]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/block/cciss.c
[PATCH] cciss: new disk register/deregister routines
[net-next-2.6.git] / drivers / block / cciss.c
CommitLineData
1da177e4
LT
1/*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3de0a70b 3 * Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
1da177e4
LT
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/config.h> /* CONFIG_PROC_FS */
24#include <linux/module.h>
25#include <linux/interrupt.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/init.h>
38#include <linux/hdreg.h>
39#include <linux/spinlock.h>
40#include <linux/compat.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
43
eb0df996 44#include <linux/dma-mapping.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/genhd.h>
47#include <linux/completion.h>
48
49#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
9dc7a86e
MM
50#define DRIVER_NAME "HP CISS Driver (v 2.6.8)"
51#define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,8)
1da177e4
LT
52
53/* Embedded module documentation macros - see modules.h */
54MODULE_AUTHOR("Hewlett-Packard Company");
9dc7a86e 55MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.8");
1da177e4 56MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
9dc7a86e 57 " SA6i P600 P800 P400 P400i E200 E200i");
1da177e4
LT
58MODULE_LICENSE("GPL");
59
60#include "cciss_cmd.h"
61#include "cciss.h"
62#include <linux/cciss_ioctl.h>
63
64/* define the PCI info for the cards we can control */
65static const struct pci_device_id cciss_pci_device_id[] = {
66 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
67 0x0E11, 0x4070, 0, 0, 0},
68 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
69 0x0E11, 0x4080, 0, 0, 0},
70 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
71 0x0E11, 0x4082, 0, 0, 0},
72 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
73 0x0E11, 0x4083, 0, 0, 0},
74 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
75 0x0E11, 0x409A, 0, 0, 0},
76 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
77 0x0E11, 0x409B, 0, 0, 0},
78 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
79 0x0E11, 0x409C, 0, 0, 0},
80 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
81 0x0E11, 0x409D, 0, 0, 0},
82 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
83 0x0E11, 0x4091, 0, 0, 0},
84 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
85 0x103C, 0x3225, 0, 0, 0},
9dc7a86e 86 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
1da177e4 87 0x103c, 0x3223, 0, 0, 0},
3de0a70b 88 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
9dc7a86e 89 0x103c, 0x3234, 0, 0, 0},
3de0a70b 90 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
9dc7a86e
MM
91 0x103c, 0x3235, 0, 0, 0},
92 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
93 0x103c, 0x3211, 0, 0, 0},
94 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
95 0x103c, 0x3212, 0, 0, 0},
96 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
97 0x103c, 0x3213, 0, 0, 0},
98 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
99 0x103c, 0x3214, 0, 0, 0},
100 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
101 0x103c, 0x3215, 0, 0, 0},
1da177e4
LT
102 {0,}
103};
104MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
107
108/* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
111 */
112static struct board_type products[] = {
113 { 0x40700E11, "Smart Array 5300", &SA5_access },
114 { 0x40800E11, "Smart Array 5i", &SA5B_access},
115 { 0x40820E11, "Smart Array 532", &SA5B_access},
116 { 0x40830E11, "Smart Array 5312", &SA5B_access},
117 { 0x409A0E11, "Smart Array 641", &SA5_access},
118 { 0x409B0E11, "Smart Array 642", &SA5_access},
119 { 0x409C0E11, "Smart Array 6400", &SA5_access},
120 { 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 { 0x40910E11, "Smart Array 6i", &SA5_access},
122 { 0x3225103C, "Smart Array P600", &SA5_access},
123 { 0x3223103C, "Smart Array P800", &SA5_access},
9dc7a86e
MM
124 { 0x3234103C, "Smart Array P400", &SA5_access},
125 { 0x3235103C, "Smart Array P400i", &SA5_access},
126 { 0x3211103C, "Smart Array E200i", &SA5_access},
127 { 0x3212103C, "Smart Array E200", &SA5_access},
128 { 0x3213103C, "Smart Array E200i", &SA5_access},
129 { 0x3214103C, "Smart Array E200i", &SA5_access},
130 { 0x3215103C, "Smart Array E200i", &SA5_access},
1da177e4
LT
131};
132
133/* How long to wait (in millesconds) for board to go into simple mode */
134#define MAX_CONFIG_WAIT 30000
135#define MAX_IOCTL_CONFIG_WAIT 1000
136
137/*define how many times we will try a command because of bus resets */
138#define MAX_CMD_RETRIES 3
139
140#define READ_AHEAD 1024
141#define NR_CMDS 384 /* #commands that can be outstanding */
142#define MAX_CTLR 32
143
144/* Originally cciss driver only supports 8 major numbers */
145#define MAX_CTLR_ORIG 8
146
147
1da177e4
LT
148static ctlr_info_t *hba[MAX_CTLR];
149
150static void do_cciss_request(request_queue_t *q);
151static int cciss_open(struct inode *inode, struct file *filep);
152static int cciss_release(struct inode *inode, struct file *filep);
153static int cciss_ioctl(struct inode *inode, struct file *filep,
154 unsigned int cmd, unsigned long arg);
155
156static int revalidate_allvol(ctlr_info_t *host);
157static int cciss_revalidate(struct gendisk *disk);
ddd47442
MM
158static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
159static int deregister_disk(struct gendisk *disk, drive_info_struct *drv, int clear_all);
1da177e4 160
ddd47442
MM
161static void cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
162 int withirq, unsigned int *total_size, unsigned int *block_size);
163static void cciss_geometry_inquiry(int ctlr, int logvol,
164 int withirq, unsigned int total_size,
165 unsigned int block_size, InquiryData_struct *inq_buff,
166 drive_info_struct *drv);
1da177e4
LT
167static void cciss_getgeometry(int cntl_num);
168
169static void start_io( ctlr_info_t *h);
170static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size,
171 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
172 unsigned char *scsi3addr, int cmd_type);
ddd47442
MM
173static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
174 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
175 int cmd_type);
1da177e4
LT
176
177#ifdef CONFIG_PROC_FS
178static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
179 int length, int *eof, void *data);
180static void cciss_procinit(int i);
181#else
182static void cciss_procinit(int i) {}
183#endif /* CONFIG_PROC_FS */
184
185#ifdef CONFIG_COMPAT
186static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
187#endif
188
189static struct block_device_operations cciss_fops = {
190 .owner = THIS_MODULE,
191 .open = cciss_open,
192 .release = cciss_release,
193 .ioctl = cciss_ioctl,
194#ifdef CONFIG_COMPAT
195 .compat_ioctl = cciss_compat_ioctl,
196#endif
197 .revalidate_disk= cciss_revalidate,
198};
199
200/*
201 * Enqueuing and dequeuing functions for cmdlists.
202 */
203static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
204{
205 if (*Qptr == NULL) {
206 *Qptr = c;
207 c->next = c->prev = c;
208 } else {
209 c->prev = (*Qptr)->prev;
210 c->next = (*Qptr);
211 (*Qptr)->prev->next = c;
212 (*Qptr)->prev = c;
213 }
214}
215
216static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
217 CommandList_struct *c)
218{
219 if (c && c->next != c) {
220 if (*Qptr == c) *Qptr = c->next;
221 c->prev->next = c->next;
222 c->next->prev = c->prev;
223 } else {
224 *Qptr = NULL;
225 }
226 return c;
227}
228
229#include "cciss_scsi.c" /* For SCSI tape support */
230
231#ifdef CONFIG_PROC_FS
232
233/*
234 * Report information about this controller.
235 */
236#define ENG_GIG 1000000000
237#define ENG_GIG_FACTOR (ENG_GIG/512)
238#define RAID_UNKNOWN 6
239static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG",
240 "UNKNOWN"};
241
242static struct proc_dir_entry *proc_cciss;
243
244static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
245 int length, int *eof, void *data)
246{
247 off_t pos = 0;
248 off_t len = 0;
249 int size, i, ctlr;
250 ctlr_info_t *h = (ctlr_info_t*)data;
251 drive_info_struct *drv;
252 unsigned long flags;
253 sector_t vol_sz, vol_sz_frac;
254
255 ctlr = h->ctlr;
256
257 /* prevent displaying bogus info during configuration
258 * or deconfiguration of a logical volume
259 */
260 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
261 if (h->busy_configuring) {
262 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
263 return -EBUSY;
264 }
265 h->busy_configuring = 1;
266 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
267
268 size = sprintf(buffer, "%s: HP %s Controller\n"
269 "Board ID: 0x%08lx\n"
270 "Firmware Version: %c%c%c%c\n"
271 "IRQ: %d\n"
272 "Logical drives: %d\n"
273 "Current Q depth: %d\n"
274 "Current # commands on controller: %d\n"
275 "Max Q depth since init: %d\n"
276 "Max # commands on controller since init: %d\n"
277 "Max SG entries since init: %d\n\n",
278 h->devname,
279 h->product_name,
280 (unsigned long)h->board_id,
281 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
282 (unsigned int)h->intr,
283 h->num_luns,
284 h->Qdepth, h->commands_outstanding,
285 h->maxQsinceinit, h->max_outstanding, h->maxSG);
286
287 pos += size; len += size;
288 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
289 for(i=0; i<=h->highest_lun; i++) {
290
291 drv = &h->drv[i];
ddd47442 292 if (drv->heads == 0)
1da177e4
LT
293 continue;
294
295 vol_sz = drv->nr_blocks;
296 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
297 vol_sz_frac *= 100;
298 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
299
300 if (drv->raid_level > 5)
301 drv->raid_level = RAID_UNKNOWN;
302 size = sprintf(buffer+len, "cciss/c%dd%d:"
303 "\t%4u.%02uGB\tRAID %s\n",
304 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
305 raid_label[drv->raid_level]);
306 pos += size; len += size;
307 }
308
309 *eof = 1;
310 *start = buffer+offset;
311 len -= offset;
312 if (len>length)
313 len = length;
314 h->busy_configuring = 0;
315 return len;
316}
317
318static int
319cciss_proc_write(struct file *file, const char __user *buffer,
320 unsigned long count, void *data)
321{
322 unsigned char cmd[80];
323 int len;
324#ifdef CONFIG_CISS_SCSI_TAPE
325 ctlr_info_t *h = (ctlr_info_t *) data;
326 int rc;
327#endif
328
329 if (count > sizeof(cmd)-1) return -EINVAL;
330 if (copy_from_user(cmd, buffer, count)) return -EFAULT;
331 cmd[count] = '\0';
332 len = strlen(cmd); // above 3 lines ensure safety
333 if (len && cmd[len-1] == '\n')
334 cmd[--len] = '\0';
335# ifdef CONFIG_CISS_SCSI_TAPE
336 if (strcmp("engage scsi", cmd)==0) {
337 rc = cciss_engage_scsi(h->ctlr);
338 if (rc != 0) return -rc;
339 return count;
340 }
341 /* might be nice to have "disengage" too, but it's not
342 safely possible. (only 1 module use count, lock issues.) */
343# endif
344 return -EINVAL;
345}
346
347/*
348 * Get us a file in /proc/cciss that says something about each controller.
349 * Create /proc/cciss if it doesn't exist yet.
350 */
351static void __devinit cciss_procinit(int i)
352{
353 struct proc_dir_entry *pde;
354
355 if (proc_cciss == NULL) {
356 proc_cciss = proc_mkdir("cciss", proc_root_driver);
357 if (!proc_cciss)
358 return;
359 }
360
361 pde = create_proc_read_entry(hba[i]->devname,
362 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
363 proc_cciss, cciss_proc_get_info, hba[i]);
364 pde->write_proc = cciss_proc_write;
365}
366#endif /* CONFIG_PROC_FS */
367
368/*
369 * For operations that cannot sleep, a command block is allocated at init,
370 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
371 * which ones are free or in use. For operations that can wait for kmalloc
372 * to possible sleep, this routine can be called with get_from_pool set to 0.
373 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
374 */
375static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
376{
377 CommandList_struct *c;
378 int i;
379 u64bit temp64;
380 dma_addr_t cmd_dma_handle, err_dma_handle;
381
382 if (!get_from_pool)
383 {
384 c = (CommandList_struct *) pci_alloc_consistent(
385 h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
386 if(c==NULL)
387 return NULL;
388 memset(c, 0, sizeof(CommandList_struct));
389
390 c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
391 h->pdev, sizeof(ErrorInfo_struct),
392 &err_dma_handle);
393
394 if (c->err_info == NULL)
395 {
396 pci_free_consistent(h->pdev,
397 sizeof(CommandList_struct), c, cmd_dma_handle);
398 return NULL;
399 }
400 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
401 } else /* get it out of the controllers pool */
402 {
403 do {
404 i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
405 if (i == NR_CMDS)
406 return NULL;
407 } while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
408#ifdef CCISS_DEBUG
409 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
410#endif
411 c = h->cmd_pool + i;
412 memset(c, 0, sizeof(CommandList_struct));
413 cmd_dma_handle = h->cmd_pool_dhandle
414 + i*sizeof(CommandList_struct);
415 c->err_info = h->errinfo_pool + i;
416 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
417 err_dma_handle = h->errinfo_pool_dhandle
418 + i*sizeof(ErrorInfo_struct);
419 h->nr_allocs++;
420 }
421
422 c->busaddr = (__u32) cmd_dma_handle;
423 temp64.val = (__u64) err_dma_handle;
424 c->ErrDesc.Addr.lower = temp64.val32.lower;
425 c->ErrDesc.Addr.upper = temp64.val32.upper;
426 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
427
428 c->ctlr = h->ctlr;
429 return c;
430
431
432}
433
434/*
435 * Frees a command block that was previously allocated with cmd_alloc().
