]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/char/ipmi/ipmi_si_intf.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[net-next-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
56480287
MG
305#ifdef CONFIG_PCI
306static int pci_registered;
307#endif
561f8182
YL
308#ifdef CONFIG_ACPI
309static int pnp_registered;
310#endif
56480287
MG
311#ifdef CONFIG_PPC_OF
312static int of_registered;
313#endif
a51f4a81 314
ae74e823
MW
315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316static int num_max_busy_us;
317
b361e27b
CM
318static int unload_when_empty = 1;
319
2407d77a 320static int add_smi(struct smi_info *smi);
b0defcdb 321static int try_smi_init(struct smi_info *smi);
b361e27b 322static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 323
e041c683 324static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 325static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 326{
e041c683 327 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
328}
329
1da177e4
LT
330static void deliver_recv_msg(struct smi_info *smi_info,
331 struct ipmi_smi_msg *msg)
332{
333 /* Deliver the message to the upper layer with the lock
c305e3d3 334 released. */
a747c5ab
JK
335
336 if (smi_info->run_to_completion) {
337 ipmi_smi_msg_received(smi_info->intf, msg);
338 } else {
339 spin_unlock(&(smi_info->si_lock));
340 ipmi_smi_msg_received(smi_info->intf, msg);
341 spin_lock(&(smi_info->si_lock));
342 }
1da177e4
LT
343}
344
4d7cbac7 345static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
346{
347 struct ipmi_smi_msg *msg = smi_info->curr_msg;
348
4d7cbac7
CM
349 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350 cCode = IPMI_ERR_UNSPECIFIED;
351 /* else use it as is */
352
1da177e4
LT
353 /* Make it a reponse */
354 msg->rsp[0] = msg->data[0] | 4;
355 msg->rsp[1] = msg->data[1];
4d7cbac7 356 msg->rsp[2] = cCode;
1da177e4
LT
357 msg->rsp_size = 3;
358
359 smi_info->curr_msg = NULL;
360 deliver_recv_msg(smi_info, msg);
361}
362
363static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364{
365 int rv;
366 struct list_head *entry = NULL;
367#ifdef DEBUG_TIMING
368 struct timeval t;
369#endif
370
c305e3d3
CM
371 /*
372 * No need to save flags, we aleady have interrupts off and we
373 * already hold the SMI lock.
374 */
5956dce1
KB
375 if (!smi_info->run_to_completion)
376 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
377
378 /* Pick the high priority queue first. */
b0defcdb 379 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 380 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 381 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
382 entry = smi_info->xmit_msgs.next;
383 }
384
b0defcdb 385 if (!entry) {
1da177e4
LT
386 smi_info->curr_msg = NULL;
387 rv = SI_SM_IDLE;
388 } else {
389 int err;
390
391 list_del(entry);
392 smi_info->curr_msg = list_entry(entry,
393 struct ipmi_smi_msg,
394 link);
395#ifdef DEBUG_TIMING
396 do_gettimeofday(&t);
c305e3d3 397 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 398#endif
e041c683
AS
399 err = atomic_notifier_call_chain(&xaction_notifier_list,
400 0, smi_info);
ea94027b
CM
401 if (err & NOTIFY_STOP_MASK) {
402 rv = SI_SM_CALL_WITHOUT_DELAY;
403 goto out;
404 }
1da177e4
LT
405 err = smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
c305e3d3 409 if (err)
4d7cbac7 410 return_hosed_msg(smi_info, err);
1da177e4
LT
411
412 rv = SI_SM_CALL_WITHOUT_DELAY;
413 }
c305e3d3 414 out:
5956dce1
KB
415 if (!smi_info->run_to_completion)
416 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
417
418 return rv;
419}
420
421static void start_enable_irq(struct smi_info *smi_info)
422{
423 unsigned char msg[2];
424
c305e3d3
CM
425 /*
426 * If we are enabling interrupts, we have to tell the
427 * BMC to use them.
428 */
1da177e4
LT
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434}
435
ee6cd5f8
CM
436static void start_disable_irq(struct smi_info *smi_info)
437{
438 unsigned char msg[2];
439
440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445}
446
1da177e4
LT
447static void start_clear_flags(struct smi_info *smi_info)
448{
449 unsigned char msg[3];
450
451 /* Make sure the watchdog pre-timeout flag is not set at startup. */
452 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454 msg[2] = WDT_PRE_TIMEOUT_INT;
455
456 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457 smi_info->si_state = SI_CLEARING_FLAGS;
458}
459
c305e3d3
CM
460/*
461 * When we have a situtaion where we run out of memory and cannot
462 * allocate messages, we just leave them in the BMC and run the system
463 * polled until we can allocate some memory. Once we have some
464 * memory, we will re-enable the interrupt.
465 */
1da177e4
LT
466static inline void disable_si_irq(struct smi_info *smi_info)
467{
b0defcdb 468 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 469 start_disable_irq(smi_info);
1da177e4 470 smi_info->interrupt_disabled = 1;
ea4078ca
MG
471 if (!atomic_read(&smi_info->stop_operation))
472 mod_timer(&smi_info->si_timer,
473 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
474 }
475}
476
477static inline void enable_si_irq(struct smi_info *smi_info)
478{
479 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 480 start_enable_irq(smi_info);
1da177e4
LT
481 smi_info->interrupt_disabled = 0;
482 }
483}
484
485static void handle_flags(struct smi_info *smi_info)
486{
3ae0e0f9 487 retry:
1da177e4
LT
488 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489 /* Watchdog pre-timeout */
64959e2d 490 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
491
492 start_clear_flags(smi_info);
493 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494 spin_unlock(&(smi_info->si_lock));
495 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496 spin_lock(&(smi_info->si_lock));
497 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498 /* Messages available. */
499 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 500 if (!smi_info->curr_msg) {
1da177e4
LT
501 disable_si_irq(smi_info);
502 smi_info->si_state = SI_NORMAL;
503 return;
504 }
505 enable_si_irq(smi_info);
506
507 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509 smi_info->curr_msg->data_size = 2;
510
511 smi_info->handlers->start_transaction(
512 smi_info->si_sm,
513 smi_info->curr_msg->data,
514 smi_info->curr_msg->data_size);
515 smi_info->si_state = SI_GETTING_MESSAGES;
516 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517 /* Events available. */
518 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 519 if (!smi_info->curr_msg) {
1da177e4
LT
520 disable_si_irq(smi_info);
521 smi_info->si_state = SI_NORMAL;
522 return;
523 }
524 enable_si_irq(smi_info);
525
526 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528 smi_info->curr_msg->data_size = 2;
529
530 smi_info->handlers->start_transaction(
531 smi_info->si_sm,
532 smi_info->curr_msg->data,
533 smi_info->curr_msg->data_size);
534 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 536 smi_info->oem_data_avail_handler) {
4064d5ef
CM
537 if (smi_info->oem_data_avail_handler(smi_info))
538 goto retry;
c305e3d3 539 } else
1da177e4 540 smi_info->si_state = SI_NORMAL;
1da177e4
LT
541}
542
543static void handle_transaction_done(struct smi_info *smi_info)
544{
545 struct ipmi_smi_msg *msg;
546#ifdef DEBUG_TIMING
547 struct timeval t;
548
549 do_gettimeofday(&t);
c305e3d3 550 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
551#endif
552 switch (smi_info->si_state) {
553 case SI_NORMAL:
b0defcdb 554 if (!smi_info->curr_msg)
1da177e4
LT
555 break;
556
557 smi_info->curr_msg->rsp_size
558 = smi_info->handlers->get_result(
559 smi_info->si_sm,
560 smi_info->curr_msg->rsp,
561 IPMI_MAX_MSG_LENGTH);
562
c305e3d3
CM
563 /*
564 * Do this here becase deliver_recv_msg() releases the
565 * lock, and a new message can be put in during the
566 * time the lock is released.
567 */
1da177e4
LT
568 msg = smi_info->curr_msg;
569 smi_info->curr_msg = NULL;
570 deliver_recv_msg(smi_info, msg);
571 break;
572
573 case SI_GETTING_FLAGS:
574 {
575 unsigned char msg[4];
576 unsigned int len;
577
578 /* We got the flags from the SMI, now handle them. */
579 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580 if (msg[2] != 0) {
c305e3d3 581 /* Error fetching flags, just give up for now. */
1da177e4
LT
582 smi_info->si_state = SI_NORMAL;
583 } else if (len < 4) {
c305e3d3
CM
584 /*
585 * Hmm, no flags. That's technically illegal, but
586 * don't use uninitialized data.
587 */
1da177e4
LT
588 smi_info->si_state = SI_NORMAL;
589 } else {
590 smi_info->msg_flags = msg[3];
591 handle_flags(smi_info);
592 }
593 break;
594 }
595
596 case SI_CLEARING_FLAGS:
597 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598 {
599 unsigned char msg[3];
600
601 /* We cleared the flags. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603 if (msg[2] != 0) {
604 /* Error clearing flags */
279fbd0c
MS
605 dev_warn(smi_info->dev,
606 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
607 }
608 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609 start_enable_irq(smi_info);
610 else
611 smi_info->si_state = SI_NORMAL;
612 break;
613 }
614
615 case SI_GETTING_EVENTS:
616 {
617 smi_info->curr_msg->rsp_size
618 = smi_info->handlers->get_result(
619 smi_info->si_sm,
620 smi_info->curr_msg->rsp,
621 IPMI_MAX_MSG_LENGTH);
622
c305e3d3
CM
623 /*
624 * Do this here becase deliver_recv_msg() releases the
625 * lock, and a new message can be put in during the
626 * time the lock is released.
627 */
1da177e4
LT
628 msg = smi_info->curr_msg;
629 smi_info->curr_msg = NULL;
630 if (msg->rsp[2] != 0) {
631 /* Error getting event, probably done. */
632 msg->done(msg);
633
634 /* Take off the event flag. */
635 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636 handle_flags(smi_info);
637 } else {
64959e2d 638 smi_inc_stat(smi_info, events);
1da177e4 639
c305e3d3
CM
640 /*
641 * Do this before we deliver the message
642 * because delivering the message releases the
643 * lock and something else can mess with the
644 * state.
645 */
1da177e4
LT
646 handle_flags(smi_info);
647
648 deliver_recv_msg(smi_info, msg);
649 }
650 break;
651 }
652
653 case SI_GETTING_MESSAGES:
654 {
655 smi_info->curr_msg->rsp_size
656 = smi_info->handlers->get_result(
657 smi_info->si_sm,
658 smi_info->curr_msg->rsp,
659 IPMI_MAX_MSG_LENGTH);
660
c305e3d3
CM
661 /*
662 * Do this here becase deliver_recv_msg() releases the
663 * lock, and a new message can be put in during the
664 * time the lock is released.
665 */
1da177e4
LT
666 msg = smi_info->curr_msg;
667 smi_info->curr_msg = NULL;
668 if (msg->rsp[2] != 0) {
669 /* Error getting event, probably done. */
670 msg->done(msg);
671
672 /* Take off the msg flag. */
673 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674 handle_flags(smi_info);
675 } else {
64959e2d 676 smi_inc_stat(smi_info, incoming_messages);
1da177e4 677
c305e3d3
CM
678 /*
679 * Do this before we deliver the message
680 * because delivering the message releases the
681 * lock and something else can mess with the
682 * state.
683 */
1da177e4
LT
684 handle_flags(smi_info);
685
686 deliver_recv_msg(smi_info, msg);
687 }
688 break;
689 }
690
691 case SI_ENABLE_INTERRUPTS1:
692 {
693 unsigned char msg[4];
694
695 /* We got the flags from the SMI, now handle them. */
696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 if (msg[2] != 0) {
279fbd0c
MS
698 dev_warn(smi_info->dev, "Could not enable interrupts"
699 ", failed get, using polled mode.\n");
1da177e4
LT
700 smi_info->si_state = SI_NORMAL;
701 } else {
702 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
704 msg[2] = (msg[3] |
705 IPMI_BMC_RCV_MSG_INTR |
706 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
707 smi_info->handlers->start_transaction(
708 smi_info->si_sm, msg, 3);
709 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710 }
711 break;
712 }
713
714 case SI_ENABLE_INTERRUPTS2:
715 {
716 unsigned char msg[4];
717
718 /* We got the flags from the SMI, now handle them. */
719 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
720 if (msg[2] != 0)
721 dev_warn(smi_info->dev, "Could not enable interrupts"
722 ", failed set, using polled mode.\n");
723 else
ea4078ca 724 smi_info->interrupt_disabled = 0;
1da177e4
LT
725 smi_info->si_state = SI_NORMAL;
726 break;
727 }
ee6cd5f8
CM
728
729 case SI_DISABLE_INTERRUPTS1:
730 {
731 unsigned char msg[4];
732
733 /* We got the flags from the SMI, now handle them. */
734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 if (msg[2] != 0) {
279fbd0c
MS
736 dev_warn(smi_info->dev, "Could not disable interrupts"
737 ", failed get.\n");
ee6cd5f8
CM
738 smi_info->si_state = SI_NORMAL;
739 } else {
740 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742 msg[2] = (msg[3] &
743 ~(IPMI_BMC_RCV_MSG_INTR |
744 IPMI_BMC_EVT_MSG_INTR));
745 smi_info->handlers->start_transaction(
746 smi_info->si_sm, msg, 3);
747 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748 }
749 break;
750 }
751
752 case SI_DISABLE_INTERRUPTS2:
753 {
754 unsigned char msg[4];
755
756 /* We got the flags from the SMI, now handle them. */
757 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758 if (msg[2] != 0) {
279fbd0c
MS
759 dev_warn(smi_info->dev, "Could not disable interrupts"
760 ", failed set.\n");
ee6cd5f8
CM
761 }
762 smi_info->si_state = SI_NORMAL;
763 break;
764 }
1da177e4
LT
765 }
766}
767
c305e3d3
CM
768/*
769 * Called on timeouts and events. Timeouts should pass the elapsed
770 * time, interrupts should pass in zero. Must be called with
771 * si_lock held and interrupts disabled.
