]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/block/umem.c
Linux 2.6.23-rc1
[net-next-2.6.git] / drivers / block / umem.c
CommitLineData
1da177e4
LT
1/*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
35 */
36
46308c0b 37//#define DEBUG /* uncomment if you want debugging info (pr_debug) */
1da177e4
LT
38#include <linux/fs.h>
39#include <linux/bio.h>
40#include <linux/kernel.h>
41#include <linux/mm.h>
42#include <linux/mman.h>
43#include <linux/ioctl.h>
44#include <linux/module.h>
45#include <linux/init.h>
46#include <linux/interrupt.h>
1da177e4
LT
47#include <linux/timer.h>
48#include <linux/pci.h>
49#include <linux/slab.h>
910638ae 50#include <linux/dma-mapping.h>
1da177e4
LT
51
52#include <linux/fcntl.h> /* O_ACCMODE */
53#include <linux/hdreg.h> /* HDIO_GETGEO */
54
55#include <linux/umem.h>
56
57#include <asm/uaccess.h>
58#include <asm/io.h>
59
1da177e4
LT
60#define MM_MAXCARDS 4
61#define MM_RAHEAD 2 /* two sectors */
62#define MM_BLKSIZE 1024 /* 1k blocks */
63#define MM_HARDSECT 512 /* 512-byte hardware sectors */
64#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
65
66/*
67 * Version Information
68 */
69
70#define DRIVER_VERSION "v2.3"
71#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
72#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
73
74static int debug;
75/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
76#define HW_TRACE(x)
77
78#define DEBUG_LED_ON_TRANSFER 0x01
79#define DEBUG_BATTERY_POLLING 0x02
80
81module_param(debug, int, 0644);
82MODULE_PARM_DESC(debug, "Debug bitmask");
83
84static int pci_read_cmd = 0x0C; /* Read Multiple */
85module_param(pci_read_cmd, int, 0);
86MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
87
88static int pci_write_cmd = 0x0F; /* Write and Invalidate */
89module_param(pci_write_cmd, int, 0);
90MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
91
92static int pci_cmds;
93
94static int major_nr;
95
96#include <linux/blkdev.h>
97#include <linux/blkpg.h>
98
99struct cardinfo {
100 int card_number;
101 struct pci_dev *dev;
102
103 int irq;
104
105 unsigned long csr_base;
106 unsigned char __iomem *csr_remap;
107 unsigned long csr_len;
1da177e4
LT
108 unsigned int win_size; /* PCI window size */
109 unsigned int mm_size; /* size in kbytes */
110
111 unsigned int init_size; /* initial segment, in sectors,
112 * that we know to
113 * have been written
114 */
115 struct bio *bio, *currentbio, **biotail;
116
117 request_queue_t *queue;
118
119 struct mm_page {
120 dma_addr_t page_dma;
121 struct mm_dma_desc *desc;
122 int cnt, headcnt;
123 struct bio *bio, **biotail;
124 } mm_pages[2];
125#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
126
127 int Active, Ready;
128
129 struct tasklet_struct tasklet;
130 unsigned int dma_status;
131
132 struct {
133 int good;
134 int warned;
135 unsigned long last_change;
136 } battery[2];
137
138 spinlock_t lock;
139 int check_batteries;
140
141 int flags;
142};
143
144static struct cardinfo cards[MM_MAXCARDS];
145static struct block_device_operations mm_fops;
146static struct timer_list battery_timer;
147
148static int num_cards = 0;
149
150static struct gendisk *mm_gendisk[MM_MAXCARDS];
151
152static void check_batteries(struct cardinfo *card);
153
154/*
155-----------------------------------------------------------------------------------
156-- get_userbit
157-----------------------------------------------------------------------------------
158*/
159static int get_userbit(struct cardinfo *card, int bit)
160{
161 unsigned char led;
162
163 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164 return led & bit;
165}
166/*
167-----------------------------------------------------------------------------------
168-- set_userbit
169-----------------------------------------------------------------------------------
170*/
171static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
172{
173 unsigned char led;
174
175 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
176 if (state)
177 led |= bit;
178 else
179 led &= ~bit;
180 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
181
182 return 0;
183}
184/*
185-----------------------------------------------------------------------------------
186-- set_led
187-----------------------------------------------------------------------------------
188*/
189/*
190 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
191 */
192static void set_led(struct cardinfo *card, int shift, unsigned char state)
193{
194 unsigned char led;
195
196 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
