]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Sanitize syndrome extraction
[net-next-2.6.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
7d6034d3 2#include <asm/k8.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2bc65418
DT
18/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
3011b20d
BP
20static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122{
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161}
162
163static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
164{
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
175 case 0x11:
176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 break;
178
179 default:
180 amd64_printk(KERN_ERR, "Unsupported family!\n");
181 break;
182 }
183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
184 min_scrubrate);
185}
186
187static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188{
189 struct amd64_pvt *pvt = mci->pvt_info;
190 u32 scrubval = 0;
6ba5dcdc 191 int status = -1, i;
2bc65418 192
6ba5dcdc 193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
2bc65418
DT
194
195 scrubval = scrubval & 0x001F;
196
197 edac_printk(KERN_DEBUG, EDAC_MC,
198 "pci-read, sdram scrub control value: %d \n", scrubval);
199
926311fd 200 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
201 if (scrubrates[i].scrubval == scrubval) {
202 *bw = scrubrates[i].bandwidth;
203 status = 0;
204 break;
205 }
206 }
207
208 return status;
209}
210
6775763a
DT
211/* Map from a CSROW entry to the mask entry that operates on it */
212static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213{
1433eb99 214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
215 return csrow;
216 else
217 return csrow >> 1;
6775763a
DT
218}
219
220/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222{
223 if (dct == 0)
224 return pvt->dcsb0[csrow];
225 else
226 return pvt->dcsb1[csrow];
227}
228
229/*
230 * Return the 'mask' address the i'th CS entry. This function is needed because
231 * there number of DCSM registers on Rev E and prior vs Rev F and later is
232 * different.
233 */
234static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235{
236 if (dct == 0)
237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 else
239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240}
241
242
243/*
244 * In *base and *limit, pass back the full 40-bit base and limit physical
245 * addresses for the node given by node_id. This information is obtained from
246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247 * base and limit addresses are of type SysAddr, as defined at the start of
248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
249 * in the address range they represent.
250 */
251static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 u64 *base, u64 *limit)
253{
254 *base = pvt->dram_base[node_id];
255 *limit = pvt->dram_limit[node_id];
256}
257
258/*
259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260 * with node_id
261 */
262static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 u64 sys_addr, int node_id)
264{
265 u64 base, limit, addr;
266
267 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268
269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
270 * all ones if the most significant implemented address bit is 1.
271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 * Application Programming.
274 */
275 addr = sys_addr & 0x000000ffffffffffull;
276
277 return (addr >= base) && (addr <= limit);
278}
279
280/*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288{
289 struct amd64_pvt *pvt;
290 int node_id;
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
304 intlv_en = pvt->dram_IntlvEn[0];
305
306 if (intlv_en == 0) {
8edc5445 307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 308 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 309 goto found;
6775763a 310 }
8edc5445 311 goto err_no_match;
6775763a
DT
312 }
313
72f158fe
BP
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
6775763a
DT
317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 "IntlvEn field of DRAM Base Register for node 0: "
72f158fe 319 "this probably indicates a BIOS bug.\n", intlv_en);
6775763a
DT
320 return NULL;
321 }
322
323 bits = (((u32) sys_addr) >> 12) & intlv_en;
324
325 for (node_id = 0; ; ) {
8edc5445 326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
327 break; /* intlv_sel field matches */
328
329 if (++node_id >= DRAM_REG_COUNT)
330 goto err_no_match;
331 }
332
333 /* sanity test for sys_addr */
334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 amd64_printk(KERN_WARNING,
8edc5445
BP
336 "%s(): sys_addr 0x%llx falls outside base/limit "
337 "address range for node %d with node interleaving "
338 "enabled.\n",
339 __func__, sys_addr, node_id);
6775763a
DT
340 return NULL;
341 }
342
343found:
344 return edac_mc_find(node_id);
345
346err_no_match:
347 debugf2("sys_addr 0x%lx doesn't match any node\n",
348 (unsigned long)sys_addr);
349
350 return NULL;
351}
e2ce7255
DT
352
353/*
354 * Extract the DRAM CS base address from selected csrow register.
355 */
356static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357{
358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 pvt->dcs_shift;
360}
361
362/*
363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364 */
365static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366{
367 u64 dcsm_bits, other_bits;
368 u64 mask;
369
370 /* Extract bits from DRAM CS Mask. */
371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372
373 other_bits = pvt->dcsm_mask;
374 other_bits = ~(other_bits << pvt->dcs_shift);
375
376 /*
377 * The extracted bits from DCSM belong in the spaces represented by
378 * the cleared bits in other_bits.
379 */
380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381
382 return mask;
383}
384
385/*
386 * @input_addr is an InputAddr associated with the node given by mci. Return the
387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388 */
389static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390{
391 struct amd64_pvt *pvt;
392 int csrow;
393 u64 base, mask;
394
395 pvt = mci->pvt_info;
396
397 /*
398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 * base/mask register pair, test the condition shown near the start of
400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 */
9d858bb1 402 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
403
404 /* This DRAM chip select is disabled on this node */
405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 continue;
407
408 base = base_from_dct_base(pvt, csrow);
409 mask = ~mask_from_dct_mask(pvt, csrow);
410
411 if ((input_addr & mask) == (base & mask)) {
412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 (unsigned long)input_addr, csrow,
414 pvt->mc_node_id);
415
416 return csrow;
417 }
418 }
419
420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 (unsigned long)input_addr, pvt->mc_node_id);
422
423 return -1;
424}
425
426/*
427 * Return the base value defined by the DRAM Base register for the node
428 * represented by mci. This function returns the full 40-bit value despite the
429 * fact that the register only stores bits 39-24 of the value. See section
430 * 3.4.4.1 (BKDG #26094, K8, revA-E)
431 */
432static inline u64 get_dram_base(struct mem_ctl_info *mci)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435
436 return pvt->dram_base[pvt->mc_node_id];
437}
438
439/*
440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441 * for the node represented by mci. Info is passed back in *hole_base,
442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
443 * info is invalid. Info may be invalid for either of the following reasons:
444 *
445 * - The revision of the node is not E or greater. In this case, the DRAM Hole
446 * Address Register does not exist.
447 *
448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449 * indicating that its contents are not valid.
450 *
451 * The values passed back in *hole_base, *hole_offset, and *hole_size are
452 * complete 32-bit values despite the fact that the bitfields in the DHAR
453 * only represent bits 31-24 of the base and offset values.
454 */
455int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 u64 *hole_offset, u64 *hole_size)
457{
458 struct amd64_pvt *pvt = mci->pvt_info;
459 u64 base;
460
461 /* only revE and later have the DRAM Hole Address Register */
1433eb99 462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
463 debugf1(" revision %d for node %d does not support DHAR\n",
464 pvt->ext_model, pvt->mc_node_id);
465 return 1;
466 }
467
468 /* only valid for Fam10h */
469 if (boot_cpu_data.x86 == 0x10 &&
470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
472 return 1;
473 }
474
475 if ((pvt->dhar & DHAR_VALID) == 0) {
476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
477 pvt->mc_node_id);
478 return 1;
479 }
480
481 /* This node has Memory Hoisting */
482
483 /* +------------------+--------------------+--------------------+-----
484 * | memory | DRAM hole | relocated |
485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
486 * | | | DRAM hole |
487 * | | | [0x100000000, |
488 * | | | (0x100000000+ |
489 * | | | (0xffffffff-x))] |
490 * +------------------+--------------------+--------------------+-----
491 *
492 * Above is a diagram of physical memory showing the DRAM hole and the
493 * relocated addresses from the DRAM hole. As shown, the DRAM hole
494 * starts at address x (the base address) and extends through address
495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
496 * addresses in the hole so that they start at 0x100000000.
497 */
498
499 base = dhar_base(pvt->dhar);
500
501 *hole_base = base;
502 *hole_size = (0x1ull << 32) - base;
503
504 if (boot_cpu_data.x86 > 0xf)
505 *hole_offset = f10_dhar_offset(pvt->dhar);
506 else
507 *hole_offset = k8_dhar_offset(pvt->dhar);
508
509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 pvt->mc_node_id, (unsigned long)*hole_base,
511 (unsigned long)*hole_offset, (unsigned long)*hole_size);
512
513 return 0;
514}
515EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516
93c2df58
DT
517/*
518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
519 * assumed that sys_addr maps to the node given by mci.
520 *
521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524 * then it is also involved in translating a SysAddr to a DramAddr. Sections
525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526 * These parts of the documentation are unclear. I interpret them as follows:
527 *
528 * When node n receives a SysAddr, it processes the SysAddr as follows:
529 *
530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531 * Limit registers for node n. If the SysAddr is not within the range
532 * specified by the base and limit values, then node n ignores the Sysaddr
533 * (since it does not map to node n). Otherwise continue to step 2 below.
534 *
535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537 * the range of relocated addresses (starting at 0x100000000) from the DRAM
538 * hole. If not, skip to step 3 below. Else get the value of the
539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540 * offset defined by this value from the SysAddr.
541 *
542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543 * Base register for node n. To obtain the DramAddr, subtract the base
544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545 */
546static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547{
548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 int ret = 0;
550
551 dram_base = get_dram_base(mci);
552
553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 &hole_size);
555 if (!ret) {
556 if ((sys_addr >= (1ull << 32)) &&
557 (sys_addr < ((1ull << 32) + hole_size))) {
558 /* use DHAR to translate SysAddr to DramAddr */
559 dram_addr = sys_addr - hole_offset;
560
561 debugf2("using DHAR to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n",
563 (unsigned long)sys_addr,
564 (unsigned long)dram_addr);
565
566 return dram_addr;
567 }
568 }
569
570 /*
571 * Translate the SysAddr to a DramAddr as shown near the start of
572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
573 * only deals with 40-bit values. Therefore we discard bits 63-40 of
574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
575 * discard are all 1s. Otherwise the bits we discard are all 0s. See
576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 * Programmer's Manual Volume 1 Application Programming.
578 */
579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580
581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 (unsigned long)dram_addr);
584 return dram_addr;
585}
586
587/*
588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
590 * for node interleaving.