772 */
1da177e4
LT
773static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774 int time)
775{
776 enum si_sm_result si_sm_result;
777
778 restart:
c305e3d3
CM
779 /*
780 * There used to be a loop here that waited a little while
781 * (around 25us) before giving up. That turned out to be
782 * pointless, the minimum delays I was seeing were in the 300us
783 * range, which is far too long to wait in an interrupt. So
784 * we just run until the state machine tells us something
785 * happened or it needs a delay.
786 */
1da177e4
LT
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788 time = 0;
789 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 791
c305e3d3 792 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 793 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
794
795 handle_transaction_done(smi_info);
796 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 797 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 798 smi_inc_stat(smi_info, hosed_count);
1da177e4 799
c305e3d3
CM
800 /*
801 * Do the before return_hosed_msg, because that
802 * releases the lock.
803 */
1da177e4
LT
804 smi_info->si_state = SI_NORMAL;
805 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
806 /*
807 * If we were handling a user message, format
808 * a response to send to the upper layer to
809 * tell it about the error.
810 */
4d7cbac7 811 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
812 }
813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814 }
815
4ea18425
CM
816 /*
817 * We prefer handling attn over new messages. But don't do
818 * this if there is not yet an upper layer to handle anything.
819 */
c305e3d3 820 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
821 unsigned char msg[2];
822
64959e2d 823 smi_inc_stat(smi_info, attentions);
1da177e4 824
c305e3d3
CM
825 /*
826 * Got a attn, send down a get message flags to see
827 * what's causing it. It would be better to handle
828 * this in the upper layer, but due to the way
829 * interrupts work with the SMI, that's not really
830 * possible.
831 */
1da177e4
LT
832 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834
835 smi_info->handlers->start_transaction(
836 smi_info->si_sm, msg, 2);
837 smi_info->si_state = SI_GETTING_FLAGS;
838 goto restart;
839 }
840
841 /* If we are currently idle, try to start the next message. */
842 if (si_sm_result == SI_SM_IDLE) {
64959e2d 843 smi_inc_stat(smi_info, idles);
1da177e4
LT
844
845 si_sm_result = start_next_msg(smi_info);
846 if (si_sm_result != SI_SM_IDLE)
847 goto restart;
c305e3d3 848 }
1da177e4
LT
849
850 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
851 && (atomic_read(&smi_info->req_events))) {
852 /*
853 * We are idle and the upper layer requested that I fetch
854 * events, so do so.
855 */
55162fb1 856 atomic_set(&smi_info->req_events, 0);
1da177e4 857
55162fb1
CM
858 smi_info->curr_msg = ipmi_alloc_smi_msg();
859 if (!smi_info->curr_msg)
860 goto out;
1da177e4 861
55162fb1
CM
862 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864 smi_info->curr_msg->data_size = 2;
1da177e4
LT
865
866 smi_info->handlers->start_transaction(
55162fb1
CM
867 smi_info->si_sm,
868 smi_info->curr_msg->data,
869 smi_info->curr_msg->data_size);
870 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
871 goto restart;
872 }
55162fb1 873 out:
1da177e4
LT
874 return si_sm_result;
875}
876
877static void sender(void *send_info,
878 struct ipmi_smi_msg *msg,
879 int priority)
880{
881 struct smi_info *smi_info = send_info;
882 enum si_sm_result result;
883 unsigned long flags;
884#ifdef DEBUG_TIMING
885 struct timeval t;
886#endif
887
b361e27b
CM
888 if (atomic_read(&smi_info->stop_operation)) {
889 msg->rsp[0] = msg->data[0] | 4;
890 msg->rsp[1] = msg->data[1];
891 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892 msg->rsp_size = 3;
893 deliver_recv_msg(smi_info, msg);
894 return;
895 }
896
1da177e4
LT
897#ifdef DEBUG_TIMING
898 do_gettimeofday(&t);
899 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900#endif
901
ea4078ca
MG
902 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903
3326f4f2
MG
904 if (smi_info->thread)
905 wake_up_process(smi_info->thread);
906
1da177e4 907 if (smi_info->run_to_completion) {
bda4c30a
CM
908 /*
909 * If we are running to completion, then throw it in
910 * the list and run transactions until everything is
911 * clear. Priority doesn't matter here.
912 */
913
914 /*
915 * Run to completion means we are single-threaded, no
916 * need for locks.
917 */
1da177e4
LT
918 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919
1da177e4
LT
920 result = smi_event_handler(smi_info, 0);
921 while (result != SI_SM_IDLE) {
922 udelay(SI_SHORT_TIMEOUT_USEC);
923 result = smi_event_handler(smi_info,
924 SI_SHORT_TIMEOUT_USEC);
925 }
1da177e4 926 return;
1da177e4 927 }
1da177e4 928
bda4c30a
CM
929 spin_lock_irqsave(&smi_info->msg_lock, flags);
930 if (priority > 0)
931 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932 else
933 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935
936 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 937 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 938 start_next_msg(smi_info);
bda4c30a 939 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
940}
941
942static void set_run_to_completion(void *send_info, int i_run_to_completion)
943{
944 struct smi_info *smi_info = send_info;
945 enum si_sm_result result;
1da177e4
LT
946
947 smi_info->run_to_completion = i_run_to_completion;
948 if (i_run_to_completion) {
949 result = smi_event_handler(smi_info, 0);
950 while (result != SI_SM_IDLE) {
951 udelay(SI_SHORT_TIMEOUT_USEC);
952 result = smi_event_handler(smi_info,
953 SI_SHORT_TIMEOUT_USEC);
954 }
955 }
1da177e4
LT
956}
957
ae74e823
MW
958/*
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
961 * between checks
962 */
963static inline void ipmi_si_set_not_busy(struct timespec *ts)
964{
965 ts->tv_nsec = -1;
966}
967static inline int ipmi_si_is_busy(struct timespec *ts)
968{
969 return ts->tv_nsec != -1;
970}
971
972static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 const struct smi_info *smi_info,
974 struct timespec *busy_until)
975{
976 unsigned int max_busy_us = 0;
977
978 if (smi_info->intf_num < num_max_busy_us)
979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 ipmi_si_set_not_busy(busy_until);
982 else if (!ipmi_si_is_busy(busy_until)) {
983 getnstimeofday(busy_until);
984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985 } else {
986 struct timespec now;
987 getnstimeofday(&now);
988 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989 ipmi_si_set_not_busy(busy_until);
990 return 0;
991 }
992 }
993 return 1;
994}
995
996
997/*
998 * A busy-waiting loop for speeding up IPMI operation.
999 *
1000 * Lousy hardware makes this hard. This is only enabled for systems
1001 * that are not BT and do not have interrupts. It starts spinning
1002 * when an operation is complete or until max_busy tells it to stop
1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1004 * Documentation/IPMI.txt for details.
1005 */
a9a2c44f
CM
1006static int ipmi_thread(void *data)
1007{
1008 struct smi_info *smi_info = data;
e9a705a0 1009 unsigned long flags;
a9a2c44f 1010 enum si_sm_result smi_result;
ae74e823 1011 struct timespec busy_until;
a9a2c44f 1012
ae74e823 1013 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1014 set_user_nice(current, 19);
e9a705a0 1015 while (!kthread_should_stop()) {
ae74e823
MW
1016 int busy_wait;
1017
a9a2c44f 1018 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1019 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022 &busy_until);
c305e3d3
CM
1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024 ; /* do nothing */
ae74e823 1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1026 schedule();
3326f4f2
MG
1027 else if (smi_result == SI_SM_IDLE)
1028 schedule_timeout_interruptible(100);
e9a705a0 1029 else
8d1f66dc 1030 schedule_timeout_interruptible(1);
a9a2c44f 1031 }
a9a2c44f
CM
1032 return 0;
1033}
1034
1035
1da177e4
LT
1036static void poll(void *send_info)
1037{
1038 struct smi_info *smi_info = send_info;
fcfa4724 1039 unsigned long flags;
1da177e4 1040
15c62e10
CM
1041 /*
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1044 */
1045 udelay(10);
fcfa4724 1046 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1047 smi_event_handler(smi_info, 10);
fcfa4724 1048 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1049}
1050
1051static void request_events(void *send_info)
1052{
1053 struct smi_info *smi_info = send_info;
1054
40112ae7
CM
1055 if (atomic_read(&smi_info->stop_operation) ||
1056 !smi_info->has_event_buffer)
b361e27b
CM
1057 return;
1058
1da177e4
LT
1059 atomic_set(&smi_info->req_events, 1);
1060}
1061
0c8204b3 1062static int initialized;
1da177e4 1063
1da177e4
LT
1064static void smi_timeout(unsigned long data)
1065{
1066 struct smi_info *smi_info = (struct smi_info *) data;
1067 enum si_sm_result smi_result;
1068 unsigned long flags;
1069 unsigned long jiffies_now;
c4edff1c 1070 long time_diff;
3326f4f2 1071 long timeout;
1da177e4
LT
1072#ifdef DEBUG_TIMING
1073 struct timeval t;
1074#endif
1075
1da177e4
LT
1076 spin_lock_irqsave(&(smi_info->si_lock), flags);
1077#ifdef DEBUG_TIMING
1078 do_gettimeofday(&t);
c305e3d3 1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1080#endif
1081 jiffies_now = jiffies;
c4edff1c 1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1083 * SI_USEC_PER_JIFFY);
1084 smi_result = smi_event_handler(smi_info, time_diff);
1085
1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088 smi_info->last_timeout_jiffies = jiffies_now;
1089
b0defcdb 1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1091 /* Running with interrupts, only do long timeouts. */
3326f4f2 1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1093 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1094 goto do_mod_timer;
1da177e4
LT
1095 }
1096
c305e3d3
CM
1097 /*
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1100 */
1da177e4 1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1102 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1103 timeout = jiffies + 1;
1da177e4 1104 } else {
64959e2d 1105 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1107 }
1108
3326f4f2
MG
1109 do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1112}
1113
7d12e780 1114static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1115{
1116 struct smi_info *smi_info = data;
1117 unsigned long flags;
1118#ifdef DEBUG_TIMING
1119 struct timeval t;
1120#endif
1121
1122 spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
64959e2d 1124 smi_inc_stat(smi_info, interrupts);
1da177e4 1125
1da177e4
LT
1126#ifdef DEBUG_TIMING
1127 do_gettimeofday(&t);
c305e3d3 1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1129#endif
1130 smi_event_handler(smi_info, 0);
1da177e4
LT
1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132 return IRQ_HANDLED;
1133}
1134
7d12e780 1135static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1136{
1137 struct smi_info *smi_info = data;
1138 /* We need to clear the IRQ flag for the BT interface. */
1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1142 return si_irq_handler(irq, data);
9dbf68f9
CM
1143}
1144
453823ba
CM
1145static int smi_start_processing(void *send_info,
1146 ipmi_smi_t intf)
1147{
1148 struct smi_info *new_smi = send_info;
a51f4a81 1149 int enable = 0;
453823ba
CM
1150
1151 new_smi->intf = intf;
1152
c45adc39
CM
1153 /* Try to claim any interrupts. */
1154 if (new_smi->irq_setup)
1155 new_smi->irq_setup(new_smi);
1156
453823ba
CM
1157 /* Set up the timer that drives the interface. */
1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159 new_smi->last_timeout_jiffies = jiffies;
1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
a51f4a81
CM
1162 /*
1163 * Check if the user forcefully enabled the daemon.
