]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/char/ipmi/ipmi_si_intf.c
[PATCH] IPMI: tidy up various things
[net-next-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4
LT
57#include <asm/irq.h>
58#ifdef CONFIG_HIGH_RES_TIMERS
59#include <linux/hrtime.h>
60# if defined(schedule_next_int)
61/* Old high-res timer code, do translations. */
62# define get_arch_cycles(a) quick_update_jiffies_sub(a)
63# define arch_cycles_per_jiffy cycles_per_jiffies
64# endif
65static inline void add_usec_to_timer(struct timer_list *t, long v)
66{
75b0768a
CM
67 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
1da177e4
LT
69 {
70 t->expires++;
75b0768a 71 t->arch_cycle_expires -= arch_cycles_per_jiffy;
1da177e4
LT
72 }
73}
74#endif
75#include <linux/interrupt.h>
76#include <linux/rcupdate.h>
77#include <linux/ipmi_smi.h>
78#include <asm/io.h>
79#include "ipmi_si_sm.h"
80#include <linux/init.h>
b224cd3a 81#include <linux/dmi.h>
1da177e4
LT
82
83/* Measure times between events in the driver. */
84#undef DEBUG_TIMING
85
86/* Call every 10 ms. */
87#define SI_TIMEOUT_TIME_USEC 10000
88#define SI_USEC_PER_JIFFY (1000000/HZ)
89#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 short timeout */
92
93enum si_intf_state {
94 SI_NORMAL,
95 SI_GETTING_FLAGS,
96 SI_GETTING_EVENTS,
97 SI_CLEARING_FLAGS,
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
99 SI_GETTING_MESSAGES,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103};
104
9dbf68f9
CM
105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
1da177e4
LT
110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
b0defcdb 113static char *si_to_str[] = { "KCS", "SMIC", "BT" };
1da177e4 114
50c812b2
CM
115#define DEVICE_NAME "ipmi_si"
116
117static struct device_driver ipmi_driver =
118{
119 .name = DEVICE_NAME,
120 .bus = &platform_bus_type
121};
3ae0e0f9 122
1da177e4
LT
123struct smi_info
124{
a9a2c44f 125 int intf_num;
1da177e4
LT
126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
130 spinlock_t si_lock;
131 spinlock_t msg_lock;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
136
137 /* Used to handle the various types of I/O that can occur with
138 IPMI */
139 struct si_sm_io io;
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
b0defcdb
CM
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
1da177e4 148
3ae0e0f9
CM
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
1da177e4
LT
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
157 from the flags. */
158#define RECEIVE_MSG_AVAIL 0x01
159#define EVENT_MSG_BUFFER_FULL 0x02
160#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
161#define OEM0_DATA_AVAIL 0x20
162#define OEM1_DATA_AVAIL 0x40
163#define OEM2_DATA_AVAIL 0x80
164#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
1da177e4
LT
167 unsigned char msg_flags;
168
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
171 atomic_t req_events;
172
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
175 out. */
176 int run_to_completion;
177
178 /* The I/O port of an SI interface. */
179 int port;
180
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
185
186 /* zero if no irq; */
187 int irq;
188
189 /* The timer for this si. */
190 struct timer_list si_timer;
191
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
194
195 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 196 atomic_t stop_operation;
1da177e4
LT
197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
50c812b2 204 /* From the get device id response... */
3ae0e0f9 205 struct ipmi_device_id device_id;
1da177e4 206
50c812b2
CM
207 /* Driver model stuff. */
208 struct device *dev;
209 struct platform_device *pdev;
210
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
213 int dev_registered;
214
1da177e4
LT
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
217
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
223 unsigned long idles;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
a9a2c44f 232
e9a705a0 233 struct task_struct *thread;
b0defcdb
CM
234
235 struct list_head link;
1da177e4
LT
236};
237
b0defcdb
CM
238static int try_smi_init(struct smi_info *smi);
239
e041c683 240static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
ea94027b
CM
241static int register_xaction_notifier(struct notifier_block * nb)
242{
e041c683 243 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
244}
245
1da177e4
LT
246static void si_restart_short_timer(struct smi_info *smi_info);
247
248static void deliver_recv_msg(struct smi_info *smi_info,
249 struct ipmi_smi_msg *msg)
250{
251 /* Deliver the message to the upper layer with the lock
252 released. */
253 spin_unlock(&(smi_info->si_lock));
254 ipmi_smi_msg_received(smi_info->intf, msg);
255 spin_lock(&(smi_info->si_lock));
256}
257
258static void return_hosed_msg(struct smi_info *smi_info)
259{
260 struct ipmi_smi_msg *msg = smi_info->curr_msg;
261
262 /* Make it a reponse */
263 msg->rsp[0] = msg->data[0] | 4;
264 msg->rsp[1] = msg->data[1];
265 msg->rsp[2] = 0xFF; /* Unknown error. */
266 msg->rsp_size = 3;
267
268 smi_info->curr_msg = NULL;
269 deliver_recv_msg(smi_info, msg);
270}
271
272static enum si_sm_result start_next_msg(struct smi_info *smi_info)
273{
274 int rv;
275 struct list_head *entry = NULL;
276#ifdef DEBUG_TIMING
277 struct timeval t;
278#endif
279
280 /* No need to save flags, we aleady have interrupts off and we
281 already hold the SMI lock. */
282 spin_lock(&(smi_info->msg_lock));
283
284 /* Pick the high priority queue first. */
b0defcdb 285 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 286 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 287 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
288 entry = smi_info->xmit_msgs.next;
289 }
290
b0defcdb 291 if (!entry) {
1da177e4
LT
292 smi_info->curr_msg = NULL;
293 rv = SI_SM_IDLE;
294 } else {
295 int err;
296
297 list_del(entry);
298 smi_info->curr_msg = list_entry(entry,
299 struct ipmi_smi_msg,
300 link);
301#ifdef DEBUG_TIMING
302 do_gettimeofday(&t);
303 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
304#endif
e041c683
AS
305 err = atomic_notifier_call_chain(&xaction_notifier_list,
306 0, smi_info);
ea94027b
CM
307 if (err & NOTIFY_STOP_MASK) {
308 rv = SI_SM_CALL_WITHOUT_DELAY;
309 goto out;
310 }
1da177e4
LT
311 err = smi_info->handlers->start_transaction(
312 smi_info->si_sm,
313 smi_info->curr_msg->data,
314 smi_info->curr_msg->data_size);
315 if (err) {
316 return_hosed_msg(smi_info);
317 }
318
319 rv = SI_SM_CALL_WITHOUT_DELAY;
320 }
ea94027b 321 out:
1da177e4
LT
322 spin_unlock(&(smi_info->msg_lock));
323
324 return rv;
325}
326
327static void start_enable_irq(struct smi_info *smi_info)
328{
329 unsigned char msg[2];
330
331 /* If we are enabling interrupts, we have to tell the
332 BMC to use them. */
333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
335
336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
337 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
338}
339
340static void start_clear_flags(struct smi_info *smi_info)
341{
342 unsigned char msg[3];
343
344 /* Make sure the watchdog pre-timeout flag is not set at startup. */
345 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
346 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
347 msg[2] = WDT_PRE_TIMEOUT_INT;
348
349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
350 smi_info->si_state = SI_CLEARING_FLAGS;
351}
352
353/* When we have a situtaion where we run out of memory and cannot
354 allocate messages, we just leave them in the BMC and run the system
355 polled until we can allocate some memory. Once we have some
356 memory, we will re-enable the interrupt. */
357static inline void disable_si_irq(struct smi_info *smi_info)
358{
b0defcdb 359 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
360 disable_irq_nosync(smi_info->irq);
361 smi_info->interrupt_disabled = 1;
362 }
363}
364
365static inline void enable_si_irq(struct smi_info *smi_info)
366{
367 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
368 enable_irq(smi_info->irq);
369 smi_info->interrupt_disabled = 0;
370 }
371}
372
373static void handle_flags(struct smi_info *smi_info)
374{
3ae0e0f9 375 retry:
1da177e4
LT
376 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
377 /* Watchdog pre-timeout */
378 spin_lock(&smi_info->count_lock);
379 smi_info->watchdog_pretimeouts++;
380 spin_unlock(&smi_info->count_lock);
381
382 start_clear_flags(smi_info);
383 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
384 spin_unlock(&(smi_info->si_lock));
385 ipmi_smi_watchdog_pretimeout(smi_info->intf);
386 spin_lock(&(smi_info->si_lock));
387 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
388 /* Messages available. */
389 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 390 if (!smi_info->curr_msg) {
1da177e4
LT
391 disable_si_irq(smi_info);
392 smi_info->si_state = SI_NORMAL;
393 return;
394 }
395 enable_si_irq(smi_info);
396
397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
399 smi_info->curr_msg->data_size = 2;
400
401 smi_info->handlers->start_transaction(
402 smi_info->si_sm,
403 smi_info->curr_msg->data,
404 smi_info->curr_msg->data_size);
405 smi_info->si_state = SI_GETTING_MESSAGES;
406 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
407 /* Events available. */
408 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 409 if (!smi_info->curr_msg) {
1da177e4
LT
410 disable_si_irq(smi_info);
411 smi_info->si_state = SI_NORMAL;
412 return;
413 }
414 enable_si_irq(smi_info);
415
416 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
418 smi_info->curr_msg->data_size = 2;
419
420 smi_info->handlers->start_transaction(
421 smi_info->si_sm,
422 smi_info->curr_msg->data,
423 smi_info->curr_msg->data_size);
424 smi_info->si_state = SI_GETTING_EVENTS;
3ae0e0f9
CM