197 if (state == LED_FLIP)
198 led ^= (1<<shift);
199 else {
200 led &= ~(0x03 << shift);
201 led |= (state << shift);
202 }
203 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
204
205}
206
207#ifdef MM_DIAG
208/*
209-----------------------------------------------------------------------------------
210-- dump_regs
211-----------------------------------------------------------------------------------
212*/
213static void dump_regs(struct cardinfo *card)
214{
215 unsigned char *p;
216 int i, i1;
217
218 p = card->csr_remap;
219 for (i = 0; i < 8; i++) {
220 printk(KERN_DEBUG "%p ", p);
221
222 for (i1 = 0; i1 < 16; i1++)
223 printk("%02x ", *p++);
224
225 printk("\n");
226 }
227}
228#endif
229/*
230-----------------------------------------------------------------------------------
231-- dump_dmastat
232-----------------------------------------------------------------------------------
233*/
234static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
235{
236 printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
237 if (dmastat & DMASCR_ANY_ERR)
238 printk("ANY_ERR ");
239 if (dmastat & DMASCR_MBE_ERR)
240 printk("MBE_ERR ");
241 if (dmastat & DMASCR_PARITY_ERR_REP)
242 printk("PARITY_ERR_REP ");
243 if (dmastat & DMASCR_PARITY_ERR_DET)
244 printk("PARITY_ERR_DET ");
245 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
246 printk("SYSTEM_ERR_SIG ");
247 if (dmastat & DMASCR_TARGET_ABT)
248 printk("TARGET_ABT ");
249 if (dmastat & DMASCR_MASTER_ABT)
250 printk("MASTER_ABT ");
251 if (dmastat & DMASCR_CHAIN_COMPLETE)
252 printk("CHAIN_COMPLETE ");
253 if (dmastat & DMASCR_DMA_COMPLETE)
254 printk("DMA_COMPLETE ");
255 printk("\n");
256}
257
258/*
259 * Theory of request handling
260 *
261 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
262 * We have two pages of mm_dma_desc, holding about 64 descriptors
263 * each. These are allocated at init time.
264 * One page is "Ready" and is either full, or can have request added.
265 * The other page might be "Active", which DMA is happening on it.
266 *
267 * Whenever IO on the active page completes, the Ready page is activated
268 * and the ex-Active page is clean out and made Ready.
269 * Otherwise the Ready page is only activated when it becomes full, or
270 * when mm_unplug_device is called via the unplug_io_fn.
271 *
272 * If a request arrives while both pages a full, it is queued, and b_rdev is
273 * overloaded to record whether it was a read or a write.
274 *
275 * The interrupt handler only polls the device to clear the interrupt.
276 * The processing of the result is done in a tasklet.
277 */
278
279static void mm_start_io(struct cardinfo *card)
280{
281 /* we have the lock, we know there is
282 * no IO active, and we know that card->Active
283 * is set
284 */
285 struct mm_dma_desc *desc;
286 struct mm_page *page;
287 int offset;
288
289 /* make the last descriptor end the chain */
290 page = &card->mm_pages[card->Active];
46308c0b 291 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
1da177e4
LT
292 desc = &page->desc[page->cnt-1];
293
294 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
295 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
296 desc->sem_control_bits = desc->control_bits;
297
298
299 if (debug & DEBUG_LED_ON_TRANSFER)
300 set_led(card, LED_REMOVE, LED_ON);
301
302 desc = &page->desc[page->headcnt];
303 writel(0, card->csr_remap + DMA_PCI_ADDR);
304 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
305
306 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
307 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
308
309 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
310 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
311
312 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
313 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
314
315 offset = ((char*)desc) - ((char*)page->desc);
316 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
317 card->csr_remap + DMA_DESCRIPTOR_ADDR);
318 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
319 * and on some ports will do nothing ! */
320 writel(cpu_to_le32(((u64)page->page_dma)>>32),
321 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
322
323 /* Go, go, go */
324 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
325 card->csr_remap + DMA_STATUS_CTRL);
326}
327
328static int add_bio(struct cardinfo *card);
329
330static void activate(struct cardinfo *card)
331{
332 /* if No page is Active, and Ready is
333 * not empty, then switch Ready page
334 * to active and start IO.
