]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/sata_mv.c
sata_mv: workaround errata SATA#13
[net-next-2.6.git] / drivers / ata / sata_mv.c
CommitLineData
20f733e7
BR
1/*
2 * sata_mv.c - Marvell SATA support
3 *
40f21b11 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 5 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 6 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 7 *
40f21b11
ML
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
20f733e7
BR
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
4a05e209 28/*
85afb934
ML
29 * sata_mv TODO list:
30 *
85afb934
ML
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
2b748a0a 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
4a05e209 42
65ad7fef
ML
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
20f733e7
BR
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
8d8b6004 59#include <linux/dmapool.h>
20f733e7 60#include <linux/dma-mapping.h>
a9524a76 61#include <linux/device.h>
f351b2d6
SB
62#include <linux/platform_device.h>
63#include <linux/ata_platform.h>
15a32632 64#include <linux/mbus.h>
c46938cc 65#include <linux/bitops.h>
20f733e7 66#include <scsi/scsi_host.h>
193515d5 67#include <scsi/scsi_cmnd.h>
6c08772e 68#include <scsi/scsi_device.h>
20f733e7 69#include <linux/libata.h>
20f733e7
BR
70
71#define DRV_NAME "sata_mv"
2b748a0a 72#define DRV_VERSION "1.27"
20f733e7 73
40f21b11
ML
74/*
75 * module options
76 */
77
78static int msi;
79#ifdef CONFIG_PCI
80module_param(msi, int, S_IRUGO);
81MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
82#endif
83
2b748a0a
ML
84static int irq_coalescing_io_count;
85module_param(irq_coalescing_io_count, int, S_IRUGO);
86MODULE_PARM_DESC(irq_coalescing_io_count,
87 "IRQ coalescing I/O count threshold (0..255)");
88
89static int irq_coalescing_usecs;
90module_param(irq_coalescing_usecs, int, S_IRUGO);
91MODULE_PARM_DESC(irq_coalescing_usecs,
92 "IRQ coalescing time threshold in usecs");
93
20f733e7
BR
94enum {
95 /* BAR's are enumerated in terms of pci_resource_start() terms */
96 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
97 MV_IO_BAR = 2, /* offset 0x18: IO space */
98 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
99
100 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
101 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
102
2b748a0a
ML
103 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
104 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
105 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
106 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
107
20f733e7 108 MV_PCI_REG_BASE = 0,
615ab953 109
2b748a0a
ML
110 /*
111 * Per-chip ("all ports") interrupt coalescing feature.
112 * This is only for GEN_II / GEN_IIE hardware.
113 *
114 * Coalescing defers the interrupt until either the IO_THRESHOLD
115 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
116 */
117 MV_COAL_REG_BASE = 0x18000,
118 MV_IRQ_COAL_CAUSE = (MV_COAL_REG_BASE + 0x08),
119 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
120
121 MV_IRQ_COAL_IO_THRESHOLD = (MV_COAL_REG_BASE + 0xcc),
122 MV_IRQ_COAL_TIME_THRESHOLD = (MV_COAL_REG_BASE + 0xd0),
123
124 /*
125 * Registers for the (unused here) transaction coalescing feature:
126 */
127 MV_TRAN_COAL_CAUSE_LO = (MV_COAL_REG_BASE + 0x88),
128 MV_TRAN_COAL_CAUSE_HI = (MV_COAL_REG_BASE + 0x8c),
129
20f733e7 130 MV_SATAHC0_REG_BASE = 0x20000,
8e7decdb
ML
131 MV_FLASH_CTL_OFS = 0x1046c,
132 MV_GPIO_PORT_CTL_OFS = 0x104f0,
133 MV_RESET_CFG_OFS = 0x180d8,
20f733e7
BR
134
135 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
136 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
137 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
138 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
139
31961943
BR
140 MV_MAX_Q_DEPTH = 32,
141 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
142
143 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
144 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
145 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
146 */
147 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
148 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 149 MV_MAX_SG_CT = 256,
31961943 150 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 151
352fab70 152 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 153 MV_PORT_HC_SHIFT = 2,
352fab70
ML
154 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
155 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
156 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
157
158 /* Host Flags */
159 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 160
c5d3e45a 161 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91b1a84c 162 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
ad3aef51 163
91b1a84c 164 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 165
40f21b11
ML
166 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
167 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
168
169 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 170
31961943
BR
171 CRQB_FLAG_READ = (1 << 0),
172 CRQB_TAG_SHIFT = 1,
c5d3e45a 173 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 174 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 175 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
176 CRQB_CMD_ADDR_SHIFT = 8,
177 CRQB_CMD_CS = (0x2 << 11),
178 CRQB_CMD_LAST = (1 << 15),
179
180 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
181 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
182 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
183
184 EPRD_FLAG_END_OF_TBL = (1 << 31),
185
20f733e7
BR
186 /* PCI interface registers */
187
31961943 188 PCI_COMMAND_OFS = 0xc00,
65ad7fef 189 PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
8e7decdb 190 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 191
20f733e7
BR
192 PCI_MAIN_CMD_STS_OFS = 0xd30,
193 STOP_PCI_MASTER = (1 << 2),
194 PCI_MASTER_EMPTY = (1 << 3),
195 GLOB_SFT_RST = (1 << 4),
196
8e7decdb
ML
197 MV_PCI_MODE_OFS = 0xd00,
198 MV_PCI_MODE_MASK = 0x30,
199
522479fb
JG
200 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
201 MV_PCI_DISC_TIMER = 0xd04,
202 MV_PCI_MSI_TRIGGER = 0xc38,
203 MV_PCI_SERR_MASK = 0xc28,
8e7decdb 204 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
522479fb
JG
205 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
206 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
207 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
208 MV_PCI_ERR_COMMAND = 0x1d50,
209
02a121da
ML
210 PCI_IRQ_CAUSE_OFS = 0x1d58,
211 PCI_IRQ_MASK_OFS = 0x1d5c,
20f733e7
BR
212 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
213
02a121da
ML
214 PCIE_IRQ_CAUSE_OFS = 0x1900,
215 PCIE_IRQ_MASK_OFS = 0x1910,
646a4da5 216 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 217
7368f919
ML
218 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
219 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
220 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
221 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
222 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
40f21b11
ML
223 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
224 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
225 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
226 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
227 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
228 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 229 PCI_ERR = (1 << 18),
40f21b11
ML
230 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
231 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
232 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
233 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
234 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
235 GPIO_INT = (1 << 22),
236 SELF_INT = (1 << 23),
237 TWSI_INT = (1 << 24),
238 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 239 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 240 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
241
242 /* SATAHC registers */
243 HC_CFG_OFS = 0,
244
245 HC_IRQ_CAUSE_OFS = 0x14,
352fab70
ML
246 DMA_IRQ = (1 << 0), /* shift by port # */
247 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
248 DEV_IRQ = (1 << 8), /* shift by port # */
249
2b748a0a
ML
250 /*
251 * Per-HC (Host-Controller) interrupt coalescing feature.
252 * This is present on all chip generations.
253 *
254 * Coalescing defers the interrupt until either the IO_THRESHOLD
255 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
256 */
257 HC_IRQ_COAL_IO_THRESHOLD_OFS = 0x000c,
258 HC_IRQ_COAL_TIME_THRESHOLD_OFS = 0x0010,
259
000b344f
ML
260 SOC_LED_CTRL_OFS = 0x2c,
261 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
262 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
263 /* with dev activity LED */
264
20f733e7 265 /* Shadow block registers */
31961943
BR
266 SHD_BLK_OFS = 0x100,
267 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
20f733e7
BR
268
269 /* SATA registers */
270 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
271 SATA_ACTIVE_OFS = 0x350,
0c58912e 272 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
c443c500 273 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
17c5aab5 274
ba68460b 275 LTMODE_OFS = 0x30c, /* requires read-after-write */
17c5aab5
ML
276 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
277
ba68460b
ML
278 PHY_MODE2_OFS = 0x330,
279 PHY_MODE3_OFS = 0x310,
280 PHY_MODE4_OFS = 0x314, /* requires read-after-write */
ba069e37
ML
281 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
282 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
283 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
284 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
285
e12bef50 286 SATA_IFCTL_OFS = 0x344,
8e7decdb 287 SATA_TESTCTL_OFS = 0x348,
e12bef50
ML
288 SATA_IFSTAT_OFS = 0x34c,
289 VENDOR_UNIQUE_FIS_OFS = 0x35c,
17c5aab5 290
8e7decdb
ML
291 FISCFG_OFS = 0x360,
292 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
293 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 294
c9d39130 295 MV5_PHY_MODE = 0x74,
8e7decdb
ML
296 MV5_LTMODE_OFS = 0x30,
297 MV5_PHY_CTL_OFS = 0x0C,
298 SATA_INTERFACE_CFG_OFS = 0x050,
bca1c4eb
JG
299
300 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
301
302 /* Port registers */
303 EDMA_CFG_OFS = 0,
0c58912e
ML
304 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
305 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
306 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
307 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
308 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
309 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
310 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7
BR
311
312 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
313 EDMA_ERR_IRQ_MASK_OFS = 0xc,
6c1153e0
JG
314 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
315 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
316 EDMA_ERR_DEV = (1 << 2), /* device error */
317 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
318 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
319 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
320 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
321 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 322 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 323 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
324 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
325 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
326 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
327 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 328
6c1153e0 329 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
330 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
331 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
332 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
333 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
334
6c1153e0 335 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 336
6c1153e0 337 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
338 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
339 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
340 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
341 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
342 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
343
6c1153e0 344 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 345
6c1153e0 346 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
347 EDMA_ERR_OVERRUN_5 = (1 << 5),
348 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
349
350 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
351 EDMA_ERR_LNK_CTRL_RX_1 |
352 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 353 EDMA_ERR_LNK_CTRL_TX,
646a4da5 354
bdd4ddde
JG
355 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
356 EDMA_ERR_PRD_PAR |
357 EDMA_ERR_DEV_DCON |
358 EDMA_ERR_DEV_CON |
359 EDMA_ERR_SERR |
360 EDMA_ERR_SELF_DIS |
6c1153e0 361 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
362 EDMA_ERR_CRPB_PAR |
363 EDMA_ERR_INTRL_PAR |
364 EDMA_ERR_IORDY |
365 EDMA_ERR_LNK_CTRL_RX_2 |
366 EDMA_ERR_LNK_DATA_RX |
367 EDMA_ERR_LNK_DATA_TX |
368 EDMA_ERR_TRANS_PROTO,
e12bef50 369
bdd4ddde
JG
370 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
371 EDMA_ERR_PRD_PAR |
372 EDMA_ERR_DEV_DCON |
373 EDMA_ERR_DEV_CON |
374 EDMA_ERR_OVERRUN_5 |
375 EDMA_ERR_UNDERRUN_5 |
376 EDMA_ERR_SELF_DIS_5 |
6c1153e0 377 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
378 EDMA_ERR_CRPB_PAR |
379 EDMA_ERR_INTRL_PAR |
380 EDMA_ERR_IORDY,
20f733e7 381
31961943
BR
382 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
383 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
31961943
BR
384
385 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
386 EDMA_REQ_Q_PTR_SHIFT = 5,
387
388 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
389 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
390 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
31961943
BR
391 EDMA_RSP_Q_PTR_SHIFT = 3,
392
0ea9e179
JG
393 EDMA_CMD_OFS = 0x28, /* EDMA command register */
394 EDMA_EN = (1 << 0), /* enable EDMA */
395 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
396 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
397
398 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
399 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
400 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 401
8e7decdb
ML
402 EDMA_IORDY_TMOUT_OFS = 0x34,
403 EDMA_ARB_CFG_OFS = 0x38,
404
405 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
c01e8a23 406 EDMA_UNKNOWN_RSVD_OFS = 0x6C, /* GenIIe unknown/reserved */
da14265e
ML
407
408 BMDMA_CMD_OFS = 0x224, /* bmdma command register */
409 BMDMA_STATUS_OFS = 0x228, /* bmdma status register */
410 BMDMA_PRD_LOW_OFS = 0x22c, /* bmdma PRD addr 31:0 */
411 BMDMA_PRD_HIGH_OFS = 0x230, /* bmdma PRD addr 63:32 */
412
31961943
BR
413 /* Host private flags (hp_flags) */
414 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
415 MV_HP_ERRATA_50XXB0 = (1 << 1),
416 MV_HP_ERRATA_50XXB2 = (1 << 2),
417 MV_HP_ERRATA_60X1B2 = (1 << 3),
418 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
419 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
420 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
421 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 422 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 423 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 424 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 425 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
20f733e7 426
31961943 427 /* Port private flags (pp_flags) */
0ea9e179 428 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 429 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 430 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 431 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 432 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
433};
434
ee9ccdf7
JG
435#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
436#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 437#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 438#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 439#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 440
15a32632
LB
441#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
442#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
443
095fec88 444enum {
baf14aa1
JG
445 /* DMA boundary 0xffff is required by the s/g splitting
446 * we need on /length/ in mv_fill-sg().