591 */
592static int num_node_interleave_bits(unsigned intlv_en)
593{
594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 int n;
596
597 BUG_ON(intlv_en > 7);
598 n = intlv_shift_table[intlv_en];
599 return n;
600}
601
602/* Translate the DramAddr given by @dram_addr to an InputAddr. */
603static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604{
605 struct amd64_pvt *pvt;
606 int intlv_shift;
607 u64 input_addr;
608
609 pvt = mci->pvt_info;
610
611 /*
612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 * concerning translating a DramAddr to an InputAddr.
614 */
615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 (dram_addr & 0xfff);
618
619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 intlv_shift, (unsigned long)dram_addr,
621 (unsigned long)input_addr);
622
623 return input_addr;
624}
625
626/*
627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
628 * assumed that @sys_addr maps to the node given by mci.
629 */
630static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631{
632 u64 input_addr;
633
634 input_addr =
635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636
637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 (unsigned long)sys_addr, (unsigned long)input_addr);
639
640 return input_addr;
641}
642
643
644/*
645 * @input_addr is an InputAddr associated with the node represented by mci.
646 * Translate @input_addr to a DramAddr and return the result.
647 */
648static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649{
650 struct amd64_pvt *pvt;
651 int node_id, intlv_shift;
652 u64 bits, dram_addr;
653 u32 intlv_sel;
654
655 /*
656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 * this procedure. When translating from a DramAddr to an InputAddr, the
659 * bits used for node interleaving are discarded. Here we recover these
660 * bits from the IntlvSel field of the DRAM Limit register (section
661 * 3.4.4.2) for the node that input_addr is associated with.
662 */
663 pvt = mci->pvt_info;
664 node_id = pvt->mc_node_id;
665 BUG_ON((node_id < 0) || (node_id > 7));
666
667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668
669 if (intlv_shift == 0) {
670 debugf1(" InputAddr 0x%lx translates to DramAddr of "
671 "same value\n", (unsigned long)input_addr);
672
673 return input_addr;
674 }
675
676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 (input_addr & 0xfff);
678
679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 dram_addr = bits + (intlv_sel << 12);
681
682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 "(%d node interleave bits)\n", (unsigned long)input_addr,
684 (unsigned long)dram_addr, intlv_shift);
685
686 return dram_addr;
687}
688
689/*
690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691 * @dram_addr to a SysAddr.
692 */
693static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694{
695 struct amd64_pvt *pvt = mci->pvt_info;
696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 int ret = 0;
698
699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 &hole_size);
701 if (!ret) {
702 if ((dram_addr >= hole_base) &&
703 (dram_addr < (hole_base + hole_size))) {
704 sys_addr = dram_addr + hole_offset;
705
706 debugf1("using DHAR to translate DramAddr 0x%lx to "
707 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711 }
712 }
713
714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 sys_addr = dram_addr + base;
716
717 /*
718 * The sys_addr we have computed up to this point is a 40-bit value
719 * because the k8 deals with 40-bit values. However, the value we are
720 * supposed to return is a full 64-bit physical address. The AMD
721 * x86-64 architecture specifies that the most significant implemented
722 * address bit through bit 63 of a physical address must be either all
723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
724 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 * Programming.
727 */
728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729
730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 pvt->mc_node_id, (unsigned long)dram_addr,
732 (unsigned long)sys_addr);
733
734 return sys_addr;
735}
736
737/*
738 * @input_addr is an InputAddr associated with the node given by mci. Translate
739 * @input_addr to a SysAddr.
740 */
741static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 u64 input_addr)
743{
744 return dram_addr_to_sys_addr(mci,
745 input_addr_to_dram_addr(mci, input_addr));
746}
747
748/*
749 * Find the minimum and maximum InputAddr values that map to the given @csrow.
750 * Pass back these values in *input_addr_min and *input_addr_max.
751 */
752static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 u64 *input_addr_min, u64 *input_addr_max)
754{
755 struct amd64_pvt *pvt;
756 u64 base, mask;
757
758 pvt = mci->pvt_info;
9d858bb1 759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
760
761 base = base_from_dct_base(pvt, csrow);
762 mask = mask_from_dct_mask(pvt, csrow);
763
764 *input_addr_min = base & ~mask;
765 *input_addr_max = base | mask | pvt->dcs_mask_notused;
766}
767
93c2df58
DT
768/* Map the Error address to a PAGE and PAGE OFFSET. */
769static inline void error_address_to_page_and_offset(u64 error_address,
770 u32 *page, u32 *offset)
771{
772 *page = (u32) (error_address >> PAGE_SHIFT);
773 *offset = ((u32) error_address) & ~PAGE_MASK;
774}
775
776/*
777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779 * of a node that detected an ECC memory error. mci represents the node that
780 * the error address maps to (possibly different from the node that detected
781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
782 * error.
783 */
784static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785{
786 int csrow;
787
788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789
790 if (csrow == -1)
791 amd64_mc_printk(mci, KERN_ERR,
792 "Failed to translate InputAddr to csrow for "
793 "address 0x%lx\n", (unsigned long)sys_addr);
794 return csrow;
795}
e2ce7255 796
bfc04aec 797static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 798
ad6a32e9
BP
799static u16 extract_syndrome(struct err_regs *err)
800{
801 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
802}
803
2da11654
DT
804static void amd64_cpu_display_info(struct amd64_pvt *pvt)
805{
806 if (boot_cpu_data.x86 == 0x11)
807 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
808 else if (boot_cpu_data.x86 == 0x10)
809 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
810 else if (boot_cpu_data.x86 == 0xf)
811 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
1433eb99 812 (pvt->ext_model >= K8_REV_F) ?
2da11654
DT
813 "Rev F or later" : "Rev E or earlier");
814 else
815 /* we'll hardly ever ever get here */
816 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
817}
818
819/*
820 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
821 * are ECC capable.
822 */
823static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
824{
825 int bit;
584fcff4 826 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 827
1433eb99 828 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
829 ? 19
830 : 17;
831
584fcff4 832 if (pvt->dclr0 & BIT(bit))
2da11654
DT
833 edac_cap = EDAC_FLAG_SECDED;
834
835 return edac_cap;
836}
837
838
8566c4df 839static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 840
68798e17
BP
841static void amd64_dump_dramcfg_low(u32 dclr, int chan)
842{
843 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
844
845 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
846 (dclr & BIT(16)) ? "un" : "",
847 (dclr & BIT(19)) ? "yes" : "no");
848
849 debugf1(" PAR/ERR parity: %s\n",
850 (dclr & BIT(8)) ? "enabled" : "disabled");
851
852 debugf1(" DCT 128bit mode width: %s\n",
853 (dclr & BIT(11)) ? "128b" : "64b");
854
855 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
856 (dclr & BIT(12)) ? "yes" : "no",
857 (dclr & BIT(13)) ? "yes" : "no",
858 (dclr & BIT(14)) ? "yes" : "no",
859 (dclr & BIT(15)) ? "yes" : "no");
860}
861
2da11654
DT
862/* Display and decode various NB registers for debug purposes. */
863static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
864{
865 int ganged;
866
68798e17
BP
867 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
868
869 debugf1(" NB two channel DRAM capable: %s\n",
870 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 871
68798e17
BP
872 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
873 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
874 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
875
876 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 877
8de1d91e 878 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 879
8de1d91e
BP
880 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
881 "offset: 0x%08x\n",
882 pvt->dhar,
883 dhar_base(pvt->dhar),
884 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
885 : f10_dhar_offset(pvt->dhar));
2da11654 886
8de1d91e
BP
887 debugf1(" DramHoleValid: %s\n",
888 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 889
8de1d91e 890 /* everything below this point is Fam10h and above */
8566c4df
BP
891 if (boot_cpu_data.x86 == 0xf) {
892 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 893 return;
8566c4df 894 }
2da11654 895
ad6a32e9
BP
896 amd64_printk(KERN_INFO, "using %s syndromes.\n",
897 ((pvt->syn_type == 8) ? "x8" : "x4"));
898
8de1d91e 899 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
900 if (!dct_ganging_enabled(pvt))
901 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
902
903 /*
904 * Determine if ganged and then dump memory sizes for first controller,
905 * and if NOT ganged dump info for 2nd controller.
906 */
907 ganged = dct_ganging_enabled(pvt);
908
8566c4df 909 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
910
911 if (!ganged)
8566c4df 912 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
913}
914
915/* Read in both of DBAM registers */
916static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
917{
6ba5dcdc 918 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
2da11654 919
6ba5dcdc
BP
920 if (boot_cpu_data.x86 >= 0x10)
921 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
2da11654
DT
922}
923
94be4bff
DT
924/*
925 * NOTE: CPU Revision Dependent code: Rev E and Rev F
926 *
927 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
928 * set the shift factor for the DCSB and DCSM values.
929 *
930 * ->dcs_mask_notused, RevE:
931 *
932 * To find the max InputAddr for the csrow, start with the base address and set
933 * all bits that are "don't care" bits in the test at the start of section
934 * 3.5.4 (p. 84).
935 *
936 * The "don't care" bits are all set bits in the mask and all bits in the gaps
937 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
938 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
939 * gaps.
940 *
941 * ->dcs_mask_notused, RevF and later:
942 *
943 * To find the max InputAddr for the csrow, start with the base address and set
944 * all bits that are "don't care" bits in the test at the start of NPT section
945 * 4.5.4 (p. 87).
946 *
947 * The "don't care" bits are all set bits in the mask and all bits in the gaps
948 * between bit ranges [36:27] and [21:13].
949 *
950 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
951 * which are all bits in the above-mentioned gaps.