335 * Then add any bh's that are available to Ready
336 */
337
338 do {
339 while (add_bio(card))
340 ;
341
342 if (card->Active == -1 &&
343 card->mm_pages[card->Ready].cnt > 0) {
344 card->Active = card->Ready;
345 card->Ready = 1-card->Ready;
346 mm_start_io(card);
347 }
348
349 } while (card->Active == -1 && add_bio(card));
350}
351
352static inline void reset_page(struct mm_page *page)
353{
354 page->cnt = 0;
355 page->headcnt = 0;
356 page->bio = NULL;
357 page->biotail = & page->bio;
358}
359
360static void mm_unplug_device(request_queue_t *q)
361{
362 struct cardinfo *card = q->queuedata;
363 unsigned long flags;
364
365 spin_lock_irqsave(&card->lock, flags);
366 if (blk_remove_plug(q))
367 activate(card);
368 spin_unlock_irqrestore(&card->lock, flags);
369}
370
371/*
372 * If there is room on Ready page, take
373 * one bh off list and add it.
374 * return 1 if there was room, else 0.
375 */
376static int add_bio(struct cardinfo *card)
377{
378 struct mm_page *p;
379 struct mm_dma_desc *desc;
380 dma_addr_t dma_handle;
381 int offset;
382 struct bio *bio;
383 int rw;
384 int len;
385
386 bio = card->currentbio;
387 if (!bio && card->bio) {
388 card->currentbio = card->bio;
389 card->bio = card->bio->bi_next;
390 if (card->bio == NULL)
391 card->biotail = &card->bio;
392 card->currentbio->bi_next = NULL;
393 return 1;
394 }
395 if (!bio)
396 return 0;
397
398 rw = bio_rw(bio);
399 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
400 return 0;
401
402 len = bio_iovec(bio)->bv_len;
403 dma_handle = pci_map_page(card->dev,
404 bio_page(bio),
405 bio_offset(bio),
406 len,
407 (rw==READ) ?
408 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
409
410 p = &card->mm_pages[card->Ready];
411 desc = &p->desc[p->cnt];
412 p->cnt++;
413 if ((p->biotail) != &bio->bi_next) {
414 *(p->biotail) = bio;
415 p->biotail = &(bio->bi_next);
416 bio->bi_next = NULL;
417 }
418
419 desc->data_dma_handle = dma_handle;
420
421 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
422 desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
423 desc->transfer_size = cpu_to_le32(len);
424 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
425 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
426 desc->zero1 = desc->zero2 = 0;
427 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
428 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
429 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
430 DMASCR_PARITY_INT_EN|
431 DMASCR_CHAIN_EN |
432 DMASCR_SEM_EN |
433 pci_cmds);
434 if (rw == WRITE)
435 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
436 desc->sem_control_bits = desc->control_bits;
437
438 bio->bi_sector += (len>>9);
439 bio->bi_size -= len;
440 bio->bi_idx++;
441 if (bio->bi_idx >= bio->bi_vcnt)
442 card->currentbio = NULL;
443
444 return 1;
445}
446
447static void process_page(unsigned long data)
448{
449 /* check if any of the requests in the page are DMA_COMPLETE,
450 * and deal with them appropriately.
451 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
452 * dma must have hit an error on that descriptor, so use dma_status instead
453 * and assume that all following descriptors must be re-tried.
454 */
455 struct mm_page *page;
456 struct bio *return_bio=NULL;
457 struct cardinfo *card = (struct cardinfo *)data;
458 unsigned int dma_status = card->dma_status;
459
460 spin_lock_bh(&card->lock);
461 if (card->Active < 0)
462 goto out_unlock;
463 page = &card->mm_pages[card->Active];
464
465 while (page->headcnt < page->cnt) {
466 struct bio *bio = page->bio;
467 struct mm_dma_desc *desc = &page->desc[page->headcnt];
468 int control = le32_to_cpu(desc->sem_control_bits);
469 int last=0;
470 int idx;
471
472 if (!(control & DMASCR_DMA_COMPLETE)) {
473 control = dma_status;
474 last=1;
475 }
476 page->headcnt++;
477 idx = bio->bi_phys_segments;
478 bio->bi_phys_segments++;
479 if (bio->bi_phys_segments >= bio->bi_vcnt)
480 page->bio = bio->bi_next;
481
482 pci_unmap_page(card->dev, desc->data_dma_handle,
483 bio_iovec_idx(bio,idx)->bv_len,
484 (control& DMASCR_TRANSFER_READ) ?