447 */
448 MV_DMA_BOUNDARY = 0xffffU,
095fec88 449
0ea9e179
JG
450 /* mask of register bits containing lower 32 bits
451 * of EDMA request queue DMA address
452 */
095fec88
JG
453 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
454
0ea9e179 455 /* ditto, for response queue */
095fec88
JG
456 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
457};
458
522479fb
JG
459enum chip_type {
460 chip_504x,
461 chip_508x,
462 chip_5080,
463 chip_604x,
464 chip_608x,
e4e7b892
JG
465 chip_6042,
466 chip_7042,
f351b2d6 467 chip_soc,
522479fb
JG
468};
469
31961943
BR
470/* Command ReQuest Block: 32B */
471struct mv_crqb {
e1469874
ML
472 __le32 sg_addr;
473 __le32 sg_addr_hi;
474 __le16 ctrl_flags;
475 __le16 ata_cmd[11];
31961943 476};
20f733e7 477
e4e7b892 478struct mv_crqb_iie {
e1469874
ML
479 __le32 addr;
480 __le32 addr_hi;
481 __le32 flags;
482 __le32 len;
483 __le32 ata_cmd[4];
e4e7b892
JG
484};
485
31961943
BR
486/* Command ResPonse Block: 8B */
487struct mv_crpb {
e1469874
ML
488 __le16 id;
489 __le16 flags;
490 __le32 tmstmp;
20f733e7
BR
491};
492
31961943
BR
493/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
494struct mv_sg {
e1469874
ML
495 __le32 addr;
496 __le32 flags_size;
497 __le32 addr_hi;
498 __le32 reserved;
31961943 499};
20f733e7 500
08da1759
ML
501/*
502 * We keep a local cache of a few frequently accessed port
503 * registers here, to avoid having to read them (very slow)
504 * when switching between EDMA and non-EDMA modes.
505 */
506struct mv_cached_regs {
507 u32 fiscfg;
508 u32 ltmode;
509 u32 haltcond;
c01e8a23 510 u32 unknown_rsvd;
08da1759
ML
511};
512
31961943
BR
513struct mv_port_priv {
514 struct mv_crqb *crqb;
515 dma_addr_t crqb_dma;
516 struct mv_crpb *crpb;
517 dma_addr_t crpb_dma;
eb73d558
ML
518 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
519 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
520
521 unsigned int req_idx;
522 unsigned int resp_idx;
523
31961943 524 u32 pp_flags;
08da1759 525 struct mv_cached_regs cached;
29d187bb 526 unsigned int delayed_eh_pmp_map;
31961943
BR
527};
528
bca1c4eb
JG
529struct mv_port_signal {
530 u32 amps;
531 u32 pre;
532};
533
02a121da
ML
534struct mv_host_priv {
535 u32 hp_flags;
96e2c487 536 u32 main_irq_mask;
02a121da
ML
537 struct mv_port_signal signal[8];
538 const struct mv_hw_ops *ops;
f351b2d6
SB
539 int n_ports;
540 void __iomem *base;
7368f919
ML
541 void __iomem *main_irq_cause_addr;
542 void __iomem *main_irq_mask_addr;
02a121da
ML
543 u32 irq_cause_ofs;
544 u32 irq_mask_ofs;
545 u32 unmask_all_irqs;
da2fa9ba
ML
546 /*
547 * These consistent DMA memory pools give us guaranteed
548 * alignment for hardware-accessed data structures,
549 * and less memory waste in accomplishing the alignment.
550 */
551 struct dma_pool *crqb_pool;
552 struct dma_pool *crpb_pool;
553 struct dma_pool *sg_tbl_pool;
02a121da
ML
554};
555
47c2b677 556struct mv_hw_ops {
2a47ce06
JG
557 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
558 unsigned int port);
47c2b677
JG
559 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
560 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
561 void __iomem *mmio);
c9d39130
JG
562 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
563 unsigned int n_hc);
522479fb 564 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 565 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
566};
567
82ef04fb
TH
568static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
569static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
570static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
571static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
572static int mv_port_start(struct ata_port *ap);
573static void mv_port_stop(struct ata_port *ap);
3e4a1391 574static int mv_qc_defer(struct ata_queued_cmd *qc);
31961943 575static void mv_qc_prep(struct ata_queued_cmd *qc);
e4e7b892 576static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 577static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
578static int mv_hardreset(struct ata_link *link, unsigned int *class,
579 unsigned long deadline);
bdd4ddde
JG
580static void mv_eh_freeze(struct ata_port *ap);
581static void mv_eh_thaw(struct ata_port *ap);
f273827e 582static void mv6_dev_config(struct ata_device *dev);
20f733e7 583
2a47ce06
JG
584static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
585 unsigned int port);
47c2b677
JG
586static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
587static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
588 void __iomem *mmio);
c9d39130
JG
589static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
590 unsigned int n_hc);
522479fb 591static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 592static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 593
2a47ce06
JG
594static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
595 unsigned int port);
47c2b677
JG
596static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
597static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
598 void __iomem *mmio);
c9d39130
JG
599static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
600 unsigned int n_hc);
522479fb 601static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
602static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
603 void __iomem *mmio);
604static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
605 void __iomem *mmio);
606static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
607 void __iomem *mmio, unsigned int n_hc);
608static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
609 void __iomem *mmio);
610static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
7bb3c529 611static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 612static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 613 unsigned int port_no);
e12bef50 614static int mv_stop_edma(struct ata_port *ap);
b562468c 615static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 616static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 617
e49856d8
ML
618static void mv_pmp_select(struct ata_port *ap, int pmp);
619static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
620 unsigned long deadline);
621static int mv_softreset(struct ata_link *link, unsigned int *class,
622 unsigned long deadline);
29d187bb 623static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
624static void mv_process_crpb_entries(struct ata_port *ap,
625 struct mv_port_priv *pp);
47c2b677 626
da14265e
ML
627static void mv_sff_irq_clear(struct ata_port *ap);
628static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
629static void mv_bmdma_setup(struct ata_queued_cmd *qc);
630static void mv_bmdma_start(struct ata_queued_cmd *qc);
631static void mv_bmdma_stop(struct ata_queued_cmd *qc);
632static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 633static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 634
eb73d558
ML
635/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
636 * because we have to allow room for worst case splitting of
637 * PRDs for 64K boundaries in mv_fill_sg().
