(&ctx->context);
9b32d5f3 1949 free_page((unsigned long)ctx->header);
b8295668 1950
ed568912
KH
1951 spin_lock_irqsave(&ohci->lock, flags);
1952
1953 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1954 index = ctx - ohci->it_context_list;
ed568912
KH
1955 ohci->it_context_mask |= 1 << index;
1956 } else {
1957 index = ctx - ohci->ir_context_list;
ed568912
KH
1958 ohci->ir_context_mask |= 1 << index;
1959 }
ed568912
KH
1960
1961 spin_unlock_irqrestore(&ohci->lock, flags);
1962}
1963
1964static int
295e3feb
KH
1965ohci_queue_iso_transmit(struct fw_iso_context *base,
1966 struct fw_iso_packet *packet,
1967 struct fw_iso_buffer *buffer,
1968 unsigned long payload)
ed568912 1969{
373b2edd 1970 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1971 struct descriptor *d, *last, *pd;
ed568912
KH
1972 struct fw_iso_packet *p;
1973 __le32 *header;
9aad8125 1974 dma_addr_t d_bus, page_bus;
ed568912
KH
1975 u32 z, header_z, payload_z, irq;
1976 u32 payload_index, payload_end_index, next_page_index;
30200739 1977 int page, end_page, i, length, offset;
ed568912 1978
c781c06d
KH
1979 /*
1980 * FIXME: Cycle lost behavior should be configurable: lose
1981 * packet, retransmit or terminate..
1982 */
ed568912
KH
1983
1984 p = packet;
9aad8125 1985 payload_index = payload;
ed568912
KH
1986
1987 if (p->skip)
1988 z = 1;
1989 else
1990 z = 2;
1991 if (p->header_length > 0)
1992 z++;
1993
1994 /* Determine the first page the payload isn't contained in. */
1995 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1996 if (p->payload_length > 0)
1997 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1998 else
1999 payload_z = 0;
2000
2001 z += payload_z;
2002
2003 /* Get header size in number of descriptors. */
2d826cc5 2004 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
ed568912 2005
30200739
KH
2006 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2007 if (d == NULL)
2008 return -ENOMEM;
ed568912
KH
2009
2010 if (!p->skip) {
a77754a7 2011 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
ed568912
KH
2012 d[0].req_count = cpu_to_le16(8);
2013
2014 header = (__le32 *) &d[1];
a77754a7
KH
2015 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2016 IT_HEADER_TAG(p->tag) |
2017 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2018 IT_HEADER_CHANNEL(ctx->base.channel) |
2019 IT_HEADER_SPEED(ctx->base.speed));
ed568912 2020 header[1] =
a77754a7 2021 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
ed568912
KH
2022 p->payload_length));
2023 }
2024
2025 if (p->header_length > 0) {
2026 d[2].req_count = cpu_to_le16(p->header_length);
2d826cc5 2027 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
ed568912
KH
2028 memcpy(&d[z], p->header, p->header_length);
2029 }
2030
2031 pd = d + z - payload_z;
2032 payload_end_index = payload_index + p->payload_length;
2033 for (i = 0; i < payload_z; i++) {
2034 page = payload_index >> PAGE_SHIFT;
2035 offset = payload_index & ~PAGE_MASK;
2036 next_page_index = (page + 1) << PAGE_SHIFT;
2037 length =
2038 min(next_page_index, payload_end_index) - payload_index;
2039 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
2040
2041 page_bus = page_private(buffer->pages[page]);
2042 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
2043
2044 payload_index += length;
2045 }
2046
ed568912 2047 if (p->interrupt)
a77754a7 2048 irq = DESCRIPTOR_IRQ_ALWAYS;
ed568912 2049 else
a77754a7 2050 irq = DESCRIPTOR_NO_IRQ;
ed568912 2051
30200739 2052 last = z == 2 ? d : d + z - 1;
a77754a7
KH
2053 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2054 DESCRIPTOR_STATUS |
2055 DESCRIPTOR_BRANCH_ALWAYS |
cbb59da7 2056 irq);
ed568912 2057
30200739 2058 context_append(&ctx->context, d, z, header_z);
ed568912
KH
2059
2060 return 0;
2061}
373b2edd 2062
295e3feb 2063static int
d2746dc1
KH
2064ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2065 struct fw_iso_packet *packet,
2066 struct fw_iso_buffer *buffer,
2067 unsigned long payload)
295e3feb
KH
2068{
2069 struct iso_context *ctx = container_of(base, struct iso_context, base);
2070 struct db_descriptor *db = NULL;
2071 struct descriptor *d;
2072 struct fw_iso_packet *p;
2073 dma_addr_t d_bus, page_bus;
2074 u32 z, header_z, length, rest;
c70dc788 2075 int page, offset, packet_count, header_size;
373b2edd 2076
c781c06d
KH
2077 /*
2078 * FIXME: Cycle lost behavior should be configurable: lose
2079 * packet, retransmit or terminate..