436 */
437static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
438{
439 int i;
440 u64bit temp64;
441
442 if( !got_from_pool)
443 {
444 temp64.val32.lower = c->ErrDesc.Addr.lower;
445 temp64.val32.upper = c->ErrDesc.Addr.upper;
446 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
447 c->err_info, (dma_addr_t) temp64.val);
448 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
449 c, (dma_addr_t) c->busaddr);
450 } else
451 {
452 i = c - h->cmd_pool;
453 clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
454 h->nr_frees++;
455 }
456}
457
458static inline ctlr_info_t *get_host(struct gendisk *disk)
459{
460 return disk->queue->queuedata;
461}
462
463static inline drive_info_struct *get_drv(struct gendisk *disk)
464{
465 return disk->private_data;
466}
467
468/*
469 * Open. Make sure the device is really there.
470 */
471static int cciss_open(struct inode *inode, struct file *filep)
472{
473 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
474 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
475
476#ifdef CCISS_DEBUG
477 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
478#endif /* CCISS_DEBUG */
479
1f8ef380
MM
480 if (host->busy_initializing)
481 return -EBUSY;
482
ddd47442
MM
483 if (host->busy_initializing || drv->busy_configuring)
484 return -EBUSY;
1da177e4
LT
485 /*
486 * Root is allowed to open raw volume zero even if it's not configured
487 * so array config can still work. Root is also allowed to open any
488 * volume that has a LUN ID, so it can issue IOCTL to reread the
489 * disk information. I don't think I really like this
490 * but I'm already using way to many device nodes to claim another one
491 * for "raw controller".
492 */
493 if (drv->nr_blocks == 0) {
494 if (iminor(inode) != 0) { /* not node 0? */
495 /* if not node 0 make sure it is a partition = 0 */
496 if (iminor(inode) & 0x0f) {
497 return -ENXIO;
498 /* if it is, make sure we have a LUN ID */
499 } else if (drv->LunID == 0) {
500 return -ENXIO;
501 }
502 }
503 if (!capable(CAP_SYS_ADMIN))
504 return -EPERM;
505 }
506 drv->usage_count++;
507 host->usage_count++;
508 return 0;
509}
510/*
511 * Close. Sync first.
512 */
513static int cciss_release(struct inode *inode, struct file *filep)
514{
515 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
516 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
517
518#ifdef CCISS_DEBUG
519 printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name);
520#endif /* CCISS_DEBUG */
521
522 drv->usage_count--;
523 host->usage_count--;
524 return 0;
525}
526
527#ifdef CONFIG_COMPAT
528
529static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
530{
531 int ret;
532 lock_kernel();
533 ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
534 unlock_kernel();
535 return ret;
536}
537
538static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg);
539static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg);
540
541static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
542{
543 switch (cmd) {
544 case CCISS_GETPCIINFO:
545 case CCISS_GETINTINFO:
546 case CCISS_SETINTINFO:
547 case CCISS_GETNODENAME:
548 case CCISS_SETNODENAME:
549 case CCISS_GETHEARTBEAT:
550 case CCISS_GETBUSTYPES:
551 case CCISS_GETFIRMVER:
552 case CCISS_GETDRIVVER:
553 case CCISS_REVALIDVOLS:
554 case CCISS_DEREGDISK:
555 case CCISS_REGNEWDISK:
556 case CCISS_REGNEWD:
557 case CCISS_RESCANDISK:
558 case CCISS_GETLUNINFO:
559 return do_ioctl(f, cmd, arg);
560
561 case CCISS_PASSTHRU32:
562 return cciss_ioctl32_passthru(f, cmd, arg);
563 case CCISS_BIG_PASSTHRU32:
564 return cciss_ioctl32_big_passthru(f, cmd, arg);
565
566 default:
567 return -ENOIOCTLCMD;
568 }
569}
570
571static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg)
572{
573 IOCTL32_Command_struct __user *arg32 =
574 (IOCTL32_Command_struct __user *) arg;
575 IOCTL_Command_struct arg64;
576 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
577 int err;
578 u32 cp;
579
580 err = 0;
581 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
582 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
583 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
584 err |= get_user(arg64.buf_size, &arg32->buf_size);
585 err |= get_user(cp, &arg32->buf);
586 arg64.buf = compat_ptr(cp);
587 err |= copy_to_user(p, &arg64, sizeof(arg64));
588
589 if (err)
590 return -EFAULT;
591
592 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p);
593 if (err)
594 return err;
595 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
596 if (err)
597 return -EFAULT;
598 return err;
599}
600
601static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg)
602{
603 BIG_IOCTL32_Command_struct __user *arg32 =
604 (BIG_IOCTL32_Command_struct __user *) arg;
605 BIG_IOCTL_Command_struct arg64;
606 BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
607 int err;
608 u32 cp;
609
610 err = 0;
611 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
612 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
613 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
614 err |= get_user(arg64.buf_size, &arg32->buf_size);
615 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
616 err |= get_user(cp, &arg32->buf);
617 arg64.buf = compat_ptr(cp);
618 err |= copy_to_user(p, &arg64, sizeof(arg64));
619
620 if (err)
621 return -EFAULT;
622
623 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p);
624 if (err)
625 return err;
626 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
627 if (err)
628 return -EFAULT;
629 return err;
630}
631#endif
632/*
633 * ioctl
634 */
635static int cciss_ioctl(struct inode *inode, struct file *filep,
636 unsigned int cmd, unsigned long arg)
637{
638 struct block_device *bdev = inode->i_bdev;
639 struct gendisk *disk = bdev->bd_disk;
640 ctlr_info_t *host = get_host(disk);
641 drive_info_struct *drv = get_drv(disk);
642 int ctlr = host->ctlr;
643 void __user *argp = (void __user *)arg;
644
645#ifdef CCISS_DEBUG
646 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
647#endif /* CCISS_DEBUG */
648
649 switch(cmd) {
650 case HDIO_GETGEO:
651 {
652 struct hd_geometry driver_geo;
653 if (drv->cylinders) {
654 driver_geo.heads = drv->heads;
655 driver_geo.sectors = drv->sectors;
656 driver_geo.cylinders = drv->cylinders;
657 } else
658 return -ENXIO;
659 driver_geo.start= get_start_sect(inode->i_bdev);
660 if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry)))
661 return -EFAULT;
662 return(0);
663 }
664
665 case CCISS_GETPCIINFO:
666 {
667 cciss_pci_info_struct pciinfo;
668
669 if (!arg) return -EINVAL;
cd6fb584 670 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1da177e4
LT
671 pciinfo.bus = host->pdev->bus->number;
672 pciinfo.dev_fn = host->pdev->devfn;
673 pciinfo.board_id = host->board_id;
674 if (copy_to_user(argp, &pciinfo, sizeof( cciss_pci_info_struct )))
675 return -EFAULT;
676 return(0);
677 }
678 case CCISS_GETINTINFO:
679 {
680 cciss_coalint_struct intinfo;
681 if (!arg) return -EINVAL;
682 intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay);
683 intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount);
684 if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct )))
685 return -EFAULT;
686 return(0);
687 }
688 case CCISS_SETINTINFO:
689 {
690 cciss_coalint_struct intinfo;
691 unsigned long flags;
692 int i;
693
694 if (!arg) return -EINVAL;
695 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
696 if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct)))
697 return -EFAULT;
698 if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
699
700 {
701// printk("cciss_ioctl: delay and count cannot be 0\n");
702 return( -EINVAL);
703 }
704 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
705 /* Update the field, and then ring the doorbell */
706 writel( intinfo.delay,
707 &(host->cfgtable->HostWrite.CoalIntDelay));
708 writel( intinfo.count,
709 &(host->cfgtable->HostWrite.CoalIntCount));
710 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
711
712 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
713 if (!(readl(host->vaddr + SA5_DOORBELL)
714 & CFGTBL_ChangeReq))
715 break;
716 /* delay and try again */
717 udelay(1000);
718 }
719 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
720 if (i >= MAX_IOCTL_CONFIG_WAIT)
721 return -EAGAIN;
722 return(0);
723 }
724 case CCISS_GETNODENAME:
725 {
726 NodeName_type NodeName;
727 int i;
728
729 if (!arg) return -EINVAL;
730 for(i=0;i<16;i++)
731 NodeName[i] = readb(&host->cfgtable->ServerName[i]);
732 if (copy_to_user(argp, NodeName, sizeof( NodeName_type)))
733 return -EFAULT;
734 return(0);
735 }
736 case CCISS_SETNODENAME:
737 {
738 NodeName_type NodeName;
739 unsigned long flags;
740 int i;
741
742 if (!arg) return -EINVAL;
743 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
744
745 if (copy_from_user(NodeName, argp, sizeof( NodeName_type)))
746 return -EFAULT;
747
748 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
749
750 /* Update the field, and then ring the doorbell */
751 for(i=0;i<16;i++)
752 writeb( NodeName[i], &host->cfgtable->ServerName[i]);
753
754 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
755
756 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
757 if (!(readl(host->vaddr + SA5_DOORBELL)
758 & CFGTBL_ChangeReq))
759 break;
760 /* delay and try again */
761 udelay(1000);
762 }
763 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
764 if (i >= MAX_IOCTL_CONFIG_WAIT)
765 return -EAGAIN;
766 return(0);
767 }
768
769 case CCISS_GETHEARTBEAT:
770 {
771 Heartbeat_type heartbeat;
772
773 if (!arg) return -EINVAL;
774 heartbeat = readl(&host->cfgtable->HeartBeat);
775 if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type)))
776 return -EFAULT;
777 return(0);
778 }
779 case CCISS_GETBUSTYPES:
780 {
781 BusTypes_type BusTypes;
782
783 if (!arg) return -EINVAL;
784 BusTypes = readl(&host->cfgtable->BusTypes);
785 if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) ))
786 return -EFAULT;
787 return(0);
788 }
789 case CCISS_GETFIRMVER:
790 {
791 FirmwareVer_type firmware;
792
793 if (!arg) return -EINVAL;
794 memcpy(firmware, host->firm_ver, 4);
795
796 if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type)))
797 return -EFAULT;
798 return(0);
799 }
800 case CCISS_GETDRIVVER:
801 {
802 DriverVer_type DriverVer = DRIVER_VERSION;
803
804 if (!arg) return -EINVAL;
805
806 if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) ))
807 return -EFAULT;
808 return(0);
809 }
810
811 case CCISS_REVALIDVOLS:
812 if (bdev != bdev->bd_contains || drv != host->drv)
813 return -ENXIO;
814 return revalidate_allvol(host);
815
816 case CCISS_GETLUNINFO: {
817 LogvolInfo_struct luninfo;
1da177e4
LT
818
819 luninfo.LunID = drv->LunID;
820 luninfo.num_opens = drv->usage_count;
821 luninfo.num_parts = 0;
1da177e4
LT
822 if (copy_to_user(argp, &luninfo,
823 sizeof(LogvolInfo_struct)))
824 return -EFAULT;
825 return(0);
826 }
827 case CCISS_DEREGDISK:
ddd47442 828 return rebuild_lun_table(host, disk);
1da177e4
LT
829
830 case CCISS_REGNEWD:
ddd47442 831 return rebuild_lun_table(host, NULL);
1da177e4
LT
832
833 case CCISS_PASSTHRU:
834 {
835 IOCTL_Command_struct iocommand;
836 CommandList_struct *c;
837 char *buff = NULL;
838 u64bit temp64;
839 unsigned long flags;
840 DECLARE_COMPLETION(wait);
841
842 if (!arg) return -EINVAL;
843
844 if (!capable(CAP_SYS_RAWIO)) return -EPERM;
845
846 if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) ))
847 return -EFAULT;
848 if((iocommand.buf_size < 1) &&
849 (iocommand.Request.Type.Direction != XFER_NONE))
850 {
851 return -EINVAL;
852 }
853#if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
854 /* Check kmalloc limits */
855 if(iocommand.buf_size > 128000)
856 return -EINVAL;
857#endif
858 if(iocommand.buf_size > 0)
859 {
860 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
861 if( buff == NULL)
862 return -EFAULT;
863 }
864 if (iocommand.Request.Type.Direction == XFER_WRITE)
865 {
866 /* Copy the data into the buffer we created */