638 */
c5d3e45a 639static struct scsi_host_template mv5_sht = {
68d1d07b 640 ATA_BASE_SHT(DRV_NAME),
baf14aa1 641 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 642 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a
JG
643};
644
645static struct scsi_host_template mv6_sht = {
68d1d07b 646 ATA_NCQ_SHT(DRV_NAME),
138bfdd0 647 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 648 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 649 .dma_boundary = MV_DMA_BOUNDARY,
20f733e7
BR
650};
651
029cfd6b
TH
652static struct ata_port_operations mv5_ops = {
653 .inherits = &ata_sff_port_ops,
c9d39130 654
c96f1732
AC
655 .lost_interrupt = ATA_OP_NULL,
656
3e4a1391 657 .qc_defer = mv_qc_defer,
c9d39130
JG
658 .qc_prep = mv_qc_prep,
659 .qc_issue = mv_qc_issue,
c9d39130 660
bdd4ddde
JG
661 .freeze = mv_eh_freeze,
662 .thaw = mv_eh_thaw,
a1efdaba 663 .hardreset = mv_hardreset,
a1efdaba 664 .error_handler = ata_std_error_handler, /* avoid SFF EH */
029cfd6b 665 .post_internal_cmd = ATA_OP_NULL,
bdd4ddde 666
c9d39130
JG
667 .scr_read = mv5_scr_read,
668 .scr_write = mv5_scr_write,
669
670 .port_start = mv_port_start,
671 .port_stop = mv_port_stop,
c9d39130
JG
672};
673
029cfd6b
TH
674static struct ata_port_operations mv6_ops = {
675 .inherits = &mv5_ops,
f273827e 676 .dev_config = mv6_dev_config,
20f733e7
BR
677 .scr_read = mv_scr_read,
678 .scr_write = mv_scr_write,
679
e49856d8
ML
680 .pmp_hardreset = mv_pmp_hardreset,
681 .pmp_softreset = mv_softreset,
682 .softreset = mv_softreset,
29d187bb 683 .error_handler = mv_pmp_error_handler,
da14265e 684
40f21b11 685 .sff_check_status = mv_sff_check_status,
da14265e
ML
686 .sff_irq_clear = mv_sff_irq_clear,
687 .check_atapi_dma = mv_check_atapi_dma,
688 .bmdma_setup = mv_bmdma_setup,
689 .bmdma_start = mv_bmdma_start,
690 .bmdma_stop = mv_bmdma_stop,
691 .bmdma_status = mv_bmdma_status,
20f733e7
BR
692};
693
029cfd6b
TH
694static struct ata_port_operations mv_iie_ops = {
695 .inherits = &mv6_ops,
696 .dev_config = ATA_OP_NULL,
e4e7b892 697 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
698};
699
98ac62de 700static const struct ata_port_info mv_port_info[] = {
20f733e7 701 { /* chip_504x */
91b1a84c 702 .flags = MV_GEN_I_FLAGS,
c361acbc 703 .pio_mask = ATA_PIO4,
bf6263a8 704 .udma_mask = ATA_UDMA6,
c9d39130 705 .port_ops = &mv5_ops,
20f733e7
BR
706 },
707 { /* chip_508x */
91b1a84c 708 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 709 .pio_mask = ATA_PIO4,
bf6263a8 710 .udma_mask = ATA_UDMA6,
c9d39130 711 .port_ops = &mv5_ops,
20f733e7 712 },
47c2b677 713 { /* chip_5080 */
91b1a84c 714 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 715 .pio_mask = ATA_PIO4,
bf6263a8 716 .udma_mask = ATA_UDMA6,
c9d39130 717 .port_ops = &mv5_ops,
47c2b677 718 },
20f733e7 719 { /* chip_604x */
91b1a84c 720 .flags = MV_GEN_II_FLAGS,
c361acbc 721 .pio_mask = ATA_PIO4,
bf6263a8 722 .udma_mask = ATA_UDMA6,
c9d39130 723 .port_ops = &mv6_ops,
20f733e7
BR
724 },
725 { /* chip_608x */
91b1a84c 726 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 727 .pio_mask = ATA_PIO4,
bf6263a8 728 .udma_mask = ATA_UDMA6,
c9d39130 729 .port_ops = &mv6_ops,
20f733e7 730 },
e4e7b892 731 { /* chip_6042 */
91b1a84c 732 .flags = MV_GEN_IIE_FLAGS,
c361acbc 733 .pio_mask = ATA_PIO4,
bf6263a8 734 .udma_mask = ATA_UDMA6,
e4e7b892
JG
735 .port_ops = &mv_iie_ops,
736 },
737 { /* chip_7042 */
91b1a84c 738 .flags = MV_GEN_IIE_FLAGS,
c361acbc 739 .pio_mask = ATA_PIO4,
bf6263a8 740 .udma_mask = ATA_UDMA6,
e4e7b892
JG
741 .port_ops = &mv_iie_ops,
742 },
f351b2d6 743 { /* chip_soc */
91b1a84c 744 .flags = MV_GEN_IIE_FLAGS,
c361acbc 745 .pio_mask = ATA_PIO4,
17c5aab5
ML
746 .udma_mask = ATA_UDMA6,
747 .port_ops = &mv_iie_ops,
f351b2d6 748 },
20f733e7
BR
749};
750
3b7d697d 751static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
752 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
753 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
754 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
755 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
756 /* RocketRAID 1720/174x have different identifiers */
757 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
758 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
759 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
760
761 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
762 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
763 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
764 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
765 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
766
767 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
768
d9f9c6bc
FA
769 /* Adaptec 1430SA */
770 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
771
02a121da 772 /* Marvell 7042 support */
6a3d586d
MT
773 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
774
02a121da
ML
775 /* Highpoint RocketRAID PCIe series */
776 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
777 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
778
2d2744fc 779 { } /* terminate list */
20f733e7
BR
780};
781
47c2b677
JG
782static const struct mv_hw_ops mv5xxx_ops = {
783 .phy_errata = mv5_phy_errata,
784 .enable_leds = mv5_enable_leds,
785 .read_preamp = mv5_read_preamp,
786 .reset_hc = mv5_reset_hc,
522479fb
JG
787 .reset_flash = mv5_reset_flash,
788 .reset_bus = mv5_reset_bus,
47c2b677
JG
789};
790
791static const struct mv_hw_ops mv6xxx_ops = {
792 .phy_errata = mv6_phy_errata,
793 .enable_leds = mv6_enable_leds,
794 .read_preamp = mv6_read_preamp,
795 .reset_hc = mv6_reset_hc,
522479fb
JG
796 .reset_flash = mv6_reset_flash,
797 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
798};
799
f351b2d6
SB
800static const struct mv_hw_ops mv_soc_ops = {
801 .phy_errata = mv6_phy_errata,
802 .enable_leds = mv_soc_enable_leds,
803 .read_preamp = mv_soc_read_preamp,
804 .reset_hc = mv_soc_reset_hc,
805 .reset_flash = mv_soc_reset_flash,
806 .reset_bus = mv_soc_reset_bus,
807};
808
20f733e7
BR
809/*
810 * Functions
811 */
812
813static inline void writelfl(unsigned long data, void __iomem *addr)
814{
815 writel(data, addr);
816 (void) readl(addr); /* flush to avoid PCI posted write */
817}
818
c9d39130
JG
819static inline unsigned int mv_hc_from_port(unsigned int port)
820{
821 return port >> MV_PORT_HC_SHIFT;
822}
823
824static inline unsigned int mv_hardport_from_port(unsigned int port)
825{
826 return port & MV_PORT_MASK;
827}
828
1cfd19ae
ML
829/*
830 * Consolidate some rather tricky bit shift calculations.
831 * This is hot-path stuff, so not a function.
832 * Simple code, with two return values, so macro rather than inline.
833 *
834 * port is the sole input, in range 0..7.
7368f919
ML
835 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
836 * hardport is the other output, in range 0..3.
1cfd19ae
ML
837 *
838 * Note that port and hardport may be the same variable in some cases.
839 */
840#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
841{ \
842 shift = mv_hc_from_port(port) * HC_SHIFT; \
843 hardport = mv_hardport_from_port(port); \
844 shift += hardport * 2; \
845}
846
352fab70
ML
847static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
848{
849 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
850}
851
c9d39130
JG
852static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
853 unsigned int port)
854{
855 return mv_hc_base(base, mv_hc_from_port(port));
856}
857
20f733e7
BR
858static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
859{
c9d39130 860 return mv_hc_base_from_port(base, port) +
8b260248 861 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 862 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
863}
864
e12bef50
ML
865static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
866{
867 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
868 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
869
870 return hc_mmio + ofs;
871}
872
f351b2d6
SB
873static inline void __iomem *mv_host_base(struct ata_host *host)
874{
875 struct mv_host_priv *hpriv = host->private_data;
876 return hpriv->base;
877}
878
20f733e7
BR
879static inline void __iomem *mv_ap_base(struct ata_port *ap)
880{
f351b2d6 881 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
882}
883
cca3974e 884static inline int mv_get_hc_count(unsigned long port_flags)
31961943 885{
cca3974e 886 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
887}
888
08da1759
ML
889/**
890 * mv_save_cached_regs - (re-)initialize cached port registers
891 * @ap: the port whose registers we are caching
892 *
893 * Initialize the local cache of port registers,
894 * so that reading them over and over again can
895 * be avoided on the hotter paths of this driver.
896 * This saves a few microseconds each time we switch
897 * to/from EDMA mode to perform (eg.) a drive cache flush.
898 */
899static void mv_save_cached_regs(struct ata_port *ap)
900{
901 void __iomem *port_mmio = mv_ap_base(ap);
902 struct mv_port_priv *pp = ap->private_data;
903
904 pp->cached.fiscfg = readl(port_mmio + FISCFG_OFS);
905 pp->cached.ltmode = readl(port_mmio + LTMODE_OFS);
906 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
c01e8a23 907 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD_OFS);
08da1759
ML
908}
909
910/**
911 * mv_write_cached_reg - write to a cached port register
912 * @addr: hardware address of the register
913 * @old: pointer to cached value of the register
914 * @new: new value for the register
915 *
916 * Write a new value to a cached register,
917 * but only if the value is different from before.
918 */
919static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
920{
921 if (new != *old) {
12f3b6d7 922 unsigned long laddr;
08da1759 923 *old = new;
12f3b6d7
ML
924 /*
925 * Workaround for 88SX60x1-B2 FEr SATA#13:
926 * Read-after-write is needed to prevent generating 64-bit
927 * write cycles on the PCI bus for SATA interface registers
928 * at offsets ending in 0x4 or 0xc.
929 *
930 * Looks like a lot of fuss, but it avoids an unnecessary
931 * +1 usec read-after-write delay for unaffected registers.
932 */
933 laddr = (long)addr & 0xffff;
934 if (laddr >= 0x300 && laddr <= 0x33c) {
935 laddr &= 0x000f;
936 if (laddr == 0x4 || laddr == 0xc) {
937 writelfl(new, addr); /* read after write */
938 return;
939 }
940 }
941 writel(new, addr); /* unaffected by the errata */
08da1759
ML
942 }
943}
944
c5d3e45a
JG
945static void mv_set_edma_ptrs(void __iomem *port_mmio,
946 struct mv_host_priv *hpriv,
947 struct mv_port_priv *pp)
948{
bdd4ddde
JG
949 u32 index;
950
c5d3e45a
JG
951 /*
952 * initialize request queue
953 */
fcfb1f77
ML
954 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
955 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 956
c5d3e45a
JG
957 WARN_ON(pp->crqb_dma & 0x3ff);
958 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
bdd4ddde 959 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
c5d3e45a 960 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
5cf73bfb 961 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
c5d3e45a
JG
962
963 /*
964 * initialize response queue
965 */
fcfb1f77
ML
966 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
967 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 968
c5d3e45a
JG
969 WARN_ON(pp->crpb_dma & 0xff);
970 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
5cf73bfb 971 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
bdd4ddde 972 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
c5d3e45a 973 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
c5d3e45a
JG
974}
975
2b748a0a
ML
976static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
977{
978 /*
979 * When writing to the main_irq_mask in hardware,
980 * we must ensure exclusivity between the interrupt coalescing bits
981 * and the corresponding individual port DONE_IRQ bits.