425 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
426 if (smi_info->oem_data_avail_handler)
427 if (smi_info->oem_data_avail_handler(smi_info))
428 goto retry;
1da177e4
LT
429 } else {
430 smi_info->si_state = SI_NORMAL;
431 }
432}
433
434static void handle_transaction_done(struct smi_info *smi_info)
435{
436 struct ipmi_smi_msg *msg;
437#ifdef DEBUG_TIMING
438 struct timeval t;
439
440 do_gettimeofday(&t);
441 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
442#endif
443 switch (smi_info->si_state) {
444 case SI_NORMAL:
b0defcdb 445 if (!smi_info->curr_msg)
1da177e4
LT
446 break;
447
448 smi_info->curr_msg->rsp_size
449 = smi_info->handlers->get_result(
450 smi_info->si_sm,
451 smi_info->curr_msg->rsp,
452 IPMI_MAX_MSG_LENGTH);
453
454 /* Do this here becase deliver_recv_msg() releases the
455 lock, and a new message can be put in during the
456 time the lock is released. */
457 msg = smi_info->curr_msg;
458 smi_info->curr_msg = NULL;
459 deliver_recv_msg(smi_info, msg);
460 break;
461
462 case SI_GETTING_FLAGS:
463 {
464 unsigned char msg[4];
465 unsigned int len;
466
467 /* We got the flags from the SMI, now handle them. */
468 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
469 if (msg[2] != 0) {
470 /* Error fetching flags, just give up for
471 now. */
472 smi_info->si_state = SI_NORMAL;
473 } else if (len < 4) {
474 /* Hmm, no flags. That's technically illegal, but
475 don't use uninitialized data. */
476 smi_info->si_state = SI_NORMAL;
477 } else {
478 smi_info->msg_flags = msg[3];
479 handle_flags(smi_info);
480 }
481 break;
482 }
483
484 case SI_CLEARING_FLAGS:
485 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
486 {
487 unsigned char msg[3];
488
489 /* We cleared the flags. */
490 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
491 if (msg[2] != 0) {
492 /* Error clearing flags */
493 printk(KERN_WARNING
494 "ipmi_si: Error clearing flags: %2.2x\n",
495 msg[2]);
496 }
497 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
498 start_enable_irq(smi_info);
499 else
500 smi_info->si_state = SI_NORMAL;
501 break;
502 }
503
504 case SI_GETTING_EVENTS:
505 {
506 smi_info->curr_msg->rsp_size
507 = smi_info->handlers->get_result(
508 smi_info->si_sm,
509 smi_info->curr_msg->rsp,
510 IPMI_MAX_MSG_LENGTH);
511
512 /* Do this here becase deliver_recv_msg() releases the
513 lock, and a new message can be put in during the
514 time the lock is released. */
515 msg = smi_info->curr_msg;
516 smi_info->curr_msg = NULL;
517 if (msg->rsp[2] != 0) {
518 /* Error getting event, probably done. */
519 msg->done(msg);
520
521 /* Take off the event flag. */
522 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
523 handle_flags(smi_info);
524 } else {
525 spin_lock(&smi_info->count_lock);
526 smi_info->events++;
527 spin_unlock(&smi_info->count_lock);
528
529 /* Do this before we deliver the message
530 because delivering the message releases the
531 lock and something else can mess with the
532 state. */
533 handle_flags(smi_info);
534
535 deliver_recv_msg(smi_info, msg);
536 }
537 break;
538 }
539
540 case SI_GETTING_MESSAGES:
541 {
542 smi_info->curr_msg->rsp_size
543 = smi_info->handlers->get_result(
544 smi_info->si_sm,
545 smi_info->curr_msg->rsp,
546 IPMI_MAX_MSG_LENGTH);
547
548 /* Do this here becase deliver_recv_msg() releases the
549 lock, and a new message can be put in during the
550 time the lock is released. */
551 msg = smi_info->curr_msg;
552 smi_info->curr_msg = NULL;
553 if (msg->rsp[2] != 0) {
554 /* Error getting event, probably done. */
555 msg->done(msg);
556
557 /* Take off the msg flag. */
558 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
559 handle_flags(smi_info);
560 } else {
561 spin_lock(&smi_info->count_lock);
562 smi_info->incoming_messages++;
563 spin_unlock(&smi_info->count_lock);
564
565 /* Do this before we deliver the message
566 because delivering the message releases the
567 lock and something else can mess with the
568 state. */
569 handle_flags(smi_info);
570
571 deliver_recv_msg(smi_info, msg);
572 }
573 break;
574 }
575
576 case SI_ENABLE_INTERRUPTS1:
577 {
578 unsigned char msg[4];
579
580 /* We got the flags from the SMI, now handle them. */
581 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
582 if (msg[2] != 0) {
583 printk(KERN_WARNING
584 "ipmi_si: Could not enable interrupts"
585 ", failed get, using polled mode.\n");
586 smi_info->si_state = SI_NORMAL;
587 } else {
588 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
589 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
590 msg[2] = msg[3] | 1; /* enable msg queue int */
591 smi_info->handlers->start_transaction(
592 smi_info->si_sm, msg, 3);
593 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
594 }
595 break;
596 }
597
598 case SI_ENABLE_INTERRUPTS2:
599 {
600 unsigned char msg[4];
601
602 /* We got the flags from the SMI, now handle them. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
604 if (msg[2] != 0) {
605 printk(KERN_WARNING
606 "ipmi_si: Could not enable interrupts"
607 ", failed set, using polled mode.\n");
608 }
609 smi_info->si_state = SI_NORMAL;
610 break;
611 }
612 }
613}
614
615/* Called on timeouts and events. Timeouts should pass the elapsed
616 time, interrupts should pass in zero. */
617static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
618 int time)
619{
620 enum si_sm_result si_sm_result;
621
622 restart:
623 /* There used to be a loop here that waited a little while
624 (around 25us) before giving up. That turned out to be
625 pointless, the minimum delays I was seeing were in the 300us
626 range, which is far too long to wait in an interrupt. So
627 we just run until the state machine tells us something
628 happened or it needs a delay. */
629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
630 time = 0;
631 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
632 {
633 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
634 }
635
636 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
637 {
638 spin_lock(&smi_info->count_lock);
639 smi_info->complete_transactions++;
640 spin_unlock(&smi_info->count_lock);
641
642 handle_transaction_done(smi_info);
643 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
644 }
645 else if (si_sm_result == SI_SM_HOSED)
646 {
647 spin_lock(&smi_info->count_lock);
648 smi_info->hosed_count++;
649 spin_unlock(&smi_info->count_lock);
650
651 /* Do the before return_hosed_msg, because that
652 releases the lock. */
653 smi_info->si_state = SI_NORMAL;
654 if (smi_info->curr_msg != NULL) {
655 /* If we were handling a user message, format
656 a response to send to the upper layer to
657 tell it about the error. */
658 return_hosed_msg(smi_info);
659 }
660 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
661 }
662
663 /* We prefer handling attn over new messages. */
664 if (si_sm_result == SI_SM_ATTN)
665 {
666 unsigned char msg[2];
667
668 spin_lock(&smi_info->count_lock);
669 smi_info->attentions++;
670 spin_unlock(&smi_info->count_lock);
671
672 /* Got a attn, send down a get message flags to see
673 what's causing it. It would be better to handle
674 this in the upper layer, but due to the way
675 interrupts work with the SMI, that's not really
676 possible. */
677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
679
680 smi_info->handlers->start_transaction(
681 smi_info->si_sm, msg, 2);
682 smi_info->si_state = SI_GETTING_FLAGS;
683 goto restart;
684 }
685
686 /* If we are currently idle, try to start the next message. */
687 if (si_sm_result == SI_SM_IDLE) {
688 spin_lock(&smi_info->count_lock);
689 smi_info->idles++;
690 spin_unlock(&smi_info->count_lock);
691
692 si_sm_result = start_next_msg(smi_info);
693 if (si_sm_result != SI_SM_IDLE)
694 goto restart;
695 }
696
697 if ((si_sm_result == SI_SM_IDLE)
698 && (atomic_read(&smi_info->req_events)))
699 {
700 /* We are idle and the upper layer requested that I fetch
701 events, so do so. */
702 unsigned char msg[2];
703
704 spin_lock(&smi_info->count_lock);
705 smi_info->flag_fetches++;
706 spin_unlock(&smi_info->count_lock);
707
708 atomic_set(&smi_info->req_events, 0);
709 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
711
712 smi_info->handlers->start_transaction(
713 smi_info->si_sm, msg, 2);
714 smi_info->si_state = SI_GETTING_FLAGS;
715 goto restart;
716 }
717
718 return si_sm_result;
719}
720
721static void sender(void *send_info,
722 struct ipmi_smi_msg *msg,
723 int priority)
724{
725 struct smi_info *smi_info = send_info;
726 enum si_sm_result result;
727 unsigned long flags;
728#ifdef DEBUG_TIMING
729 struct timeval t;
730#endif
731
732 spin_lock_irqsave(&(smi_info->msg_lock), flags);
733#ifdef DEBUG_TIMING
734 do_gettimeofday(&t);
735 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
736#endif
737
738 if (smi_info->run_to_completion) {
739 /* If we are running to completion, then throw it in
740 the list and run transactions until everything is
741 clear. Priority doesn't matter here. */
742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
743
744 /* We have to release the msg lock and claim the smi
745 lock in this case, because of race conditions. */
746 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
747
748 spin_lock_irqsave(&(smi_info->si_lock), flags);
749 result = smi_event_handler(smi_info, 0);
750 while (result != SI_SM_IDLE) {
751 udelay(SI_SHORT_TIMEOUT_USEC);
752 result = smi_event_handler(smi_info,
753 SI_SHORT_TIMEOUT_USEC);
754 }
755 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
756 return;
757 } else {
758 if (priority > 0) {
759 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
760 } else {
761 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
762 }
763 }
764 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
765