1164 */
1165 if (new_smi->intf_num < num_force_kipmid)
1166 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1167 /*
1168 * The BT interface is efficient enough to not need a thread,
1169 * and there is no need for a thread if we have interrupts.
1170 */
c305e3d3 1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1172 enable = 1;
1173
1174 if (enable) {
453823ba
CM
1175 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 "kipmi%d", new_smi->intf_num);
1177 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1178 dev_notice(new_smi->dev, "Could not start"
1179 " kernel thread due to error %ld, only using"
1180 " timers to drive the interface\n",
1181 PTR_ERR(new_smi->thread));
453823ba
CM
1182 new_smi->thread = NULL;
1183 }
1184 }
1185
1186 return 0;
1187}
9dbf68f9 1188
b9675136
CM
1189static void set_maintenance_mode(void *send_info, int enable)
1190{
1191 struct smi_info *smi_info = send_info;
1192
1193 if (!enable)
1194 atomic_set(&smi_info->req_events, 0);
1195}
1196
c305e3d3 1197static struct ipmi_smi_handlers handlers = {
1da177e4 1198 .owner = THIS_MODULE,
453823ba 1199 .start_processing = smi_start_processing,
1da177e4
LT
1200 .sender = sender,
1201 .request_events = request_events,
b9675136 1202 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1203 .set_run_to_completion = set_run_to_completion,
1204 .poll = poll,
1205};
1206
c305e3d3
CM
1207/*
1208 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1209 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1210 */
1da177e4 1211
b0defcdb 1212static LIST_HEAD(smi_infos);
d6dfd131 1213static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1214static int smi_num; /* Used to sequence the SMIs */
1da177e4 1215
1da177e4 1216#define DEFAULT_REGSPACING 1
dba9b4f6 1217#define DEFAULT_REGSIZE 1
1da177e4
LT
1218
1219static int si_trydefaults = 1;
1220static char *si_type[SI_MAX_PARMS];
1221#define MAX_SI_TYPE_STR 30
1222static char si_type_str[MAX_SI_TYPE_STR];
1223static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1224static unsigned int num_addrs;
1da177e4 1225static unsigned int ports[SI_MAX_PARMS];
64a6f950 1226static unsigned int num_ports;
1da177e4 1227static int irqs[SI_MAX_PARMS];
64a6f950 1228static unsigned int num_irqs;
1da177e4 1229static int regspacings[SI_MAX_PARMS];
64a6f950 1230static unsigned int num_regspacings;
1da177e4 1231static int regsizes[SI_MAX_PARMS];
64a6f950 1232static unsigned int num_regsizes;
1da177e4 1233static int regshifts[SI_MAX_PARMS];
64a6f950 1234static unsigned int num_regshifts;
2f95d513 1235static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1236static unsigned int num_slave_addrs;
1da177e4 1237
b361e27b
CM
1238#define IPMI_IO_ADDR_SPACE 0
1239#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1240static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1241
1242static int hotmod_handler(const char *val, struct kernel_param *kp);
1243
1244module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1245MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1246 " Documentation/IPMI.txt in the kernel sources for the"
1247 " gory details.");
1da177e4
LT
1248
1249module_param_named(trydefaults, si_trydefaults, bool, 0);
1250MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1251 " default scan of the KCS and SMIC interface at the standard"
1252 " address");
1253module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1254MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1255 " interface separated by commas. The types are 'kcs',"
1256 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1257 " the first interface to kcs and the second to bt");
64a6f950 1258module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1259MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1260 " addresses separated by commas. Only use if an interface"
1261 " is in memory. Otherwise, set it to zero or leave"
1262 " it blank.");
64a6f950 1263module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1264MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1265 " addresses separated by commas. Only use if an interface"
1266 " is a port. Otherwise, set it to zero or leave"
1267 " it blank.");
1268module_param_array(irqs, int, &num_irqs, 0);
1269MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1270 " addresses separated by commas. Only use if an interface"
1271 " has an interrupt. Otherwise, set it to zero or leave"
1272 " it blank.");
1273module_param_array(regspacings, int, &num_regspacings, 0);
1274MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1275 " and each successive register used by the interface. For"
1276 " instance, if the start address is 0xca2 and the spacing"
1277 " is 2, then the second address is at 0xca4. Defaults"
1278 " to 1.");
1279module_param_array(regsizes, int, &num_regsizes, 0);
1280MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1281 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1282 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1283 " the 8-bit IPMI register has to be read from a larger"
1284 " register.");
1285module_param_array(regshifts, int, &num_regshifts, 0);
1286MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1287 " IPMI register, in bits. For instance, if the data"
1288 " is read from a 32-bit word and the IPMI data is in"
1289 " bit 8-15, then the shift would be 8");
1290module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1291MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1292 " the controller. Normally this is 0x20, but can be"
1293 " overridden by this parm. This is an array indexed"
1294 " by interface number.");
a51f4a81
CM
1295module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1296MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1297 " disabled(0). Normally the IPMI driver auto-detects"
1298 " this, but the value may be overridden by this parm.");
b361e27b
CM
1299module_param(unload_when_empty, int, 0);
1300MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1301 " specified or found, default is 1. Setting to 0"
1302 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1303module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1304MODULE_PARM_DESC(kipmid_max_busy_us,
1305 "Max time (in microseconds) to busy-wait for IPMI data before"
1306 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1307 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1308
1309
b0defcdb 1310static void std_irq_cleanup(struct smi_info *info)
1da177e4 1311{
b0defcdb
CM
1312 if (info->si_type == SI_BT)
1313 /* Disable the interrupt in the BT interface. */
1314 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1315 free_irq(info->irq, info);
1da177e4 1316}
1da177e4
LT
1317
1318static int std_irq_setup(struct smi_info *info)
1319{
1320 int rv;
1321
b0defcdb 1322 if (!info->irq)
1da177e4
LT
1323 return 0;
1324
9dbf68f9
CM
1325 if (info->si_type == SI_BT) {
1326 rv = request_irq(info->irq,
1327 si_bt_irq_handler,
ee6cd5f8 1328 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1329 DEVICE_NAME,
1330 info);
b0defcdb 1331 if (!rv)
9dbf68f9
CM
1332 /* Enable the interrupt in the BT interface. */
1333 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1334 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1335 } else
1336 rv = request_irq(info->irq,
1337 si_irq_handler,
ee6cd5f8 1338 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1339 DEVICE_NAME,
1340 info);
1da177e4 1341 if (rv) {
279fbd0c
MS
1342 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1343 " running polled\n",
1344 DEVICE_NAME, info->irq);
1da177e4
LT
1345 info->irq = 0;
1346 } else {
b0defcdb 1347 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1348 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1349 }
1350
1351 return rv;
1352}
1353
1da177e4
LT
1354static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1355{
b0defcdb 1356 unsigned int addr = io->addr_data;
1da177e4 1357
b0defcdb 1358 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1359}
1360
1361static void port_outb(struct si_sm_io *io, unsigned int offset,
1362 unsigned char b)
1363{
b0defcdb 1364 unsigned int addr = io->addr_data;
1da177e4 1365
b0defcdb 1366 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1367}
1368
1369static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1370{
b0defcdb 1371 unsigned int addr = io->addr_data;
1da177e4 1372
b0defcdb 1373 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1374}
1375
1376static void port_outw(struct si_sm_io *io, unsigned int offset,
1377 unsigned char b)
1378{
b0defcdb 1379 unsigned int addr = io->addr_data;
1da177e4 1380
b0defcdb 1381 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1382}
1383
1384static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1385{
b0defcdb 1386 unsigned int addr = io->addr_data;
1da177e4 1387
b0defcdb 1388 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1389}
1390
1391static void port_outl(struct si_sm_io *io, unsigned int offset,
1392 unsigned char b)
1393{
b0defcdb 1394 unsigned int addr = io->addr_data;
1da177e4 1395
b0defcdb 1396 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1397}
1398
1399static void port_cleanup(struct smi_info *info)
1400{
b0defcdb 1401 unsigned int addr = info->io.addr_data;
d61a3ead 1402 int idx;
1da177e4 1403
b0defcdb 1404 if (addr) {
c305e3d3 1405 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1406 release_region(addr + idx * info->io.regspacing,
1407 info->io.regsize);
1da177e4 1408 }
1da177e4
LT
1409}
1410
1411static int port_setup(struct smi_info *info)
1412{
b0defcdb 1413 unsigned int addr = info->io.addr_data;
d61a3ead 1414 int idx;
1da177e4 1415
b0defcdb 1416 if (!addr)
1da177e4
LT
1417 return -ENODEV;
1418
1419 info->io_cleanup = port_cleanup;
1420
c305e3d3
CM
1421 /*
1422 * Figure out the actual inb/inw/inl/etc routine to use based
1423 * upon the register size.
1424 */
1da177e4
LT
1425 switch (info->io.regsize) {
1426 case 1:
1427 info->io.inputb = port_inb;
1428 info->io.outputb = port_outb;
1429 break;
1430 case 2:
1431 info->io.inputb = port_inw;
1432 info->io.outputb = port_outw;
1433 break;
1434 case 4:
1435 info->io.inputb = port_inl;
1436 info->io.outputb = port_outl;
1437 break;
1438 default:
279fbd0c
MS
1439 dev_warn(info->dev, "Invalid register size: %d\n",
1440 info->io.regsize);
1da177e4
LT
1441 return -EINVAL;
1442 }
1443
c305e3d3
CM
1444 /*
1445 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1446 * tables. This causes problems when trying to register the
1447 * entire I/O region. Therefore we must register each I/O
1448 * port separately.
1449 */
c305e3d3 1450 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1451 if (request_region(addr + idx * info->io.regspacing,
1452 info->io.regsize, DEVICE_NAME) == NULL) {
1453 /* Undo allocations */
1454 while (idx--) {
1455 release_region(addr + idx * info->io.regspacing,
1456 info->io.regsize);
1457 }
1458 return -EIO;
1459 }
1460 }
1da177e4
LT
1461 return 0;
1462}
1463
546cfdf4 1464static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1465{
1466 return readb((io->addr)+(offset * io->regspacing));
1467}
1468
546cfdf4 1469static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1470 unsigned char b)
1471{
1472 writeb(b, (io->addr)+(offset * io->regspacing));
1473}
1474
546cfdf4 1475static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1476{
1477 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1478 & 0xff;
1da177e4
LT
1479}
1480
546cfdf4 1481static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1482 unsigned char b)
1483{
1484 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1485}
1486
546cfdf4 1487static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1488{
1489 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1490 & 0xff;
1da177e4
LT
1491}
1492
546cfdf4 1493static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1494 unsigned char b)
1495{
1496 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1497}
1498
1499#ifdef readq
1500static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1501{
1502 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1503 & 0xff;
1da177e4
LT
1504}
1505
1506static void mem_outq(struct si_sm_io *io, unsigned int offset,
1507 unsigned char b)
1508{
1509 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510}
1511#endif
1512
1513static void mem_cleanup(struct smi_info *info)
1514{
b0defcdb 1515 unsigned long addr = info->io.addr_data;
1da177e4
LT
1516 int mapsize;
1517
1518 if (info->io.addr) {
1519 iounmap(info->io.addr);
1520
1521 mapsize = ((info->io_size * info->io.regspacing)
1522 - (info->io.regspacing - info->io.regsize));
1523
b0defcdb 1524 release_mem_region(addr, mapsize);
1da177e4 1525 }
1da177e4
LT
1526}
1527
1528static int mem_setup(struct smi_info *info)
1529{
b0defcdb 1530 unsigned long addr = info->io.addr_data;
1da177e4
LT
1531 int mapsize;
1532
b0defcdb 1533 if (!addr)
1da177e4
LT
1534 return -ENODEV;
1535
1536 info->io_cleanup = mem_cleanup;
1537
c305e3d3
CM
1538 /*
1539 * Figure out the actual readb/readw/readl/etc routine to use based
1540 * upon the register size.
1541 */
1da177e4
LT
1542 switch (info->io.regsize) {
1543 case 1:
546cfdf4
AD
1544 info->io.inputb = intf_mem_inb;
1545 info->io.outputb = intf_mem_outb;
1da177e4
LT
1546 break;
1547 case 2:
546cfdf4
AD
1548 info->io.inputb = intf_mem_inw;
1549 info->io.outputb = intf_mem_outw;
1da177e4
LT
1550 break;
1551 case 4:
546cfdf4
AD
1552 info->io.inputb = intf_mem_inl;
1553 info->io.outputb = intf_mem_outl;
1da177e4
LT
1554 break;
1555#ifdef readq
1556 case 8:
1557 info->io.inputb = mem_inq;
1558 info->io.outputb = mem_outq;
1559 break;
1560#endif
1561 default:
279fbd0c
MS
1562 dev_warn(info->dev, "Invalid register size: %d\n",
1563 info->io.regsize);
1da177e4
LT
1564 return -EINVAL;
1565 }
1566
c305e3d3
CM
1567 /*
1568 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1569 * unusual looking calculation, but it avoids claiming any
1570 * more memory than it has to. It will claim everything
1571 * between the first address to the end of the last full
c305e3d3
CM
1572 * register.
