]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: reduce polling
[net-next-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
305
ae74e823
MW
306static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307static int num_max_busy_us;
308
b361e27b
CM
309static int unload_when_empty = 1;
310
2407d77a 311static int add_smi(struct smi_info *smi);
b0defcdb 312static int try_smi_init(struct smi_info *smi);
b361e27b 313static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 314
e041c683 315static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 316static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 317{
e041c683 318 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
319}
320
1da177e4
LT
321static void deliver_recv_msg(struct smi_info *smi_info,
322 struct ipmi_smi_msg *msg)
323{
324 /* Deliver the message to the upper layer with the lock
c305e3d3 325 released. */
1da177e4
LT
326 spin_unlock(&(smi_info->si_lock));
327 ipmi_smi_msg_received(smi_info->intf, msg);
328 spin_lock(&(smi_info->si_lock));
329}
330
4d7cbac7 331static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
332{
333 struct ipmi_smi_msg *msg = smi_info->curr_msg;
334
4d7cbac7
CM
335 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
336 cCode = IPMI_ERR_UNSPECIFIED;
337 /* else use it as is */
338
1da177e4
LT
339 /* Make it a reponse */
340 msg->rsp[0] = msg->data[0] | 4;
341 msg->rsp[1] = msg->data[1];
4d7cbac7 342 msg->rsp[2] = cCode;
1da177e4
LT
343 msg->rsp_size = 3;
344
345 smi_info->curr_msg = NULL;
346 deliver_recv_msg(smi_info, msg);
347}
348
349static enum si_sm_result start_next_msg(struct smi_info *smi_info)
350{
351 int rv;
352 struct list_head *entry = NULL;
353#ifdef DEBUG_TIMING
354 struct timeval t;
355#endif
356
c305e3d3
CM
357 /*
358 * No need to save flags, we aleady have interrupts off and we
359 * already hold the SMI lock.
360 */
5956dce1
KB
361 if (!smi_info->run_to_completion)
362 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
363
364 /* Pick the high priority queue first. */
b0defcdb 365 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 366 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 367 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
368 entry = smi_info->xmit_msgs.next;
369 }
370
b0defcdb 371 if (!entry) {
1da177e4
LT
372 smi_info->curr_msg = NULL;
373 rv = SI_SM_IDLE;
374 } else {
375 int err;
376
377 list_del(entry);
378 smi_info->curr_msg = list_entry(entry,
379 struct ipmi_smi_msg,
380 link);
381#ifdef DEBUG_TIMING
382 do_gettimeofday(&t);
c305e3d3 383 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 384#endif
e041c683
AS
385 err = atomic_notifier_call_chain(&xaction_notifier_list,
386 0, smi_info);
ea94027b
CM
387 if (err & NOTIFY_STOP_MASK) {
388 rv = SI_SM_CALL_WITHOUT_DELAY;
389 goto out;
390 }
1da177e4
LT
391 err = smi_info->handlers->start_transaction(
392 smi_info->si_sm,
393 smi_info->curr_msg->data,
394 smi_info->curr_msg->data_size);
c305e3d3 395 if (err)
4d7cbac7 396 return_hosed_msg(smi_info, err);
1da177e4
LT
397
398 rv = SI_SM_CALL_WITHOUT_DELAY;
399 }
c305e3d3 400 out:
5956dce1
KB
401 if (!smi_info->run_to_completion)
402 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
403
404 return rv;
405}
406
407static void start_enable_irq(struct smi_info *smi_info)
408{
409 unsigned char msg[2];
410
c305e3d3
CM
411 /*
412 * If we are enabling interrupts, we have to tell the
413 * BMC to use them.
414 */
1da177e4
LT
415 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
416 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
417
418 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
419 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
420}
421
ee6cd5f8
CM
422static void start_disable_irq(struct smi_info *smi_info)
423{
424 unsigned char msg[2];
425
426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
431}
432
1da177e4
LT
433static void start_clear_flags(struct smi_info *smi_info)
434{
435 unsigned char msg[3];
436
437 /* Make sure the watchdog pre-timeout flag is not set at startup. */
438 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
440 msg[2] = WDT_PRE_TIMEOUT_INT;
441
442 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
443 smi_info->si_state = SI_CLEARING_FLAGS;
444}
445
c305e3d3
CM
446/*
447 * When we have a situtaion where we run out of memory and cannot
448 * allocate messages, we just leave them in the BMC and run the system
449 * polled until we can allocate some memory. Once we have some
450 * memory, we will re-enable the interrupt.
451 */
1da177e4
LT
452static inline void disable_si_irq(struct smi_info *smi_info)
453{
b0defcdb 454 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 455 start_disable_irq(smi_info);
1da177e4 456 smi_info->interrupt_disabled = 1;
ea4078ca
MG
457 if (!atomic_read(&smi_info->stop_operation))
458 mod_timer(&smi_info->si_timer,
459 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
460 }
461}
462
463static inline void enable_si_irq(struct smi_info *smi_info)
464{
465 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 466 start_enable_irq(smi_info);
1da177e4
LT
467 smi_info->interrupt_disabled = 0;
468 }
469}
470
471static void handle_flags(struct smi_info *smi_info)
472{
3ae0e0f9 473 retry:
1da177e4
LT
474 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
475 /* Watchdog pre-timeout */
64959e2d 476 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
477
478 start_clear_flags(smi_info);
479 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
480 spin_unlock(&(smi_info->si_lock));
481 ipmi_smi_watchdog_pretimeout(smi_info->intf);
482 spin_lock(&(smi_info->si_lock));
483 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
484 /* Messages available. */
485 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 486 if (!smi_info->curr_msg) {
1da177e4
LT
487 disable_si_irq(smi_info);
488 smi_info->si_state = SI_NORMAL;
489 return;
490 }
491 enable_si_irq(smi_info);
492
493 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
494 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
495 smi_info->curr_msg->data_size = 2;
496
497 smi_info->handlers->start_transaction(
498 smi_info->si_sm,
499 smi_info->curr_msg->data,
500 smi_info->curr_msg->data_size);
501 smi_info->si_state = SI_GETTING_MESSAGES;
502 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
503 /* Events available. */
504 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 505 if (!smi_info->curr_msg) {
1da177e4
LT
506 disable_si_irq(smi_info);
507 smi_info->si_state = SI_NORMAL;
508 return;
509 }
510 enable_si_irq(smi_info);
511
512 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
513 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
514 smi_info->curr_msg->data_size = 2;
515
516 smi_info->handlers->start_transaction(
517 smi_info->si_sm,
518 smi_info->curr_msg->data,
519 smi_info->curr_msg->data_size);
520 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 521 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 522 smi_info->oem_data_avail_handler) {
4064d5ef
CM
523 if (smi_info->oem_data_avail_handler(smi_info))
524 goto retry;
c305e3d3 525 } else
1da177e4 526 smi_info->si_state = SI_NORMAL;
1da177e4
LT
527}
528
529static void handle_transaction_done(struct smi_info *smi_info)
530{
531 struct ipmi_smi_msg *msg;
532#ifdef DEBUG_TIMING
533 struct timeval t;
534
535 do_gettimeofday(&t);
c305e3d3 536 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
537#endif
538 switch (smi_info->si_state) {
539 case SI_NORMAL:
b0defcdb 540 if (!smi_info->curr_msg)
1da177e4
LT
541 break;
542
543 smi_info->curr_msg->rsp_size
544 = smi_info->handlers->get_result(
545 smi_info->si_sm,
546 smi_info->curr_msg->rsp,
547 IPMI_MAX_MSG_LENGTH);
548
c305e3d3
CM
549 /*
550 * Do this here becase deliver_recv_msg() releases the
551 * lock, and a new message can be put in during the
552 * time the lock is released.
553 */
1da177e4
LT
554 msg = smi_info->curr_msg;
555 smi_info->curr_msg = NULL;
556 deliver_recv_msg(smi_info, msg);
557 break;
558
559 case SI_GETTING_FLAGS:
560 {
561 unsigned char msg[4];
562 unsigned int len;
563
564 /* We got the flags from the SMI, now handle them. */
565 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
566 if (msg[2] != 0) {
c305e3d3 567 /* Error fetching flags, just give up for now. */
1da177e4
LT
568 smi_info->si_state = SI_NORMAL;
569 } else if (len < 4) {
c305e3d3
CM
570 /*
571 * Hmm, no flags. That's technically illegal, but
572 * don't use uninitialized data.
573 */
1da177e4
LT
574 smi_info->si_state = SI_NORMAL;
575 } else {
576 smi_info->msg_flags = msg[3];
577 handle_flags(smi_info);
578 }
579 break;
580 }
581
582 case SI_CLEARING_FLAGS:
583 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
584 {
585 unsigned char msg[3];
586
587 /* We cleared the flags. */
588 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
589 if (msg[2] != 0) {
590 /* Error clearing flags */
591 printk(KERN_WARNING
592 "ipmi_si: Error clearing flags: %2.2x\n",
593 msg[2]);
594 }
595 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596 start_enable_irq(smi_info);
597 else
598 smi_info->si_state = SI_NORMAL;
599 break;
600 }
601
602 case SI_GETTING_EVENTS:
603 {
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
609
c305e3d3
CM
610 /*
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
614 */
1da177e4
LT
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
620
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
64959e2d 625 smi_inc_stat(smi_info, events);
1da177e4 626
c305e3d3
CM
627 /*
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
632 */
1da177e4
LT
633 handle_flags(smi_info);
634
635 deliver_recv_msg(smi_info, msg);
636 }
637 break;
638 }
639
640 case SI_GETTING_MESSAGES:
641 {
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
647
c305e3d3
CM
648 /*
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
652 */
1da177e4
LT
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
658
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
64959e2d 663 smi_inc_stat(smi_info, incoming_messages);
1da177e4 664
c305e3d3
CM
665 /*
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
670 */
1da177e4
LT
671 handle_flags(smi_info);
672
673 deliver_recv_msg(smi_info, msg);
674 }
675 break;
676 }
677
678 case SI_ENABLE_INTERRUPTS1:
679 {
680 unsigned char msg[4];
681
682 /* We got the flags from the SMI, now handle them. */
683 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684 if (msg[2] != 0) {
685 printk(KERN_WARNING
686 "ipmi_si: Could not enable interrupts"
687 ", failed get, using polled mode.\n");
688 smi_info->si_state = SI_NORMAL;
689 } else {
690 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
691 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
692 msg[2] = (msg[3] |
693 IPMI_BMC_RCV_MSG_INTR |
694 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
695 smi_info->handlers->start_transaction(
696 smi_info->si_sm, msg, 3);
697 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
698 }
699 break;
700 }
701
702 case SI_ENABLE_INTERRUPTS2:
703 {
704 unsigned char msg[4];
705
706 /* We got the flags from the SMI, now handle them. */
707 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 if (msg[2] != 0) {
709 printk(KERN_WARNING
710 "ipmi_si: Could not enable interrupts"
711 ", failed set, using polled mode.\n");
ea4078ca
MG
712 } else {
713 smi_info->interrupt_disabled = 0;
1da177e4
LT
714 }
715 smi_info->si_state = SI_NORMAL;
716 break;
717 }
ee6cd5f8
CM
718
719 case SI_DISABLE_INTERRUPTS1:
720 {
721 unsigned char msg[4];
722
723 /* We got the flags from the SMI, now handle them. */
724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725 if (msg[2] != 0) {
726 printk(KERN_WARNING
727 "ipmi_si: Could not disable interrupts"
728 ", failed get.\n");
729 smi_info->si_state = SI_NORMAL;
730 } else {
731 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 msg[2] = (msg[3] &
734 ~(IPMI_BMC_RCV_MSG_INTR |
735 IPMI_BMC_EVT_MSG_INTR));
736 smi_info->handlers->start_transaction(
737 smi_info->si_sm, msg, 3);
738 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 }
740 break;
741 }
742
743 case SI_DISABLE_INTERRUPTS2:
744 {
745 unsigned char msg[4];
746
747 /* We got the flags from the SMI, now handle them. */
748 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 if (msg[2] != 0) {
750 printk(KERN_WARNING
751 "ipmi_si: Could not disable interrupts"
752 ", failed set.\n");
753 }
754 smi_info->si_state = SI_NORMAL;
755 break;
756 }
1da177e4
LT
757 }
758}
759
c305e3d3
CM
760/*
761 * Called on timeouts and events. Timeouts should pass the elapsed
762 * time, interrupts should pass in zero. Must be called with
763 * si_lock held and interrupts disabled.