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767 if ((smi_info->si_state == SI_NORMAL)
768 && (smi_info->curr_msg == NULL))
769 {
770 start_next_msg(smi_info);
771 si_restart_short_timer(smi_info);
772 }
773 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
774}
775
776static void set_run_to_completion(void *send_info, int i_run_to_completion)
777{
778 struct smi_info *smi_info = send_info;
779 enum si_sm_result result;
780 unsigned long flags;
781
782 spin_lock_irqsave(&(smi_info->si_lock), flags);
783
784 smi_info->run_to_completion = i_run_to_completion;
785 if (i_run_to_completion) {
786 result = smi_event_handler(smi_info, 0);
787 while (result != SI_SM_IDLE) {
788 udelay(SI_SHORT_TIMEOUT_USEC);
789 result = smi_event_handler(smi_info,
790 SI_SHORT_TIMEOUT_USEC);
791 }
792 }
793
794 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
795}
796
a9a2c44f
CM
797static int ipmi_thread(void *data)
798{
799 struct smi_info *smi_info = data;
e9a705a0 800 unsigned long flags;
a9a2c44f
CM
801 enum si_sm_result smi_result;
802
a9a2c44f 803 set_user_nice(current, 19);
e9a705a0 804 while (!kthread_should_stop()) {
a9a2c44f 805 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 806 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 807 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
808 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
809 /* do nothing */
a9a2c44f 810 }
e9a705a0
MD
811 else if (smi_result == SI_SM_CALL_WITH_DELAY)
812 udelay(1);
813 else
814 schedule_timeout_interruptible(1);
a9a2c44f 815 }
a9a2c44f
CM
816 return 0;
817}
818
819
1da177e4
LT
820static void poll(void *send_info)
821{
822 struct smi_info *smi_info = send_info;
823
824 smi_event_handler(smi_info, 0);
825}
826
827static void request_events(void *send_info)
828{
829 struct smi_info *smi_info = send_info;
830
831 atomic_set(&smi_info->req_events, 1);
832}
833
834static int initialized = 0;
835
836/* Must be called with interrupts off and with the si_lock held. */
837static void si_restart_short_timer(struct smi_info *smi_info)
838{
839#if defined(CONFIG_HIGH_RES_TIMERS)
840 unsigned long flags;
841 unsigned long jiffies_now;
75b0768a 842 unsigned long seq;
1da177e4
LT
843
844 if (del_timer(&(smi_info->si_timer))) {
845 /* If we don't delete the timer, then it will go off
846 immediately, anyway. So we only process if we
847 actually delete the timer. */
848
75b0768a
CM
849 do {
850 seq = read_seqbegin_irqsave(&xtime_lock, flags);
851 jiffies_now = jiffies;
852 smi_info->si_timer.expires = jiffies_now;
853 smi_info->si_timer.arch_cycle_expires
854 = get_arch_cycles(jiffies_now);
855 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
856
857 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
858
859 add_timer(&(smi_info->si_timer));
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->timeout_restarts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
863 }
864#endif
865}
866
867static void smi_timeout(unsigned long data)
868{
869 struct smi_info *smi_info = (struct smi_info *) data;
870 enum si_sm_result smi_result;
871 unsigned long flags;
872 unsigned long jiffies_now;
c4edff1c 873 long time_diff;
1da177e4
LT
874#ifdef DEBUG_TIMING
875 struct timeval t;
876#endif
877
a9a2c44f 878 if (atomic_read(&smi_info->stop_operation))
1da177e4 879 return;
1da177e4
LT
880
881 spin_lock_irqsave(&(smi_info->si_lock), flags);
882#ifdef DEBUG_TIMING
883 do_gettimeofday(&t);
884 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
885#endif
886 jiffies_now = jiffies;
c4edff1c 887 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
888 * SI_USEC_PER_JIFFY);
889 smi_result = smi_event_handler(smi_info, time_diff);
890
891 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
892
893 smi_info->last_timeout_jiffies = jiffies_now;
894
b0defcdb 895 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
896 /* Running with interrupts, only do long timeouts. */
897 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
898 spin_lock_irqsave(&smi_info->count_lock, flags);
899 smi_info->long_timeouts++;
900 spin_unlock_irqrestore(&smi_info->count_lock, flags);
901 goto do_add_timer;
902 }
903
904 /* If the state machine asks for a short delay, then shorten
905 the timer timeout. */
906 if (smi_result == SI_SM_CALL_WITH_DELAY) {
75b0768a
CM
907#if defined(CONFIG_HIGH_RES_TIMERS)
908 unsigned long seq;
909#endif
1da177e4
LT
910 spin_lock_irqsave(&smi_info->count_lock, flags);
911 smi_info->short_timeouts++;
912 spin_unlock_irqrestore(&smi_info->count_lock, flags);
913#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a
CM
914 do {
915 seq = read_seqbegin_irqsave(&xtime_lock, flags);
916 smi_info->si_timer.expires = jiffies;
917 smi_info->si_timer.arch_cycle_expires
918 = get_arch_cycles(smi_info->si_timer.expires);
919 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
920 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
921#else
922 smi_info->si_timer.expires = jiffies + 1;
923#endif
924 } else {
925 spin_lock_irqsave(&smi_info->count_lock, flags);
926 smi_info->long_timeouts++;
927 spin_unlock_irqrestore(&smi_info->count_lock, flags);
928 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
929#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a 930 smi_info->si_timer.arch_cycle_expires = 0;
1da177e4
LT
931#endif
932 }
933
934 do_add_timer:
935 add_timer(&(smi_info->si_timer));
936}
937
938static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
939{
940 struct smi_info *smi_info = data;
941 unsigned long flags;
942#ifdef DEBUG_TIMING
943 struct timeval t;
944#endif
945
946 spin_lock_irqsave(&(smi_info->si_lock), flags);
947
948 spin_lock(&smi_info->count_lock);
949 smi_info->interrupts++;
950 spin_unlock(&smi_info->count_lock);
951
a9a2c44f 952 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
953 goto out;
954
955#ifdef DEBUG_TIMING
956 do_gettimeofday(&t);
957 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
958#endif
959 smi_event_handler(smi_info, 0);
960 out:
961 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
962 return IRQ_HANDLED;
963}
964
9dbf68f9
CM
965static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
966{
967 struct smi_info *smi_info = data;
968 /* We need to clear the IRQ flag for the BT interface. */
969 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
970 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
971 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
972 return si_irq_handler(irq, data, regs);
973}
974
453823ba
CM
975static int smi_start_processing(void *send_info,
976 ipmi_smi_t intf)
977{
978 struct smi_info *new_smi = send_info;
979
980 new_smi->intf = intf;
981
982 /* Set up the timer that drives the interface. */
983 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
984 new_smi->last_timeout_jiffies = jiffies;
985 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
986
987 if (new_smi->si_type != SI_BT) {
988 new_smi->thread = kthread_run(ipmi_thread, new_smi,
989 "kipmi%d", new_smi->intf_num);
990 if (IS_ERR(new_smi->thread)) {
991 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
992 " kernel thread due to error %ld, only using"
993 " timers to drive the interface\n",
994 PTR_ERR(new_smi->thread));
995 new_smi->thread = NULL;
996 }
997 }
998
999 return 0;
1000}
9dbf68f9 1001
1da177e4
LT
1002static struct ipmi_smi_handlers handlers =
1003{
1004 .owner = THIS_MODULE,
453823ba 1005 .start_processing = smi_start_processing,
1da177e4
LT
1006 .sender = sender,
1007 .request_events = request_events,
1008 .set_run_to_completion = set_run_to_completion,
1009 .poll = poll,
1010};
1011
1012/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1013 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1014
1015#define SI_MAX_PARMS 4
b0defcdb
CM
1016static LIST_HEAD(smi_infos);
1017static DECLARE_MUTEX(smi_infos_lock);
1018static int smi_num; /* Used to sequence the SMIs */
1da177e4 1019
1da177e4
LT
1020#define DEFAULT_REGSPACING 1
1021
1022static int si_trydefaults = 1;
1023static char *si_type[SI_MAX_PARMS];
1024#define MAX_SI_TYPE_STR 30
1025static char si_type_str[MAX_SI_TYPE_STR];
1026static unsigned long addrs[SI_MAX_PARMS];
1027static int num_addrs;
1028static unsigned int ports[SI_MAX_PARMS];
1029static int num_ports;
1030static int irqs[SI_MAX_PARMS];
1031static int num_irqs;
1032static int regspacings[SI_MAX_PARMS];
1033static int num_regspacings = 0;
1034static int regsizes[SI_MAX_PARMS];
1035static int num_regsizes = 0;
1036static int regshifts[SI_MAX_PARMS];
1037static int num_regshifts = 0;
1038static int slave_addrs[SI_MAX_PARMS];
1039static int num_slave_addrs = 0;
1040
1041
1042module_param_named(trydefaults, si_trydefaults, bool, 0);
1043MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1044 " default scan of the KCS and SMIC interface at the standard"
1045 " address");
1046module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1047MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1048 " interface separated by commas. The types are 'kcs',"
1049 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1050 " the first interface to kcs and the second to bt");
1051module_param_array(addrs, long, &num_addrs, 0);
1052MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1053 " addresses separated by commas. Only use if an interface"
1054 " is in memory. Otherwise, set it to zero or leave"
1055 " it blank.");
1056module_param_array(ports, int, &num_ports, 0);
1057MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1058 " addresses separated by commas. Only use if an interface"
1059 " is a port. Otherwise, set it to zero or leave"
1060 " it blank.");
1061module_param_array(irqs, int, &num_irqs, 0);
1062MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1063 " addresses separated by commas. Only use if an interface"