867 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
868 {
869 kfree(buff);
870 return -EFAULT;
871 }
872 } else {
873 memset(buff, 0, iocommand.buf_size);
874 }
875 if ((c = cmd_alloc(host , 0)) == NULL)
876 {
877 kfree(buff);
878 return -ENOMEM;
879 }
880 // Fill in the command type
881 c->cmd_type = CMD_IOCTL_PEND;
882 // Fill in Command Header
883 c->Header.ReplyQueue = 0; // unused in simple mode
884 if( iocommand.buf_size > 0) // buffer to fill
885 {
886 c->Header.SGList = 1;
887 c->Header.SGTotal= 1;
888 } else // no buffers to fill
889 {
890 c->Header.SGList = 0;
891 c->Header.SGTotal= 0;
892 }
893 c->Header.LUN = iocommand.LUN_info;
894 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
895
896 // Fill in Request block
897 c->Request = iocommand.Request;
898
899 // Fill in the scatter gather information
900 if (iocommand.buf_size > 0 )
901 {
902 temp64.val = pci_map_single( host->pdev, buff,
903 iocommand.buf_size,
904 PCI_DMA_BIDIRECTIONAL);
905 c->SG[0].Addr.lower = temp64.val32.lower;
906 c->SG[0].Addr.upper = temp64.val32.upper;
907 c->SG[0].Len = iocommand.buf_size;
908 c->SG[0].Ext = 0; // we are not chaining
909 }
910 c->waiting = &wait;
911
912 /* Put the request on the tail of the request queue */
913 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
914 addQ(&host->reqQ, c);
915 host->Qdepth++;
916 start_io(host);
917 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
918
919 wait_for_completion(&wait);
920
921 /* unlock the buffers from DMA */
922 temp64.val32.lower = c->SG[0].Addr.lower;
923 temp64.val32.upper = c->SG[0].Addr.upper;
924 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
925 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
926
927 /* Copy the error information out */
928 iocommand.error_info = *(c->err_info);
929 if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) )
930 {
931 kfree(buff);
932 cmd_free(host, c, 0);
933 return( -EFAULT);
934 }
935
936 if (iocommand.Request.Type.Direction == XFER_READ)
937 {
938 /* Copy the data out of the buffer we created */
939 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
940 {
941 kfree(buff);
942 cmd_free(host, c, 0);
943 return -EFAULT;
944 }
945 }
946 kfree(buff);
947 cmd_free(host, c, 0);
948 return(0);
949 }
950 case CCISS_BIG_PASSTHRU: {
951 BIG_IOCTL_Command_struct *ioc;
952 CommandList_struct *c;
953 unsigned char **buff = NULL;
954 int *buff_size = NULL;
955 u64bit temp64;
956 unsigned long flags;
957 BYTE sg_used = 0;
958 int status = 0;
959 int i;
960 DECLARE_COMPLETION(wait);
961 __u32 left;
962 __u32 sz;
963 BYTE __user *data_ptr;
964
965 if (!arg)
966 return -EINVAL;
967 if (!capable(CAP_SYS_RAWIO))
968 return -EPERM;
969 ioc = (BIG_IOCTL_Command_struct *)
970 kmalloc(sizeof(*ioc), GFP_KERNEL);
971 if (!ioc) {
972 status = -ENOMEM;
973 goto cleanup1;
974 }
975 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
976 status = -EFAULT;
977 goto cleanup1;
978 }
979 if ((ioc->buf_size < 1) &&
980 (ioc->Request.Type.Direction != XFER_NONE)) {
981 status = -EINVAL;
982 goto cleanup1;
983 }
984 /* Check kmalloc limits using all SGs */
985 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
986 status = -EINVAL;
987 goto cleanup1;
988 }
989 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
990 status = -EINVAL;
991 goto cleanup1;
992 }
993 buff = (unsigned char **) kmalloc(MAXSGENTRIES *
994 sizeof(char *), GFP_KERNEL);
995 if (!buff) {
996 status = -ENOMEM;
997 goto cleanup1;
998 }
999 memset(buff, 0, MAXSGENTRIES);
1000 buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int),
1001 GFP_KERNEL);
1002 if (!buff_size) {
1003 status = -ENOMEM;
1004 goto cleanup1;
1005 }
1006 left = ioc->buf_size;
1007 data_ptr = ioc->buf;
1008 while (left) {
1009 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1010 buff_size[sg_used] = sz;
1011 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1012 if (buff[sg_used] == NULL) {
1013 status = -ENOMEM;
1014 goto cleanup1;
1015 }
1016 if (ioc->Request.Type.Direction == XFER_WRITE &&
1017 copy_from_user(buff[sg_used], data_ptr, sz)) {
1018 status = -ENOMEM;
1019 goto cleanup1;
1020 } else {
1021 memset(buff[sg_used], 0, sz);
1022 }
1023 left -= sz;
1024 data_ptr += sz;
1025 sg_used++;
1026 }
1027 if ((c = cmd_alloc(host , 0)) == NULL) {
1028 status = -ENOMEM;
1029 goto cleanup1;
1030 }
1031 c->cmd_type = CMD_IOCTL_PEND;
1032 c->Header.ReplyQueue = 0;
1033
1034 if( ioc->buf_size > 0) {
1035 c->Header.SGList = sg_used;
1036 c->Header.SGTotal= sg_used;
1037 } else {
1038 c->Header.SGList = 0;
1039 c->Header.SGTotal= 0;
1040 }
1041 c->Header.LUN = ioc->LUN_info;
1042 c->Header.Tag.lower = c->busaddr;
1043
1044 c->Request = ioc->Request;
1045 if (ioc->buf_size > 0 ) {
1046 int i;
1047 for(i=0; i<sg_used; i++) {
1048 temp64.val = pci_map_single( host->pdev, buff[i],
1049 buff_size[i],
1050 PCI_DMA_BIDIRECTIONAL);
1051 c->SG[i].Addr.lower = temp64.val32.lower;
1052 c->SG[i].Addr.upper = temp64.val32.upper;
1053 c->SG[i].Len = buff_size[i];
1054 c->SG[i].Ext = 0; /* we are not chaining */
1055 }
1056 }
1057 c->waiting = &wait;
1058 /* Put the request on the tail of the request queue */
1059 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1060 addQ(&host->reqQ, c);
1061 host->Qdepth++;
1062 start_io(host);
1063 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1064 wait_for_completion(&wait);
1065 /* unlock the buffers from DMA */
1066 for(i=0; i<sg_used; i++) {
1067 temp64.val32.lower = c->SG[i].Addr.lower;
1068 temp64.val32.upper = c->SG[i].Addr.upper;
1069 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
1070 buff_size[i], PCI_DMA_BIDIRECTIONAL);
1071 }
1072 /* Copy the error information out */
1073 ioc->error_info = *(c->err_info);
1074 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1075 cmd_free(host, c, 0);
1076 status = -EFAULT;
1077 goto cleanup1;
1078 }
1079 if (ioc->Request.Type.Direction == XFER_READ) {
1080 /* Copy the data out of the buffer we created */
1081 BYTE __user *ptr = ioc->buf;
1082 for(i=0; i< sg_used; i++) {
1083 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1084 cmd_free(host, c, 0);
1085 status = -EFAULT;
1086 goto cleanup1;
1087 }
1088 ptr += buff_size[i];
1089 }
1090 }
1091 cmd_free(host, c, 0);
1092 status = 0;
1093cleanup1:
1094 if (buff) {
1095 for(i=0; i<sg_used; i++)
1096 if(buff[i] != NULL)
1097 kfree(buff[i]);
1098 kfree(buff);
1099 }
1100 if (buff_size)
1101 kfree(buff_size);
1102 if (ioc)
1103 kfree(ioc);
1104 return(status);
1105 }
1106 default:
1107 return -ENOTTY;
1108 }
1109
1110}
1111
1112/*
1113 * revalidate_allvol is for online array config utilities. After a
1114 * utility reconfigures the drives in the array, it can use this function
1115 * (through an ioctl) to make the driver zap any previous disk structs for
1116 * that controller and get new ones.
1117 *
1118 * Right now I'm using the getgeometry() function to do this, but this
1119 * function should probably be finer grained and allow you to revalidate one
1120 * particualar logical volume (instead of all of them on a particular
1121 * controller).
1122 */
1123static int revalidate_allvol(ctlr_info_t *host)
1124{
1125 int ctlr = host->ctlr, i;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1129 if (host->usage_count > 1) {
1130 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1131 printk(KERN_WARNING "cciss: Device busy for volume"
1132 " revalidation (usage=%d)\n", host->usage_count);
1133 return -EBUSY;
1134 }
1135 host->usage_count++;
1136 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1137
1138 for(i=0; i< NWD; i++) {
1139 struct gendisk *disk = host->gendisk[i];
1140 if (disk->flags & GENHD_FL_UP)
1141 del_gendisk(disk);
1142 }
1143
1144 /*
1145 * Set the partition and block size structures for all volumes
1146 * on this controller to zero. We will reread all of this data
1147 */
1148 memset(host->drv, 0, sizeof(drive_info_struct)
1149 * CISS_MAX_LUN);
1150 /*
1151 * Tell the array controller not to give us any interrupts while
1152 * we check the new geometry. Then turn interrupts back on when
1153 * we're done.
1154 */
1155 host->access.set_intr_mask(host, CCISS_INTR_OFF);
1156 cciss_getgeometry(ctlr);
1157 host->access.set_intr_mask(host, CCISS_INTR_ON);
1158
1159 /* Loop through each real device */
1160 for (i = 0; i < NWD; i++) {
1161 struct gendisk *disk = host->gendisk[i];
1162 drive_info_struct *drv = &(host->drv[i]);
1163 /* we must register the controller even if no disks exist */
1164 /* this is for the online array utilities */
1165 if (!drv->heads && i)
1166 continue;
ad2b9312 1167 blk_queue_hardsect_size(drv->queue, drv->block_size);
1da177e4
LT
1168 set_capacity(disk, drv->nr_blocks);
1169 add_disk(disk);
1170 }
1171 host->usage_count--;
1172 return 0;
1173}
1174
ddd47442
MM
1175/* This function will check the usage_count of the drive to be updated/added.
1176 * If the usage_count is zero then the drive information will be updated and
1177 * the disk will be re-registered with the kernel. If not then it will be
1178 * left alone for the next reboot. The exception to this is disk 0 which
1179 * will always be left registered with the kernel since it is also the
1180 * controller node. Any changes to disk 0 will show up on the next
1181 * reboot.
1182*/
1183static void cciss_update_drive_info(int ctlr, int drv_index)
1184 {
1185 ctlr_info_t *h = hba[ctlr];
1186 struct gendisk *disk;
1187 ReadCapdata_struct *size_buff = NULL;
1188 InquiryData_struct *inq_buff = NULL;
1189 unsigned int block_size;
1190 unsigned int total_size;
1191 unsigned long flags = 0;
1192 int ret = 0;
1193
1194 /* if the disk already exists then deregister it before proceeding*/
1195 if (h->drv[drv_index].raid_level != -1){
1196 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1197 h->drv[drv_index].busy_configuring = 1;
1198 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1199 ret = deregister_disk(h->gendisk[drv_index],
1200 &h->drv[drv_index], 0);
1201 h->drv[drv_index].busy_configuring = 0;
1202 }
1203
1204 /* If the disk is in use return */
1205 if (ret)
1206 return;
1207
1208
1209 /* Get information about the disk and modify the driver sturcture */
1210 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1211 if (size_buff == NULL)
1212 goto mem_msg;
1213 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1214 if (inq_buff == NULL)
1215 goto mem_msg;
1216
1217 cciss_read_capacity(ctlr, drv_index, size_buff, 1,
1218 &total_size, &block_size);
1219 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1220 inq_buff, &h->drv[drv_index]);
1221
1222 ++h->num_luns;
1223 disk = h->gendisk[drv_index];
1224 set_capacity(disk, h->drv[drv_index].nr_blocks);
1225
1226
1227 /* if it's the controller it's already added */
1228 if (drv_index){
1229 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1230
1231 /* Set up queue information */
1232 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1233 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1234
1235 /* This is a hardware imposed limit. */
1236 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1237
1238 /* This is a limit in the driver and could be eliminated. */
1239 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1240
1241 blk_queue_max_sectors(disk->queue, 512);
1242
1243 disk->queue->queuedata = hba[ctlr];
1244
1245 blk_queue_hardsect_size(disk->queue,
1246 hba[ctlr]->drv[drv_index].block_size);
1247
1248 h->drv[drv_index].queue = disk->queue;
1249 add_disk(disk);
1250 }
1251
1252freeret:
1253 kfree(size_buff);
1254 kfree(inq_buff);
1255 return;
1256mem_msg:
1257 printk(KERN_ERR "cciss: out of memory\n");
1258 goto freeret;
1259}
1260
1261/* This function will find the first index of the controllers drive array
1262 * that has a -1 for the raid_level and will return that index. This is
1263 * where new drives will be added. If the index to be returned is greater
1264 * than the highest_lun index for the controller then highest_lun is set
1265 * to this new index. If there are no available indexes then -1 is returned.