764 */
1da177e4
LT
765static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
766 int time)
767{
768 enum si_sm_result si_sm_result;
769
770 restart:
c305e3d3
CM
771 /*
772 * There used to be a loop here that waited a little while
773 * (around 25us) before giving up. That turned out to be
774 * pointless, the minimum delays I was seeing were in the 300us
775 * range, which is far too long to wait in an interrupt. So
776 * we just run until the state machine tells us something
777 * happened or it needs a delay.
778 */
1da177e4
LT
779 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
780 time = 0;
781 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 782 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 783
c305e3d3 784 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 785 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
786
787 handle_transaction_done(smi_info);
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 789 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 790 smi_inc_stat(smi_info, hosed_count);
1da177e4 791
c305e3d3
CM
792 /*
793 * Do the before return_hosed_msg, because that
794 * releases the lock.
795 */
1da177e4
LT
796 smi_info->si_state = SI_NORMAL;
797 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
798 /*
799 * If we were handling a user message, format
800 * a response to send to the upper layer to
801 * tell it about the error.
802 */
4d7cbac7 803 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
804 }
805 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
806 }
807
4ea18425
CM
808 /*
809 * We prefer handling attn over new messages. But don't do
810 * this if there is not yet an upper layer to handle anything.
811 */
c305e3d3 812 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
813 unsigned char msg[2];
814
64959e2d 815 smi_inc_stat(smi_info, attentions);
1da177e4 816
c305e3d3
CM
817 /*
818 * Got a attn, send down a get message flags to see
819 * what's causing it. It would be better to handle
820 * this in the upper layer, but due to the way
821 * interrupts work with the SMI, that's not really
822 * possible.
823 */
1da177e4
LT
824 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
825 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
826
827 smi_info->handlers->start_transaction(
828 smi_info->si_sm, msg, 2);
829 smi_info->si_state = SI_GETTING_FLAGS;
830 goto restart;
831 }
832
833 /* If we are currently idle, try to start the next message. */
834 if (si_sm_result == SI_SM_IDLE) {
64959e2d 835 smi_inc_stat(smi_info, idles);
1da177e4
LT
836
837 si_sm_result = start_next_msg(smi_info);
838 if (si_sm_result != SI_SM_IDLE)
839 goto restart;
c305e3d3 840 }
1da177e4
LT
841
842 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
843 && (atomic_read(&smi_info->req_events))) {
844 /*
845 * We are idle and the upper layer requested that I fetch
846 * events, so do so.
847 */
55162fb1 848 atomic_set(&smi_info->req_events, 0);
1da177e4 849
55162fb1
CM
850 smi_info->curr_msg = ipmi_alloc_smi_msg();
851 if (!smi_info->curr_msg)
852 goto out;
1da177e4 853
55162fb1
CM
854 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
855 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
856 smi_info->curr_msg->data_size = 2;
1da177e4
LT
857
858 smi_info->handlers->start_transaction(
55162fb1
CM
859 smi_info->si_sm,
860 smi_info->curr_msg->data,
861 smi_info->curr_msg->data_size);
862 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
863 goto restart;
864 }
55162fb1 865 out:
1da177e4
LT
866 return si_sm_result;
867}
868
869static void sender(void *send_info,
870 struct ipmi_smi_msg *msg,
871 int priority)
872{
873 struct smi_info *smi_info = send_info;
874 enum si_sm_result result;
875 unsigned long flags;
876#ifdef DEBUG_TIMING
877 struct timeval t;
878#endif
879
b361e27b
CM
880 if (atomic_read(&smi_info->stop_operation)) {
881 msg->rsp[0] = msg->data[0] | 4;
882 msg->rsp[1] = msg->data[1];
883 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
884 msg->rsp_size = 3;
885 deliver_recv_msg(smi_info, msg);
886 return;
887 }
888
1da177e4
LT
889#ifdef DEBUG_TIMING
890 do_gettimeofday(&t);
891 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
892#endif
893
ea4078ca
MG
894 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
895
3326f4f2
MG
896 if (smi_info->thread)
897 wake_up_process(smi_info->thread);
898
1da177e4 899 if (smi_info->run_to_completion) {
bda4c30a
CM
900 /*
901 * If we are running to completion, then throw it in
902 * the list and run transactions until everything is
903 * clear. Priority doesn't matter here.
904 */
905
906 /*
907 * Run to completion means we are single-threaded, no
908 * need for locks.
909 */
1da177e4
LT
910 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
911
1da177e4
LT
912 result = smi_event_handler(smi_info, 0);
913 while (result != SI_SM_IDLE) {
914 udelay(SI_SHORT_TIMEOUT_USEC);
915 result = smi_event_handler(smi_info,
916 SI_SHORT_TIMEOUT_USEC);
917 }
1da177e4 918 return;
1da177e4 919 }
1da177e4 920
bda4c30a
CM
921 spin_lock_irqsave(&smi_info->msg_lock, flags);
922 if (priority > 0)
923 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
924 else
925 list_add_tail(&msg->link, &smi_info->xmit_msgs);
926 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
927
928 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 929 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 930 start_next_msg(smi_info);
bda4c30a 931 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
932}
933
934static void set_run_to_completion(void *send_info, int i_run_to_completion)
935{
936 struct smi_info *smi_info = send_info;
937 enum si_sm_result result;
1da177e4
LT
938
939 smi_info->run_to_completion = i_run_to_completion;
940 if (i_run_to_completion) {
941 result = smi_event_handler(smi_info, 0);
942 while (result != SI_SM_IDLE) {
943 udelay(SI_SHORT_TIMEOUT_USEC);
944 result = smi_event_handler(smi_info,
945 SI_SHORT_TIMEOUT_USEC);
946 }
947 }
1da177e4
LT
948}
949
ae74e823
MW
950/*
951 * Use -1 in the nsec value of the busy waiting timespec to tell that
952 * we are spinning in kipmid looking for something and not delaying
953 * between checks
954 */
955static inline void ipmi_si_set_not_busy(struct timespec *ts)
956{
957 ts->tv_nsec = -1;
958}
959static inline int ipmi_si_is_busy(struct timespec *ts)
960{
961 return ts->tv_nsec != -1;
962}
963
964static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
965 const struct smi_info *smi_info,
966 struct timespec *busy_until)
967{
968 unsigned int max_busy_us = 0;
969
970 if (smi_info->intf_num < num_max_busy_us)
971 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
972 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
973 ipmi_si_set_not_busy(busy_until);
974 else if (!ipmi_si_is_busy(busy_until)) {
975 getnstimeofday(busy_until);
976 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
977 } else {
978 struct timespec now;
979 getnstimeofday(&now);
980 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
981 ipmi_si_set_not_busy(busy_until);
982 return 0;
983 }
984 }
985 return 1;
986}
987
988
989/*
990 * A busy-waiting loop for speeding up IPMI operation.
991 *
992 * Lousy hardware makes this hard. This is only enabled for systems
993 * that are not BT and do not have interrupts. It starts spinning
994 * when an operation is complete or until max_busy tells it to stop
995 * (if that is enabled). See the paragraph on kimid_max_busy_us in
996 * Documentation/IPMI.txt for details.
997 */
a9a2c44f
CM
998static int ipmi_thread(void *data)
999{
1000 struct smi_info *smi_info = data;
e9a705a0 1001 unsigned long flags;
a9a2c44f 1002 enum si_sm_result smi_result;
ae74e823 1003 struct timespec busy_until;
a9a2c44f 1004
ae74e823 1005 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1006 set_user_nice(current, 19);
e9a705a0 1007 while (!kthread_should_stop()) {
ae74e823
MW
1008 int busy_wait;
1009
a9a2c44f 1010 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1011 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1012 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1013 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1014 &busy_until);
c305e3d3
CM
1015 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1016 ; /* do nothing */
ae74e823 1017 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1018 schedule();
3326f4f2
MG
1019 else if (smi_result == SI_SM_IDLE)
1020 schedule_timeout_interruptible(100);
e9a705a0 1021 else
ae74e823 1022 schedule_timeout_interruptible(0);
a9a2c44f 1023 }
a9a2c44f
CM
1024 return 0;
1025}
1026
1027
1da177e4
LT
1028static void poll(void *send_info)
1029{
1030 struct smi_info *smi_info = send_info;
fcfa4724 1031 unsigned long flags;
1da177e4 1032
15c62e10
CM
1033 /*
1034 * Make sure there is some delay in the poll loop so we can
1035 * drive time forward and timeout things.
1036 */
1037 udelay(10);
fcfa4724 1038 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1039 smi_event_handler(smi_info, 10);
fcfa4724 1040 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1041}
1042
1043static void request_events(void *send_info)
1044{
1045 struct smi_info *smi_info = send_info;
1046
40112ae7
CM
1047 if (atomic_read(&smi_info->stop_operation) ||
1048 !smi_info->has_event_buffer)
b361e27b
CM
1049 return;
1050
1da177e4
LT
1051 atomic_set(&smi_info->req_events, 1);
1052}
1053
0c8204b3 1054static int initialized;
1da177e4 1055
1da177e4
LT
1056static void smi_timeout(unsigned long data)
1057{
1058 struct smi_info *smi_info = (struct smi_info *) data;
1059 enum si_sm_result smi_result;
1060 unsigned long flags;
1061 unsigned long jiffies_now;
c4edff1c 1062 long time_diff;
3326f4f2 1063 long timeout;
1da177e4
LT
1064#ifdef DEBUG_TIMING
1065 struct timeval t;
1066#endif
1067
1da177e4
LT
1068 spin_lock_irqsave(&(smi_info->si_lock), flags);
1069#ifdef DEBUG_TIMING
1070 do_gettimeofday(&t);
c305e3d3 1071 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1072#endif
1073 jiffies_now = jiffies;
c4edff1c 1074 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1075 * SI_USEC_PER_JIFFY);
1076 smi_result = smi_event_handler(smi_info, time_diff);
1077
1078 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1079
1080 smi_info->last_timeout_jiffies = jiffies_now;
1081
b0defcdb 1082 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1083 /* Running with interrupts, only do long timeouts. */
3326f4f2 1084 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1085 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1086 goto do_mod_timer;
1da177e4
LT
1087 }
1088
c305e3d3
CM
1089 /*
1090 * If the state machine asks for a short delay, then shorten
1091 * the timer timeout.
1092 */
1da177e4 1093 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1094 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1095 timeout = jiffies + 1;
1da177e4 1096 } else {
64959e2d 1097 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1098 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1099 }
1100
3326f4f2
MG
1101 do_mod_timer:
1102 if (smi_result != SI_SM_IDLE)
1103 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1104}
1105
7d12e780 1106static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1107{
1108 struct smi_info *smi_info = data;
1109 unsigned long flags;
1110#ifdef DEBUG_TIMING
1111 struct timeval t;
1112#endif
1113
1114 spin_lock_irqsave(&(smi_info->si_lock), flags);
1115
64959e2d 1116 smi_inc_stat(smi_info, interrupts);
1da177e4 1117
1da177e4
LT
1118#ifdef DEBUG_TIMING
1119 do_gettimeofday(&t);
c305e3d3 1120 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1121#endif
1122 smi_event_handler(smi_info, 0);
1da177e4
LT
1123 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1124 return IRQ_HANDLED;
1125}
1126
7d12e780 1127static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1128{
1129 struct smi_info *smi_info = data;
1130 /* We need to clear the IRQ flag for the BT interface. */
1131 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1132 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1133 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1134 return si_irq_handler(irq, data);
9dbf68f9
CM
1135}
1136
453823ba
CM
1137static int smi_start_processing(void *send_info,
1138 ipmi_smi_t intf)
1139{
1140 struct smi_info *new_smi = send_info;
a51f4a81 1141 int enable = 0;
453823ba
CM
1142
1143 new_smi->intf = intf;
1144
c45adc39
CM
1145 /* Try to claim any interrupts. */
1146 if (new_smi->irq_setup)
1147 new_smi->irq_setup(new_smi);
1148
453823ba
CM
1149 /* Set up the timer that drives the interface. */
1150 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1151 new_smi->last_timeout_jiffies = jiffies;
1152 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1153
a51f4a81
CM
1154 /*
1155 * Check if the user forcefully enabled the daemon.
1156 */
1157 if (new_smi->intf_num < num_force_kipmid)
1158 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1159 /*
1160 * The BT interface is efficient enough to not need a thread,
1161 * and there is no need for a thread if we have interrupts.