1064 " has an interrupt. Otherwise, set it to zero or leave"
1065 " it blank.");
1066module_param_array(regspacings, int, &num_regspacings, 0);
1067MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1068 " and each successive register used by the interface. For"
1069 " instance, if the start address is 0xca2 and the spacing"
1070 " is 2, then the second address is at 0xca4. Defaults"
1071 " to 1.");
1072module_param_array(regsizes, int, &num_regsizes, 0);
1073MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1074 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1075 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1076 " the 8-bit IPMI register has to be read from a larger"
1077 " register.");
1078module_param_array(regshifts, int, &num_regshifts, 0);
1079MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1080 " IPMI register, in bits. For instance, if the data"
1081 " is read from a 32-bit word and the IPMI data is in"
1082 " bit 8-15, then the shift would be 8");
1083module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1084MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1085 " the controller. Normally this is 0x20, but can be"
1086 " overridden by this parm. This is an array indexed"
1087 " by interface number.");
1088
1089
b0defcdb 1090#define IPMI_IO_ADDR_SPACE 0
1da177e4 1091#define IPMI_MEM_ADDR_SPACE 1
b0defcdb 1092static char *addr_space_to_str[] = { "I/O", "memory" };
1da177e4 1093
b0defcdb 1094static void std_irq_cleanup(struct smi_info *info)
1da177e4 1095{
b0defcdb
CM
1096 if (info->si_type == SI_BT)
1097 /* Disable the interrupt in the BT interface. */
1098 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1099 free_irq(info->irq, info);
1da177e4 1100}
1da177e4
LT
1101
1102static int std_irq_setup(struct smi_info *info)
1103{
1104 int rv;
1105
b0defcdb 1106 if (!info->irq)
1da177e4
LT
1107 return 0;
1108
9dbf68f9
CM
1109 if (info->si_type == SI_BT) {
1110 rv = request_irq(info->irq,
1111 si_bt_irq_handler,
1112 SA_INTERRUPT,
1113 DEVICE_NAME,
1114 info);
b0defcdb 1115 if (!rv)
9dbf68f9
CM
1116 /* Enable the interrupt in the BT interface. */
1117 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1118 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1119 } else
1120 rv = request_irq(info->irq,
1121 si_irq_handler,
1122 SA_INTERRUPT,
1123 DEVICE_NAME,
1124 info);
1da177e4
LT
1125 if (rv) {
1126 printk(KERN_WARNING
1127 "ipmi_si: %s unable to claim interrupt %d,"
1128 " running polled\n",
1129 DEVICE_NAME, info->irq);
1130 info->irq = 0;
1131 } else {
b0defcdb 1132 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1133 printk(" Using irq %d\n", info->irq);
1134 }
1135
1136 return rv;
1137}
1138
1da177e4
LT
1139static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1140{
b0defcdb 1141 unsigned int addr = io->addr_data;
1da177e4 1142
b0defcdb 1143 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1144}
1145
1146static void port_outb(struct si_sm_io *io, unsigned int offset,
1147 unsigned char b)
1148{
b0defcdb 1149 unsigned int addr = io->addr_data;
1da177e4 1150
b0defcdb 1151 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1152}
1153
1154static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1155{
b0defcdb 1156 unsigned int addr = io->addr_data;
1da177e4 1157
b0defcdb 1158 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1159}
1160
1161static void port_outw(struct si_sm_io *io, unsigned int offset,
1162 unsigned char b)
1163{
b0defcdb 1164 unsigned int addr = io->addr_data;
1da177e4 1165
b0defcdb 1166 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1167}
1168
1169static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1170{
b0defcdb 1171 unsigned int addr = io->addr_data;
1da177e4 1172
b0defcdb 1173 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1174}
1175
1176static void port_outl(struct si_sm_io *io, unsigned int offset,
1177 unsigned char b)
1178{
b0defcdb 1179 unsigned int addr = io->addr_data;
1da177e4 1180
b0defcdb 1181 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1182}
1183
1184static void port_cleanup(struct smi_info *info)
1185{
b0defcdb
CM
1186 unsigned int addr = info->io.addr_data;
1187 int mapsize;
1da177e4 1188
b0defcdb 1189 if (addr) {
1da177e4
LT
1190 mapsize = ((info->io_size * info->io.regspacing)
1191 - (info->io.regspacing - info->io.regsize));
1192
b0defcdb 1193 release_region (addr, mapsize);
1da177e4 1194 }
1da177e4
LT
1195}
1196
1197static int port_setup(struct smi_info *info)
1198{
b0defcdb
CM
1199 unsigned int addr = info->io.addr_data;
1200 int mapsize;
1da177e4 1201
b0defcdb 1202 if (!addr)
1da177e4
LT
1203 return -ENODEV;
1204
1205 info->io_cleanup = port_cleanup;
1206
1207 /* Figure out the actual inb/inw/inl/etc routine to use based
1208 upon the register size. */
1209 switch (info->io.regsize) {
1210 case 1:
1211 info->io.inputb = port_inb;
1212 info->io.outputb = port_outb;
1213 break;
1214 case 2:
1215 info->io.inputb = port_inw;
1216 info->io.outputb = port_outw;
1217 break;
1218 case 4:
1219 info->io.inputb = port_inl;
1220 info->io.outputb = port_outl;
1221 break;
1222 default:
1223 printk("ipmi_si: Invalid register size: %d\n",
1224 info->io.regsize);
1225 return -EINVAL;
1226 }
1227
1228 /* Calculate the total amount of memory to claim. This is an
1229 * unusual looking calculation, but it avoids claiming any
1230 * more memory than it has to. It will claim everything
1231 * between the first address to the end of the last full
1232 * register. */
1233 mapsize = ((info->io_size * info->io.regspacing)
1234 - (info->io.regspacing - info->io.regsize));
1235
b0defcdb 1236 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1237 return -EIO;
1238 return 0;
1239}
1240
546cfdf4 1241static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1242{
1243 return readb((io->addr)+(offset * io->regspacing));
1244}
1245
546cfdf4 1246static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1247 unsigned char b)
1248{
1249 writeb(b, (io->addr)+(offset * io->regspacing));
1250}
1251
546cfdf4 1252static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1253{
1254 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1255 && 0xff;
1256}
1257
546cfdf4 1258static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1259 unsigned char b)
1260{
1261 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1262}
1263
546cfdf4 1264static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1265{
1266 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1267 && 0xff;
1268}
1269
546cfdf4 1270static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1271 unsigned char b)
1272{
1273 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1274}
1275
1276#ifdef readq
1277static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1278{
1279 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1280 && 0xff;
1281}
1282
1283static void mem_outq(struct si_sm_io *io, unsigned int offset,
1284 unsigned char b)
1285{
1286 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1287}
1288#endif
1289
1290static void mem_cleanup(struct smi_info *info)
1291{
b0defcdb 1292 unsigned long addr = info->io.addr_data;
1da177e4
LT
1293 int mapsize;
1294
1295 if (info->io.addr) {
1296 iounmap(info->io.addr);
1297
1298 mapsize = ((info->io_size * info->io.regspacing)
1299 - (info->io.regspacing - info->io.regsize));
1300
b0defcdb 1301 release_mem_region(addr, mapsize);
1da177e4 1302 }
1da177e4
LT
1303}
1304
1305static int mem_setup(struct smi_info *info)
1306{
b0defcdb 1307 unsigned long addr = info->io.addr_data;
1da177e4
LT
1308 int mapsize;
1309
b0defcdb 1310 if (!addr)
1da177e4
LT
1311 return -ENODEV;
1312
1313 info->io_cleanup = mem_cleanup;
1314
1315 /* Figure out the actual readb/readw/readl/etc routine to use based
1316 upon the register size. */
1317 switch (info->io.regsize) {
1318 case 1:
546cfdf4
AD
1319 info->io.inputb = intf_mem_inb;
1320 info->io.outputb = intf_mem_outb;
1da177e4
LT
1321 break;
1322 case 2:
546cfdf4
AD
1323 info->io.inputb = intf_mem_inw;
1324 info->io.outputb = intf_mem_outw;
1da177e4
LT
1325 break;
1326 case 4:
546cfdf4
AD
1327 info->io.inputb = intf_mem_inl;
1328 info->io.outputb = intf_mem_outl;
1da177e4
LT
1329 break;
1330#ifdef readq
1331 case 8:
1332 info->io.inputb = mem_inq;
1333 info->io.outputb = mem_outq;
1334 break;
1335#endif
1336 default:
1337 printk("ipmi_si: Invalid register size: %d\n",
1338 info->io.regsize);
1339 return -EINVAL;
1340 }
1341
1342 /* Calculate the total amount of memory to claim. This is an
1343 * unusual looking calculation, but it avoids claiming any
1344 * more memory than it has to. It will claim everything
1345 * between the first address to the end of the last full
1346 * register. */
1347 mapsize = ((info->io_size * info->io.regspacing)
1348 - (info->io.regspacing - info->io.regsize));
1349
b0defcdb 1350 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1351 return -EIO;
1352
b0defcdb 1353 info->io.addr = ioremap(addr, mapsize);
1da177e4 1354 if (info->io.addr == NULL) {
b0defcdb 1355 release_mem_region(addr, mapsize);
1da177e4
LT
1356 return -EIO;
1357 }
1358 return 0;
1359}
1360
b0defcdb
CM
1361
1362static __devinit void hardcode_find_bmc(void)
1da177e4 1363{
b0defcdb 1364 int i;
1da177e4
LT
1365 struct smi_info *info;
1366
b0defcdb
CM
1367 for (i = 0; i < SI_MAX_PARMS; i++) {
1368 if (!ports[i] && !addrs[i])
1369 continue;
1da177e4 1370
b0defcdb
CM
1371 info = kzalloc(sizeof(*info), GFP_KERNEL);
1372 if (!info)
1373 return;
1da177e4 1374
b0defcdb 1375 info->addr_source = "hardcoded";
1da177e4 1376
b0defcdb
CM
1377 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1378 info->si_type = SI_KCS;
1379 } else if (strcmp(si_type[i], "smic") == 0) {
1380 info->si_type = SI_SMIC;
1381 } else if (strcmp(si_type[i], "bt") == 0) {
