]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/sata_mv.c
Merge branch 'fix/asoc' into for-linus
[net-next-2.6.git] / drivers / ata / sata_mv.c
CommitLineData
20f733e7
BR
1/*
2 * sata_mv.c - Marvell SATA support
3 *
40f21b11 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 5 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 6 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 7 *
40f21b11
ML
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
20f733e7
BR
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
4a05e209 28/*
85afb934
ML
29 * sata_mv TODO list:
30 *
85afb934
ML
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
2b748a0a 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
4a05e209 42
65ad7fef
ML
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
20f733e7
BR
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
8d8b6004 59#include <linux/dmapool.h>
20f733e7 60#include <linux/dma-mapping.h>
a9524a76 61#include <linux/device.h>
c77a2f4e 62#include <linux/clk.h>
f351b2d6
SB
63#include <linux/platform_device.h>
64#include <linux/ata_platform.h>
15a32632 65#include <linux/mbus.h>
c46938cc 66#include <linux/bitops.h>
5a0e3ad6 67#include <linux/gfp.h>
20f733e7 68#include <scsi/scsi_host.h>
193515d5 69#include <scsi/scsi_cmnd.h>
6c08772e 70#include <scsi/scsi_device.h>
20f733e7 71#include <linux/libata.h>
20f733e7
BR
72
73#define DRV_NAME "sata_mv"
cae5a29d 74#define DRV_VERSION "1.28"
20f733e7 75
40f21b11
ML
76/*
77 * module options
78 */
79
80static int msi;
81#ifdef CONFIG_PCI
82module_param(msi, int, S_IRUGO);
83MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84#endif
85
2b748a0a
ML
86static int irq_coalescing_io_count;
87module_param(irq_coalescing_io_count, int, S_IRUGO);
88MODULE_PARM_DESC(irq_coalescing_io_count,
89 "IRQ coalescing I/O count threshold (0..255)");
90
91static int irq_coalescing_usecs;
92module_param(irq_coalescing_usecs, int, S_IRUGO);
93MODULE_PARM_DESC(irq_coalescing_usecs,
94 "IRQ coalescing time threshold in usecs");
95
20f733e7
BR
96enum {
97 /* BAR's are enumerated in terms of pci_resource_start() terms */
98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
99 MV_IO_BAR = 2, /* offset 0x18: IO space */
100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
101
102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
104
2b748a0a
ML
105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
109
20f733e7 110 MV_PCI_REG_BASE = 0,
615ab953 111
2b748a0a
ML
112 /*
113 * Per-chip ("all ports") interrupt coalescing feature.
114 * This is only for GEN_II / GEN_IIE hardware.
115 *
116 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
118 */
cae5a29d
ML
119 COAL_REG_BASE = 0x18000,
120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
2b748a0a
ML
121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
122
cae5a29d
ML
123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
2b748a0a
ML
125
126 /*
127 * Registers for the (unused here) transaction coalescing feature:
128 */
cae5a29d
ML
129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
2b748a0a 131
cae5a29d
ML
132 SATAHC0_REG_BASE = 0x20000,
133 FLASH_CTL = 0x1046c,
134 GPIO_PORT_CTL = 0x104f0,
135 RESET_CFG = 0x180d8,
20f733e7
BR
136
137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
141
31961943
BR
142 MV_MAX_Q_DEPTH = 32,
143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
144
145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
148 */
149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 151 MV_MAX_SG_CT = 256,
31961943 152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 153
352fab70 154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 155 MV_PORT_HC_SHIFT = 2,
352fab70
ML
156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
159
160 /* Host Flags */
161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 162
c5d3e45a 163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91b1a84c 164 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
ad3aef51 165
91b1a84c 166 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 167
40f21b11
ML
168 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
169 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
170
171 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 172
31961943
BR
173 CRQB_FLAG_READ = (1 << 0),
174 CRQB_TAG_SHIFT = 1,
c5d3e45a 175 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 176 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 177 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
178 CRQB_CMD_ADDR_SHIFT = 8,
179 CRQB_CMD_CS = (0x2 << 11),
180 CRQB_CMD_LAST = (1 << 15),
181
182 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
183 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
184 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
185
186 EPRD_FLAG_END_OF_TBL = (1 << 31),
187
20f733e7
BR
188 /* PCI interface registers */
189
cae5a29d
ML
190 MV_PCI_COMMAND = 0xc00,
191 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
192 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 193
cae5a29d 194 PCI_MAIN_CMD_STS = 0xd30,
20f733e7
BR
195 STOP_PCI_MASTER = (1 << 2),
196 PCI_MASTER_EMPTY = (1 << 3),
197 GLOB_SFT_RST = (1 << 4),
198
cae5a29d 199 MV_PCI_MODE = 0xd00,
8e7decdb
ML
200 MV_PCI_MODE_MASK = 0x30,
201
522479fb
JG
202 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
203 MV_PCI_DISC_TIMER = 0xd04,
204 MV_PCI_MSI_TRIGGER = 0xc38,
205 MV_PCI_SERR_MASK = 0xc28,
cae5a29d 206 MV_PCI_XBAR_TMOUT = 0x1d04,
522479fb
JG
207 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
208 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
209 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
210 MV_PCI_ERR_COMMAND = 0x1d50,
211
cae5a29d
ML
212 PCI_IRQ_CAUSE = 0x1d58,
213 PCI_IRQ_MASK = 0x1d5c,
20f733e7
BR
214 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
215
cae5a29d
ML
216 PCIE_IRQ_CAUSE = 0x1900,
217 PCIE_IRQ_MASK = 0x1910,
646a4da5 218 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 219
7368f919 220 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
cae5a29d
ML
221 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
222 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
223 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
224 SOC_HC_MAIN_IRQ_MASK = 0x20024,
40f21b11
ML
225 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
226 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
227 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
228 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
229 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
230 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 231 PCI_ERR = (1 << 18),
40f21b11
ML
232 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
233 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
234 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
235 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
236 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
237 GPIO_INT = (1 << 22),
238 SELF_INT = (1 << 23),
239 TWSI_INT = (1 << 24),
240 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 241 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 242 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
243
244 /* SATAHC registers */
cae5a29d 245 HC_CFG = 0x00,
20f733e7 246
cae5a29d 247 HC_IRQ_CAUSE = 0x14,
352fab70
ML
248 DMA_IRQ = (1 << 0), /* shift by port # */
249 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
250 DEV_IRQ = (1 << 8), /* shift by port # */
251
2b748a0a
ML
252 /*
253 * Per-HC (Host-Controller) interrupt coalescing feature.
254 * This is present on all chip generations.
255 *
256 * Coalescing defers the interrupt until either the IO_THRESHOLD
257 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
258 */
cae5a29d
ML
259 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
260 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
2b748a0a 261
cae5a29d 262 SOC_LED_CTRL = 0x2c,
000b344f
ML
263 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
264 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
265 /* with dev activity LED */
266
20f733e7 267 /* Shadow block registers */
cae5a29d
ML
268 SHD_BLK = 0x100,
269 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
20f733e7
BR
270
271 /* SATA registers */
cae5a29d
ML
272 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
273 SATA_ACTIVE = 0x350,
274 FIS_IRQ_CAUSE = 0x364,
275 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
17c5aab5 276
cae5a29d 277 LTMODE = 0x30c, /* requires read-after-write */
17c5aab5
ML
278 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
279
cae5a29d 280 PHY_MODE2 = 0x330,
47c2b677 281 PHY_MODE3 = 0x310,
cae5a29d
ML
282
283 PHY_MODE4 = 0x314, /* requires read-after-write */
ba069e37
ML
284 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
285 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
286 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
287 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
288
cae5a29d
ML
289 SATA_IFCTL = 0x344,
290 SATA_TESTCTL = 0x348,
291 SATA_IFSTAT = 0x34c,
292 VENDOR_UNIQUE_FIS = 0x35c,
17c5aab5 293
cae5a29d 294 FISCFG = 0x360,
8e7decdb
ML
295 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
296 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 297
29b7e43c
MM
298 PHY_MODE9_GEN2 = 0x398,
299 PHY_MODE9_GEN1 = 0x39c,
300 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
301
c9d39130 302 MV5_PHY_MODE = 0x74,
cae5a29d
ML
303 MV5_LTMODE = 0x30,
304 MV5_PHY_CTL = 0x0C,
305 SATA_IFCFG = 0x050,
bca1c4eb
JG
306
307 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
308
309 /* Port registers */
cae5a29d 310 EDMA_CFG = 0,
0c58912e
ML
311 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
312 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
313 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
314 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
315 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
316 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
317 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7 318
cae5a29d
ML
319 EDMA_ERR_IRQ_CAUSE = 0x8,
320 EDMA_ERR_IRQ_MASK = 0xc,
6c1153e0
JG
321 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
322 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
323 EDMA_ERR_DEV = (1 << 2), /* device error */
324 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
325 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
326 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
327 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
328 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 329 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 330 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
331 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
332 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
333 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
334 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 335
6c1153e0 336 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
337 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
338 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
339 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
340 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
341
6c1153e0 342 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 343
6c1153e0 344 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
345 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
346 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
347 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
348 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
349 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
350
6c1153e0 351 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 352
6c1153e0 353 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
354 EDMA_ERR_OVERRUN_5 = (1 << 5),
355 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
356
357 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
358 EDMA_ERR_LNK_CTRL_RX_1 |
359 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 360 EDMA_ERR_LNK_CTRL_TX,
646a4da5 361
bdd4ddde
JG
362 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
363 EDMA_ERR_PRD_PAR |
364 EDMA_ERR_DEV_DCON |
365 EDMA_ERR_DEV_CON |
366 EDMA_ERR_SERR |
367 EDMA_ERR_SELF_DIS |
6c1153e0 368 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
369 EDMA_ERR_CRPB_PAR |
370 EDMA_ERR_INTRL_PAR |
371 EDMA_ERR_IORDY |
372 EDMA_ERR_LNK_CTRL_RX_2 |
373 EDMA_ERR_LNK_DATA_RX |
374 EDMA_ERR_LNK_DATA_TX |
375 EDMA_ERR_TRANS_PROTO,
e12bef50 376
bdd4ddde
JG
377 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
378 EDMA_ERR_PRD_PAR |
379 EDMA_ERR_DEV_DCON |
380 EDMA_ERR_DEV_CON |
381 EDMA_ERR_OVERRUN_5 |
382 EDMA_ERR_UNDERRUN_5 |
383 EDMA_ERR_SELF_DIS_5 |
6c1153e0 384 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
385 EDMA_ERR_CRPB_PAR |
386 EDMA_ERR_INTRL_PAR |
387 EDMA_ERR_IORDY,
20f733e7 388
cae5a29d
ML
389 EDMA_REQ_Q_BASE_HI = 0x10,
390 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
31961943 391
cae5a29d 392 EDMA_REQ_Q_OUT_PTR = 0x18,
31961943
BR
393 EDMA_REQ_Q_PTR_SHIFT = 5,
394
cae5a29d
ML
395 EDMA_RSP_Q_BASE_HI = 0x1c,
396 EDMA_RSP_Q_IN_PTR = 0x20,
397 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
31961943
BR
398 EDMA_RSP_Q_PTR_SHIFT = 3,
399
cae5a29d 400 EDMA_CMD = 0x28, /* EDMA command register */
0ea9e179
JG
401 EDMA_EN = (1 << 0), /* enable EDMA */
402 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
403 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
404
cae5a29d 405 EDMA_STATUS = 0x30, /* EDMA engine status */
8e7decdb
ML
406 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
407 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 408
cae5a29d
ML
409 EDMA_IORDY_TMOUT = 0x34,
410 EDMA_ARB_CFG = 0x38,
8e7decdb 411
cae5a29d
ML
412 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
413 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
da14265e 414
cae5a29d
ML
415 BMDMA_CMD = 0x224, /* bmdma command register */
416 BMDMA_STATUS = 0x228, /* bmdma status register */
417 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
418 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
da14265e 419
31961943
BR
420 /* Host private flags (hp_flags) */
421 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
422 MV_HP_ERRATA_50XXB0 = (1 << 1),
423 MV_HP_ERRATA_50XXB2 = (1 << 2),
424 MV_HP_ERRATA_60X1B2 = (1 << 3),
425 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
426 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
427 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
428 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 429 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 430 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 431 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 432 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
20f733e7 433
31961943 434 /* Port private flags (pp_flags) */
0ea9e179 435 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 436 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 437 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 438 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 439 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
440};
441
ee9ccdf7
JG
442#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
443#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 444#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 445#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 446#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 447
15a32632
LB
448#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
449#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
450
095fec88 451enum {
baf14aa1
JG
452 /* DMA boundary 0xffff is required by the s/g splitting
453 * we need on /length/ in mv_fill-sg().
454 */
455 MV_DMA_BOUNDARY = 0xffffU,
095fec88 456
0ea9e179
JG
457 /* mask of register bits containing lower 32 bits
458 * of EDMA request queue DMA address
459 */
095fec88
JG
460 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
461
0ea9e179 462 /* ditto, for response queue */
095fec88
JG
463 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
464};
465
522479fb
JG
466enum chip_type {
467 chip_504x,
468 chip_508x,
469 chip_5080,
470 chip_604x,
471 chip_608x,
e4e7b892
JG
472 chip_6042,
473 chip_7042,
f351b2d6 474 chip_soc,
522479fb
JG
475};
476
31961943
BR
477/* Command ReQuest Block: 32B */
478struct mv_crqb {
e1469874
ML
479 __le32 sg_addr;
480 __le32 sg_addr_hi;
481 __le16 ctrl_flags;
482 __le16 ata_cmd[11];
31961943 483};
20f733e7 484
e4e7b892 485struct mv_crqb_iie {
e1469874
ML
486 __le32 addr;
487 __le32 addr_hi;
488 __le32 flags;
489 __le32 len;
490 __le32 ata_cmd[4];
e4e7b892
JG
491};
492
31961943
BR
493/* Command ResPonse Block: 8B */
494struct mv_crpb {
e1469874
ML
495 __le16 id;
496 __le16 flags;
497 __le32 tmstmp;
20f733e7
BR
498};
499
31961943
BR
500/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
501struct mv_sg {
e1469874
ML
502 __le32 addr;
503 __le32 flags_size;
504 __le32 addr_hi;
505 __le32 reserved;
31961943 506};
20f733e7 507
08da1759
ML
508/*
509 * We keep a local cache of a few frequently accessed port
510 * registers here, to avoid having to read them (very slow)
511 * when switching between EDMA and non-EDMA modes.
512 */
513struct mv_cached_regs {
514 u32 fiscfg;
515 u32 ltmode;
516 u32 haltcond;
c01e8a23 517 u32 unknown_rsvd;
08da1759
ML
518};
519
31961943
BR
520struct mv_port_priv {
521 struct mv_crqb *crqb;
522 dma_addr_t crqb_dma;
523 struct mv_crpb *crpb;
524 dma_addr_t crpb_dma;
eb73d558
ML
525 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
526 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
527
528 unsigned int req_idx;
529 unsigned int resp_idx;
530
31961943 531 u32 pp_flags;
08da1759 532 struct mv_cached_regs cached;
29d187bb 533 unsigned int delayed_eh_pmp_map;
31961943
BR
534};
535
bca1c4eb
JG
536struct mv_port_signal {
537 u32 amps;
538 u32 pre;
539};
540
02a121da
ML
541struct mv_host_priv {
542 u32 hp_flags;
1bfeff03 543 unsigned int board_idx;
96e2c487 544 u32 main_irq_mask;
02a121da
ML
545 struct mv_port_signal signal[8];
546 const struct mv_hw_ops *ops;
f351b2d6
SB
547 int n_ports;
548 void __iomem *base;
7368f919
ML
549 void __iomem *main_irq_cause_addr;
550 void __iomem *main_irq_mask_addr;
cae5a29d
ML
551 u32 irq_cause_offset;
552 u32 irq_mask_offset;
02a121da 553 u32 unmask_all_irqs;
c77a2f4e
SB
554
555#if defined(CONFIG_HAVE_CLK)
556 struct clk *clk;
557#endif
da2fa9ba
ML
558 /*
559 * These consistent DMA memory pools give us guaranteed
560 * alignment for hardware-accessed data structures,
561 * and less memory waste in accomplishing the alignment.
562 */
563 struct dma_pool *crqb_pool;
564 struct dma_pool *crpb_pool;
565 struct dma_pool *sg_tbl_pool;
02a121da
ML
566};
567
47c2b677 568struct mv_hw_ops {
2a47ce06
JG
569 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
570 unsigned int port);
47c2b677
JG
571 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
572 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
573 void __iomem *mmio);
c9d39130
JG
574 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
575 unsigned int n_hc);
522479fb 576 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 577 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
578};
579
82ef04fb
TH
580static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
582static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
584static int mv_port_start(struct ata_port *ap);
585static void mv_port_stop(struct ata_port *ap);
3e4a1391 586static int mv_qc_defer(struct ata_queued_cmd *qc);
31961943 587static void mv_qc_prep(struct ata_queued_cmd *qc);
e4e7b892 588static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 589static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
590static int mv_hardreset(struct ata_link *link, unsigned int *class,
591 unsigned long deadline);
bdd4ddde
JG
592static void mv_eh_freeze(struct ata_port *ap);
593static void mv_eh_thaw(struct ata_port *ap);
f273827e 594static void mv6_dev_config(struct ata_device *dev);
20f733e7 595
2a47ce06
JG
596static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
597 unsigned int port);
47c2b677
JG
598static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
599static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
600 void __iomem *mmio);
c9d39130
JG
601static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
602 unsigned int n_hc);
522479fb 603static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 604static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 605
2a47ce06
JG
606static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
607 unsigned int port);
47c2b677
JG
608static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
609static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
610 void __iomem *mmio);
c9d39130
JG
611static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
612 unsigned int n_hc);
522479fb 613static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
614static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
615 void __iomem *mmio);
616static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
617 void __iomem *mmio);
618static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
619 void __iomem *mmio, unsigned int n_hc);
620static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
621 void __iomem *mmio);
622static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
29b7e43c
MM
623static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
624 void __iomem *mmio, unsigned int port);
7bb3c529 625static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 626static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 627 unsigned int port_no);
e12bef50 628static int mv_stop_edma(struct ata_port *ap);
b562468c 629static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 630static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 631
e49856d8
ML
632static void mv_pmp_select(struct ata_port *ap, int pmp);
633static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
634 unsigned long deadline);
635static int mv_softreset(struct ata_link *link, unsigned int *class,
636 unsigned long deadline);
29d187bb 637static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
638static void mv_process_crpb_entries(struct ata_port *ap,
639 struct mv_port_priv *pp);
47c2b677 640
da14265e
ML
641static void mv_sff_irq_clear(struct ata_port *ap);
642static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
643static void mv_bmdma_setup(struct ata_queued_cmd *qc);
644static void mv_bmdma_start(struct ata_queued_cmd *qc);
645static void mv_bmdma_stop(struct ata_queued_cmd *qc);
646static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 647static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 648
eb73d558
ML
649/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
650 * because we have to allow room for worst case splitting of
651 * PRDs for 64K boundaries in mv_fill_sg().