1162 */
c305e3d3 1163 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1164 enable = 1;
1165
1166 if (enable) {
453823ba
CM
1167 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1168 "kipmi%d", new_smi->intf_num);
1169 if (IS_ERR(new_smi->thread)) {
1170 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1171 " kernel thread due to error %ld, only using"
1172 " timers to drive the interface\n",
1173 PTR_ERR(new_smi->thread));
1174 new_smi->thread = NULL;
1175 }
1176 }
1177
1178 return 0;
1179}
9dbf68f9 1180
b9675136
CM
1181static void set_maintenance_mode(void *send_info, int enable)
1182{
1183 struct smi_info *smi_info = send_info;
1184
1185 if (!enable)
1186 atomic_set(&smi_info->req_events, 0);
1187}
1188
c305e3d3 1189static struct ipmi_smi_handlers handlers = {
1da177e4 1190 .owner = THIS_MODULE,
453823ba 1191 .start_processing = smi_start_processing,
1da177e4
LT
1192 .sender = sender,
1193 .request_events = request_events,
b9675136 1194 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1195 .set_run_to_completion = set_run_to_completion,
1196 .poll = poll,
1197};
1198
c305e3d3
CM
1199/*
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202 */
1da177e4 1203
b0defcdb 1204static LIST_HEAD(smi_infos);
d6dfd131 1205static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1206static int smi_num; /* Used to sequence the SMIs */
1da177e4 1207
1da177e4 1208#define DEFAULT_REGSPACING 1
dba9b4f6 1209#define DEFAULT_REGSIZE 1
1da177e4
LT
1210
1211static int si_trydefaults = 1;
1212static char *si_type[SI_MAX_PARMS];
1213#define MAX_SI_TYPE_STR 30
1214static char si_type_str[MAX_SI_TYPE_STR];
1215static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1216static unsigned int num_addrs;
1da177e4 1217static unsigned int ports[SI_MAX_PARMS];
64a6f950 1218static unsigned int num_ports;
1da177e4 1219static int irqs[SI_MAX_PARMS];
64a6f950 1220static unsigned int num_irqs;
1da177e4 1221static int regspacings[SI_MAX_PARMS];
64a6f950 1222static unsigned int num_regspacings;
1da177e4 1223static int regsizes[SI_MAX_PARMS];
64a6f950 1224static unsigned int num_regsizes;
1da177e4 1225static int regshifts[SI_MAX_PARMS];
64a6f950 1226static unsigned int num_regshifts;
2f95d513 1227static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1228static unsigned int num_slave_addrs;
1da177e4 1229
b361e27b
CM
1230#define IPMI_IO_ADDR_SPACE 0
1231#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1232static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1233
1234static int hotmod_handler(const char *val, struct kernel_param *kp);
1235
1236module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1238 " Documentation/IPMI.txt in the kernel sources for the"
1239 " gory details.");
1da177e4
LT
1240
1241module_param_named(trydefaults, si_trydefaults, bool, 0);
1242MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243 " default scan of the KCS and SMIC interface at the standard"
1244 " address");
1245module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247 " interface separated by commas. The types are 'kcs',"
1248 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1249 " the first interface to kcs and the second to bt");
64a6f950 1250module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1251MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252 " addresses separated by commas. Only use if an interface"
1253 " is in memory. Otherwise, set it to zero or leave"
1254 " it blank.");
64a6f950 1255module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1256MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257 " addresses separated by commas. Only use if an interface"
1258 " is a port. Otherwise, set it to zero or leave"
1259 " it blank.");
1260module_param_array(irqs, int, &num_irqs, 0);
1261MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " has an interrupt. Otherwise, set it to zero or leave"
1264 " it blank.");
1265module_param_array(regspacings, int, &num_regspacings, 0);
1266MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267 " and each successive register used by the interface. For"
1268 " instance, if the start address is 0xca2 and the spacing"
1269 " is 2, then the second address is at 0xca4. Defaults"
1270 " to 1.");
1271module_param_array(regsizes, int, &num_regsizes, 0);
1272MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1275 " the 8-bit IPMI register has to be read from a larger"
1276 " register.");
1277module_param_array(regshifts, int, &num_regshifts, 0);
1278MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279 " IPMI register, in bits. For instance, if the data"
1280 " is read from a 32-bit word and the IPMI data is in"
1281 " bit 8-15, then the shift would be 8");
1282module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284 " the controller. Normally this is 0x20, but can be"
1285 " overridden by this parm. This is an array indexed"
1286 " by interface number.");
a51f4a81
CM
1287module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289 " disabled(0). Normally the IPMI driver auto-detects"
1290 " this, but the value may be overridden by this parm.");
b361e27b
CM
1291module_param(unload_when_empty, int, 0);
1292MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293 " specified or found, default is 1. Setting to 0"
1294 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1295module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296MODULE_PARM_DESC(kipmid_max_busy_us,
1297 "Max time (in microseconds) to busy-wait for IPMI data before"
1298 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1300
1301
b0defcdb 1302static void std_irq_cleanup(struct smi_info *info)
1da177e4 1303{
b0defcdb
CM
1304 if (info->si_type == SI_BT)
1305 /* Disable the interrupt in the BT interface. */
1306 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307 free_irq(info->irq, info);
1da177e4 1308}
1da177e4
LT
1309
1310static int std_irq_setup(struct smi_info *info)
1311{
1312 int rv;
1313
b0defcdb 1314 if (!info->irq)
1da177e4
LT
1315 return 0;
1316
9dbf68f9
CM
1317 if (info->si_type == SI_BT) {
1318 rv = request_irq(info->irq,
1319 si_bt_irq_handler,
ee6cd5f8 1320 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1321 DEVICE_NAME,
1322 info);
b0defcdb 1323 if (!rv)
9dbf68f9
CM
1324 /* Enable the interrupt in the BT interface. */
1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327 } else
1328 rv = request_irq(info->irq,
1329 si_irq_handler,
ee6cd5f8 1330 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1331 DEVICE_NAME,
1332 info);
1da177e4
LT
1333 if (rv) {
1334 printk(KERN_WARNING
1335 "ipmi_si: %s unable to claim interrupt %d,"
1336 " running polled\n",
1337 DEVICE_NAME, info->irq);
1338 info->irq = 0;
1339 } else {
b0defcdb 1340 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1341 printk(" Using irq %d\n", info->irq);
1342 }
1343
1344 return rv;
1345}
1346
1da177e4
LT
1347static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1348{
b0defcdb 1349 unsigned int addr = io->addr_data;
1da177e4 1350
b0defcdb 1351 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1352}
1353
1354static void port_outb(struct si_sm_io *io, unsigned int offset,
1355 unsigned char b)
1356{
b0defcdb 1357 unsigned int addr = io->addr_data;
1da177e4 1358
b0defcdb 1359 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1360}
1361
1362static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1363{
b0defcdb 1364 unsigned int addr = io->addr_data;
1da177e4 1365
b0defcdb 1366 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1367}
1368
1369static void port_outw(struct si_sm_io *io, unsigned int offset,
1370 unsigned char b)
1371{
b0defcdb 1372 unsigned int addr = io->addr_data;
1da177e4 1373
b0defcdb 1374 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1375}
1376
1377static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1378{
b0defcdb 1379 unsigned int addr = io->addr_data;
1da177e4 1380
b0defcdb 1381 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1382}
1383
1384static void port_outl(struct si_sm_io *io, unsigned int offset,
1385 unsigned char b)
1386{
b0defcdb 1387 unsigned int addr = io->addr_data;
1da177e4 1388
b0defcdb 1389 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1390}
1391
1392static void port_cleanup(struct smi_info *info)
1393{
b0defcdb 1394 unsigned int addr = info->io.addr_data;
d61a3ead 1395 int idx;
1da177e4 1396
b0defcdb 1397 if (addr) {
c305e3d3 1398 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1399 release_region(addr + idx * info->io.regspacing,
1400 info->io.regsize);
1da177e4 1401 }
1da177e4
LT
1402}
1403
1404static int port_setup(struct smi_info *info)
1405{
b0defcdb 1406 unsigned int addr = info->io.addr_data;
d61a3ead 1407 int idx;
1da177e4 1408
b0defcdb 1409 if (!addr)
1da177e4
LT
1410 return -ENODEV;
1411
1412 info->io_cleanup = port_cleanup;
1413
c305e3d3
CM
1414 /*
1415 * Figure out the actual inb/inw/inl/etc routine to use based
1416 * upon the register size.
1417 */
1da177e4
LT
1418 switch (info->io.regsize) {
1419 case 1:
1420 info->io.inputb = port_inb;
1421 info->io.outputb = port_outb;
1422 break;
1423 case 2:
1424 info->io.inputb = port_inw;
1425 info->io.outputb = port_outw;
1426 break;
1427 case 4:
1428 info->io.inputb = port_inl;
1429 info->io.outputb = port_outl;
1430 break;
1431 default:
c305e3d3 1432 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1433 info->io.regsize);
1434 return -EINVAL;
1435 }
1436
c305e3d3
CM
1437 /*
1438 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1439 * tables. This causes problems when trying to register the
1440 * entire I/O region. Therefore we must register each I/O
1441 * port separately.
1442 */
c305e3d3 1443 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1444 if (request_region(addr + idx * info->io.regspacing,
1445 info->io.regsize, DEVICE_NAME) == NULL) {
1446 /* Undo allocations */
1447 while (idx--) {
1448 release_region(addr + idx * info->io.regspacing,
1449 info->io.regsize);
1450 }
1451 return -EIO;
1452 }
1453 }
1da177e4
LT
1454 return 0;
1455}
1456
546cfdf4 1457static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1458{
1459 return readb((io->addr)+(offset * io->regspacing));
1460}
1461
546cfdf4 1462static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1463 unsigned char b)
1464{
1465 writeb(b, (io->addr)+(offset * io->regspacing));
1466}
1467
546cfdf4 1468static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1469{
1470 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1471 & 0xff;
1da177e4
LT
1472}
1473
546cfdf4 1474static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1475 unsigned char b)
1476{
1477 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1478}
1479
546cfdf4 1480static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1481{
1482 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1483 & 0xff;
1da177e4
LT
1484}
1485
546cfdf4 1486static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1487 unsigned char b)
1488{
1489 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1490}
1491
1492#ifdef readq
1493static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1494{
1495 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1496 & 0xff;
1da177e4
LT
1497}
1498
1499static void mem_outq(struct si_sm_io *io, unsigned int offset,
1500 unsigned char b)
1501{
1502 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1503}
1504#endif
1505
1506static void mem_cleanup(struct smi_info *info)
1507{
b0defcdb 1508 unsigned long addr = info->io.addr_data;
1da177e4
LT
1509 int mapsize;
1510
1511 if (info->io.addr) {
1512 iounmap(info->io.addr);
1513
1514 mapsize = ((info->io_size * info->io.regspacing)
1515 - (info->io.regspacing - info->io.regsize));
1516
b0defcdb 1517 release_mem_region(addr, mapsize);
1da177e4 1518 }
1da177e4
LT
1519}
1520
1521static int mem_setup(struct smi_info *info)
1522{
b0defcdb 1523 unsigned long addr = info->io.addr_data;
1da177e4
LT
1524 int mapsize;
1525
b0defcdb 1526 if (!addr)
1da177e4
LT
1527 return -ENODEV;
1528
1529 info->io_cleanup = mem_cleanup;
1530
c305e3d3
CM
1531 /*
1532 * Figure out the actual readb/readw/readl/etc routine to use based
1533 * upon the register size.
1534 */
1da177e4
LT
1535 switch (info->io.regsize) {
1536 case 1:
546cfdf4
AD
1537 info->io.inputb = intf_mem_inb;
1538 info->io.outputb = intf_mem_outb;
1da177e4
LT
1539 break;
1540 case 2:
546cfdf4
AD
1541 info->io.inputb = intf_mem_inw;
1542 info->io.outputb = intf_mem_outw;
1da177e4
LT
1543 break;
1544 case 4:
546cfdf4
AD
1545 info->io.inputb = intf_mem_inl;
1546 info->io.outputb = intf_mem_outl;
1da177e4
LT
1547 break;
1548#ifdef readq
1549 case 8:
1550 info->io.inputb = mem_inq;
1551 info->io.outputb = mem_outq;
1552 break;
1553#endif
1554 default:
c305e3d3 1555 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1556 info->io.regsize);
1557 return -EINVAL;
1558 }
1559
c305e3d3
CM
1560 /*
1561 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1562 * unusual looking calculation, but it avoids claiming any
1563 * more memory than it has to. It will claim everything
1564 * between the first address to the end of the last full
c305e3d3
CM
1565 * register.