1382 info->si_type = SI_BT;
1383 } else {
1384 printk(KERN_WARNING
1385 "ipmi_si: Interface type specified "
1386 "for interface %d, was invalid: %s\n",
1387 i, si_type[i]);
1388 kfree(info);
1389 continue;
1390 }
1da177e4 1391
b0defcdb
CM
1392 if (ports[i]) {
1393 /* An I/O port */
1394 info->io_setup = port_setup;
1395 info->io.addr_data = ports[i];
1396 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1397 } else if (addrs[i]) {
1398 /* A memory port */
1399 info->io_setup = mem_setup;
1400 info->io.addr_data = addrs[i];
1401 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1402 } else {
1403 printk(KERN_WARNING
1404 "ipmi_si: Interface type specified "
1405 "for interface %d, "
1406 "but port and address were not set or "
1407 "set to zero.\n", i);
1408 kfree(info);
1409 continue;
1410 }
1da177e4 1411
b0defcdb
CM
1412 info->io.addr = NULL;
1413 info->io.regspacing = regspacings[i];
1414 if (!info->io.regspacing)
1415 info->io.regspacing = DEFAULT_REGSPACING;
1416 info->io.regsize = regsizes[i];
1417 if (!info->io.regsize)
1418 info->io.regsize = DEFAULT_REGSPACING;
1419 info->io.regshift = regshifts[i];
1420 info->irq = irqs[i];
1421 if (info->irq)
1422 info->irq_setup = std_irq_setup;
1da177e4 1423
b0defcdb
CM
1424 try_smi_init(info);
1425 }
1426}
1da177e4 1427
8466361a 1428#ifdef CONFIG_ACPI
1da177e4
LT
1429
1430#include <linux/acpi.h>
1431
1432/* Once we get an ACPI failure, we don't try any more, because we go
1433 through the tables sequentially. Once we don't find a table, there
1434 are no more. */
1435static int acpi_failure = 0;
1436
1437/* For GPE-type interrupts. */
1438static u32 ipmi_acpi_gpe(void *context)
1439{
1440 struct smi_info *smi_info = context;
1441 unsigned long flags;
1442#ifdef DEBUG_TIMING
1443 struct timeval t;
1444#endif
1445
1446 spin_lock_irqsave(&(smi_info->si_lock), flags);
1447
1448 spin_lock(&smi_info->count_lock);
1449 smi_info->interrupts++;
1450 spin_unlock(&smi_info->count_lock);
1451
a9a2c44f 1452 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
1453 goto out;
1454
1455#ifdef DEBUG_TIMING
1456 do_gettimeofday(&t);
1457 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1458#endif
1459 smi_event_handler(smi_info, 0);
1460 out:
1461 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1462
1463 return ACPI_INTERRUPT_HANDLED;
1464}
1465
b0defcdb
CM
1466static void acpi_gpe_irq_cleanup(struct smi_info *info)
1467{
1468 if (!info->irq)
1469 return;
1470
1471 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1472}
1473
1da177e4
LT
1474static int acpi_gpe_irq_setup(struct smi_info *info)
1475{
1476 acpi_status status;
1477
b0defcdb 1478 if (!info->irq)
1da177e4
LT
1479 return 0;
1480
1481 /* FIXME - is level triggered right? */
1482 status = acpi_install_gpe_handler(NULL,
1483 info->irq,
1484 ACPI_GPE_LEVEL_TRIGGERED,
1485 &ipmi_acpi_gpe,
1486 info);
1487 if (status != AE_OK) {
1488 printk(KERN_WARNING
1489 "ipmi_si: %s unable to claim ACPI GPE %d,"
1490 " running polled\n",
1491 DEVICE_NAME, info->irq);
1492 info->irq = 0;
1493 return -EINVAL;
1494 } else {
b0defcdb 1495 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1496 printk(" Using ACPI GPE %d\n", info->irq);
1497 return 0;
1498 }
1499}
1500
1da177e4
LT
1501/*
1502 * Defined at
1503 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1504 */
1505struct SPMITable {
1506 s8 Signature[4];
1507 u32 Length;
1508 u8 Revision;
1509 u8 Checksum;
1510 s8 OEMID[6];
1511 s8 OEMTableID[8];
1512 s8 OEMRevision[4];
1513 s8 CreatorID[4];
1514 s8 CreatorRevision[4];
1515 u8 InterfaceType;
1516 u8 IPMIlegacy;
1517 s16 SpecificationRevision;
1518
1519 /*
1520 * Bit 0 - SCI interrupt supported
1521 * Bit 1 - I/O APIC/SAPIC
1522 */
1523 u8 InterruptType;
1524
1525 /* If bit 0 of InterruptType is set, then this is the SCI
1526 interrupt in the GPEx_STS register. */
1527 u8 GPE;
1528
1529 s16 Reserved;
1530
1531 /* If bit 1 of InterruptType is set, then this is the I/O
1532 APIC/SAPIC interrupt. */
1533 u32 GlobalSystemInterrupt;
1534
1535 /* The actual register address. */
1536 struct acpi_generic_address addr;
1537
1538 u8 UID[4];
1539
1540 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1541};
1542
b0defcdb 1543static __devinit int try_init_acpi(struct SPMITable *spmi)
1da177e4
LT
1544{
1545 struct smi_info *info;
1da177e4
LT
1546 char *io_type;
1547 u8 addr_space;
1548
1da177e4
LT
1549 if (spmi->IPMIlegacy != 1) {
1550 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1551 return -ENODEV;
1552 }
1553
1554 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1555 addr_space = IPMI_MEM_ADDR_SPACE;
1556 else
1557 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
1558
1559 info = kzalloc(sizeof(*info), GFP_KERNEL);
1560 if (!info) {
1561 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1562 return -ENOMEM;
1563 }
1564
1565 info->addr_source = "ACPI";
1da177e4 1566
1da177e4
LT
1567 /* Figure out the interface type. */
1568 switch (spmi->InterfaceType)
1569 {
1570 case 1: /* KCS */
b0defcdb 1571 info->si_type = SI_KCS;
1da177e4 1572 break;
1da177e4 1573 case 2: /* SMIC */
b0defcdb 1574 info->si_type = SI_SMIC;
1da177e4 1575 break;
1da177e4 1576 case 3: /* BT */
b0defcdb 1577 info->si_type = SI_BT;
1da177e4 1578 break;
1da177e4
LT
1579 default:
1580 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1581 spmi->InterfaceType);
b0defcdb 1582 kfree(info);
1da177e4
LT
1583 return -EIO;
1584 }
1585
1da177e4
LT
1586 if (spmi->InterruptType & 1) {
1587 /* We've got a GPE interrupt. */
1588 info->irq = spmi->GPE;
1589 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
1590 } else if (spmi->InterruptType & 2) {
1591 /* We've got an APIC/SAPIC interrupt. */
1592 info->irq = spmi->GlobalSystemInterrupt;
1593 info->irq_setup = std_irq_setup;
1da177e4
LT
1594 } else {
1595 /* Use the default interrupt setting. */
1596 info->irq = 0;
1597 info->irq_setup = NULL;
1598 }
1599
35bc37a0
CM
1600 if (spmi->addr.register_bit_width) {
1601 /* A (hopefully) properly formed register bit width. */
35bc37a0
CM
1602 info->io.regspacing = spmi->addr.register_bit_width / 8;
1603 } else {
35bc37a0
CM
1604 info->io.regspacing = DEFAULT_REGSPACING;
1605 }
b0defcdb
CM
1606 info->io.regsize = info->io.regspacing;
1607 info->io.regshift = spmi->addr.register_bit_offset;
1da177e4
LT
1608
1609 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1610 io_type = "memory";
1611 info->io_setup = mem_setup;
b0defcdb 1612 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1613 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1614 io_type = "I/O";
1615 info->io_setup = port_setup;
b0defcdb 1616 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1617 } else {
1618 kfree(info);
1619 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1620 return -EIO;
1621 }
b0defcdb 1622 info->io.addr_data = spmi->addr.address;
1da177e4 1623
b0defcdb 1624 try_smi_init(info);
1da177e4 1625
1da177e4
LT
1626 return 0;
1627}
b0defcdb
CM
1628
1629static __devinit void acpi_find_bmc(void)
1630{
1631 acpi_status status;
1632 struct SPMITable *spmi;
1633 int i;
1634
1635 if (acpi_disabled)
1636 return;
1637
1638 if (acpi_failure)
1639 return;
1640
1641 for (i = 0; ; i++) {
1642 status = acpi_get_firmware_table("SPMI", i+1,
1643 ACPI_LOGICAL_ADDRESSING,
1644 (struct acpi_table_header **)
1645 &spmi);
1646 if (status != AE_OK)
1647 return;
1648
1649 try_init_acpi(spmi);
1650 }
1651}
1da177e4
LT
1652#endif
1653
a9fad4cc 1654#ifdef CONFIG_DMI
b0defcdb 1655struct dmi_ipmi_data
1da177e4
LT
1656{
1657 u8 type;
1658 u8 addr_space;
1659 unsigned long base_addr;
1660 u8 irq;
1661 u8 offset;
1662 u8 slave_addr;
b0defcdb 1663};
1da177e4 1664
b0defcdb
CM
1665static int __devinit decode_dmi(struct dmi_header *dm,
1666 struct dmi_ipmi_data *dmi)
1da177e4 1667{
e8b33617 1668 u8 *data = (u8 *)dm;
1da177e4
LT
1669 unsigned long base_addr;
1670 u8 reg_spacing;
b224cd3a 1671 u8 len = dm->length;
1da177e4 1672
b0defcdb 1673 dmi->type = data[4];
1da177e4
LT
1674
1675 memcpy(&base_addr, data+8, sizeof(unsigned long));
1676 if (len >= 0x11) {
1677 if (base_addr & 1) {
1678 /* I/O */
1679 base_addr &= 0xFFFE;
b0defcdb 1680 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1681 }
1682 else {
1683 /* Memory */
b0defcdb 1684 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1685 }
1686 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1687 is odd. */
b0defcdb 1688 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1689
b0defcdb 1690 dmi->irq = data[0x11];
1da177e4
LT
1691
1692 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1693 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1694 switch(reg_spacing){
1695 case 0x00: /* Byte boundaries */
b0defcdb 1696 dmi->offset = 1;
1da177e4
LT
1697 break;
1698 case 0x01: /* 32-bit boundaries */
b0defcdb 1699 dmi->offset = 4;
1da177e4
LT
1700 break;
1701 case 0x02: /* 16-byte boundaries */
b0defcdb 1702 dmi->offset = 16;
1da177e4
LT
1703 break;
1704 default:
1705 /* Some other interface, just ignore it. */
1706 return -EIO;
1707 }
1708 } else {
1709 /* Old DMI spec. */
92068801
CM
1710 /* Note that technically, the lower bit of the base
1711 * address should be 1 if the address is I/O and 0 if
1712 * the address is in memory. So many systems get that
1713 * wrong (and all that I have seen are I/O) so we just
1714 * ignore that bit and assume I/O. Systems that use
1715 * memory should use the newer spec, anyway. */
b0defcdb
CM
1716 dmi->base_addr = base_addr & 0xfffe;
1717 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1718 dmi->offset = 1;
1da177e4
LT
1719 }
1720
b0defcdb 1721 dmi->slave_addr = data[6];
1da177e4 1722
b0defcdb 1723 return 0;
1da177e4
LT
1724}
1725
b0defcdb 1726static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 1727{
b0defcdb 1728 struct smi_info *info;