982 *
983 * Note that this register is really an "IRQ enable" register,
984 * not an "IRQ mask" register as Marvell's naming might suggest.
985 */
986 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
987 mask &= ~DONE_IRQ_0_3;
988 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
989 mask &= ~DONE_IRQ_4_7;
990 writelfl(mask, hpriv->main_irq_mask_addr);
991}
992
c4de573b
ML
993static void mv_set_main_irq_mask(struct ata_host *host,
994 u32 disable_bits, u32 enable_bits)
995{
996 struct mv_host_priv *hpriv = host->private_data;
997 u32 old_mask, new_mask;
998
96e2c487 999 old_mask = hpriv->main_irq_mask;
c4de573b 1000 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1001 if (new_mask != old_mask) {
1002 hpriv->main_irq_mask = new_mask;
2b748a0a 1003 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1004 }
c4de573b
ML
1005}
1006
1007static void mv_enable_port_irqs(struct ata_port *ap,
1008 unsigned int port_bits)
1009{
1010 unsigned int shift, hardport, port = ap->port_no;
1011 u32 disable_bits, enable_bits;
1012
1013 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1014
1015 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1016 enable_bits = port_bits << shift;
1017 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1018}
1019
00b81235
ML
1020static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1021 void __iomem *port_mmio,
1022 unsigned int port_irqs)
1023{
1024 struct mv_host_priv *hpriv = ap->host->private_data;
1025 int hardport = mv_hardport_from_port(ap->port_no);
1026 void __iomem *hc_mmio = mv_hc_base_from_port(
1027 mv_host_base(ap->host), ap->port_no);
1028 u32 hc_irq_cause;
1029
1030 /* clear EDMA event indicators, if any */
1031 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1032
1033 /* clear pending irq events */
1034 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1035 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1036
1037 /* clear FIS IRQ Cause */
1038 if (IS_GEN_IIE(hpriv))
1039 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1040
1041 mv_enable_port_irqs(ap, port_irqs);
1042}
1043
2b748a0a
ML
1044static void mv_set_irq_coalescing(struct ata_host *host,
1045 unsigned int count, unsigned int usecs)
1046{
1047 struct mv_host_priv *hpriv = host->private_data;
1048 void __iomem *mmio = hpriv->base, *hc_mmio;
1049 u32 coal_enable = 0;
1050 unsigned long flags;
6abf4678 1051 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1052 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1053 ALL_PORTS_COAL_DONE;
1054
1055 /* Disable IRQ coalescing if either threshold is zero */
1056 if (!usecs || !count) {
1057 clks = count = 0;
1058 } else {
1059 /* Respect maximum limits of the hardware */
1060 clks = usecs * COAL_CLOCKS_PER_USEC;
1061 if (clks > MAX_COAL_TIME_THRESHOLD)
1062 clks = MAX_COAL_TIME_THRESHOLD;
1063 if (count > MAX_COAL_IO_COUNT)
1064 count = MAX_COAL_IO_COUNT;
1065 }
1066
1067 spin_lock_irqsave(&host->lock, flags);
6abf4678 1068 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1069
6abf4678 1070 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1071 /*
6abf4678
ML
1072 * GEN_II/GEN_IIE with dual host controllers:
1073 * one set of global thresholds for the entire chip.
2b748a0a
ML
1074 */
1075 writel(clks, mmio + MV_IRQ_COAL_TIME_THRESHOLD);
1076 writel(count, mmio + MV_IRQ_COAL_IO_THRESHOLD);
1077 /* clear leftover coal IRQ bit */
6abf4678
ML
1078 writel(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
1079 if (count)
1080 coal_enable = ALL_PORTS_COAL_DONE;
1081 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1082 }
6abf4678 1083
2b748a0a
ML
1084 /*
1085 * All chips: independent thresholds for each HC on the chip.
1086 */
1087 hc_mmio = mv_hc_base_from_port(mmio, 0);
1088 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
1089 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
6abf4678
ML
1090 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE_OFS);
1091 if (count)
1092 coal_enable |= PORTS_0_3_COAL_DONE;
1093 if (is_dual_hc) {
2b748a0a
ML
1094 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1095 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
1096 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
6abf4678
ML
1097 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE_OFS);
1098 if (count)
1099 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1100 }
2b748a0a 1101
6abf4678 1102 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1103 spin_unlock_irqrestore(&host->lock, flags);
1104}
1105
05b308e1 1106/**
00b81235 1107 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1108 * @base: port base address
1109 * @pp: port private data
1110 *
beec7dbc
TH
1111 * Verify the local cache of the eDMA state is accurate with a
1112 * WARN_ON.
05b308e1
BR
1113 *
1114 * LOCKING:
1115 * Inherited from caller.
1116 */
00b81235 1117static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1118 struct mv_port_priv *pp, u8 protocol)
20f733e7 1119{
72109168
ML
1120 int want_ncq = (protocol == ATA_PROT_NCQ);
1121
1122 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1123 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1124 if (want_ncq != using_ncq)
b562468c 1125 mv_stop_edma(ap);
72109168 1126 }
c5d3e45a 1127 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1128 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1129
00b81235 1130 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1131
f630d562 1132 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1133 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1134
f630d562 1135 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
afb0edd9
BR
1136 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1137 }
20f733e7
BR
1138}
1139
9b2c4e0b
ML
1140static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1141{
1142 void __iomem *port_mmio = mv_ap_base(ap);
1143 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1144 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1145 int i;
1146
1147 /*
1148 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1149 * No idea what a good "timeout" value might be, but measurements
1150 * indicate that it often requires hundreds of microseconds
1151 * with two drives in-use. So we use the 15msec value above
1152 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1153 */
1154 for (i = 0; i < timeout; ++i) {
1155 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
1156 if ((edma_stat & empty_idle) == empty_idle)
1157 break;
1158 udelay(per_loop);
1159 }
1160 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1161}
1162
05b308e1 1163/**
e12bef50 1164 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1165 * @port_mmio: io base address
05b308e1
BR
1166 *
1167 * LOCKING:
1168 * Inherited from caller.
1169 */
b562468c 1170static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1171{
b562468c 1172 int i;
31961943 1173
b562468c
ML
1174 /* Disable eDMA. The disable bit auto clears. */
1175 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
8b260248 1176
b562468c
ML
1177 /* Wait for the chip to confirm eDMA is off. */
1178 for (i = 10000; i > 0; i--) {
1179 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
4537deb5 1180 if (!(reg & EDMA_EN))
b562468c
ML
1181 return 0;
1182 udelay(10);
31961943 1183 }
b562468c 1184 return -EIO;
20f733e7
BR
1185}
1186
e12bef50 1187static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1188{
b562468c
ML
1189 void __iomem *port_mmio = mv_ap_base(ap);
1190 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1191 int err = 0;
0ea9e179 1192
b562468c
ML
1193 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1194 return 0;
1195 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1196 mv_wait_for_edma_empty_idle(ap);
b562468c
ML
1197 if (mv_stop_edma_engine(port_mmio)) {
1198 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
66e57a2c 1199 err = -EIO;
b562468c 1200 }
66e57a2c
ML
1201 mv_edma_cfg(ap, 0, 0);
1202 return err;
0ea9e179
JG
1203}
1204
8a70f8dc 1205#ifdef ATA_DEBUG
31961943 1206static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1207{
31961943
BR
1208 int b, w;
1209 for (b = 0; b < bytes; ) {
1210 DPRINTK("%p: ", start + b);
1211 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1212 printk("%08x ", readl(start + b));
31961943
BR
1213 b += sizeof(u32);
1214 }
1215 printk("\n");
1216 }
31961943 1217}
8a70f8dc
JG
1218#endif
1219
31961943
BR
1220static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1221{
1222#ifdef ATA_DEBUG
1223 int b, w;
1224 u32 dw;
1225 for (b = 0; b < bytes; ) {
1226 DPRINTK("%02x: ", b);
1227 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1228 (void) pci_read_config_dword(pdev, b, &dw);
1229 printk("%08x ", dw);
31961943
BR
1230 b += sizeof(u32);
1231 }
1232 printk("\n");
1233 }
1234#endif
1235}
1236static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1237 struct pci_dev *pdev)
1238{
1239#ifdef ATA_DEBUG
8b260248 1240 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1241 port >> MV_PORT_HC_SHIFT);
1242 void __iomem *port_base;
1243 int start_port, num_ports, p, start_hc, num_hcs, hc;
1244
1245 if (0 > port) {
1246 start_hc = start_port = 0;
1247 num_ports = 8; /* shld be benign for 4 port devs */
1248 num_hcs = 2;
1249 } else {
1250 start_hc = port >> MV_PORT_HC_SHIFT;
1251 start_port = port;
1252 num_ports = num_hcs = 1;
1253 }
8b260248 1254 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1255 num_ports > 1 ? num_ports - 1 : start_port);
1256
1257 if (NULL != pdev) {
1258 DPRINTK("PCI config space regs:\n");
1259 mv_dump_pci_cfg(pdev, 0x68);
1260 }
1261 DPRINTK("PCI regs:\n");
1262 mv_dump_mem(mmio_base+0xc00, 0x3c);
1263 mv_dump_mem(mmio_base+0xd00, 0x34);
1264 mv_dump_mem(mmio_base+0xf00, 0x4);
1265 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1266 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1267 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1268 DPRINTK("HC regs (HC %i):\n", hc);
1269 mv_dump_mem(hc_base, 0x1c);
1270 }
1271 for (p = start_port; p < start_port + num_ports; p++) {
1272 port_base = mv_port_base(mmio_base, p);
2dcb407e 1273 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1274 mv_dump_mem(port_base, 0x54);
2dcb407e 1275 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1276 mv_dump_mem(port_base+0x300, 0x60);
1277 }
1278#endif
20f733e7
BR
1279}
1280
1281static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1282{
1283 unsigned int ofs;
1284
1285 switch (sc_reg_in) {
1286 case SCR_STATUS:
1287 case SCR_CONTROL:
1288 case SCR_ERROR:
1289 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1290 break;
1291 case SCR_ACTIVE:
1292 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1293 break;
1294 default:
1295 ofs = 0xffffffffU;
1296 break;
1297 }
1298 return ofs;
1299}
1300
82ef04fb 1301static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1302{
1303 unsigned int ofs = mv_scr_offset(sc_reg_in);
1304
da3dbb17 1305 if (ofs != 0xffffffffU) {
82ef04fb 1306 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1307 return 0;
1308 } else
1309 return -EINVAL;
20f733e7
BR
1310}
1311
82ef04fb 1312static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1313{
1314 unsigned int ofs = mv_scr_offset(sc_reg_in);
1315
da3dbb17 1316 if (ofs != 0xffffffffU) {
20091773
ML
1317 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1318 if (sc_reg_in == SCR_CONTROL) {
1319 /*
1320 * Workaround for 88SX60x1 FEr SATA#26:
1321 *
1322 * COMRESETs have to take care not to accidently
1323 * put the drive to sleep when writing SCR_CONTROL.