1566 */
1da177e4
LT
1567 mapsize = ((info->io_size * info->io.regspacing)
1568 - (info->io.regspacing - info->io.regsize));
1569
b0defcdb 1570 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1571 return -EIO;
1572
b0defcdb 1573 info->io.addr = ioremap(addr, mapsize);
1da177e4 1574 if (info->io.addr == NULL) {
b0defcdb 1575 release_mem_region(addr, mapsize);
1da177e4
LT
1576 return -EIO;
1577 }
1578 return 0;
1579}
1580
b361e27b
CM
1581/*
1582 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1583 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1584 * Options are:
1585 * rsp=<regspacing>
1586 * rsi=<regsize>
1587 * rsh=<regshift>
1588 * irq=<irq>
1589 * ipmb=<ipmb addr>
1590 */
1591enum hotmod_op { HM_ADD, HM_REMOVE };
1592struct hotmod_vals {
1593 char *name;
1594 int val;
1595};
1596static struct hotmod_vals hotmod_ops[] = {
1597 { "add", HM_ADD },
1598 { "remove", HM_REMOVE },
1599 { NULL }
1600};
1601static struct hotmod_vals hotmod_si[] = {
1602 { "kcs", SI_KCS },
1603 { "smic", SI_SMIC },
1604 { "bt", SI_BT },
1605 { NULL }
1606};
1607static struct hotmod_vals hotmod_as[] = {
1608 { "mem", IPMI_MEM_ADDR_SPACE },
1609 { "i/o", IPMI_IO_ADDR_SPACE },
1610 { NULL }
1611};
1d5636cc 1612
b361e27b
CM
1613static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1614{
1615 char *s;
1616 int i;
1617
1618 s = strchr(*curr, ',');
1619 if (!s) {
1620 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1621 return -EINVAL;
1622 }
1623 *s = '\0';
1624 s++;
1625 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1626 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1627 *val = v[i].val;
1628 *curr = s;
1629 return 0;
1630 }
1631 }
1632
1633 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1634 return -EINVAL;
1635}
1636
1d5636cc
CM
1637static int check_hotmod_int_op(const char *curr, const char *option,
1638 const char *name, int *val)
1639{
1640 char *n;
1641
1642 if (strcmp(curr, name) == 0) {
1643 if (!option) {
1644 printk(KERN_WARNING PFX
1645 "No option given for '%s'\n",
1646 curr);
1647 return -EINVAL;
1648 }
1649 *val = simple_strtoul(option, &n, 0);
1650 if ((*n != '\0') || (*option == '\0')) {
1651 printk(KERN_WARNING PFX
1652 "Bad option given for '%s'\n",
1653 curr);
1654 return -EINVAL;
1655 }
1656 return 1;
1657 }
1658 return 0;
1659}
1660
b361e27b
CM
1661static int hotmod_handler(const char *val, struct kernel_param *kp)
1662{
1663 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1664 int rv;
b361e27b
CM
1665 char *next, *curr, *s, *n, *o;
1666 enum hotmod_op op;
1667 enum si_type si_type;
1668 int addr_space;
1669 unsigned long addr;
1670 int regspacing;
1671 int regsize;
1672 int regshift;
1673 int irq;
1674 int ipmb;
1675 int ival;
1d5636cc 1676 int len;
b361e27b
CM
1677 struct smi_info *info;
1678
1679 if (!str)
1680 return -ENOMEM;
1681
1682 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1683 len = strlen(str);
1684 ival = len - 1;
b361e27b
CM
1685 while ((ival >= 0) && isspace(str[ival])) {
1686 str[ival] = '\0';
1687 ival--;
1688 }
1689
1690 for (curr = str; curr; curr = next) {
1691 regspacing = 1;
1692 regsize = 1;
1693 regshift = 0;
1694 irq = 0;
2f95d513 1695 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1696
1697 next = strchr(curr, ':');
1698 if (next) {
1699 *next = '\0';
1700 next++;
1701 }
1702
1703 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1704 if (rv)
1705 break;
1706 op = ival;
1707
1708 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1709 if (rv)
1710 break;
1711 si_type = ival;
1712
1713 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1714 if (rv)
1715 break;
1716
1717 s = strchr(curr, ',');
1718 if (s) {
1719 *s = '\0';
1720 s++;
1721 }
1722 addr = simple_strtoul(curr, &n, 0);
1723 if ((*n != '\0') || (*curr == '\0')) {
1724 printk(KERN_WARNING PFX "Invalid hotmod address"
1725 " '%s'\n", curr);
1726 break;
1727 }
1728
1729 while (s) {
1730 curr = s;
1731 s = strchr(curr, ',');
1732 if (s) {
1733 *s = '\0';
1734 s++;
1735 }
1736 o = strchr(curr, '=');
1737 if (o) {
1738 *o = '\0';
1739 o++;
1740 }
1d5636cc
CM
1741 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1742 if (rv < 0)
b361e27b 1743 goto out;
1d5636cc
CM
1744 else if (rv)
1745 continue;
1746 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1747 if (rv < 0)
1748 goto out;
1749 else if (rv)
1750 continue;
1751 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1752 if (rv < 0)
1753 goto out;
1754 else if (rv)
1755 continue;
1756 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1757 if (rv < 0)
1758 goto out;
1759 else if (rv)
1760 continue;
1761 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1762 if (rv < 0)
1763 goto out;
1764 else if (rv)
1765 continue;
1766
1767 rv = -EINVAL;
1768 printk(KERN_WARNING PFX
1769 "Invalid hotmod option '%s'\n",
1770 curr);
1771 goto out;
b361e27b
CM
1772 }
1773
1774 if (op == HM_ADD) {
1775 info = kzalloc(sizeof(*info), GFP_KERNEL);
1776 if (!info) {
1777 rv = -ENOMEM;
1778 goto out;
1779 }
1780
5fedc4a2 1781 info->addr_source = SI_HOTMOD;
b361e27b
CM
1782 info->si_type = si_type;
1783 info->io.addr_data = addr;
1784 info->io.addr_type = addr_space;
1785 if (addr_space == IPMI_MEM_ADDR_SPACE)
1786 info->io_setup = mem_setup;
1787 else
1788 info->io_setup = port_setup;
1789
1790 info->io.addr = NULL;
1791 info->io.regspacing = regspacing;
1792 if (!info->io.regspacing)
1793 info->io.regspacing = DEFAULT_REGSPACING;
1794 info->io.regsize = regsize;
1795 if (!info->io.regsize)
1796 info->io.regsize = DEFAULT_REGSPACING;
1797 info->io.regshift = regshift;
1798 info->irq = irq;
1799 if (info->irq)
1800 info->irq_setup = std_irq_setup;
1801 info->slave_addr = ipmb;
1802
2407d77a
MG
1803 if (!add_smi(info))
1804 if (try_smi_init(info))
1805 cleanup_one_si(info);
b361e27b
CM
1806 } else {
1807 /* remove */
1808 struct smi_info *e, *tmp_e;
1809
1810 mutex_lock(&smi_infos_lock);
1811 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1812 if (e->io.addr_type != addr_space)
1813 continue;
1814 if (e->si_type != si_type)
1815 continue;
1816 if (e->io.addr_data == addr)
1817 cleanup_one_si(e);
1818 }
1819 mutex_unlock(&smi_infos_lock);
1820 }
1821 }
1d5636cc 1822 rv = len;
b361e27b
CM
1823 out:
1824 kfree(str);
1825 return rv;
1826}
b0defcdb
CM
1827
1828static __devinit void hardcode_find_bmc(void)
1da177e4 1829{
b0defcdb 1830 int i;
1da177e4
LT
1831 struct smi_info *info;
1832
b0defcdb
CM
1833 for (i = 0; i < SI_MAX_PARMS; i++) {
1834 if (!ports[i] && !addrs[i])
1835 continue;
1da177e4 1836
b0defcdb
CM
1837 info = kzalloc(sizeof(*info), GFP_KERNEL);
1838 if (!info)
1839 return;
1da177e4 1840
5fedc4a2 1841 info->addr_source = SI_HARDCODED;
1da177e4 1842
1d5636cc 1843 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1844 info->si_type = SI_KCS;
1d5636cc 1845 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1846 info->si_type = SI_SMIC;
1d5636cc 1847 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1848 info->si_type = SI_BT;
1849 } else {
1850 printk(KERN_WARNING
1851 "ipmi_si: Interface type specified "
1852 "for interface %d, was invalid: %s\n",
1853 i, si_type[i]);
1854 kfree(info);
1855 continue;
1856 }
1da177e4 1857
b0defcdb
CM
1858 if (ports[i]) {
1859 /* An I/O port */
1860 info->io_setup = port_setup;
1861 info->io.addr_data = ports[i];
1862 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1863 } else if (addrs[i]) {
1864 /* A memory port */
1865 info->io_setup = mem_setup;
1866 info->io.addr_data = addrs[i];
1867 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1868 } else {
1869 printk(KERN_WARNING
1870 "ipmi_si: Interface type specified "
1871 "for interface %d, "
1872 "but port and address were not set or "
1873 "set to zero.\n", i);
1874 kfree(info);
1875 continue;
1876 }
1da177e4 1877
b0defcdb
CM
1878 info->io.addr = NULL;
1879 info->io.regspacing = regspacings[i];
1880 if (!info->io.regspacing)
1881 info->io.regspacing = DEFAULT_REGSPACING;
1882 info->io.regsize = regsizes[i];
1883 if (!info->io.regsize)
1884 info->io.regsize = DEFAULT_REGSPACING;
1885 info->io.regshift = regshifts[i];
1886 info->irq = irqs[i];
1887 if (info->irq)
1888 info->irq_setup = std_irq_setup;
2f95d513 1889 info->slave_addr = slave_addrs[i];
1da177e4 1890
2407d77a
MG
1891 if (!add_smi(info))
1892 if (try_smi_init(info))
1893 cleanup_one_si(info);
b0defcdb
CM
1894 }
1895}
1da177e4 1896
8466361a 1897#ifdef CONFIG_ACPI
1da177e4
LT
1898
1899#include <linux/acpi.h>
1900
c305e3d3
CM
1901/*
1902 * Once we get an ACPI failure, we don't try any more, because we go
1903 * through the tables sequentially. Once we don't find a table, there
1904 * are no more.
1905 */
0c8204b3 1906static int acpi_failure;
1da177e4
LT
1907
1908/* For GPE-type interrupts. */
1909static u32 ipmi_acpi_gpe(void *context)
1910{
1911 struct smi_info *smi_info = context;
1912 unsigned long flags;
1913#ifdef DEBUG_TIMING
1914 struct timeval t;
1915#endif
1916
1917 spin_lock_irqsave(&(smi_info->si_lock), flags);
1918
64959e2d 1919 smi_inc_stat(smi_info, interrupts);
1da177e4 1920
1da177e4
LT
1921#ifdef DEBUG_TIMING
1922 do_gettimeofday(&t);
1923 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1924#endif
1925 smi_event_handler(smi_info, 0);
1da177e4
LT
1926 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1927
1928 return ACPI_INTERRUPT_HANDLED;
1929}
1930
b0defcdb
CM
1931static void acpi_gpe_irq_cleanup(struct smi_info *info)
1932{
1933 if (!info->irq)
1934 return;
1935
1936 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1937}
1938
1da177e4
LT
1939static int acpi_gpe_irq_setup(struct smi_info *info)
1940{
1941 acpi_status status;
1942
b0defcdb 1943 if (!info->irq)
1da177e4
LT
1944 return 0;
1945
1946 /* FIXME - is level triggered right? */
1947 status = acpi_install_gpe_handler(NULL,
1948 info->irq,
1949 ACPI_GPE_LEVEL_TRIGGERED,
1950 &ipmi_acpi_gpe,
1951 info);
1952 if (status != AE_OK) {
1953 printk(KERN_WARNING
1954 "ipmi_si: %s unable to claim ACPI GPE %d,"
1955 " running polled\n",
1956 DEVICE_NAME, info->irq);
1957 info->irq = 0;
1958 return -EINVAL;
1959 } else {
b0defcdb 1960 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1961 printk(" Using ACPI GPE %d\n", info->irq);
1962 return 0;
1963 }
1964}
1965
1da177e4
LT
1966/*
1967 * Defined at
c305e3d3
CM
1968 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1969 * Docs/TechPapers/IA64/hpspmi.pdf
1da177e4
LT
1970 */
1971struct SPMITable {
1972 s8 Signature[4];
1973 u32 Length;
1974 u8 Revision;
1975 u8 Checksum;
1976 s8 OEMID[6];
1977 s8 OEMTableID[8];
1978 s8 OEMRevision[4];
1979 s8 CreatorID[4];
1980 s8 CreatorRevision[4];
1981 u8 InterfaceType;
1982 u8 IPMIlegacy;
1983 s16 SpecificationRevision;
1984
1985 /*
1986 * Bit 0 - SCI interrupt supported
1987 * Bit 1 - I/O APIC/SAPIC
1988 */
1989 u8 InterruptType;
1990
c305e3d3
CM
1991 /*
1992 * If bit 0 of InterruptType is set, then this is the SCI
1993 * interrupt in the GPEx_STS register.