2080 */
295e3feb
KH
2081
2082 p = packet;
2083 z = 2;
2084
c781c06d
KH
2085 /*
2086 * The OHCI controller puts the status word in the header
2087 * buffer too, so we need 4 extra bytes per packet.
2088 */
c70dc788
KH
2089 packet_count = p->header_length / ctx->base.header_size;
2090 header_size = packet_count * (ctx->base.header_size + 4);
2091
295e3feb 2092 /* Get header size in number of descriptors. */
2d826cc5 2093 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
295e3feb
KH
2094 page = payload >> PAGE_SHIFT;
2095 offset = payload & ~PAGE_MASK;
2096 rest = p->payload_length;
2097
295e3feb
KH
2098 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2099 while (rest > 0) {
2100 d = context_get_descriptors(&ctx->context,
2101 z + header_z, &d_bus);
2102 if (d == NULL)
2103 return -ENOMEM;
2104
2105 db = (struct db_descriptor *) d;
a77754a7
KH
2106 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2107 DESCRIPTOR_BRANCH_ALWAYS);
c70dc788 2108 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
0642b657
DM
2109 if (p->skip && rest == p->payload_length) {
2110 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2111 db->first_req_count = db->first_size;
2112 } else {
2113 db->first_req_count = cpu_to_le16(header_size);
2114 }
1e1d196b 2115 db->first_res_count = db->first_req_count;
2d826cc5 2116 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
373b2edd 2117
0642b657
DM
2118 if (p->skip && rest == p->payload_length)
2119 length = 4;
2120 else if (offset + rest < PAGE_SIZE)
295e3feb
KH
2121 length = rest;
2122 else
2123 length = PAGE_SIZE - offset;
2124
1e1d196b
KH
2125 db->second_req_count = cpu_to_le16(length);
2126 db->second_res_count = db->second_req_count;
295e3feb
KH
2127 page_bus = page_private(buffer->pages[page]);
2128 db->second_buffer = cpu_to_le32(page_bus + offset);
2129
cb2d2cdb 2130 if (p->interrupt && length == rest)
a77754a7 2131 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
cb2d2cdb 2132
295e3feb
KH
2133 context_append(&ctx->context, d, z, header_z);
2134 offset = (offset + length) & ~PAGE_MASK;
2135 rest -= length;
0642b657
DM
2136 if (offset == 0)
2137 page++;
295e3feb
KH
2138 }
2139
d2746dc1
KH
2140 return 0;
2141}
21efb3cf 2142
a186b4a6
JW
2143static int
2144ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2145 struct fw_iso_packet *packet,
2146 struct fw_iso_buffer *buffer,
2147 unsigned long payload)
2148{
2149 struct iso_context *ctx = container_of(base, struct iso_context, base);
2150 struct descriptor *d = NULL, *pd = NULL;
bcee893c 2151 struct fw_iso_packet *p = packet;
a186b4a6
JW
2152 dma_addr_t d_bus, page_bus;
2153 u32 z, header_z, rest;
bcee893c
DM
2154 int i, j, length;
2155 int page, offset, packet_count, header_size, payload_per_buffer;
a186b4a6
JW
2156
2157 /*
2158 * The OHCI controller puts the status word in the
2159 * buffer too, so we need 4 extra bytes per packet.