652 */
c5d3e45a 653static struct scsi_host_template mv5_sht = {
68d1d07b 654 ATA_BASE_SHT(DRV_NAME),
baf14aa1 655 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 656 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a
JG
657};
658
659static struct scsi_host_template mv6_sht = {
68d1d07b 660 ATA_NCQ_SHT(DRV_NAME),
138bfdd0 661 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 662 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 663 .dma_boundary = MV_DMA_BOUNDARY,
20f733e7
BR
664};
665
029cfd6b
TH
666static struct ata_port_operations mv5_ops = {
667 .inherits = &ata_sff_port_ops,
c9d39130 668
c96f1732
AC
669 .lost_interrupt = ATA_OP_NULL,
670
3e4a1391 671 .qc_defer = mv_qc_defer,
c9d39130
JG
672 .qc_prep = mv_qc_prep,
673 .qc_issue = mv_qc_issue,
c9d39130 674
bdd4ddde
JG
675 .freeze = mv_eh_freeze,
676 .thaw = mv_eh_thaw,
a1efdaba 677 .hardreset = mv_hardreset,
bdd4ddde 678
c9d39130
JG
679 .scr_read = mv5_scr_read,
680 .scr_write = mv5_scr_write,
681
682 .port_start = mv_port_start,
683 .port_stop = mv_port_stop,
c9d39130
JG
684};
685
029cfd6b 686static struct ata_port_operations mv6_ops = {
8930ff25
TH
687 .inherits = &ata_bmdma_port_ops,
688
689 .lost_interrupt = ATA_OP_NULL,
690
691 .qc_defer = mv_qc_defer,
692 .qc_prep = mv_qc_prep,
693 .qc_issue = mv_qc_issue,
694
f273827e 695 .dev_config = mv6_dev_config,
20f733e7 696
8930ff25
TH
697 .freeze = mv_eh_freeze,
698 .thaw = mv_eh_thaw,
699 .hardreset = mv_hardreset,
700 .softreset = mv_softreset,
e49856d8
ML
701 .pmp_hardreset = mv_pmp_hardreset,
702 .pmp_softreset = mv_softreset,
29d187bb 703 .error_handler = mv_pmp_error_handler,
da14265e 704
8930ff25
TH
705 .scr_read = mv_scr_read,
706 .scr_write = mv_scr_write,
707
40f21b11 708 .sff_check_status = mv_sff_check_status,
da14265e
ML
709 .sff_irq_clear = mv_sff_irq_clear,
710 .check_atapi_dma = mv_check_atapi_dma,
711 .bmdma_setup = mv_bmdma_setup,
712 .bmdma_start = mv_bmdma_start,
713 .bmdma_stop = mv_bmdma_stop,
714 .bmdma_status = mv_bmdma_status,
8930ff25
TH
715
716 .port_start = mv_port_start,
717 .port_stop = mv_port_stop,
20f733e7
BR
718};
719
029cfd6b
TH
720static struct ata_port_operations mv_iie_ops = {
721 .inherits = &mv6_ops,
722 .dev_config = ATA_OP_NULL,
e4e7b892 723 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
724};
725
98ac62de 726static const struct ata_port_info mv_port_info[] = {
20f733e7 727 { /* chip_504x */
91b1a84c 728 .flags = MV_GEN_I_FLAGS,
c361acbc 729 .pio_mask = ATA_PIO4,
bf6263a8 730 .udma_mask = ATA_UDMA6,
c9d39130 731 .port_ops = &mv5_ops,
20f733e7
BR
732 },
733 { /* chip_508x */
91b1a84c 734 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 735 .pio_mask = ATA_PIO4,
bf6263a8 736 .udma_mask = ATA_UDMA6,
c9d39130 737 .port_ops = &mv5_ops,
20f733e7 738 },
47c2b677 739 { /* chip_5080 */
91b1a84c 740 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 741 .pio_mask = ATA_PIO4,
bf6263a8 742 .udma_mask = ATA_UDMA6,
c9d39130 743 .port_ops = &mv5_ops,
47c2b677 744 },
20f733e7 745 { /* chip_604x */
91b1a84c 746 .flags = MV_GEN_II_FLAGS,
c361acbc 747 .pio_mask = ATA_PIO4,
bf6263a8 748 .udma_mask = ATA_UDMA6,
c9d39130 749 .port_ops = &mv6_ops,
20f733e7
BR
750 },
751 { /* chip_608x */
91b1a84c 752 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 753 .pio_mask = ATA_PIO4,
bf6263a8 754 .udma_mask = ATA_UDMA6,
c9d39130 755 .port_ops = &mv6_ops,
20f733e7 756 },
e4e7b892 757 { /* chip_6042 */
91b1a84c 758 .flags = MV_GEN_IIE_FLAGS,
c361acbc 759 .pio_mask = ATA_PIO4,
bf6263a8 760 .udma_mask = ATA_UDMA6,
e4e7b892
JG
761 .port_ops = &mv_iie_ops,
762 },
763 { /* chip_7042 */
91b1a84c 764 .flags = MV_GEN_IIE_FLAGS,
c361acbc 765 .pio_mask = ATA_PIO4,
bf6263a8 766 .udma_mask = ATA_UDMA6,
e4e7b892
JG
767 .port_ops = &mv_iie_ops,
768 },
f351b2d6 769 { /* chip_soc */
91b1a84c 770 .flags = MV_GEN_IIE_FLAGS,
c361acbc 771 .pio_mask = ATA_PIO4,
17c5aab5
ML
772 .udma_mask = ATA_UDMA6,
773 .port_ops = &mv_iie_ops,
f351b2d6 774 },
20f733e7
BR
775};
776
3b7d697d 777static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
778 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
779 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
780 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
781 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
782 /* RocketRAID 1720/174x have different identifiers */
783 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
784 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
785 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
786
787 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
788 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
789 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
790 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
791 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
792
793 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
794
d9f9c6bc
FA
795 /* Adaptec 1430SA */
796 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
797
02a121da 798 /* Marvell 7042 support */
6a3d586d
MT
799 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
800
02a121da
ML
801 /* Highpoint RocketRAID PCIe series */
802 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
803 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
804
2d2744fc 805 { } /* terminate list */
20f733e7
BR
806};
807
47c2b677
JG
808static const struct mv_hw_ops mv5xxx_ops = {
809 .phy_errata = mv5_phy_errata,
810 .enable_leds = mv5_enable_leds,
811 .read_preamp = mv5_read_preamp,
812 .reset_hc = mv5_reset_hc,
522479fb
JG
813 .reset_flash = mv5_reset_flash,
814 .reset_bus = mv5_reset_bus,
47c2b677
JG
815};
816
817static const struct mv_hw_ops mv6xxx_ops = {
818 .phy_errata = mv6_phy_errata,
819 .enable_leds = mv6_enable_leds,
820 .read_preamp = mv6_read_preamp,
821 .reset_hc = mv6_reset_hc,
522479fb
JG
822 .reset_flash = mv6_reset_flash,
823 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
824};
825
f351b2d6
SB
826static const struct mv_hw_ops mv_soc_ops = {
827 .phy_errata = mv6_phy_errata,
828 .enable_leds = mv_soc_enable_leds,
829 .read_preamp = mv_soc_read_preamp,
830 .reset_hc = mv_soc_reset_hc,
831 .reset_flash = mv_soc_reset_flash,
832 .reset_bus = mv_soc_reset_bus,
833};
834
29b7e43c
MM
835static const struct mv_hw_ops mv_soc_65n_ops = {
836 .phy_errata = mv_soc_65n_phy_errata,
837 .enable_leds = mv_soc_enable_leds,
838 .reset_hc = mv_soc_reset_hc,
839 .reset_flash = mv_soc_reset_flash,
840 .reset_bus = mv_soc_reset_bus,
841};
842
20f733e7
BR
843/*
844 * Functions
845 */
846
847static inline void writelfl(unsigned long data, void __iomem *addr)
848{
849 writel(data, addr);
850 (void) readl(addr); /* flush to avoid PCI posted write */
851}
852
c9d39130
JG
853static inline unsigned int mv_hc_from_port(unsigned int port)
854{
855 return port >> MV_PORT_HC_SHIFT;
856}
857
858static inline unsigned int mv_hardport_from_port(unsigned int port)
859{
860 return port & MV_PORT_MASK;
861}
862
1cfd19ae
ML
863/*
864 * Consolidate some rather tricky bit shift calculations.
865 * This is hot-path stuff, so not a function.
866 * Simple code, with two return values, so macro rather than inline.
867 *
868 * port is the sole input, in range 0..7.
7368f919
ML
869 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
870 * hardport is the other output, in range 0..3.
1cfd19ae
ML
871 *
872 * Note that port and hardport may be the same variable in some cases.
873 */
874#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
875{ \
876 shift = mv_hc_from_port(port) * HC_SHIFT; \
877 hardport = mv_hardport_from_port(port); \
878 shift += hardport * 2; \
879}
880
352fab70
ML
881static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
882{
cae5a29d 883 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
352fab70
ML
884}
885
c9d39130
JG
886static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
887 unsigned int port)
888{
889 return mv_hc_base(base, mv_hc_from_port(port));
890}
891
20f733e7
BR
892static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
893{
c9d39130 894 return mv_hc_base_from_port(base, port) +
8b260248 895 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 896 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
897}
898
e12bef50
ML
899static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
900{
901 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
902 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
903
904 return hc_mmio + ofs;
905}
906
f351b2d6
SB
907static inline void __iomem *mv_host_base(struct ata_host *host)
908{
909 struct mv_host_priv *hpriv = host->private_data;
910 return hpriv->base;
911}
912
20f733e7
BR
913static inline void __iomem *mv_ap_base(struct ata_port *ap)
914{
f351b2d6 915 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
916}
917
cca3974e 918static inline int mv_get_hc_count(unsigned long port_flags)
31961943 919{
cca3974e 920 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
921}
922
08da1759
ML
923/**
924 * mv_save_cached_regs - (re-)initialize cached port registers
925 * @ap: the port whose registers we are caching
926 *
927 * Initialize the local cache of port registers,
928 * so that reading them over and over again can
929 * be avoided on the hotter paths of this driver.
930 * This saves a few microseconds each time we switch
931 * to/from EDMA mode to perform (eg.) a drive cache flush.
932 */
933static void mv_save_cached_regs(struct ata_port *ap)
934{
935 void __iomem *port_mmio = mv_ap_base(ap);
936 struct mv_port_priv *pp = ap->private_data;
937
cae5a29d
ML
938 pp->cached.fiscfg = readl(port_mmio + FISCFG);
939 pp->cached.ltmode = readl(port_mmio + LTMODE);
940 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
941 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
08da1759
ML
942}
943
944/**
945 * mv_write_cached_reg - write to a cached port register
946 * @addr: hardware address of the register
947 * @old: pointer to cached value of the register
948 * @new: new value for the register
949 *
950 * Write a new value to a cached register,
951 * but only if the value is different from before.
952 */
953static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
954{
955 if (new != *old) {
12f3b6d7 956 unsigned long laddr;
08da1759 957 *old = new;
12f3b6d7
ML
958 /*
959 * Workaround for 88SX60x1-B2 FEr SATA#13:
960 * Read-after-write is needed to prevent generating 64-bit
961 * write cycles on the PCI bus for SATA interface registers
962 * at offsets ending in 0x4 or 0xc.
963 *
964 * Looks like a lot of fuss, but it avoids an unnecessary
965 * +1 usec read-after-write delay for unaffected registers.
966 */
967 laddr = (long)addr & 0xffff;
968 if (laddr >= 0x300 && laddr <= 0x33c) {
969 laddr &= 0x000f;
970 if (laddr == 0x4 || laddr == 0xc) {
971 writelfl(new, addr); /* read after write */
972 return;
973 }
974 }
975 writel(new, addr); /* unaffected by the errata */
08da1759
ML
976 }
977}
978
c5d3e45a
JG
979static void mv_set_edma_ptrs(void __iomem *port_mmio,
980 struct mv_host_priv *hpriv,
981 struct mv_port_priv *pp)
982{
bdd4ddde
JG
983 u32 index;
984
c5d3e45a
JG
985 /*
986 * initialize request queue
987 */
fcfb1f77
ML
988 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
989 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 990
c5d3e45a 991 WARN_ON(pp->crqb_dma & 0x3ff);
cae5a29d 992 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
bdd4ddde 993 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
cae5a29d
ML
994 port_mmio + EDMA_REQ_Q_IN_PTR);
995 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
c5d3e45a
JG
996
997 /*
998 * initialize response queue
999 */
fcfb1f77
ML
1000 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1001 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 1002
c5d3e45a 1003 WARN_ON(pp->crpb_dma & 0xff);
cae5a29d
ML
1004 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1005 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
bdd4ddde 1006 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
cae5a29d 1007 port_mmio + EDMA_RSP_Q_OUT_PTR);
c5d3e45a
JG
1008}
1009
2b748a0a
ML
1010static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1011{
1012 /*
1013 * When writing to the main_irq_mask in hardware,
1014 * we must ensure exclusivity between the interrupt coalescing bits
1015 * and the corresponding individual port DONE_IRQ bits.
1016 *
1017 * Note that this register is really an "IRQ enable" register,
1018 * not an "IRQ mask" register as Marvell's naming might suggest.
1019 */
1020 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1021 mask &= ~DONE_IRQ_0_3;
1022 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1023 mask &= ~DONE_IRQ_4_7;
1024 writelfl(mask, hpriv->main_irq_mask_addr);
1025}
1026
c4de573b
ML
1027static void mv_set_main_irq_mask(struct ata_host *host,
1028 u32 disable_bits, u32 enable_bits)
1029{
1030 struct mv_host_priv *hpriv = host->private_data;
1031 u32 old_mask, new_mask;
1032
96e2c487 1033 old_mask = hpriv->main_irq_mask;
c4de573b 1034 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1035 if (new_mask != old_mask) {
1036 hpriv->main_irq_mask = new_mask;
2b748a0a 1037 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1038 }
c4de573b
ML
1039}
1040
1041static void mv_enable_port_irqs(struct ata_port *ap,
1042 unsigned int port_bits)
1043{
1044 unsigned int shift, hardport, port = ap->port_no;
1045 u32 disable_bits, enable_bits;
1046
1047 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1048
1049 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1050 enable_bits = port_bits << shift;
1051 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1052}
1053
00b81235
ML
1054static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1055 void __iomem *port_mmio,
1056 unsigned int port_irqs)
1057{
1058 struct mv_host_priv *hpriv = ap->host->private_data;
1059 int hardport = mv_hardport_from_port(ap->port_no);
1060 void __iomem *hc_mmio = mv_hc_base_from_port(
1061 mv_host_base(ap->host), ap->port_no);
1062 u32 hc_irq_cause;
1063
1064 /* clear EDMA event indicators, if any */
cae5a29d 1065 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
00b81235
ML
1066
1067 /* clear pending irq events */
1068 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 1069 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
00b81235
ML
1070
1071 /* clear FIS IRQ Cause */
1072 if (IS_GEN_IIE(hpriv))
cae5a29d 1073 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
00b81235
ML
1074
1075 mv_enable_port_irqs(ap, port_irqs);
1076}
1077
2b748a0a
ML
1078static void mv_set_irq_coalescing(struct ata_host *host,
1079 unsigned int count, unsigned int usecs)
1080{
1081 struct mv_host_priv *hpriv = host->private_data;
1082 void __iomem *mmio = hpriv->base, *hc_mmio;
1083 u32 coal_enable = 0;
1084 unsigned long flags;
6abf4678 1085 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1086 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1087 ALL_PORTS_COAL_DONE;
1088
1089 /* Disable IRQ coalescing if either threshold is zero */
1090 if (!usecs || !count) {
1091 clks = count = 0;
1092 } else {
1093 /* Respect maximum limits of the hardware */
1094 clks = usecs * COAL_CLOCKS_PER_USEC;
1095 if (clks > MAX_COAL_TIME_THRESHOLD)
1096 clks = MAX_COAL_TIME_THRESHOLD;
1097 if (count > MAX_COAL_IO_COUNT)
1098 count = MAX_COAL_IO_COUNT;
1099 }
1100
1101 spin_lock_irqsave(&host->lock, flags);
6abf4678 1102 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1103
6abf4678 1104 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1105 /*
6abf4678
ML
1106 * GEN_II/GEN_IIE with dual host controllers:
1107 * one set of global thresholds for the entire chip.
2b748a0a 1108 */
cae5a29d
ML
1109 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1110 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
2b748a0a 1111 /* clear leftover coal IRQ bit */
cae5a29d 1112 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
6abf4678
ML
1113 if (count)
1114 coal_enable = ALL_PORTS_COAL_DONE;
1115 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1116 }
6abf4678 1117
2b748a0a
ML
1118 /*
1119 * All chips: independent thresholds for each HC on the chip.