1994 */
1da177e4
LT
1995 u8 GPE;
1996
1997 s16 Reserved;
1998
c305e3d3
CM
1999 /*
2000 * If bit 1 of InterruptType is set, then this is the I/O
2001 * APIC/SAPIC interrupt.
2002 */
1da177e4
LT
2003 u32 GlobalSystemInterrupt;
2004
2005 /* The actual register address. */
2006 struct acpi_generic_address addr;
2007
2008 u8 UID[4];
2009
2010 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2011};
2012
18a3e0bf 2013static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2014{
2015 struct smi_info *info;
1da177e4
LT
2016 u8 addr_space;
2017
1da177e4
LT
2018 if (spmi->IPMIlegacy != 1) {
2019 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
c305e3d3 2020 return -ENODEV;
1da177e4
LT
2021 }
2022
15a58ed1 2023 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2024 addr_space = IPMI_MEM_ADDR_SPACE;
2025 else
2026 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2027
2028 info = kzalloc(sizeof(*info), GFP_KERNEL);
2029 if (!info) {
2030 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2031 return -ENOMEM;
2032 }
2033
5fedc4a2 2034 info->addr_source = SI_SPMI;
1da177e4 2035
1da177e4 2036 /* Figure out the interface type. */
c305e3d3 2037 switch (spmi->InterfaceType) {
1da177e4 2038 case 1: /* KCS */
b0defcdb 2039 info->si_type = SI_KCS;
1da177e4 2040 break;
1da177e4 2041 case 2: /* SMIC */
b0defcdb 2042 info->si_type = SI_SMIC;
1da177e4 2043 break;
1da177e4 2044 case 3: /* BT */
b0defcdb 2045 info->si_type = SI_BT;
1da177e4 2046 break;
1da177e4
LT
2047 default:
2048 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2049 spmi->InterfaceType);
b0defcdb 2050 kfree(info);
1da177e4
LT
2051 return -EIO;
2052 }
2053
1da177e4
LT
2054 if (spmi->InterruptType & 1) {
2055 /* We've got a GPE interrupt. */
2056 info->irq = spmi->GPE;
2057 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2058 } else if (spmi->InterruptType & 2) {
2059 /* We've got an APIC/SAPIC interrupt. */
2060 info->irq = spmi->GlobalSystemInterrupt;
2061 info->irq_setup = std_irq_setup;
1da177e4
LT
2062 } else {
2063 /* Use the default interrupt setting. */
2064 info->irq = 0;
2065 info->irq_setup = NULL;
2066 }
2067
15a58ed1 2068 if (spmi->addr.bit_width) {
35bc37a0 2069 /* A (hopefully) properly formed register bit width. */
15a58ed1 2070 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2071 } else {
35bc37a0
CM
2072 info->io.regspacing = DEFAULT_REGSPACING;
2073 }
b0defcdb 2074 info->io.regsize = info->io.regspacing;
15a58ed1 2075 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2076
15a58ed1 2077 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2078 info->io_setup = mem_setup;
8fe1425a 2079 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2080 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2081 info->io_setup = port_setup;
8fe1425a 2082 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2083 } else {
2084 kfree(info);
c305e3d3
CM
2085 printk(KERN_WARNING
2086 "ipmi_si: Unknown ACPI I/O Address type\n");
1da177e4
LT
2087 return -EIO;
2088 }
b0defcdb 2089 info->io.addr_data = spmi->addr.address;
1da177e4 2090
2407d77a 2091 add_smi(info);
1da177e4 2092
1da177e4
LT
2093 return 0;
2094}
b0defcdb 2095
18a3e0bf 2096static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2097{
2098 acpi_status status;
2099 struct SPMITable *spmi;
2100 int i;
2101
2102 if (acpi_disabled)
2103 return;
2104
2105 if (acpi_failure)
2106 return;
2107
2108 for (i = 0; ; i++) {
15a58ed1
AS
2109 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2110 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2111 if (status != AE_OK)
2112 return;
2113
18a3e0bf 2114 try_init_spmi(spmi);
b0defcdb
CM
2115 }
2116}
9e368fa0
BH
2117
2118static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2119 const struct pnp_device_id *dev_id)
2120{
2121 struct acpi_device *acpi_dev;
2122 struct smi_info *info;
2123 acpi_handle handle;
2124 acpi_status status;
2125 unsigned long long tmp;
2126
2127 acpi_dev = pnp_acpi_device(dev);
2128 if (!acpi_dev)
2129 return -ENODEV;
2130
2131 info = kzalloc(sizeof(*info), GFP_KERNEL);
2132 if (!info)
2133 return -ENOMEM;
2134
5fedc4a2 2135 info->addr_source = SI_ACPI;
9e368fa0
BH
2136
2137 handle = acpi_dev->handle;
2138
2139 /* _IFT tells us the interface type: KCS, BT, etc */
2140 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2141 if (ACPI_FAILURE(status))
2142 goto err_free;
2143
2144 switch (tmp) {
2145 case 1:
2146 info->si_type = SI_KCS;
2147 break;
2148 case 2:
2149 info->si_type = SI_SMIC;
2150 break;
2151 case 3:
2152 info->si_type = SI_BT;
2153 break;
2154 default:
2155 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2156 goto err_free;
2157 }
2158
2159 if (pnp_port_valid(dev, 0)) {
2160 info->io_setup = port_setup;
2161 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2162 info->io.addr_data = pnp_port_start(dev, 0);
2163 } else if (pnp_mem_valid(dev, 0)) {
2164 info->io_setup = mem_setup;
2165 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2166 info->io.addr_data = pnp_mem_start(dev, 0);
2167 } else {
2168 dev_err(&dev->dev, "no I/O or memory address\n");
2169 goto err_free;
2170 }
2171
2172 info->io.regspacing = DEFAULT_REGSPACING;
2173 info->io.regsize = DEFAULT_REGSPACING;
2174 info->io.regshift = 0;
2175
2176 /* If _GPE exists, use it; otherwise use standard interrupts */
2177 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2178 if (ACPI_SUCCESS(status)) {
2179 info->irq = tmp;
2180 info->irq_setup = acpi_gpe_irq_setup;
2181 } else if (pnp_irq_valid(dev, 0)) {
2182 info->irq = pnp_irq(dev, 0);
2183 info->irq_setup = std_irq_setup;
2184 }
2185
2186 info->dev = &acpi_dev->dev;
2187 pnp_set_drvdata(dev, info);
2188
2407d77a 2189 return add_smi(info);
9e368fa0
BH
2190
2191err_free:
2192 kfree(info);
2193 return -EINVAL;
2194}
2195
2196static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2197{
2198 struct smi_info *info = pnp_get_drvdata(dev);
2199
2200 cleanup_one_si(info);
2201}
2202
2203static const struct pnp_device_id pnp_dev_table[] = {
2204 {"IPI0001", 0},
2205 {"", 0},
2206};
2207
2208static struct pnp_driver ipmi_pnp_driver = {
2209 .name = DEVICE_NAME,
2210 .probe = ipmi_pnp_probe,
2211 .remove = __devexit_p(ipmi_pnp_remove),
2212 .id_table = pnp_dev_table,
2213};
1da177e4
LT
2214#endif
2215
a9fad4cc 2216#ifdef CONFIG_DMI
c305e3d3 2217struct dmi_ipmi_data {
1da177e4
LT
2218 u8 type;
2219 u8 addr_space;
2220 unsigned long base_addr;
2221 u8 irq;
2222 u8 offset;
2223 u8 slave_addr;
b0defcdb 2224};
1da177e4 2225
1855256c 2226static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2227 struct dmi_ipmi_data *dmi)
1da177e4 2228{
1855256c 2229 const u8 *data = (const u8 *)dm;
1da177e4
LT
2230 unsigned long base_addr;
2231 u8 reg_spacing;
b224cd3a 2232 u8 len = dm->length;
1da177e4 2233
b0defcdb 2234 dmi->type = data[4];
1da177e4
LT
2235
2236 memcpy(&base_addr, data+8, sizeof(unsigned long));
2237 if (len >= 0x11) {
2238 if (base_addr & 1) {
2239 /* I/O */
2240 base_addr &= 0xFFFE;
b0defcdb 2241 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2242 } else
1da177e4 2243 /* Memory */
b0defcdb 2244 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2245
1da177e4
LT
2246 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2247 is odd. */
b0defcdb 2248 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2249
b0defcdb 2250 dmi->irq = data[0x11];
1da177e4
LT
2251
2252 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2253 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2254 switch (reg_spacing) {
1da177e4 2255 case 0x00: /* Byte boundaries */
b0defcdb 2256 dmi->offset = 1;
1da177e4
LT
2257 break;
2258 case 0x01: /* 32-bit boundaries */
b0defcdb 2259 dmi->offset = 4;
1da177e4
LT
2260 break;
2261 case 0x02: /* 16-byte boundaries */
b0defcdb 2262 dmi->offset = 16;
1da177e4
LT
2263 break;
2264 default:
2265 /* Some other interface, just ignore it. */
2266 return -EIO;
2267 }
2268 } else {
2269 /* Old DMI spec. */
c305e3d3
CM
2270 /*
2271 * Note that technically, the lower bit of the base
92068801
CM
2272 * address should be 1 if the address is I/O and 0 if
2273 * the address is in memory. So many systems get that
2274 * wrong (and all that I have seen are I/O) so we just
2275 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2276 * memory should use the newer spec, anyway.