2160 */
2161 packet_count = p->header_length / ctx->base.header_size;
bcee893c 2162 header_size = ctx->base.header_size + 4;
a186b4a6
JW
2163
2164 /* Get header size in number of descriptors. */
2165 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2166 page = payload >> PAGE_SHIFT;
2167 offset = payload & ~PAGE_MASK;
bcee893c 2168 payload_per_buffer = p->payload_length / packet_count;
a186b4a6
JW
2169
2170 for (i = 0; i < packet_count; i++) {
2171 /* d points to the header descriptor */
bcee893c 2172 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
a186b4a6 2173 d = context_get_descriptors(&ctx->context,
bcee893c 2174 z + header_z, &d_bus);
a186b4a6
JW
2175 if (d == NULL)
2176 return -ENOMEM;
2177
bcee893c
DM
2178 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2179 DESCRIPTOR_INPUT_MORE);
2180 if (p->skip && i == 0)
2181 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
a186b4a6
JW
2182 d->req_count = cpu_to_le16(header_size);
2183 d->res_count = d->req_count;
bcee893c 2184 d->transfer_status = 0;
a186b4a6
JW
2185 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2186
bcee893c
DM
2187 rest = payload_per_buffer;
2188 for (j = 1; j < z; j++) {
2189 pd = d + j;
2190 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2191 DESCRIPTOR_INPUT_MORE);
2192
2193 if (offset + rest < PAGE_SIZE)
2194 length = rest;
2195 else
2196 length = PAGE_SIZE - offset;
2197 pd->req_count = cpu_to_le16(length);
2198 pd->res_count = pd->req_count;
2199 pd->transfer_status = 0;
2200
2201 page_bus = page_private(buffer->pages[page]);
2202 pd->data_address = cpu_to_le32(page_bus + offset);
2203
2204 offset = (offset + length) & ~PAGE_MASK;
2205 rest -= length;
2206 if (offset == 0)
2207 page++;
2208 }
a186b4a6
JW
2209 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2210 DESCRIPTOR_INPUT_LAST |
2211 DESCRIPTOR_BRANCH_ALWAYS);
bcee893c 2212 if (p->interrupt && i == packet_count - 1)
a186b4a6
JW
2213 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2214
a186b4a6
JW
2215 context_append(&ctx->context, d, z, header_z);
2216 }
2217
2218 return 0;
2219}
2220
295e3feb
KH
2221static int
2222ohci_queue_iso(struct fw_iso_context *base,
2223 struct fw_iso_packet *packet,
2224 struct fw_iso_buffer *buffer,
2225 unsigned long payload)
2226{
e364cf4e 2227 struct iso_context *ctx = container_of(base, struct iso_context, base);
fe5ca634
DM
2228 unsigned long flags;
2229 int retval;
e364cf4e 2230
fe5ca634 2231 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
295e3feb 2232 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
fe5ca634 2233 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
e364cf4e 2234 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
fe5ca634 2235 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
d2746dc1 2236 buffer, payload);
e364cf4e 2237 else
fe5ca634 2238 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
a186b4a6
JW
2239 buffer,
2240 payload);
fe5ca634
DM
2241 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2242
2243 return retval;
295e3feb
KH
2244}
2245
21ebcd12 2246static const struct fw_card_driver ohci_driver = {
ed568912
KH
2247 .name = ohci_driver_name,
2248 .enable = ohci_enable,
2249 .update_phy_reg = ohci_update_phy_reg,
2250 .set_config_rom = ohci_set_config_rom,
2251 .send_request = ohci_send_request,
2252 .send_response = ohci_send_response,
730c32f5 2253 .cancel_packet = ohci_cancel_packet,
ed568912 2254 .enable_phys_dma = ohci_enable_phys_dma,
d60d7f1d 2255 .get_bus_time = ohci_get_bus_time,
ed568912
KH
2256
2257 .allocate_iso_context = ohci_allocate_iso_context,
2258 .free_iso_context = ohci_free_iso_context,
2259 .queue_iso = ohci_queue_iso,
69cdb726 2260 .start_iso = ohci_start_iso,
b8295668 2261 .stop_iso = ohci_stop_iso,
ed568912
KH
2262};
2263
ea8d006b 2264#ifdef CONFIG_PPC_PMAC
2ed0f181
SR
2265static void ohci_pmac_on(struct pci_dev *dev)
2266{
ea8d006b
SR
2267 if (machine_is(powermac)) {
2268 struct device_node *ofn = pci_device_to_OF_node(dev);
2269
2270 if (ofn) {
2271 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2272 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2273 }
2274 }
2ed0f181
SR
2275}
2276
2277static void ohci_pmac_off(struct pci_dev *dev)
2278{
2279 if (machine_is(powermac)) {
2280 struct device_node *ofn = pci_device_to_OF_node(dev);
2281
2282 if (ofn) {
2283 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2284 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2285 }
2286 }
2287}
2288#else
2289#define ohci_pmac_on(dev)
2290#define ohci_pmac_off(dev)
ea8d006b
SR
2291#endif /* CONFIG_PPC_PMAC */
2292
2ed0f181
SR
2293static int __devinit