1120 */
1121 hc_mmio = mv_hc_base_from_port(mmio, 0);
cae5a29d
ML
1122 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1124 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1125 if (count)
1126 coal_enable |= PORTS_0_3_COAL_DONE;
1127 if (is_dual_hc) {
2b748a0a 1128 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
cae5a29d
ML
1129 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1130 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1131 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1132 if (count)
1133 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1134 }
2b748a0a 1135
6abf4678 1136 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1137 spin_unlock_irqrestore(&host->lock, flags);
1138}
1139
05b308e1 1140/**
00b81235 1141 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1142 * @base: port base address
1143 * @pp: port private data
1144 *
beec7dbc
TH
1145 * Verify the local cache of the eDMA state is accurate with a
1146 * WARN_ON.
05b308e1
BR
1147 *
1148 * LOCKING:
1149 * Inherited from caller.
1150 */
00b81235 1151static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1152 struct mv_port_priv *pp, u8 protocol)
20f733e7 1153{
72109168
ML
1154 int want_ncq = (protocol == ATA_PROT_NCQ);
1155
1156 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1157 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1158 if (want_ncq != using_ncq)
b562468c 1159 mv_stop_edma(ap);
72109168 1160 }
c5d3e45a 1161 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1162 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1163
00b81235 1164 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1165
f630d562 1166 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1167 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1168
cae5a29d 1169 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
afb0edd9
BR
1170 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1171 }
20f733e7
BR
1172}
1173
9b2c4e0b
ML
1174static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1175{
1176 void __iomem *port_mmio = mv_ap_base(ap);
1177 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1178 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1179 int i;
1180
1181 /*
1182 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1183 * No idea what a good "timeout" value might be, but measurements
1184 * indicate that it often requires hundreds of microseconds
1185 * with two drives in-use. So we use the 15msec value above
1186 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1187 */
1188 for (i = 0; i < timeout; ++i) {
cae5a29d 1189 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
9b2c4e0b
ML
1190 if ((edma_stat & empty_idle) == empty_idle)
1191 break;
1192 udelay(per_loop);
1193 }
1194 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1195}
1196
05b308e1 1197/**
e12bef50 1198 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1199 * @port_mmio: io base address
05b308e1
BR
1200 *
1201 * LOCKING:
1202 * Inherited from caller.
1203 */
b562468c 1204static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1205{
b562468c 1206 int i;
31961943 1207
b562468c 1208 /* Disable eDMA. The disable bit auto clears. */
cae5a29d 1209 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
8b260248 1210
b562468c
ML
1211 /* Wait for the chip to confirm eDMA is off. */
1212 for (i = 10000; i > 0; i--) {
cae5a29d 1213 u32 reg = readl(port_mmio + EDMA_CMD);
4537deb5 1214 if (!(reg & EDMA_EN))
b562468c
ML
1215 return 0;
1216 udelay(10);
31961943 1217 }
b562468c 1218 return -EIO;
20f733e7
BR
1219}
1220
e12bef50 1221static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1222{
b562468c
ML
1223 void __iomem *port_mmio = mv_ap_base(ap);
1224 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1225 int err = 0;
0ea9e179 1226
b562468c
ML
1227 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1228 return 0;
1229 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1230 mv_wait_for_edma_empty_idle(ap);
b562468c
ML
1231 if (mv_stop_edma_engine(port_mmio)) {
1232 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
66e57a2c 1233 err = -EIO;
b562468c 1234 }
66e57a2c
ML
1235 mv_edma_cfg(ap, 0, 0);
1236 return err;
0ea9e179
JG
1237}
1238
8a70f8dc 1239#ifdef ATA_DEBUG
31961943 1240static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1241{
31961943
BR
1242 int b, w;
1243 for (b = 0; b < bytes; ) {
1244 DPRINTK("%p: ", start + b);
1245 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1246 printk("%08x ", readl(start + b));
31961943
BR
1247 b += sizeof(u32);
1248 }
1249 printk("\n");
1250 }
31961943 1251}
8a70f8dc
JG
1252#endif
1253
31961943
BR
1254static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1255{
1256#ifdef ATA_DEBUG
1257 int b, w;
1258 u32 dw;
1259 for (b = 0; b < bytes; ) {
1260 DPRINTK("%02x: ", b);
1261 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1262 (void) pci_read_config_dword(pdev, b, &dw);
1263 printk("%08x ", dw);
31961943
BR
1264 b += sizeof(u32);
1265 }
1266 printk("\n");
1267 }
1268#endif
1269}
1270static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1271 struct pci_dev *pdev)
1272{
1273#ifdef ATA_DEBUG
8b260248 1274 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1275 port >> MV_PORT_HC_SHIFT);
1276 void __iomem *port_base;
1277 int start_port, num_ports, p, start_hc, num_hcs, hc;
1278
1279 if (0 > port) {
1280 start_hc = start_port = 0;
1281 num_ports = 8; /* shld be benign for 4 port devs */
1282 num_hcs = 2;
1283 } else {
1284 start_hc = port >> MV_PORT_HC_SHIFT;
1285 start_port = port;
1286 num_ports = num_hcs = 1;
1287 }
8b260248 1288 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1289 num_ports > 1 ? num_ports - 1 : start_port);
1290
1291 if (NULL != pdev) {
1292 DPRINTK("PCI config space regs:\n");
1293 mv_dump_pci_cfg(pdev, 0x68);
1294 }
1295 DPRINTK("PCI regs:\n");
1296 mv_dump_mem(mmio_base+0xc00, 0x3c);
1297 mv_dump_mem(mmio_base+0xd00, 0x34);
1298 mv_dump_mem(mmio_base+0xf00, 0x4);
1299 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1300 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1301 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1302 DPRINTK("HC regs (HC %i):\n", hc);
1303 mv_dump_mem(hc_base, 0x1c);
1304 }
1305 for (p = start_port; p < start_port + num_ports; p++) {
1306 port_base = mv_port_base(mmio_base, p);
2dcb407e 1307 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1308 mv_dump_mem(port_base, 0x54);
2dcb407e 1309 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1310 mv_dump_mem(port_base+0x300, 0x60);
1311 }
1312#endif
20f733e7
BR
1313}
1314
1315static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1316{
1317 unsigned int ofs;
1318
1319 switch (sc_reg_in) {
1320 case SCR_STATUS:
1321 case SCR_CONTROL:
1322 case SCR_ERROR:
cae5a29d 1323 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
20f733e7
BR
1324 break;
1325 case SCR_ACTIVE:
cae5a29d 1326 ofs = SATA_ACTIVE; /* active is not with the others */
20f733e7
BR
1327 break;
1328 default:
1329 ofs = 0xffffffffU;
1330 break;
1331 }
1332 return ofs;
1333}
1334
82ef04fb 1335static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1336{
1337 unsigned int ofs = mv_scr_offset(sc_reg_in);
1338
da3dbb17 1339 if (ofs != 0xffffffffU) {
82ef04fb 1340 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1341 return 0;
1342 } else
1343 return -EINVAL;
20f733e7
BR
1344}
1345
82ef04fb 1346static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1347{
1348 unsigned int ofs = mv_scr_offset(sc_reg_in);
1349
da3dbb17 1350 if (ofs != 0xffffffffU) {
20091773
ML
1351 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1352 if (sc_reg_in == SCR_CONTROL) {
1353 /*
1354 * Workaround for 88SX60x1 FEr SATA#26:
1355 *
1356 * COMRESETs have to take care not to accidently
1357 * put the drive to sleep when writing SCR_CONTROL.
1358 * Setting bits 12..15 prevents this problem.
1359 *
1360 * So if we see an outbound COMMRESET, set those bits.
1361 * Ditto for the followup write that clears the reset.
1362 *
1363 * The proprietary driver does this for
1364 * all chip versions, and so do we.
1365 */
1366 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1367 val |= 0xf000;
1368 }
1369 writelfl(val, addr);
da3dbb17
TH
1370 return 0;
1371 } else
1372 return -EINVAL;
20f733e7
BR
1373}
1374
f273827e
ML
1375static void mv6_dev_config(struct ata_device *adev)
1376{
1377 /*
e49856d8
ML
1378 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1379 *
1380 * Gen-II does not support NCQ over a port multiplier
1381 * (no FIS-based switching).
f273827e 1382 */
e49856d8 1383 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1384 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1385 adev->flags &= ~ATA_DFLAG_NCQ;
352fab70
ML
1386 ata_dev_printk(adev, KERN_INFO,
1387 "NCQ disabled for command-based switching\n");
352fab70 1388 }
e49856d8 1389 }
f273827e
ML
1390}
1391
3e4a1391
ML
1392static int mv_qc_defer(struct ata_queued_cmd *qc)
1393{
1394 struct ata_link *link = qc->dev->link;
1395 struct ata_port *ap = link->ap;
1396 struct mv_port_priv *pp = ap->private_data;
1397
29d187bb
ML
1398 /*
1399 * Don't allow new commands if we're in a delayed EH state
1400 * for NCQ and/or FIS-based switching.
1401 */
1402 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1403 return ATA_DEFER_PORT;
159a7ff7
GG
1404
1405 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1406 * can run concurrently.
1407 * set excl_link when we want to send a PIO command in DMA mode
1408 * or a non-NCQ command in NCQ mode.
1409 * When we receive a command from that link, and there are no
1410 * outstanding commands, mark a flag to clear excl_link and let
1411 * the command go through.
1412 */
1413 if (unlikely(ap->excl_link)) {
1414 if (link == ap->excl_link) {
1415 if (ap->nr_active_links)
1416 return ATA_DEFER_PORT;
1417 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1418 return 0;
1419 } else
1420 return ATA_DEFER_PORT;
1421 }
1422
3e4a1391
ML
1423 /*
1424 * If the port is completely idle, then allow the new qc.
1425 */
1426 if (ap->nr_active_links == 0)
1427 return 0;
1428
4bdee6c5
TH
1429 /*
1430 * The port is operating in host queuing mode (EDMA) with NCQ
1431 * enabled, allow multiple NCQ commands. EDMA also allows
1432 * queueing multiple DMA commands but libata core currently
1433 * doesn't allow it.
1434 */
1435 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
159a7ff7
GG
1436 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1437 if (ata_is_ncq(qc->tf.protocol))
1438 return 0;
1439 else {
1440 ap->excl_link = link;
1441 return ATA_DEFER_PORT;
1442 }
1443 }
4bdee6c5 1444
3e4a1391
ML
1445 return ATA_DEFER_PORT;
1446}
1447
08da1759 1448static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1449{
08da1759
ML
1450 struct mv_port_priv *pp = ap->private_data;
1451 void __iomem *port_mmio;
00f42eab 1452
08da1759
ML
1453 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1454 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1455 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1456
08da1759
ML
1457 ltmode = *old_ltmode & ~LTMODE_BIT8;
1458 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1459
1460 if (want_fbs) {
08da1759
ML
1461 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1462 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1463 if (want_ncq)
08da1759 1464 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1465 else
08da1759
ML
1466 fiscfg |= FISCFG_WAIT_DEV_ERR;
1467 } else {
1468 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1469 }
00f42eab 1470
08da1759 1471 port_mmio = mv_ap_base(ap);
cae5a29d
ML
1472 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1473 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1474 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
f273827e
ML
1475}
1476
dd2890f6
ML
1477static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1478{
1479 struct mv_host_priv *hpriv = ap->host->private_data;
1480 u32 old, new;
1481
1482 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
cae5a29d 1483 old = readl(hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1484 if (want_ncq)
1485 new = old | (1 << 22);
1486 else
1487 new = old & ~(1 << 22);
1488 if (new != old)
cae5a29d 1489 writel(new, hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1490}
1491
c01e8a23 1492/**
40f21b11
ML
1493 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1494 * @ap: Port being initialized
c01e8a23
ML
1495 *
1496 * There are two DMA modes on these chips: basic DMA, and EDMA.
1497 *
1498 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1499 * of basic DMA on the GEN_IIE versions of the chips.
1500 *
1501 * This bit survives EDMA resets, and must be set for basic DMA
1502 * to function, and should be cleared when EDMA is active.
1503 */
1504static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1505{
1506 struct mv_port_priv *pp = ap->private_data;
1507 u32 new, *old = &pp->cached.unknown_rsvd;
1508
1509 if (enable_bmdma)
1510 new = *old | 1;
1511 else
1512 new = *old & ~1;
cae5a29d 1513 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
c01e8a23
ML
1514}
1515
000b344f
ML
1516/*
1517 * SOC chips have an issue whereby the HDD LEDs don't always blink
1518 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1519 * of the SOC takes care of it, generating a steady blink rate when
1520 * any drive on the chip is active.
1521 *
1522 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1523 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1524 *
1525 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1526 * LED operation works then, and provides better (more accurate) feedback.
1527 *
1528 * Note that this code assumes that an SOC never has more than one HC onboard.
1529 */
1530static void mv_soc_led_blink_enable(struct ata_port *ap)
1531{
1532 struct ata_host *host = ap->host;
1533 struct mv_host_priv *hpriv = host->private_data;
1534 void __iomem *hc_mmio;
1535 u32 led_ctrl;
1536
1537 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1538 return;
1539 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1540 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1541 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1542 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1543}
1544
1545static void mv_soc_led_blink_disable(struct ata_port *ap)
1546{
1547 struct ata_host *host = ap->host;
1548 struct mv_host_priv *hpriv = host->private_data;
1549 void __iomem *hc_mmio;
1550 u32 led_ctrl;
1551 unsigned int port;
1552
1553 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1554 return;
1555
1556 /* disable led-blink only if no ports are using NCQ */
1557 for (port = 0; port < hpriv->n_ports; port++) {
1558 struct ata_port *this_ap = host->ports[port];
1559 struct mv_port_priv *pp = this_ap->private_data;
1560
1561 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1562 return;
1563 }
1564
1565 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1566 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1567 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1569}
1570
00b81235 1571static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1572{
0c58912e 1573 u32 cfg;
e12bef50
ML
1574 struct mv_port_priv *pp = ap->private_data;
1575 struct mv_host_priv *hpriv = ap->host->private_data;
1576 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1577
1578 /* set up non-NCQ EDMA configuration */
0c58912e 1579 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1580 pp->pp_flags &=
1581 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1582
0c58912e 1583 if (IS_GEN_I(hpriv))
e4e7b892
JG
1584 cfg |= (1 << 8); /* enab config burst size mask */
1585
dd2890f6 1586 else if (IS_GEN_II(hpriv)) {
e4e7b892 1587 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1588 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1589
dd2890f6 1590 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1591 int want_fbs = sata_pmp_attached(ap);
1592 /*
1593 * Possible future enhancement:
1594 *
1595 * The chip can use FBS with non-NCQ, if we allow it,
1596 * But first we need to have the error handling in place
1597 * for this mode (datasheet section 7.3.15.4.2.3).
1598 * So disallow non-NCQ FBS for now.
1599 */
1600 want_fbs &= want_ncq;
1601
08da1759 1602 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1603
1604 if (want_fbs) {
1605 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1606 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1607 }
1608
e728eabe 1609 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1610 if (want_edma) {
1611 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1612 if (!IS_SOC(hpriv))
1613 cfg |= (1 << 18); /* enab early completion */
1614 }
616d4a98
ML
1615 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1616 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1617 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1618
1619 if (IS_SOC(hpriv)) {
1620 if (want_ncq)
1621 mv_soc_led_blink_enable(ap);
1622 else
1623 mv_soc_led_blink_disable(ap);
1624 }
e4e7b892
JG
1625 }
1626
72109168
ML
1627 if (want_ncq) {
1628 cfg |= EDMA_CFG_NCQ;
1629 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1630 }
72109168 1631
cae5a29d 1632 writelfl(cfg, port_mmio + EDMA_CFG);
e4e7b892
JG
1633}
1634
da2fa9ba
ML
1635static void mv_port_free_dma_mem(struct ata_port *ap)
1636{
1637 struct mv_host_priv *hpriv = ap->host->private_data;
1638 struct mv_port_priv *pp = ap->private_data;
eb73d558 1639 int tag;
da2fa9ba
ML
1640
1641 if (pp->crqb) {
1642 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1643 pp->crqb = NULL;
1644 }
1645 if (pp->crpb) {
1646 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1647 pp->crpb = NULL;
1648 }
eb73d558
ML
1649 /*
1650 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1651 * For later hardware, we have one unique sg_tbl per NCQ tag.
1652 */
1653 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1654 if (pp->sg_tbl[tag]) {
1655 if (tag == 0 || !IS_GEN_I(hpriv))
1656 dma_pool_free(hpriv->sg_tbl_pool,
1657 pp->sg_tbl[tag],
1658 pp->sg_tbl_dma[tag]);
1659 pp->sg_tbl[tag] = NULL;
1660 }
da2fa9ba
ML
1661 }
1662}
1663
05b308e1
BR
1664/**
1665 * mv_port_start - Port specific init/start routine.
1666 * @ap: ATA channel to manipulate
1667 *
1668 * Allocate and point to DMA memory, init port private memory,
1669 * zero indices.
1670 *
1671 * LOCKING:
1672 * Inherited from caller.
1673 */
31961943
BR
1674static int mv_port_start(struct ata_port *ap)
1675{
cca3974e
JG
1676 struct device *dev = ap->host->dev;
1677 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1678 struct mv_port_priv *pp;
933cb8e5 1679 unsigned long flags;
dde20207 1680 int tag;
31961943 1681
24dc5f33 1682 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1683 if (!pp)
24dc5f33 1684 return -ENOMEM;
da2fa9ba 1685 ap->private_data = pp;
31961943 1686
da2fa9ba
ML
1687 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1688 if (!pp->crqb)
1689 return -ENOMEM;
1690 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
31961943 1691
da2fa9ba
ML
1692 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1693 if (!pp->crpb)
1694 goto out_port_free_dma_mem;
1695 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
31961943 1696
3bd0a70e
ML
1697 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1698 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1699 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1700 /*
1701 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1702 * For later hardware, we need one unique sg_tbl per NCQ tag.