1324 * Setting bits 12..15 prevents this problem.
1325 *
1326 * So if we see an outbound COMMRESET, set those bits.
1327 * Ditto for the followup write that clears the reset.
1328 *
1329 * The proprietary driver does this for
1330 * all chip versions, and so do we.
1331 */
1332 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1333 val |= 0xf000;
1334 }
1335 writelfl(val, addr);
da3dbb17
TH
1336 return 0;
1337 } else
1338 return -EINVAL;
20f733e7
BR
1339}
1340
f273827e
ML
1341static void mv6_dev_config(struct ata_device *adev)
1342{
1343 /*
e49856d8
ML
1344 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1345 *
1346 * Gen-II does not support NCQ over a port multiplier
1347 * (no FIS-based switching).
f273827e 1348 */
e49856d8 1349 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1350 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1351 adev->flags &= ~ATA_DFLAG_NCQ;
352fab70
ML
1352 ata_dev_printk(adev, KERN_INFO,
1353 "NCQ disabled for command-based switching\n");
352fab70 1354 }
e49856d8 1355 }
f273827e
ML
1356}
1357
3e4a1391
ML
1358static int mv_qc_defer(struct ata_queued_cmd *qc)
1359{
1360 struct ata_link *link = qc->dev->link;
1361 struct ata_port *ap = link->ap;
1362 struct mv_port_priv *pp = ap->private_data;
1363
29d187bb
ML
1364 /*
1365 * Don't allow new commands if we're in a delayed EH state
1366 * for NCQ and/or FIS-based switching.
1367 */
1368 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1369 return ATA_DEFER_PORT;
3e4a1391
ML
1370 /*
1371 * If the port is completely idle, then allow the new qc.
1372 */
1373 if (ap->nr_active_links == 0)
1374 return 0;
1375
4bdee6c5
TH
1376 /*
1377 * The port is operating in host queuing mode (EDMA) with NCQ
1378 * enabled, allow multiple NCQ commands. EDMA also allows
1379 * queueing multiple DMA commands but libata core currently
1380 * doesn't allow it.
1381 */
1382 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1383 (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1384 return 0;
1385
3e4a1391
ML
1386 return ATA_DEFER_PORT;
1387}
1388
08da1759 1389static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1390{
08da1759
ML
1391 struct mv_port_priv *pp = ap->private_data;
1392 void __iomem *port_mmio;
00f42eab 1393
08da1759
ML
1394 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1395 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1396 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1397
08da1759
ML
1398 ltmode = *old_ltmode & ~LTMODE_BIT8;
1399 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1400
1401 if (want_fbs) {
08da1759
ML
1402 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1403 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1404 if (want_ncq)
08da1759 1405 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1406 else
08da1759
ML
1407 fiscfg |= FISCFG_WAIT_DEV_ERR;
1408 } else {
1409 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1410 }
00f42eab 1411
08da1759
ML
1412 port_mmio = mv_ap_base(ap);
1413 mv_write_cached_reg(port_mmio + FISCFG_OFS, old_fiscfg, fiscfg);
1414 mv_write_cached_reg(port_mmio + LTMODE_OFS, old_ltmode, ltmode);
1415 mv_write_cached_reg(port_mmio + EDMA_HALTCOND_OFS, old_haltcond, haltcond);
f273827e
ML
1416}
1417
dd2890f6
ML
1418static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1419{
1420 struct mv_host_priv *hpriv = ap->host->private_data;
1421 u32 old, new;
1422
1423 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1424 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1425 if (want_ncq)
1426 new = old | (1 << 22);
1427 else
1428 new = old & ~(1 << 22);
1429 if (new != old)
1430 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1431}
1432
c01e8a23 1433/**
40f21b11
ML
1434 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1435 * @ap: Port being initialized
c01e8a23
ML
1436 *
1437 * There are two DMA modes on these chips: basic DMA, and EDMA.
1438 *
1439 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1440 * of basic DMA on the GEN_IIE versions of the chips.
1441 *
1442 * This bit survives EDMA resets, and must be set for basic DMA
1443 * to function, and should be cleared when EDMA is active.
1444 */
1445static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1446{
1447 struct mv_port_priv *pp = ap->private_data;
1448 u32 new, *old = &pp->cached.unknown_rsvd;
1449
1450 if (enable_bmdma)
1451 new = *old | 1;
1452 else
1453 new = *old & ~1;
1454 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD_OFS, old, new);
1455}
1456
000b344f
ML
1457/*
1458 * SOC chips have an issue whereby the HDD LEDs don't always blink
1459 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1460 * of the SOC takes care of it, generating a steady blink rate when
1461 * any drive on the chip is active.
1462 *
1463 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1464 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1465 *
1466 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1467 * LED operation works then, and provides better (more accurate) feedback.
1468 *
1469 * Note that this code assumes that an SOC never has more than one HC onboard.
1470 */
1471static void mv_soc_led_blink_enable(struct ata_port *ap)
1472{
1473 struct ata_host *host = ap->host;
1474 struct mv_host_priv *hpriv = host->private_data;
1475 void __iomem *hc_mmio;
1476 u32 led_ctrl;
1477
1478 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1479 return;
1480 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1481 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1482 led_ctrl = readl(hc_mmio + SOC_LED_CTRL_OFS);
1483 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL_OFS);
1484}
1485
1486static void mv_soc_led_blink_disable(struct ata_port *ap)
1487{
1488 struct ata_host *host = ap->host;
1489 struct mv_host_priv *hpriv = host->private_data;
1490 void __iomem *hc_mmio;
1491 u32 led_ctrl;
1492 unsigned int port;
1493
1494 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1495 return;
1496
1497 /* disable led-blink only if no ports are using NCQ */
1498 for (port = 0; port < hpriv->n_ports; port++) {
1499 struct ata_port *this_ap = host->ports[port];
1500 struct mv_port_priv *pp = this_ap->private_data;
1501
1502 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1503 return;
1504 }
1505
1506 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1507 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1508 led_ctrl = readl(hc_mmio + SOC_LED_CTRL_OFS);
1509 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL_OFS);
1510}
1511
00b81235 1512static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1513{
0c58912e 1514 u32 cfg;
e12bef50
ML
1515 struct mv_port_priv *pp = ap->private_data;
1516 struct mv_host_priv *hpriv = ap->host->private_data;
1517 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1518
1519 /* set up non-NCQ EDMA configuration */
0c58912e 1520 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1521 pp->pp_flags &=
1522 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1523
0c58912e 1524 if (IS_GEN_I(hpriv))
e4e7b892
JG
1525 cfg |= (1 << 8); /* enab config burst size mask */
1526
dd2890f6 1527 else if (IS_GEN_II(hpriv)) {
e4e7b892 1528 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1529 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1530
dd2890f6 1531 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1532 int want_fbs = sata_pmp_attached(ap);
1533 /*
1534 * Possible future enhancement:
1535 *
1536 * The chip can use FBS with non-NCQ, if we allow it,
1537 * But first we need to have the error handling in place
1538 * for this mode (datasheet section 7.3.15.4.2.3).
1539 * So disallow non-NCQ FBS for now.
1540 */
1541 want_fbs &= want_ncq;
1542
08da1759 1543 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1544
1545 if (want_fbs) {
1546 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1547 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1548 }
1549
e728eabe 1550 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1551 if (want_edma) {
1552 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1553 if (!IS_SOC(hpriv))
1554 cfg |= (1 << 18); /* enab early completion */
1555 }
616d4a98
ML
1556 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1557 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1558 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1559
1560 if (IS_SOC(hpriv)) {
1561 if (want_ncq)
1562 mv_soc_led_blink_enable(ap);
1563 else
1564 mv_soc_led_blink_disable(ap);
1565 }
e4e7b892
JG
1566 }
1567
72109168
ML
1568 if (want_ncq) {
1569 cfg |= EDMA_CFG_NCQ;
1570 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1571 }
72109168 1572
e4e7b892
JG
1573 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1574}
1575
da2fa9ba
ML
1576static void mv_port_free_dma_mem(struct ata_port *ap)
1577{
1578 struct mv_host_priv *hpriv = ap->host->private_data;
1579 struct mv_port_priv *pp = ap->private_data;
eb73d558 1580 int tag;
da2fa9ba
ML
1581
1582 if (pp->crqb) {
1583 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1584 pp->crqb = NULL;
1585 }
1586 if (pp->crpb) {
1587 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1588 pp->crpb = NULL;
1589 }
eb73d558
ML
1590 /*
1591 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1592 * For later hardware, we have one unique sg_tbl per NCQ tag.
1593 */
1594 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1595 if (pp->sg_tbl[tag]) {
1596 if (tag == 0 || !IS_GEN_I(hpriv))
1597 dma_pool_free(hpriv->sg_tbl_pool,
1598 pp->sg_tbl[tag],
1599 pp->sg_tbl_dma[tag]);
1600 pp->sg_tbl[tag] = NULL;
1601 }
da2fa9ba
ML
1602 }
1603}
1604
05b308e1
BR
1605/**
1606 * mv_port_start - Port specific init/start routine.
1607 * @ap: ATA channel to manipulate
1608 *
1609 * Allocate and point to DMA memory, init port private memory,
1610 * zero indices.
1611 *
1612 * LOCKING:
1613 * Inherited from caller.
1614 */
31961943
BR
1615static int mv_port_start(struct ata_port *ap)
1616{
cca3974e
JG
1617 struct device *dev = ap->host->dev;
1618 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1619 struct mv_port_priv *pp;
933cb8e5 1620 unsigned long flags;
dde20207 1621 int tag;
31961943 1622
24dc5f33 1623 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1624 if (!pp)
24dc5f33 1625 return -ENOMEM;
da2fa9ba 1626 ap->private_data = pp;
31961943 1627
da2fa9ba
ML
1628 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1629 if (!pp->crqb)
1630 return -ENOMEM;
1631 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
31961943 1632
da2fa9ba
ML
1633 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1634 if (!pp->crpb)
1635 goto out_port_free_dma_mem;
1636 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
31961943 1637
3bd0a70e
ML
1638 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1639 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1640 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1641 /*
1642 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1643 * For later hardware, we need one unique sg_tbl per NCQ tag.