1da177e4 1729
b0defcdb
CM
1730 info = kzalloc(sizeof(*info), GFP_KERNEL);
1731 if (!info) {
1732 printk(KERN_ERR
1733 "ipmi_si: Could not allocate SI data\n");
1734 return;
1da177e4 1735 }
1da177e4 1736
b0defcdb 1737 info->addr_source = "SMBIOS";
1da177e4 1738
e8b33617 1739 switch (ipmi_data->type) {
b0defcdb
CM
1740 case 0x01: /* KCS */
1741 info->si_type = SI_KCS;
1742 break;
1743 case 0x02: /* SMIC */
1744 info->si_type = SI_SMIC;
1745 break;
1746 case 0x03: /* BT */
1747 info->si_type = SI_BT;
1748 break;
1749 default:
1750 return;
1da177e4 1751 }
1da177e4 1752
b0defcdb
CM
1753 switch (ipmi_data->addr_space) {
1754 case IPMI_MEM_ADDR_SPACE:
1da177e4 1755 info->io_setup = mem_setup;
b0defcdb
CM
1756 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1757 break;
1758
1759 case IPMI_IO_ADDR_SPACE:
1da177e4 1760 info->io_setup = port_setup;
b0defcdb
CM
1761 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1762 break;
1763
1764 default:
1da177e4 1765 kfree(info);
b0defcdb
CM
1766 printk(KERN_WARNING
1767 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1768 ipmi_data->addr_space);
1769 return;
1da177e4 1770 }
b0defcdb 1771 info->io.addr_data = ipmi_data->base_addr;
1da177e4 1772
b0defcdb
CM
1773 info->io.regspacing = ipmi_data->offset;
1774 if (!info->io.regspacing)
1da177e4
LT
1775 info->io.regspacing = DEFAULT_REGSPACING;
1776 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 1777 info->io.regshift = 0;
1da177e4
LT
1778
1779 info->slave_addr = ipmi_data->slave_addr;
1780
b0defcdb
CM
1781 info->irq = ipmi_data->irq;
1782 if (info->irq)
1783 info->irq_setup = std_irq_setup;
1da177e4 1784
b0defcdb
CM
1785 try_smi_init(info);
1786}
1da177e4 1787
b0defcdb
CM
1788static void __devinit dmi_find_bmc(void)
1789{
1790 struct dmi_device *dev = NULL;
1791 struct dmi_ipmi_data data;
1792 int rv;
1793
1794 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1795 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1796 if (!rv)
1797 try_init_dmi(&data);
1798 }
1da177e4 1799}
a9fad4cc 1800#endif /* CONFIG_DMI */
1da177e4
LT
1801
1802#ifdef CONFIG_PCI
1803
b0defcdb
CM
1804#define PCI_ERMC_CLASSCODE 0x0C0700
1805#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1806#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1807#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1808#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1809#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1810
1da177e4
LT
1811#define PCI_HP_VENDOR_ID 0x103C
1812#define PCI_MMC_DEVICE_ID 0x121A
1813#define PCI_MMC_ADDR_CW 0x10
1814
b0defcdb
CM
1815static void ipmi_pci_cleanup(struct smi_info *info)
1816{
1817 struct pci_dev *pdev = info->addr_source_data;
1818
1819 pci_disable_device(pdev);
1820}
1da177e4 1821
b0defcdb
CM
1822static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1823 const struct pci_device_id *ent)
1da177e4 1824{
b0defcdb
CM
1825 int rv;
1826 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1827 struct smi_info *info;
1828 int first_reg_offset = 0;
1da177e4 1829
b0defcdb
CM
1830 info = kzalloc(sizeof(*info), GFP_KERNEL);
1831 if (!info)
1832 return ENOMEM;
1da177e4 1833
b0defcdb 1834 info->addr_source = "PCI";
1da177e4 1835
b0defcdb
CM
1836 switch (class_type) {
1837 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1838 info->si_type = SI_SMIC;
1839 break;
1da177e4 1840
b0defcdb
CM
1841 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1842 info->si_type = SI_KCS;
1843 break;
1844
1845 case PCI_ERMC_CLASSCODE_TYPE_BT:
1846 info->si_type = SI_BT;
1847 break;
1848
1849 default:
1850 kfree(info);
1851 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1852 pci_name(pdev), class_type);
1853 return ENOMEM;
1da177e4
LT
1854 }
1855
b0defcdb
CM
1856 rv = pci_enable_device(pdev);
1857 if (rv) {
1858 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1859 pci_name(pdev));
1860 kfree(info);
1861 return rv;
1da177e4
LT
1862 }
1863
b0defcdb
CM
1864 info->addr_source_cleanup = ipmi_pci_cleanup;
1865 info->addr_source_data = pdev;
1da177e4 1866
b0defcdb
CM
1867 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1868 first_reg_offset = 1;
1da177e4 1869
b0defcdb
CM
1870 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1871 info->io_setup = port_setup;
1872 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1873 } else {
1874 info->io_setup = mem_setup;
1875 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 1876 }
b0defcdb 1877 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 1878
b0defcdb 1879 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 1880 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 1881 info->io.regshift = 0;
1da177e4 1882
b0defcdb
CM
1883 info->irq = pdev->irq;
1884 if (info->irq)
1885 info->irq_setup = std_irq_setup;
1da177e4 1886
50c812b2
CM
1887 info->dev = &pdev->dev;
1888
b0defcdb
CM
1889 return try_smi_init(info);
1890}
1da177e4 1891
b0defcdb
CM
1892static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1893{
1894}
1da177e4 1895
b0defcdb
CM
1896#ifdef CONFIG_PM
1897static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1898{
1da177e4
LT
1899 return 0;
1900}
1da177e4 1901
b0defcdb 1902static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 1903{
b0defcdb
CM
1904 return 0;
1905}
1da177e4 1906#endif
1da177e4 1907
b0defcdb
CM
1908static struct pci_device_id ipmi_pci_devices[] = {
1909 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1910 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1911};
1912MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1913
1914static struct pci_driver ipmi_pci_driver = {
1915 .name = DEVICE_NAME,
1916 .id_table = ipmi_pci_devices,
1917 .probe = ipmi_pci_probe,
1918 .remove = __devexit_p(ipmi_pci_remove),
1919#ifdef CONFIG_PM
1920 .suspend = ipmi_pci_suspend,
1921 .resume = ipmi_pci_resume,
1922#endif
1923};
1924#endif /* CONFIG_PCI */
1da177e4
LT
1925
1926
1927static int try_get_dev_id(struct smi_info *smi_info)
1928{
50c812b2
CM
1929 unsigned char msg[2];
1930 unsigned char *resp;
1931 unsigned long resp_len;
1932 enum si_sm_result smi_result;
1933 int rv = 0;
1da177e4
LT
1934
1935 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
b0defcdb 1936 if (!resp)
1da177e4
LT
1937 return -ENOMEM;
1938
1939 /* Do a Get Device ID command, since it comes back with some
1940 useful info. */
1941 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1942 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1943 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1944
1945 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1946 for (;;)
1947 {
c3e7e791
CM
1948 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1949 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 1950 schedule_timeout_uninterruptible(1);
1da177e4
LT
1951 smi_result = smi_info->handlers->event(
1952 smi_info->si_sm, 100);
1953 }
1954 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1955 {
1956 smi_result = smi_info->handlers->event(
1957 smi_info->si_sm, 0);
1958 }
1959 else
1960 break;
1961 }
1962 if (smi_result == SI_SM_HOSED) {
1963 /* We couldn't get the state machine to run, so whatever's at
1964 the port is probably not an IPMI SMI interface. */
1965 rv = -ENODEV;
1966 goto out;
1967 }
1968
1969 /* Otherwise, we got some data. */
1970 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1971 resp, IPMI_MAX_MSG_LENGTH);
50c812b2 1972 if (resp_len < 14) {
1da177e4
LT
1973 /* That's odd, it should be longer. */
1974 rv = -EINVAL;
1975 goto out;
1976 }
1977
1978 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1979 /* That's odd, it shouldn't be able to fail. */
1980 rv = -EINVAL;
1981 goto out;
1982 }
1983
1984 /* Record info from the get device id, in case we need it. */
50c812b2 1985 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1da177e4
LT
1986
1987 out:
1988 kfree(resp);
1989 return rv;
1990}
1991
1992static int type_file_read_proc(char *page, char **start, off_t off,
1993 int count, int *eof, void *data)
1994{
1995 char *out = (char *) page;
1996 struct smi_info *smi = data;
1997
1998 switch (smi->si_type) {
1999 case SI_KCS:
2000 return sprintf(out, "kcs\n");
2001 case SI_SMIC:
2002 return sprintf(out, "smic\n");
2003 case SI_BT:
2004 return sprintf(out, "bt\n");
2005 default:
2006 return 0;
2007 }
2008}
2009
2010static int stat_file_read_proc(char *page, char **start, off_t off,
2011 int count, int *eof, void *data)
2012{
2013 char *out = (char *) page;
2014 struct smi_info *smi = data;
2015
2016 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2017 smi->irq && !smi->interrupt_disabled);
1da177e4
LT
2018 out += sprintf(out, "short_timeouts: %ld\n",
2019 smi->short_timeouts);
2020 out += sprintf(out, "long_timeouts: %ld\n",
2021 smi->long_timeouts);
2022 out += sprintf(out, "timeout_restarts: %ld\n",
2023 smi->timeout_restarts);
2024 out += sprintf(out, "idles: %ld\n",
2025 smi->idles);
2026 out += sprintf(out, "interrupts: %ld\n",
2027 smi->interrupts);
2028 out += sprintf(out, "attentions: %ld\n",
2029 smi->attentions);
2030 out += sprintf(out, "flag_fetches: %ld\n",
2031 smi->flag_fetches);
2032 out += sprintf(out, "hosed_count: %ld\n",
2033 smi->hosed_count);
2034 out += sprintf(out, "complete_transactions: %ld\n",
2035 smi->complete_transactions);
2036 out += sprintf(out, "events: %ld\n",
2037 smi->events);
2038 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2039 smi->watchdog_pretimeouts);
2040 out += sprintf(out, "incoming_messages: %ld\n",
2041 smi->incoming_messages);
2042
2043 return (out - ((char *) page));
2044}
2045
3ae0e0f9
CM
2046/*
2047 * oem_data_avail_to_receive_msg_avail
2048 * @info - smi_info structure with msg_flags set
2049 *
2050 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2051 * Returns 1 indicating need to re-run handle_flags().