1266*/
1267static int cciss_find_free_drive_index(int ctlr)
1268{
1269 int i;
1270
1271 for (i=0; i < CISS_MAX_LUN; i++){
1272 if (hba[ctlr]->drv[i].raid_level == -1){
1273 if (i > hba[ctlr]->highest_lun)
1274 hba[ctlr]->highest_lun = i;
1275 return i;
1276 }
1277 }
1278 return -1;
1279}
1280
1281/* This function will add and remove logical drives from the Logical
1282 * drive array of the controller and maintain persistancy of ordering
1283 * so that mount points are preserved until the next reboot. This allows
1284 * for the removal of logical drives in the middle of the drive array
1285 * without a re-ordering of those drives.
1286 * INPUT
1287 * h = The controller to perform the operations on
1288 * del_disk = The disk to remove if specified. If the value given
1289 * is NULL then no disk is removed.
1290*/
1291static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1da177e4 1292{
ddd47442
MM
1293 int ctlr = h->ctlr;
1294 int num_luns;
1295 ReportLunData_struct *ld_buff = NULL;
1296 drive_info_struct *drv = NULL;
1297 int return_code;
1298 int listlength = 0;
1299 int i;
1300 int drv_found;
1301 int drv_index = 0;
1302 __u32 lunid = 0;
1da177e4 1303 unsigned long flags;
ddd47442
MM
1304
1305 /* Set busy_configuring flag for this operation */
1306 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1307 if (h->num_luns >= CISS_MAX_LUN){
1308 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1309 return -EINVAL;
1310 }
1311
1312 if (h->busy_configuring){
1313 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1314 return -EBUSY;
1315 }
1316 h->busy_configuring = 1;
1317
1318 /* if del_disk is NULL then we are being called to add a new disk
1319 * and update the logical drive table. If it is not NULL then
1320 * we will check if the disk is in use or not.
1321 */
1322 if (del_disk != NULL){
1323 drv = get_drv(del_disk);
1324 drv->busy_configuring = 1;
1325 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1326 return_code = deregister_disk(del_disk, drv, 1);
1327 drv->busy_configuring = 0;
1328 h->busy_configuring = 0;
1329 return return_code;
1330 } else {
1331 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1332 if (!capable(CAP_SYS_RAWIO))
1333 return -EPERM;
1334
1335 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1336 if (ld_buff == NULL)
1337 goto mem_msg;
1338
1339 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1340 sizeof(ReportLunData_struct), 0, 0, 0,
1341 TYPE_CMD);
1342
1343 if (return_code == IO_OK){
1344 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
1345 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
1346 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
1347 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
1348 } else{ /* reading number of logical volumes failed */
1349 printk(KERN_WARNING "cciss: report logical volume"
1350 " command failed\n");
1351 listlength = 0;
1352 goto freeret;
1353 }
1354
1355 num_luns = listlength / 8; /* 8 bytes per entry */
1356 if (num_luns > CISS_MAX_LUN){
1357 num_luns = CISS_MAX_LUN;
1358 printk(KERN_WARNING "cciss: more luns configured"
1359 " on controller than can be handled by"
1360 " this driver.\n");
1361 }
1362
1363 /* Compare controller drive array to drivers drive array.
1364 * Check for updates in the drive information and any new drives
1365 * on the controller.
1366 */
1367 for (i=0; i < num_luns; i++){
1368 int j;
1369
1370 drv_found = 0;
1371
1372 lunid = (0xff &
1373 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1374 lunid |= (0xff &
1375 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1376 lunid |= (0xff &
1377 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1378 lunid |= 0xff &
1379 (unsigned int)(ld_buff->LUN[i][0]);
1380
1381 /* Find if the LUN is already in the drive array
1382 * of the controller. If so then update its info
1383 * if not is use. If it does not exist then find
1384 * the first free index and add it.
1385 */
1386 for (j=0; j <= h->highest_lun; j++){
1387 if (h->drv[j].LunID == lunid){
1388 drv_index = j;
1389 drv_found = 1;
1390 }
1391 }
1392
1393 /* check if the drive was found already in the array */
1394 if (!drv_found){
1395 drv_index = cciss_find_free_drive_index(ctlr);
1396 if (drv_index == -1)
1397 goto freeret;
1398
1399 }
1400 h->drv[drv_index].LunID = lunid;
1401 cciss_update_drive_info(ctlr, drv_index);
1402 } /* end for */
1403 } /* end else */
1404
1405freeret:
1406 kfree(ld_buff);
1407 h->busy_configuring = 0;
1408 /* We return -1 here to tell the ACU that we have registered/updated
1409 * all of the drives that we can and to keep it from calling us
1410 * additional times.
1411 */
1412 return -1;
1413mem_msg:
1414 printk(KERN_ERR "cciss: out of memory\n");
1415 goto freeret;
1416}
1417
1418/* This function will deregister the disk and it's queue from the
1419 * kernel. It must be called with the controller lock held and the
1420 * drv structures busy_configuring flag set. It's parameters are:
1421 *
1422 * disk = This is the disk to be deregistered
1423 * drv = This is the drive_info_struct associated with the disk to be
1424 * deregistered. It contains information about the disk used
1425 * by the driver.
1426 * clear_all = This flag determines whether or not the disk information
1427 * is going to be completely cleared out and the highest_lun
1428 * reset. Sometimes we want to clear out information about
1429 * the disk in preperation for re-adding it. In this case
1430 * the highest_lun should be left unchanged and the LunID
1431 * should not be cleared.
1432*/
1433static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1434 int clear_all)
1435{
1da177e4 1436 ctlr_info_t *h = get_host(disk);
1da177e4
LT
1437
1438 if (!capable(CAP_SYS_RAWIO))
1439 return -EPERM;
1440
1da177e4 1441 /* make sure logical volume is NOT is use */
ddd47442
MM
1442 if(clear_all || (h->gendisk[0] == disk)) {
1443 if (drv->usage_count > 1)
1da177e4
LT
1444 return -EBUSY;
1445 }
ddd47442
MM
1446 else
1447 if( drv->usage_count > 0 )
1448 return -EBUSY;
1da177e4 1449
ddd47442
MM
1450 /* invalidate the devices and deregister the disk. If it is disk
1451 * zero do not deregister it but just zero out it's values. This
1452 * allows us to delete disk zero but keep the controller registered.
1453 */
1454 if (h->gendisk[0] != disk){
1455 if (disk->flags & GENHD_FL_UP){
1456 blk_cleanup_queue(disk->queue);
1da177e4 1457 del_gendisk(disk);
ddd47442
MM
1458 drv->queue = NULL;
1459 }
1460 }
1461
1462 --h->num_luns;
1463 /* zero out the disk size info */
1464 drv->nr_blocks = 0;
1465 drv->block_size = 0;
1466 drv->heads = 0;
1467 drv->sectors = 0;
1468 drv->cylinders = 0;
1469 drv->raid_level = -1; /* This can be used as a flag variable to
1470 * indicate that this element of the drive
1471 * array is free.
1472 */
1473
1474 if (clear_all){
1da177e4
LT
1475 /* check to see if it was the last disk */
1476 if (drv == h->drv + h->highest_lun) {
1477 /* if so, find the new hightest lun */
1478 int i, newhighest =-1;
1479 for(i=0; i<h->highest_lun; i++) {
1480 /* if the disk has size > 0, it is available */
ddd47442 1481 if (h->drv[i].heads)
1da177e4
LT
1482 newhighest = i;
1483 }
1484 h->highest_lun = newhighest;
1da177e4 1485 }
ddd47442 1486
1da177e4 1487 drv->LunID = 0;
ddd47442 1488 }
1da177e4
LT
1489 return(0);
1490}
ddd47442 1491
1da177e4
LT
1492static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
1493 size_t size,
1494 unsigned int use_unit_num, /* 0: address the controller,
1495 1: address logical volume log_unit,
1496 2: periph device address is scsi3addr */
1497 unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr,
1498 int cmd_type)
1499{
1500 ctlr_info_t *h= hba[ctlr];
1501 u64bit buff_dma_handle;
1502 int status = IO_OK;
1503
1504 c->cmd_type = CMD_IOCTL_PEND;
1505 c->Header.ReplyQueue = 0;
1506 if( buff != NULL) {
1507 c->Header.SGList = 1;
1508 c->Header.SGTotal= 1;
1509 } else {
1510 c->Header.SGList = 0;
1511 c->Header.SGTotal= 0;
1512 }
1513 c->Header.Tag.lower = c->busaddr;
1514
1515 c->Request.Type.Type = cmd_type;
1516 if (cmd_type == TYPE_CMD) {
1517 switch(cmd) {
1518 case CISS_INQUIRY:
1519 /* If the logical unit number is 0 then, this is going
1520 to controller so It's a physical command
1521 mode = 0 target = 0. So we have nothing to write.
1522 otherwise, if use_unit_num == 1,
1523 mode = 1(volume set addressing) target = LUNID
1524 otherwise, if use_unit_num == 2,
1525 mode = 0(periph dev addr) target = scsi3addr */
1526 if (use_unit_num == 1) {
1527 c->Header.LUN.LogDev.VolId=
1528 h->drv[log_unit].LunID;
1529 c->Header.LUN.LogDev.Mode = 1;
1530 } else if (use_unit_num == 2) {
1531 memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
1532 c->Header.LUN.LogDev.Mode = 0;
1533 }
1534 /* are we trying to read a vital product page */
1535 if(page_code != 0) {
1536 c->Request.CDB[1] = 0x01;
1537 c->Request.CDB[2] = page_code;
1538 }
1539 c->Request.CDBLen = 6;
1540 c->Request.Type.Attribute = ATTR_SIMPLE;
1541 c->Request.Type.Direction = XFER_READ;
1542 c->Request.Timeout = 0;
1543 c->Request.CDB[0] = CISS_INQUIRY;
1544 c->Request.CDB[4] = size & 0xFF;
1545 break;
1546 case CISS_REPORT_LOG:
1547 case CISS_REPORT_PHYS:
1548 /* Talking to controller so It's a physical command
1549 mode = 00 target = 0. Nothing to write.