952 */
953static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
954{
9d858bb1 955
1433eb99 956 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
957 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
958 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
959 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
960 pvt->dcs_shift = REV_E_DCS_SHIFT;
961 pvt->cs_count = 8;
962 pvt->num_dcsm = 8;
963 } else {
94be4bff
DT
964 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
965 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
966 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
967 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
968
9d858bb1
BP
969 if (boot_cpu_data.x86 == 0x11) {
970 pvt->cs_count = 4;
971 pvt->num_dcsm = 2;
972 } else {
973 pvt->cs_count = 8;
974 pvt->num_dcsm = 4;
94be4bff 975 }
94be4bff
DT
976 }
977}
978
979/*
980 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
981 */
982static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
983{
6ba5dcdc 984 int cs, reg;
94be4bff
DT
985
986 amd64_set_dct_base_and_mask(pvt);
987
9d858bb1 988 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 989 reg = K8_DCSB0 + (cs * 4);
6ba5dcdc 990 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
94be4bff
DT
991 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb0[cs], reg);
993
994 /* If DCT are NOT ganged, then read in DCT1's base */
995 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
996 reg = F10_DCSB1 + (cs * 4);
6ba5dcdc
BP
997 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
998 &pvt->dcsb1[cs]))
94be4bff
DT
999 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1000 cs, pvt->dcsb1[cs], reg);
1001 } else {
1002 pvt->dcsb1[cs] = 0;
1003 }
1004 }
1005
1006 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 1007 reg = K8_DCSM0 + (cs * 4);
6ba5dcdc 1008 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
94be4bff
DT
1009 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm0[cs], reg);
1011
1012 /* If DCT are NOT ganged, then read in DCT1's mask */
1013 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1014 reg = F10_DCSM1 + (cs * 4);
6ba5dcdc
BP
1015 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1016 &pvt->dcsm1[cs]))
94be4bff
DT
1017 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1018 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 1019 } else {
94be4bff 1020 pvt->dcsm1[cs] = 0;
6ba5dcdc 1021 }
94be4bff
DT
1022 }
1023}
1024
1025static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1026{
1027 enum mem_type type;
1028
1433eb99 1029 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
1030 if (pvt->dchr0 & DDR3_MODE)
1031 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1032 else
1033 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 1034 } else {
94be4bff
DT
1035 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1036 }
1037
239642fe 1038 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
94be4bff
DT
1039
1040 return type;
1041}
1042
ddff876d
DT
1043/*
1044 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1045 * and the later RevF memory controllers (DDR vs DDR2)
1046 *
1047 * Return:
1048 * number of memory channels in operation
1049 * Pass back:
1050 * contents of the DCL0_LOW register
1051 */
1052static int k8_early_channel_count(struct amd64_pvt *pvt)
1053{
1054 int flag, err = 0;
1055
6ba5dcdc 1056 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1057 if (err)
1058 return err;
1059
1433eb99 1060 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
ddff876d
DT
1061 /* RevF (NPT) and later */
1062 flag = pvt->dclr0 & F10_WIDTH_128;
1063 } else {
1064 /* RevE and earlier */
1065 flag = pvt->dclr0 & REVE_WIDTH_128;
1066 }
1067
1068 /* not used */
1069 pvt->dclr1 = 0;
1070
1071 return (flag) ? 2 : 1;
1072}
1073
1074/* extract the ERROR ADDRESS for the K8 CPUs */
1075static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1076 struct err_regs *info)
ddff876d
DT
1077{
1078 return (((u64) (info->nbeah & 0xff)) << 32) +
1079 (info->nbeal & ~0x03);
1080}
1081
1082/*
1083 * Read the Base and Limit registers for K8 based Memory controllers; extract
1084 * fields from the 'raw' reg into separate data fields
1085 *
1086 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1087 */
1088static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1089{
1090 u32 low;
1091 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1092
6ba5dcdc 1093 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1094
1095 /* Extract parts into separate data entries */
4997811e 1096 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1097 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1098 pvt->dram_rw_en[dram] = (low & 0x3);
1099
6ba5dcdc 1100 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1101
1102 /*
1103 * Extract parts into separate data entries. Limit is the HIGHEST memory
1104 * location of the region, so lower 24 bits need to be all ones
1105 */
4997811e 1106 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1107 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1108 pvt->dram_DstNode[dram] = (low & 0x7);
1109}
1110
1111static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1112 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1113{
1114 struct mem_ctl_info *src_mci;
ddff876d
DT
1115 int channel, csrow;
1116 u32 page, offset;
ad6a32e9 1117 u16 syndrome;
ddff876d 1118
ad6a32e9 1119 syndrome = extract_syndrome(err_info);
ddff876d
DT
1120
1121 /* CHIPKILL enabled */
ad6a32e9 1122 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1123 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1124 if (channel < 0) {
1125 /*
1126 * Syndrome didn't map, so we don't know which of the
1127 * 2 DIMMs is in error. So we need to ID 'both' of them
1128 * as suspect.
1129 */
1130 amd64_mc_printk(mci, KERN_WARNING,
ad6a32e9
BP
1131 "unknown syndrome 0x%04x - possible "
1132 "error reporting race\n", syndrome);
ddff876d
DT
1133 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1134 return;
1135 }
1136 } else {
1137 /*
1138 * non-chipkill ecc mode
1139 *
1140 * The k8 documentation is unclear about how to determine the
1141 * channel number when using non-chipkill memory. This method
1142 * was obtained from email communication with someone at AMD.
1143 * (Wish the email was placed in this comment - norsk)
1144 */
44e9e2ee 1145 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1146 }
1147
1148 /*
1149 * Find out which node the error address belongs to. This may be
1150 * different from the node that detected the error.
1151 */
44e9e2ee 1152 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1153 if (!src_mci) {
ddff876d
DT
1154 amd64_mc_printk(mci, KERN_ERR,
1155 "failed to map error address 0x%lx to a node\n",
44e9e2ee 1156 (unsigned long)sys_addr);
ddff876d
DT
1157 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1158 return;
1159 }
1160
44e9e2ee
BP
1161 /* Now map the sys_addr to a CSROW */
1162 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1163 if (csrow < 0) {
1164 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1165 } else {
44e9e2ee 1166 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1167
1168 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1169 channel, EDAC_MOD_STR);
1170 }
1171}
1172
1433eb99 1173static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1174{
1433eb99 1175 int *dbam_map;
ddff876d 1176
1433eb99
BP
1177 if (pvt->ext_model >= K8_REV_F)
1178 dbam_map = ddr2_dbam;
1179 else if (pvt->ext_model >= K8_REV_D)
1180 dbam_map = ddr2_dbam_revD;
1181 else
1182 dbam_map = ddr2_dbam_revCG;
ddff876d 1183
1433eb99 1184 return dbam_map[cs_mode];
ddff876d
DT
1185}
1186
1afd3c98
DT
1187/*
1188 * Get the number of DCT channels in use.
1189 *
1190 * Return:
1191 * number of Memory Channels in operation
1192 * Pass back:
1193 * contents of the DCL0_LOW register
1194 */
1195static int f10_early_channel_count(struct amd64_pvt *pvt)
1196{
57a30854 1197 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1198 int i, j, channels = 0;
1afd3c98
DT
1199 u32 dbam;
1200
1afd3c98
DT
1201 /* If we are in 128 bit mode, then we are using 2 channels */
1202 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1203 channels = 2;
1204 return channels;
1205 }
1206
1207 /*
d16149e8
BP
1208 * Need to check if in unganged mode: In such, there are 2 channels,
1209 * but they are not in 128 bit mode and thus the above 'dclr0' status
1210 * bit will be OFF.
1afd3c98
DT
1211 *
1212 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1213 * their CSEnable bit on. If so, then SINGLE DIMM case.
1214 */
d16149e8 1215 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1216
1afd3c98
DT
1217 /*
1218 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1219 * is more than just one DIMM present in unganged mode. Need to check
1220 * both controllers since DIMMs can be placed in either one.
1221 */
57a30854 1222 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
6ba5dcdc 1223 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1afd3c98
DT
1224 goto err_reg;
1225
57a30854
WW
1226 for (j = 0; j < 4; j++) {
1227 if (DBAM_DIMM(j, dbam) > 0) {
1228 channels++;
1229 break;
1230 }
1231 }
1afd3c98
DT
1232 }
1233
d16149e8
BP
1234 if (channels > 2)
1235 channels = 2;
1236
37da0450 1237 debugf0("MCT channel count: %d\n", channels);
1afd3c98
DT
1238
1239 return channels;
1240
1241err_reg:
1242 return -1;
1243
1244}
1245
1433eb99 1246static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1247{
1433eb99
BP
1248 int *dbam_map;
1249
1250 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1251 dbam_map = ddr3_dbam;
1252 else
1253 dbam_map = ddr2_dbam;
1254
1255 return dbam_map[cs_mode];
1afd3c98
DT
1256}
1257
1258/* Enable extended configuration access via 0xCF8 feature */
1259static void amd64_setup(struct amd64_pvt *pvt)
1260{
1261 u32 reg;
1262
6ba5dcdc 1263 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1264
1265 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1266 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1267 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1268}
1269
1270/* Restore the extended configuration access via 0xCF8 feature */
1271static void amd64_teardown(struct amd64_pvt *pvt)
1272{
1273 u32 reg;
1274
6ba5dcdc 1275 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1276
1277 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1278 if (pvt->flags.cf8_extcfg)
1279 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1280 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1281}
1282
1283static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1284 struct err_regs *info)
1afd3c98
DT
1285{
1286 return (((u64) (info->nbeah & 0xffff)) << 32) +
1287 (info->nbeal & ~0x01);
1288}
1289
1290/*
1291 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1292 * fields from the 'raw' reg into separate data fields.
1293 *
1294 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1295 */
1296static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1297{
1298 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1299
1300 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1301 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1302
1303 /* read the 'raw' DRAM BASE Address register */
6ba5dcdc 1304 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1afd3c98
DT
1305
1306 /* Read from the ECS data register */
6ba5dcdc 1307 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1afd3c98
DT
1308
1309 /* Extract parts into separate data entries */
1310 pvt->dram_rw_en[dram] = (low_base & 0x3);
1311
1312 if (pvt->dram_rw_en[dram] == 0)
1313 return;
1314
1315 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1316
66216a7a 1317 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1318 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1319
1320 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1321 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1322
1323 /* read the 'raw' LIMIT registers */
6ba5dcdc 1324 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1afd3c98
DT
1325
1326 /* Read from the ECS data register for the HIGH portion */
6ba5dcdc 1327 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1afd3c98 1328
1afd3c98
DT
1329 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1330 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1331
1332 /*
1333 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1334 * memory location of the region, so low 24 bits need to be all ones.