1703 */
1704 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1705 if (tag == 0 || !IS_GEN_I(hpriv)) {
1706 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1707 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1708 if (!pp->sg_tbl[tag])
1709 goto out_port_free_dma_mem;
1710 } else {
1711 pp->sg_tbl[tag] = pp->sg_tbl[0];
1712 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1713 }
1714 }
933cb8e5
ML
1715
1716 spin_lock_irqsave(ap->lock, flags);
08da1759 1717 mv_save_cached_regs(ap);
66e57a2c 1718 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1719 spin_unlock_irqrestore(ap->lock, flags);
1720
31961943 1721 return 0;
da2fa9ba
ML
1722
1723out_port_free_dma_mem:
1724 mv_port_free_dma_mem(ap);
1725 return -ENOMEM;
31961943
BR
1726}
1727
05b308e1
BR
1728/**
1729 * mv_port_stop - Port specific cleanup/stop routine.
1730 * @ap: ATA channel to manipulate
1731 *
1732 * Stop DMA, cleanup port memory.
1733 *
1734 * LOCKING:
cca3974e 1735 * This routine uses the host lock to protect the DMA stop.
05b308e1 1736 */
31961943
BR
1737static void mv_port_stop(struct ata_port *ap)
1738{
933cb8e5
ML
1739 unsigned long flags;
1740
1741 spin_lock_irqsave(ap->lock, flags);
e12bef50 1742 mv_stop_edma(ap);
88e675e1 1743 mv_enable_port_irqs(ap, 0);
933cb8e5 1744 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1745 mv_port_free_dma_mem(ap);
31961943
BR
1746}
1747
05b308e1
BR
1748/**
1749 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1750 * @qc: queued command whose SG list to source from
1751 *
1752 * Populate the SG list and mark the last entry.
1753 *
1754 * LOCKING:
1755 * Inherited from caller.
1756 */
6c08772e 1757static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1758{
1759 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1760 struct scatterlist *sg;
3be6cbd7 1761 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1762 unsigned int si;
31961943 1763
eb73d558 1764 mv_sg = pp->sg_tbl[qc->tag];
ff2aeb1e 1765 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1766 dma_addr_t addr = sg_dma_address(sg);
1767 u32 sg_len = sg_dma_len(sg);
22374677 1768
4007b493
OJ
1769 while (sg_len) {
1770 u32 offset = addr & 0xffff;
1771 u32 len = sg_len;
22374677 1772
32cd11a6 1773 if (offset + len > 0x10000)
4007b493
OJ
1774 len = 0x10000 - offset;
1775
1776 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1777 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1778 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1779 mv_sg->reserved = 0;
4007b493
OJ
1780
1781 sg_len -= len;
1782 addr += len;
1783
3be6cbd7 1784 last_sg = mv_sg;
4007b493 1785 mv_sg++;
4007b493 1786 }
31961943 1787 }
3be6cbd7
JG
1788
1789 if (likely(last_sg))
1790 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1791 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1792}
1793
5796d1c4 1794static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1795{
559eedad 1796 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1797 (last ? CRQB_CMD_LAST : 0);
559eedad 1798 *cmdw = cpu_to_le16(tmp);
31961943
BR
1799}
1800
da14265e
ML
1801/**
1802 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1803 * @ap: Port associated with this ATA transaction.
1804 *
1805 * We need this only for ATAPI bmdma transactions,
1806 * as otherwise we experience spurious interrupts
1807 * after libata-sff handles the bmdma interrupts.
1808 */
1809static void mv_sff_irq_clear(struct ata_port *ap)
1810{
1811 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1812}
1813
1814/**
1815 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1816 * @qc: queued command to check for chipset/DMA compatibility.
1817 *
1818 * The bmdma engines cannot handle speculative data sizes
1819 * (bytecount under/over flow). So only allow DMA for
1820 * data transfer commands with known data sizes.
1821 *
1822 * LOCKING:
1823 * Inherited from caller.
1824 */
1825static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1826{
1827 struct scsi_cmnd *scmd = qc->scsicmd;
1828
1829 if (scmd) {
1830 switch (scmd->cmnd[0]) {
1831 case READ_6:
1832 case READ_10:
1833 case READ_12:
1834 case WRITE_6:
1835 case WRITE_10:
1836 case WRITE_12:
1837 case GPCMD_READ_CD:
1838 case GPCMD_SEND_DVD_STRUCTURE:
1839 case GPCMD_SEND_CUE_SHEET:
1840 return 0; /* DMA is safe */
1841 }
1842 }
1843 return -EOPNOTSUPP; /* use PIO instead */
1844}
1845
1846/**
1847 * mv_bmdma_setup - Set up BMDMA transaction
1848 * @qc: queued command to prepare DMA for.
1849 *
1850 * LOCKING:
1851 * Inherited from caller.
1852 */
1853static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1854{
1855 struct ata_port *ap = qc->ap;
1856 void __iomem *port_mmio = mv_ap_base(ap);
1857 struct mv_port_priv *pp = ap->private_data;
1858
1859 mv_fill_sg(qc);
1860
1861 /* clear all DMA cmd bits */
cae5a29d 1862 writel(0, port_mmio + BMDMA_CMD);
da14265e
ML
1863
1864 /* load PRD table addr. */
1865 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
cae5a29d 1866 port_mmio + BMDMA_PRD_HIGH);
da14265e 1867 writelfl(pp->sg_tbl_dma[qc->tag],
cae5a29d 1868 port_mmio + BMDMA_PRD_LOW);
da14265e
ML
1869
1870 /* issue r/w command */
1871 ap->ops->sff_exec_command(ap, &qc->tf);
1872}
1873
1874/**
1875 * mv_bmdma_start - Start a BMDMA transaction
1876 * @qc: queued command to start DMA on.
1877 *
1878 * LOCKING:
1879 * Inherited from caller.
1880 */
1881static void mv_bmdma_start(struct ata_queued_cmd *qc)
1882{
1883 struct ata_port *ap = qc->ap;
1884 void __iomem *port_mmio = mv_ap_base(ap);
1885 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1886 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1887
1888 /* start host DMA transaction */
cae5a29d 1889 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1890}
1891
1892/**
1893 * mv_bmdma_stop - Stop BMDMA transfer
1894 * @qc: queued command to stop DMA on.
1895 *
1896 * Clears the ATA_DMA_START flag in the bmdma control register
1897 *
1898 * LOCKING:
1899 * Inherited from caller.
1900 */
44b73380 1901static void mv_bmdma_stop_ap(struct ata_port *ap)
da14265e 1902{
da14265e
ML
1903 void __iomem *port_mmio = mv_ap_base(ap);
1904 u32 cmd;
1905
1906 /* clear start/stop bit */
cae5a29d 1907 cmd = readl(port_mmio + BMDMA_CMD);
44b73380
ML
1908 if (cmd & ATA_DMA_START) {
1909 cmd &= ~ATA_DMA_START;
1910 writelfl(cmd, port_mmio + BMDMA_CMD);
1911
1912 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1913 ata_sff_dma_pause(ap);
1914 }
1915}
da14265e 1916
44b73380
ML
1917static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1918{
1919 mv_bmdma_stop_ap(qc->ap);
da14265e
ML
1920}
1921
1922/**
1923 * mv_bmdma_status - Read BMDMA status
1924 * @ap: port for which to retrieve DMA status.
1925 *
1926 * Read and return equivalent of the sff BMDMA status register.
1927 *
1928 * LOCKING:
1929 * Inherited from caller.
1930 */
1931static u8 mv_bmdma_status(struct ata_port *ap)
1932{
1933 void __iomem *port_mmio = mv_ap_base(ap);
1934 u32 reg, status;
1935
1936 /*
1937 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1938 * and the ATA_DMA_INTR bit doesn't exist.
1939 */
cae5a29d 1940 reg = readl(port_mmio + BMDMA_STATUS);
da14265e
ML
1941 if (reg & ATA_DMA_ACTIVE)
1942 status = ATA_DMA_ACTIVE;
44b73380 1943 else if (reg & ATA_DMA_ERR)
da14265e 1944 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
44b73380
ML
1945 else {
1946 /*
1947 * Just because DMA_ACTIVE is 0 (DMA completed),
1948 * this does _not_ mean the device is "done".
1949 * So we should not yet be signalling ATA_DMA_INTR
1950 * in some cases. Eg. DSM/TRIM, and perhaps others.
1951 */
1952 mv_bmdma_stop_ap(ap);
1953 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1954 status = 0;
1955 else
1956 status = ATA_DMA_INTR;
1957 }
da14265e
ML
1958 return status;
1959}
1960
299b3f8d
ML
1961static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1962{
1963 struct ata_taskfile *tf = &qc->tf;
1964 /*
1965 * Workaround for 88SX60x1 FEr SATA#24.
1966 *
1967 * Chip may corrupt WRITEs if multi_count >= 4kB.
1968 * Note that READs are unaffected.
1969 *
1970 * It's not clear if this errata really means "4K bytes",
1971 * or if it always happens for multi_count > 7
1972 * regardless of device sector_size.
1973 *
1974 * So, for safety, any write with multi_count > 7
1975 * gets converted here into a regular PIO write instead:
1976 */
1977 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1978 if (qc->dev->multi_count > 7) {
1979 switch (tf->command) {
1980 case ATA_CMD_WRITE_MULTI:
1981 tf->command = ATA_CMD_PIO_WRITE;
1982 break;
1983 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1984 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1985 /* fall through */
1986 case ATA_CMD_WRITE_MULTI_EXT:
1987 tf->command = ATA_CMD_PIO_WRITE_EXT;
1988 break;
1989 }
1990 }
1991 }
1992}
1993
05b308e1
BR
1994/**
1995 * mv_qc_prep - Host specific command preparation.
1996 * @qc: queued command to prepare
1997 *
1998 * This routine simply redirects to the general purpose routine
1999 * if command is not DMA. Else, it handles prep of the CRQB
2000 * (command request block), does some sanity checking, and calls
2001 * the SG load routine.
2002 *
2003 * LOCKING:
2004 * Inherited from caller.
2005 */
31961943
BR
2006static void mv_qc_prep(struct ata_queued_cmd *qc)
2007{
2008 struct ata_port *ap = qc->ap;
2009 struct mv_port_priv *pp = ap->private_data;
e1469874 2010 __le16 *cw;
8d2b450d 2011 struct ata_taskfile *tf = &qc->tf;
31961943 2012 u16 flags = 0;
a6432436 2013 unsigned in_index;
31961943 2014
299b3f8d
ML
2015 switch (tf->protocol) {
2016 case ATA_PROT_DMA:
44b73380
ML
2017 if (tf->command == ATA_CMD_DSM)
2018 return;
2019 /* fall-thru */
299b3f8d
ML
2020 case ATA_PROT_NCQ:
2021 break; /* continue below */
2022 case ATA_PROT_PIO:
2023 mv_rw_multi_errata_sata24(qc);
31961943 2024 return;
299b3f8d
ML
2025 default:
2026 return;
2027 }
20f733e7 2028
31961943
BR
2029 /* Fill in command request block
2030 */
8d2b450d 2031 if (!(tf->flags & ATA_TFLAG_WRITE))
31961943 2032 flags |= CRQB_FLAG_READ;
beec7dbc 2033 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
31961943 2034 flags |= qc->tag << CRQB_TAG_SHIFT;
e49856d8 2035 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 2036
bdd4ddde 2037 /* get current queue index from software */
fcfb1f77 2038 in_index = pp->req_idx;
a6432436
ML
2039
2040 pp->crqb[in_index].sg_addr =
eb73d558 2041 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
a6432436 2042 pp->crqb[in_index].sg_addr_hi =
eb73d558 2043 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
a6432436 2044 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 2045
a6432436 2046 cw = &pp->crqb[in_index].ata_cmd[0];
31961943
BR
2047
2048 /* Sadly, the CRQB cannot accomodate all registers--there are
2049 * only 11 bytes...so we must pick and choose required
2050 * registers based on the command. So, we drop feature and
2051 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
2052 * NCQ. NCQ will drop hob_nsect, which is not needed there
2053 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 2054 */
31961943
BR
2055 switch (tf->command) {
2056 case ATA_CMD_READ:
2057 case ATA_CMD_READ_EXT:
2058 case ATA_CMD_WRITE:
2059 case ATA_CMD_WRITE_EXT:
c15d85c8 2060 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
2061 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2062 break;
31961943
BR
2063 case ATA_CMD_FPDMA_READ:
2064 case ATA_CMD_FPDMA_WRITE:
8b260248 2065 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
2066 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2067 break;
31961943
BR
2068 default:
2069 /* The only other commands EDMA supports in non-queued and
2070 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2071 * of which are defined/used by Linux. If we get here, this
2072 * driver needs work.
2073 *
2074 * FIXME: modify libata to give qc_prep a return value and
2075 * return error here.
2076 */
2077 BUG_ON(tf->command);
2078 break;
2079 }
2080 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2081 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2082 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2083 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2084 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2085 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2086 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2087 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2088 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2089
e4e7b892
JG
2090 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2091 return;
2092 mv_fill_sg(qc);
2093}
2094
2095/**
2096 * mv_qc_prep_iie - Host specific command preparation.
2097 * @qc: queued command to prepare
2098 *
2099 * This routine simply redirects to the general purpose routine
2100 * if command is not DMA. Else, it handles prep of the CRQB
2101 * (command request block), does some sanity checking, and calls
2102 * the SG load routine.
2103 *
2104 * LOCKING:
2105 * Inherited from caller.
2106 */
2107static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2108{
2109 struct ata_port *ap = qc->ap;
2110 struct mv_port_priv *pp = ap->private_data;
2111 struct mv_crqb_iie *crqb;
8d2b450d 2112 struct ata_taskfile *tf = &qc->tf;
a6432436 2113 unsigned in_index;
e4e7b892
JG
2114 u32 flags = 0;
2115
8d2b450d
ML
2116 if ((tf->protocol != ATA_PROT_DMA) &&
2117 (tf->protocol != ATA_PROT_NCQ))
e4e7b892 2118 return;
44b73380
ML
2119 if (tf->command == ATA_CMD_DSM)
2120 return; /* use bmdma for this */
e4e7b892 2121
e12bef50 2122 /* Fill in Gen IIE command request block */
8d2b450d 2123 if (!(tf->flags & ATA_TFLAG_WRITE))
e4e7b892
JG
2124 flags |= CRQB_FLAG_READ;
2125
beec7dbc 2126 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
e4e7b892 2127 flags |= qc->tag << CRQB_TAG_SHIFT;
8c0aeb4a 2128 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
e49856d8 2129 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2130
bdd4ddde 2131 /* get current queue index from software */
fcfb1f77 2132 in_index = pp->req_idx;
a6432436
ML
2133
2134 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
eb73d558
ML
2135 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2136 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
e4e7b892
JG
2137 crqb->flags = cpu_to_le32(flags);
2138
e4e7b892
JG
2139 crqb->ata_cmd[0] = cpu_to_le32(
2140 (tf->command << 16) |
2141 (tf->feature << 24)
2142 );
2143 crqb->ata_cmd[1] = cpu_to_le32(
2144 (tf->lbal << 0) |
2145 (tf->lbam << 8) |
2146 (tf->lbah << 16) |
2147 (tf->device << 24)
2148 );
2149 crqb->ata_cmd[2] = cpu_to_le32(
2150 (tf->hob_lbal << 0) |
2151 (tf->hob_lbam << 8) |
2152 (tf->hob_lbah << 16) |
2153 (tf->hob_feature << 24)
2154 );
2155 crqb->ata_cmd[3] = cpu_to_le32(
2156 (tf->nsect << 0) |
2157 (tf->hob_nsect << 8)
2158 );
2159
2160 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
31961943 2161 return;
31961943
BR
2162 mv_fill_sg(qc);
2163}
2164
d16ab3f6
ML
2165/**
2166 * mv_sff_check_status - fetch device status, if valid
2167 * @ap: ATA port to fetch status from
2168 *
2169 * When using command issue via mv_qc_issue_fis(),
2170 * the initial ATA_BUSY state does not show up in the
2171 * ATA status (shadow) register. This can confuse libata!
2172 *
2173 * So we have a hook here to fake ATA_BUSY for that situation,
2174 * until the first time a BUSY, DRQ, or ERR bit is seen.
2175 *
2176 * The rest of the time, it simply returns the ATA status register.
2177 */
2178static u8 mv_sff_check_status(struct ata_port *ap)
2179{
2180 u8 stat = ioread8(ap->ioaddr.status_addr);
2181 struct mv_port_priv *pp = ap->private_data;
2182
2183 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2184 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2185 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2186 else
2187 stat = ATA_BUSY;
2188 }
2189 return stat;
2190}
2191
70f8b79c
ML
2192/**
2193 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2194 * @fis: fis to be sent
2195 * @nwords: number of 32-bit words in the fis
2196 */
2197static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2198{
2199 void __iomem *port_mmio = mv_ap_base(ap);
2200 u32 ifctl, old_ifctl, ifstat;
2201 int i, timeout = 200, final_word = nwords - 1;
2202
2203 /* Initiate FIS transmission mode */
cae5a29d 2204 old_ifctl = readl(port_mmio + SATA_IFCTL);
70f8b79c 2205 ifctl = 0x100 | (old_ifctl & 0xf);
cae5a29d 2206 writelfl(ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2207
2208 /* Send all words of the FIS except for the final word */
2209 for (i = 0; i < final_word; ++i)
cae5a29d 2210 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2211
2212 /* Flag end-of-transmission, and then send the final word */
cae5a29d
ML
2213 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2214 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2215
2216 /*
2217 * Wait for FIS transmission to complete.