2052 */
2053static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2054{
e8b33617
CM
2055 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2056 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2057 return 1;
2058}
2059
2060/*
2061 * setup_dell_poweredge_oem_data_handler
2062 * @info - smi_info.device_id must be populated
2063 *
2064 * Systems that match, but have firmware version < 1.40 may assert
2065 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2066 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2067 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2068 * as RECEIVE_MSG_AVAIL instead.
2069 *
2070 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2071 * assert the OEM[012] bits, and if it did, the driver would have to
2072 * change to handle that properly, we don't actually check for the
2073 * firmware version.
2074 * Device ID = 0x20 BMC on PowerEdge 8G servers
2075 * Device Revision = 0x80
2076 * Firmware Revision1 = 0x01 BMC version 1.40
2077 * Firmware Revision2 = 0x40 BCD encoded
2078 * IPMI Version = 0x51 IPMI 1.5
2079 * Manufacturer ID = A2 02 00 Dell IANA
2080 *
d5a2b89a
CM
2081 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2082 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2083 *
3ae0e0f9
CM
2084 */
2085#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2086#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2087#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2088#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2089static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2090{
2091 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2092 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2093 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2094 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2095 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2096 smi_info->oem_data_avail_handler =
2097 oem_data_avail_to_receive_msg_avail;
2098 }
2099 else if (ipmi_version_major(id) < 1 ||
2100 (ipmi_version_major(id) == 1 &&
2101 ipmi_version_minor(id) < 5)) {
2102 smi_info->oem_data_avail_handler =
2103 oem_data_avail_to_receive_msg_avail;
2104 }
3ae0e0f9
CM
2105 }
2106}
2107
ea94027b
CM
2108#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2109static void return_hosed_msg_badsize(struct smi_info *smi_info)
2110{
2111 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2112
2113 /* Make it a reponse */
2114 msg->rsp[0] = msg->data[0] | 4;
2115 msg->rsp[1] = msg->data[1];
2116 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2117 msg->rsp_size = 3;
2118 smi_info->curr_msg = NULL;
2119 deliver_recv_msg(smi_info, msg);
2120}
2121
2122/*
2123 * dell_poweredge_bt_xaction_handler
2124 * @info - smi_info.device_id must be populated
2125 *
2126 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2127 * not respond to a Get SDR command if the length of the data
2128 * requested is exactly 0x3A, which leads to command timeouts and no
2129 * data returned. This intercepts such commands, and causes userspace
2130 * callers to try again with a different-sized buffer, which succeeds.
2131 */
2132
2133#define STORAGE_NETFN 0x0A
2134#define STORAGE_CMD_GET_SDR 0x23
2135static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2136 unsigned long unused,
2137 void *in)
2138{
2139 struct smi_info *smi_info = in;
2140 unsigned char *data = smi_info->curr_msg->data;
2141 unsigned int size = smi_info->curr_msg->data_size;
2142 if (size >= 8 &&
2143 (data[0]>>2) == STORAGE_NETFN &&
2144 data[1] == STORAGE_CMD_GET_SDR &&
2145 data[7] == 0x3A) {
2146 return_hosed_msg_badsize(smi_info);
2147 return NOTIFY_STOP;
2148 }
2149 return NOTIFY_DONE;
2150}
2151
2152static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2153 .notifier_call = dell_poweredge_bt_xaction_handler,
2154};
2155
2156/*
2157 * setup_dell_poweredge_bt_xaction_handler
2158 * @info - smi_info.device_id must be filled in already
2159 *
2160 * Fills in smi_info.device_id.start_transaction_pre_hook
2161 * when we know what function to use there.
2162 */
2163static void
2164setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2165{
2166 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2167 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2168 smi_info->si_type == SI_BT)
2169 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2170}
2171
3ae0e0f9
CM
2172/*
2173 * setup_oem_data_handler
2174 * @info - smi_info.device_id must be filled in already
2175 *
2176 * Fills in smi_info.device_id.oem_data_available_handler
2177 * when we know what function to use there.
2178 */
2179
2180static void setup_oem_data_handler(struct smi_info *smi_info)
2181{
2182 setup_dell_poweredge_oem_data_handler(smi_info);
2183}
2184
ea94027b
CM
2185static void setup_xaction_handlers(struct smi_info *smi_info)
2186{
2187 setup_dell_poweredge_bt_xaction_handler(smi_info);
2188}
2189
a9a2c44f
CM
2190static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2191{
453823ba
CM
2192 if (smi_info->intf) {
2193 /* The timer and thread are only running if the
2194 interface has been started up and registered. */
2195 if (smi_info->thread != NULL)
2196 kthread_stop(smi_info->thread);
2197 del_timer_sync(&smi_info->si_timer);
2198 }
a9a2c44f
CM
2199}
2200
b0defcdb
CM
2201static struct ipmi_default_vals
2202{
2203 int type;
2204 int port;
2205} __devinit ipmi_defaults[] =
2206{
2207 { .type = SI_KCS, .port = 0xca2 },
2208 { .type = SI_SMIC, .port = 0xca9 },
2209 { .type = SI_BT, .port = 0xe4 },
2210 { .port = 0 }
2211};
2212
2213static __devinit void default_find_bmc(void)
2214{
2215 struct smi_info *info;
2216 int i;
2217
2218 for (i = 0; ; i++) {
2219 if (!ipmi_defaults[i].port)
2220 break;
2221
2222 info = kzalloc(sizeof(*info), GFP_KERNEL);
2223 if (!info)
2224 return;
2225
2226 info->addr_source = NULL;
2227
2228 info->si_type = ipmi_defaults[i].type;
2229 info->io_setup = port_setup;
2230 info->io.addr_data = ipmi_defaults[i].port;
2231 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2232
2233 info->io.addr = NULL;
2234 info->io.regspacing = DEFAULT_REGSPACING;
2235 info->io.regsize = DEFAULT_REGSPACING;
2236 info->io.regshift = 0;
2237
2238 if (try_smi_init(info) == 0) {
2239 /* Found one... */
2240 printk(KERN_INFO "ipmi_si: Found default %s state"
2241 " machine at %s address 0x%lx\n",
2242 si_to_str[info->si_type],
2243 addr_space_to_str[info->io.addr_type],
2244 info->io.addr_data);
2245 return;
2246 }
2247 }
2248}
2249
2250static int is_new_interface(struct smi_info *info)
1da177e4 2251{
b0defcdb 2252 struct smi_info *e;
1da177e4 2253
b0defcdb
CM
2254 list_for_each_entry(e, &smi_infos, link) {
2255 if (e->io.addr_type != info->io.addr_type)
2256 continue;
2257 if (e->io.addr_data == info->io.addr_data)
2258 return 0;
2259 }
1da177e4 2260
b0defcdb
CM
2261 return 1;
2262}
1da177e4 2263
b0defcdb
CM
2264static int try_smi_init(struct smi_info *new_smi)
2265{
2266 int rv;
2267
2268 if (new_smi->addr_source) {
2269 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2270 " machine at %s address 0x%lx, slave address 0x%x,"
2271 " irq %d\n",
2272 new_smi->addr_source,
2273 si_to_str[new_smi->si_type],
2274 addr_space_to_str[new_smi->io.addr_type],
2275 new_smi->io.addr_data,
2276 new_smi->slave_addr, new_smi->irq);
2277 }
2278
2279 down(&smi_infos_lock);
2280 if (!is_new_interface(new_smi)) {
2281 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2282 rv = -EBUSY;
2283 goto out_err;
2284 }
1da177e4
LT
2285
2286 /* So we know not to free it unless we have allocated one. */
2287 new_smi->intf = NULL;
2288 new_smi->si_sm = NULL;
2289 new_smi->handlers = NULL;
2290
b0defcdb
CM
2291 switch (new_smi->si_type) {
2292 case SI_KCS:
1da177e4 2293 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2294 break;
2295
2296 case SI_SMIC:
1da177e4 2297 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2298 break;
2299
2300 case SI_BT:
1da177e4 2301 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2302 break;
2303
2304 default:
1da177e4
LT
2305 /* No support for anything else yet. */
2306 rv = -EIO;
2307 goto out_err;
2308 }
2309
2310 /* Allocate the state machine's data and initialize it. */
2311 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2312 if (!new_smi->si_sm) {
1da177e4
LT
2313 printk(" Could not allocate state machine memory\n");
2314 rv = -ENOMEM;
2315 goto out_err;
2316 }
2317 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2318 &new_smi->io);
2319
2320 /* Now that we know the I/O size, we can set up the I/O. */
2321 rv = new_smi->io_setup(new_smi);
2322 if (rv) {
2323 printk(" Could not set up I/O space\n");
2324 goto out_err;
2325 }
2326
2327 spin_lock_init(&(new_smi->si_lock));
2328 spin_lock_init(&(new_smi->msg_lock));