1335 */
66216a7a 1336 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1337 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1338 0x00FFFFFF;
1afd3c98 1339}
6163b5d4
DT
1340
1341static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1342{
6163b5d4 1343
6ba5dcdc
BP
1344 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1345 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1346 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1347 "High range addresses at: 0x%x\n",
1348 pvt->dram_ctl_select_low,
1349 dct_sel_baseaddr(pvt));
1350
1351 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1352 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1353 (dct_dram_enabled(pvt) ? "yes" : "no"));
1354
1355 if (!dct_ganging_enabled(pvt))
1356 debugf0(" Address range split per DCT: %s\n",
1357 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1358
1359 debugf0(" DCT data interleave for ECC: %s, "
1360 "DRAM cleared since last warm reset: %s\n",
1361 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1362 (dct_memory_cleared(pvt) ? "yes" : "no"));
1363
1364 debugf0(" DCT channel interleave: %s, "
1365 "DCT interleave bits selector: 0x%x\n",
1366 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1367 dct_sel_interleave_addr(pvt));
1368 }
1369
6ba5dcdc
BP
1370 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1371 &pvt->dram_ctl_select_high);
6163b5d4
DT
1372}
1373
f71d0a05
DT
1374/*
1375 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1376 * Interleaving Modes.
1377 */
6163b5d4
DT
1378static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1379 int hi_range_sel, u32 intlv_en)
1380{
1381 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1382
1383 if (dct_ganging_enabled(pvt))
1384 cs = 0;
1385 else if (hi_range_sel)
1386 cs = dct_sel_high;
1387 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1388 /*
1389 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1390 */
6163b5d4
DT
1391 if (dct_sel_interleave_addr(pvt) == 0)
1392 cs = sys_addr >> 6 & 1;
1393 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1394 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1395
1396 if (dct_sel_interleave_addr(pvt) & 1)
1397 cs = (sys_addr >> 9 & 1) ^ temp;
1398 else
1399 cs = (sys_addr >> 6 & 1) ^ temp;
1400 } else if (intlv_en & 4)
1401 cs = sys_addr >> 15 & 1;
1402 else if (intlv_en & 2)
1403 cs = sys_addr >> 14 & 1;
1404 else if (intlv_en & 1)
1405 cs = sys_addr >> 13 & 1;
1406 else
1407 cs = sys_addr >> 12 & 1;
1408 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1409 cs = ~dct_sel_high & 1;
1410 else
1411 cs = 0;
1412
1413 return cs;
1414}
1415
1416static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1417{
1418 if (intlv_en == 1)
1419 return 1;
1420 else if (intlv_en == 3)
1421 return 2;
1422 else if (intlv_en == 7)
1423 return 3;
1424
1425 return 0;
1426}
1427
f71d0a05
DT
1428/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1429static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1430 u32 dct_sel_base_addr,
1431 u64 dct_sel_base_off,
f71d0a05 1432 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1433 u64 dram_base)
1434{
1435 u64 chan_off;
1436
1437 if (hi_range_sel) {
1438 if (!(dct_sel_base_addr & 0xFFFFF800) &&
f71d0a05 1439 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1440 chan_off = hole_off << 16;
1441 else
1442 chan_off = dct_sel_base_off;
1443 } else {
f71d0a05 1444 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1445 chan_off = hole_off << 16;
1446 else
1447 chan_off = dram_base & 0xFFFFF8000000ULL;
1448 }
1449
1450 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1451 (chan_off & 0x0000FFFFFF800000ULL);
1452}
1453
1454/* Hack for the time being - Can we get this from BIOS?? */
1455#define CH0SPARE_RANK 0
1456#define CH1SPARE_RANK 1
1457
1458/*
1459 * checks if the csrow passed in is marked as SPARED, if so returns the new
1460 * spare row
1461 */
1462static inline int f10_process_possible_spare(int csrow,
1463 u32 cs, struct amd64_pvt *pvt)
1464{
1465 u32 swap_done;
1466 u32 bad_dram_cs;
1467
1468 /* Depending on channel, isolate respective SPARING info */
1469 if (cs) {
1470 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1472 if (swap_done && (csrow == bad_dram_cs))
1473 csrow = CH1SPARE_RANK;
1474 } else {
1475 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1476 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1477 if (swap_done && (csrow == bad_dram_cs))
1478 csrow = CH0SPARE_RANK;
1479 }
1480 return csrow;
1481}
1482
1483/*
1484 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1485 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1486 *
1487 * Return:
1488 * -EINVAL: NOT FOUND
1489 * 0..csrow = Chip-Select Row
1490 */
1491static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1492{
1493 struct mem_ctl_info *mci;
1494 struct amd64_pvt *pvt;
1495 u32 cs_base, cs_mask;
1496 int cs_found = -EINVAL;
1497 int csrow;
1498
1499 mci = mci_lookup[nid];
1500 if (!mci)
1501 return cs_found;
1502
1503 pvt = mci->pvt_info;
1504
1505 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1506
9d858bb1 1507 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1508
1509 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1510 if (!(cs_base & K8_DCSB_CS_ENABLE))
1511 continue;
1512
1513 /*
1514 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1515 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1516 * of the actual address.
1517 */
1518 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1519
1520 /*
1521 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1522 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1523 */
1524 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1525
1526 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1527 csrow, cs_base, cs_mask);
1528
1529 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1530
1531 debugf1(" Final CSMask=0x%x\n", cs_mask);
1532 debugf1(" (InputAddr & ~CSMask)=0x%x "
1533 "(CSBase & ~CSMask)=0x%x\n",
1534 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1535
1536 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1537 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1538
1539 debugf1(" MATCH csrow=%d\n", cs_found);
1540 break;
1541 }
1542 }
1543 return cs_found;
1544}
1545
f71d0a05
DT
1546/* For a given @dram_range, check if @sys_addr falls within it. */
1547static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1548 u64 sys_addr, int *nid, int *chan_sel)
1549{
1550 int node_id, cs_found = -EINVAL, high_range = 0;
1551 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1552 u32 hole_valid, tmp, dct_sel_base, channel;
1553 u64 dram_base, chan_addr, dct_sel_base_off;
1554
1555 dram_base = pvt->dram_base[dram_range];
1556 intlv_en = pvt->dram_IntlvEn[dram_range];
1557
1558 node_id = pvt->dram_DstNode[dram_range];
1559 intlv_sel = pvt->dram_IntlvSel[dram_range];
1560
1561 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1562 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1563
1564 /*
1565 * This assumes that one node's DHAR is the same as all the other
1566 * nodes' DHAR.
1567 */
1568 hole_off = (pvt->dhar & 0x0000FF80);
1569 hole_valid = (pvt->dhar & 0x1);
1570 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1571
1572 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1573 hole_off, hole_valid, intlv_sel);
1574
1575 if (intlv_en ||
1576 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1577 return -EINVAL;
1578
1579 dct_sel_base = dct_sel_baseaddr(pvt);
1580
1581 /*
1582 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1583 * select between DCT0 and DCT1.
1584 */
1585 if (dct_high_range_enabled(pvt) &&
1586 !dct_ganging_enabled(pvt) &&
1587 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1588 high_range = 1;
1589
1590 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1591
1592 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1593 dct_sel_base_off, hole_valid,
1594 hole_off, dram_base);
1595
1596 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1597
1598 /* remove Node ID (in case of memory interleaving) */
1599 tmp = chan_addr & 0xFC0;
1600
1601 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1602
1603 /* remove channel interleave and hash */
1604 if (dct_interleave_enabled(pvt) &&
1605 !dct_high_range_enabled(pvt) &&
1606 !dct_ganging_enabled(pvt)) {
1607 if (dct_sel_interleave_addr(pvt) != 1)
1608 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1609 else {
1610 tmp = chan_addr & 0xFC0;
1611 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1612 | tmp;
1613 }
1614 }
1615
1616 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1617 chan_addr, (u32)(chan_addr >> 8));
1618
1619 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1620
1621 if (cs_found >= 0) {
1622 *nid = node_id;
1623 *chan_sel = channel;
1624 }
1625 return cs_found;
1626}
1627
1628static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1629 int *node, int *chan_sel)
1630{
1631 int dram_range, cs_found = -EINVAL;
1632 u64 dram_base, dram_limit;
1633
1634 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1635
1636 if (!pvt->dram_rw_en[dram_range])
1637 continue;
1638
1639 dram_base = pvt->dram_base[dram_range];
1640 dram_limit = pvt->dram_limit[dram_range];
1641
1642 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1643
1644 cs_found = f10_match_to_this_node(pvt, dram_range,
1645 sys_addr, node,
1646 chan_sel);
1647 if (cs_found >= 0)
1648 break;
1649 }
1650 }
1651 return cs_found;
1652}
1653
1654/*
bdc30a0c
BP
1655 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1656 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1657 *
bdc30a0c
BP
1658 * The @sys_addr is usually an error address received from the hardware
1659 * (MCX_ADDR).
f71d0a05
DT
1660 */
1661static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1662 struct err_regs *err_info,
f71d0a05
DT
1663 u64 sys_addr)
1664{
1665 struct amd64_pvt *pvt = mci->pvt_info;
1666 u32 page, offset;
f71d0a05 1667 int nid, csrow, chan = 0;
ad6a32e9 1668 u16 syndrome;
f71d0a05
DT
1669
1670 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1671
bdc30a0c
BP
1672 if (csrow < 0) {
1673 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1674 return;
1675 }
1676
1677 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1678
ad6a32e9 1679 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1680
1681 /*
1682 * We need the syndromes for channel detection only when we're
1683 * ganged. Otherwise @chan should already contain the channel at
1684 * this point.
1685 */
1686 if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1687 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1688
bdc30a0c
BP
1689 if (chan >= 0)
1690 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1691 EDAC_MOD_STR);
1692 else
f71d0a05 1693 /*
bdc30a0c 1694 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1695 */
bdc30a0c 1696 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1697 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1698 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1699}
1700
f71d0a05 1701/*
8566c4df 1702 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1703 * CSROWs as well
1704 */
8566c4df 1705static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1706{
603adaf6 1707 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1708 u32 dbam;
1709 u32 *dcsb;
1710
8566c4df 1711 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1712 if (pvt->dclr0 & F10_WIDTH_128)
1713 factor = 1;
1714
8566c4df 1715 /* K8 families < revF not supported yet */
1433eb99 1716 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1717 return;
1718 else
1719 WARN_ON(ctrl != 0);
1720 }
1721
1722 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1723 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1724
1725 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1726 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1727
8566c4df
BP
1728 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1729
f71d0a05
DT
1730 /* Dump memory sizes for DIMM and its CSROWs */
1731 for (dimm = 0; dimm < 4; dimm++) {
1732
1733 size0 = 0;
1734 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1735 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1736
1737 size1 = 0;
1738 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1739 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1740
8566c4df 1741 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
603adaf6
BP
1742 dimm * 2, size0 << factor,
1743 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1744 }
1745}
1746
4d37607a
DT
1747/*
1748 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1749 * (as per PCI DEVICE_IDs):
1750 *
1751 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1752 * DEVICE ID, even though there is differences between the different Revisions
1753 * (CG,D,E,F).