2218 * This typically takes just a single iteration.
2219 */
2220 do {
cae5a29d 2221 ifstat = readl(port_mmio + SATA_IFSTAT);
70f8b79c
ML
2222 } while (!(ifstat & 0x1000) && --timeout);
2223
2224 /* Restore original port configuration */
cae5a29d 2225 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2226
2227 /* See if it worked */
2228 if ((ifstat & 0x3000) != 0x1000) {
2229 ata_port_printk(ap, KERN_WARNING,
2230 "%s transmission error, ifstat=%08x\n",
2231 __func__, ifstat);
2232 return AC_ERR_OTHER;
2233 }
2234 return 0;
2235}
2236
2237/**
2238 * mv_qc_issue_fis - Issue a command directly as a FIS
2239 * @qc: queued command to start
2240 *
2241 * Note that the ATA shadow registers are not updated
2242 * after command issue, so the device will appear "READY"
2243 * if polled, even while it is BUSY processing the command.
2244 *
2245 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2246 *
2247 * Note: we don't get updated shadow regs on *completion*
2248 * of non-data commands. So avoid sending them via this function,
2249 * as they will appear to have completed immediately.
2250 *
2251 * GEN_IIE has special registers that we could get the result tf from,
2252 * but earlier chipsets do not. For now, we ignore those registers.
2253 */
2254static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2255{
2256 struct ata_port *ap = qc->ap;
2257 struct mv_port_priv *pp = ap->private_data;
2258 struct ata_link *link = qc->dev->link;
2259 u32 fis[5];
2260 int err = 0;
2261
2262 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
4c4a90fd 2263 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
70f8b79c
ML
2264 if (err)
2265 return err;
2266
2267 switch (qc->tf.protocol) {
2268 case ATAPI_PROT_PIO:
2269 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2270 /* fall through */
2271 case ATAPI_PROT_NODATA:
2272 ap->hsm_task_state = HSM_ST_FIRST;
2273 break;
2274 case ATA_PROT_PIO:
2275 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2276 if (qc->tf.flags & ATA_TFLAG_WRITE)
2277 ap->hsm_task_state = HSM_ST_FIRST;
2278 else
2279 ap->hsm_task_state = HSM_ST;
2280 break;
2281 default:
2282 ap->hsm_task_state = HSM_ST_LAST;
2283 break;
2284 }
2285
2286 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 2287 ata_sff_queue_pio_task(link, 0);
70f8b79c
ML
2288 return 0;
2289}
2290
05b308e1
BR
2291/**
2292 * mv_qc_issue - Initiate a command to the host
2293 * @qc: queued command to start
2294 *
2295 * This routine simply redirects to the general purpose routine
2296 * if command is not DMA. Else, it sanity checks our local
2297 * caches of the request producer/consumer indices then enables
2298 * DMA and bumps the request producer index.
2299 *
2300 * LOCKING:
2301 * Inherited from caller.
2302 */
9a3d9eb0 2303static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2304{
f48765cc 2305 static int limit_warnings = 10;
c5d3e45a
JG
2306 struct ata_port *ap = qc->ap;
2307 void __iomem *port_mmio = mv_ap_base(ap);
2308 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2309 u32 in_index;
42ed893d 2310 unsigned int port_irqs;
f48765cc 2311
d16ab3f6
ML
2312 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2313
f48765cc
ML
2314 switch (qc->tf.protocol) {
2315 case ATA_PROT_DMA:
44b73380
ML
2316 if (qc->tf.command == ATA_CMD_DSM) {
2317 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2318 return AC_ERR_OTHER;
2319 break; /* use bmdma for this */
2320 }
2321 /* fall thru */
f48765cc
ML
2322 case ATA_PROT_NCQ:
2323 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2324 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2325 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2326
2327 /* Write the request in pointer to kick the EDMA to life */
2328 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
cae5a29d 2329 port_mmio + EDMA_REQ_Q_IN_PTR);
f48765cc 2330 return 0;
31961943 2331
f48765cc 2332 case ATA_PROT_PIO:
c6112bd8
ML
2333 /*
2334 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2335 *
2336 * Someday, we might implement special polling workarounds
2337 * for these, but it all seems rather unnecessary since we
2338 * normally use only DMA for commands which transfer more
2339 * than a single block of data.
2340 *
2341 * Much of the time, this could just work regardless.
2342 * So for now, just log the incident, and allow the attempt.
2343 */
c7843e8f 2344 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8
ML
2345 --limit_warnings;
2346 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2347 ": attempting PIO w/multiple DRQ: "
2348 "this may fail due to h/w errata\n");
2349 }
f48765cc 2350 /* drop through */
42ed893d 2351 case ATA_PROT_NODATA:
f48765cc 2352 case ATAPI_PROT_PIO:
42ed893d
ML
2353 case ATAPI_PROT_NODATA:
2354 if (ap->flags & ATA_FLAG_PIO_POLLING)
2355 qc->tf.flags |= ATA_TFLAG_POLLING;
2356 break;
31961943 2357 }
42ed893d
ML
2358
2359 if (qc->tf.flags & ATA_TFLAG_POLLING)
2360 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2361 else
2362 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2363
2364 /*
2365 * We're about to send a non-EDMA capable command to the
2366 * port. Turn off EDMA so there won't be problems accessing
2367 * shadow block, etc registers.
2368 */
2369 mv_stop_edma(ap);
2370 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2371 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2372
2373 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2374 struct mv_host_priv *hpriv = ap->host->private_data;
2375 /*
2376 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2377 *
70f8b79c
ML
2378 * After any NCQ error, the READ_LOG_EXT command
2379 * from libata-eh *must* use mv_qc_issue_fis().
2380 * Otherwise it might fail, due to chip errata.
2381 *
2382 * Rather than special-case it, we'll just *always*
2383 * use this method here for READ_LOG_EXT, making for
2384 * easier testing.
2385 */
2386 if (IS_GEN_II(hpriv))
2387 return mv_qc_issue_fis(qc);
2388 }
360ff783 2389 return ata_bmdma_qc_issue(qc);
31961943
BR
2390}
2391
8f767f8a
ML
2392static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2393{
2394 struct mv_port_priv *pp = ap->private_data;
2395 struct ata_queued_cmd *qc;
2396
2397 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2398 return NULL;
2399 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
2400 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2401 return qc;
2402 return NULL;
8f767f8a
ML
2403}
2404
29d187bb
ML
2405static void mv_pmp_error_handler(struct ata_port *ap)
2406{
2407 unsigned int pmp, pmp_map;
2408 struct mv_port_priv *pp = ap->private_data;
2409
2410 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2411 /*
2412 * Perform NCQ error analysis on failed PMPs
2413 * before we freeze the port entirely.
2414 *
2415 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2416 */
2417 pmp_map = pp->delayed_eh_pmp_map;
2418 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2419 for (pmp = 0; pmp_map != 0; pmp++) {
2420 unsigned int this_pmp = (1 << pmp);
2421 if (pmp_map & this_pmp) {
2422 struct ata_link *link = &ap->pmp_link[pmp];
2423 pmp_map &= ~this_pmp;
2424 ata_eh_analyze_ncq_error(link);
2425 }
2426 }
2427 ata_port_freeze(ap);
2428 }
2429 sata_pmp_error_handler(ap);
2430}
2431
4c299ca3
ML
2432static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2433{
2434 void __iomem *port_mmio = mv_ap_base(ap);
2435
cae5a29d 2436 return readl(port_mmio + SATA_TESTCTL) >> 16;
4c299ca3
ML
2437}
2438
4c299ca3
ML
2439static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2440{
2441 struct ata_eh_info *ehi;
2442 unsigned int pmp;
2443
2444 /*
2445 * Initialize EH info for PMPs which saw device errors
2446 */
2447 ehi = &ap->link.eh_info;
2448 for (pmp = 0; pmp_map != 0; pmp++) {
2449 unsigned int this_pmp = (1 << pmp);
2450 if (pmp_map & this_pmp) {
2451 struct ata_link *link = &ap->pmp_link[pmp];
2452
2453 pmp_map &= ~this_pmp;
2454 ehi = &link->eh_info;
2455 ata_ehi_clear_desc(ehi);
2456 ata_ehi_push_desc(ehi, "dev err");
2457 ehi->err_mask |= AC_ERR_DEV;
2458 ehi->action |= ATA_EH_RESET;
2459 ata_link_abort(link);
2460 }
2461 }
2462}
2463
06aaca3f
ML
2464static int mv_req_q_empty(struct ata_port *ap)
2465{
2466 void __iomem *port_mmio = mv_ap_base(ap);
2467 u32 in_ptr, out_ptr;
2468
cae5a29d 2469 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
06aaca3f 2470 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
cae5a29d 2471 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
06aaca3f
ML
2472 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2473 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2474}
2475
4c299ca3
ML
2476static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2477{
2478 struct mv_port_priv *pp = ap->private_data;
2479 int failed_links;
2480 unsigned int old_map, new_map;
2481
2482 /*
2483 * Device error during FBS+NCQ operation:
2484 *
2485 * Set a port flag to prevent further I/O being enqueued.
2486 * Leave the EDMA running to drain outstanding commands from this port.
2487 * Perform the post-mortem/EH only when all responses are complete.
2488 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2489 */
2490 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2491 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2492 pp->delayed_eh_pmp_map = 0;
2493 }
2494 old_map = pp->delayed_eh_pmp_map;
2495 new_map = old_map | mv_get_err_pmp_map(ap);
2496
2497 if (old_map != new_map) {
2498 pp->delayed_eh_pmp_map = new_map;
2499 mv_pmp_eh_prep(ap, new_map & ~old_map);
2500 }
c46938cc 2501 failed_links = hweight16(new_map);
4c299ca3
ML
2502
2503 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2504 "failed_links=%d nr_active_links=%d\n",
2505 __func__, pp->delayed_eh_pmp_map,
2506 ap->qc_active, failed_links,
2507 ap->nr_active_links);
2508
06aaca3f 2509 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2510 mv_process_crpb_entries(ap, pp);
2511 mv_stop_edma(ap);
2512 mv_eh_freeze(ap);
2513 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2514 return 1; /* handled */
2515 }
2516 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2517 return 1; /* handled */
2518}
2519
2520static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2521{
2522 /*
2523 * Possible future enhancement:
2524 *
2525 * FBS+non-NCQ operation is not yet implemented.
2526 * See related notes in mv_edma_cfg().
2527 *
2528 * Device error during FBS+non-NCQ operation:
2529 *
2530 * We need to snapshot the shadow registers for each failed command.
2531 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2532 */
2533 return 0; /* not handled */
2534}
2535
2536static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2537{
2538 struct mv_port_priv *pp = ap->private_data;
2539
2540 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2541 return 0; /* EDMA was not active: not handled */
2542 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2543 return 0; /* FBS was not active: not handled */
2544
2545 if (!(edma_err_cause & EDMA_ERR_DEV))
2546 return 0; /* non DEV error: not handled */
2547 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2548 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2549 return 0; /* other problems: not handled */
2550
2551 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2552 /*
2553 * EDMA should NOT have self-disabled for this case.
2554 * If it did, then something is wrong elsewhere,
2555 * and we cannot handle it here.
2556 */
2557 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2558 ata_port_printk(ap, KERN_WARNING,
2559 "%s: err_cause=0x%x pp_flags=0x%x\n",
2560 __func__, edma_err_cause, pp->pp_flags);
2561 return 0; /* not handled */
2562 }
2563 return mv_handle_fbs_ncq_dev_err(ap);
2564 } else {
2565 /*
2566 * EDMA should have self-disabled for this case.
2567 * If it did not, then something is wrong elsewhere,
2568 * and we cannot handle it here.
2569 */
2570 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2571 ata_port_printk(ap, KERN_WARNING,
2572 "%s: err_cause=0x%x pp_flags=0x%x\n",
2573 __func__, edma_err_cause, pp->pp_flags);
2574 return 0; /* not handled */
2575 }
2576 return mv_handle_fbs_non_ncq_dev_err(ap);
2577 }
2578 return 0; /* not handled */
2579}
2580
a9010329 2581static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2582{
8f767f8a 2583 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2584 char *when = "idle";
8f767f8a 2585
8f767f8a 2586 ata_ehi_clear_desc(ehi);
3e4ec344 2587 if (edma_was_enabled) {
a9010329 2588 when = "EDMA enabled";
8f767f8a
ML
2589 } else {
2590 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2591 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2592 when = "polling";
8f767f8a 2593 }
a9010329 2594 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2595 ehi->err_mask |= AC_ERR_OTHER;
2596 ehi->action |= ATA_EH_RESET;
2597 ata_port_freeze(ap);
2598}
2599
05b308e1
BR
2600/**
2601 * mv_err_intr - Handle error interrupts on the port
2602 * @ap: ATA channel to manipulate
2603 *
8d07379d
ML
2604 * Most cases require a full reset of the chip's state machine,
2605 * which also performs a COMRESET.
2606 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2607 *
2608 * LOCKING:
2609 * Inherited from caller.
2610 */
37b9046a 2611static void mv_err_intr(struct ata_port *ap)
31961943
BR
2612{
2613 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2614 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2615 u32 fis_cause = 0;
bdd4ddde
JG
2616 struct mv_port_priv *pp = ap->private_data;
2617 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2618 unsigned int action = 0, err_mask = 0;
9af5c9c9 2619 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2620 struct ata_queued_cmd *qc;
2621 int abort = 0;
20f733e7 2622
8d07379d 2623 /*
37b9046a 2624 * Read and clear the SError and err_cause bits.
e4006077
ML
2625 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2626 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2627 */
37b9046a
ML
2628 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2629 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2630
cae5a29d 2631 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
e4006077 2632 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
cae5a29d
ML
2633 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2634 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
e4006077 2635 }
cae5a29d 2636 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde 2637
4c299ca3
ML
2638 if (edma_err_cause & EDMA_ERR_DEV) {
2639 /*
2640 * Device errors during FIS-based switching operation
2641 * require special handling.
2642 */
2643 if (mv_handle_dev_err(ap, edma_err_cause))
2644 return;
2645 }
2646
37b9046a
ML
2647 qc = mv_get_active_qc(ap);
2648 ata_ehi_clear_desc(ehi);
2649 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2650 edma_err_cause, pp->pp_flags);
e4006077 2651
c443c500 2652 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2653 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
cae5a29d 2654 if (fis_cause & FIS_IRQ_CAUSE_AN) {
c443c500
ML
2655 u32 ec = edma_err_cause &
2656 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2657 sata_async_notification(ap);
2658 if (!ec)
2659 return; /* Just an AN; no need for the nukes */
2660 ata_ehi_push_desc(ehi, "SDB notify");
2661 }
2662 }
bdd4ddde 2663 /*
352fab70 2664 * All generations share these EDMA error cause bits:
bdd4ddde 2665 */
37b9046a 2666 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2667 err_mask |= AC_ERR_DEV;
37b9046a
ML
2668 action |= ATA_EH_RESET;
2669 ata_ehi_push_desc(ehi, "dev error");
2670 }
bdd4ddde 2671 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2672 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2673 EDMA_ERR_INTRL_PAR)) {
2674 err_mask |= AC_ERR_ATA_BUS;
cf480626 2675 action |= ATA_EH_RESET;
b64bbc39 2676 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2677 }
2678 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2679 ata_ehi_hotplugged(ehi);
2680 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2681 "dev disconnect" : "dev connect");
cf480626 2682 action |= ATA_EH_RESET;
bdd4ddde
JG
2683 }
2684
352fab70
ML
2685 /*
2686 * Gen-I has a different SELF_DIS bit,
2687 * different FREEZE bits, and no SERR bit:
2688 */
ee9ccdf7 2689 if (IS_GEN_I(hpriv)) {
bdd4ddde 2690 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2691 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2692 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2693 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2694 }
2695 } else {
2696 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2697 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2698 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2699 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2700 }
bdd4ddde 2701 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2702 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2703 err_mask |= AC_ERR_ATA_BUS;
cf480626 2704 action |= ATA_EH_RESET;
bdd4ddde 2705 }
afb0edd9 2706 }
20f733e7 2707
bdd4ddde
JG
2708 if (!err_mask) {
2709 err_mask = AC_ERR_OTHER;
cf480626 2710 action |= ATA_EH_RESET;
bdd4ddde
JG
2711 }
2712
2713 ehi->serror |= serr;
2714 ehi->action |= action;
2715
2716 if (qc)
2717 qc->err_mask |= err_mask;
2718 else
2719 ehi->err_mask |= err_mask;
2720
37b9046a
ML
2721 if (err_mask == AC_ERR_DEV) {
2722 /*
2723 * Cannot do ata_port_freeze() here,
2724 * because it would kill PIO access,
2725 * which is needed for further diagnosis.
2726 */
2727 mv_eh_freeze(ap);
2728 abort = 1;
2729 } else if (edma_err_cause & eh_freeze_mask) {
2730 /*
2731 * Note to self: ata_port_freeze() calls ata_port_abort()
2732 */
bdd4ddde 2733 ata_port_freeze(ap);
37b9046a
ML
2734 } else {
2735 abort = 1;
2736 }
2737
2738 if (abort) {
2739 if (qc)
2740 ata_link_abort(qc->dev->link);
2741 else
2742 ata_port_abort(ap);
2743 }
bdd4ddde
JG
2744}
2745
fcfb1f77
ML
2746static void mv_process_crpb_response(struct ata_port *ap,
2747 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2748{
752e386c
TH
2749 u8 ata_status;
2750 u16 edma_status = le16_to_cpu(response->flags);
fcfb1f77
ML
2751 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2752
752e386c 2753 if (unlikely(!qc)) {
fcfb1f77
ML
2754 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2755 __func__, tag);
752e386c
TH
2756 return;
2757 }
2758
2759 /*
2760 * edma_status from a response queue entry:
2761 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2762 * MSB is saved ATA status from command completion.