485 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
486 if (control & DMASCR_HARD_ERROR) {
487 /* error */
488 clear_bit(BIO_UPTODATE, &bio->bi_flags);
489 printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
490 card->card_number,
491 le32_to_cpu(desc->local_addr)>>9,
492 le32_to_cpu(desc->transfer_size));
493 dump_dmastat(card, control);
494 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
495 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
496 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
497 if (card->init_size>>1 >= card->mm_size) {
498 printk(KERN_INFO "MM%d: memory now initialised\n",
499 card->card_number);
500 set_userbit(card, MEMORY_INITIALIZED, 1);
501 }
502 }
503 if (bio != page->bio) {
504 bio->bi_next = return_bio;
505 return_bio = bio;
506 }
507
508 if (last) break;
509 }
510
511 if (debug & DEBUG_LED_ON_TRANSFER)
512 set_led(card, LED_REMOVE, LED_OFF);
513
514 if (card->check_batteries) {
515 card->check_batteries = 0;
516 check_batteries(card);
517 }
518 if (page->headcnt >= page->cnt) {
519 reset_page(page);
520 card->Active = -1;
521 activate(card);
522 } else {
523 /* haven't finished with this one yet */
46308c0b 524 pr_debug("do some more\n");
1da177e4
LT
525 mm_start_io(card);
526 }
527 out_unlock:
528 spin_unlock_bh(&card->lock);
529
530 while(return_bio) {
531 struct bio *bio = return_bio;
532
533 return_bio = bio->bi_next;
534 bio->bi_next = NULL;
535 bio_endio(bio, bio->bi_size, 0);
536 }
537}
538
539/*
540-----------------------------------------------------------------------------------
541-- mm_make_request
542-----------------------------------------------------------------------------------
543*/
544static int mm_make_request(request_queue_t *q, struct bio *bio)
545{
546 struct cardinfo *card = q->queuedata;
f2b9ecc4
ZB
547 pr_debug("mm_make_request %llu %u\n",
548 (unsigned long long)bio->bi_sector, bio->bi_size);
1da177e4
LT
549
550 bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
551 spin_lock_irq(&card->lock);
552 *card->biotail = bio;
553 bio->bi_next = NULL;
554 card->biotail = &bio->bi_next;
555 blk_plug_device(q);
556 spin_unlock_irq(&card->lock);
557
558 return 0;
559}
560
561/*
562-----------------------------------------------------------------------------------
563-- mm_interrupt
564-----------------------------------------------------------------------------------
565*/
7d12e780 566static irqreturn_t mm_interrupt(int irq, void *__card)
1da177e4
LT
567{
568 struct cardinfo *card = (struct cardinfo *) __card;
569 unsigned int dma_status;
570 unsigned short cfg_status;
571
572HW_TRACE(0x30);
573
574 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
575
576 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
577 /* interrupt wasn't for me ... */
578 return IRQ_NONE;
579 }
580
581 /* clear COMPLETION interrupts */
582 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
583 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
584 card->csr_remap+ DMA_STATUS_CTRL);
585 else
586 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
587 card->csr_remap+ DMA_STATUS_CTRL + 2);
588
589 /* log errors and clear interrupt status */
590 if (dma_status & DMASCR_ANY_ERR) {
591 unsigned int data_log1, data_log2;
592 unsigned int addr_log1, addr_log2;
593 unsigned char stat, count, syndrome, check;
594
595 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
596
597 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
598 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
599 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
600 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
601
602 count = readb(card->csr_remap + ERROR_COUNT);
603 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
604 check = readb(card->csr_remap + ERROR_CHECK);
605
606 dump_dmastat(card, dma_status);
607
608 if (stat & 0x01)
609 printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
610 card->card_number, count);
611 if (stat & 0x02)
612 printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
613 card->card_number);
614
615 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
616 card->card_number, addr_log2, addr_log1, data_log2, data_log1);
617 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
618 card->card_number, check, syndrome);
619
620 writeb(0, card->csr_remap + ERROR_COUNT);
621 }
622
623 if (dma_status & DMASCR_PARITY_ERR_REP) {
624 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
625 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
626 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
627 }
628
629 if (dma_status & DMASCR_PARITY_ERR_DET) {
630 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
631 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
632 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
633 }
634
635 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
636 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
637 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639 }
640