1754 *
1755 * Family F10h and F11h.
1756 *
1757 */
1758static struct amd64_family_type amd64_family_types[] = {
1759 [K8_CPUS] = {
1760 .ctl_name = "RevF",
1761 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1762 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1763 .ops = {
1433eb99
BP
1764 .early_channel_count = k8_early_channel_count,
1765 .get_error_address = k8_get_error_address,
1766 .read_dram_base_limit = k8_read_dram_base_limit,
1767 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1768 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1769 }
1770 },
1771 [F10_CPUS] = {
1772 .ctl_name = "Family 10h",
1773 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1774 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1775 .ops = {
1433eb99
BP
1776 .early_channel_count = f10_early_channel_count,
1777 .get_error_address = f10_get_error_address,
1778 .read_dram_base_limit = f10_read_dram_base_limit,
1779 .read_dram_ctl_register = f10_read_dram_ctl_register,
1780 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1781 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1782 }
1783 },
1784 [F11_CPUS] = {
1785 .ctl_name = "Family 11h",
1786 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1787 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1788 .ops = {
1433eb99
BP
1789 .early_channel_count = f10_early_channel_count,
1790 .get_error_address = f10_get_error_address,
1791 .read_dram_base_limit = f10_read_dram_base_limit,
1792 .read_dram_ctl_register = f10_read_dram_ctl_register,
1793 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1794 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1795 }
1796 },
1797};
1798
1799static struct pci_dev *pci_get_related_function(unsigned int vendor,
1800 unsigned int device,
1801 struct pci_dev *related)
1802{
1803 struct pci_dev *dev = NULL;
1804
1805 dev = pci_get_device(vendor, device, dev);
1806 while (dev) {
1807 if ((dev->bus->number == related->bus->number) &&
1808 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1809 break;
1810 dev = pci_get_device(vendor, device, dev);
1811 }
1812
1813 return dev;
1814}
1815
b1289d6f 1816/*
bfc04aec
BP
1817 * These are tables of eigenvectors (one per line) which can be used for the
1818 * construction of the syndrome tables. The modified syndrome search algorithm
1819 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1820 *
bfc04aec 1821 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1822 */
bfc04aec
BP
1823static u16 x4_vectors[] = {
1824 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1825 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1826 0x0001, 0x0002, 0x0004, 0x0008,
1827 0x1013, 0x3032, 0x4044, 0x8088,
1828 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1829 0x4857, 0xc4fe, 0x13cc, 0x3288,
1830 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1831 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1832 0x15c1, 0x2a42, 0x89ac, 0x4758,
1833 0x2b03, 0x1602, 0x4f0c, 0xca08,
1834 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1835 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1836 0x2b87, 0x164e, 0x642c, 0xdc18,
1837 0x40b9, 0x80de, 0x1094, 0x20e8,
1838 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1839 0x11c1, 0x2242, 0x84ac, 0x4c58,
1840 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1841 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1842 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1843 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1844 0x16b3, 0x3d62, 0x4f34, 0x8518,
1845 0x1e2f, 0x391a, 0x5cac, 0xf858,
1846 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1847 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1848 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1849 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1850 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1851 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1852 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1853 0x185d, 0x2ca6, 0x7914, 0x9e28,
1854 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1855 0x4199, 0x82ee, 0x19f4, 0x2e58,
1856 0x4807, 0xc40e, 0x130c, 0x3208,
1857 0x1905, 0x2e0a, 0x5804, 0xac08,
1858 0x213f, 0x132a, 0xadfc, 0x5ba8,
1859 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1860};
1861
bfc04aec
BP
1862static u16 x8_vectors[] = {
1863 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1864 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1865 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1866 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1867 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1868 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1869 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1870 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1871 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1872 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1873 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1874 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1875 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1876 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1877 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1878 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1879 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1880 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1881 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1882};
1883
1884static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1885 int v_dim)
b1289d6f 1886{
bfc04aec
BP
1887 unsigned int i, err_sym;
1888
1889 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1890 u16 s = syndrome;
1891 int v_idx = err_sym * v_dim;
1892 int v_end = (err_sym + 1) * v_dim;
1893
1894 /* walk over all 16 bits of the syndrome */
1895 for (i = 1; i < (1U << 16); i <<= 1) {
1896
1897 /* if bit is set in that eigenvector... */
1898 if (v_idx < v_end && vectors[v_idx] & i) {
1899 u16 ev_comp = vectors[v_idx++];
1900
1901 /* ... and bit set in the modified syndrome, */
1902 if (s & i) {
1903 /* remove it. */
1904 s ^= ev_comp;
4d37607a 1905
bfc04aec
BP
1906 if (!s)
1907 return err_sym;
1908 }
b1289d6f 1909
bfc04aec
BP
1910 } else if (s & i)
1911 /* can't get to zero, move to next symbol */
1912 break;
1913 }
b1289d6f
DT
1914 }
1915
1916 debugf0("syndrome(%x) not found\n", syndrome);
1917 return -1;
1918}
d27bf6fa 1919
bfc04aec
BP
1920static int map_err_sym_to_channel(int err_sym, int sym_size)
1921{
1922 if (sym_size == 4)
1923 switch (err_sym) {
1924 case 0x20:
1925 case 0x21:
1926 return 0;
1927 break;
1928 case 0x22:
1929 case 0x23:
1930 return 1;
1931 break;
1932 default:
1933 return err_sym >> 4;
1934 break;
1935 }
1936 /* x8 symbols */
1937 else
1938 switch (err_sym) {
1939 /* imaginary bits not in a DIMM */
1940 case 0x10:
1941 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1942 err_sym);
1943 return -1;
1944 break;
1945
1946 case 0x11:
1947 return 0;
1948 break;
1949 case 0x12:
1950 return 1;
1951 break;
1952 default:
1953 return err_sym >> 3;
1954 break;
1955 }
1956 return -1;
1957}
1958
1959static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1960{
1961 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1962 int err_sym = -1;
1963
1964 if (pvt->syn_type == 8)
1965 err_sym = decode_syndrome(syndrome, x8_vectors,
1966 ARRAY_SIZE(x8_vectors),
1967 pvt->syn_type);
1968 else if (pvt->syn_type == 4)
1969 err_sym = decode_syndrome(syndrome, x4_vectors,
1970 ARRAY_SIZE(x4_vectors),
1971 pvt->syn_type);
1972 else {
1973 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1974 __func__, pvt->syn_type);
1975 return err_sym;
bfc04aec 1976 }
ad6a32e9
BP
1977
1978 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1979}
1980
d27bf6fa
DT
1981/*
1982 * Check for valid error in the NB Status High register. If so, proceed to read
1983 * NB Status Low, NB Address Low and NB Address High registers and store data
1984 * into error structure.
1985 *
1986 * Returns:
1987 * - 1: if hardware regs contains valid error info
1988 * - 0: if no valid error is indicated
1989 */
1990static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
ef44cc4c 1991 struct err_regs *regs)
d27bf6fa
DT
1992{
1993 struct amd64_pvt *pvt;
1994 struct pci_dev *misc_f3_ctl;
d27bf6fa
DT
1995
1996 pvt = mci->pvt_info;
1997 misc_f3_ctl = pvt->misc_f3_ctl;
1998
6ba5dcdc
BP
1999 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
2000 return 0;
d27bf6fa
DT
2001
2002 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2003 return 0;
2004
2005 /* valid error, read remaining error information registers */
6ba5dcdc
BP
2006 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2007 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2008 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2009 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2010 return 0;
d27bf6fa
DT
2011
2012 return 1;
d27bf6fa
DT
2013}
2014
2015/*
2016 * This function is called to retrieve the error data from hardware and store it
2017 * in the info structure.
2018 *
2019 * Returns:
2020 * - 1: if a valid error is found
2021 * - 0: if no error is found
2022 */
2023static int amd64_get_error_info(struct mem_ctl_info *mci,
ef44cc4c 2024 struct err_regs *info)
d27bf6fa
DT
2025{
2026 struct amd64_pvt *pvt;
ef44cc4c 2027 struct err_regs regs;
d27bf6fa
DT
2028
2029 pvt = mci->pvt_info;
2030
2031 if (!amd64_get_error_info_regs(mci, info))
2032 return 0;
2033
2034 /*
2035 * Here's the problem with the K8's EDAC reporting: There are four
2036 * registers which report pieces of error information. They are shared
2037 * between CEs and UEs. Furthermore, contrary to what is stated in the
2038 * BKDG, the overflow bit is never used! Every error always updates the
2039 * reporting registers.
2040 *
2041 * Can you see the race condition? All four error reporting registers
2042 * must be read before a new error updates them! There is no way to read
2043 * all four registers atomically. The best than can be done is to detect
2044 * that a race has occured and then report the error without any kind of
2045 * precision.
2046 *
2047 * What is still positive is that errors are still reported and thus
2048 * problems can still be detected - just not localized because the
2049 * syndrome and address are spread out across registers.
2050 *
2051 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2052 * UEs and CEs should have separate register sets with proper overflow
2053 * bits that are used! At very least the problem can be fixed by
2054 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2055 * set the overflow bit - unless the current error is CE and the new
2056 * error is UE which would be the only situation for overwriting the
2057 * current values.
2058 */
2059
2060 regs = *info;
2061
2062 /* Use info from the second read - most current */
2063 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2064 return 0;
2065
2066 /* clear the error bits in hardware */
2067 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2068
2069 /* Check for the possible race condition */
2070 if ((regs.nbsh != info->nbsh) ||
2071 (regs.nbsl != info->nbsl) ||
2072 (regs.nbeah != info->nbeah) ||
2073 (regs.nbeal != info->nbeal)) {
2074 amd64_mc_printk(mci, KERN_WARNING,
2075 "hardware STATUS read access race condition "
2076 "detected!\n");
2077 return 0;
2078 }
2079 return 1;
2080}
2081
d27bf6fa
DT
2082/*
2083 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2084 * ADDRESS and process.