2763 */
2764 if (!ncq_enabled) {
2765 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2766 if (err_cause) {
2767 /*
2768 * Error will be seen/handled by
2769 * mv_err_intr(). So do nothing at all here.
2770 */
2771 return;
2772 }
fcfb1f77 2773 }
752e386c
TH
2774 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2775 if (!ac_err_mask(ata_status))
2776 ata_qc_complete(qc);
2777 /* else: leave it for mv_err_intr() */
fcfb1f77
ML
2778}
2779
2780static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2781{
2782 void __iomem *port_mmio = mv_ap_base(ap);
2783 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2784 u32 in_index;
bdd4ddde 2785 bool work_done = false;
fcfb1f77 2786 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2787
fcfb1f77 2788 /* Get the hardware queue position index */
cae5a29d 2789 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
bdd4ddde
JG
2790 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2791
fcfb1f77
ML
2792 /* Process new responses from since the last time we looked */
2793 while (in_index != pp->resp_idx) {
6c1153e0 2794 unsigned int tag;
fcfb1f77 2795 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2796
fcfb1f77 2797 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2798
fcfb1f77
ML
2799 if (IS_GEN_I(hpriv)) {
2800 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2801 tag = ap->link.active_tag;
fcfb1f77
ML
2802 } else {
2803 /* Gen II/IIE: get command tag from CRPB entry */
2804 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2805 }
fcfb1f77 2806 mv_process_crpb_response(ap, response, tag, ncq_enabled);
bdd4ddde 2807 work_done = true;
bdd4ddde
JG
2808 }
2809
352fab70 2810 /* Update the software queue position index in hardware */
bdd4ddde
JG
2811 if (work_done)
2812 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2813 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
cae5a29d 2814 port_mmio + EDMA_RSP_Q_OUT_PTR);
20f733e7
BR
2815}
2816
a9010329
ML
2817static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2818{
2819 struct mv_port_priv *pp;
2820 int edma_was_enabled;
2821
a9010329
ML
2822 /*
2823 * Grab a snapshot of the EDMA_EN flag setting,
2824 * so that we have a consistent view for this port,
2825 * even if something we call of our routines changes it.
2826 */
2827 pp = ap->private_data;
2828 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2829 /*
2830 * Process completed CRPB response(s) before other events.
2831 */
2832 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2833 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2834 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2835 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2836 }
2837 /*
2838 * Handle chip-reported errors, or continue on to handle PIO.
2839 */
2840 if (unlikely(port_cause & ERR_IRQ)) {
2841 mv_err_intr(ap);
2842 } else if (!edma_was_enabled) {
2843 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2844 if (qc)
c3b28894 2845 ata_bmdma_port_intr(ap, qc);
a9010329
ML
2846 else
2847 mv_unexpected_intr(ap, edma_was_enabled);
2848 }
2849}
2850
05b308e1
BR
2851/**
2852 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2853 * @host: host specific structure
7368f919 2854 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2855 *
2856 * LOCKING:
2857 * Inherited from caller.
2858 */
7368f919 2859static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2860{
f351b2d6 2861 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2862 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2863 unsigned int handled = 0, port;
20f733e7 2864
2b748a0a
ML
2865 /* If asserted, clear the "all ports" IRQ coalescing bit */
2866 if (main_irq_cause & ALL_PORTS_COAL_DONE)
cae5a29d 2867 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2b748a0a 2868
a3718c1f 2869 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2870 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2871 unsigned int p, shift, hardport, port_cause;
2872
a3718c1f 2873 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2874 /*
eabd5eb1
ML
2875 * Each hc within the host has its own hc_irq_cause register,
2876 * where the interrupting ports bits get ack'd.
a3718c1f 2877 */
eabd5eb1
ML
2878 if (hardport == 0) { /* first port on this hc ? */
2879 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2880 u32 port_mask, ack_irqs;
2881 /*
2882 * Skip this entire hc if nothing pending for any ports
2883 */
2884 if (!hc_cause) {
2885 port += MV_PORTS_PER_HC - 1;
2886 continue;
2887 }
2888 /*
2889 * We don't need/want to read the hc_irq_cause register,
2890 * because doing so hurts performance, and
2891 * main_irq_cause already gives us everything we need.
2892 *
2893 * But we do have to *write* to the hc_irq_cause to ack
2894 * the ports that we are handling this time through.
2895 *
2896 * This requires that we create a bitmap for those
2897 * ports which interrupted us, and use that bitmap
2898 * to ack (only) those ports via hc_irq_cause.
2899 */
2900 ack_irqs = 0;
2b748a0a
ML
2901 if (hc_cause & PORTS_0_3_COAL_DONE)
2902 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2903 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2904 if ((port + p) >= hpriv->n_ports)
2905 break;
2906 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2907 if (hc_cause & port_mask)
2908 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2909 }
a3718c1f 2910 hc_mmio = mv_hc_base_from_port(mmio, port);
cae5a29d 2911 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
a3718c1f
ML
2912 handled = 1;
2913 }
8f767f8a 2914 /*
a9010329 2915 * Handle interrupts signalled for this port:
8f767f8a 2916 */
a9010329
ML
2917 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2918 if (port_cause)
2919 mv_port_intr(ap, port_cause);
20f733e7 2920 }
a3718c1f 2921 return handled;
20f733e7
BR
2922}
2923
a3718c1f 2924static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2925{
02a121da 2926 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2927 struct ata_port *ap;
2928 struct ata_queued_cmd *qc;
2929 struct ata_eh_info *ehi;
2930 unsigned int i, err_mask, printed = 0;
2931 u32 err_cause;
2932
cae5a29d 2933 err_cause = readl(mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2934
2935 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2936 err_cause);
2937
2938 DPRINTK("All regs @ PCI error\n");
2939 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2940
cae5a29d 2941 writelfl(0, mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2942
2943 for (i = 0; i < host->n_ports; i++) {
2944 ap = host->ports[i];
936fd732 2945 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2946 ehi = &ap->link.eh_info;
bdd4ddde
JG
2947 ata_ehi_clear_desc(ehi);
2948 if (!printed++)
2949 ata_ehi_push_desc(ehi,
2950 "PCI err cause 0x%08x", err_cause);
2951 err_mask = AC_ERR_HOST_BUS;
cf480626 2952 ehi->action = ATA_EH_RESET;
9af5c9c9 2953 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2954 if (qc)
2955 qc->err_mask |= err_mask;
2956 else
2957 ehi->err_mask |= err_mask;
2958
2959 ata_port_freeze(ap);
2960 }
2961 }
a3718c1f 2962 return 1; /* handled */
bdd4ddde
JG
2963}
2964
05b308e1 2965/**
c5d3e45a 2966 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2967 * @irq: unused
2968 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2969 *
2970 * Read the read only register to determine if any host
2971 * controllers have pending interrupts. If so, call lower level
2972 * routine to handle. Also check for PCI errors which are only
2973 * reported here.
2974 *
8b260248 2975 * LOCKING:
cca3974e 2976 * This routine holds the host lock while processing pending
05b308e1
BR
2977 * interrupts.
2978 */
7d12e780 2979static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 2980{
cca3974e 2981 struct ata_host *host = dev_instance;
f351b2d6 2982 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 2983 unsigned int handled = 0;
6d3c30ef 2984 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 2985 u32 main_irq_cause, pending_irqs;
20f733e7 2986
646a4da5 2987 spin_lock(&host->lock);
6d3c30ef
ML
2988
2989 /* for MSI: block new interrupts while in here */
2990 if (using_msi)
2b748a0a 2991 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 2992
7368f919 2993 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 2994 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
2995 /*
2996 * Deal with cases where we either have nothing pending, or have read
2997 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 2998 */
a44253d2 2999 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 3000 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
3001 handled = mv_pci_error(host, hpriv->base);
3002 else
a44253d2 3003 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 3004 }
6d3c30ef
ML
3005
3006 /* for MSI: unmask; interrupt cause bits will retrigger now */
3007 if (using_msi)
2b748a0a 3008 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 3009
9d51af7b
ML
3010 spin_unlock(&host->lock);
3011
20f733e7
BR
3012 return IRQ_RETVAL(handled);
3013}
3014
c9d39130
JG
3015static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3016{
3017 unsigned int ofs;
3018
3019 switch (sc_reg_in) {
3020 case SCR_STATUS:
3021 case SCR_ERROR:
3022 case SCR_CONTROL:
3023 ofs = sc_reg_in * sizeof(u32);
3024 break;
3025 default:
3026 ofs = 0xffffffffU;
3027 break;
3028 }
3029 return ofs;
3030}
3031
82ef04fb 3032static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 3033{
82ef04fb 3034 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3035 void __iomem *mmio = hpriv->base;
82ef04fb 3036 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3037 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3038
da3dbb17
TH
3039 if (ofs != 0xffffffffU) {
3040 *val = readl(addr + ofs);
3041 return 0;
3042 } else
3043 return -EINVAL;
c9d39130
JG
3044}
3045
82ef04fb 3046static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 3047{
82ef04fb 3048 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3049 void __iomem *mmio = hpriv->base;
82ef04fb 3050 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3051 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3052
da3dbb17 3053 if (ofs != 0xffffffffU) {
0d5ff566 3054 writelfl(val, addr + ofs);
da3dbb17
TH
3055 return 0;
3056 } else
3057 return -EINVAL;
c9d39130
JG
3058}
3059
7bb3c529 3060static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 3061{
7bb3c529 3062 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
3063 int early_5080;
3064
44c10138 3065 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
3066
3067 if (!early_5080) {
3068 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3069 tmp |= (1 << 0);
3070 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3071 }
3072
7bb3c529 3073 mv_reset_pci_bus(host, mmio);
522479fb
JG
3074}
3075
3076static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3077{
cae5a29d 3078 writel(0x0fcfffff, mmio + FLASH_CTL);
522479fb
JG
3079}
3080
47c2b677 3081static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3082 void __iomem *mmio)
3083{
c9d39130
JG
3084 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3085 u32 tmp;
3086
3087 tmp = readl(phy_mmio + MV5_PHY_MODE);
3088
3089 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3090 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
3091}
3092
47c2b677 3093static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3094{
522479fb
JG
3095 u32 tmp;
3096
cae5a29d 3097 writel(0, mmio + GPIO_PORT_CTL);
522479fb
JG
3098
3099 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3100
3101 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3102 tmp |= ~(1 << 0);
3103 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
3104}
3105
2a47ce06
JG
3106static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3107 unsigned int port)
bca1c4eb 3108{
c9d39130
JG
3109 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3110 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3111 u32 tmp;
3112 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3113
3114 if (fix_apm_sq) {
cae5a29d 3115 tmp = readl(phy_mmio + MV5_LTMODE);
c9d39130 3116 tmp |= (1 << 19);
cae5a29d 3117 writel(tmp, phy_mmio + MV5_LTMODE);
c9d39130 3118
cae5a29d 3119 tmp = readl(phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3120 tmp &= ~0x3;
3121 tmp |= 0x1;
cae5a29d 3122 writel(tmp, phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3123 }
3124
3125 tmp = readl(phy_mmio + MV5_PHY_MODE);
3126 tmp &= ~mask;
3127 tmp |= hpriv->signal[port].pre;
3128 tmp |= hpriv->signal[port].amps;
3129 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3130}
3131
c9d39130
JG
3132
3133#undef ZERO
3134#define ZERO(reg) writel(0, port_mmio + (reg))
3135static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3136 unsigned int port)
3137{
3138 void __iomem *port_mmio = mv_port_base(mmio, port);
3139
e12bef50 3140 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3141
3142 ZERO(0x028); /* command */
cae5a29d 3143 writel(0x11f, port_mmio + EDMA_CFG);
c9d39130
JG
3144 ZERO(0x004); /* timer */
3145 ZERO(0x008); /* irq err cause */
3146 ZERO(0x00c); /* irq err mask */
3147 ZERO(0x010); /* rq bah */
3148 ZERO(0x014); /* rq inp */
3149 ZERO(0x018); /* rq outp */
3150 ZERO(0x01c); /* respq bah */
3151 ZERO(0x024); /* respq outp */
3152 ZERO(0x020); /* respq inp */
3153 ZERO(0x02c); /* test control */
cae5a29d 3154 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
c9d39130
JG
3155}
3156#undef ZERO
3157
3158#define ZERO(reg) writel(0, hc_mmio + (reg))
3159static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3160 unsigned int hc)
47c2b677 3161{
c9d39130
JG
3162 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3163 u32 tmp;
3164
3165 ZERO(0x00c);
3166 ZERO(0x010);
3167 ZERO(0x014);
3168 ZERO(0x018);
3169
3170 tmp = readl(hc_mmio + 0x20);
3171 tmp &= 0x1c1c1c1c;
3172 tmp |= 0x03030303;
3173 writel(tmp, hc_mmio + 0x20);
3174}
3175#undef ZERO
3176
3177static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3178 unsigned int n_hc)
3179{
3180 unsigned int hc, port;
3181
3182 for (hc = 0; hc < n_hc; hc++) {
3183 for (port = 0; port < MV_PORTS_PER_HC; port++)
3184 mv5_reset_hc_port(hpriv, mmio,
3185 (hc * MV_PORTS_PER_HC) + port);
3186
3187 mv5_reset_one_hc(hpriv, mmio, hc);
3188 }
3189
3190 return 0;
47c2b677
JG
3191}
3192
101ffae2
JG
3193#undef ZERO
3194#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3195static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3196{
02a121da 3197 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3198 u32 tmp;
3199
cae5a29d 3200 tmp = readl(mmio + MV_PCI_MODE);
101ffae2 3201 tmp &= 0xff00ffff;
cae5a29d 3202 writel(tmp, mmio + MV_PCI_MODE);
101ffae2
JG
3203
3204 ZERO(MV_PCI_DISC_TIMER);
3205 ZERO(MV_PCI_MSI_TRIGGER);
cae5a29d 3206 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
101ffae2 3207 ZERO(MV_PCI_SERR_MASK);
cae5a29d
ML
3208 ZERO(hpriv->irq_cause_offset);
3209 ZERO(hpriv->irq_mask_offset);
101ffae2
JG
3210 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3211 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3212 ZERO(MV_PCI_ERR_ATTRIBUTE);
3213 ZERO(MV_PCI_ERR_COMMAND);
3214}
3215#undef ZERO
3216
3217static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3218{
3219 u32 tmp;
3220
3221 mv5_reset_flash(hpriv, mmio);
3222
cae5a29d 3223 tmp = readl(mmio + GPIO_PORT_CTL);
101ffae2
JG
3224 tmp &= 0x3;
3225 tmp |= (1 << 5) | (1 << 6);
cae5a29d 3226 writel(tmp, mmio + GPIO_PORT_CTL);
101ffae2
JG
3227}
3228
3229/**
3230 * mv6_reset_hc - Perform the 6xxx global soft reset
3231 * @mmio: base address of the HBA
3232 *
3233 * This routine only applies to 6xxx parts.
3234 *
3235 * LOCKING:
3236 * Inherited from caller.
3237 */
c9d39130
JG
3238static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3239 unsigned int n_hc)
101ffae2 3240{
cae5a29d 3241 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
101ffae2
JG
3242 int i, rc = 0;
3243 u32 t;
3244
3245 /* Following procedure defined in PCI "main command and status
3246 * register" table.
3247 */
3248 t = readl(reg);
3249 writel(t | STOP_PCI_MASTER, reg);
3250
3251 for (i = 0; i < 1000; i++) {
3252 udelay(1);
3253 t = readl(reg);
2dcb407e 3254 if (PCI_MASTER_EMPTY & t)
101ffae2 3255 break;
101ffae2
JG
3256 }
3257 if (!(PCI_MASTER_EMPTY & t)) {
3258 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3259 rc = 1;
3260 goto done;
3261 }
3262
3263 /* set reset */
3264 i = 5;
3265 do {
3266 writel(t | GLOB_SFT_RST, reg);
3267 t = readl(reg);
3268 udelay(1);
3269 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3270
3271 if (!(GLOB_SFT_RST & t)) {
3272 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3273 rc = 1;
3274 goto done;
3275 }
3276
3277 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3278 i = 5;
3279 do {
3280 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3281 t = readl(reg);
3282 udelay(1);
3283 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3284
3285 if (GLOB_SFT_RST & t) {
3286 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3287 rc = 1;
3288 }
3289done:
3290 return rc;
3291}
3292
47c2b677 3293static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3294 void __iomem *mmio)
3295{
3296 void __iomem *port_mmio;
3297 u32 tmp;
3298
cae5a29d 3299 tmp = readl(mmio + RESET_CFG);
ba3fe8fb 3300 if ((tmp & (1 << 0)) == 0) {
47c2b677 3301 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3302 hpriv->signal[idx].pre = 0x1 << 5;
3303 return;
3304 }
3305
3306 port_mmio = mv_port_base(mmio, idx);
3307 tmp = readl(port_mmio + PHY_MODE2);
3308
3309 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3310 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3311}
3312
47c2b677 3313static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3314{
cae5a29d 3315 writel(0x00000060, mmio + GPIO_PORT_CTL);
ba3fe8fb
JG
3316}
3317
c9d39130 3318static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3319 unsigned int port)
bca1c4eb 3320{
c9d39130
JG
3321 void __iomem *port_mmio = mv_port_base(mmio, port);
3322
bca1c4eb 3323 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3324 int fix_phy_mode2 =
3325 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3326 int fix_phy_mode4 =
47c2b677 3327 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3328 u32 m2, m3;
47c2b677
JG
3329
3330 if (fix_phy_mode2) {
3331 m2 = readl(port_mmio + PHY_MODE2);
3332 m2 &= ~(1 << 16);
3333 m2 |= (1 << 31);
3334 writel(m2, port_mmio + PHY_MODE2);
3335
3336 udelay(200);
3337
3338 m2 = readl(port_mmio + PHY_MODE2);
3339 m2 &= ~((1 << 16) | (1 << 31));
3340 writel(m2, port_mmio + PHY_MODE2);
3341
3342 udelay(200);
3343 }
3344
8c30a8b9
ML
3345 /*
3346 * Gen-II/IIe PHY_MODE3 errata RM#2:
3347 * Achieves better receiver noise performance than the h/w default:
3348 */
3349 m3 = readl(port_mmio + PHY_MODE3);
3350 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3351
0388a8c0
ML
3352 /* Guideline 88F5182 (GL# SATA-S11) */
3353 if (IS_SOC(hpriv))
3354 m3 &= ~0x1c;
3355
bca1c4eb 3356 if (fix_phy_mode4) {
ba069e37
ML
3357 u32 m4 = readl(port_mmio + PHY_MODE4);
3358 /*
3359 * Enforce reserved-bit restrictions on GenIIe devices only.