2329 spin_lock_init(&(new_smi->count_lock));
2330
2331 /* Do low-level detection first. */
2332 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
2333 if (new_smi->addr_source)
2334 printk(KERN_INFO "ipmi_si: Interface detection"
2335 " failed\n");
1da177e4
LT
2336 rv = -ENODEV;
2337 goto out_err;
2338 }
2339
2340 /* Attempt a get device id command. If it fails, we probably
b0defcdb 2341 don't have a BMC here. */
1da177e4 2342 rv = try_get_dev_id(new_smi);
b0defcdb
CM
2343 if (rv) {
2344 if (new_smi->addr_source)
2345 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2346 " at this location\n");
1da177e4 2347 goto out_err;
b0defcdb 2348 }
1da177e4 2349
3ae0e0f9 2350 setup_oem_data_handler(new_smi);
ea94027b 2351 setup_xaction_handlers(new_smi);
3ae0e0f9 2352
1da177e4 2353 /* Try to claim any interrupts. */
b0defcdb
CM
2354 if (new_smi->irq_setup)
2355 new_smi->irq_setup(new_smi);
1da177e4
LT
2356
2357 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2358 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2359 new_smi->curr_msg = NULL;
2360 atomic_set(&new_smi->req_events, 0);
2361 new_smi->run_to_completion = 0;
2362
2363 new_smi->interrupt_disabled = 0;
a9a2c44f 2364 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
2365 new_smi->intf_num = smi_num;
2366 smi_num++;
1da177e4
LT
2367
2368 /* Start clearing the flags before we enable interrupts or the
2369 timer to avoid racing with the timer. */
2370 start_clear_flags(new_smi);
2371 /* IRQ is defined to be set when non-zero. */
2372 if (new_smi->irq)
2373 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2374
50c812b2
CM
2375 if (!new_smi->dev) {
2376 /* If we don't already have a device from something
2377 * else (like PCI), then register a new one. */
2378 new_smi->pdev = platform_device_alloc("ipmi_si",
2379 new_smi->intf_num);
2380 if (rv) {
2381 printk(KERN_ERR
2382 "ipmi_si_intf:"
2383 " Unable to allocate platform device\n");
453823ba 2384 goto out_err;
50c812b2
CM
2385 }
2386 new_smi->dev = &new_smi->pdev->dev;
2387 new_smi->dev->driver = &ipmi_driver;
2388
2389 rv = platform_device_register(new_smi->pdev);
2390 if (rv) {
2391 printk(KERN_ERR
2392 "ipmi_si_intf:"
2393 " Unable to register system interface device:"
2394 " %d\n",
2395 rv);
453823ba 2396 goto out_err;
50c812b2
CM
2397 }
2398 new_smi->dev_registered = 1;
2399 }
2400
1da177e4
LT
2401 rv = ipmi_register_smi(&handlers,
2402 new_smi,
50c812b2
CM
2403 &new_smi->device_id,
2404 new_smi->dev,
453823ba 2405 new_smi->slave_addr);
1da177e4
LT
2406 if (rv) {
2407 printk(KERN_ERR
2408 "ipmi_si: Unable to register device: error %d\n",
2409 rv);
2410 goto out_err_stop_timer;
2411 }
2412
2413 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2414 type_file_read_proc, NULL,
2415 new_smi, THIS_MODULE);
2416 if (rv) {
2417 printk(KERN_ERR
2418 "ipmi_si: Unable to create proc entry: %d\n",
2419 rv);
2420 goto out_err_stop_timer;
2421 }
2422
2423 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2424 stat_file_read_proc, NULL,
2425 new_smi, THIS_MODULE);
2426 if (rv) {
2427 printk(KERN_ERR
2428 "ipmi_si: Unable to create proc entry: %d\n",
2429 rv);
2430 goto out_err_stop_timer;
2431 }
2432
b0defcdb
CM
2433 list_add_tail(&new_smi->link, &smi_infos);
2434
2435 up(&smi_infos_lock);
1da177e4 2436
b0defcdb 2437 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
1da177e4
LT
2438
2439 return 0;
2440
2441 out_err_stop_timer:
a9a2c44f
CM
2442 atomic_inc(&new_smi->stop_operation);
2443 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2444
2445 out_err:
2446 if (new_smi->intf)
2447 ipmi_unregister_smi(new_smi->intf);
2448
b0defcdb
CM
2449 if (new_smi->irq_cleanup)
2450 new_smi->irq_cleanup(new_smi);
1da177e4
LT
2451
2452 /* Wait until we know that we are out of any interrupt
2453 handlers might have been running before we freed the
2454 interrupt. */
fbd568a3 2455 synchronize_sched();
1da177e4
LT
2456
2457 if (new_smi->si_sm) {
2458 if (new_smi->handlers)
2459 new_smi->handlers->cleanup(new_smi->si_sm);
2460 kfree(new_smi->si_sm);
2461 }
b0defcdb
CM
2462 if (new_smi->addr_source_cleanup)
2463 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
2464 if (new_smi->io_cleanup)
2465 new_smi->io_cleanup(new_smi);
1da177e4 2466
50c812b2
CM
2467 if (new_smi->dev_registered)
2468 platform_device_unregister(new_smi->pdev);
2469
2470 kfree(new_smi);
2471
b0defcdb
CM
2472 up(&smi_infos_lock);
2473
1da177e4
LT
2474 return rv;
2475}
2476
b0defcdb 2477static __devinit int init_ipmi_si(void)
1da177e4 2478{
1da177e4
LT
2479 int i;
2480 char *str;
50c812b2 2481 int rv;
1da177e4
LT
2482
2483 if (initialized)
2484 return 0;
2485 initialized = 1;
2486
50c812b2
CM
2487 /* Register the device drivers. */
2488 rv = driver_register(&ipmi_driver);
2489 if (rv) {
2490 printk(KERN_ERR
2491 "init_ipmi_si: Unable to register driver: %d\n",
2492 rv);
2493 return rv;
2494 }
2495
2496
1da177e4
LT
2497 /* Parse out the si_type string into its components. */
2498 str = si_type_str;
2499 if (*str != '\0') {
e8b33617 2500 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2501 si_type[i] = str;
2502 str = strchr(str, ',');
2503 if (str) {
2504 *str = '\0';
2505 str++;
2506 } else {
2507 break;
2508 }
2509 }
2510 }
2511
1fdd75bd 2512 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 2513
b0defcdb
CM
2514 hardcode_find_bmc();
2515
a9fad4cc 2516#ifdef CONFIG_DMI
b224cd3a 2517 dmi_find_bmc();
1da177e4
LT
2518#endif
2519
b0defcdb
CM
2520#ifdef CONFIG_ACPI
2521 if (si_trydefaults)
2522 acpi_find_bmc();
2523#endif
1da177e4 2524
b0defcdb
CM
2525#ifdef CONFIG_PCI
2526 pci_module_init(&ipmi_pci_driver);
2527#endif
2528
2529 if (si_trydefaults) {
2530 down(&smi_infos_lock);
2531 if (list_empty(&smi_infos)) {
2532 /* No BMC was found, try defaults. */
2533 up(&smi_infos_lock);
2534 default_find_bmc();
2535 } else {
2536 up(&smi_infos_lock);
2537 }
1da177e4
LT
2538 }
2539
b0defcdb
CM
2540 down(&smi_infos_lock);
2541 if (list_empty(&smi_infos)) {
2542 up(&smi_infos_lock);
2543#ifdef CONFIG_PCI
2544 pci_unregister_driver(&ipmi_pci_driver);
2545#endif
1da177e4
LT
2546 printk("ipmi_si: Unable to find any System Interface(s)\n");
2547 return -ENODEV;
b0defcdb
CM
2548 } else {
2549 up(&smi_infos_lock);
2550 return 0;
1da177e4 2551 }
1da177e4
LT
2552}
2553module_init(init_ipmi_si);
2554
b0defcdb 2555static void __devexit cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
2556{
2557 int rv;
2558 unsigned long flags;
2559
b0defcdb 2560 if (!to_clean)
1da177e4
LT
2561 return;
2562
b0defcdb
CM
2563 list_del(&to_clean->link);
2564
1da177e4
LT
2565 /* Tell the timer and interrupt handlers that we are shutting
2566 down. */
2567 spin_lock_irqsave(&(to_clean->si_lock), flags);
2568 spin_lock(&(to_clean->msg_lock));
2569
a9a2c44f 2570 atomic_inc(&to_clean->stop_operation);
b0defcdb
CM
2571
2572 if (to_clean->irq_cleanup)
2573 to_clean->irq_cleanup(to_clean);
1da177e4
LT
2574
2575 spin_unlock(&(to_clean->msg_lock));
2576 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2577
2578 /* Wait until we know that we are out of any interrupt
2579 handlers might have been running before we freed the
2580 interrupt. */
fbd568a3 2581 synchronize_sched();
1da177e4 2582
a9a2c44f 2583 wait_for_timer_and_thread(to_clean);
1da177e4
LT
2584
2585 /* Interrupts and timeouts are stopped, now make sure the
2586 interface is in a clean state. */
e8b33617 2587 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 2588 poll(to_clean);
da4cd8df 2589 schedule_timeout_uninterruptible(1);
1da177e4
LT
2590 }
2591
2592 rv = ipmi_unregister_smi(to_clean->intf);
2593 if (rv) {
2594 printk(KERN_ERR
2595 "ipmi_si: Unable to unregister device: errno=%d\n",
2596 rv);
2597 }
2598
2599 to_clean->handlers->cleanup(to_clean->si_sm);
2600
2601 kfree(to_clean->si_sm);
2602
b0defcdb
CM
2603 if (to_clean->addr_source_cleanup)
2604 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
2605 if (to_clean->io_cleanup)
2606 to_clean->io_cleanup(to_clean);
50c812b2
CM
2607
2608 if (to_clean->dev_registered)
2609 platform_device_unregister(to_clean->pdev);
2610
2611 kfree(to_clean);
1da177e4
LT
2612}
2613
2614static __exit void cleanup_ipmi_si(void)
2615{
b0defcdb 2616 struct smi_info *e, *tmp_e;
1da177e4 2617
b0defcdb 2618 if (!initialized)
1da177e4
LT
2619 return;
2620
b0defcdb
CM
2621#ifdef CONFIG_PCI
2622 pci_unregister_driver(&ipmi_pci_driver);
2623#endif
2624
2625 down(&smi_infos_lock);
2626 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2627 cleanup_one_si(e);
2628 up(&smi_infos_lock);
50c812b2
CM
2629
2630 driver_unregister(&ipmi_driver);
1da177e4
LT
2631}
2632module_exit(cleanup_ipmi_si);
2633
2634MODULE_LICENSE("GPL");
1fdd75bd
CM
2635MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2636MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");