1644 */
1645 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1646 if (tag == 0 || !IS_GEN_I(hpriv)) {
1647 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1648 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1649 if (!pp->sg_tbl[tag])
1650 goto out_port_free_dma_mem;
1651 } else {
1652 pp->sg_tbl[tag] = pp->sg_tbl[0];
1653 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1654 }
1655 }
933cb8e5
ML
1656
1657 spin_lock_irqsave(ap->lock, flags);
08da1759 1658 mv_save_cached_regs(ap);
66e57a2c 1659 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1660 spin_unlock_irqrestore(ap->lock, flags);
1661
31961943 1662 return 0;
da2fa9ba
ML
1663
1664out_port_free_dma_mem:
1665 mv_port_free_dma_mem(ap);
1666 return -ENOMEM;
31961943
BR
1667}
1668
05b308e1
BR
1669/**
1670 * mv_port_stop - Port specific cleanup/stop routine.
1671 * @ap: ATA channel to manipulate
1672 *
1673 * Stop DMA, cleanup port memory.
1674 *
1675 * LOCKING:
cca3974e 1676 * This routine uses the host lock to protect the DMA stop.
05b308e1 1677 */
31961943
BR
1678static void mv_port_stop(struct ata_port *ap)
1679{
933cb8e5
ML
1680 unsigned long flags;
1681
1682 spin_lock_irqsave(ap->lock, flags);
e12bef50 1683 mv_stop_edma(ap);
88e675e1 1684 mv_enable_port_irqs(ap, 0);
933cb8e5 1685 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1686 mv_port_free_dma_mem(ap);
31961943
BR
1687}
1688
05b308e1
BR
1689/**
1690 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1691 * @qc: queued command whose SG list to source from
1692 *
1693 * Populate the SG list and mark the last entry.
1694 *
1695 * LOCKING:
1696 * Inherited from caller.
1697 */
6c08772e 1698static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1699{
1700 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1701 struct scatterlist *sg;
3be6cbd7 1702 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1703 unsigned int si;
31961943 1704
eb73d558 1705 mv_sg = pp->sg_tbl[qc->tag];
ff2aeb1e 1706 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1707 dma_addr_t addr = sg_dma_address(sg);
1708 u32 sg_len = sg_dma_len(sg);
22374677 1709
4007b493
OJ
1710 while (sg_len) {
1711 u32 offset = addr & 0xffff;
1712 u32 len = sg_len;
22374677 1713
32cd11a6 1714 if (offset + len > 0x10000)
4007b493
OJ
1715 len = 0x10000 - offset;
1716
1717 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1718 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1719 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1720 mv_sg->reserved = 0;
4007b493
OJ
1721
1722 sg_len -= len;
1723 addr += len;
1724
3be6cbd7 1725 last_sg = mv_sg;
4007b493 1726 mv_sg++;
4007b493 1727 }
31961943 1728 }
3be6cbd7
JG
1729
1730 if (likely(last_sg))
1731 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1732 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1733}
1734
5796d1c4 1735static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1736{
559eedad 1737 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1738 (last ? CRQB_CMD_LAST : 0);
559eedad 1739 *cmdw = cpu_to_le16(tmp);
31961943
BR
1740}
1741
da14265e
ML
1742/**
1743 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1744 * @ap: Port associated with this ATA transaction.
1745 *
1746 * We need this only for ATAPI bmdma transactions,
1747 * as otherwise we experience spurious interrupts
1748 * after libata-sff handles the bmdma interrupts.
1749 */
1750static void mv_sff_irq_clear(struct ata_port *ap)
1751{
1752 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1753}
1754
1755/**
1756 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1757 * @qc: queued command to check for chipset/DMA compatibility.
1758 *
1759 * The bmdma engines cannot handle speculative data sizes
1760 * (bytecount under/over flow). So only allow DMA for
1761 * data transfer commands with known data sizes.
1762 *
1763 * LOCKING:
1764 * Inherited from caller.
1765 */
1766static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1767{
1768 struct scsi_cmnd *scmd = qc->scsicmd;
1769
1770 if (scmd) {
1771 switch (scmd->cmnd[0]) {
1772 case READ_6:
1773 case READ_10:
1774 case READ_12:
1775 case WRITE_6:
1776 case WRITE_10:
1777 case WRITE_12:
1778 case GPCMD_READ_CD:
1779 case GPCMD_SEND_DVD_STRUCTURE:
1780 case GPCMD_SEND_CUE_SHEET:
1781 return 0; /* DMA is safe */
1782 }
1783 }
1784 return -EOPNOTSUPP; /* use PIO instead */
1785}
1786
1787/**
1788 * mv_bmdma_setup - Set up BMDMA transaction
1789 * @qc: queued command to prepare DMA for.
1790 *
1791 * LOCKING:
1792 * Inherited from caller.
1793 */
1794static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1795{
1796 struct ata_port *ap = qc->ap;
1797 void __iomem *port_mmio = mv_ap_base(ap);
1798 struct mv_port_priv *pp = ap->private_data;
1799
1800 mv_fill_sg(qc);
1801
1802 /* clear all DMA cmd bits */
1803 writel(0, port_mmio + BMDMA_CMD_OFS);
1804
1805 /* load PRD table addr. */
1806 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1807 port_mmio + BMDMA_PRD_HIGH_OFS);
1808 writelfl(pp->sg_tbl_dma[qc->tag],
1809 port_mmio + BMDMA_PRD_LOW_OFS);
1810
1811 /* issue r/w command */
1812 ap->ops->sff_exec_command(ap, &qc->tf);
1813}
1814
1815/**
1816 * mv_bmdma_start - Start a BMDMA transaction
1817 * @qc: queued command to start DMA on.
1818 *
1819 * LOCKING:
1820 * Inherited from caller.
1821 */
1822static void mv_bmdma_start(struct ata_queued_cmd *qc)
1823{
1824 struct ata_port *ap = qc->ap;
1825 void __iomem *port_mmio = mv_ap_base(ap);
1826 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1827 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1828
1829 /* start host DMA transaction */
1830 writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
1831}
1832
1833/**
1834 * mv_bmdma_stop - Stop BMDMA transfer
1835 * @qc: queued command to stop DMA on.
1836 *
1837 * Clears the ATA_DMA_START flag in the bmdma control register
1838 *
1839 * LOCKING:
1840 * Inherited from caller.
1841 */
1842static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1843{
1844 struct ata_port *ap = qc->ap;
1845 void __iomem *port_mmio = mv_ap_base(ap);
1846 u32 cmd;
1847
1848 /* clear start/stop bit */
1849 cmd = readl(port_mmio + BMDMA_CMD_OFS);
1850 cmd &= ~ATA_DMA_START;
1851 writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
1852
1853 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1854 ata_sff_dma_pause(ap);
1855}
1856
1857/**
1858 * mv_bmdma_status - Read BMDMA status
1859 * @ap: port for which to retrieve DMA status.
1860 *
1861 * Read and return equivalent of the sff BMDMA status register.
1862 *
1863 * LOCKING:
1864 * Inherited from caller.
1865 */
1866static u8 mv_bmdma_status(struct ata_port *ap)
1867{
1868 void __iomem *port_mmio = mv_ap_base(ap);
1869 u32 reg, status;
1870
1871 /*
1872 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1873 * and the ATA_DMA_INTR bit doesn't exist.
1874 */
1875 reg = readl(port_mmio + BMDMA_STATUS_OFS);
1876 if (reg & ATA_DMA_ACTIVE)
1877 status = ATA_DMA_ACTIVE;
1878 else
1879 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1880 return status;
1881}
1882
05b308e1
BR
1883/**
1884 * mv_qc_prep - Host specific command preparation.
1885 * @qc: queued command to prepare
1886 *
1887 * This routine simply redirects to the general purpose routine
1888 * if command is not DMA. Else, it handles prep of the CRQB
1889 * (command request block), does some sanity checking, and calls
1890 * the SG load routine.
1891 *
1892 * LOCKING:
1893 * Inherited from caller.
1894 */
31961943
BR
1895static void mv_qc_prep(struct ata_queued_cmd *qc)
1896{
1897 struct ata_port *ap = qc->ap;
1898 struct mv_port_priv *pp = ap->private_data;
e1469874 1899 __le16 *cw;
31961943
BR
1900 struct ata_taskfile *tf;
1901 u16 flags = 0;
a6432436 1902 unsigned in_index;
31961943 1903
138bfdd0
ML
1904 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1905 (qc->tf.protocol != ATA_PROT_NCQ))
31961943 1906 return;
20f733e7 1907
31961943
BR
1908 /* Fill in command request block
1909 */
e4e7b892 1910 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
31961943 1911 flags |= CRQB_FLAG_READ;
beec7dbc 1912 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
31961943 1913 flags |= qc->tag << CRQB_TAG_SHIFT;
e49856d8 1914 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 1915
bdd4ddde 1916 /* get current queue index from software */
fcfb1f77 1917 in_index = pp->req_idx;
a6432436
ML
1918
1919 pp->crqb[in_index].sg_addr =
eb73d558 1920 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
a6432436 1921 pp->crqb[in_index].sg_addr_hi =
eb73d558 1922 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
a6432436 1923 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 1924
a6432436 1925 cw = &pp->crqb[in_index].ata_cmd[0];
31961943
BR
1926 tf = &qc->tf;
1927
1928 /* Sadly, the CRQB cannot accomodate all registers--there are
1929 * only 11 bytes...so we must pick and choose required
1930 * registers based on the command. So, we drop feature and
1931 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
1932 * NCQ. NCQ will drop hob_nsect, which is not needed there
1933 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 1934 */
31961943
BR
1935 switch (tf->command) {
1936 case ATA_CMD_READ:
1937 case ATA_CMD_READ_EXT:
1938 case ATA_CMD_WRITE:
1939 case ATA_CMD_WRITE_EXT:
c15d85c8 1940 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
1941 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1942 break;
31961943
BR
1943 case ATA_CMD_FPDMA_READ:
1944 case ATA_CMD_FPDMA_WRITE:
8b260248 1945 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
1946 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1947 break;
31961943
BR
1948 default:
1949 /* The only other commands EDMA supports in non-queued and
1950 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1951 * of which are defined/used by Linux. If we get here, this
1952 * driver needs work.