1550 */
1551 c->Request.CDBLen = 12;
1552 c->Request.Type.Attribute = ATTR_SIMPLE;
1553 c->Request.Type.Direction = XFER_READ;
1554 c->Request.Timeout = 0;
1555 c->Request.CDB[0] = cmd;
1556 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1557 c->Request.CDB[7] = (size >> 16) & 0xFF;
1558 c->Request.CDB[8] = (size >> 8) & 0xFF;
1559 c->Request.CDB[9] = size & 0xFF;
1560 break;
1561
1562 case CCISS_READ_CAPACITY:
1563 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1564 c->Header.LUN.LogDev.Mode = 1;
1565 c->Request.CDBLen = 10;
1566 c->Request.Type.Attribute = ATTR_SIMPLE;
1567 c->Request.Type.Direction = XFER_READ;
1568 c->Request.Timeout = 0;
1569 c->Request.CDB[0] = cmd;
1570 break;
1571 case CCISS_CACHE_FLUSH:
1572 c->Request.CDBLen = 12;
1573 c->Request.Type.Attribute = ATTR_SIMPLE;
1574 c->Request.Type.Direction = XFER_WRITE;
1575 c->Request.Timeout = 0;
1576 c->Request.CDB[0] = BMIC_WRITE;
1577 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1578 break;
1579 default:
1580 printk(KERN_WARNING
1581 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1582 return(IO_ERROR);
1583 }
1584 } else if (cmd_type == TYPE_MSG) {
1585 switch (cmd) {
1586 case 3: /* No-Op message */
1587 c->Request.CDBLen = 1;
1588 c->Request.Type.Attribute = ATTR_SIMPLE;
1589 c->Request.Type.Direction = XFER_WRITE;
1590 c->Request.Timeout = 0;
1591 c->Request.CDB[0] = cmd;
1592 break;
1593 default:
1594 printk(KERN_WARNING
1595 "cciss%d: unknown message type %d\n",
1596 ctlr, cmd);
1597 return IO_ERROR;
1598 }
1599 } else {
1600 printk(KERN_WARNING
1601 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1602 return IO_ERROR;
1603 }
1604 /* Fill in the scatter gather information */
1605 if (size > 0) {
1606 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1607 buff, size, PCI_DMA_BIDIRECTIONAL);
1608 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1609 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1610 c->SG[0].Len = size;
1611 c->SG[0].Ext = 0; /* we are not chaining */
1612 }
1613 return status;
1614}
1615static int sendcmd_withirq(__u8 cmd,
1616 int ctlr,
1617 void *buff,
1618 size_t size,
1619 unsigned int use_unit_num,
1620 unsigned int log_unit,
1621 __u8 page_code,
1622 int cmd_type)
1623{
1624 ctlr_info_t *h = hba[ctlr];
1625 CommandList_struct *c;
1626 u64bit buff_dma_handle;
1627 unsigned long flags;
1628 int return_status;
1629 DECLARE_COMPLETION(wait);
1630
1631 if ((c = cmd_alloc(h , 0)) == NULL)
1632 return -ENOMEM;
1633 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1634 log_unit, page_code, NULL, cmd_type);
1635 if (return_status != IO_OK) {
1636 cmd_free(h, c, 0);
1637 return return_status;
1638 }
1639resend_cmd2:
1640 c->waiting = &wait;
1641
1642 /* Put the request on the tail of the queue and send it */
1643 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1644 addQ(&h->reqQ, c);
1645 h->Qdepth++;
1646 start_io(h);
1647 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1648
1649 wait_for_completion(&wait);
1650
1651 if(c->err_info->CommandStatus != 0)
1652 { /* an error has occurred */
1653 switch(c->err_info->CommandStatus)
1654 {
1655 case CMD_TARGET_STATUS:
1656 printk(KERN_WARNING "cciss: cmd %p has "
1657 " completed with errors\n", c);
1658 if( c->err_info->ScsiStatus)
1659 {
1660 printk(KERN_WARNING "cciss: cmd %p "
1661 "has SCSI Status = %x\n",
1662 c,
1663 c->err_info->ScsiStatus);
1664 }
1665
1666 break;
1667 case CMD_DATA_UNDERRUN:
1668 case CMD_DATA_OVERRUN:
1669 /* expected for inquire and report lun commands */
1670 break;
1671 case CMD_INVALID:
1672 printk(KERN_WARNING "cciss: Cmd %p is "
1673 "reported invalid\n", c);
1674 return_status = IO_ERROR;
1675 break;
1676 case CMD_PROTOCOL_ERR:
1677 printk(KERN_WARNING "cciss: cmd %p has "
1678 "protocol error \n", c);
1679 return_status = IO_ERROR;
1680 break;
1681case CMD_HARDWARE_ERR:
1682 printk(KERN_WARNING "cciss: cmd %p had "
1683 " hardware error\n", c);
1684 return_status = IO_ERROR;
1685 break;
1686 case CMD_CONNECTION_LOST:
1687 printk(KERN_WARNING "cciss: cmd %p had "
1688 "connection lost\n", c);
1689 return_status = IO_ERROR;
1690 break;
1691 case CMD_ABORTED:
1692 printk(KERN_WARNING "cciss: cmd %p was "
1693 "aborted\n", c);
1694 return_status = IO_ERROR;
1695 break;
1696 case CMD_ABORT_FAILED:
1697 printk(KERN_WARNING "cciss: cmd %p reports "
1698 "abort failed\n", c);
1699 return_status = IO_ERROR;
1700 break;
1701 case CMD_UNSOLICITED_ABORT:
1702 printk(KERN_WARNING
1703 "cciss%d: unsolicited abort %p\n",
1704 ctlr, c);
1705 if (c->retry_count < MAX_CMD_RETRIES) {
1706 printk(KERN_WARNING
1707 "cciss%d: retrying %p\n",
1708 ctlr, c);
1709 c->retry_count++;
1710 /* erase the old error information */
1711 memset(c->err_info, 0,
1712 sizeof(ErrorInfo_struct));
1713 return_status = IO_OK;
1714 INIT_COMPLETION(wait);
1715 goto resend_cmd2;
1716 }
1717 return_status = IO_ERROR;
1718 break;
1719 default:
1720 printk(KERN_WARNING "cciss: cmd %p returned "
1721 "unknown status %x\n", c,
1722 c->err_info->CommandStatus);
1723 return_status = IO_ERROR;
1724 }
1725 }
1726 /* unlock the buffers from DMA */
1727 pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
1728 size, PCI_DMA_BIDIRECTIONAL);
1729 cmd_free(h, c, 0);
1730 return(return_status);
1731
1732}
1733static void cciss_geometry_inquiry(int ctlr, int logvol,
1734 int withirq, unsigned int total_size,
1735 unsigned int block_size, InquiryData_struct *inq_buff,
1736 drive_info_struct *drv)
1737{
1738 int return_code;
1739 memset(inq_buff, 0, sizeof(InquiryData_struct));
1740 if (withirq)
1741 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1742 inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD);
1743 else
1744 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1745 sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD);
1746 if (return_code == IO_OK) {
1747 if(inq_buff->data_byte[8] == 0xFF) {
1748 printk(KERN_WARNING
1749 "cciss: reading geometry failed, volume "
1750 "does not support reading geometry\n");
1751 drv->block_size = block_size;
1752 drv->nr_blocks = total_size;
1753 drv->heads = 255;
1754 drv->sectors = 32; // Sectors per track
1755 drv->cylinders = total_size / 255 / 32;
1756 } else {
1757 unsigned int t;
1758
1759 drv->block_size = block_size;
1760 drv->nr_blocks = total_size;
1761 drv->heads = inq_buff->data_byte[6];
1762 drv->sectors = inq_buff->data_byte[7];
1763 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1764 drv->cylinders += inq_buff->data_byte[5];
1765 drv->raid_level = inq_buff->data_byte[8];
1766 t = drv->heads * drv->sectors;
1767 if (t > 1) {
1768 drv->cylinders = total_size/t;
1769 }
1770 }
1771 } else { /* Get geometry failed */
1772 printk(KERN_WARNING "cciss: reading geometry failed\n");
1773 }
1774 printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
1775 drv->heads, drv->sectors, drv->cylinders);
1776}
1777static void
1778cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
1779 int withirq, unsigned int *total_size, unsigned int *block_size)
1780{
1781 int return_code;
1782 memset(buf, 0, sizeof(*buf));
1783 if (withirq)
1784 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1785 ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD);
1786 else
1787 return_code = sendcmd(CCISS_READ_CAPACITY,
1788 ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD);
1789 if (return_code == IO_OK) {
1790 *total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1;
1791 *block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0]));
1792 } else { /* read capacity command failed */
1793 printk(KERN_WARNING "cciss: read capacity failed\n");
1794 *total_size = 0;
1795 *block_size = BLOCK_SIZE;
1796 }
1797 printk(KERN_INFO " blocks= %u block_size= %d\n",
1798 *total_size, *block_size);
1799 return;
1800}
1801
1da177e4
LT
1802static int cciss_revalidate(struct gendisk *disk)
1803{
1804 ctlr_info_t *h = get_host(disk);
1805 drive_info_struct *drv = get_drv(disk);
1806 int logvol;
1807 int FOUND=0;
1808 unsigned int block_size;
1809 unsigned int total_size;
1810 ReadCapdata_struct *size_buff = NULL;
1811 InquiryData_struct *inq_buff = NULL;
1812
1813 for(logvol=0; logvol < CISS_MAX_LUN; logvol++)
1814 {
1815 if(h->drv[logvol].LunID == drv->LunID) {
1816 FOUND=1;
1817 break;
1818 }
1819 }
1820
1821 if (!FOUND) return 1;
1822
1823 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1824 if (size_buff == NULL)
1825 {
1826 printk(KERN_WARNING "cciss: out of memory\n");
1827 return 1;
1828 }
1829 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1830 if (inq_buff == NULL)
1831 {
1832 printk(KERN_WARNING "cciss: out of memory\n");
1833 kfree(size_buff);
1834 return 1;
1835 }
1836
1837 cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size);
1838 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv);
1839
ad2b9312 1840 blk_queue_hardsect_size(drv->queue, drv->block_size);
1da177e4
LT
1841 set_capacity(disk, drv->nr_blocks);
1842
1843 kfree(size_buff);
1844 kfree(inq_buff);
1845 return 0;
1846}
1847
1848/*
1849 * Wait polling for a command to complete.
1850 * The memory mapped FIFO is polled for the completion.
1851 * Used only at init time, interrupts from the HBA are disabled.
1852 */
1853static unsigned long pollcomplete(int ctlr)
1854{
1855 unsigned long done;
1856 int i;
1857
1858 /* Wait (up to 20 seconds) for a command to complete */
1859
1860 for (i = 20 * HZ; i > 0; i--) {
1861 done = hba[ctlr]->access.command_completed(hba[ctlr]);
86e84862
NA
1862 if (done == FIFO_EMPTY)
1863 schedule_timeout_uninterruptible(1);
1864 else
1da177e4
LT
1865 return (done);
1866 }
1867 /* Invalid address to tell caller we ran out of time */
1868 return 1;
1869}
1870/*
1871 * Send a command to the controller, and wait for it to complete.
1872 * Only used at init time.
1873 */
1874static int sendcmd(
1875 __u8 cmd,
1876 int ctlr,
1877 void *buff,
1878 size_t size,
1879 unsigned int use_unit_num, /* 0: address the controller,
1880 1: address logical volume log_unit,
1881 2: periph device address is scsi3addr */
1882 unsigned int log_unit,
1883 __u8 page_code,
1884 unsigned char *scsi3addr,
1885 int cmd_type)
1886{
1887 CommandList_struct *c;
1888 int i;
1889 unsigned long complete;
1890 ctlr_info_t *info_p= hba[ctlr];
1891 u64bit buff_dma_handle;
1892 int status;
1893
1894 if ((c = cmd_alloc(info_p, 1)) == NULL) {
1895 printk(KERN_WARNING "cciss: unable to get memory");
1896 return(IO_ERROR);
1897 }
1898 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1899 log_unit, page_code, scsi3addr, cmd_type);
1900 if (status != IO_OK) {
1901 cmd_free(info_p, c, 1);
1902 return status;
1903 }
1904resend_cmd1:
1905 /*
1906 * Disable interrupt
1907 */
1908#ifdef CCISS_DEBUG
1909 printk(KERN_DEBUG "cciss: turning intr off\n");
1910#endif /* CCISS_DEBUG */
1911 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
1912
1913 /* Make sure there is room in the command FIFO */
1914 /* Actually it should be completely empty at this time. */
1915 for (i = 200000; i > 0; i--)
1916 {
1917 /* if fifo isn't full go */
1918 if (!(info_p->access.fifo_full(info_p)))
1919 {
1920
1921 break;
1922 }
1923 udelay(10);
1924 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
1925 " waiting!\n", ctlr);
1926 }
1927 /*
1928 * Send the cmd
1929 */
1930 info_p->access.submit_command(info_p, c);
1931 complete = pollcomplete(ctlr);
1932
1933#ifdef CCISS_DEBUG
1934 printk(KERN_DEBUG "cciss: command completed\n");
1935#endif /* CCISS_DEBUG */
1936
1937 if (complete != 1) {
1938 if ( (complete & CISS_ERROR_BIT)
1939 && (complete & ~CISS_ERROR_BIT) == c->busaddr)
1940 {
1941 /* if data overrun or underun on Report command
1942 ignore it
1943 */
1944 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
1945 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
1946 (c->Request.CDB[0] == CISS_INQUIRY)) &&
1947 ((c->err_info->CommandStatus ==
1948 CMD_DATA_OVERRUN) ||
1949 (c->err_info->CommandStatus ==
1950 CMD_DATA_UNDERRUN)
1951 ))
1952 {
1953 complete = c->busaddr;
1954 } else {
1955 if (c->err_info->CommandStatus ==
1956 CMD_UNSOLICITED_ABORT) {
1957 printk(KERN_WARNING "cciss%d: "
1958 "unsolicited abort %p\n",
1959 ctlr, c);
1960 if (c->retry_count < MAX_CMD_RETRIES) {
1961 printk(KERN_WARNING
1962 "cciss%d: retrying %p\n",
1963 ctlr, c);
1964 c->retry_count++;
1965 /* erase the old error */
1966 /* information */
1967 memset(c->err_info, 0,
1968 sizeof(ErrorInfo_struct));
1969 goto resend_cmd1;
1970 } else {
1971 printk(KERN_WARNING
1972 "cciss%d: retried %p too "
1973 "many times\n", ctlr, c);
1974 status = IO_ERROR;
1975 goto cleanup1;
1976 }
1977 }
1978 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1979 " Error %x \n", ctlr,
1980 c->err_info->CommandStatus);
1981 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1982 " offensive info\n"
1983 " size %x\n num %x value %x\n", ctlr,
1984 c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
1985 c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
1986 c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
1987 status = IO_ERROR;
1988 goto cleanup1;
1989 }
1990 }
1991 if (complete != c->busaddr) {
1992 printk( KERN_WARNING "cciss cciss%d: SendCmd "
1993 "Invalid command list address returned! (%lx)\n",
1994 ctlr, complete);
1995 status = IO_ERROR;
1996 goto cleanup1;
1997 }
1998 } else {
1999 printk( KERN_WARNING
2000 "cciss cciss%d: SendCmd Timeout out, "
2001 "No command list address returned!\n",
2002 ctlr);
2003 status = IO_ERROR;
2004 }
2005
2006cleanup1:
2007 /* unlock the data buffer from DMA */
2008 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2009 size, PCI_DMA_BIDIRECTIONAL);
2010 cmd_free(info_p, c, 1);
2011 return (status);
2012}
2013/*
2014 * Map (physical) PCI mem into (virtual) kernel space
2015 */
2016static void __iomem *remap_pci_mem(ulong base, ulong size)
2017{
2018 ulong page_base = ((ulong) base) & PAGE_MASK;
2019 ulong page_offs = ((ulong) base) - page_base;
2020 void __iomem *page_remapped = ioremap(page_base, page_offs+size);
2021
2022 return page_remapped ? (page_remapped + page_offs) : NULL;
2023}
2024
2025/*
2026 * Takes jobs of the Q and sends them to the hardware, then puts it on
2027 * the Q to wait for completion.