1573 */
1da177e4
LT
1574 mapsize = ((info->io_size * info->io.regspacing)
1575 - (info->io.regspacing - info->io.regsize));
1576
b0defcdb 1577 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1578 return -EIO;
1579
b0defcdb 1580 info->io.addr = ioremap(addr, mapsize);
1da177e4 1581 if (info->io.addr == NULL) {
b0defcdb 1582 release_mem_region(addr, mapsize);
1da177e4
LT
1583 return -EIO;
1584 }
1585 return 0;
1586}
1587
b361e27b
CM
1588/*
1589 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1590 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1591 * Options are:
1592 * rsp=<regspacing>
1593 * rsi=<regsize>
1594 * rsh=<regshift>
1595 * irq=<irq>
1596 * ipmb=<ipmb addr>
1597 */
1598enum hotmod_op { HM_ADD, HM_REMOVE };
1599struct hotmod_vals {
1600 char *name;
1601 int val;
1602};
1603static struct hotmod_vals hotmod_ops[] = {
1604 { "add", HM_ADD },
1605 { "remove", HM_REMOVE },
1606 { NULL }
1607};
1608static struct hotmod_vals hotmod_si[] = {
1609 { "kcs", SI_KCS },
1610 { "smic", SI_SMIC },
1611 { "bt", SI_BT },
1612 { NULL }
1613};
1614static struct hotmod_vals hotmod_as[] = {
1615 { "mem", IPMI_MEM_ADDR_SPACE },
1616 { "i/o", IPMI_IO_ADDR_SPACE },
1617 { NULL }
1618};
1d5636cc 1619
b361e27b
CM
1620static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1621{
1622 char *s;
1623 int i;
1624
1625 s = strchr(*curr, ',');
1626 if (!s) {
1627 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1628 return -EINVAL;
1629 }
1630 *s = '\0';
1631 s++;
1632 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1633 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1634 *val = v[i].val;
1635 *curr = s;
1636 return 0;
1637 }
1638 }
1639
1640 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1641 return -EINVAL;
1642}
1643
1d5636cc
CM
1644static int check_hotmod_int_op(const char *curr, const char *option,
1645 const char *name, int *val)
1646{
1647 char *n;
1648
1649 if (strcmp(curr, name) == 0) {
1650 if (!option) {
1651 printk(KERN_WARNING PFX
1652 "No option given for '%s'\n",
1653 curr);
1654 return -EINVAL;
1655 }
1656 *val = simple_strtoul(option, &n, 0);
1657 if ((*n != '\0') || (*option == '\0')) {
1658 printk(KERN_WARNING PFX
1659 "Bad option given for '%s'\n",
1660 curr);
1661 return -EINVAL;
1662 }
1663 return 1;
1664 }
1665 return 0;
1666}
1667
b361e27b
CM
1668static int hotmod_handler(const char *val, struct kernel_param *kp)
1669{
1670 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1671 int rv;
b361e27b
CM
1672 char *next, *curr, *s, *n, *o;
1673 enum hotmod_op op;
1674 enum si_type si_type;
1675 int addr_space;
1676 unsigned long addr;
1677 int regspacing;
1678 int regsize;
1679 int regshift;
1680 int irq;
1681 int ipmb;
1682 int ival;
1d5636cc 1683 int len;
b361e27b
CM
1684 struct smi_info *info;
1685
1686 if (!str)
1687 return -ENOMEM;
1688
1689 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1690 len = strlen(str);
1691 ival = len - 1;
b361e27b
CM
1692 while ((ival >= 0) && isspace(str[ival])) {
1693 str[ival] = '\0';
1694 ival--;
1695 }
1696
1697 for (curr = str; curr; curr = next) {
1698 regspacing = 1;
1699 regsize = 1;
1700 regshift = 0;
1701 irq = 0;
2f95d513 1702 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1703
1704 next = strchr(curr, ':');
1705 if (next) {
1706 *next = '\0';
1707 next++;
1708 }
1709
1710 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1711 if (rv)
1712 break;
1713 op = ival;
1714
1715 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1716 if (rv)
1717 break;
1718 si_type = ival;
1719
1720 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1721 if (rv)
1722 break;
1723
1724 s = strchr(curr, ',');
1725 if (s) {
1726 *s = '\0';
1727 s++;
1728 }
1729 addr = simple_strtoul(curr, &n, 0);
1730 if ((*n != '\0') || (*curr == '\0')) {
1731 printk(KERN_WARNING PFX "Invalid hotmod address"
1732 " '%s'\n", curr);
1733 break;
1734 }
1735
1736 while (s) {
1737 curr = s;
1738 s = strchr(curr, ',');
1739 if (s) {
1740 *s = '\0';
1741 s++;
1742 }
1743 o = strchr(curr, '=');
1744 if (o) {
1745 *o = '\0';
1746 o++;
1747 }
1d5636cc
CM
1748 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1749 if (rv < 0)
b361e27b 1750 goto out;
1d5636cc
CM
1751 else if (rv)
1752 continue;
1753 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1754 if (rv < 0)
1755 goto out;
1756 else if (rv)
1757 continue;
1758 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1759 if (rv < 0)
1760 goto out;
1761 else if (rv)
1762 continue;
1763 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1764 if (rv < 0)
1765 goto out;
1766 else if (rv)
1767 continue;
1768 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1769 if (rv < 0)
1770 goto out;
1771 else if (rv)
1772 continue;
1773
1774 rv = -EINVAL;
1775 printk(KERN_WARNING PFX
1776 "Invalid hotmod option '%s'\n",
1777 curr);
1778 goto out;
b361e27b
CM
1779 }
1780
1781 if (op == HM_ADD) {
1782 info = kzalloc(sizeof(*info), GFP_KERNEL);
1783 if (!info) {
1784 rv = -ENOMEM;
1785 goto out;
1786 }
1787
5fedc4a2 1788 info->addr_source = SI_HOTMOD;
b361e27b
CM
1789 info->si_type = si_type;
1790 info->io.addr_data = addr;
1791 info->io.addr_type = addr_space;
1792 if (addr_space == IPMI_MEM_ADDR_SPACE)
1793 info->io_setup = mem_setup;
1794 else
1795 info->io_setup = port_setup;
1796
1797 info->io.addr = NULL;
1798 info->io.regspacing = regspacing;
1799 if (!info->io.regspacing)
1800 info->io.regspacing = DEFAULT_REGSPACING;
1801 info->io.regsize = regsize;
1802 if (!info->io.regsize)
1803 info->io.regsize = DEFAULT_REGSPACING;
1804 info->io.regshift = regshift;
1805 info->irq = irq;
1806 if (info->irq)
1807 info->irq_setup = std_irq_setup;
1808 info->slave_addr = ipmb;
1809
7faefea6 1810 if (!add_smi(info)) {
2407d77a
MG
1811 if (try_smi_init(info))
1812 cleanup_one_si(info);
7faefea6
YL
1813 } else {
1814 kfree(info);
1815 }
b361e27b
CM
1816 } else {
1817 /* remove */
1818 struct smi_info *e, *tmp_e;
1819
1820 mutex_lock(&smi_infos_lock);
1821 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1822 if (e->io.addr_type != addr_space)
1823 continue;
1824 if (e->si_type != si_type)
1825 continue;
1826 if (e->io.addr_data == addr)
1827 cleanup_one_si(e);
1828 }
1829 mutex_unlock(&smi_infos_lock);
1830 }
1831 }
1d5636cc 1832 rv = len;
b361e27b
CM
1833 out:
1834 kfree(str);
1835 return rv;
1836}
b0defcdb
CM
1837
1838static __devinit void hardcode_find_bmc(void)
1da177e4 1839{
b0defcdb 1840 int i;
1da177e4
LT
1841 struct smi_info *info;
1842
b0defcdb
CM
1843 for (i = 0; i < SI_MAX_PARMS; i++) {
1844 if (!ports[i] && !addrs[i])
1845 continue;
1da177e4 1846
b0defcdb
CM
1847 info = kzalloc(sizeof(*info), GFP_KERNEL);
1848 if (!info)
1849 return;
1da177e4 1850
5fedc4a2 1851 info->addr_source = SI_HARDCODED;
279fbd0c 1852 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1853
1d5636cc 1854 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1855 info->si_type = SI_KCS;
1d5636cc 1856 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1857 info->si_type = SI_SMIC;
1d5636cc 1858 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1859 info->si_type = SI_BT;
1860 } else {
279fbd0c 1861 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1862 "for interface %d, was invalid: %s\n",
1863 i, si_type[i]);
1864 kfree(info);
1865 continue;
1866 }
1da177e4 1867
b0defcdb
CM
1868 if (ports[i]) {
1869 /* An I/O port */
1870 info->io_setup = port_setup;
1871 info->io.addr_data = ports[i];
1872 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1873 } else if (addrs[i]) {
1874 /* A memory port */
1875 info->io_setup = mem_setup;
1876 info->io.addr_data = addrs[i];
1877 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1878 } else {
279fbd0c
MS
1879 printk(KERN_WARNING PFX "Interface type specified "
1880 "for interface %d, but port and address were "
1881 "not set or set to zero.\n", i);
b0defcdb
CM
1882 kfree(info);
1883 continue;
1884 }
1da177e4 1885
b0defcdb
CM
1886 info->io.addr = NULL;
1887 info->io.regspacing = regspacings[i];
1888 if (!info->io.regspacing)
1889 info->io.regspacing = DEFAULT_REGSPACING;
1890 info->io.regsize = regsizes[i];
1891 if (!info->io.regsize)
1892 info->io.regsize = DEFAULT_REGSPACING;
1893 info->io.regshift = regshifts[i];
1894 info->irq = irqs[i];
1895 if (info->irq)
1896 info->irq_setup = std_irq_setup;
2f95d513 1897 info->slave_addr = slave_addrs[i];
1da177e4 1898
7faefea6 1899 if (!add_smi(info)) {
2407d77a
MG
1900 if (try_smi_init(info))
1901 cleanup_one_si(info);
7faefea6
YL
1902 } else {
1903 kfree(info);
1904 }
b0defcdb
CM
1905 }
1906}
1da177e4 1907
8466361a 1908#ifdef CONFIG_ACPI
1da177e4
LT
1909
1910#include <linux/acpi.h>
1911
c305e3d3
CM
1912/*
1913 * Once we get an ACPI failure, we don't try any more, because we go
1914 * through the tables sequentially. Once we don't find a table, there
1915 * are no more.
1916 */
0c8204b3 1917static int acpi_failure;
1da177e4
LT
1918
1919/* For GPE-type interrupts. */
1920static u32 ipmi_acpi_gpe(void *context)
1921{
1922 struct smi_info *smi_info = context;
1923 unsigned long flags;
1924#ifdef DEBUG_TIMING
1925 struct timeval t;
1926#endif
1927
1928 spin_lock_irqsave(&(smi_info->si_lock), flags);
1929
64959e2d 1930 smi_inc_stat(smi_info, interrupts);
1da177e4 1931
1da177e4
LT
1932#ifdef DEBUG_TIMING
1933 do_gettimeofday(&t);
1934 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1935#endif
1936 smi_event_handler(smi_info, 0);
1da177e4
LT
1937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1938
1939 return ACPI_INTERRUPT_HANDLED;
1940}
1941
b0defcdb
CM
1942static void acpi_gpe_irq_cleanup(struct smi_info *info)
1943{
1944 if (!info->irq)
1945 return;
1946
1947 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1948}
1949
1da177e4
LT
1950static int acpi_gpe_irq_setup(struct smi_info *info)
1951{
1952 acpi_status status;
1953
b0defcdb 1954 if (!info->irq)
1da177e4
LT
1955 return 0;
1956
1957 /* FIXME - is level triggered right? */
1958 status = acpi_install_gpe_handler(NULL,
1959 info->irq,
1960 ACPI_GPE_LEVEL_TRIGGERED,
1961 &ipmi_acpi_gpe,
1962 info);
1963 if (status != AE_OK) {
279fbd0c
MS
1964 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1965 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1966 info->irq = 0;
1967 return -EINVAL;
1968 } else {
b0defcdb 1969 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1970 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1971 return 0;
1972 }
1973}
1974
1da177e4
LT
1975/*
1976 * Defined at
f46c77c2
JM
1977 * http://h21007.www2.hp.com/portal/download/files
1978 * /unprot/hpspmi.pdf
1da177e4
LT
1979 */
1980struct SPMITable {
1981 s8 Signature[4];
1982 u32 Length;
1983 u8 Revision;
1984 u8 Checksum;
1985 s8 OEMID[6];
1986 s8 OEMTableID[8];
1987 s8 OEMRevision[4];
1988 s8 CreatorID[4];
1989 s8 CreatorRevision[4];
1990 u8 InterfaceType;
1991 u8 IPMIlegacy;
1992 s16 SpecificationRevision;
1993
1994 /*
1995 * Bit 0 - SCI interrupt supported
1996 * Bit 1 - I/O APIC/SAPIC
1997 */
1998 u8 InterruptType;
1999
c305e3d3
CM
2000 /*
2001 * If bit 0 of InterruptType is set, then this is the SCI
2002 * interrupt in the GPEx_STS register.