641 if (dma_status & DMASCR_TARGET_ABT) {
642 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
643 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
645 }
646
647 if (dma_status & DMASCR_MASTER_ABT) {
648 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
649 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
651 }
652
653 /* and process the DMA descriptors */
654 card->dma_status = dma_status;
655 tasklet_schedule(&card->tasklet);
656
657HW_TRACE(0x36);
658
659 return IRQ_HANDLED;
660}
661/*
662-----------------------------------------------------------------------------------
663-- set_fault_to_battery_status
664-----------------------------------------------------------------------------------
665*/
666/*
667 * If both batteries are good, no LED
668 * If either battery has been warned, solid LED
669 * If both batteries are bad, flash the LED quickly
670 * If either battery is bad, flash the LED semi quickly
671 */
672static void set_fault_to_battery_status(struct cardinfo *card)
673{
674 if (card->battery[0].good && card->battery[1].good)
675 set_led(card, LED_FAULT, LED_OFF);
676 else if (card->battery[0].warned || card->battery[1].warned)
677 set_led(card, LED_FAULT, LED_ON);
678 else if (!card->battery[0].good && !card->battery[1].good)
679 set_led(card, LED_FAULT, LED_FLASH_7_0);
680 else
681 set_led(card, LED_FAULT, LED_FLASH_3_5);
682}
683
684static void init_battery_timer(void);
685
686
687/*
688-----------------------------------------------------------------------------------
689-- check_battery
690-----------------------------------------------------------------------------------
691*/
692static int check_battery(struct cardinfo *card, int battery, int status)
693{
694 if (status != card->battery[battery].good) {
695 card->battery[battery].good = !card->battery[battery].good;
696 card->battery[battery].last_change = jiffies;
697
698 if (card->battery[battery].good) {
699 printk(KERN_ERR "MM%d: Battery %d now good\n",
700 card->card_number, battery + 1);
701 card->battery[battery].warned = 0;
702 } else
703 printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
704 card->card_number, battery + 1);
705
706 return 1;
707 } else if (!card->battery[battery].good &&
708 !card->battery[battery].warned &&
709 time_after_eq(jiffies, card->battery[battery].last_change +
710 (HZ * 60 * 60 * 5))) {
711 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
712 card->card_number, battery + 1);
713 card->battery[battery].warned = 1;
714
715 return 1;
716 }
717
718 return 0;
719}
720/*
721-----------------------------------------------------------------------------------
722-- check_batteries
723-----------------------------------------------------------------------------------
724*/
725static void check_batteries(struct cardinfo *card)
726{
727 /* NOTE: this must *never* be called while the card
728 * is doing (bus-to-card) DMA, or you will need the
729 * reset switch
730 */
731 unsigned char status;
732 int ret1, ret2;
733
734 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
735 if (debug & DEBUG_BATTERY_POLLING)
736 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
737 card->card_number,
738 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
739 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
740
741 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
742 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
743
744 if (ret1 || ret2)
745 set_fault_to_battery_status(card);
746}
747
748static void check_all_batteries(unsigned long ptr)
749{
750 int i;
751
752 for (i = 0; i < num_cards; i++)
753 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
754 struct cardinfo *card = &cards[i];
755 spin_lock_bh(&card->lock);
756 if (card->Active >= 0)
757 card->check_batteries = 1;
758 else
759 check_batteries(card);
760 spin_unlock_bh(&card->lock);
761 }
762
763 init_battery_timer();
764}
765/*
766-----------------------------------------------------------------------------------
767-- init_battery_timer
768-----------------------------------------------------------------------------------
769*/
770static void init_battery_timer(void)
771{
772 init_timer(&battery_timer);
773 battery_timer.function = check_all_batteries;
774 battery_timer.expires = jiffies + (HZ * 60);
775 add_timer(&battery_timer);
776}
777/*
778-----------------------------------------------------------------------------------
779-- del_battery_timer
780-----------------------------------------------------------------------------------
781*/
782static void del_battery_timer(void)
783{
784 del_timer(&battery_timer);
785}
786/*
787-----------------------------------------------------------------------------------
788-- mm_revalidate
789-----------------------------------------------------------------------------------
790*/
791/*
792 * Note no locks taken out here. In a worst case scenario, we could drop
793 * a chunk of system memory. But that should never happen, since validation
794 * happens at open or mount time, when locks are held.