2277 */
b0defcdb
CM
2278 dmi->base_addr = base_addr & 0xfffe;
2279 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2280 dmi->offset = 1;
1da177e4
LT
2281 }
2282
b0defcdb 2283 dmi->slave_addr = data[6];
1da177e4 2284
b0defcdb 2285 return 0;
1da177e4
LT
2286}
2287
b0defcdb 2288static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2289{
b0defcdb 2290 struct smi_info *info;
1da177e4 2291
b0defcdb
CM
2292 info = kzalloc(sizeof(*info), GFP_KERNEL);
2293 if (!info) {
2294 printk(KERN_ERR
2295 "ipmi_si: Could not allocate SI data\n");
2296 return;
1da177e4 2297 }
1da177e4 2298
5fedc4a2 2299 info->addr_source = SI_SMBIOS;
1da177e4 2300
e8b33617 2301 switch (ipmi_data->type) {
b0defcdb
CM
2302 case 0x01: /* KCS */
2303 info->si_type = SI_KCS;
2304 break;
2305 case 0x02: /* SMIC */
2306 info->si_type = SI_SMIC;
2307 break;
2308 case 0x03: /* BT */
2309 info->si_type = SI_BT;
2310 break;
2311 default:
80cd6920 2312 kfree(info);
b0defcdb 2313 return;
1da177e4 2314 }
1da177e4 2315
b0defcdb
CM
2316 switch (ipmi_data->addr_space) {
2317 case IPMI_MEM_ADDR_SPACE:
1da177e4 2318 info->io_setup = mem_setup;
b0defcdb
CM
2319 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2320 break;
2321
2322 case IPMI_IO_ADDR_SPACE:
1da177e4 2323 info->io_setup = port_setup;
b0defcdb
CM
2324 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2325 break;
2326
2327 default:
1da177e4 2328 kfree(info);
b0defcdb
CM
2329 printk(KERN_WARNING
2330 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2331 ipmi_data->addr_space);
2332 return;
1da177e4 2333 }
b0defcdb 2334 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2335
b0defcdb
CM
2336 info->io.regspacing = ipmi_data->offset;
2337 if (!info->io.regspacing)
1da177e4
LT
2338 info->io.regspacing = DEFAULT_REGSPACING;
2339 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2340 info->io.regshift = 0;
1da177e4
LT
2341
2342 info->slave_addr = ipmi_data->slave_addr;
2343
b0defcdb
CM
2344 info->irq = ipmi_data->irq;
2345 if (info->irq)
2346 info->irq_setup = std_irq_setup;
1da177e4 2347
2407d77a 2348 add_smi(info);
b0defcdb 2349}
1da177e4 2350
b0defcdb
CM
2351static void __devinit dmi_find_bmc(void)
2352{
1855256c 2353 const struct dmi_device *dev = NULL;
b0defcdb
CM
2354 struct dmi_ipmi_data data;
2355 int rv;
2356
2357 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2358 memset(&data, 0, sizeof(data));
1855256c
JG
2359 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2360 &data);
b0defcdb
CM
2361 if (!rv)
2362 try_init_dmi(&data);
2363 }
1da177e4 2364}
a9fad4cc 2365#endif /* CONFIG_DMI */
1da177e4
LT
2366
2367#ifdef CONFIG_PCI
2368
b0defcdb
CM
2369#define PCI_ERMC_CLASSCODE 0x0C0700
2370#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2371#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2372#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2373#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2374#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2375
1da177e4
LT
2376#define PCI_HP_VENDOR_ID 0x103C
2377#define PCI_MMC_DEVICE_ID 0x121A
2378#define PCI_MMC_ADDR_CW 0x10
2379
b0defcdb
CM
2380static void ipmi_pci_cleanup(struct smi_info *info)
2381{
2382 struct pci_dev *pdev = info->addr_source_data;
2383
2384 pci_disable_device(pdev);
2385}
1da177e4 2386
b0defcdb
CM
2387static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2388 const struct pci_device_id *ent)
1da177e4 2389{
b0defcdb
CM
2390 int rv;
2391 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2392 struct smi_info *info;
1da177e4 2393
b0defcdb
CM
2394 info = kzalloc(sizeof(*info), GFP_KERNEL);
2395 if (!info)
1cd441f9 2396 return -ENOMEM;
1da177e4 2397
5fedc4a2 2398 info->addr_source = SI_PCI;
1da177e4 2399
b0defcdb
CM
2400 switch (class_type) {
2401 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2402 info->si_type = SI_SMIC;
2403 break;
1da177e4 2404
b0defcdb
CM
2405 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2406 info->si_type = SI_KCS;
2407 break;
2408
2409 case PCI_ERMC_CLASSCODE_TYPE_BT:
2410 info->si_type = SI_BT;
2411 break;
2412
2413 default:
2414 kfree(info);
2415 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2416 pci_name(pdev), class_type);
1cd441f9 2417 return -ENOMEM;
1da177e4
LT
2418 }
2419
b0defcdb
CM
2420 rv = pci_enable_device(pdev);
2421 if (rv) {
2422 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2423 pci_name(pdev));
2424 kfree(info);
2425 return rv;
1da177e4
LT
2426 }
2427
b0defcdb
CM
2428 info->addr_source_cleanup = ipmi_pci_cleanup;
2429 info->addr_source_data = pdev;
1da177e4 2430
b0defcdb
CM
2431 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2432 info->io_setup = port_setup;
2433 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2434 } else {
2435 info->io_setup = mem_setup;
2436 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2437 }
b0defcdb 2438 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2439
b0defcdb 2440 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2441 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2442 info->io.regshift = 0;
1da177e4 2443
b0defcdb
CM
2444 info->irq = pdev->irq;
2445 if (info->irq)
2446 info->irq_setup = std_irq_setup;
1da177e4 2447
50c812b2 2448 info->dev = &pdev->dev;
fca3b747 2449 pci_set_drvdata(pdev, info);
50c812b2 2450
2407d77a 2451 return add_smi(info);
b0defcdb 2452}
1da177e4 2453
b0defcdb
CM
2454static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2455{
fca3b747
CM
2456 struct smi_info *info = pci_get_drvdata(pdev);
2457 cleanup_one_si(info);
b0defcdb 2458}
1da177e4 2459
b0defcdb
CM
2460#ifdef CONFIG_PM
2461static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2462{
1da177e4
LT
2463 return 0;
2464}
1da177e4 2465
b0defcdb 2466static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2467{
b0defcdb
CM
2468 return 0;
2469}
1da177e4 2470#endif
1da177e4 2471
b0defcdb
CM
2472static struct pci_device_id ipmi_pci_devices[] = {
2473 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2474 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2475 { 0, }
b0defcdb
CM
2476};
2477MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2478
2479static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2480 .name = DEVICE_NAME,
2481 .id_table = ipmi_pci_devices,
2482 .probe = ipmi_pci_probe,
2483 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2484#ifdef CONFIG_PM
c305e3d3
CM
2485 .suspend = ipmi_pci_suspend,
2486 .resume = ipmi_pci_resume,
b0defcdb
CM
2487#endif
2488};
2489#endif /* CONFIG_PCI */
1da177e4
LT
2490
2491
dba9b4f6
CM
2492#ifdef CONFIG_PPC_OF
2493static int __devinit ipmi_of_probe(struct of_device *dev,
2494 const struct of_device_id *match)
2495{
2496 struct smi_info *info;
2497 struct resource resource;
2498 const int *regsize, *regspacing, *regshift;
61c7a080 2499 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2500 int ret;
2501 int proplen;
2502
2503 dev_info(&dev->dev, PFX "probing via device tree\n");
2504
2505 ret = of_address_to_resource(np, 0, &resource);
2506 if (ret) {
2507 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2508 return ret;
2509 }
2510
9c25099d 2511 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2512 if (regsize && proplen != 4) {
2513 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2514 return -EINVAL;
2515 }
2516
9c25099d 2517 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2518 if (regspacing && proplen != 4) {
2519 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2520 return -EINVAL;
2521 }
2522
9c25099d 2523 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2524 if (regshift && proplen != 4) {
2525 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2526 return -EINVAL;
2527 }
2528
2529 info = kzalloc(sizeof(*info), GFP_KERNEL);
2530
2531 if (!info) {
2532 dev_err(&dev->dev,
2533 PFX "could not allocate memory for OF probe\n");
2534 return -ENOMEM;
2535 }
2536
2537 info->si_type = (enum si_type) match->data;
5fedc4a2 2538 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2539 info->irq_setup = std_irq_setup;
2540
3b7ec117
NC
2541 if (resource.flags & IORESOURCE_IO) {
2542 info->io_setup = port_setup;
2543 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2544 } else {
2545 info->io_setup = mem_setup;
2546 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2547 }
2548
dba9b4f6
CM
2549 info->io.addr_data = resource.start;
2550
2551 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2552 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2553 info->io.regshift = regshift ? *regshift : 0;
2554
61c7a080 2555 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2556 info->dev = &dev->dev;
2557
32d21985 2558 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
dba9b4f6
CM
2559 info->io.addr_data, info->io.regsize, info->io.regspacing,
2560 info->irq);
2561
9de33df4 2562 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2563
2407d77a 2564 return add_smi(info);
dba9b4f6
CM
2565}
2566
2567static int __devexit ipmi_of_remove(struct of_device *dev)
2568{
9de33df4 2569 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2570 return 0;
2571}
2572
2573static struct of_device_id ipmi_match[] =
2574{
c305e3d3
CM
2575 { .type = "ipmi", .compatible = "ipmi-kcs",
2576 .data = (void *)(unsigned long) SI_KCS },
2577 { .type = "ipmi", .compatible = "ipmi-smic",
2578 .data = (void *)(unsigned long) SI_SMIC },
2579 { .type = "ipmi", .compatible = "ipmi-bt",
2580 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2581 {},
2582};
2583
c305e3d3 2584static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2585 .driver = {
2586 .name = "ipmi",
2587 .owner = THIS_MODULE,
2588 .of_match_table = ipmi_match,
2589 },
dba9b4f6
CM
2590 .probe = ipmi_of_probe,
2591 .remove = __devexit_p(ipmi_of_remove),
2592};
2593#endif /* CONFIG_PPC_OF */
2594
40112ae7 2595static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2596{
50c812b2 2597 enum si_sm_result smi_result;
1da177e4
LT
2598
2599 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2600 for (;;) {
c3e7e791
CM
2601 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2602 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2603 schedule_timeout_uninterruptible(1);
1da177e4
LT
2604 smi_result = smi_info->handlers->event(
2605 smi_info->si_sm, 100);
c305e3d3 2606 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2607 smi_result = smi_info->handlers->event(
2608 smi_info->si_sm, 0);
c305e3d3 2609 } else
1da177e4
LT
2610 break;
2611 }
40112ae7 2612 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2613 /*
2614 * We couldn't get the state machine to run, so whatever's at
2615 * the port is probably not an IPMI SMI interface.
2616 */
40112ae7
CM
2617 return -ENODEV;
2618
2619 return 0;
2620}
2621
2622static int try_get_dev_id(struct smi_info *smi_info)
2623{
2624 unsigned char msg[2];
2625 unsigned char *resp;
2626 unsigned long resp_len;
2627 int rv = 0;
2628
2629 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2630 if (!resp)
2631 return -ENOMEM;
2632
2633 /*
2634 * Do a Get Device ID command, since it comes back with some
2635 * useful info.
2636 */
2637 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2638 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2639 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2640
2641 rv = wait_for_msg_done(smi_info);
2642 if (rv)
1da177e4 2643 goto out;
1da177e4 2644
1da177e4
LT
2645 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2646 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2647
d8c98618
CM
2648 /* Check and record info from the get device id, in case we need it. */
2649 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2650
2651 out:
2652 kfree(resp);
2653 return rv;
2654}
2655
40112ae7
CM
2656static int try_enable_event_buffer(struct smi_info *smi_info)
2657{
2658 unsigned char msg[3];
2659 unsigned char *resp;
2660 unsigned long resp_len;
2661 int rv = 0;
2662
2663 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2664 if (!resp)
2665 return -ENOMEM;
2666
2667 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2668 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2669 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2670
2671 rv = wait_for_msg_done(smi_info);
2672 if (rv) {
2673 printk(KERN_WARNING
2674 "ipmi_si: Error getting response from get global,"
2675 " enables command, the event buffer is not"
2676 " enabled.\n");
2677 goto out;
2678 }
2679
2680 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2681 resp, IPMI_MAX_MSG_LENGTH);
2682
2683 if (resp_len < 4 ||
2684 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2685 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2686 resp[2] != 0) {
2687 printk(KERN_WARNING
2688 "ipmi_si: Invalid return from get global"
2689 " enables command, cannot enable the event"
2690 " buffer.\n");
2691 rv = -EINVAL;
2692 goto out;
2693 }
2694
2695 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2696 /* buffer is already enabled, nothing to do. */
2697 goto out;
2698
2699 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2700 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2701 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2702 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2703
2704 rv = wait_for_msg_done(smi_info);
2705 if (rv) {
2706 printk(KERN_WARNING
2707 "ipmi_si: Error getting response from set global,"
2708 " enables command, the event buffer is not"
2709 " enabled.\n");
2710 goto out;
2711 }
2712
2713 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2714 resp, IPMI_MAX_MSG_LENGTH);
2715
2716 if (resp_len < 3 ||
2717 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2718 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2719 printk(KERN_WARNING
2720 "ipmi_si: Invalid return from get global,"
2721 "enables command, not enable the event"
2722 " buffer.\n");
2723 rv = -EINVAL;
2724 goto out;
2725 }
2726
2727 if (resp[2] != 0)
2728 /*
2729 * An error when setting the event buffer bit means
2730 * that the event buffer is not supported.
2731 */
2732 rv = -ENOENT;
2733 out:
2734 kfree(resp);
2735 return rv;
2736}
2737
1da177e4
LT
2738static int type_file_read_proc(char *page, char **start, off_t off,
2739 int count, int *eof, void *data)
2740{
1da177e4
LT
2741 struct smi_info *smi = data;
2742
b361e27b 2743 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2744}
2745
2746static int stat_file_read_proc(char *page, char **start, off_t off,
2747 int count, int *eof, void *data)
2748{
2749 char *out = (char *) page;
2750 struct smi_info *smi = data;
2751
2752 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2753 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2754 out += sprintf(out, "short_timeouts: %u\n",
2755 smi_get_stat(smi, short_timeouts));
2756 out += sprintf(out, "long_timeouts: %u\n",
2757 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2758 out += sprintf(out, "idles: %u\n",
2759 smi_get_stat(smi, idles));
2760 out += sprintf(out, "interrupts: %u\n",
2761 smi_get_stat(smi, interrupts));
2762 out += sprintf(out, "attentions: %u\n",
2763 smi_get_stat(smi, attentions));
2764 out += sprintf(out, "flag_fetches: %u\n",
2765 smi_get_stat(smi, flag_fetches));
2766 out += sprintf(out, "hosed_count: %u\n",
2767 smi_get_stat(smi, hosed_count));
2768 out += sprintf(out, "complete_transactions: %u\n",
2769 smi_get_stat(smi, complete_transactions));
2770 out += sprintf(out, "events: %u\n",
2771 smi_get_stat(smi, events));
2772 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2773 smi_get_stat(smi, watchdog_pretimeouts));
2774 out += sprintf(out, "incoming_messages: %u\n",
2775 smi_get_stat(smi, incoming_messages));
1da177e4 2776
b361e27b
CM
2777 return out - page;
2778}
2779
2780static int param_read_proc(char *page, char **start, off_t off,
2781 int count, int *eof, void *data)
2782{
2783 struct smi_info *smi = data;
2784
2785 return sprintf(page,
2786 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2787 si_to_str[smi->si_type],
2788 addr_space_to_str[smi->io.addr_type],
2789 smi->io.addr_data,
2790 smi->io.regspacing,
2791 smi->io.regsize,
2792 smi->io.regshift,
2793 smi->irq,
2794 smi->slave_addr);
1da177e4
LT
2795}
2796
3ae0e0f9
CM
2797/*
2798 * oem_data_avail_to_receive_msg_avail
2799 * @info - smi_info structure with msg_flags set
2800 *
2801 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2802 * Returns 1 indicating need to re-run handle_flags().