3360 * For earlier chipsets, force only the internal config field
3361 * (workaround for errata FEr SATA#10 part 1).
3362 */
8c30a8b9 3363 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3364 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3365 else
3366 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
8c30a8b9 3367 writel(m4, port_mmio + PHY_MODE4);
bca1c4eb 3368 }
b406c7a6
ML
3369 /*
3370 * Workaround for 60x1-B2 errata SATA#13:
3371 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3372 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3373 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6
ML
3374 */
3375 writel(m3, port_mmio + PHY_MODE3);
bca1c4eb
JG
3376
3377 /* Revert values of pre-emphasis and signal amps to the saved ones */
3378 m2 = readl(port_mmio + PHY_MODE2);
3379
3380 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3381 m2 |= hpriv->signal[port].amps;
3382 m2 |= hpriv->signal[port].pre;
47c2b677 3383 m2 &= ~(1 << 16);
bca1c4eb 3384
e4e7b892
JG
3385 /* according to mvSata 3.6.1, some IIE values are fixed */
3386 if (IS_GEN_IIE(hpriv)) {
3387 m2 &= ~0xC30FF01F;
3388 m2 |= 0x0000900F;
3389 }
3390
bca1c4eb
JG
3391 writel(m2, port_mmio + PHY_MODE2);
3392}
3393
f351b2d6
SB
3394/* TODO: use the generic LED interface to configure the SATA Presence */
3395/* & Acitivy LEDs on the board */
3396static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3397 void __iomem *mmio)
3398{
3399 return;
3400}
3401
3402static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3403 void __iomem *mmio)
3404{
3405 void __iomem *port_mmio;
3406 u32 tmp;
3407
3408 port_mmio = mv_port_base(mmio, idx);
3409 tmp = readl(port_mmio + PHY_MODE2);
3410
3411 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3412 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3413}
3414
3415#undef ZERO
3416#define ZERO(reg) writel(0, port_mmio + (reg))
3417static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3418 void __iomem *mmio, unsigned int port)
3419{
3420 void __iomem *port_mmio = mv_port_base(mmio, port);
3421
e12bef50 3422 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3423
3424 ZERO(0x028); /* command */
cae5a29d 3425 writel(0x101f, port_mmio + EDMA_CFG);
f351b2d6
SB
3426 ZERO(0x004); /* timer */
3427 ZERO(0x008); /* irq err cause */
3428 ZERO(0x00c); /* irq err mask */
3429 ZERO(0x010); /* rq bah */
3430 ZERO(0x014); /* rq inp */
3431 ZERO(0x018); /* rq outp */
3432 ZERO(0x01c); /* respq bah */
3433 ZERO(0x024); /* respq outp */
3434 ZERO(0x020); /* respq inp */
3435 ZERO(0x02c); /* test control */
d7b0c143 3436 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
f351b2d6
SB
3437}
3438
3439#undef ZERO
3440
3441#define ZERO(reg) writel(0, hc_mmio + (reg))
3442static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3443 void __iomem *mmio)
3444{
3445 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3446
3447 ZERO(0x00c);
3448 ZERO(0x010);
3449 ZERO(0x014);
3450
3451}
3452
3453#undef ZERO
3454
3455static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3456 void __iomem *mmio, unsigned int n_hc)
3457{
3458 unsigned int port;
3459
3460 for (port = 0; port < hpriv->n_ports; port++)
3461 mv_soc_reset_hc_port(hpriv, mmio, port);
3462
3463 mv_soc_reset_one_hc(hpriv, mmio);
3464
3465 return 0;
3466}
3467
3468static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3469 void __iomem *mmio)
3470{
3471 return;
3472}
3473
3474static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3475{
3476 return;
3477}
3478
29b7e43c
MM
3479static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3480 void __iomem *mmio, unsigned int port)
3481{
3482 void __iomem *port_mmio = mv_port_base(mmio, port);
3483 u32 reg;
3484
3485 reg = readl(port_mmio + PHY_MODE3);
3486 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3487 reg |= (0x1 << 27);
3488 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3489 reg |= (0x1 << 29);
3490 writel(reg, port_mmio + PHY_MODE3);
3491
3492 reg = readl(port_mmio + PHY_MODE4);
3493 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3494 reg |= (0x1 << 16);
3495 writel(reg, port_mmio + PHY_MODE4);
3496
3497 reg = readl(port_mmio + PHY_MODE9_GEN2);
3498 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3499 reg |= 0x8;
3500 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3501 writel(reg, port_mmio + PHY_MODE9_GEN2);
3502
3503 reg = readl(port_mmio + PHY_MODE9_GEN1);
3504 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3505 reg |= 0x8;
3506 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3507 writel(reg, port_mmio + PHY_MODE9_GEN1);
3508}
3509
3510/**
3511 * soc_is_65 - check if the soc is 65 nano device
3512 *
3513 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3514 * register, this register should contain non-zero value and it exists only
3515 * in the 65 nano devices, when reading it from older devices we get 0.
3516 */
3517static bool soc_is_65n(struct mv_host_priv *hpriv)
3518{
3519 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3520
3521 if (readl(port0_mmio + PHYCFG_OFS))
3522 return true;
3523 return false;
3524}
3525
8e7decdb 3526static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3527{
cae5a29d 3528 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
b67a1064 3529
8e7decdb 3530 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3531 if (want_gen2i)
8e7decdb 3532 ifcfg |= (1 << 7); /* enable gen2i speed */
cae5a29d 3533 writelfl(ifcfg, port_mmio + SATA_IFCFG);
b67a1064
ML
3534}
3535
e12bef50 3536static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3537 unsigned int port_no)
3538{
3539 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3540
8e7decdb
ML
3541 /*
3542 * The datasheet warns against setting EDMA_RESET when EDMA is active
3543 * (but doesn't say what the problem might be). So we first try
3544 * to disable the EDMA engine before doing the EDMA_RESET operation.
3545 */
0d8be5cb 3546 mv_stop_edma_engine(port_mmio);
cae5a29d 3547 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
c9d39130 3548
b67a1064 3549 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3550 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3551 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3552 }
b67a1064 3553 /*
8e7decdb 3554 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064 3555 * link, and physical layers. It resets all SATA interface registers
cae5a29d 3556 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
c9d39130 3557 */
cae5a29d 3558 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
b67a1064 3559 udelay(25); /* allow reset propagation */
cae5a29d 3560 writelfl(0, port_mmio + EDMA_CMD);
c9d39130
JG
3561
3562 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3563
ee9ccdf7 3564 if (IS_GEN_I(hpriv))
c9d39130
JG
3565 mdelay(1);
3566}
3567
e49856d8 3568static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3569{
e49856d8
ML
3570 if (sata_pmp_supported(ap)) {
3571 void __iomem *port_mmio = mv_ap_base(ap);
cae5a29d 3572 u32 reg = readl(port_mmio + SATA_IFCTL);
e49856d8 3573 int old = reg & 0xf;
22374677 3574
e49856d8
ML
3575 if (old != pmp) {
3576 reg = (reg & ~0xf) | pmp;
cae5a29d 3577 writelfl(reg, port_mmio + SATA_IFCTL);
e49856d8 3578 }
22374677 3579 }
20f733e7
BR
3580}
3581
e49856d8
ML
3582static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3583 unsigned long deadline)
22374677 3584{
e49856d8
ML
3585 mv_pmp_select(link->ap, sata_srst_pmp(link));
3586 return sata_std_hardreset(link, class, deadline);
3587}
bdd4ddde 3588
e49856d8
ML
3589static int mv_softreset(struct ata_link *link, unsigned int *class,
3590 unsigned long deadline)
3591{
3592 mv_pmp_select(link->ap, sata_srst_pmp(link));
3593 return ata_sff_softreset(link, class, deadline);
22374677
JG
3594}
3595
cc0680a5 3596static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3597 unsigned long deadline)
31961943 3598{
cc0680a5 3599 struct ata_port *ap = link->ap;
bdd4ddde 3600 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3601 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3602 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3603 int rc, attempts = 0, extra = 0;
3604 u32 sstatus;
3605 bool online;
31961943 3606
e12bef50 3607 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3608 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3609 pp->pp_flags &=
3610 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3611
0d8be5cb
ML
3612 /* Workaround for errata FEr SATA#10 (part 2) */
3613 do {
17c5aab5
ML
3614 const unsigned long *timing =
3615 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3616
17c5aab5
ML
3617 rc = sata_link_hardreset(link, timing, deadline + extra,
3618 &online, NULL);
9dcffd99 3619 rc = online ? -EAGAIN : rc;
17c5aab5 3620 if (rc)
0d8be5cb 3621 return rc;
0d8be5cb
ML
3622 sata_scr_read(link, SCR_STATUS, &sstatus);
3623 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3624 /* Force 1.5gb/s link speed and try again */
8e7decdb 3625 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3626 if (time_after(jiffies + HZ, deadline))
3627 extra = HZ; /* only extend it once, max */
3628 }
3629 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3630 mv_save_cached_regs(ap);
66e57a2c 3631 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3632
17c5aab5 3633 return rc;
bdd4ddde
JG
3634}
3635
bdd4ddde
JG
3636static void mv_eh_freeze(struct ata_port *ap)
3637{
1cfd19ae 3638 mv_stop_edma(ap);
c4de573b 3639 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3640}
3641
3642static void mv_eh_thaw(struct ata_port *ap)
3643{
f351b2d6 3644 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3645 unsigned int port = ap->port_no;
3646 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3647 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3648 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3649 u32 hc_irq_cause;
bdd4ddde 3650
bdd4ddde 3651 /* clear EDMA errors on this port */
cae5a29d 3652 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde
JG
3653
3654 /* clear pending irq events */
cae6edc3 3655 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 3656 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
bdd4ddde 3657
88e675e1 3658 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3659}
3660
05b308e1
BR
3661/**
3662 * mv_port_init - Perform some early initialization on a single port.
3663 * @port: libata data structure storing shadow register addresses
3664 * @port_mmio: base address of the port
3665 *
3666 * Initialize shadow register mmio addresses, clear outstanding
3667 * interrupts on the port, and unmask interrupts for the future
3668 * start of the port.
3669 *
3670 * LOCKING:
3671 * Inherited from caller.
3672 */
31961943 3673static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3674{
cae5a29d 3675 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
31961943 3676
8b260248 3677 /* PIO related setup
31961943
BR
3678 */
3679 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3680 port->error_addr =
31961943
BR
3681 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3682 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3683 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3684 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3685 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3686 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3687 port->status_addr =
31961943
BR
3688 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3689 /* special case: control/altstatus doesn't have ATA_REG_ address */
cae5a29d 3690 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
31961943 3691
31961943 3692 /* Clear any currently outstanding port interrupt conditions */
cae5a29d
ML
3693 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3694 writelfl(readl(serr), serr);
3695 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
31961943 3696
646a4da5 3697 /* unmask all non-transient EDMA error interrupts */
cae5a29d 3698 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
20f733e7 3699
8b260248 3700 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
cae5a29d
ML
3701 readl(port_mmio + EDMA_CFG),
3702 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3703 readl(port_mmio + EDMA_ERR_IRQ_MASK));
20f733e7
BR
3704}
3705
616d4a98
ML
3706static unsigned int mv_in_pcix_mode(struct ata_host *host)
3707{
3708 struct mv_host_priv *hpriv = host->private_data;
3709 void __iomem *mmio = hpriv->base;
3710 u32 reg;
3711
1f398472 3712 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98 3713 return 0; /* not PCI-X capable */
cae5a29d 3714 reg = readl(mmio + MV_PCI_MODE);
616d4a98
ML
3715 if ((reg & MV_PCI_MODE_MASK) == 0)
3716 return 0; /* conventional PCI mode */
3717 return 1; /* chip is in PCI-X mode */
3718}
3719
3720static int mv_pci_cut_through_okay(struct ata_host *host)
3721{
3722 struct mv_host_priv *hpriv = host->private_data;
3723 void __iomem *mmio = hpriv->base;
3724 u32 reg;
3725
3726 if (!mv_in_pcix_mode(host)) {
cae5a29d
ML
3727 reg = readl(mmio + MV_PCI_COMMAND);
3728 if (reg & MV_PCI_COMMAND_MRDTRIG)
616d4a98
ML
3729 return 0; /* not okay */
3730 }
3731 return 1; /* okay */
3732}
3733
65ad7fef
ML
3734static void mv_60x1b2_errata_pci7(struct ata_host *host)
3735{
3736 struct mv_host_priv *hpriv = host->private_data;
3737 void __iomem *mmio = hpriv->base;
3738
3739 /* workaround for 60x1-B2 errata PCI#7 */
3740 if (mv_in_pcix_mode(host)) {
cae5a29d
ML
3741 u32 reg = readl(mmio + MV_PCI_COMMAND);
3742 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
65ad7fef
ML
3743 }
3744}
3745
4447d351 3746static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3747{
4447d351
TH
3748 struct pci_dev *pdev = to_pci_dev(host->dev);
3749 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3750 u32 hp_flags = hpriv->hp_flags;
3751
5796d1c4 3752 switch (board_idx) {
47c2b677
JG
3753 case chip_5080:
3754 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3755 hp_flags |= MV_HP_GEN_I;
47c2b677 3756
44c10138 3757 switch (pdev->revision) {
47c2b677
JG
3758 case 0x1:
3759 hp_flags |= MV_HP_ERRATA_50XXB0;
3760 break;
3761 case 0x3:
3762 hp_flags |= MV_HP_ERRATA_50XXB2;
3763 break;
3764 default:
3765 dev_printk(KERN_WARNING, &pdev->dev,
3766 "Applying 50XXB2 workarounds to unknown rev\n");
3767 hp_flags |= MV_HP_ERRATA_50XXB2;
3768 break;
3769 }
3770 break;
3771
bca1c4eb
JG
3772 case chip_504x:
3773 case chip_508x:
47c2b677 3774 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3775 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3776
44c10138 3777 switch (pdev->revision) {
47c2b677
JG
3778 case 0x0:
3779 hp_flags |= MV_HP_ERRATA_50XXB0;
3780 break;
3781 case 0x3:
3782 hp_flags |= MV_HP_ERRATA_50XXB2;
3783 break;
3784 default:
3785 dev_printk(KERN_WARNING, &pdev->dev,
3786 "Applying B2 workarounds to unknown rev\n");
3787 hp_flags |= MV_HP_ERRATA_50XXB2;
3788 break;
bca1c4eb
JG
3789 }
3790 break;
3791
3792 case chip_604x:
3793 case chip_608x:
47c2b677 3794 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3795 hp_flags |= MV_HP_GEN_II;
47c2b677 3796
44c10138 3797 switch (pdev->revision) {
47c2b677 3798 case 0x7:
65ad7fef 3799 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3800 hp_flags |= MV_HP_ERRATA_60X1B2;
3801 break;
3802 case 0x9:
3803 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3804 break;
3805 default:
3806 dev_printk(KERN_WARNING, &pdev->dev,
47c2b677
JG
3807 "Applying B2 workarounds to unknown rev\n");
3808 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3809 break;
3810 }
3811 break;
3812
e4e7b892 3813 case chip_7042:
616d4a98 3814 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3815 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3816 (pdev->device == 0x2300 || pdev->device == 0x2310))
3817 {
4e520033
ML
3818 /*
3819 * Highpoint RocketRAID PCIe 23xx series cards:
3820 *
3821 * Unconfigured drives are treated as "Legacy"
3822 * by the BIOS, and it overwrites sector 8 with
3823 * a "Lgcy" metadata block prior to Linux boot.
3824 *
3825 * Configured drives (RAID or JBOD) leave sector 8
3826 * alone, but instead overwrite a high numbered
3827 * sector for the RAID metadata. This sector can
3828 * be determined exactly, by truncating the physical
3829 * drive capacity to a nice even GB value.
3830 *
3831 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3832 *
3833 * Warn the user, lest they think we're just buggy.
3834 */
3835 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3836 " BIOS CORRUPTS DATA on all attached drives,"
3837 " regardless of if/how they are configured."
3838 " BEWARE!\n");
3839 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3840 " use sectors 8-9 on \"Legacy\" drives,"
3841 " and avoid the final two gigabytes on"
3842 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3843 }
8e7decdb 3844 /* drop through */
e4e7b892
JG
3845 case chip_6042:
3846 hpriv->ops = &mv6xxx_ops;
e4e7b892 3847 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3848 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3849 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3850
44c10138 3851 switch (pdev->revision) {
5cf73bfb 3852 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3853 hp_flags |= MV_HP_ERRATA_60X1C0;
3854 break;
3855 default:
3856 dev_printk(KERN_WARNING, &pdev->dev,
3857 "Applying 60X1C0 workarounds to unknown rev\n");
3858 hp_flags |= MV_HP_ERRATA_60X1C0;
3859 break;
3860 }
3861 break;
f351b2d6 3862 case chip_soc:
29b7e43c
MM
3863 if (soc_is_65n(hpriv))
3864 hpriv->ops = &mv_soc_65n_ops;
3865 else
3866 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3867 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3868 MV_HP_ERRATA_60X1C0;
f351b2d6 3869 break;
e4e7b892 3870
bca1c4eb 3871 default:
f351b2d6 3872 dev_printk(KERN_ERR, host->dev,
5796d1c4 3873 "BUG: invalid board index %u\n", board_idx);
bca1c4eb
JG
3874 return 1;
3875 }
3876
3877 hpriv->hp_flags = hp_flags;
02a121da 3878 if (hp_flags & MV_HP_PCIE) {
cae5a29d
ML
3879 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3880 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
02a121da
ML
3881 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3882 } else {
cae5a29d
ML
3883 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3884 hpriv->irq_mask_offset = PCI_IRQ_MASK;
02a121da
ML
3885 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3886 }
bca1c4eb
JG
3887
3888 return 0;
3889}
3890
05b308e1 3891/**
47c2b677 3892 * mv_init_host - Perform some early initialization of the host.