795 *
796 * That's crap, since doing that while some partitions are opened
797 * or mounted will give you really nasty results.
798 */
799static int mm_revalidate(struct gendisk *disk)
800{
801 struct cardinfo *card = disk->private_data;
802 set_capacity(disk, card->mm_size << 1);
803 return 0;
804}
a885c8c4
CH
805
806static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1da177e4 807{
a885c8c4
CH
808 struct cardinfo *card = bdev->bd_disk->private_data;
809 int size = card->mm_size * (1024 / MM_HARDSECT);
1da177e4 810
a885c8c4
CH
811 /*
812 * get geometry: we have to fake one... trim the size to a
813 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
814 * whatever cylinders.
815 */
816 geo->heads = 64;
817 geo->sectors = 32;
818 geo->cylinders = size / (geo->heads * geo->sectors);
819 return 0;
1da177e4 820}
a885c8c4 821
1da177e4
LT
822/*
823-----------------------------------------------------------------------------------
824-- mm_check_change
825-----------------------------------------------------------------------------------
826 Future support for removable devices
827*/
828static int mm_check_change(struct gendisk *disk)
829{
830/* struct cardinfo *dev = disk->private_data; */
831 return 0;
832}
833/*
834-----------------------------------------------------------------------------------
835-- mm_fops
836-----------------------------------------------------------------------------------
837*/
838static struct block_device_operations mm_fops = {
839 .owner = THIS_MODULE,
a885c8c4 840 .getgeo = mm_getgeo,
1da177e4
LT
841 .revalidate_disk= mm_revalidate,
842 .media_changed = mm_check_change,
843};
844/*
845-----------------------------------------------------------------------------------
846-- mm_pci_probe
847-----------------------------------------------------------------------------------
848*/
849static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
850{
851 int ret = -ENODEV;
852 struct cardinfo *card = &cards[num_cards];
853 unsigned char mem_present;
854 unsigned char batt_status;
855 unsigned int saved_bar, data;
856 int magic_number;
857
858 if (pci_enable_device(dev) < 0)
859 return -ENODEV;
860
861 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
862 pci_set_master(dev);
863
864 card->dev = dev;
865 card->card_number = num_cards;
866
867 card->csr_base = pci_resource_start(dev, 0);
868 card->csr_len = pci_resource_len(dev, 0);
1da177e4
LT
869
870 printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
871 card->card_number, dev->bus->number, dev->devfn);
872
910638ae
MG
873 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
874 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
1da177e4
LT
875 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
876 return -ENOMEM;
877 }
878 if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
879 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
880 ret = -ENOMEM;
881
882 goto failed_req_csr;
883 }
884
885 card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
886 if (!card->csr_remap) {
887 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
888 ret = -ENOMEM;
889
890 goto failed_remap_csr;
891 }
892
893 printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
894 card->csr_base, card->csr_remap, card->csr_len);
895
1da177e4
LT
896 switch(card->dev->device) {
897 case 0x5415:
898 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
899 magic_number = 0x59;
900 break;
901
902 case 0x5425:
903 card->flags |= UM_FLAG_NO_BYTE_STATUS;
904 magic_number = 0x5C;
905 break;
906
907 case 0x6155:
908 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
909 magic_number = 0x99;
910 break;
911
912 default:
913 magic_number = 0x100;
914 break;
915 }
916
917 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
918 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
919 ret = -ENOMEM;
920 goto failed_magic;
921 }
922
923 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
924 PAGE_SIZE*2,
925 &card->mm_pages[0].page_dma);
926 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