2028 */
2029static void start_io( ctlr_info_t *h)
2030{
2031 CommandList_struct *c;
2032
2033 while(( c = h->reqQ) != NULL )
2034 {
2035 /* can't do anything if fifo is full */
2036 if ((h->access.fifo_full(h))) {
2037 printk(KERN_WARNING "cciss: fifo full\n");
2038 break;
2039 }
2040
2041 /* Get the frist entry from the Request Q */
2042 removeQ(&(h->reqQ), c);
2043 h->Qdepth--;
2044
2045 /* Tell the controller execute command */
2046 h->access.submit_command(h, c);
2047
2048 /* Put job onto the completed Q */
2049 addQ (&(h->cmpQ), c);
2050 }
2051}
2052
2053static inline void complete_buffers(struct bio *bio, int status)
2054{
2055 while (bio) {
2056 struct bio *xbh = bio->bi_next;
2057 int nr_sectors = bio_sectors(bio);
2058
2059 bio->bi_next = NULL;
2060 blk_finished_io(len);
2061 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
2062 bio = xbh;
2063 }
2064
2065}
2066/* Assumes that CCISS_LOCK(h->ctlr) is held. */
2067/* Zeros out the error record and then resends the command back */
2068/* to the controller */
2069static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
2070{
2071 /* erase the old error information */
2072 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2073
2074 /* add it to software queue and then send it to the controller */
2075 addQ(&(h->reqQ),c);
2076 h->Qdepth++;
2077 if(h->Qdepth > h->maxQsinceinit)
2078 h->maxQsinceinit = h->Qdepth;
2079
2080 start_io(h);
2081}
2082/* checks the status of the job and calls complete buffers to mark all
2083 * buffers for the completed job.
2084 */
2085static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
2086 int timeout)
2087{
2088 int status = 1;
2089 int i;
2090 int retry_cmd = 0;
2091 u64bit temp64;
2092
2093 if (timeout)
2094 status = 0;
2095
2096 if(cmd->err_info->CommandStatus != 0)
2097 { /* an error has occurred */
2098 switch(cmd->err_info->CommandStatus)
2099 {
2100 unsigned char sense_key;
2101 case CMD_TARGET_STATUS:
2102 status = 0;
2103
2104 if( cmd->err_info->ScsiStatus == 0x02)
2105 {
2106 printk(KERN_WARNING "cciss: cmd %p "
2107 "has CHECK CONDITION "
2108 " byte 2 = 0x%x\n", cmd,
2109 cmd->err_info->SenseInfo[2]
2110 );
2111 /* check the sense key */
2112 sense_key = 0xf &
2113 cmd->err_info->SenseInfo[2];
2114 /* no status or recovered error */
2115 if((sense_key == 0x0) ||
2116 (sense_key == 0x1))
2117 {
2118 status = 1;
2119 }
2120 } else
2121 {
2122 printk(KERN_WARNING "cciss: cmd %p "
2123 "has SCSI Status 0x%x\n",
2124 cmd, cmd->err_info->ScsiStatus);
2125 }
2126 break;
2127 case CMD_DATA_UNDERRUN:
2128 printk(KERN_WARNING "cciss: cmd %p has"
2129 " completed with data underrun "
2130 "reported\n", cmd);
2131 break;
2132 case CMD_DATA_OVERRUN:
2133 printk(KERN_WARNING "cciss: cmd %p has"
2134 " completed with data overrun "
2135 "reported\n", cmd);
2136 break;
2137 case CMD_INVALID:
2138 printk(KERN_WARNING "cciss: cmd %p is "
2139 "reported invalid\n", cmd);
2140 status = 0;
2141 break;
2142 case CMD_PROTOCOL_ERR:
2143 printk(KERN_WARNING "cciss: cmd %p has "
2144 "protocol error \n", cmd);
2145 status = 0;
2146 break;
2147 case CMD_HARDWARE_ERR:
2148 printk(KERN_WARNING "cciss: cmd %p had "
2149 " hardware error\n", cmd);
2150 status = 0;
2151 break;
2152 case CMD_CONNECTION_LOST:
2153 printk(KERN_WARNING "cciss: cmd %p had "
2154 "connection lost\n", cmd);
2155 status=0;
2156 break;
2157 case CMD_ABORTED:
2158 printk(KERN_WARNING "cciss: cmd %p was "
2159 "aborted\n", cmd);
2160 status=0;
2161 break;
2162 case CMD_ABORT_FAILED:
2163 printk(KERN_WARNING "cciss: cmd %p reports "
2164 "abort failed\n", cmd);
2165 status=0;
2166 break;
2167 case CMD_UNSOLICITED_ABORT:
2168 printk(KERN_WARNING "cciss%d: unsolicited "
2169 "abort %p\n", h->ctlr, cmd);
2170 if (cmd->retry_count < MAX_CMD_RETRIES) {
2171 retry_cmd=1;
2172 printk(KERN_WARNING
2173 "cciss%d: retrying %p\n",
2174 h->ctlr, cmd);
2175 cmd->retry_count++;
2176 } else
2177 printk(KERN_WARNING
2178 "cciss%d: %p retried too "
2179 "many times\n", h->ctlr, cmd);
2180 status=0;
2181 break;
2182 case CMD_TIMEOUT:
2183 printk(KERN_WARNING "cciss: cmd %p timedout\n",
2184 cmd);
2185 status=0;
2186 break;
2187 default:
2188 printk(KERN_WARNING "cciss: cmd %p returned "
2189 "unknown status %x\n", cmd,
2190 cmd->err_info->CommandStatus);
2191 status=0;
2192 }
2193 }
2194 /* We need to return this command */
2195 if(retry_cmd) {
2196 resend_cciss_cmd(h,cmd);
2197 return;
2198 }
2199 /* command did not need to be retried */
2200 /* unmap the DMA mapping for all the scatter gather elements */
2201 for(i=0; i<cmd->Header.SGList; i++) {
2202 temp64.val32.lower = cmd->SG[i].Addr.lower;
2203 temp64.val32.upper = cmd->SG[i].Addr.upper;
2204 pci_unmap_page(hba[cmd->ctlr]->pdev,
2205 temp64.val, cmd->SG[i].Len,
2206 (cmd->Request.Type.Direction == XFER_READ) ?
2207 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
2208 }
2209 complete_buffers(cmd->rq->bio, status);
2210
2211#ifdef CCISS_DEBUG
2212 printk("Done with %p\n", cmd->rq);
2213#endif /* CCISS_DEBUG */
2214
2215 end_that_request_last(cmd->rq);
2216 cmd_free(h,cmd,1);
2217}
2218
2219/*
2220 * Get a request and submit it to the controller.
2221 */
2222static void do_cciss_request(request_queue_t *q)
2223{
2224 ctlr_info_t *h= q->queuedata;
2225 CommandList_struct *c;
2226 int start_blk, seg;
2227 struct request *creq;
2228 u64bit temp64;
2229 struct scatterlist tmp_sg[MAXSGENTRIES];
2230 drive_info_struct *drv;
2231 int i, dir;
2232
2233 /* We call start_io here in case there is a command waiting on the
2234 * queue that has not been sent.
2235 */
2236 if (blk_queue_plugged(q))
2237 goto startio;
2238
2239queue:
2240 creq = elv_next_request(q);
2241 if (!creq)
2242 goto startio;
2243
2244 if (creq->nr_phys_segments > MAXSGENTRIES)
2245 BUG();
2246
2247 if (( c = cmd_alloc(h, 1)) == NULL)
2248 goto full;
2249
2250 blkdev_dequeue_request(creq);
2251
2252 spin_unlock_irq(q->queue_lock);
2253
2254 c->cmd_type = CMD_RWREQ;
2255 c->rq = creq;
2256
2257 /* fill in the request */
2258 drv = creq->rq_disk->private_data;
2259 c->Header.ReplyQueue = 0; // unused in simple mode
2260 c->Header.Tag.lower = c->busaddr; // use the physical address the cmd block for tag
2261 c->Header.LUN.LogDev.VolId= drv->LunID;
2262 c->Header.LUN.LogDev.Mode = 1;
2263 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2264 c->Request.Type.Type = TYPE_CMD; // It is a command.
2265 c->Request.Type.Attribute = ATTR_SIMPLE;
2266 c->Request.Type.Direction =
2267 (rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE;
2268 c->Request.Timeout = 0; // Don't time out
2269 c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
2270 start_blk = creq->sector;
2271#ifdef CCISS_DEBUG
2272 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
2273 (int) creq->nr_sectors);
2274#endif /* CCISS_DEBUG */
2275
2276 seg = blk_rq_map_sg(q, creq, tmp_sg);
2277
2278 /* get the DMA records for the setup */
2279 if (c->Request.Type.Direction == XFER_READ)
2280 dir = PCI_DMA_FROMDEVICE;
2281 else
2282 dir = PCI_DMA_TODEVICE;
2283
2284 for (i=0; i<seg; i++)
2285 {
2286 c->SG[i].Len = tmp_sg[i].length;
2287 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2288 tmp_sg[i].offset, tmp_sg[i].length,
2289 dir);
2290 c->SG[i].Addr.lower = temp64.val32.lower;
2291 c->SG[i].Addr.upper = temp64.val32.upper;
2292 c->SG[i].Ext = 0; // we are not chaining
2293 }
2294 /* track how many SG entries we are using */
2295 if( seg > h->maxSG)
2296 h->maxSG = seg;
2297
2298#ifdef CCISS_DEBUG
2299 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
2300#endif /* CCISS_DEBUG */
2301
2302 c->Header.SGList = c->Header.SGTotal = seg;
2303 c->Request.CDB[1]= 0;
2304 c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
2305 c->Request.CDB[3]= (start_blk >> 16) & 0xff;
2306 c->Request.CDB[4]= (start_blk >> 8) & 0xff;
2307 c->Request.CDB[5]= start_blk & 0xff;
2308 c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
2309 c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
2310 c->Request.CDB[8]= creq->nr_sectors & 0xff;
2311 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2312
2313 spin_lock_irq(q->queue_lock);
2314
2315 addQ(&(h->reqQ),c);
2316 h->Qdepth++;
2317 if(h->Qdepth > h->maxQsinceinit)
2318 h->maxQsinceinit = h->Qdepth;
2319
2320 goto queue;
2321full:
2322 blk_stop_queue(q);
2323startio:
2324 /* We will already have the driver lock here so not need
2325 * to lock it.
2326 */
2327 start_io(h);
2328}
2329
2330static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
2331{
2332 ctlr_info_t *h = dev_id;
2333 CommandList_struct *c;
2334 unsigned long flags;
2335 __u32 a, a1;
2336 int j;
2337 int start_queue = h->next_to_run;
2338
2339 /* Is this interrupt for us? */
2340 if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
2341 return IRQ_NONE;
2342
2343 /*
2344 * If there are completed commands in the completion queue,
2345 * we had better do something about it.