1953 *
1954 * FIXME: modify libata to give qc_prep a return value and
1955 * return error here.
1956 */
1957 BUG_ON(tf->command);
1958 break;
1959 }
1960 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1961 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1962 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1963 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1964 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1965 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1966 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1967 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1968 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1969
e4e7b892
JG
1970 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1971 return;
1972 mv_fill_sg(qc);
1973}
1974
1975/**
1976 * mv_qc_prep_iie - Host specific command preparation.
1977 * @qc: queued command to prepare
1978 *
1979 * This routine simply redirects to the general purpose routine
1980 * if command is not DMA. Else, it handles prep of the CRQB
1981 * (command request block), does some sanity checking, and calls
1982 * the SG load routine.
1983 *
1984 * LOCKING:
1985 * Inherited from caller.
1986 */
1987static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1988{
1989 struct ata_port *ap = qc->ap;
1990 struct mv_port_priv *pp = ap->private_data;
1991 struct mv_crqb_iie *crqb;
1992 struct ata_taskfile *tf;
a6432436 1993 unsigned in_index;
e4e7b892
JG
1994 u32 flags = 0;
1995
138bfdd0
ML
1996 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1997 (qc->tf.protocol != ATA_PROT_NCQ))
e4e7b892
JG
1998 return;
1999
e12bef50 2000 /* Fill in Gen IIE command request block */
e4e7b892
JG
2001 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
2002 flags |= CRQB_FLAG_READ;
2003
beec7dbc 2004 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
e4e7b892 2005 flags |= qc->tag << CRQB_TAG_SHIFT;
8c0aeb4a 2006 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
e49856d8 2007 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2008
bdd4ddde 2009 /* get current queue index from software */
fcfb1f77 2010 in_index = pp->req_idx;
a6432436
ML
2011
2012 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
eb73d558
ML
2013 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2014 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
e4e7b892
JG
2015 crqb->flags = cpu_to_le32(flags);
2016
2017 tf = &qc->tf;
2018 crqb->ata_cmd[0] = cpu_to_le32(
2019 (tf->command << 16) |
2020 (tf->feature << 24)
2021 );
2022 crqb->ata_cmd[1] = cpu_to_le32(
2023 (tf->lbal << 0) |
2024 (tf->lbam << 8) |
2025 (tf->lbah << 16) |
2026 (tf->device << 24)
2027 );
2028 crqb->ata_cmd[2] = cpu_to_le32(
2029 (tf->hob_lbal << 0) |
2030 (tf->hob_lbam << 8) |
2031 (tf->hob_lbah << 16) |
2032 (tf->hob_feature << 24)
2033 );
2034 crqb->ata_cmd[3] = cpu_to_le32(
2035 (tf->nsect << 0) |
2036 (tf->hob_nsect << 8)
2037 );
2038
2039 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
31961943 2040 return;
31961943
BR
2041 mv_fill_sg(qc);
2042}
2043
d16ab3f6
ML
2044/**
2045 * mv_sff_check_status - fetch device status, if valid
2046 * @ap: ATA port to fetch status from
2047 *
2048 * When using command issue via mv_qc_issue_fis(),
2049 * the initial ATA_BUSY state does not show up in the
2050 * ATA status (shadow) register. This can confuse libata!
2051 *
2052 * So we have a hook here to fake ATA_BUSY for that situation,
2053 * until the first time a BUSY, DRQ, or ERR bit is seen.
2054 *
2055 * The rest of the time, it simply returns the ATA status register.
2056 */
2057static u8 mv_sff_check_status(struct ata_port *ap)
2058{
2059 u8 stat = ioread8(ap->ioaddr.status_addr);
2060 struct mv_port_priv *pp = ap->private_data;
2061
2062 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2063 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2064 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2065 else
2066 stat = ATA_BUSY;
2067 }
2068 return stat;
2069}
2070
70f8b79c
ML
2071/**
2072 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2073 * @fis: fis to be sent
2074 * @nwords: number of 32-bit words in the fis
2075 */
2076static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2077{
2078 void __iomem *port_mmio = mv_ap_base(ap);
2079 u32 ifctl, old_ifctl, ifstat;
2080 int i, timeout = 200, final_word = nwords - 1;
2081
2082 /* Initiate FIS transmission mode */
2083 old_ifctl = readl(port_mmio + SATA_IFCTL_OFS);
2084 ifctl = 0x100 | (old_ifctl & 0xf);
2085 writelfl(ifctl, port_mmio + SATA_IFCTL_OFS);
2086
2087 /* Send all words of the FIS except for the final word */
2088 for (i = 0; i < final_word; ++i)
2089 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS_OFS);
2090
2091 /* Flag end-of-transmission, and then send the final word */
2092 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL_OFS);
2093 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS_OFS);
2094
2095 /*
2096 * Wait for FIS transmission to complete.
2097 * This typically takes just a single iteration.
2098 */
2099 do {
2100 ifstat = readl(port_mmio + SATA_IFSTAT_OFS);
2101 } while (!(ifstat & 0x1000) && --timeout);
2102
2103 /* Restore original port configuration */
2104 writelfl(old_ifctl, port_mmio + SATA_IFCTL_OFS);
2105
2106 /* See if it worked */
2107 if ((ifstat & 0x3000) != 0x1000) {
2108 ata_port_printk(ap, KERN_WARNING,
2109 "%s transmission error, ifstat=%08x\n",
2110 __func__, ifstat);
2111 return AC_ERR_OTHER;
2112 }
2113 return 0;
2114}
2115
2116/**
2117 * mv_qc_issue_fis - Issue a command directly as a FIS
2118 * @qc: queued command to start
2119 *
2120 * Note that the ATA shadow registers are not updated
2121 * after command issue, so the device will appear "READY"
2122 * if polled, even while it is BUSY processing the command.
2123 *
2124 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2125 *
2126 * Note: we don't get updated shadow regs on *completion*
2127 * of non-data commands. So avoid sending them via this function,
2128 * as they will appear to have completed immediately.
2129 *
2130 * GEN_IIE has special registers that we could get the result tf from,
2131 * but earlier chipsets do not. For now, we ignore those registers.
2132 */
2133static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2134{
2135 struct ata_port *ap = qc->ap;
2136 struct mv_port_priv *pp = ap->private_data;
2137 struct ata_link *link = qc->dev->link;
2138 u32 fis[5];
2139 int err = 0;
2140
2141 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2142 err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
2143 if (err)
2144 return err;
2145
2146 switch (qc->tf.protocol) {
2147 case ATAPI_PROT_PIO:
2148 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2149 /* fall through */
2150 case ATAPI_PROT_NODATA:
2151 ap->hsm_task_state = HSM_ST_FIRST;
2152 break;
2153 case ATA_PROT_PIO:
2154 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2155 if (qc->tf.flags & ATA_TFLAG_WRITE)
2156 ap->hsm_task_state = HSM_ST_FIRST;
2157 else
2158 ap->hsm_task_state = HSM_ST;
2159 break;
2160 default:
2161 ap->hsm_task_state = HSM_ST_LAST;
2162 break;
2163 }
2164
2165 if (qc->tf.flags & ATA_TFLAG_POLLING)
2166 ata_pio_queue_task(ap, qc, 0);
2167 return 0;
2168}
2169
05b308e1
BR
2170/**
2171 * mv_qc_issue - Initiate a command to the host
2172 * @qc: queued command to start
2173 *
2174 * This routine simply redirects to the general purpose routine
2175 * if command is not DMA. Else, it sanity checks our local
2176 * caches of the request producer/consumer indices then enables
2177 * DMA and bumps the request producer index.
2178 *
2179 * LOCKING:
2180 * Inherited from caller.
2181 */
9a3d9eb0 2182static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2183{
f48765cc 2184 static int limit_warnings = 10;
c5d3e45a
JG
2185 struct ata_port *ap = qc->ap;
2186 void __iomem *port_mmio = mv_ap_base(ap);
2187 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2188 u32 in_index;
42ed893d 2189 unsigned int port_irqs;
f48765cc 2190
d16ab3f6
ML
2191 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2192
f48765cc
ML
2193 switch (qc->tf.protocol) {
2194 case ATA_PROT_DMA:
2195 case ATA_PROT_NCQ:
2196 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2197 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2198 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2199
2200 /* Write the request in pointer to kick the EDMA to life */
2201 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2202 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
2203 return 0;
31961943 2204
f48765cc 2205 case ATA_PROT_PIO:
c6112bd8
ML
2206 /*
2207 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2208 *
2209 * Someday, we might implement special polling workarounds
2210 * for these, but it all seems rather unnecessary since we
2211 * normally use only DMA for commands which transfer more
2212 * than a single block of data.
2213 *
2214 * Much of the time, this could just work regardless.
2215 * So for now, just log the incident, and allow the attempt.
2216 */
c7843e8f 2217 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8
ML
2218 --limit_warnings;
2219 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2220 ": attempting PIO w/multiple DRQ: "
2221 "this may fail due to h/w errata\n");
2222 }
f48765cc 2223 /* drop through */
42ed893d 2224 case ATA_PROT_NODATA:
f48765cc 2225 case ATAPI_PROT_PIO:
42ed893d
ML
2226 case ATAPI_PROT_NODATA:
2227 if (ap->flags & ATA_FLAG_PIO_POLLING)
2228 qc->tf.flags |= ATA_TFLAG_POLLING;
2229 break;
31961943 2230 }
42ed893d
ML
2231
2232 if (qc->tf.flags & ATA_TFLAG_POLLING)
2233 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2234 else
2235 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2236
2237 /*
2238 * We're about to send a non-EDMA capable command to the
2239 * port. Turn off EDMA so there won't be problems accessing
2240 * shadow block, etc registers.
2241 */
2242 mv_stop_edma(ap);
2243 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2244 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2245
2246 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2247 struct mv_host_priv *hpriv = ap->host->private_data;
2248 /*
2249 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2250 *
70f8b79c
ML
2251 * After any NCQ error, the READ_LOG_EXT command
2252 * from libata-eh *must* use mv_qc_issue_fis().
2253 * Otherwise it might fail, due to chip errata.
2254 *
2255 * Rather than special-case it, we'll just *always*
2256 * use this method here for READ_LOG_EXT, making for
2257 * easier testing.