927 PAGE_SIZE*2,
928 &card->mm_pages[1].page_dma);
929 if (card->mm_pages[0].desc == NULL ||
930 card->mm_pages[1].desc == NULL) {
931 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
932 goto failed_alloc;
933 }
934 reset_page(&card->mm_pages[0]);
935 reset_page(&card->mm_pages[1]);
936 card->Ready = 0; /* page 0 is ready */
937 card->Active = -1; /* no page is active */
938 card->bio = NULL;
939 card->biotail = &card->bio;
940
941 card->queue = blk_alloc_queue(GFP_KERNEL);
942 if (!card->queue)
943 goto failed_alloc;
944
945 blk_queue_make_request(card->queue, mm_make_request);
946 card->queue->queuedata = card;
947 card->queue->unplug_fn = mm_unplug_device;
948
949 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
950
951 card->check_batteries = 0;
952
953 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
954 switch (mem_present) {
955 case MEM_128_MB:
956 card->mm_size = 1024 * 128;
957 break;
958 case MEM_256_MB:
959 card->mm_size = 1024 * 256;
960 break;
961 case MEM_512_MB:
962 card->mm_size = 1024 * 512;
963 break;
964 case MEM_1_GB:
965 card->mm_size = 1024 * 1024;
966 break;
967 case MEM_2_GB:
968 card->mm_size = 1024 * 2048;
969 break;
970 default:
971 card->mm_size = 0;
972 break;
973 }
974
975 /* Clear the LED's we control */
976 set_led(card, LED_REMOVE, LED_OFF);
977 set_led(card, LED_FAULT, LED_OFF);
978
979 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
980
981 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
982 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
983 card->battery[0].last_change = card->battery[1].last_change = jiffies;
984
985 if (card->flags & UM_FLAG_NO_BATT)
986 printk(KERN_INFO "MM%d: Size %d KB\n",
987 card->card_number, card->mm_size);
988 else {
989 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
990 card->card_number, card->mm_size,
991 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
992 card->battery[0].good ? "OK" : "FAILURE",
993 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
994 card->battery[1].good ? "OK" : "FAILURE");
995
996 set_fault_to_battery_status(card);
997 }
998
999 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1000 data = 0xffffffff;
1001 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1002 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1003 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1004 data &= 0xfffffff0;
1005 data = ~data;
1006 data += 1;
1007
1008 card->win_size = data;
1009
1010
69ab3912 1011 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1da177e4
LT
1012 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1013 ret = -ENODEV;
1014
1015 goto failed_req_irq;
1016 }
1017
1018 card->irq = dev->irq;
1019 printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1020 card->win_size, card->irq);
1021
1022 spin_lock_init(&card->lock);
1023
1024 pci_set_drvdata(dev, card);
1025
1026 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1027 pci_write_cmd = 0x07; /* then Memory Write command */
1028
1029 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1030 unsigned short cfg_command;
1031 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1032 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1033 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1034 }
1035 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1036
1037 num_cards++;
1038
1039 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1040 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1041 card->init_size = 0;
1042 } else {
1043 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1044 card->init_size = card->mm_size;
1045 }
1046
1047 /* Enable ECC */
1048 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1049
1050 return 0;
1051
1052 failed_req_irq:
1053 failed_alloc:
1054 if (card->mm_pages[0].desc)
1055 pci_free_consistent(card->dev, PAGE_SIZE*2,
1056 card->mm_pages[0].desc,
1057 card->mm_pages[0].page_dma);
1058 if (card->mm_pages[1].desc)
1059 pci_free_consistent(card->dev, PAGE_SIZE*2,
1060 card->mm_pages[1].desc,