2294pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2295{
2296 struct fw_ohci *ohci;
2297 u32 bus_options, max_receive, link_speed;
2298 u64 guid;
2299 int err;
2300 size_t size;
2301
2d826cc5 2302 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
ed568912
KH
2303 if (ohci == NULL) {
2304 fw_error("Could not malloc fw_ohci data.\n");
2305 return -ENOMEM;
2306 }
2307
2308 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2309
130d5496
SR
2310 ohci_pmac_on(dev);
2311
d79406dd
KH
2312 err = pci_enable_device(dev);
2313 if (err) {
ed568912 2314 fw_error("Failed to enable OHCI hardware.\n");
bd7dee63 2315 goto fail_free;
ed568912
KH
2316 }
2317
2318 pci_set_master(dev);
2319 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2320 pci_set_drvdata(dev, ohci);
2321
11bf20ad
SR
2322#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2323 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2324 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2325#endif
ed568912
KH
2326 spin_lock_init(&ohci->lock);
2327
2328 tasklet_init(&ohci->bus_reset_tasklet,
2329 bus_reset_tasklet, (unsigned long)ohci);
2330
d79406dd
KH
2331 err = pci_request_region(dev, 0, ohci_driver_name);
2332 if (err) {
ed568912 2333 fw_error("MMIO resource unavailable\n");
d79406dd 2334 goto fail_disable;
ed568912
KH
2335 }
2336
2337 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2338 if (ohci->registers == NULL) {
2339 fw_error("Failed to remap registers\n");
d79406dd
KH
2340 err = -ENXIO;
2341 goto fail_iomem;
ed568912
KH
2342 }
2343
ed568912
KH
2344 ar_context_init(&ohci->ar_request_ctx, ohci,
2345 OHCI1394_AsReqRcvContextControlSet);
2346
2347 ar_context_init(&ohci->ar_response_ctx, ohci,
2348 OHCI1394_AsRspRcvContextControlSet);
2349
fe5ca634 2350 context_init(&ohci->at_request_ctx, ohci,
f319b6a0 2351 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
ed568912 2352
fe5ca634 2353 context_init(&ohci->at_response_ctx, ohci,
f319b6a0 2354 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
ed568912 2355
ed568912
KH
2356 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2357 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2358 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2359 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2360 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2361
2362 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2363 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2364 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2365 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2366 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2367
2368 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2369 fw_error("Out of memory for it/ir contexts.\n");
d79406dd
KH
2370 err = -ENOMEM;
2371 goto fail_registers;
ed568912
KH
2372 }
2373
2374 /* self-id dma buffer allocation */
2375 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2376 SELF_ID_BUF_SIZE,
2377 &ohci->self_id_bus,
2378 GFP_KERNEL);
2379 if (ohci->self_id_cpu == NULL) {
2380 fw_error("Out of memory for self ID buffer.\n");
d79406dd
KH
2381 err = -ENOMEM;
2382 goto fail_registers;
ed568912
KH
2383 }
2384
ed568912
KH
2385 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2386 max_receive = (bus_options >> 12) & 0xf;
2387 link_speed = bus_options & 0x7;
2388 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2389 reg_read(ohci, OHCI1394_GUIDLo);
2390
d79406dd
KH
2391 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2392 if (err < 0)
2393 goto fail_self_id;
ed568912 2394
e364cf4e 2395 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
500be725 2396 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
e364cf4e 2397 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
ed568912 2398 return 0;
d79406dd
KH
2399
2400 fail_self_id:
2401 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2402 ohci->self_id_cpu, ohci->self_id_bus);
2403 fail_registers:
2404 kfree(ohci->it_context_list);
2405 kfree(ohci->ir_context_list);
2406 pci_iounmap(dev, ohci->registers);
2407 fail_iomem:
2408 pci_release_region(dev, 0);
2409 fail_disable:
2410 pci_disable_device(dev);
bd7dee63
SR
2411 fail_free:
2412 kfree(&ohci->card);
130d5496 2413 ohci_pmac_off(dev);
d79406dd
KH
2414
2415 return err;
ed568912
KH
2416}
2417
2418static void pci_remove(struct pci_dev *dev)
2419{
2420 struct fw_ohci *ohci;
2421
2422 ohci = pci_get_drvdata(dev);
e254a4b4
KH
2423 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2424 flush_writes(ohci);
ed568912
KH
2425 fw_core_remove_card(&ohci->card);
2426
c781c06d
KH
2427 /*
2428 * FIXME: Fail all pending packets here, now that the upper
2429 * layers can't queue any more.