2346 */
2347 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2348 while( h->access.intr_pending(h))
2349 {
2350 while((a = h->access.command_completed(h)) != FIFO_EMPTY)
2351 {
2352 a1 = a;
2353 a &= ~3;
2354 if ((c = h->cmpQ) == NULL)
2355 {
2356 printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1);
2357 continue;
2358 }
2359 while(c->busaddr != a) {
2360 c = c->next;
2361 if (c == h->cmpQ)
2362 break;
2363 }
2364 /*
2365 * If we've found the command, take it off the
2366 * completion Q and free it
2367 */
2368 if (c->busaddr == a) {
2369 removeQ(&h->cmpQ, c);
2370 if (c->cmd_type == CMD_RWREQ) {
2371 complete_command(h, c, 0);
2372 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2373 complete(c->waiting);
2374 }
2375# ifdef CONFIG_CISS_SCSI_TAPE
2376 else if (c->cmd_type == CMD_SCSI)
2377 complete_scsi_command(c, 0, a1);
2378# endif
2379 continue;
2380 }
2381 }
2382 }
2383
2384 /* check to see if we have maxed out the number of commands that can
2385 * be placed on the queue. If so then exit. We do this check here
2386 * in case the interrupt we serviced was from an ioctl and did not
2387 * free any new commands.
2388 */
2389 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2390 goto cleanup;
2391
2392 /* We have room on the queue for more commands. Now we need to queue
2393 * them up. We will also keep track of the next queue to run so
2394 * that every queue gets a chance to be started first.
2395 */
ad2b9312
MM
2396 for (j=0; j < h->highest_lun + 1; j++){
2397 int curr_queue = (start_queue + j) % (h->highest_lun + 1);
1da177e4
LT
2398 /* make sure the disk has been added and the drive is real
2399 * because this can be called from the middle of init_one.
2400 */
ad2b9312 2401 if(!(h->drv[curr_queue].queue) ||
1da177e4
LT
2402 !(h->drv[curr_queue].heads))
2403 continue;
2404 blk_start_queue(h->gendisk[curr_queue]->queue);
2405
2406 /* check to see if we have maxed out the number of commands
2407 * that can be placed on the queue.
2408 */
2409 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2410 {
2411 if (curr_queue == start_queue){
ad2b9312 2412 h->next_to_run = (start_queue + 1) % (h->highest_lun + 1);
1da177e4
LT
2413 goto cleanup;
2414 } else {
2415 h->next_to_run = curr_queue;
2416 goto cleanup;
2417 }
2418 } else {
ad2b9312 2419 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1da177e4
LT
2420 }
2421 }
2422
2423cleanup:
2424 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2425 return IRQ_HANDLED;
2426}
1da177e4
LT
2427/*
2428 * We cannot read the structure directly, for portablity we must use
2429 * the io functions.
2430 * This is for debug only.
2431 */
2432#ifdef CCISS_DEBUG
2433static void print_cfg_table( CfgTable_struct *tb)
2434{
2435 int i;
2436 char temp_name[17];
2437
2438 printk("Controller Configuration information\n");
2439 printk("------------------------------------\n");
2440 for(i=0;i<4;i++)
2441 temp_name[i] = readb(&(tb->Signature[i]));
2442 temp_name[4]='\0';
2443 printk(" Signature = %s\n", temp_name);
2444 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2445 printk(" Transport methods supported = 0x%x\n",
2446 readl(&(tb-> TransportSupport)));
2447 printk(" Transport methods active = 0x%x\n",
2448 readl(&(tb->TransportActive)));
2449 printk(" Requested transport Method = 0x%x\n",
2450 readl(&(tb->HostWrite.TransportRequest)));
2451 printk(" Coalese Interrupt Delay = 0x%x\n",
2452 readl(&(tb->HostWrite.CoalIntDelay)));
2453 printk(" Coalese Interrupt Count = 0x%x\n",
2454 readl(&(tb->HostWrite.CoalIntCount)));
2455 printk(" Max outstanding commands = 0x%d\n",
2456 readl(&(tb->CmdsOutMax)));
2457 printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
2458 for(i=0;i<16;i++)
2459 temp_name[i] = readb(&(tb->ServerName[i]));
2460 temp_name[16] = '\0';
2461 printk(" Server Name = %s\n", temp_name);
2462 printk(" Heartbeat Counter = 0x%x\n\n\n",
2463 readl(&(tb->HeartBeat)));
2464}
2465#endif /* CCISS_DEBUG */
2466
2467static void release_io_mem(ctlr_info_t *c)
2468{
2469 /* if IO mem was not protected do nothing */
2470 if( c->io_mem_addr == 0)
2471 return;
2472 release_region(c->io_mem_addr, c->io_mem_length);
2473 c->io_mem_addr = 0;
2474 c->io_mem_length = 0;
2475}
2476
2477static int find_PCI_BAR_index(struct pci_dev *pdev,
2478 unsigned long pci_bar_addr)
2479{
2480 int i, offset, mem_type, bar_type;
2481 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2482 return 0;
2483 offset = 0;
2484 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2485 bar_type = pci_resource_flags(pdev, i) &
2486 PCI_BASE_ADDRESS_SPACE;
2487 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2488 offset += 4;
2489 else {
2490 mem_type = pci_resource_flags(pdev, i) &
2491 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2492 switch (mem_type) {
2493 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2494 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2495 offset += 4; /* 32 bit */
2496 break;
2497 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2498 offset += 8;
2499 break;
2500 default: /* reserved in PCI 2.2 */
2501 printk(KERN_WARNING "Base address is invalid\n");
2502 return -1;
2503 break;
2504 }
2505 }
2506 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2507 return i+1;
2508 }
2509 return -1;
2510}
2511
2512static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2513{
2514 ushort subsystem_vendor_id, subsystem_device_id, command;
2515 __u32 board_id, scratchpad = 0;
2516 __u64 cfg_offset;
2517 __u32 cfg_base_addr;
2518 __u64 cfg_base_addr_index;
2519 int i;
2520
2521 /* check to see if controller has been disabled */
2522 /* BEFORE trying to enable it */
2523 (void) pci_read_config_word(pdev, PCI_COMMAND,&command);
2524 if(!(command & 0x02))
2525 {
2526 printk(KERN_WARNING "cciss: controller appears to be disabled\n");
2527 return(-1);
2528 }
2529
2530 if (pci_enable_device(pdev))
2531 {
2532 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2533 return( -1);
2534 }
1da177e4
LT
2535
2536 subsystem_vendor_id = pdev->subsystem_vendor;
2537 subsystem_device_id = pdev->subsystem_device;
2538 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2539 subsystem_vendor_id);
2540
2541 /* search for our IO range so we can protect it */
2542 for(i=0; i<DEVICE_COUNT_RESOURCE; i++)
2543 {
2544 /* is this an IO range */
2545 if( pci_resource_flags(pdev, i) & 0x01 ) {
2546 c->io_mem_addr = pci_resource_start(pdev, i);
2547 c->io_mem_length = pci_resource_end(pdev, i) -
2548 pci_resource_start(pdev, i) +1;
2549#ifdef CCISS_DEBUG
2550 printk("IO value found base_addr[%d] %lx %lx\n", i,
2551 c->io_mem_addr, c->io_mem_length);
2552#endif /* CCISS_DEBUG */
2553 /* register the IO range */
2554 if(!request_region( c->io_mem_addr,
2555 c->io_mem_length, "cciss"))
2556 {
2557 printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
2558 c->io_mem_addr, c->io_mem_length);
2559 c->io_mem_addr= 0;
2560 c->io_mem_length = 0;
2561 }
2562 break;
2563 }
2564 }
2565
2566#ifdef CCISS_DEBUG
2567 printk("command = %x\n", command);
2568 printk("irq = %x\n", pdev->irq);
2569 printk("board_id = %x\n", board_id);
2570#endif /* CCISS_DEBUG */
2571
2572 c->intr = pdev->irq;
2573
2574 /*
2575 * Memory base addr is first addr , the second points to the config
2576 * table
2577 */
2578
2579 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2580#ifdef CCISS_DEBUG
2581 printk("address 0 = %x\n", c->paddr);
2582#endif /* CCISS_DEBUG */
2583 c->vaddr = remap_pci_mem(c->paddr, 200);
2584
2585 /* Wait for the board to become ready. (PCI hotplug needs this.)
2586 * We poll for up to 120 secs, once per 100ms. */
2587 for (i=0; i < 1200; i++) {
2588 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2589 if (scratchpad == CCISS_FIRMWARE_READY)
2590 break;
2591 set_current_state(TASK_INTERRUPTIBLE);
2592 schedule_timeout(HZ / 10); /* wait 100ms */
2593 }
2594 if (scratchpad != CCISS_FIRMWARE_READY) {
2595 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2596 return -1;
2597 }
2598
2599 /* get the address index number */
2600 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2601 cfg_base_addr &= (__u32) 0x0000ffff;
2602#ifdef CCISS_DEBUG
2603 printk("cfg base address = %x\n", cfg_base_addr);
2604#endif /* CCISS_DEBUG */
2605 cfg_base_addr_index =
2606 find_PCI_BAR_index(pdev, cfg_base_addr);
2607#ifdef CCISS_DEBUG
2608 printk("cfg base address index = %x\n", cfg_base_addr_index);
2609#endif /* CCISS_DEBUG */
2610 if (cfg_base_addr_index == -1) {
2611 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2612 release_io_mem(c);
2613 return -1;
2614 }
2615
2616 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2617#ifdef CCISS_DEBUG
2618 printk("cfg offset = %x\n", cfg_offset);
2619#endif /* CCISS_DEBUG */
2620 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2621 cfg_base_addr_index) + cfg_offset,
2622 sizeof(CfgTable_struct));
2623 c->board_id = board_id;
2624
2625#ifdef CCISS_DEBUG
2626 print_cfg_table(c->cfgtable);
2627#endif /* CCISS_DEBUG */
2628
2629 for(i=0; i<NR_PRODUCTS; i++) {
2630 if (board_id == products[i].board_id) {
2631 c->product_name = products[i].product_name;
2632 c->access = *(products[i].access);
2633 break;
2634 }
2635 }
2636 if (i == NR_PRODUCTS) {
2637 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2638 " to access the Smart Array controller %08lx\n",
2639 (unsigned long)board_id);
2640 return -1;
2641 }
2642 if ( (readb(&c->cfgtable->Signature[0]) != 'C') ||
2643 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2644 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2645 (readb(&c->cfgtable->Signature[3]) != 'S') )
2646 {
2647 printk("Does not appear to be a valid CISS config table\n");
2648 return -1;
2649 }
2650
2651#ifdef CONFIG_X86
2652{
2653 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2654 __u32 prefetch;
2655 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2656 prefetch |= 0x100;
2657 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2658}
2659#endif
2660
2661#ifdef CCISS_DEBUG
2662 printk("Trying to put board into Simple mode\n");
2663#endif /* CCISS_DEBUG */
2664 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2665 /* Update the field, and then ring the doorbell */
2666 writel( CFGTBL_Trans_Simple,
2667 &(c->cfgtable->HostWrite.TransportRequest));
2668 writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2669
2670 /* under certain very rare conditions, this can take awhile.
2671 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2672 * as we enter this code.) */
2673 for(i=0;i<MAX_CONFIG_WAIT;i++) {
2674 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2675 break;
2676 /* delay and try again */
2677 set_current_state(TASK_INTERRUPTIBLE);
2678 schedule_timeout(10);
2679 }
2680
2681#ifdef CCISS_DEBUG
2682 printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
2683#endif /* CCISS_DEBUG */
2684#ifdef CCISS_DEBUG
2685 print_cfg_table(c->cfgtable);
2686#endif /* CCISS_DEBUG */
2687
2688 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
2689 {
2690 printk(KERN_WARNING "cciss: unable to get board into"
2691 " simple mode\n");
2692 return -1;
2693 }
2694 return 0;
2695
2696}
2697
2698/*
2699 * Gets information about the local volumes attached to the controller.