1061 card->mm_pages[1].page_dma);
1062 failed_magic:
1da177e4
LT
1063 iounmap(card->csr_remap);
1064 failed_remap_csr:
1065 release_mem_region(card->csr_base, card->csr_len);
1066 failed_req_csr:
1067
1068 return ret;
1069}
1070/*
1071-----------------------------------------------------------------------------------
1072-- mm_pci_remove
1073-----------------------------------------------------------------------------------
1074*/
1075static void mm_pci_remove(struct pci_dev *dev)
1076{
1077 struct cardinfo *card = pci_get_drvdata(dev);
1078
1079 tasklet_kill(&card->tasklet);
1080 iounmap(card->csr_remap);
1081 release_mem_region(card->csr_base, card->csr_len);
1da177e4
LT
1082 free_irq(card->irq, card);
1083
1084 if (card->mm_pages[0].desc)
1085 pci_free_consistent(card->dev, PAGE_SIZE*2,
1086 card->mm_pages[0].desc,
1087 card->mm_pages[0].page_dma);
1088 if (card->mm_pages[1].desc)
1089 pci_free_consistent(card->dev, PAGE_SIZE*2,
1090 card->mm_pages[1].desc,
1091 card->mm_pages[1].page_dma);
1312f40e 1092 blk_cleanup_queue(card->queue);
1da177e4
LT
1093}
1094
5874c18b
NB
1095static const struct pci_device_id mm_pci_ids[] = {
1096 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1097 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1098 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1099 {
1da177e4
LT
1100 .vendor = 0x8086,
1101 .device = 0xB555,
1102 .subvendor= 0x1332,
1103 .subdevice= 0x5460,
1104 .class = 0x050000,
1105 .class_mask= 0,
5874c18b 1106 }, { /* end: all zeroes */ }
1da177e4
LT
1107};
1108
1109MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1110
1111static struct pci_driver mm_pci_driver = {
1112 .name = "umem",
1113 .id_table = mm_pci_ids,
1114 .probe = mm_pci_probe,
1115 .remove = mm_pci_remove,
1116};
1117/*
1118-----------------------------------------------------------------------------------
1119-- mm_init
1120-----------------------------------------------------------------------------------
1121*/
1122
1123static int __init mm_init(void)
1124{
1125 int retval, i;
1126 int err;
1127
1128 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1129
9bfab8ce 1130 retval = pci_register_driver(&mm_pci_driver);
1da177e4
LT
1131 if (retval)
1132 return -ENOMEM;
1133
1134 err = major_nr = register_blkdev(0, "umem");
5a243e0e
N
1135 if (err < 0) {
1136 pci_unregister_driver(&mm_pci_driver);
1da177e4 1137 return -EIO;
5a243e0e 1138 }
1da177e4
LT
1139
1140 for (i = 0; i < num_cards; i++) {
1141 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1142 if (!mm_gendisk[i])
1143 goto out;
1144 }
1145
1146 for (i = 0; i < num_cards; i++) {
1147 struct gendisk *disk = mm_gendisk[i];
1148 sprintf(disk->disk_name, "umem%c", 'a'+i);
1da177e4
LT
1149 spin_lock_init(&cards[i].lock);
1150 disk->major = major_nr;
1151 disk->first_minor = i << MM_SHIFT;
1152 disk->fops = &mm_fops;
1153 disk->private_data = &cards[i];
1154 disk->queue = cards[i].queue;
1155 set_capacity(disk, cards[i].mm_size << 1);
1156 add_disk(disk);
1157 }
1158
1159 init_battery_timer();
1160 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1161/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1162 return 0;
1163
1164out:
5a243e0e 1165 pci_unregister_driver(&mm_pci_driver);
1da177e4
LT
1166 unregister_blkdev(major_nr, "umem");
1167 while (i--)
1168 put_disk(mm_gendisk[i]);
1169 return -ENOMEM;
1170}
1171/*
1172-----------------------------------------------------------------------------------
1173-- mm_cleanup
1174-----------------------------------------------------------------------------------
1175*/
1176static void __exit mm_cleanup(void)
1177{
1178 int i;
1179
1180 del_battery_timer();
1181
1182 for (i=0; i < num_cards ; i++) {
1183 del_gendisk(mm_gendisk[i]);
1184 put_disk(mm_gendisk[i]);
1185 }
1186
1187 pci_unregister_driver(&mm_pci_driver);
1188
1189 unregister_blkdev(major_nr, "umem");
1190}
1191
1192module_init(mm_init);
1193module_exit(mm_cleanup);
1194
1195MODULE_AUTHOR(DRIVER_AUTHOR);
1196MODULE_DESCRIPTION(DRIVER_DESC);
1197MODULE_LICENSE("GPL");