2803 */
2804static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2805{
e8b33617 2806 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2807 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2808 return 1;
2809}
2810
2811/*
2812 * setup_dell_poweredge_oem_data_handler
2813 * @info - smi_info.device_id must be populated
2814 *
2815 * Systems that match, but have firmware version < 1.40 may assert
2816 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2817 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2818 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2819 * as RECEIVE_MSG_AVAIL instead.
2820 *
2821 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2822 * assert the OEM[012] bits, and if it did, the driver would have to
2823 * change to handle that properly, we don't actually check for the
2824 * firmware version.
2825 * Device ID = 0x20 BMC on PowerEdge 8G servers
2826 * Device Revision = 0x80
2827 * Firmware Revision1 = 0x01 BMC version 1.40
2828 * Firmware Revision2 = 0x40 BCD encoded
2829 * IPMI Version = 0x51 IPMI 1.5
2830 * Manufacturer ID = A2 02 00 Dell IANA
2831 *
d5a2b89a
CM
2832 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2833 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2834 *
3ae0e0f9
CM
2835 */
2836#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2837#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2838#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2839#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2840static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2841{
2842 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2843 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2844 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2845 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2846 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2847 smi_info->oem_data_avail_handler =
2848 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2849 } else if (ipmi_version_major(id) < 1 ||
2850 (ipmi_version_major(id) == 1 &&
2851 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2852 smi_info->oem_data_avail_handler =
2853 oem_data_avail_to_receive_msg_avail;
2854 }
3ae0e0f9
CM
2855 }
2856}
2857
ea94027b
CM
2858#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2859static void return_hosed_msg_badsize(struct smi_info *smi_info)
2860{
2861 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2862
2863 /* Make it a reponse */
2864 msg->rsp[0] = msg->data[0] | 4;
2865 msg->rsp[1] = msg->data[1];
2866 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2867 msg->rsp_size = 3;
2868 smi_info->curr_msg = NULL;
2869 deliver_recv_msg(smi_info, msg);
2870}
2871
2872/*
2873 * dell_poweredge_bt_xaction_handler
2874 * @info - smi_info.device_id must be populated
2875 *
2876 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2877 * not respond to a Get SDR command if the length of the data
2878 * requested is exactly 0x3A, which leads to command timeouts and no
2879 * data returned. This intercepts such commands, and causes userspace
2880 * callers to try again with a different-sized buffer, which succeeds.
2881 */
2882
2883#define STORAGE_NETFN 0x0A
2884#define STORAGE_CMD_GET_SDR 0x23
2885static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2886 unsigned long unused,
2887 void *in)
2888{
2889 struct smi_info *smi_info = in;
2890 unsigned char *data = smi_info->curr_msg->data;
2891 unsigned int size = smi_info->curr_msg->data_size;
2892 if (size >= 8 &&
2893 (data[0]>>2) == STORAGE_NETFN &&
2894 data[1] == STORAGE_CMD_GET_SDR &&
2895 data[7] == 0x3A) {
2896 return_hosed_msg_badsize(smi_info);
2897 return NOTIFY_STOP;
2898 }
2899 return NOTIFY_DONE;
2900}
2901
2902static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2903 .notifier_call = dell_poweredge_bt_xaction_handler,
2904};
2905
2906/*
2907 * setup_dell_poweredge_bt_xaction_handler
2908 * @info - smi_info.device_id must be filled in already
2909 *
2910 * Fills in smi_info.device_id.start_transaction_pre_hook
2911 * when we know what function to use there.
2912 */
2913static void
2914setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2915{
2916 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2917 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2918 smi_info->si_type == SI_BT)
2919 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2920}
2921
3ae0e0f9
CM
2922/*
2923 * setup_oem_data_handler
2924 * @info - smi_info.device_id must be filled in already
2925 *
2926 * Fills in smi_info.device_id.oem_data_available_handler
2927 * when we know what function to use there.
2928 */
2929
2930static void setup_oem_data_handler(struct smi_info *smi_info)
2931{
2932 setup_dell_poweredge_oem_data_handler(smi_info);
2933}
2934
ea94027b
CM
2935static void setup_xaction_handlers(struct smi_info *smi_info)
2936{
2937 setup_dell_poweredge_bt_xaction_handler(smi_info);
2938}
2939
a9a2c44f
CM
2940static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2941{
453823ba 2942 if (smi_info->intf) {
c305e3d3
CM
2943 /*
2944 * The timer and thread are only running if the
2945 * interface has been started up and registered.
2946 */
453823ba
CM
2947 if (smi_info->thread != NULL)
2948 kthread_stop(smi_info->thread);
2949 del_timer_sync(&smi_info->si_timer);
2950 }
a9a2c44f
CM
2951}
2952
7420884c 2953static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2954{
2955 int type;
2956 int port;
7420884c 2957} ipmi_defaults[] =
b0defcdb
CM
2958{
2959 { .type = SI_KCS, .port = 0xca2 },
2960 { .type = SI_SMIC, .port = 0xca9 },
2961 { .type = SI_BT, .port = 0xe4 },
2962 { .port = 0 }
2963};
2964
2965static __devinit void default_find_bmc(void)
2966{
2967 struct smi_info *info;
2968 int i;
2969
2970 for (i = 0; ; i++) {
2971 if (!ipmi_defaults[i].port)
2972 break;
68e1ee62 2973#ifdef CONFIG_PPC
4ff31d77
CK
2974 if (check_legacy_ioport(ipmi_defaults[i].port))
2975 continue;
2976#endif
a09f4855
AM
2977 info = kzalloc(sizeof(*info), GFP_KERNEL);
2978 if (!info)
2979 return;
4ff31d77 2980
5fedc4a2 2981 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2982
2983 info->si_type = ipmi_defaults[i].type;
2984 info->io_setup = port_setup;
2985 info->io.addr_data = ipmi_defaults[i].port;
2986 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2987
2988 info->io.addr = NULL;
2989 info->io.regspacing = DEFAULT_REGSPACING;
2990 info->io.regsize = DEFAULT_REGSPACING;
2991 info->io.regshift = 0;
2992
2407d77a
MG
2993 if (add_smi(info) == 0) {
2994 if ((try_smi_init(info)) == 0) {
2995 /* Found one... */
2996 printk(KERN_INFO "ipmi_si: Found default %s"
2997 " state machine at %s address 0x%lx\n",
2998 si_to_str[info->si_type],
2999 addr_space_to_str[info->io.addr_type],
3000 info->io.addr_data);
3001 } else
3002 cleanup_one_si(info);
b0defcdb
CM
3003 }
3004 }
3005}
3006
3007static int is_new_interface(struct smi_info *info)
1da177e4 3008{
b0defcdb 3009 struct smi_info *e;
1da177e4 3010
b0defcdb
CM
3011 list_for_each_entry(e, &smi_infos, link) {
3012 if (e->io.addr_type != info->io.addr_type)
3013 continue;
3014 if (e->io.addr_data == info->io.addr_data)
3015 return 0;
3016 }
1da177e4 3017
b0defcdb
CM
3018 return 1;
3019}
1da177e4 3020
2407d77a 3021static int add_smi(struct smi_info *new_smi)
b0defcdb 3022{
2407d77a 3023 int rv = 0;
b0defcdb 3024
2407d77a
MG
3025 printk(KERN_INFO "ipmi_si: Adding %s-specified %s state machine",
3026 ipmi_addr_src_to_str[new_smi->addr_source],
3027 si_to_str[new_smi->si_type]);
d6dfd131 3028 mutex_lock(&smi_infos_lock);
b0defcdb 3029 if (!is_new_interface(new_smi)) {
2407d77a 3030 printk(KERN_CONT ": duplicate interface\n");
b0defcdb
CM
3031 rv = -EBUSY;
3032 goto out_err;
3033 }
1da177e4 3034
2407d77a
MG
3035 printk(KERN_CONT "\n");
3036
1da177e4
LT
3037 /* So we know not to free it unless we have allocated one. */
3038 new_smi->intf = NULL;
3039 new_smi->si_sm = NULL;
3040 new_smi->handlers = NULL;
3041
2407d77a
MG
3042 list_add_tail(&new_smi->link, &smi_infos);
3043
3044out_err:
3045 mutex_unlock(&smi_infos_lock);
3046 return rv;
3047}
3048
3049static int try_smi_init(struct smi_info *new_smi)
3050{
3051 int rv = 0;
3052 int i;
3053
3054 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3055 " machine at %s address 0x%lx, slave address 0x%x,"
3056 " irq %d\n",
3057 ipmi_addr_src_to_str[new_smi->addr_source],
3058 si_to_str[new_smi->si_type],
3059 addr_space_to_str[new_smi->io.addr_type],
3060 new_smi->io.addr_data,
3061 new_smi->slave_addr, new_smi->irq);
3062
b0defcdb
CM
3063 switch (new_smi->si_type) {
3064 case SI_KCS:
1da177e4 3065 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3066 break;
3067
3068 case SI_SMIC:
1da177e4 3069 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3070 break;
3071
3072 case SI_BT:
1da177e4 3073 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3074 break;
3075
3076 default:
1da177e4
LT
3077 /* No support for anything else yet. */
3078 rv = -EIO;
3079 goto out_err;
3080 }
3081
3082 /* Allocate the state machine's data and initialize it. */
3083 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3084 if (!new_smi->si_sm) {
c305e3d3 3085 printk(KERN_ERR "Could not allocate state machine memory\n");
1da177e4
LT
3086 rv = -ENOMEM;
3087 goto out_err;
3088 }
3089 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3090 &new_smi->io);
3091
3092 /* Now that we know the I/O size, we can set up the I/O. */
3093 rv = new_smi->io_setup(new_smi);
3094 if (rv) {
c305e3d3 3095 printk(KERN_ERR "Could not set up I/O space\n");
1da177e4
LT
3096 goto out_err;
3097 }
3098
3099 spin_lock_init(&(new_smi->si_lock));
3100 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3101
3102 /* Do low-level detection first. */
3103 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
3104 if (new_smi->addr_source)
3105 printk(KERN_INFO "ipmi_si: Interface detection"
3106 " failed\n");
1da177e4
LT
3107 rv = -ENODEV;
3108 goto out_err;
3109 }
3110
c305e3d3
CM
3111 /*
3112 * Attempt a get device id command. If it fails, we probably
3113 * don't have a BMC here.
3114 */
1da177e4 3115 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3116 if (rv) {
3117 if (new_smi->addr_source)
3118 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3119 " at this location\n");
1da177e4 3120 goto out_err;
b0defcdb 3121 }
1da177e4 3122
3ae0e0f9 3123 setup_oem_data_handler(new_smi);
ea94027b 3124 setup_xaction_handlers(new_smi);
3ae0e0f9 3125
1da177e4
LT
3126 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3127 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3128 new_smi->curr_msg = NULL;
3129 atomic_set(&new_smi->req_events, 0);
3130 new_smi->run_to_completion = 0;
64959e2d
CM
3131 for (i = 0; i < SI_NUM_STATS; i++)
3132 atomic_set(&new_smi->stats[i], 0);
1da177e4 3133
ea4078ca 3134 new_smi->interrupt_disabled = 1;
a9a2c44f 3135 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3136 new_smi->intf_num = smi_num;
3137 smi_num++;
1da177e4 3138
40112ae7
CM
3139 rv = try_enable_event_buffer(new_smi);
3140 if (rv == 0)
3141 new_smi->has_event_buffer = 1;
3142
c305e3d3
CM
3143 /*
3144 * Start clearing the flags before we enable interrupts or the
3145 * timer to avoid racing with the timer.