2700 */
2701static void cciss_getgeometry(int cntl_num)
2702{
2703 ReportLunData_struct *ld_buff;
2704 ReadCapdata_struct *size_buff;
2705 InquiryData_struct *inq_buff;
2706 int return_code;
2707 int i;
2708 int listlength = 0;
2709 __u32 lunid = 0;
2710 int block_size;
2711 int total_size;
2712
2713 ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2714 if (ld_buff == NULL)
2715 {
2716 printk(KERN_ERR "cciss: out of memory\n");
2717 return;
2718 }
2719 memset(ld_buff, 0, sizeof(ReportLunData_struct));
2720 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
2721 if (size_buff == NULL)
2722 {
2723 printk(KERN_ERR "cciss: out of memory\n");
2724 kfree(ld_buff);
2725 return;
2726 }
2727 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
2728 if (inq_buff == NULL)
2729 {
2730 printk(KERN_ERR "cciss: out of memory\n");
2731 kfree(ld_buff);
2732 kfree(size_buff);
2733 return;
2734 }
2735 /* Get the firmware version */
2736 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
2737 sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD);
2738 if (return_code == IO_OK)
2739 {
2740 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
2741 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
2742 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
2743 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
2744 } else /* send command failed */
2745 {
2746 printk(KERN_WARNING "cciss: unable to determine firmware"
2747 " version of controller\n");
2748 }
2749 /* Get the number of logical volumes */
2750 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
2751 sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD);
2752
2753 if( return_code == IO_OK)
2754 {
2755#ifdef CCISS_DEBUG
2756 printk("LUN Data\n--------------------------\n");
2757#endif /* CCISS_DEBUG */
2758
2759 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
2760 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
2761 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
2762 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
2763 } else /* reading number of logical volumes failed */
2764 {
2765 printk(KERN_WARNING "cciss: report logical volume"
2766 " command failed\n");
2767 listlength = 0;
2768 }
2769 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
2770 if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
2771 {
2772 printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
2773 CISS_MAX_LUN);
2774 hba[cntl_num]->num_luns = CISS_MAX_LUN;
2775 }
2776#ifdef CCISS_DEBUG
2777 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
2778 ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
2779 ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
2780#endif /* CCISS_DEBUG */
2781
2782 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
ddd47442
MM
2783// for(i=0; i< hba[cntl_num]->num_luns; i++)
2784 for(i=0; i < CISS_MAX_LUN; i++)
1da177e4 2785 {
ddd47442
MM
2786 if (i < hba[cntl_num]->num_luns){
2787 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
2788 << 24;
2789 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
2790 << 16;
2791 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
2792 << 8;
1da177e4
LT
2793 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
2794
2795 hba[cntl_num]->drv[i].LunID = lunid;
2796
2797
2798#ifdef CCISS_DEBUG
2799 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
ddd47442
MM
2800 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
2801 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
2802 hba[cntl_num]->drv[i].LunID);
1da177e4
LT
2803#endif /* CCISS_DEBUG */
2804 cciss_read_capacity(cntl_num, i, size_buff, 0,
2805 &total_size, &block_size);
ddd47442
MM
2806 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
2807 block_size, inq_buff, &hba[cntl_num]->drv[i]);
2808 } else {
2809 /* initialize raid_level to indicate a free space */
2810 hba[cntl_num]->drv[i].raid_level = -1;
2811 }
1da177e4
LT
2812 }
2813 kfree(ld_buff);
2814 kfree(size_buff);
2815 kfree(inq_buff);
2816}
2817
2818/* Function to find the first free pointer into our hba[] array */
2819/* Returns -1 if no free entries are left. */
2820static int alloc_cciss_hba(void)
2821{
2822 struct gendisk *disk[NWD];
2823 int i, n;
2824 for (n = 0; n < NWD; n++) {
2825 disk[n] = alloc_disk(1 << NWD_SHIFT);
2826 if (!disk[n])
2827 goto out;
2828 }
2829
2830 for(i=0; i< MAX_CTLR; i++) {
2831 if (!hba[i]) {
2832 ctlr_info_t *p;
2833 p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
2834 if (!p)
2835 goto Enomem;
2836 memset(p, 0, sizeof(ctlr_info_t));
2837 for (n = 0; n < NWD; n++)
2838 p->gendisk[n] = disk[n];
2839 hba[i] = p;
2840 return i;
2841 }
2842 }
2843 printk(KERN_WARNING "cciss: This driver supports a maximum"
2844 " of %d controllers.\n", MAX_CTLR);
2845 goto out;
2846Enomem:
2847 printk(KERN_ERR "cciss: out of memory.\n");
2848out:
2849 while (n--)
2850 put_disk(disk[n]);
2851 return -1;
2852}
2853
2854static void free_hba(int i)
2855{
2856 ctlr_info_t *p = hba[i];
2857 int n;
2858
2859 hba[i] = NULL;
2860 for (n = 0; n < NWD; n++)
2861 put_disk(p->gendisk[n]);
2862 kfree(p);
2863}
2864
2865/*
2866 * This is it. Find all the controllers and register them. I really hate
2867 * stealing all these major device numbers.
2868 * returns the number of block devices registered.
2869 */
2870static int __devinit cciss_init_one(struct pci_dev *pdev,
2871 const struct pci_device_id *ent)
2872{
2873 request_queue_t *q;
2874 int i;
2875 int j;
2876 int rc;
2877
2878 printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
2879 " bus %d dev %d func %d\n",
2880 pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
2881 PCI_FUNC(pdev->devfn));
2882 i = alloc_cciss_hba();
2883 if(i < 0)
2884 return (-1);
1f8ef380
MM
2885
2886 hba[i]->busy_initializing = 1;
2887
1da177e4
LT
2888 if (cciss_pci_init(hba[i], pdev) != 0)
2889 goto clean1;
2890
2891 sprintf(hba[i]->devname, "cciss%d", i);
2892 hba[i]->ctlr = i;
2893 hba[i]->pdev = pdev;
2894
2895 /* configure PCI DMA stuff */
eb0df996 2896 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
1da177e4 2897 printk("cciss: using DAC cycles\n");
eb0df996 2898 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
1da177e4
LT
2899 printk("cciss: not using DAC cycles\n");
2900 else {
2901 printk("cciss: no suitable DMA available\n");
2902 goto clean1;
2903 }
2904
2905 /*
2906 * register with the major number, or get a dynamic major number
2907 * by passing 0 as argument. This is done for greater than
2908 * 8 controller support.
2909 */
2910 if (i < MAX_CTLR_ORIG)
2911 hba[i]->major = MAJOR_NR + i;
2912 rc = register_blkdev(hba[i]->major, hba[i]->devname);
2913 if(rc == -EBUSY || rc == -EINVAL) {
2914 printk(KERN_ERR
2915 "cciss: Unable to get major number %d for %s "
2916 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
2917 goto clean1;
2918 }
2919 else {
2920 if (i >= MAX_CTLR_ORIG)
2921 hba[i]->major = rc;
2922 }
2923
2924 /* make sure the board interrupts are off */
2925 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
2926 if( request_irq(hba[i]->intr, do_cciss_intr,
2927 SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM,
2928 hba[i]->devname, hba[i])) {
2929 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
2930 hba[i]->intr, hba[i]->devname);
2931 goto clean2;
2932 }
2933 hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL);
2934 hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
2935 hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
2936 &(hba[i]->cmd_pool_dhandle));
2937 hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
2938 hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
2939 &(hba[i]->errinfo_pool_dhandle));
2940 if((hba[i]->cmd_pool_bits == NULL)
2941 || (hba[i]->cmd_pool == NULL)
2942 || (hba[i]->errinfo_pool == NULL)) {
2943 printk( KERN_ERR "cciss: out of memory");
2944 goto clean4;
2945 }
2946
2947 spin_lock_init(&hba[i]->lock);
1da177e4
LT
2948
2949 /* Initialize the pdev driver private data.
2950 have it point to hba[i]. */
2951 pci_set_drvdata(pdev, hba[i]);
2952 /* command and error info recs zeroed out before
2953 they are used */
2954 memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long));
2955
2956#ifdef CCISS_DEBUG
2957 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
2958#endif /* CCISS_DEBUG */
2959
2960 cciss_getgeometry(i);
2961
2962 cciss_scsi_setup(i);
2963
2964 /* Turn the interrupts on so we can service requests */
2965 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
2966
2967 cciss_procinit(i);
2968
ad2b9312
MM
2969 for(j=0; j < NWD; j++) { /* mfm */
2970 drive_info_struct *drv = &(hba[i]->drv[j]);
2971 struct gendisk *disk = hba[i]->gendisk[j];
2972
2973 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
2974 if (!q) {
2975 printk(KERN_ERR
2976 "cciss: unable to allocate queue for disk %d\n",
2977 j);
2978 break;
2979 }
2980 drv->queue = q;
2981
2982 q->backing_dev_info.ra_pages = READ_AHEAD;
1da177e4
LT
2983 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
2984
2985 /* This is a hardware imposed limit. */
2986 blk_queue_max_hw_segments(q, MAXSGENTRIES);
2987
2988 /* This is a limit in the driver and could be eliminated. */
2989 blk_queue_max_phys_segments(q, MAXSGENTRIES);
2990
2991 blk_queue_max_sectors(q, 512);
2992
ad2b9312 2993 q->queuedata = hba[i];
1da177e4
LT
2994 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
2995 sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j);
2996 disk->major = hba[i]->major;
2997 disk->first_minor = j << NWD_SHIFT;
2998 disk->fops = &cciss_fops;
ad2b9312 2999 disk->queue = q;
1da177e4
LT
3000 disk->private_data = drv;
3001 /* we must register the controller even if no disks exist */
3002 /* this is for the online array utilities */
3003 if(!drv->heads && j)
3004 continue;
ad2b9312 3005 blk_queue_hardsect_size(q, drv->block_size);
1da177e4
LT
3006 set_capacity(disk, drv->nr_blocks);
3007 add_disk(disk);
3008 }
ad2b9312 3009
1f8ef380 3010 hba[i]->busy_initializing = 0;
1da177e4
LT
3011 return(1);
3012
3013clean4:
3014 if(hba[i]->cmd_pool_bits)
3015 kfree(hba[i]->cmd_pool_bits);
3016 if(hba[i]->cmd_pool)
3017 pci_free_consistent(hba[i]->pdev,
3018 NR_CMDS * sizeof(CommandList_struct),
3019 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3020 if(hba[i]->errinfo_pool)
3021 pci_free_consistent(hba[i]->pdev,
3022 NR_CMDS * sizeof( ErrorInfo_struct),
3023 hba[i]->errinfo_pool,
3024 hba[i]->errinfo_pool_dhandle);
3025 free_irq(hba[i]->intr, hba[i]);
3026clean2:
3027 unregister_blkdev(hba[i]->major, hba[i]->devname);
3028clean1:
3029 release_io_mem(hba[i]);
3030 free_hba(i);
1f8ef380 3031 hba[i]->busy_initializing = 0;
1da177e4
LT
3032 return(-1);
3033}
3034
3035static void __devexit cciss_remove_one (struct pci_dev *pdev)
3036{
3037 ctlr_info_t *tmp_ptr;
3038 int i, j;
3039 char flush_buf[4];
3040 int return_code;
3041
3042 if (pci_get_drvdata(pdev) == NULL)
3043 {
3044 printk( KERN_ERR "cciss: Unable to remove device \n");
3045 return;
3046 }
3047 tmp_ptr = pci_get_drvdata(pdev);
3048 i = tmp_ptr->ctlr;
3049 if (hba[i] == NULL)
3050 {
3051 printk(KERN_ERR "cciss: device appears to "
3052 "already be removed \n");
3053 return;
3054 }
3055 /* Turn board interrupts off and send the flush cache command */
3056 /* sendcmd will turn off interrupt, and send the flush...
3057 * To write all data in the battery backed cache to disks */
3058 memset(flush_buf, 0, 4);
3059 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3060 TYPE_CMD);
3061 if(return_code != IO_OK)
3062 {
3063 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3064 i);
3065 }
3066 free_irq(hba[i]->intr, hba[i]);
3067 pci_set_drvdata(pdev, NULL);
3068 iounmap(hba[i]->vaddr);
3069 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3070 unregister_blkdev(hba[i]->major, hba[i]->devname);
3071 remove_proc_entry(hba[i]->devname, proc_cciss);
3072
3073 /* remove it from the disk list */
3074 for (j = 0; j < NWD; j++) {
3075 struct gendisk *disk = hba[i]->gendisk[j];
3076 if (disk->flags & GENHD_FL_UP)
ad2b9312 3077 blk_cleanup_queue(disk->queue);
1da177e4
LT
3078 del_gendisk(disk);
3079 }
3080
1da177e4
LT
3081 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
3082 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3083 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
3084 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3085 kfree(hba[i]->cmd_pool_bits);
3086 release_io_mem(hba[i]);
3087 free_hba(i);
3088}
3089
3090static struct pci_driver cciss_pci_driver = {
3091 .name = "cciss",
3092 .probe = cciss_init_one,
3093 .remove = __devexit_p(cciss_remove_one),
3094 .id_table = cciss_pci_device_id, /* id_table */
3095};
3096
3097/*
3098 * This is it. Register the PCI driver information for the cards we control
3099 * the OS will call our registered routines when it finds one of our cards.
3100 */
3101static int __init cciss_init(void)
3102{
3103 printk(KERN_INFO DRIVER_NAME "\n");
3104
3105 /* Register for our PCI devices */
3106 return pci_module_init(&cciss_pci_driver);
3107}
3108
3109static void __exit cciss_cleanup(void)
3110{
3111 int i;
3112
3113 pci_unregister_driver(&cciss_pci_driver);
3114 /* double check that all controller entrys have been removed */
3115 for (i=0; i< MAX_CTLR; i++)
3116 {
3117 if (hba[i] != NULL)
3118 {
3119 printk(KERN_WARNING "cciss: had to remove"
3120 " controller %d\n", i);
3121 cciss_remove_one(hba[i]->pdev);
3122 }
3123 }
3124 remove_proc_entry("cciss", proc_root_driver);
3125}
3126
3127module_init(cciss_init);
3128module_exit(cciss_cleanup);