4447d351 3893 * @host: ATA host to initialize
05b308e1
BR
3894 *
3895 * If possible, do an early global reset of the host. Then do
3896 * our port init and clear/unmask all/relevant host interrupts.
3897 *
3898 * LOCKING:
3899 * Inherited from caller.
3900 */
1bfeff03 3901static int mv_init_host(struct ata_host *host)
20f733e7
BR
3902{
3903 int rc = 0, n_hc, port, hc;
4447d351 3904 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3905 void __iomem *mmio = hpriv->base;
47c2b677 3906
1bfeff03 3907 rc = mv_chip_id(host, hpriv->board_idx);
bca1c4eb 3908 if (rc)
352fab70 3909 goto done;
f351b2d6 3910
1f398472 3911 if (IS_SOC(hpriv)) {
cae5a29d
ML
3912 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3913 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
1f398472 3914 } else {
cae5a29d
ML
3915 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3916 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
f351b2d6 3917 }
352fab70 3918
5d0fb2e7
TR
3919 /* initialize shadow irq mask with register's value */
3920 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3921
352fab70 3922 /* global interrupt mask: 0 == mask everything */
c4de573b 3923 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3924
4447d351 3925 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3926
4447d351 3927 for (port = 0; port < host->n_ports; port++)
29b7e43c
MM
3928 if (hpriv->ops->read_preamp)
3929 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3930
c9d39130 3931 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3932 if (rc)
20f733e7 3933 goto done;
20f733e7 3934
522479fb 3935 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3936 hpriv->ops->reset_bus(host, mmio);
47c2b677 3937 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3938
4447d351 3939 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3940 struct ata_port *ap = host->ports[port];
2a47ce06 3941 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3942
3943 mv_port_init(&ap->ioaddr, port_mmio);
20f733e7
BR
3944 }
3945
3946 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3947 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3948
3949 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3950 "(before clear)=0x%08x\n", hc,
cae5a29d
ML
3951 readl(hc_mmio + HC_CFG),
3952 readl(hc_mmio + HC_IRQ_CAUSE));
31961943
BR
3953
3954 /* Clear any currently outstanding hc interrupt conditions */
cae5a29d 3955 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
20f733e7
BR
3956 }
3957
44c65d16
ML
3958 if (!IS_SOC(hpriv)) {
3959 /* Clear any currently outstanding host interrupt conditions */
cae5a29d 3960 writelfl(0, mmio + hpriv->irq_cause_offset);
31961943 3961
44c65d16 3962 /* and unmask interrupt generation for host regs */
cae5a29d 3963 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
44c65d16 3964 }
51de32d2 3965
6be96ac1
ML
3966 /*
3967 * enable only global host interrupts for now.
3968 * The per-port interrupts get done later as ports are set up.
3969 */
3970 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3971 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3972 irq_coalescing_usecs);
f351b2d6
SB
3973done:
3974 return rc;
3975}
fb621e2f 3976
fbf14e2f
BB
3977static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3978{
3979 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3980 MV_CRQB_Q_SZ, 0);
3981 if (!hpriv->crqb_pool)
3982 return -ENOMEM;
3983
3984 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3985 MV_CRPB_Q_SZ, 0);
3986 if (!hpriv->crpb_pool)
3987 return -ENOMEM;
3988
3989 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3990 MV_SG_TBL_SZ, 0);
3991 if (!hpriv->sg_tbl_pool)
3992 return -ENOMEM;
3993
3994 return 0;
3995}
3996
15a32632
LB
3997static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3998 struct mbus_dram_target_info *dram)
3999{
4000 int i;
4001
4002 for (i = 0; i < 4; i++) {
4003 writel(0, hpriv->base + WINDOW_CTRL(i));
4004 writel(0, hpriv->base + WINDOW_BASE(i));
4005 }
4006
4007 for (i = 0; i < dram->num_cs; i++) {
4008 struct mbus_dram_window *cs = dram->cs + i;
4009
4010 writel(((cs->size - 1) & 0xffff0000) |
4011 (cs->mbus_attr << 8) |
4012 (dram->mbus_dram_target_id << 4) | 1,
4013 hpriv->base + WINDOW_CTRL(i));
4014 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4015 }
4016}
4017
f351b2d6
SB
4018/**
4019 * mv_platform_probe - handle a positive probe of an soc Marvell
4020 * host
4021 * @pdev: platform device found
4022 *
4023 * LOCKING:
4024 * Inherited from caller.
4025 */
4026static int mv_platform_probe(struct platform_device *pdev)
4027{
4028 static int printed_version;
4029 const struct mv_sata_platform_data *mv_platform_data;
4030 const struct ata_port_info *ppi[] =
4031 { &mv_port_info[chip_soc], NULL };
4032 struct ata_host *host;
4033 struct mv_host_priv *hpriv;
4034 struct resource *res;
4035 int n_ports, rc;
20f733e7 4036
f351b2d6
SB
4037 if (!printed_version++)
4038 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
bca1c4eb 4039
f351b2d6
SB
4040 /*
4041 * Simple resource validation ..
4042 */
4043 if (unlikely(pdev->num_resources != 2)) {
4044 dev_err(&pdev->dev, "invalid number of resources\n");
4045 return -EINVAL;
4046 }
4047
4048 /*
4049 * Get the register base first
4050 */
4051 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4052 if (res == NULL)
4053 return -EINVAL;
4054
4055 /* allocate host */
4056 mv_platform_data = pdev->dev.platform_data;
4057 n_ports = mv_platform_data->n_ports;
4058
4059 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4060 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4061
4062 if (!host || !hpriv)
4063 return -ENOMEM;
4064 host->private_data = hpriv;
4065 hpriv->n_ports = n_ports;
1bfeff03 4066 hpriv->board_idx = chip_soc;
f351b2d6
SB
4067
4068 host->iomap = NULL;
f1cb0ea1 4069 hpriv->base = devm_ioremap(&pdev->dev, res->start,
041b5eac 4070 resource_size(res));
cae5a29d 4071 hpriv->base -= SATAHC0_REG_BASE;
f351b2d6 4072
c77a2f4e
SB
4073#if defined(CONFIG_HAVE_CLK)
4074 hpriv->clk = clk_get(&pdev->dev, NULL);
4075 if (IS_ERR(hpriv->clk))
4076 dev_notice(&pdev->dev, "cannot get clkdev\n");
4077 else
4078 clk_enable(hpriv->clk);
4079#endif
4080
15a32632
LB
4081 /*
4082 * (Re-)program MBUS remapping windows if we are asked to.
4083 */
4084 if (mv_platform_data->dram != NULL)
4085 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4086
fbf14e2f
BB
4087 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4088 if (rc)
c77a2f4e 4089 goto err;
fbf14e2f 4090
f351b2d6 4091 /* initialize adapter */
1bfeff03 4092 rc = mv_init_host(host);
f351b2d6 4093 if (rc)
c77a2f4e 4094 goto err;
f351b2d6
SB
4095
4096 dev_printk(KERN_INFO, &pdev->dev,
4097 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4098 host->n_ports);
4099
4100 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4101 IRQF_SHARED, &mv6_sht);
c77a2f4e
SB
4102err:
4103#if defined(CONFIG_HAVE_CLK)
4104 if (!IS_ERR(hpriv->clk)) {
4105 clk_disable(hpriv->clk);
4106 clk_put(hpriv->clk);
4107 }
4108#endif
4109
4110 return rc;
f351b2d6
SB
4111}
4112
4113/*
4114 *
4115 * mv_platform_remove - unplug a platform interface
4116 * @pdev: platform device
4117 *
4118 * A platform bus SATA device has been unplugged. Perform the needed
4119 * cleanup. Also called on module unload for any active devices.
4120 */
4121static int __devexit mv_platform_remove(struct platform_device *pdev)
4122{
4123 struct device *dev = &pdev->dev;
4124 struct ata_host *host = dev_get_drvdata(dev);
c77a2f4e
SB
4125#if defined(CONFIG_HAVE_CLK)
4126 struct mv_host_priv *hpriv = host->private_data;
4127#endif
f351b2d6 4128 ata_host_detach(host);
c77a2f4e
SB
4129
4130#if defined(CONFIG_HAVE_CLK)
4131 if (!IS_ERR(hpriv->clk)) {
4132 clk_disable(hpriv->clk);
4133 clk_put(hpriv->clk);
4134 }
4135#endif
f351b2d6 4136 return 0;
20f733e7
BR
4137}
4138
6481f2b5
SB
4139#ifdef CONFIG_PM
4140static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4141{
4142 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4143 if (host)
4144 return ata_host_suspend(host, state);
4145 else
4146 return 0;
4147}
4148
4149static int mv_platform_resume(struct platform_device *pdev)
4150{
4151 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4152 int ret;
4153
4154 if (host) {
4155 struct mv_host_priv *hpriv = host->private_data;
4156 const struct mv_sata_platform_data *mv_platform_data = \
4157 pdev->dev.platform_data;
4158 /*
4159 * (Re-)program MBUS remapping windows if we are asked to.
4160 */
4161 if (mv_platform_data->dram != NULL)
4162 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4163
4164 /* initialize adapter */
1bfeff03 4165 ret = mv_init_host(host);
6481f2b5
SB
4166 if (ret) {
4167 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4168 return ret;
4169 }
4170 ata_host_resume(host);
4171 }
4172
4173 return 0;
4174}
4175#else
4176#define mv_platform_suspend NULL
4177#define mv_platform_resume NULL
4178#endif
4179
f351b2d6
SB
4180static struct platform_driver mv_platform_driver = {
4181 .probe = mv_platform_probe,
4182 .remove = __devexit_p(mv_platform_remove),
6481f2b5
SB
4183 .suspend = mv_platform_suspend,
4184 .resume = mv_platform_resume,
f351b2d6
SB
4185 .driver = {
4186 .name = DRV_NAME,
4187 .owner = THIS_MODULE,
4188 },
4189};
4190
4191
7bb3c529 4192#ifdef CONFIG_PCI
f351b2d6
SB
4193static int mv_pci_init_one(struct pci_dev *pdev,
4194 const struct pci_device_id *ent);
b2dec48c
SB
4195#ifdef CONFIG_PM
4196static int mv_pci_device_resume(struct pci_dev *pdev);
4197#endif
f351b2d6 4198
7bb3c529
SB
4199
4200static struct pci_driver mv_pci_driver = {
4201 .name = DRV_NAME,
4202 .id_table = mv_pci_tbl,
f351b2d6 4203 .probe = mv_pci_init_one,
7bb3c529 4204 .remove = ata_pci_remove_one,
b2dec48c
SB
4205#ifdef CONFIG_PM
4206 .suspend = ata_pci_device_suspend,
4207 .resume = mv_pci_device_resume,
4208#endif
4209
7bb3c529
SB
4210};
4211
7bb3c529
SB
4212/* move to PCI layer or libata core? */
4213static int pci_go_64(struct pci_dev *pdev)
4214{
4215 int rc;
4216
6a35528a
YH
4217 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4218 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
7bb3c529 4219 if (rc) {
284901a9 4220 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4221 if (rc) {
4222 dev_printk(KERN_ERR, &pdev->dev,
4223 "64-bit DMA enable failed\n");
4224 return rc;
4225 }
4226 }
4227 } else {
284901a9 4228 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4229 if (rc) {
4230 dev_printk(KERN_ERR, &pdev->dev,
4231 "32-bit DMA enable failed\n");
4232 return rc;
4233 }
284901a9 4234 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4235 if (rc) {
4236 dev_printk(KERN_ERR, &pdev->dev,
4237 "32-bit consistent DMA enable failed\n");
4238 return rc;
4239 }
4240 }
4241
4242 return rc;
4243}
4244
05b308e1
BR
4245/**
4246 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4247 * @host: ATA host to print info about
05b308e1
BR
4248 *
4249 * FIXME: complete this.
4250 *
4251 * LOCKING:
4252 * Inherited from caller.
4253 */
4447d351 4254static void mv_print_info(struct ata_host *host)
31961943 4255{
4447d351
TH
4256 struct pci_dev *pdev = to_pci_dev(host->dev);
4257 struct mv_host_priv *hpriv = host->private_data;
44c10138 4258 u8 scc;
c1e4fe71 4259 const char *scc_s, *gen;
31961943
BR
4260
4261 /* Use this to determine the HW stepping of the chip so we know
4262 * what errata to workaround
4263 */
31961943
BR
4264 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4265 if (scc == 0)
4266 scc_s = "SCSI";
4267 else if (scc == 0x01)
4268 scc_s = "RAID";
4269 else
c1e4fe71
JG
4270 scc_s = "?";
4271
4272 if (IS_GEN_I(hpriv))
4273 gen = "I";
4274 else if (IS_GEN_II(hpriv))
4275 gen = "II";
4276 else if (IS_GEN_IIE(hpriv))
4277 gen = "IIE";
4278 else
4279 gen = "?";
31961943 4280
a9524a76 4281 dev_printk(KERN_INFO, &pdev->dev,
c1e4fe71
JG
4282 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4283 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
31961943
BR
4284 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4285}
4286
05b308e1 4287/**
f351b2d6 4288 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4289 * @pdev: PCI device found
4290 * @ent: PCI device ID entry for the matched host
4291 *
4292 * LOCKING:
4293 * Inherited from caller.
4294 */
f351b2d6
SB
4295static int mv_pci_init_one(struct pci_dev *pdev,
4296 const struct pci_device_id *ent)
20f733e7 4297{
2dcb407e 4298 static int printed_version;
20f733e7 4299 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4300 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4301 struct ata_host *host;
4302 struct mv_host_priv *hpriv;
c4bc7d73 4303 int n_ports, port, rc;
20f733e7 4304
a9524a76
JG
4305 if (!printed_version++)
4306 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
20f733e7 4307
4447d351
TH
4308 /* allocate host */
4309 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4310
4311 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4312 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4313 if (!host || !hpriv)
4314 return -ENOMEM;
4315 host->private_data = hpriv;
f351b2d6 4316 hpriv->n_ports = n_ports;
1bfeff03 4317 hpriv->board_idx = board_idx;
4447d351
TH
4318
4319 /* acquire resources */
24dc5f33
TH
4320 rc = pcim_enable_device(pdev);
4321 if (rc)
20f733e7 4322 return rc;
20f733e7 4323
0d5ff566
TH
4324 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4325 if (rc == -EBUSY)
24dc5f33 4326 pcim_pin_device(pdev);
0d5ff566 4327 if (rc)
24dc5f33 4328 return rc;
4447d351 4329 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4330 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4331
d88184fb
JG
4332 rc = pci_go_64(pdev);
4333 if (rc)
4334 return rc;
4335
da2fa9ba
ML
4336 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4337 if (rc)
4338 return rc;
4339
c4bc7d73
SB
4340 for (port = 0; port < host->n_ports; port++) {
4341 struct ata_port *ap = host->ports[port];
4342 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4343 unsigned int offset = port_mmio - hpriv->base;
4344
4345 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4346 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4347 }
4348
20f733e7 4349 /* initialize adapter */
1bfeff03 4350 rc = mv_init_host(host);
24dc5f33
TH
4351 if (rc)
4352 return rc;
20f733e7 4353
6d3c30ef
ML
4354 /* Enable message-switched interrupts, if requested */
4355 if (msi && pci_enable_msi(pdev) == 0)
4356 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4357
31961943 4358 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4359 mv_print_info(host);
20f733e7 4360
4447d351 4361 pci_set_master(pdev);
ea8b4db9 4362 pci_try_set_mwi(pdev);
4447d351 4363 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4364 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4365}
b2dec48c
SB
4366
4367#ifdef CONFIG_PM
4368static int mv_pci_device_resume(struct pci_dev *pdev)
4369{
4370 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4371 int rc;
4372
4373 rc = ata_pci_device_do_resume(pdev);
4374 if (rc)
4375 return rc;
4376
4377 /* initialize adapter */
4378 rc = mv_init_host(host);
4379 if (rc)
4380 return rc;
4381
4382 ata_host_resume(host);
4383
4384 return 0;
4385}
4386#endif
7bb3c529 4387#endif
20f733e7 4388
f351b2d6
SB
4389static int mv_platform_probe(struct platform_device *pdev);
4390static int __devexit mv_platform_remove(struct platform_device *pdev);
4391
20f733e7
BR
4392static int __init mv_init(void)
4393{
7bb3c529
SB
4394 int rc = -ENODEV;
4395#ifdef CONFIG_PCI
4396 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4397 if (rc < 0)
4398 return rc;
4399#endif
4400 rc = platform_driver_register(&mv_platform_driver);
4401
4402#ifdef CONFIG_PCI
4403 if (rc < 0)
4404 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4405#endif
4406 return rc;
20f733e7
BR
4407}
4408
4409static void __exit mv_exit(void)
4410{
7bb3c529 4411#ifdef CONFIG_PCI
20f733e7 4412 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4413#endif
f351b2d6 4414 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4415}
4416
4417MODULE_AUTHOR("Brett Russ");
4418MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4419MODULE_LICENSE("GPL");
4420MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4421MODULE_VERSION(DRV_VERSION);
17c5aab5 4422MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4423
4424module_init(mv_init);
4425module_exit(mv_exit);