2430 */
ed568912
KH
2431
2432 software_reset(ohci);
2433 free_irq(dev->irq, ohci);
d79406dd
KH
2434 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2435 ohci->self_id_cpu, ohci->self_id_bus);
2436 kfree(ohci->it_context_list);
2437 kfree(ohci->ir_context_list);
2438 pci_iounmap(dev, ohci->registers);
2439 pci_release_region(dev, 0);
2440 pci_disable_device(dev);
bd7dee63 2441 kfree(&ohci->card);
2ed0f181 2442 ohci_pmac_off(dev);
ea8d006b 2443
ed568912
KH
2444 fw_notify("Removed fw-ohci device.\n");
2445}
2446
2aef469a 2447#ifdef CONFIG_PM
2ed0f181 2448static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2aef469a 2449{
2ed0f181 2450 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2451 int err;
2452
2453 software_reset(ohci);
2ed0f181
SR
2454 free_irq(dev->irq, ohci);
2455 err = pci_save_state(dev);
2aef469a 2456 if (err) {
8a8cea27 2457 fw_error("pci_save_state failed\n");
2aef469a
KH
2458 return err;
2459 }
2ed0f181 2460 err = pci_set_power_state(dev, pci_choose_state(dev, state));
55111428
SR
2461 if (err)
2462 fw_error("pci_set_power_state failed with %d\n", err);
2ed0f181 2463 ohci_pmac_off(dev);
ea8d006b 2464
2aef469a
KH
2465 return 0;
2466}
2467
2ed0f181 2468static int pci_resume(struct pci_dev *dev)
2aef469a 2469{
2ed0f181 2470 struct fw_ohci *ohci = pci_get_drvdata(dev);
2aef469a
KH
2471 int err;
2472
2ed0f181
SR
2473 ohci_pmac_on(dev);
2474 pci_set_power_state(dev, PCI_D0);
2475 pci_restore_state(dev);
2476 err = pci_enable_device(dev);
2aef469a 2477 if (err) {
8a8cea27 2478 fw_error("pci_enable_device failed\n");
2aef469a
KH
2479 return err;
2480 }
2481
0bd243c4 2482 return ohci_enable(&ohci->card, NULL, 0);
2aef469a
KH
2483}
2484#endif
2485
ed568912
KH
2486static struct pci_device_id pci_table[] = {
2487 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2488 { }
2489};
2490
2491MODULE_DEVICE_TABLE(pci, pci_table);
2492
2493static struct pci_driver fw_ohci_pci_driver = {
2494 .name = ohci_driver_name,
2495 .id_table = pci_table,
2496 .probe = pci_probe,
2497 .remove = pci_remove,
2aef469a
KH
2498#ifdef CONFIG_PM
2499 .resume = pci_resume,
2500 .suspend = pci_suspend,
2501#endif
ed568912
KH
2502};
2503
2504MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2505MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2506MODULE_LICENSE("GPL");
2507
1e4c7b0d
OH
2508/* Provide a module alias so root-on-sbp2 initrds don't break. */
2509#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2510MODULE_ALIAS("ohci1394");
2511#endif
2512
ed568912
KH
2513static int __init fw_ohci_init(void)
2514{
2515 return pci_register_driver(&fw_ohci_pci_driver);
2516}
2517
2518static void __exit fw_ohci_cleanup(void)
2519{
2520 pci_unregister_driver(&fw_ohci_pci_driver);
2521}
2522
2523module_init(fw_ohci_init);
2524module_exit(fw_ohci_cleanup);