2085 */
2086static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 2087 struct err_regs *info)
d27bf6fa
DT
2088{
2089 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 2090 u64 sys_addr;
d27bf6fa
DT
2091
2092 /* Ensure that the Error Address is VALID */
2093 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2094 amd64_mc_printk(mci, KERN_ERR,
2095 "HW has no ERROR_ADDRESS available\n");
2096 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2097 return;
2098 }
2099
1f6bcee7 2100 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
2101
2102 amd64_mc_printk(mci, KERN_ERR,
44e9e2ee 2103 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 2104
44e9e2ee 2105 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
2106}
2107
2108/* Handle any Un-correctable Errors (UEs) */
2109static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 2110 struct err_regs *info)
d27bf6fa 2111{
1f6bcee7
BP
2112 struct amd64_pvt *pvt = mci->pvt_info;
2113 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 2114 int csrow;
44e9e2ee 2115 u64 sys_addr;
d27bf6fa 2116 u32 page, offset;
d27bf6fa
DT
2117
2118 log_mci = mci;
2119
2120 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2121 amd64_mc_printk(mci, KERN_CRIT,
2122 "HW has no ERROR_ADDRESS available\n");
2123 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2124 return;
2125 }
2126
1f6bcee7 2127 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
2128
2129 /*
2130 * Find out which node the error address belongs to. This may be
2131 * different from the node that detected the error.
2132 */
44e9e2ee 2133 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa
DT
2134 if (!src_mci) {
2135 amd64_mc_printk(mci, KERN_CRIT,
2136 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
44e9e2ee 2137 (unsigned long)sys_addr);
d27bf6fa
DT
2138 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2139 return;
2140 }
2141
2142 log_mci = src_mci;
2143
44e9e2ee 2144 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa
DT
2145 if (csrow < 0) {
2146 amd64_mc_printk(mci, KERN_CRIT,
2147 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
44e9e2ee 2148 (unsigned long)sys_addr);
d27bf6fa
DT
2149 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2150 } else {
44e9e2ee 2151 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
2152 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2153 }
2154}
2155
549d042d 2156static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 2157 struct err_regs *info)
d27bf6fa 2158{
b70ef010
BP
2159 u32 ec = ERROR_CODE(info->nbsl);
2160 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 2161 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 2162
b70ef010
BP
2163 /* Bail early out if this was an 'observed' error */
2164 if (PP(ec) == K8_NBSL_PP_OBS)
2165 return;
d27bf6fa 2166
ecaf5606
BP
2167 /* Do only ECC errors */
2168 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2169 return;
d27bf6fa 2170
ecaf5606 2171 if (ecc_type == 2)
d27bf6fa 2172 amd64_handle_ce(mci, info);
ecaf5606 2173 else if (ecc_type == 1)
d27bf6fa
DT
2174 amd64_handle_ue(mci, info);
2175
2176 /*
2177 * If main error is CE then overflow must be CE. If main error is UE
2178 * then overflow is unknown. We'll call the overflow a CE - if
2179 * panic_on_ue is set then we're already panic'ed and won't arrive
2180 * here. Else, then apparently someone doesn't think that UE's are
2181 * catastrophic.
2182 */
2183 if (info->nbsh & K8_NBSH_OVERFLOW)
ecaf5606 2184 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
d27bf6fa
DT
2185}
2186
b69b29de 2187void amd64_decode_bus_error(int node_id, struct err_regs *regs)
d27bf6fa 2188{
549d042d 2189 struct mem_ctl_info *mci = mci_lookup[node_id];
d27bf6fa 2190
b69b29de 2191 __amd64_decode_bus_error(mci, regs);
d27bf6fa 2192
d27bf6fa
DT
2193 /*
2194 * Check the UE bit of the NB status high register, if set generate some
2195 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2196 * If it was a GART error, skip that process.
549d042d
BP
2197 *
2198 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2199 */
5110dbde
BP
2200 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2201 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2202
d27bf6fa 2203}
d27bf6fa 2204
0ec449ee
DT
2205/*
2206 * The main polling 'check' function, called FROM the edac core to perform the
2207 * error checking and if an error is encountered, error processing.
2208 */
2209static void amd64_check(struct mem_ctl_info *mci)
2210{
ef44cc4c 2211 struct err_regs regs;
0ec449ee 2212
549d042d
BP
2213 if (amd64_get_error_info(mci, &regs)) {
2214 struct amd64_pvt *pvt = mci->pvt_info;
2215 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2216 }
0ec449ee
DT
2217}
2218
2219/*
2220 * Input:
2221 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2222 * 2) AMD Family index value
2223 *
2224 * Ouput:
2225 * Upon return of 0, the following filled in:
2226 *
2227 * struct pvt->addr_f1_ctl
2228 * struct pvt->misc_f3_ctl
2229 *
2230 * Filled in with related device funcitions of 'dram_f2_ctl'
2231 * These devices are "reserved" via the pci_get_device()
2232 *
2233 * Upon return of 1 (error status):
2234 *
2235 * Nothing reserved
2236 */
2237static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2238{
2239 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2240
2241 /* Reserve the ADDRESS MAP Device */
2242 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2243 amd64_dev->addr_f1_ctl,
2244 pvt->dram_f2_ctl);
2245
2246 if (!pvt->addr_f1_ctl) {
2247 amd64_printk(KERN_ERR, "error address map device not found: "
2248 "vendor %x device 0x%x (broken BIOS?)\n",
2249 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2250 return 1;
2251 }
2252
2253 /* Reserve the MISC Device */
2254 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2255 amd64_dev->misc_f3_ctl,
2256 pvt->dram_f2_ctl);
2257
2258 if (!pvt->misc_f3_ctl) {
2259 pci_dev_put(pvt->addr_f1_ctl);
2260 pvt->addr_f1_ctl = NULL;
2261
2262 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2263 "vendor %x device 0x%x (broken BIOS?)\n",
2264 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2265 return 1;
2266 }
2267
2268 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2269 pci_name(pvt->addr_f1_ctl));
2270 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2271 pci_name(pvt->dram_f2_ctl));
2272 debugf1(" Misc device PCI Bus ID:\t%s\n",
2273 pci_name(pvt->misc_f3_ctl));
2274
2275 return 0;
2276}
2277
2278static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2279{
2280 pci_dev_put(pvt->addr_f1_ctl);
2281 pci_dev_put(pvt->misc_f3_ctl);
2282}
2283
2284/*
2285 * Retrieve the hardware registers of the memory controller (this includes the
2286 * 'Address Map' and 'Misc' device regs)
2287 */
2288static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2289{
2290 u64 msr_val;
ad6a32e9 2291 u32 tmp;
6ba5dcdc 2292 int dram;
0ec449ee
DT
2293
2294 /*
2295 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2296 * those are Read-As-Zero
2297 */
e97f8bb8
BP
2298 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2299 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2300
2301 /* check first whether TOP_MEM2 is enabled */
2302 rdmsrl(MSR_K8_SYSCFG, msr_val);
2303 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2304 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2305 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2306 } else
2307 debugf0(" TOP_MEM2 disabled.\n");
2308
2309 amd64_cpu_display_info(pvt);
2310
6ba5dcdc 2311 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2312
2313 if (pvt->ops->read_dram_ctl_register)
2314 pvt->ops->read_dram_ctl_register(pvt);
2315
2316 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2317 /*
2318 * Call CPU specific READ function to get the DRAM Base and
2319 * Limit values from the DCT.
2320 */
2321 pvt->ops->read_dram_base_limit(pvt, dram);
2322
2323 /*
2324 * Only print out debug info on rows with both R and W Enabled.
2325 * Normal processing, compiler should optimize this whole 'if'
2326 * debug output block away.
2327 */
2328 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2329 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2330 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2331 dram,
e97f8bb8
BP
2332 pvt->dram_base[dram],
2333 pvt->dram_limit[dram]);
2334
0ec449ee
DT
2335 debugf1(" IntlvEn=%s %s %s "
2336 "IntlvSel=%d DstNode=%d\n",
2337 pvt->dram_IntlvEn[dram] ?
2338 "Enabled" : "Disabled",
2339 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2340 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2341 pvt->dram_IntlvSel[dram],
2342 pvt->dram_DstNode[dram]);
2343 }
2344 }
2345
2346 amd64_read_dct_base_mask(pvt);
2347
6ba5dcdc 2348 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2349 amd64_read_dbam_reg(pvt);
2350
6ba5dcdc
BP
2351 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2352 F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2353
6ba5dcdc
BP
2354 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2355 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2356
ad6a32e9
BP
2357 if (boot_cpu_data.x86 >= 0x10) {
2358 if (!dct_ganging_enabled(pvt)) {
2359 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2360 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2361 }
2362 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2363 }
ad6a32e9
BP
2364
2365 if (boot_cpu_data.x86 == 0x10 &&
2366 boot_cpu_data.x86_model > 7 &&
2367 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2368 tmp & BIT(25))
2369 pvt->syn_type = 8;
2370 else
2371 pvt->syn_type = 4;
2372
0ec449ee 2373 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2374}
2375
2376/*
2377 * NOTE: CPU Revision Dependent code
2378 *
2379 * Input:
9d858bb1 2380 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2381 * k8 private pointer to -->
2382 * DRAM Bank Address mapping register
2383 * node_id
2384 * DCL register where dual_channel_active is
2385 *
2386 * The DBAM register consists of 4 sets of 4 bits each definitions:
2387 *
2388 * Bits: CSROWs
2389 * 0-3 CSROWs 0 and 1
2390 * 4-7 CSROWs 2 and 3
2391 * 8-11 CSROWs 4 and 5
2392 * 12-15 CSROWs 6 and 7
2393 *
2394 * Values range from: 0 to 15
2395 * The meaning of the values depends on CPU revision and dual-channel state,
2396 * see relevant BKDG more info.
2397 *
2398 * The memory controller provides for total of only 8 CSROWs in its current
2399 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2400 * single channel or two (2) DIMMs in dual channel mode.
2401 *
2402 * The following code logic collapses the various tables for CSROW based on CPU
2403 * revision.