2003 */
1da177e4
LT
2004 u8 GPE;
2005
2006 s16 Reserved;
2007
c305e3d3
CM
2008 /*
2009 * If bit 1 of InterruptType is set, then this is the I/O
2010 * APIC/SAPIC interrupt.
2011 */
1da177e4
LT
2012 u32 GlobalSystemInterrupt;
2013
2014 /* The actual register address. */
2015 struct acpi_generic_address addr;
2016
2017 u8 UID[4];
2018
2019 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2020};
2021
18a3e0bf 2022static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2023{
2024 struct smi_info *info;
1da177e4 2025
1da177e4 2026 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2027 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2028 return -ENODEV;
1da177e4
LT
2029 }
2030
b0defcdb
CM
2031 info = kzalloc(sizeof(*info), GFP_KERNEL);
2032 if (!info) {
279fbd0c 2033 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2034 return -ENOMEM;
2035 }
2036
5fedc4a2 2037 info->addr_source = SI_SPMI;
279fbd0c 2038 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2039
1da177e4 2040 /* Figure out the interface type. */
c305e3d3 2041 switch (spmi->InterfaceType) {
1da177e4 2042 case 1: /* KCS */
b0defcdb 2043 info->si_type = SI_KCS;
1da177e4 2044 break;
1da177e4 2045 case 2: /* SMIC */
b0defcdb 2046 info->si_type = SI_SMIC;
1da177e4 2047 break;
1da177e4 2048 case 3: /* BT */
b0defcdb 2049 info->si_type = SI_BT;
1da177e4 2050 break;
1da177e4 2051 default:
279fbd0c
MS
2052 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2053 spmi->InterfaceType);
b0defcdb 2054 kfree(info);
1da177e4
LT
2055 return -EIO;
2056 }
2057
1da177e4
LT
2058 if (spmi->InterruptType & 1) {
2059 /* We've got a GPE interrupt. */
2060 info->irq = spmi->GPE;
2061 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2062 } else if (spmi->InterruptType & 2) {
2063 /* We've got an APIC/SAPIC interrupt. */
2064 info->irq = spmi->GlobalSystemInterrupt;
2065 info->irq_setup = std_irq_setup;
1da177e4
LT
2066 } else {
2067 /* Use the default interrupt setting. */
2068 info->irq = 0;
2069 info->irq_setup = NULL;
2070 }
2071
15a58ed1 2072 if (spmi->addr.bit_width) {
35bc37a0 2073 /* A (hopefully) properly formed register bit width. */
15a58ed1 2074 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2075 } else {
35bc37a0
CM
2076 info->io.regspacing = DEFAULT_REGSPACING;
2077 }
b0defcdb 2078 info->io.regsize = info->io.regspacing;
15a58ed1 2079 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2080
15a58ed1 2081 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2082 info->io_setup = mem_setup;
8fe1425a 2083 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2084 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2085 info->io_setup = port_setup;
8fe1425a 2086 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2087 } else {
2088 kfree(info);
279fbd0c 2089 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2090 return -EIO;
2091 }
b0defcdb 2092 info->io.addr_data = spmi->addr.address;
1da177e4 2093
7bb671e3
YL
2094 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2095 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2096 info->io.addr_data, info->io.regsize, info->io.regspacing,
2097 info->irq);
2098
7faefea6
YL
2099 if (add_smi(info))
2100 kfree(info);
1da177e4 2101
1da177e4
LT
2102 return 0;
2103}
b0defcdb 2104
18a3e0bf 2105static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2106{
2107 acpi_status status;
2108 struct SPMITable *spmi;
2109 int i;
2110
2111 if (acpi_disabled)
2112 return;
2113
2114 if (acpi_failure)
2115 return;
2116
2117 for (i = 0; ; i++) {
15a58ed1
AS
2118 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2119 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2120 if (status != AE_OK)
2121 return;
2122
18a3e0bf 2123 try_init_spmi(spmi);
b0defcdb
CM
2124 }
2125}
9e368fa0
BH
2126
2127static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2128 const struct pnp_device_id *dev_id)
2129{
2130 struct acpi_device *acpi_dev;
2131 struct smi_info *info;
a9e31765 2132 struct resource *res, *res_second;
9e368fa0
BH
2133 acpi_handle handle;
2134 acpi_status status;
2135 unsigned long long tmp;
2136
2137 acpi_dev = pnp_acpi_device(dev);
2138 if (!acpi_dev)
2139 return -ENODEV;
2140
2141 info = kzalloc(sizeof(*info), GFP_KERNEL);
2142 if (!info)
2143 return -ENOMEM;
2144
5fedc4a2 2145 info->addr_source = SI_ACPI;
279fbd0c 2146 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2147
2148 handle = acpi_dev->handle;
2149
2150 /* _IFT tells us the interface type: KCS, BT, etc */
2151 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2152 if (ACPI_FAILURE(status))
2153 goto err_free;
2154
2155 switch (tmp) {
2156 case 1:
2157 info->si_type = SI_KCS;
2158 break;
2159 case 2:
2160 info->si_type = SI_SMIC;
2161 break;
2162 case 3:
2163 info->si_type = SI_BT;
2164 break;
2165 default:
279fbd0c 2166 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2167 goto err_free;
2168 }
2169
279fbd0c
MS
2170 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2171 if (res) {
9e368fa0
BH
2172 info->io_setup = port_setup;
2173 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2174 } else {
279fbd0c
MS
2175 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2176 if (res) {
2177 info->io_setup = mem_setup;
2178 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2179 }
2180 }
2181 if (!res) {
9e368fa0
BH
2182 dev_err(&dev->dev, "no I/O or memory address\n");
2183 goto err_free;
2184 }
279fbd0c 2185 info->io.addr_data = res->start;
9e368fa0
BH
2186
2187 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2188 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2189 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2190 IORESOURCE_IO : IORESOURCE_MEM,
2191 1);
a9e31765
YL
2192 if (res_second) {
2193 if (res_second->start > info->io.addr_data)
2194 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2195 }
9e368fa0
BH
2196 info->io.regsize = DEFAULT_REGSPACING;
2197 info->io.regshift = 0;
2198
2199 /* If _GPE exists, use it; otherwise use standard interrupts */
2200 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2201 if (ACPI_SUCCESS(status)) {
2202 info->irq = tmp;
2203 info->irq_setup = acpi_gpe_irq_setup;
2204 } else if (pnp_irq_valid(dev, 0)) {
2205 info->irq = pnp_irq(dev, 0);
2206 info->irq_setup = std_irq_setup;
2207 }
2208
8c8eae27 2209 info->dev = &dev->dev;
9e368fa0
BH
2210 pnp_set_drvdata(dev, info);
2211
279fbd0c
MS
2212 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2213 res, info->io.regsize, info->io.regspacing,
2214 info->irq);
2215
7faefea6
YL
2216 if (add_smi(info))
2217 goto err_free;
2218
2219 return 0;
9e368fa0
BH
2220
2221err_free:
2222 kfree(info);
2223 return -EINVAL;
2224}
2225
2226static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2227{
2228 struct smi_info *info = pnp_get_drvdata(dev);
2229
2230 cleanup_one_si(info);
2231}
2232
2233static const struct pnp_device_id pnp_dev_table[] = {
2234 {"IPI0001", 0},
2235 {"", 0},
2236};
2237
2238static struct pnp_driver ipmi_pnp_driver = {
2239 .name = DEVICE_NAME,
2240 .probe = ipmi_pnp_probe,
2241 .remove = __devexit_p(ipmi_pnp_remove),
2242 .id_table = pnp_dev_table,
2243};
1da177e4
LT
2244#endif
2245
a9fad4cc 2246#ifdef CONFIG_DMI
c305e3d3 2247struct dmi_ipmi_data {
1da177e4
LT
2248 u8 type;
2249 u8 addr_space;
2250 unsigned long base_addr;
2251 u8 irq;
2252 u8 offset;
2253 u8 slave_addr;
b0defcdb 2254};
1da177e4 2255
1855256c 2256static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2257 struct dmi_ipmi_data *dmi)
1da177e4 2258{
1855256c 2259 const u8 *data = (const u8 *)dm;
1da177e4
LT
2260 unsigned long base_addr;
2261 u8 reg_spacing;
b224cd3a 2262 u8 len = dm->length;
1da177e4 2263
b0defcdb 2264 dmi->type = data[4];
1da177e4
LT
2265
2266 memcpy(&base_addr, data+8, sizeof(unsigned long));
2267 if (len >= 0x11) {
2268 if (base_addr & 1) {
2269 /* I/O */
2270 base_addr &= 0xFFFE;
b0defcdb 2271 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2272 } else
1da177e4 2273 /* Memory */
b0defcdb 2274 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2275
1da177e4
LT
2276 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2277 is odd. */
b0defcdb 2278 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2279
b0defcdb 2280 dmi->irq = data[0x11];
1da177e4
LT
2281
2282 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2283 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2284 switch (reg_spacing) {
1da177e4 2285 case 0x00: /* Byte boundaries */
b0defcdb 2286 dmi->offset = 1;
1da177e4
LT
2287 break;
2288 case 0x01: /* 32-bit boundaries */
b0defcdb 2289 dmi->offset = 4;
1da177e4
LT
2290 break;
2291 case 0x02: /* 16-byte boundaries */
b0defcdb 2292 dmi->offset = 16;
1da177e4
LT
2293 break;
2294 default:
2295 /* Some other interface, just ignore it. */
2296 return -EIO;
2297 }
2298 } else {
2299 /* Old DMI spec. */
c305e3d3
CM
2300 /*
2301 * Note that technically, the lower bit of the base
92068801
CM
2302 * address should be 1 if the address is I/O and 0 if
2303 * the address is in memory. So many systems get that
2304 * wrong (and all that I have seen are I/O) so we just
2305 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2306 * memory should use the newer spec, anyway.