3146 */
1da177e4
LT
3147 start_clear_flags(new_smi);
3148 /* IRQ is defined to be set when non-zero. */
3149 if (new_smi->irq)
3150 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3151
50c812b2 3152 if (!new_smi->dev) {
c305e3d3
CM
3153 /*
3154 * If we don't already have a device from something
3155 * else (like PCI), then register a new one.
3156 */
50c812b2
CM
3157 new_smi->pdev = platform_device_alloc("ipmi_si",
3158 new_smi->intf_num);
8b32b5d0 3159 if (!new_smi->pdev) {
50c812b2
CM
3160 printk(KERN_ERR
3161 "ipmi_si_intf:"
3162 " Unable to allocate platform device\n");
453823ba 3163 goto out_err;
50c812b2
CM
3164 }
3165 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3166 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3167
b48f5457 3168 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
3169 if (rv) {
3170 printk(KERN_ERR
3171 "ipmi_si_intf:"
3172 " Unable to register system interface device:"
3173 " %d\n",
3174 rv);
453823ba 3175 goto out_err;
50c812b2
CM
3176 }
3177 new_smi->dev_registered = 1;
3178 }
3179
1da177e4
LT
3180 rv = ipmi_register_smi(&handlers,
3181 new_smi,
50c812b2
CM
3182 &new_smi->device_id,
3183 new_smi->dev,
759643b8 3184 "bmc",
453823ba 3185 new_smi->slave_addr);
1da177e4
LT
3186 if (rv) {
3187 printk(KERN_ERR
3188 "ipmi_si: Unable to register device: error %d\n",
3189 rv);
3190 goto out_err_stop_timer;
3191 }
3192
3193 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3194 type_file_read_proc,
99b76233 3195 new_smi);
1da177e4
LT
3196 if (rv) {
3197 printk(KERN_ERR
3198 "ipmi_si: Unable to create proc entry: %d\n",
3199 rv);
3200 goto out_err_stop_timer;
3201 }
3202
3203 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3204 stat_file_read_proc,
99b76233 3205 new_smi);
1da177e4
LT
3206 if (rv) {
3207 printk(KERN_ERR
3208 "ipmi_si: Unable to create proc entry: %d\n",
3209 rv);
3210 goto out_err_stop_timer;
3211 }
3212
b361e27b 3213 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3214 param_read_proc,
99b76233 3215 new_smi);
b361e27b
CM
3216 if (rv) {
3217 printk(KERN_ERR
3218 "ipmi_si: Unable to create proc entry: %d\n",
3219 rv);
3220 goto out_err_stop_timer;
3221 }
3222
c305e3d3
CM
3223 printk(KERN_INFO "IPMI %s interface initialized\n",
3224 si_to_str[new_smi->si_type]);
1da177e4
LT
3225
3226 return 0;
3227
3228 out_err_stop_timer:
a9a2c44f
CM
3229 atomic_inc(&new_smi->stop_operation);
3230 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3231
3232 out_err:
2407d77a
MG
3233 new_smi->interrupt_disabled = 1;
3234
3235 if (new_smi->intf) {
1da177e4 3236 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3237 new_smi->intf = NULL;
3238 }
1da177e4 3239
2407d77a 3240 if (new_smi->irq_cleanup) {
b0defcdb 3241 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3242 new_smi->irq_cleanup = NULL;
3243 }
1da177e4 3244
c305e3d3
CM
3245 /*
3246 * Wait until we know that we are out of any interrupt
3247 * handlers might have been running before we freed the
3248 * interrupt.
3249 */
fbd568a3 3250 synchronize_sched();
1da177e4
LT
3251
3252 if (new_smi->si_sm) {
3253 if (new_smi->handlers)
3254 new_smi->handlers->cleanup(new_smi->si_sm);
3255 kfree(new_smi->si_sm);
2407d77a 3256 new_smi->si_sm = NULL;
1da177e4 3257 }
2407d77a 3258 if (new_smi->addr_source_cleanup) {
b0defcdb 3259 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3260 new_smi->addr_source_cleanup = NULL;
3261 }
3262 if (new_smi->io_cleanup) {
7767e126 3263 new_smi->io_cleanup(new_smi);
2407d77a
MG
3264 new_smi->io_cleanup = NULL;
3265 }
1da177e4 3266
2407d77a 3267 if (new_smi->dev_registered) {
50c812b2 3268 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3269 new_smi->dev_registered = 0;
3270 }
b0defcdb 3271
1da177e4
LT
3272 return rv;
3273}
3274
b0defcdb 3275static __devinit int init_ipmi_si(void)
1da177e4 3276{
1da177e4
LT
3277 int i;
3278 char *str;
50c812b2 3279 int rv;
2407d77a 3280 struct smi_info *e;
1da177e4
LT
3281
3282 if (initialized)
3283 return 0;
3284 initialized = 1;
3285
50c812b2 3286 /* Register the device drivers. */
fe2d5ffc 3287 rv = driver_register(&ipmi_driver.driver);
50c812b2
CM
3288 if (rv) {
3289 printk(KERN_ERR
3290 "init_ipmi_si: Unable to register driver: %d\n",
3291 rv);
3292 return rv;
3293 }
3294
3295
1da177e4
LT
3296 /* Parse out the si_type string into its components. */
3297 str = si_type_str;
3298 if (*str != '\0') {
e8b33617 3299 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3300 si_type[i] = str;
3301 str = strchr(str, ',');
3302 if (str) {
3303 *str = '\0';
3304 str++;
3305 } else {
3306 break;
3307 }
3308 }
3309 }
3310
1fdd75bd 3311 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3312
b0defcdb
CM
3313 hardcode_find_bmc();
3314
d8cc5267
MG
3315 /* If the user gave us a device, they presumably want us to use it */
3316 mutex_lock(&smi_infos_lock);
3317 if (!list_empty(&smi_infos)) {
3318 mutex_unlock(&smi_infos_lock);
3319 return 0;
3320 }
3321 mutex_unlock(&smi_infos_lock);
3322
b0defcdb 3323#ifdef CONFIG_PCI
168b35a7 3324 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3325 if (rv)
168b35a7
CM
3326 printk(KERN_ERR
3327 "init_ipmi_si: Unable to register PCI driver: %d\n",
3328 rv);
b0defcdb
CM
3329#endif
3330
754d4531
MG
3331#ifdef CONFIG_ACPI
3332 pnp_register_driver(&ipmi_pnp_driver);
3333#endif
3334
3335#ifdef CONFIG_DMI
3336 dmi_find_bmc();
3337#endif
3338
3339#ifdef CONFIG_ACPI
3340 spmi_find_bmc();
3341#endif
3342
dba9b4f6
CM
3343#ifdef CONFIG_PPC_OF
3344 of_register_platform_driver(&ipmi_of_platform_driver);
3345#endif
3346
d8cc5267
MG
3347 /* Try to register something with interrupts first */
3348
2407d77a
MG
3349 mutex_lock(&smi_infos_lock);
3350 list_for_each_entry(e, &smi_infos, link) {
d8cc5267
MG
3351 if (e->irq) {
3352 if (!try_smi_init(e)) {
3353 mutex_unlock(&smi_infos_lock);
3354 return 0;
3355 }
3356 }
3357 }
3358
3359 /* Fall back to the preferred device */
3360
3361 list_for_each_entry(e, &smi_infos, link) {
3362 if (!e->irq) {
3363 if (!try_smi_init(e)) {
3364 mutex_unlock(&smi_infos_lock);
3365 return 0;
3366 }
3367 }
2407d77a
MG
3368 }
3369 mutex_unlock(&smi_infos_lock);
3370
b0defcdb 3371 if (si_trydefaults) {
d6dfd131 3372 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3373 if (list_empty(&smi_infos)) {
3374 /* No BMC was found, try defaults. */
d6dfd131 3375 mutex_unlock(&smi_infos_lock);
b0defcdb 3376 default_find_bmc();
2407d77a 3377 } else
d6dfd131 3378 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3379 }
3380
d6dfd131 3381 mutex_lock(&smi_infos_lock);
b361e27b 3382 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3383 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3384#ifdef CONFIG_PCI
3385 pci_unregister_driver(&ipmi_pci_driver);
3386#endif
10fb62e5
CK
3387
3388#ifdef CONFIG_PPC_OF
3389 of_unregister_platform_driver(&ipmi_of_platform_driver);
3390#endif
fe2d5ffc 3391 driver_unregister(&ipmi_driver.driver);
c305e3d3
CM
3392 printk(KERN_WARNING
3393 "ipmi_si: Unable to find any System Interface(s)\n");
1da177e4 3394 return -ENODEV;
b0defcdb 3395 } else {
d6dfd131 3396 mutex_unlock(&smi_infos_lock);
b0defcdb 3397 return 0;
1da177e4 3398 }
1da177e4
LT
3399}
3400module_init(init_ipmi_si);
3401
b361e27b 3402static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3403{
2407d77a 3404 int rv = 0;
1da177e4
LT
3405 unsigned long flags;
3406
b0defcdb 3407 if (!to_clean)
1da177e4
LT
3408 return;
3409
b0defcdb
CM
3410 list_del(&to_clean->link);
3411
ee6cd5f8 3412 /* Tell the driver that we are shutting down. */
a9a2c44f 3413 atomic_inc(&to_clean->stop_operation);
b0defcdb 3414
c305e3d3
CM
3415 /*
3416 * Make sure the timer and thread are stopped and will not run
3417 * again.
3418 */
a9a2c44f 3419 wait_for_timer_and_thread(to_clean);
1da177e4 3420
c305e3d3
CM
3421 /*
3422 * Timeouts are stopped, now make sure the interrupts are off
3423 * for the device. A little tricky with locks to make sure
3424 * there are no races.
3425 */
ee6cd5f8
CM
3426 spin_lock_irqsave(&to_clean->si_lock, flags);
3427 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3428 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3429 poll(to_clean);
3430 schedule_timeout_uninterruptible(1);
3431 spin_lock_irqsave(&to_clean->si_lock, flags);
3432 }
3433 disable_si_irq(to_clean);
3434 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3435 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3436 poll(to_clean);
3437 schedule_timeout_uninterruptible(1);
3438 }
3439
3440 /* Clean up interrupts and make sure that everything is done. */
3441 if (to_clean->irq_cleanup)
3442 to_clean->irq_cleanup(to_clean);
e8b33617 3443 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3444 poll(to_clean);
da4cd8df 3445 schedule_timeout_uninterruptible(1);
1da177e4
LT
3446 }
3447
2407d77a
MG
3448 if (to_clean->intf)
3449 rv = ipmi_unregister_smi(to_clean->intf);
3450
1da177e4
LT
3451 if (rv) {
3452 printk(KERN_ERR
3453 "ipmi_si: Unable to unregister device: errno=%d\n",
3454 rv);
3455 }
3456
2407d77a
MG
3457 if (to_clean->handlers)
3458 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3459
3460 kfree(to_clean->si_sm);
3461
b0defcdb
CM
3462 if (to_clean->addr_source_cleanup)
3463 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3464 if (to_clean->io_cleanup)
3465 to_clean->io_cleanup(to_clean);
50c812b2
CM
3466
3467 if (to_clean->dev_registered)
3468 platform_device_unregister(to_clean->pdev);
3469
3470 kfree(to_clean);
1da177e4
LT
3471}
3472
3473static __exit void cleanup_ipmi_si(void)
3474{
b0defcdb 3475 struct smi_info *e, *tmp_e;
1da177e4 3476
b0defcdb 3477 if (!initialized)
1da177e4
LT
3478 return;
3479
b0defcdb
CM
3480#ifdef CONFIG_PCI
3481 pci_unregister_driver(&ipmi_pci_driver);
3482#endif
27d0567a 3483#ifdef CONFIG_ACPI
9e368fa0
BH
3484 pnp_unregister_driver(&ipmi_pnp_driver);
3485#endif
b0defcdb 3486
dba9b4f6
CM
3487#ifdef CONFIG_PPC_OF
3488 of_unregister_platform_driver(&ipmi_of_platform_driver);
3489#endif
3490
d6dfd131 3491 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3492 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3493 cleanup_one_si(e);
d6dfd131 3494 mutex_unlock(&smi_infos_lock);
50c812b2 3495
fe2d5ffc 3496 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3497}
3498module_exit(cleanup_ipmi_si);
3499
3500MODULE_LICENSE("GPL");
1fdd75bd 3501MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3502MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3503 " system interfaces.");