2404 *
2405 * Returns:
2406 * The number of PAGE_SIZE pages on the specified CSROW number it
2407 * encompasses
2408 *
2409 */
2410static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2411{
1433eb99 2412 u32 cs_mode, nr_pages;
0ec449ee
DT
2413
2414 /*
2415 * The math on this doesn't look right on the surface because x/2*4 can
2416 * be simplified to x*2 but this expression makes use of the fact that
2417 * it is integral math where 1/2=0. This intermediate value becomes the
2418 * number of bits to shift the DBAM register to extract the proper CSROW
2419 * field.
2420 */
1433eb99 2421 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2422
1433eb99 2423 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2424
2425 /*
2426 * If dual channel then double the memory size of single channel.
2427 * Channel count is 1 or 2
2428 */
2429 nr_pages <<= (pvt->channel_count - 1);
2430
1433eb99 2431 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2432 debugf0(" nr_pages= %u channel-count = %d\n",
2433 nr_pages, pvt->channel_count);
2434
2435 return nr_pages;
2436}
2437
2438/*
2439 * Initialize the array of csrow attribute instances, based on the values
2440 * from pci config hardware registers.
2441 */
2442static int amd64_init_csrows(struct mem_ctl_info *mci)
2443{
2444 struct csrow_info *csrow;
2445 struct amd64_pvt *pvt;
2446 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2447 int i, empty = 1;
0ec449ee
DT
2448
2449 pvt = mci->pvt_info;
2450
6ba5dcdc 2451 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2452
2453 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2454 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2455 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2456 );
2457
9d858bb1 2458 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2459 csrow = &mci->csrows[i];
2460
2461 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2462 debugf1("----CSROW %d EMPTY for node %d\n", i,
2463 pvt->mc_node_id);
2464 continue;
2465 }
2466
2467 debugf1("----CSROW %d VALID for MC node %d\n",
2468 i, pvt->mc_node_id);
2469
2470 empty = 0;
2471 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2472 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2473 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2474 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2475 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2476 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2477 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2478 /* 8 bytes of resolution */
2479
2480 csrow->mtype = amd64_determine_memory_type(pvt);
2481
2482 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2483 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2484 (unsigned long)input_addr_min,
2485 (unsigned long)input_addr_max);
2486 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2487 (unsigned long)sys_addr, csrow->page_mask);
2488 debugf1(" nr_pages: %u first_page: 0x%lx "
2489 "last_page: 0x%lx\n",
2490 (unsigned)csrow->nr_pages,
2491 csrow->first_page, csrow->last_page);
2492
2493 /*
2494 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2495 */
2496 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2497 csrow->edac_mode =
2498 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2499 EDAC_S4ECD4ED : EDAC_SECDED;
2500 else
2501 csrow->edac_mode = EDAC_NONE;
2502 }
2503
2504 return empty;
2505}
d27bf6fa 2506
f6d6ae96
BP
2507/* get all cores on this DCT */
2508static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2509{
2510 int cpu;
2511
2512 for_each_online_cpu(cpu)
2513 if (amd_get_nb_id(cpu) == nid)
2514 cpumask_set_cpu(cpu, mask);
2515}
2516
2517/* check MCG_CTL on all the cpus on this node */
2518static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2519{
2520 cpumask_var_t mask;
50542251 2521 int cpu, nbe;
f6d6ae96
BP
2522 bool ret = false;
2523
2524 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2525 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2526 __func__);
2527 return false;
2528 }
2529
2530 get_cpus_on_this_dct_cpumask(mask, nid);
2531
f6d6ae96
BP
2532 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2533
2534 for_each_cpu(cpu, mask) {
50542251
BP
2535 struct msr *reg = per_cpu_ptr(msrs, cpu);
2536 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2537
2538 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2539 cpu, reg->q,
f6d6ae96
BP
2540 (nbe ? "enabled" : "disabled"));
2541
2542 if (!nbe)
2543 goto out;
f6d6ae96
BP
2544 }
2545 ret = true;
2546
2547out:
f6d6ae96
BP
2548 free_cpumask_var(mask);
2549 return ret;
2550}
2551
2552static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2553{
2554 cpumask_var_t cmask;
50542251 2555 int cpu;
f6d6ae96
BP
2556
2557 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2558 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2559 __func__);
2560 return false;
2561 }
2562
2563 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2564
f6d6ae96
BP
2565 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2566
2567 for_each_cpu(cpu, cmask) {
2568
50542251
BP
2569 struct msr *reg = per_cpu_ptr(msrs, cpu);
2570
f6d6ae96 2571 if (on) {
50542251 2572 if (reg->l & K8_MSR_MCGCTL_NBE)
d95cf4de 2573 pvt->flags.nb_mce_enable = 1;
f6d6ae96 2574
50542251 2575 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2576 } else {
2577 /*
d95cf4de 2578 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2579 */
d95cf4de 2580 if (!pvt->flags.nb_mce_enable)
50542251 2581 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2582 }
f6d6ae96
BP
2583 }
2584 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2585
f6d6ae96
BP
2586 free_cpumask_var(cmask);
2587
2588 return 0;
2589}
2590
f9431992
DT
2591static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2592{
2593 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2594 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2595
6ba5dcdc 2596 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2597
2598 /* turn on UECCn and CECCEn bits */
2599 pvt->old_nbctl = value & mask;
2600 pvt->nbctl_mcgctl_saved = 1;
2601
2602 value |= mask;
2603 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2604
f6d6ae96
BP
2605 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2606 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2607 "MCGCTL!\n");
f9431992 2608
6ba5dcdc 2609 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2610
2611 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2612 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2613 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2614
2615 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2616 amd64_printk(KERN_WARNING,
2617 "This node reports that DRAM ECC is "
2618 "currently Disabled; ENABLING now\n");
2619
d95cf4de
BP
2620 pvt->flags.nb_ecc_prev = 0;
2621
f9431992
DT
2622 /* Attempt to turn on DRAM ECC Enable */
2623 value |= K8_NBCFG_ECC_ENABLE;
2624 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2625
6ba5dcdc 2626 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2627
2628 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2629 amd64_printk(KERN_WARNING,
2630 "Hardware rejects Enabling DRAM ECC checking\n"
2631 "Check memory DIMM configuration\n");
2632 } else {
2633 amd64_printk(KERN_DEBUG,
2634 "Hardware accepted DRAM ECC Enable\n");
2635 }
d95cf4de
BP
2636 } else {
2637 pvt->flags.nb_ecc_prev = 1;
f9431992 2638 }
d95cf4de 2639
f9431992
DT
2640 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2641 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2642 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2643
2644 pvt->ctl_error_info.nbcfg = value;
2645}
2646
2647static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2648{
f6d6ae96 2649 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2650
2651 if (!pvt->nbctl_mcgctl_saved)
2652 return;
2653
6ba5dcdc 2654 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2655 value &= ~mask;
2656 value |= pvt->old_nbctl;
2657
f9431992
DT
2658 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2659
d95cf4de
BP
2660 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2661 if (!pvt->flags.nb_ecc_prev) {
2662 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2663 value &= ~K8_NBCFG_ECC_ENABLE;
2664 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2665 }
2666
2667 /* restore the NB Enable MCGCTL bit */
f6d6ae96 2668 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
d95cf4de 2669 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
f9431992
DT
2670}
2671
2672/*
2673 * EDAC requires that the BIOS have ECC enabled before taking over the
2674 * processing of ECC errors. This is because the BIOS can properly initialize
2675 * the memory system completely. A command line option allows to force-enable
2676 * hardware ECC later in amd64_enable_ecc_error_reporting().
2677 */
cab4d277
BP
2678static const char *ecc_msg =
2679 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2680 " Either enable ECC checking or force module loading by setting "
2681 "'ecc_enable_override'.\n"
2682 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2683
f9431992
DT
2684static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2685{
2686 u32 value;
06724535
BP
2687 u8 ecc_enabled = 0;
2688 bool nb_mce_en = false;
f9431992 2689
6ba5dcdc 2690 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2691
2692 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
be3468e8 2693 if (!ecc_enabled)
cab4d277 2694 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
be3468e8
BP
2695 "is currently disabled, set F3x%x[22] (%s).\n",
2696 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2697 else
2698 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
f9431992 2699
06724535
BP
2700 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2701 if (!nb_mce_en)
cab4d277 2702 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
be3468e8
BP
2703 "0x%08x[4] on node %d to enable.\n",
2704 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2705
06724535 2706 if (!ecc_enabled || !nb_mce_en) {
f9431992 2707 if (!ecc_enable_override) {
cab4d277 2708 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
be3468e8 2709 return -ENODEV;
d95cf4de
BP
2710 } else {
2711 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
be3468e8 2712 }
43f5e687 2713 }
f9431992 2714
be3468e8 2715 return 0;
f9431992
DT
2716}
2717
7d6034d3
DT
2718struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2719 ARRAY_SIZE(amd64_inj_attrs) +
2720 1];
2721
2722struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2723
2724static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2725{
2726 unsigned int i = 0, j = 0;
2727
2728 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2729 sysfs_attrs[i] = amd64_dbg_attrs[i];
2730
2731 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2732 sysfs_attrs[i] = amd64_inj_attrs[j];
2733
2734 sysfs_attrs[i] = terminator;
2735
2736 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2737}
2738
2739static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2740{
2741 struct amd64_pvt *pvt = mci->pvt_info;
2742
2743 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2744 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2745
2746 if (pvt->nbcap & K8_NBCAP_SECDED)
2747 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2748
2749 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2750 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2751
2752 mci->edac_cap = amd64_determine_edac_cap(pvt);
2753 mci->mod_name = EDAC_MOD_STR;
2754 mci->mod_ver = EDAC_AMD64_VERSION;
2755 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2756 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2757 mci->ctl_page_to_phys = NULL;
2758
2759 /* IMPORTANT: Set the polling 'check' function in this module */
2760 mci->edac_check = amd64_check;
2761
2762 /* memory scrubber interface */
2763 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2764 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2765}
2766
2767/*
2768 * Init stuff for this DRAM Controller device.
2769 *
2770 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2771 * Space feature MUST be enabled on ALL Processors prior to actually reading
2772 * from the ECS registers. Since the loading of the module can occur on any
2773 * 'core', and cores don't 'see' all the other processors ECS data when the
2774 * others are NOT enabled. Our solution is to first enable ECS access in this
2775 * routine on all processors, gather some data in a amd64_pvt structure and
2776 * later come back in a finish-setup function to perform that final
2777 * initialization. See also amd64_init_2nd_stage() for that.