2307 */
b0defcdb
CM
2308 dmi->base_addr = base_addr & 0xfffe;
2309 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2310 dmi->offset = 1;
1da177e4
LT
2311 }
2312
b0defcdb 2313 dmi->slave_addr = data[6];
1da177e4 2314
b0defcdb 2315 return 0;
1da177e4
LT
2316}
2317
b0defcdb 2318static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2319{
b0defcdb 2320 struct smi_info *info;
1da177e4 2321
b0defcdb
CM
2322 info = kzalloc(sizeof(*info), GFP_KERNEL);
2323 if (!info) {
279fbd0c 2324 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2325 return;
1da177e4 2326 }
1da177e4 2327
5fedc4a2 2328 info->addr_source = SI_SMBIOS;
279fbd0c 2329 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2330
e8b33617 2331 switch (ipmi_data->type) {
b0defcdb
CM
2332 case 0x01: /* KCS */
2333 info->si_type = SI_KCS;
2334 break;
2335 case 0x02: /* SMIC */
2336 info->si_type = SI_SMIC;
2337 break;
2338 case 0x03: /* BT */
2339 info->si_type = SI_BT;
2340 break;
2341 default:
80cd6920 2342 kfree(info);
b0defcdb 2343 return;
1da177e4 2344 }
1da177e4 2345
b0defcdb
CM
2346 switch (ipmi_data->addr_space) {
2347 case IPMI_MEM_ADDR_SPACE:
1da177e4 2348 info->io_setup = mem_setup;
b0defcdb
CM
2349 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2350 break;
2351
2352 case IPMI_IO_ADDR_SPACE:
1da177e4 2353 info->io_setup = port_setup;
b0defcdb
CM
2354 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2355 break;
2356
2357 default:
1da177e4 2358 kfree(info);
279fbd0c 2359 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2360 ipmi_data->addr_space);
2361 return;
1da177e4 2362 }
b0defcdb 2363 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2364
b0defcdb
CM
2365 info->io.regspacing = ipmi_data->offset;
2366 if (!info->io.regspacing)
1da177e4
LT
2367 info->io.regspacing = DEFAULT_REGSPACING;
2368 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2369 info->io.regshift = 0;
1da177e4
LT
2370
2371 info->slave_addr = ipmi_data->slave_addr;
2372
b0defcdb
CM
2373 info->irq = ipmi_data->irq;
2374 if (info->irq)
2375 info->irq_setup = std_irq_setup;
1da177e4 2376
7bb671e3
YL
2377 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380 info->irq);
2381
7faefea6
YL
2382 if (add_smi(info))
2383 kfree(info);
b0defcdb 2384}
1da177e4 2385
b0defcdb
CM
2386static void __devinit dmi_find_bmc(void)
2387{
1855256c 2388 const struct dmi_device *dev = NULL;
b0defcdb
CM
2389 struct dmi_ipmi_data data;
2390 int rv;
2391
2392 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2393 memset(&data, 0, sizeof(data));
1855256c
JG
2394 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2395 &data);
b0defcdb
CM
2396 if (!rv)
2397 try_init_dmi(&data);
2398 }
1da177e4 2399}
a9fad4cc 2400#endif /* CONFIG_DMI */
1da177e4
LT
2401
2402#ifdef CONFIG_PCI
2403
b0defcdb
CM
2404#define PCI_ERMC_CLASSCODE 0x0C0700
2405#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2406#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2407#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2408#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2409#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2410
1da177e4
LT
2411#define PCI_HP_VENDOR_ID 0x103C
2412#define PCI_MMC_DEVICE_ID 0x121A
2413#define PCI_MMC_ADDR_CW 0x10
2414
b0defcdb
CM
2415static void ipmi_pci_cleanup(struct smi_info *info)
2416{
2417 struct pci_dev *pdev = info->addr_source_data;
2418
2419 pci_disable_device(pdev);
2420}
1da177e4 2421
b0defcdb
CM
2422static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2423 const struct pci_device_id *ent)
1da177e4 2424{
b0defcdb
CM
2425 int rv;
2426 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2427 struct smi_info *info;
1da177e4 2428
b0defcdb
CM
2429 info = kzalloc(sizeof(*info), GFP_KERNEL);
2430 if (!info)
1cd441f9 2431 return -ENOMEM;
1da177e4 2432
5fedc4a2 2433 info->addr_source = SI_PCI;
279fbd0c 2434 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2435
b0defcdb
CM
2436 switch (class_type) {
2437 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2438 info->si_type = SI_SMIC;
2439 break;
1da177e4 2440
b0defcdb
CM
2441 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2442 info->si_type = SI_KCS;
2443 break;
2444
2445 case PCI_ERMC_CLASSCODE_TYPE_BT:
2446 info->si_type = SI_BT;
2447 break;
2448
2449 default:
2450 kfree(info);
279fbd0c 2451 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2452 return -ENOMEM;
1da177e4
LT
2453 }
2454
b0defcdb
CM
2455 rv = pci_enable_device(pdev);
2456 if (rv) {
279fbd0c 2457 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2458 kfree(info);
2459 return rv;
1da177e4
LT
2460 }
2461
b0defcdb
CM
2462 info->addr_source_cleanup = ipmi_pci_cleanup;
2463 info->addr_source_data = pdev;
1da177e4 2464
b0defcdb
CM
2465 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2466 info->io_setup = port_setup;
2467 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2468 } else {
2469 info->io_setup = mem_setup;
2470 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2471 }
b0defcdb 2472 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2473
b0defcdb 2474 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2475 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2476 info->io.regshift = 0;
1da177e4 2477
b0defcdb
CM
2478 info->irq = pdev->irq;
2479 if (info->irq)
2480 info->irq_setup = std_irq_setup;
1da177e4 2481
50c812b2 2482 info->dev = &pdev->dev;
fca3b747 2483 pci_set_drvdata(pdev, info);
50c812b2 2484
279fbd0c
MS
2485 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2486 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2487 info->irq);
2488
7faefea6
YL
2489 if (add_smi(info))
2490 kfree(info);
2491
2492 return 0;
b0defcdb 2493}
1da177e4 2494
b0defcdb
CM
2495static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2496{
fca3b747
CM
2497 struct smi_info *info = pci_get_drvdata(pdev);
2498 cleanup_one_si(info);
b0defcdb 2499}
1da177e4 2500
b0defcdb
CM
2501#ifdef CONFIG_PM
2502static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2503{
1da177e4
LT
2504 return 0;
2505}
1da177e4 2506
b0defcdb 2507static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2508{
b0defcdb
CM
2509 return 0;
2510}
1da177e4 2511#endif
1da177e4 2512
b0defcdb
CM
2513static struct pci_device_id ipmi_pci_devices[] = {
2514 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2515 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2516 { 0, }
b0defcdb
CM
2517};
2518MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2519
2520static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2521 .name = DEVICE_NAME,
2522 .id_table = ipmi_pci_devices,
2523 .probe = ipmi_pci_probe,
2524 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2525#ifdef CONFIG_PM
c305e3d3
CM
2526 .suspend = ipmi_pci_suspend,
2527 .resume = ipmi_pci_resume,
b0defcdb
CM
2528#endif
2529};
2530#endif /* CONFIG_PCI */
1da177e4
LT
2531
2532
dba9b4f6 2533#ifdef CONFIG_PPC_OF
2dc11581 2534static int __devinit ipmi_of_probe(struct platform_device *dev,
dba9b4f6
CM
2535 const struct of_device_id *match)
2536{
2537 struct smi_info *info;
2538 struct resource resource;
2539 const int *regsize, *regspacing, *regshift;
61c7a080 2540 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2541 int ret;
2542 int proplen;
2543
279fbd0c 2544 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2545
2546 ret = of_address_to_resource(np, 0, &resource);
2547 if (ret) {
2548 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2549 return ret;
2550 }
2551
9c25099d 2552 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2553 if (regsize && proplen != 4) {
2554 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2555 return -EINVAL;
2556 }
2557
9c25099d 2558 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2559 if (regspacing && proplen != 4) {
2560 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2561 return -EINVAL;
2562 }
2563
9c25099d 2564 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2565 if (regshift && proplen != 4) {
2566 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2567 return -EINVAL;
2568 }
2569
2570 info = kzalloc(sizeof(*info), GFP_KERNEL);
2571
2572 if (!info) {
2573 dev_err(&dev->dev,
279fbd0c 2574 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2575 return -ENOMEM;
2576 }
2577
2578 info->si_type = (enum si_type) match->data;
5fedc4a2 2579 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2580 info->irq_setup = std_irq_setup;
2581
3b7ec117
NC
2582 if (resource.flags & IORESOURCE_IO) {
2583 info->io_setup = port_setup;
2584 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2585 } else {
2586 info->io_setup = mem_setup;
2587 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2588 }
2589
dba9b4f6
CM
2590 info->io.addr_data = resource.start;
2591
2592 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2593 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2594 info->io.regshift = regshift ? *regshift : 0;
2595
61c7a080 2596 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2597 info->dev = &dev->dev;
2598
279fbd0c 2599 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2600 info->io.addr_data, info->io.regsize, info->io.regspacing,
2601 info->irq);
2602
9de33df4 2603 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2604
7faefea6
YL
2605 if (add_smi(info)) {
2606 kfree(info);
2607 return -EBUSY;
2608 }
2609
2610 return 0;
dba9b4f6
CM
2611}
2612
2dc11581 2613static int __devexit ipmi_of_remove(struct platform_device *dev)
dba9b4f6 2614{
9de33df4 2615 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2616 return 0;
2617}
2618
2619static struct of_device_id ipmi_match[] =
2620{
c305e3d3
CM
2621 { .type = "ipmi", .compatible = "ipmi-kcs",
2622 .data = (void *)(unsigned long) SI_KCS },
2623 { .type = "ipmi", .compatible = "ipmi-smic",
2624 .data = (void *)(unsigned long) SI_SMIC },
2625 { .type = "ipmi", .compatible = "ipmi-bt",
2626 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2627 {},
2628};
2629
c305e3d3 2630static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2631 .driver = {
2632 .name = "ipmi",
2633 .owner = THIS_MODULE,
2634 .of_match_table = ipmi_match,
2635 },
dba9b4f6
CM
2636 .probe = ipmi_of_probe,
2637 .remove = __devexit_p(ipmi_of_remove),
2638};
2639#endif /* CONFIG_PPC_OF */
2640
40112ae7 2641static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2642{
50c812b2 2643 enum si_sm_result smi_result;
1da177e4
LT
2644
2645 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2646 for (;;) {
c3e7e791
CM
2647 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2648 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2649 schedule_timeout_uninterruptible(1);
1da177e4
LT
2650 smi_result = smi_info->handlers->event(
2651 smi_info->si_sm, 100);
c305e3d3 2652 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2653 smi_result = smi_info->handlers->event(
2654 smi_info->si_sm, 0);
c305e3d3 2655 } else
1da177e4
LT
2656 break;
2657 }
40112ae7 2658 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2659 /*
2660 * We couldn't get the state machine to run, so whatever's at
2661 * the port is probably not an IPMI SMI interface.
2662 */
40112ae7
CM
2663 return -ENODEV;
2664
2665 return 0;
2666}
2667
2668static int try_get_dev_id(struct smi_info *smi_info)
2669{
2670 unsigned char msg[2];
2671 unsigned char *resp;
2672 unsigned long resp_len;
2673 int rv = 0;
2674
2675 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2676 if (!resp)
2677 return -ENOMEM;
2678
2679 /*
2680 * Do a Get Device ID command, since it comes back with some
2681 * useful info.
2682 */
2683 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2684 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2685 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2686
2687 rv = wait_for_msg_done(smi_info);
2688 if (rv)
1da177e4 2689 goto out;
1da177e4 2690
1da177e4
LT
2691 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2692 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2693
d8c98618
CM
2694 /* Check and record info from the get device id, in case we need it. */
2695 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2696
2697 out:
2698 kfree(resp);
2699 return rv;
2700}
2701
40112ae7
CM
2702static int try_enable_event_buffer(struct smi_info *smi_info)
2703{
2704 unsigned char msg[3];
2705 unsigned char *resp;
2706 unsigned long resp_len;
2707 int rv = 0;
2708
2709 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2710 if (!resp)
2711 return -ENOMEM;
2712
2713 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2714 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2715 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2716
2717 rv = wait_for_msg_done(smi_info);
2718 if (rv) {
279fbd0c
MS
2719 printk(KERN_WARNING PFX "Error getting response from get"
2720 " global enables command, the event buffer is not"
40112ae7
CM
2721 " enabled.\n");
2722 goto out;
2723 }
2724
2725 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2726 resp, IPMI_MAX_MSG_LENGTH);
2727
2728 if (resp_len < 4 ||
2729 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2730 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2731 resp[2] != 0) {
279fbd0c
MS
2732 printk(KERN_WARNING PFX "Invalid return from get global"
2733 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2734 rv = -EINVAL;
2735 goto out;
2736 }
2737
2738 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2739 /* buffer is already enabled, nothing to do. */
2740 goto out;
2741
2742 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2743 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2744 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2745 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2746
2747 rv = wait_for_msg_done(smi_info);
2748 if (rv) {
279fbd0c
MS
2749 printk(KERN_WARNING PFX "Error getting response from set"
2750 " global, enables command, the event buffer is not"
40112ae7
CM
2751 " enabled.\n");
2752 goto out;
2753 }
2754
2755 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2756 resp, IPMI_MAX_MSG_LENGTH);
2757
2758 if (resp_len < 3 ||
2759 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2760 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2761 printk(KERN_WARNING PFX "Invalid return from get global,"
2762 "enables command, not enable the event buffer.\n");
40112ae7
CM
2763 rv = -EINVAL;
2764 goto out;
2765 }
2766
2767 if (resp[2] != 0)
2768 /*
2769 * An error when setting the event buffer bit means
2770 * that the event buffer is not supported.