2778 */
2779static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2780 int mc_type_index)
2781{
2782 struct amd64_pvt *pvt = NULL;
2783 int err = 0, ret;
2784
2785 ret = -ENOMEM;
2786 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2787 if (!pvt)
2788 goto err_exit;
2789
37da0450 2790 pvt->mc_node_id = get_node_id(dram_f2_ctl);
7d6034d3
DT
2791
2792 pvt->dram_f2_ctl = dram_f2_ctl;
2793 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2794 pvt->mc_type_index = mc_type_index;
2795 pvt->ops = family_ops(mc_type_index);
7d6034d3
DT
2796
2797 /*
2798 * We have the dram_f2_ctl device as an argument, now go reserve its
2799 * sibling devices from the PCI system.
2800 */
2801 ret = -ENODEV;
2802 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2803 if (err)
2804 goto err_free;
2805
2806 ret = -EINVAL;
2807 err = amd64_check_ecc_enabled(pvt);
2808 if (err)
2809 goto err_put;
2810
2811 /*
2812 * Key operation here: setup of HW prior to performing ops on it. Some
2813 * setup is required to access ECS data. After this is performed, the
2814 * 'teardown' function must be called upon error and normal exit paths.
2815 */
2816 if (boot_cpu_data.x86 >= 0x10)
2817 amd64_setup(pvt);
2818
2819 /*
2820 * Save the pointer to the private data for use in 2nd initialization
2821 * stage
2822 */
2823 pvt_lookup[pvt->mc_node_id] = pvt;
2824
2825 return 0;
2826
2827err_put:
2828 amd64_free_mc_sibling_devices(pvt);
2829
2830err_free:
2831 kfree(pvt);
2832
2833err_exit:
2834 return ret;
2835}
2836
2837/*
2838 * This is the finishing stage of the init code. Needs to be performed after all
2839 * MCs' hardware have been prepped for accessing extended config space.
2840 */
2841static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2842{
2843 int node_id = pvt->mc_node_id;
2844 struct mem_ctl_info *mci;
18ba54ac 2845 int ret = -ENODEV;
7d6034d3
DT
2846
2847 amd64_read_mc_registers(pvt);
2848
7d6034d3
DT
2849 /*
2850 * We need to determine how many memory channels there are. Then use
2851 * that information for calculating the size of the dynamic instance
2852 * tables in the 'mci' structure
2853 */
2854 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2855 if (pvt->channel_count < 0)
2856 goto err_exit;
2857
2858 ret = -ENOMEM;
9d858bb1 2859 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2860 if (!mci)
2861 goto err_exit;
2862
2863 mci->pvt_info = pvt;
2864
2865 mci->dev = &pvt->dram_f2_ctl->dev;
2866 amd64_setup_mci_misc_attributes(mci);
2867
2868 if (amd64_init_csrows(mci))
2869 mci->edac_cap = EDAC_FLAG_NONE;
2870
2871 amd64_enable_ecc_error_reporting(mci);
2872 amd64_set_mc_sysfs_attributes(mci);
2873
2874 ret = -ENODEV;
2875 if (edac_mc_add_mc(mci)) {
2876 debugf1("failed edac_mc_add_mc()\n");
2877 goto err_add_mc;
2878 }
2879
2880 mci_lookup[node_id] = mci;
2881 pvt_lookup[node_id] = NULL;
549d042d
BP
2882
2883 /* register stuff with EDAC MCE */
2884 if (report_gart_errors)
2885 amd_report_gart_errors(true);
2886
2887 amd_register_ecc_decoder(amd64_decode_bus_error);
2888
7d6034d3
DT
2889 return 0;
2890
2891err_add_mc:
2892 edac_mc_free(mci);
2893
2894err_exit:
2895 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2896
2897 amd64_restore_ecc_error_reporting(pvt);
2898
2899 if (boot_cpu_data.x86 > 0xf)
2900 amd64_teardown(pvt);
2901
2902 amd64_free_mc_sibling_devices(pvt);
2903
2904 kfree(pvt_lookup[pvt->mc_node_id]);
2905 pvt_lookup[node_id] = NULL;
2906
2907 return ret;
2908}
2909
2910
2911static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2912 const struct pci_device_id *mc_type)
2913{
2914 int ret = 0;
2915
37da0450 2916 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
7d6034d3
DT
2917 get_amd_family_name(mc_type->driver_data));
2918
2919 ret = pci_enable_device(pdev);
2920 if (ret < 0)
2921 ret = -EIO;
2922 else
2923 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2924
2925 if (ret < 0)
2926 debugf0("ret=%d\n", ret);
2927
2928 return ret;
2929}
2930
2931static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2932{
2933 struct mem_ctl_info *mci;
2934 struct amd64_pvt *pvt;
2935
2936 /* Remove from EDAC CORE tracking list */
2937 mci = edac_mc_del_mc(&pdev->dev);
2938 if (!mci)
2939 return;
2940
2941 pvt = mci->pvt_info;
2942
2943 amd64_restore_ecc_error_reporting(pvt);
2944
2945 if (boot_cpu_data.x86 > 0xf)
2946 amd64_teardown(pvt);
2947
2948 amd64_free_mc_sibling_devices(pvt);
2949
549d042d
BP
2950 /* unregister from EDAC MCE */
2951 amd_report_gart_errors(false);
2952 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2953
7d6034d3 2954 /* Free the EDAC CORE resources */
8f68ed97
BP
2955 mci->pvt_info = NULL;
2956 mci_lookup[pvt->mc_node_id] = NULL;
2957
2958 kfree(pvt);
7d6034d3
DT
2959 edac_mc_free(mci);
2960}
2961
2962/*
2963 * This table is part of the interface for loading drivers for PCI devices. The
2964 * PCI core identifies what devices are on a system during boot, and then
2965 * inquiry this table to see if this driver is for a given device found.
2966 */
2967static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2968 {
2969 .vendor = PCI_VENDOR_ID_AMD,
2970 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2971 .subvendor = PCI_ANY_ID,
2972 .subdevice = PCI_ANY_ID,
2973 .class = 0,
2974 .class_mask = 0,
2975 .driver_data = K8_CPUS
2976 },
2977 {
2978 .vendor = PCI_VENDOR_ID_AMD,
2979 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2980 .subvendor = PCI_ANY_ID,
2981 .subdevice = PCI_ANY_ID,
2982 .class = 0,
2983 .class_mask = 0,
2984 .driver_data = F10_CPUS
2985 },
2986 {
2987 .vendor = PCI_VENDOR_ID_AMD,
2988 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2989 .subvendor = PCI_ANY_ID,
2990 .subdevice = PCI_ANY_ID,
2991 .class = 0,
2992 .class_mask = 0,
2993 .driver_data = F11_CPUS
2994 },
2995 {0, }
2996};
2997MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2998
2999static struct pci_driver amd64_pci_driver = {
3000 .name = EDAC_MOD_STR,
3001 .probe = amd64_init_one_instance,
3002 .remove = __devexit_p(amd64_remove_one_instance),
3003 .id_table = amd64_pci_table,
3004};
3005
3006static void amd64_setup_pci_device(void)
3007{
3008 struct mem_ctl_info *mci;
3009 struct amd64_pvt *pvt;
3010
3011 if (amd64_ctl_pci)
3012 return;
3013
3014 mci = mci_lookup[0];
3015 if (mci) {
3016
3017 pvt = mci->pvt_info;
3018 amd64_ctl_pci =
3019 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3020 EDAC_MOD_STR);
3021
3022 if (!amd64_ctl_pci) {
3023 pr_warning("%s(): Unable to create PCI control\n",
3024 __func__);
3025
3026 pr_warning("%s(): PCI error report via EDAC not set\n",
3027 __func__);
3028 }
3029 }
3030}
3031
3032static int __init amd64_edac_init(void)
3033{
3034 int nb, err = -ENODEV;
56b34b91 3035 bool load_ok = false;
7d6034d3
DT
3036
3037 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3038
3039 opstate_init();
3040
3041 if (cache_k8_northbridges() < 0)
56b34b91 3042 goto err_ret;
7d6034d3 3043
50542251 3044 msrs = msrs_alloc();
56b34b91
BP
3045 if (!msrs)
3046 goto err_ret;
50542251 3047
7d6034d3
DT
3048 err = pci_register_driver(&amd64_pci_driver);
3049 if (err)
56b34b91 3050 goto err_pci;
7d6034d3
DT
3051
3052 /*
3053 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3054 * amd64_pvt structs. These will be used in the 2nd stage init function
3055 * to finish initialization of the MC instances.
3056 */
56b34b91 3057 err = -ENODEV;
7d6034d3
DT
3058 for (nb = 0; nb < num_k8_northbridges; nb++) {
3059 if (!pvt_lookup[nb])
3060 continue;
3061
3062 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3063 if (err)
37da0450 3064 goto err_2nd_stage;
7d6034d3 3065
56b34b91
BP
3066 load_ok = true;
3067 }
7d6034d3 3068
56b34b91
BP
3069 if (load_ok) {
3070 amd64_setup_pci_device();
3071 return 0;
3072 }
7d6034d3 3073
37da0450 3074err_2nd_stage:
7d6034d3 3075 pci_unregister_driver(&amd64_pci_driver);
56b34b91
BP
3076err_pci:
3077 msrs_free(msrs);
3078 msrs = NULL;
3079err_ret:
7d6034d3
DT
3080 return err;
3081}
3082
3083static void __exit amd64_edac_exit(void)
3084{
3085 if (amd64_ctl_pci)
3086 edac_pci_release_generic_ctl(amd64_ctl_pci);
3087
3088 pci_unregister_driver(&amd64_pci_driver);
50542251
BP
3089
3090 msrs_free(msrs);
3091 msrs = NULL;
7d6034d3
DT
3092}
3093
3094module_init(amd64_edac_init);
3095module_exit(amd64_edac_exit);
3096
3097MODULE_LICENSE("GPL");
3098MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3099 "Dave Peterson, Thayne Harbaugh");
3100MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3101 EDAC_AMD64_VERSION);
3102
3103module_param(edac_op_state, int, 0444);
3104MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");