2771 */
2772 rv = -ENOENT;
2773 out:
2774 kfree(resp);
2775 return rv;
2776}
2777
1da177e4
LT
2778static int type_file_read_proc(char *page, char **start, off_t off,
2779 int count, int *eof, void *data)
2780{
1da177e4
LT
2781 struct smi_info *smi = data;
2782
b361e27b 2783 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2784}
2785
2786static int stat_file_read_proc(char *page, char **start, off_t off,
2787 int count, int *eof, void *data)
2788{
2789 char *out = (char *) page;
2790 struct smi_info *smi = data;
2791
2792 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2793 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2794 out += sprintf(out, "short_timeouts: %u\n",
2795 smi_get_stat(smi, short_timeouts));
2796 out += sprintf(out, "long_timeouts: %u\n",
2797 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2798 out += sprintf(out, "idles: %u\n",
2799 smi_get_stat(smi, idles));
2800 out += sprintf(out, "interrupts: %u\n",
2801 smi_get_stat(smi, interrupts));
2802 out += sprintf(out, "attentions: %u\n",
2803 smi_get_stat(smi, attentions));
2804 out += sprintf(out, "flag_fetches: %u\n",
2805 smi_get_stat(smi, flag_fetches));
2806 out += sprintf(out, "hosed_count: %u\n",
2807 smi_get_stat(smi, hosed_count));
2808 out += sprintf(out, "complete_transactions: %u\n",
2809 smi_get_stat(smi, complete_transactions));
2810 out += sprintf(out, "events: %u\n",
2811 smi_get_stat(smi, events));
2812 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2813 smi_get_stat(smi, watchdog_pretimeouts));
2814 out += sprintf(out, "incoming_messages: %u\n",
2815 smi_get_stat(smi, incoming_messages));
1da177e4 2816
b361e27b
CM
2817 return out - page;
2818}
2819
2820static int param_read_proc(char *page, char **start, off_t off,
2821 int count, int *eof, void *data)
2822{
2823 struct smi_info *smi = data;
2824
2825 return sprintf(page,
2826 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2827 si_to_str[smi->si_type],
2828 addr_space_to_str[smi->io.addr_type],
2829 smi->io.addr_data,
2830 smi->io.regspacing,
2831 smi->io.regsize,
2832 smi->io.regshift,
2833 smi->irq,
2834 smi->slave_addr);
1da177e4
LT
2835}
2836
3ae0e0f9
CM
2837/*
2838 * oem_data_avail_to_receive_msg_avail
2839 * @info - smi_info structure with msg_flags set
2840 *
2841 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2842 * Returns 1 indicating need to re-run handle_flags().
2843 */
2844static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2845{
e8b33617 2846 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2847 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2848 return 1;
2849}
2850
2851/*
2852 * setup_dell_poweredge_oem_data_handler
2853 * @info - smi_info.device_id must be populated
2854 *
2855 * Systems that match, but have firmware version < 1.40 may assert
2856 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2857 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2858 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2859 * as RECEIVE_MSG_AVAIL instead.
2860 *
2861 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2862 * assert the OEM[012] bits, and if it did, the driver would have to
2863 * change to handle that properly, we don't actually check for the
2864 * firmware version.
2865 * Device ID = 0x20 BMC on PowerEdge 8G servers
2866 * Device Revision = 0x80
2867 * Firmware Revision1 = 0x01 BMC version 1.40
2868 * Firmware Revision2 = 0x40 BCD encoded
2869 * IPMI Version = 0x51 IPMI 1.5
2870 * Manufacturer ID = A2 02 00 Dell IANA
2871 *
d5a2b89a
CM
2872 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2873 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2874 *
3ae0e0f9
CM
2875 */
2876#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2877#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2878#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2879#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2880static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2881{
2882 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2883 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2884 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2885 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2886 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2887 smi_info->oem_data_avail_handler =
2888 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2889 } else if (ipmi_version_major(id) < 1 ||
2890 (ipmi_version_major(id) == 1 &&
2891 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2892 smi_info->oem_data_avail_handler =
2893 oem_data_avail_to_receive_msg_avail;
2894 }
3ae0e0f9
CM
2895 }
2896}
2897
ea94027b
CM
2898#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2899static void return_hosed_msg_badsize(struct smi_info *smi_info)
2900{
2901 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2902
2903 /* Make it a reponse */
2904 msg->rsp[0] = msg->data[0] | 4;
2905 msg->rsp[1] = msg->data[1];
2906 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2907 msg->rsp_size = 3;
2908 smi_info->curr_msg = NULL;
2909 deliver_recv_msg(smi_info, msg);
2910}
2911
2912/*
2913 * dell_poweredge_bt_xaction_handler
2914 * @info - smi_info.device_id must be populated
2915 *
2916 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2917 * not respond to a Get SDR command if the length of the data
2918 * requested is exactly 0x3A, which leads to command timeouts and no
2919 * data returned. This intercepts such commands, and causes userspace
2920 * callers to try again with a different-sized buffer, which succeeds.
2921 */
2922
2923#define STORAGE_NETFN 0x0A
2924#define STORAGE_CMD_GET_SDR 0x23
2925static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2926 unsigned long unused,
2927 void *in)
2928{
2929 struct smi_info *smi_info = in;
2930 unsigned char *data = smi_info->curr_msg->data;
2931 unsigned int size = smi_info->curr_msg->data_size;
2932 if (size >= 8 &&
2933 (data[0]>>2) == STORAGE_NETFN &&
2934 data[1] == STORAGE_CMD_GET_SDR &&
2935 data[7] == 0x3A) {
2936 return_hosed_msg_badsize(smi_info);
2937 return NOTIFY_STOP;
2938 }
2939 return NOTIFY_DONE;
2940}
2941
2942static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2943 .notifier_call = dell_poweredge_bt_xaction_handler,
2944};
2945
2946/*
2947 * setup_dell_poweredge_bt_xaction_handler
2948 * @info - smi_info.device_id must be filled in already
2949 *
2950 * Fills in smi_info.device_id.start_transaction_pre_hook
2951 * when we know what function to use there.
2952 */
2953static void
2954setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2955{
2956 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2957 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2958 smi_info->si_type == SI_BT)
2959 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2960}
2961
3ae0e0f9
CM
2962/*
2963 * setup_oem_data_handler
2964 * @info - smi_info.device_id must be filled in already
2965 *
2966 * Fills in smi_info.device_id.oem_data_available_handler
2967 * when we know what function to use there.
2968 */
2969
2970static void setup_oem_data_handler(struct smi_info *smi_info)
2971{
2972 setup_dell_poweredge_oem_data_handler(smi_info);
2973}
2974
ea94027b
CM
2975static void setup_xaction_handlers(struct smi_info *smi_info)
2976{
2977 setup_dell_poweredge_bt_xaction_handler(smi_info);
2978}
2979
a9a2c44f
CM
2980static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2981{
453823ba 2982 if (smi_info->intf) {
c305e3d3
CM
2983 /*
2984 * The timer and thread are only running if the
2985 * interface has been started up and registered.
2986 */
453823ba
CM
2987 if (smi_info->thread != NULL)
2988 kthread_stop(smi_info->thread);
2989 del_timer_sync(&smi_info->si_timer);
2990 }
a9a2c44f
CM
2991}
2992
7420884c 2993static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2994{
2995 int type;
2996 int port;
7420884c 2997} ipmi_defaults[] =
b0defcdb
CM
2998{
2999 { .type = SI_KCS, .port = 0xca2 },
3000 { .type = SI_SMIC, .port = 0xca9 },
3001 { .type = SI_BT, .port = 0xe4 },
3002 { .port = 0 }
3003};
3004
3005static __devinit void default_find_bmc(void)
3006{
3007 struct smi_info *info;
3008 int i;
3009
3010 for (i = 0; ; i++) {
3011 if (!ipmi_defaults[i].port)
3012 break;
68e1ee62 3013#ifdef CONFIG_PPC
4ff31d77
CK
3014 if (check_legacy_ioport(ipmi_defaults[i].port))
3015 continue;
3016#endif
a09f4855
AM
3017 info = kzalloc(sizeof(*info), GFP_KERNEL);
3018 if (!info)
3019 return;
4ff31d77 3020
5fedc4a2 3021 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3022
3023 info->si_type = ipmi_defaults[i].type;
3024 info->io_setup = port_setup;
3025 info->io.addr_data = ipmi_defaults[i].port;
3026 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3027
3028 info->io.addr = NULL;
3029 info->io.regspacing = DEFAULT_REGSPACING;
3030 info->io.regsize = DEFAULT_REGSPACING;
3031 info->io.regshift = 0;
3032
2407d77a
MG
3033 if (add_smi(info) == 0) {
3034 if ((try_smi_init(info)) == 0) {
3035 /* Found one... */
279fbd0c 3036 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3037 " state machine at %s address 0x%lx\n",
3038 si_to_str[info->si_type],
3039 addr_space_to_str[info->io.addr_type],
3040 info->io.addr_data);
3041 } else
3042 cleanup_one_si(info);
7faefea6
YL
3043 } else {
3044 kfree(info);
b0defcdb
CM
3045 }
3046 }
3047}
3048
3049static int is_new_interface(struct smi_info *info)
1da177e4 3050{
b0defcdb 3051 struct smi_info *e;
1da177e4 3052
b0defcdb
CM
3053 list_for_each_entry(e, &smi_infos, link) {
3054 if (e->io.addr_type != info->io.addr_type)
3055 continue;
3056 if (e->io.addr_data == info->io.addr_data)
3057 return 0;
3058 }
1da177e4 3059
b0defcdb
CM
3060 return 1;
3061}
1da177e4 3062
2407d77a 3063static int add_smi(struct smi_info *new_smi)
b0defcdb 3064{
2407d77a 3065 int rv = 0;
b0defcdb 3066
279fbd0c 3067 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3068 ipmi_addr_src_to_str[new_smi->addr_source],
3069 si_to_str[new_smi->si_type]);
d6dfd131 3070 mutex_lock(&smi_infos_lock);
b0defcdb 3071 if (!is_new_interface(new_smi)) {
7bb671e3 3072 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3073 rv = -EBUSY;
3074 goto out_err;
3075 }
1da177e4 3076
2407d77a
MG
3077 printk(KERN_CONT "\n");
3078
1da177e4
LT
3079 /* So we know not to free it unless we have allocated one. */
3080 new_smi->intf = NULL;
3081 new_smi->si_sm = NULL;
3082 new_smi->handlers = NULL;
3083
2407d77a
MG
3084 list_add_tail(&new_smi->link, &smi_infos);
3085
3086out_err:
3087 mutex_unlock(&smi_infos_lock);
3088 return rv;
3089}
3090
3091static int try_smi_init(struct smi_info *new_smi)
3092{
3093 int rv = 0;
3094 int i;
3095
279fbd0c 3096 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3097 " machine at %s address 0x%lx, slave address 0x%x,"
3098 " irq %d\n",
3099 ipmi_addr_src_to_str[new_smi->addr_source],
3100 si_to_str[new_smi->si_type],
3101 addr_space_to_str[new_smi->io.addr_type],
3102 new_smi->io.addr_data,
3103 new_smi->slave_addr, new_smi->irq);
3104
b0defcdb
CM
3105 switch (new_smi->si_type) {
3106 case SI_KCS:
1da177e4 3107 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3108 break;
3109
3110 case SI_SMIC:
1da177e4 3111 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3112 break;
3113
3114 case SI_BT:
1da177e4 3115 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3116 break;
3117
3118 default:
1da177e4
LT
3119 /* No support for anything else yet. */
3120 rv = -EIO;
3121 goto out_err;
3122 }
3123
3124 /* Allocate the state machine's data and initialize it. */
3125 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3126 if (!new_smi->si_sm) {
279fbd0c
MS
3127 printk(KERN_ERR PFX
3128 "Could not allocate state machine memory\n");
1da177e4
LT
3129 rv = -ENOMEM;
3130 goto out_err;
3131 }
3132 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3133 &new_smi->io);
3134
3135 /* Now that we know the I/O size, we can set up the I/O. */
3136 rv = new_smi->io_setup(new_smi);
3137 if (rv) {
279fbd0c 3138 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3139 goto out_err;
3140 }
3141
3142 spin_lock_init(&(new_smi->si_lock));
3143 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3144
3145 /* Do low-level detection first. */
3146 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3147 if (new_smi->addr_source)
279fbd0c 3148 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3149 rv = -ENODEV;
3150 goto out_err;
3151 }
3152
c305e3d3
CM
3153 /*
3154 * Attempt a get device id command. If it fails, we probably
3155 * don't have a BMC here.
3156 */
1da177e4 3157 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3158 if (rv) {
3159 if (new_smi->addr_source)
279fbd0c 3160 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3161 " at this location\n");
1da177e4 3162 goto out_err;
b0defcdb 3163 }
1da177e4 3164
3ae0e0f9 3165 setup_oem_data_handler(new_smi);
ea94027b 3166 setup_xaction_handlers(new_smi);
3ae0e0f9 3167
1da177e4
LT
3168 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3169 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3170 new_smi->curr_msg = NULL;
3171 atomic_set(&new_smi->req_events, 0);
3172 new_smi->run_to_completion = 0;
64959e2d
CM
3173 for (i = 0; i < SI_NUM_STATS; i++)
3174 atomic_set(&new_smi->stats[i], 0);
1da177e4 3175
ea4078ca 3176 new_smi->interrupt_disabled = 1;
a9a2c44f 3177 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3178 new_smi->intf_num = smi_num;
3179 smi_num++;
1da177e4 3180
40112ae7
CM
3181 rv = try_enable_event_buffer(new_smi);
3182 if (rv == 0)
3183 new_smi->has_event_buffer = 1;
3184
c305e3d3
CM
3185 /*
3186 * Start clearing the flags before we enable interrupts or the
3187 * timer to avoid racing with the timer.
3188 */
1da177e4
LT
3189 start_clear_flags(new_smi);
3190 /* IRQ is defined to be set when non-zero. */
3191 if (new_smi->irq)
3192 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3193
50c812b2 3194 if (!new_smi->dev) {
c305e3d3
CM
3195 /*
3196 * If we don't already have a device from something
3197 * else (like PCI), then register a new one.
3198 */
50c812b2
CM
3199 new_smi->pdev = platform_device_alloc("ipmi_si",
3200 new_smi->intf_num);
8b32b5d0 3201 if (!new_smi->pdev) {
279fbd0c
MS
3202 printk(KERN_ERR PFX
3203 "Unable to allocate platform device\n");
453823ba 3204 goto out_err;
50c812b2
CM
3205 }
3206 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3207 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3208
b48f5457 3209 rv = platform_device_add(new_smi->pdev);
50c812b2 3210 if (rv) {
279fbd0c
MS
3211 printk(KERN_ERR PFX
3212 "Unable to register system interface device:"
50c812b2
CM
3213 " %d\n",
3214 rv);
453823ba 3215 goto out_err;
50c812b2
CM
3216 }
3217 new_smi->dev_registered = 1;
3218 }
3219
1da177e4
LT
3220 rv = ipmi_register_smi(&handlers,
3221 new_smi,
50c812b2
CM
3222 &new_smi->device_id,
3223 new_smi->dev,
759643b8 3224 "bmc",
453823ba 3225 new_smi->slave_addr);
1da177e4 3226 if (rv) {
279fbd0c
MS
3227 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3228 rv);
1da177e4
LT
3229 goto out_err_stop_timer;
3230 }
3231
3232 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3233 type_file_read_proc,
99b76233 3234 new_smi);
1da177e4 3235 if (rv) {
279fbd0c 3236 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3237 goto out_err_stop_timer;
3238 }
3239
3240 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3241 stat_file_read_proc,
99b76233 3242 new_smi);
1da177e4 3243 if (rv) {
279fbd0c 3244 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3245 goto out_err_stop_timer;
3246 }
3247
b361e27b 3248 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3249 param_read_proc,
99b76233 3250 new_smi);
b361e27b 3251 if (rv) {
279fbd0c 3252 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3253 goto out_err_stop_timer;
3254 }
3255
279fbd0c
MS
3256 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3257 si_to_str[new_smi->si_type]);
1da177e4
LT
3258
3259 return 0;
3260
3261 out_err_stop_timer:
a9a2c44f
CM
3262 atomic_inc(&new_smi->stop_operation);
3263 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3264
3265 out_err:
2407d77a
MG
3266 new_smi->interrupt_disabled = 1;
3267
3268 if (new_smi->intf) {
1da177e4 3269 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3270 new_smi->intf = NULL;
3271 }
1da177e4 3272
2407d77a 3273 if (new_smi->irq_cleanup) {
b0defcdb 3274 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3275 new_smi->irq_cleanup = NULL;
3276 }
1da177e4 3277
c305e3d3
CM
3278 /*
3279 * Wait until we know that we are out of any interrupt
3280 * handlers might have been running before we freed the
3281 * interrupt.
3282 */
fbd568a3 3283 synchronize_sched();
1da177e4
LT
3284
3285 if (new_smi->si_sm) {
3286 if (new_smi->handlers)
3287 new_smi->handlers->cleanup(new_smi->si_sm);
3288 kfree(new_smi->si_sm);
2407d77a 3289 new_smi->si_sm = NULL;
1da177e4 3290 }
2407d77a 3291 if (new_smi->addr_source_cleanup) {
b0defcdb 3292 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3293 new_smi->addr_source_cleanup = NULL;
3294 }
3295 if (new_smi->io_cleanup) {
7767e126 3296 new_smi->io_cleanup(new_smi);
2407d77a
MG
3297 new_smi->io_cleanup = NULL;
3298 }
1da177e4 3299
2407d77a 3300 if (new_smi->dev_registered) {
50c812b2 3301 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3302 new_smi->dev_registered = 0;
3303 }
b0defcdb 3304
1da177e4
LT
3305 return rv;
3306}
3307
b0defcdb 3308static __devinit int init_ipmi_si(void)
1da177e4 3309{
1da177e4
LT
3310 int i;
3311 char *str;
50c812b2 3312 int rv;
2407d77a 3313 struct smi_info *e;
06ee4594 3314 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3315
3316 if (initialized)
3317 return 0;
3318 initialized = 1;
3319
50c812b2 3320 /* Register the device drivers. */
fe2d5ffc 3321 rv = driver_register(&ipmi_driver.driver);
50c812b2 3322 if (rv) {
279fbd0c 3323 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3324 return rv;
3325 }
3326
3327
1da177e4
LT
3328 /* Parse out the si_type string into its components. */
3329 str = si_type_str;
3330 if (*str != '\0') {
e8b33617 3331 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3332 si_type[i] = str;
3333 str = strchr(str, ',');
3334 if (str) {
3335 *str = '\0';
3336 str++;
3337 } else {
3338 break;
3339 }
3340 }
3341 }
3342
1fdd75bd 3343 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3344
b0defcdb
CM
3345 hardcode_find_bmc();
3346
d8cc5267
MG
3347 /* If the user gave us a device, they presumably want us to use it */
3348 mutex_lock(&smi_infos_lock);
3349 if (!list_empty(&smi_infos)) {
3350 mutex_unlock(&smi_infos_lock);
3351 return 0;
3352 }
3353 mutex_unlock(&smi_infos_lock);
3354
b0defcdb 3355#ifdef CONFIG_PCI
168b35a7 3356 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3357 if (rv)
279fbd0c 3358 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
56480287
MG
3359 else
3360 pci_registered = 1;
b0defcdb
CM
3361#endif
3362
754d4531
MG
3363#ifdef CONFIG_ACPI
3364 pnp_register_driver(&ipmi_pnp_driver);
561f8182 3365 pnp_registered = 1;
754d4531
MG
3366#endif
3367
3368#ifdef CONFIG_DMI
3369 dmi_find_bmc();
3370#endif
3371
3372#ifdef CONFIG_ACPI
3373 spmi_find_bmc();
3374#endif
3375
dba9b4f6
CM
3376#ifdef CONFIG_PPC_OF
3377 of_register_platform_driver(&ipmi_of_platform_driver);
56480287 3378 of_registered = 1;
dba9b4f6
CM
3379#endif
3380
06ee4594
MG
3381 /* We prefer devices with interrupts, but in the case of a machine
3382 with multiple BMCs we assume that there will be several instances
3383 of a given type so if we succeed in registering a type then also
3384 try to register everything else of the same type */
d8cc5267 3385
2407d77a
MG
3386 mutex_lock(&smi_infos_lock);
3387 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3388 /* Try to register a device if it has an IRQ and we either
3389 haven't successfully registered a device yet or this
3390 device has the same type as one we successfully registered */
3391 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3392 if (!try_smi_init(e)) {
06ee4594 3393 type = e->addr_source;
d8cc5267
MG
3394 }
3395 }
3396 }
3397
06ee4594
MG
3398 /* type will only have been set if we successfully registered an si */
3399 if (type) {
3400 mutex_unlock(&smi_infos_lock);
3401 return 0;
3402 }
3403
d8cc5267
MG
3404 /* Fall back to the preferred device */
3405
3406 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3407 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3408 if (!try_smi_init(e)) {
06ee4594 3409 type = e->addr_source;
d8cc5267
MG
3410 }
3411 }
2407d77a
MG
3412 }
3413 mutex_unlock(&smi_infos_lock);
3414
06ee4594
MG
3415 if (type)
3416 return 0;
3417
b0defcdb 3418 if (si_trydefaults) {
d6dfd131 3419 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3420 if (list_empty(&smi_infos)) {
3421 /* No BMC was found, try defaults. */
d6dfd131 3422 mutex_unlock(&smi_infos_lock);
b0defcdb 3423 default_find_bmc();
2407d77a 3424 } else
d6dfd131 3425 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3426 }
3427
d6dfd131 3428 mutex_lock(&smi_infos_lock);
b361e27b 3429 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3430 mutex_unlock(&smi_infos_lock);
b0defcdb 3431#ifdef CONFIG_PCI
56480287
MG
3432 if (pci_registered)
3433 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3434#endif
10fb62e5
CK
3435
3436#ifdef CONFIG_PPC_OF
56480287
MG
3437 if (of_registered)
3438 of_unregister_platform_driver(&ipmi_of_platform_driver);
10fb62e5 3439#endif
fe2d5ffc 3440 driver_unregister(&ipmi_driver.driver);
279fbd0c
MS
3441 printk(KERN_WARNING PFX
3442 "Unable to find any System Interface(s)\n");
1da177e4 3443 return -ENODEV;
b0defcdb 3444 } else {
d6dfd131 3445 mutex_unlock(&smi_infos_lock);
b0defcdb 3446 return 0;
1da177e4 3447 }
1da177e4
LT
3448}
3449module_init(init_ipmi_si);
3450
b361e27b 3451static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3452{
2407d77a 3453 int rv = 0;
1da177e4
LT
3454 unsigned long flags;
3455
b0defcdb 3456 if (!to_clean)
1da177e4
LT
3457 return;
3458
b0defcdb
CM
3459 list_del(&to_clean->link);
3460
ee6cd5f8 3461 /* Tell the driver that we are shutting down. */
a9a2c44f 3462 atomic_inc(&to_clean->stop_operation);
b0defcdb 3463
c305e3d3
CM
3464 /*
3465 * Make sure the timer and thread are stopped and will not run
3466 * again.
3467 */
a9a2c44f 3468 wait_for_timer_and_thread(to_clean);
1da177e4 3469
c305e3d3
CM
3470 /*
3471 * Timeouts are stopped, now make sure the interrupts are off
3472 * for the device. A little tricky with locks to make sure
3473 * there are no races.
3474 */
ee6cd5f8
CM
3475 spin_lock_irqsave(&to_clean->si_lock, flags);
3476 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3477 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3478 poll(to_clean);
3479 schedule_timeout_uninterruptible(1);
3480 spin_lock_irqsave(&to_clean->si_lock, flags);
3481 }
3482 disable_si_irq(to_clean);
3483 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3484 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3485 poll(to_clean);
3486 schedule_timeout_uninterruptible(1);
3487 }
3488
3489 /* Clean up interrupts and make sure that everything is done. */
3490 if (to_clean->irq_cleanup)
3491 to_clean->irq_cleanup(to_clean);
e8b33617 3492 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3493 poll(to_clean);
da4cd8df 3494 schedule_timeout_uninterruptible(1);
1da177e4
LT
3495 }
3496
2407d77a
MG
3497 if (to_clean->intf)
3498 rv = ipmi_unregister_smi(to_clean->intf);
3499
1da177e4 3500 if (rv) {
279fbd0c 3501 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3502 rv);
3503 }
3504
2407d77a
MG
3505 if (to_clean->handlers)
3506 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3507
3508 kfree(to_clean->si_sm);
3509
b0defcdb
CM
3510 if (to_clean->addr_source_cleanup)
3511 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3512 if (to_clean->io_cleanup)
3513 to_clean->io_cleanup(to_clean);
50c812b2
CM
3514
3515 if (to_clean->dev_registered)
3516 platform_device_unregister(to_clean->pdev);
3517
3518 kfree(to_clean);
1da177e4
LT
3519}
3520
3521static __exit void cleanup_ipmi_si(void)
3522{
b0defcdb 3523 struct smi_info *e, *tmp_e;
1da177e4 3524
b0defcdb 3525 if (!initialized)
1da177e4
LT
3526 return;
3527
b0defcdb 3528#ifdef CONFIG_PCI
56480287
MG
3529 if (pci_registered)
3530 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3531#endif
27d0567a 3532#ifdef CONFIG_ACPI
561f8182
YL
3533 if (pnp_registered)
3534 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3535#endif
b0defcdb 3536
dba9b4f6 3537#ifdef CONFIG_PPC_OF
56480287
MG
3538 if (of_registered)
3539 of_unregister_platform_driver(&ipmi_of_platform_driver);
dba9b4f6
CM
3540#endif
3541
d6dfd131 3542 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3543 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3544 cleanup_one_si(e);
d6dfd131 3545 mutex_unlock(&smi_infos_lock);
50c812b2 3546
fe2d5ffc 3547 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3548}
3549module_exit(cleanup_ipmi_si);
3550
3551MODULE_LICENSE("GPL");
1fdd75bd 3552MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3553MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3554 " system interfaces.");