2258 */
2259 if (IS_GEN_II(hpriv))
2260 return mv_qc_issue_fis(qc);
2261 }
42ed893d 2262 return ata_sff_qc_issue(qc);
31961943
BR
2263}
2264
8f767f8a
ML
2265static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2266{
2267 struct mv_port_priv *pp = ap->private_data;
2268 struct ata_queued_cmd *qc;
2269
2270 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2271 return NULL;
2272 qc = ata_qc_from_tag(ap, ap->link.active_tag);
95db5051
ML
2273 if (qc) {
2274 if (qc->tf.flags & ATA_TFLAG_POLLING)
2275 qc = NULL;
2276 else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2277 qc = NULL;
2278 }
8f767f8a
ML
2279 return qc;
2280}
2281
29d187bb
ML
2282static void mv_pmp_error_handler(struct ata_port *ap)
2283{
2284 unsigned int pmp, pmp_map;
2285 struct mv_port_priv *pp = ap->private_data;
2286
2287 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2288 /*
2289 * Perform NCQ error analysis on failed PMPs
2290 * before we freeze the port entirely.
2291 *
2292 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2293 */
2294 pmp_map = pp->delayed_eh_pmp_map;
2295 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2296 for (pmp = 0; pmp_map != 0; pmp++) {
2297 unsigned int this_pmp = (1 << pmp);
2298 if (pmp_map & this_pmp) {
2299 struct ata_link *link = &ap->pmp_link[pmp];
2300 pmp_map &= ~this_pmp;
2301 ata_eh_analyze_ncq_error(link);
2302 }
2303 }
2304 ata_port_freeze(ap);
2305 }
2306 sata_pmp_error_handler(ap);
2307}
2308
4c299ca3
ML
2309static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2310{
2311 void __iomem *port_mmio = mv_ap_base(ap);
2312
2313 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
2314}
2315
4c299ca3
ML
2316static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2317{
2318 struct ata_eh_info *ehi;
2319 unsigned int pmp;
2320
2321 /*
2322 * Initialize EH info for PMPs which saw device errors
2323 */
2324 ehi = &ap->link.eh_info;
2325 for (pmp = 0; pmp_map != 0; pmp++) {
2326 unsigned int this_pmp = (1 << pmp);
2327 if (pmp_map & this_pmp) {
2328 struct ata_link *link = &ap->pmp_link[pmp];
2329
2330 pmp_map &= ~this_pmp;
2331 ehi = &link->eh_info;
2332 ata_ehi_clear_desc(ehi);
2333 ata_ehi_push_desc(ehi, "dev err");
2334 ehi->err_mask |= AC_ERR_DEV;
2335 ehi->action |= ATA_EH_RESET;
2336 ata_link_abort(link);
2337 }
2338 }
2339}
2340
06aaca3f
ML
2341static int mv_req_q_empty(struct ata_port *ap)
2342{
2343 void __iomem *port_mmio = mv_ap_base(ap);
2344 u32 in_ptr, out_ptr;
2345
2346 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
2347 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2348 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
2349 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2350 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2351}
2352
4c299ca3
ML
2353static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2354{
2355 struct mv_port_priv *pp = ap->private_data;
2356 int failed_links;
2357 unsigned int old_map, new_map;
2358
2359 /*
2360 * Device error during FBS+NCQ operation:
2361 *
2362 * Set a port flag to prevent further I/O being enqueued.
2363 * Leave the EDMA running to drain outstanding commands from this port.
2364 * Perform the post-mortem/EH only when all responses are complete.
2365 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2366 */
2367 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2368 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2369 pp->delayed_eh_pmp_map = 0;
2370 }
2371 old_map = pp->delayed_eh_pmp_map;
2372 new_map = old_map | mv_get_err_pmp_map(ap);
2373
2374 if (old_map != new_map) {
2375 pp->delayed_eh_pmp_map = new_map;
2376 mv_pmp_eh_prep(ap, new_map & ~old_map);
2377 }
c46938cc 2378 failed_links = hweight16(new_map);
4c299ca3
ML
2379
2380 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2381 "failed_links=%d nr_active_links=%d\n",
2382 __func__, pp->delayed_eh_pmp_map,
2383 ap->qc_active, failed_links,
2384 ap->nr_active_links);
2385
06aaca3f 2386 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2387 mv_process_crpb_entries(ap, pp);
2388 mv_stop_edma(ap);
2389 mv_eh_freeze(ap);
2390 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2391 return 1; /* handled */
2392 }
2393 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2394 return 1; /* handled */
2395}
2396
2397static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2398{
2399 /*
2400 * Possible future enhancement:
2401 *
2402 * FBS+non-NCQ operation is not yet implemented.
2403 * See related notes in mv_edma_cfg().
2404 *
2405 * Device error during FBS+non-NCQ operation:
2406 *
2407 * We need to snapshot the shadow registers for each failed command.
2408 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2409 */
2410 return 0; /* not handled */
2411}
2412
2413static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2414{
2415 struct mv_port_priv *pp = ap->private_data;
2416
2417 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2418 return 0; /* EDMA was not active: not handled */
2419 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2420 return 0; /* FBS was not active: not handled */
2421
2422 if (!(edma_err_cause & EDMA_ERR_DEV))
2423 return 0; /* non DEV error: not handled */
2424 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2425 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2426 return 0; /* other problems: not handled */
2427
2428 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2429 /*
2430 * EDMA should NOT have self-disabled for this case.
2431 * If it did, then something is wrong elsewhere,
2432 * and we cannot handle it here.
2433 */
2434 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2435 ata_port_printk(ap, KERN_WARNING,
2436 "%s: err_cause=0x%x pp_flags=0x%x\n",
2437 __func__, edma_err_cause, pp->pp_flags);
2438 return 0; /* not handled */
2439 }
2440 return mv_handle_fbs_ncq_dev_err(ap);
2441 } else {
2442 /*
2443 * EDMA should have self-disabled for this case.
2444 * If it did not, then something is wrong elsewhere,
2445 * and we cannot handle it here.
2446 */
2447 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2448 ata_port_printk(ap, KERN_WARNING,
2449 "%s: err_cause=0x%x pp_flags=0x%x\n",
2450 __func__, edma_err_cause, pp->pp_flags);
2451 return 0; /* not handled */
2452 }
2453 return mv_handle_fbs_non_ncq_dev_err(ap);
2454 }
2455 return 0; /* not handled */
2456}
2457
a9010329 2458static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2459{
8f767f8a 2460 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2461 char *when = "idle";
8f767f8a 2462
8f767f8a 2463 ata_ehi_clear_desc(ehi);
a9010329
ML
2464 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2465 when = "disabled";
2466 } else if (edma_was_enabled) {
2467 when = "EDMA enabled";
8f767f8a
ML
2468 } else {
2469 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2470 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2471 when = "polling";
8f767f8a 2472 }
a9010329 2473 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2474 ehi->err_mask |= AC_ERR_OTHER;
2475 ehi->action |= ATA_EH_RESET;
2476 ata_port_freeze(ap);
2477}
2478
05b308e1
BR
2479/**
2480 * mv_err_intr - Handle error interrupts on the port
2481 * @ap: ATA channel to manipulate
2482 *
8d07379d
ML
2483 * Most cases require a full reset of the chip's state machine,
2484 * which also performs a COMRESET.
2485 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2486 *
2487 * LOCKING:
2488 * Inherited from caller.
2489 */
37b9046a 2490static void mv_err_intr(struct ata_port *ap)
31961943
BR
2491{
2492 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2493 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2494 u32 fis_cause = 0;
bdd4ddde
JG
2495 struct mv_port_priv *pp = ap->private_data;
2496 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2497 unsigned int action = 0, err_mask = 0;
9af5c9c9 2498 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2499 struct ata_queued_cmd *qc;
2500 int abort = 0;
20f733e7 2501
8d07379d 2502 /*
37b9046a 2503 * Read and clear the SError and err_cause bits.
e4006077
ML
2504 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2505 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2506 */
37b9046a
ML
2507 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2508 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2509
bdd4ddde 2510 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
e4006077
ML
2511 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2512 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
2513 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
2514 }
8d07379d 2515 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
bdd4ddde 2516
4c299ca3
ML
2517 if (edma_err_cause & EDMA_ERR_DEV) {
2518 /*
2519 * Device errors during FIS-based switching operation
2520 * require special handling.
2521 */
2522 if (mv_handle_dev_err(ap, edma_err_cause))
2523 return;
2524 }
2525
37b9046a
ML
2526 qc = mv_get_active_qc(ap);
2527 ata_ehi_clear_desc(ehi);
2528 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2529 edma_err_cause, pp->pp_flags);
e4006077 2530
c443c500 2531 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2532 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
c443c500
ML
2533 if (fis_cause & SATA_FIS_IRQ_AN) {
2534 u32 ec = edma_err_cause &
2535 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2536 sata_async_notification(ap);
2537 if (!ec)
2538 return; /* Just an AN; no need for the nukes */
2539 ata_ehi_push_desc(ehi, "SDB notify");
2540 }
2541 }
bdd4ddde 2542 /*
352fab70 2543 * All generations share these EDMA error cause bits:
bdd4ddde 2544 */
37b9046a 2545 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2546 err_mask |= AC_ERR_DEV;
37b9046a
ML
2547 action |= ATA_EH_RESET;
2548 ata_ehi_push_desc(ehi, "dev error");
2549 }
bdd4ddde 2550 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2551 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2552 EDMA_ERR_INTRL_PAR)) {
2553 err_mask |= AC_ERR_ATA_BUS;
cf480626 2554 action |= ATA_EH_RESET;
b64bbc39 2555 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2556 }
2557 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2558 ata_ehi_hotplugged(ehi);
2559 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2560 "dev disconnect" : "dev connect");
cf480626 2561 action |= ATA_EH_RESET;
bdd4ddde
JG
2562 }
2563
352fab70
ML
2564 /*
2565 * Gen-I has a different SELF_DIS bit,
2566 * different FREEZE bits, and no SERR bit:
2567 */
ee9ccdf7 2568 if (IS_GEN_I(hpriv)) {
bdd4ddde 2569 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2570 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2571 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2572 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2573 }
2574 } else {
2575 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2576 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2577 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2578 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2579 }
bdd4ddde 2580 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2581 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2582 err_mask |= AC_ERR_ATA_BUS;
cf480626 2583 action |= ATA_EH_RESET;
bdd4ddde 2584 }
afb0edd9 2585 }
20f733e7 2586
bdd4ddde
JG
2587 if (!err_mask) {
2588 err_mask = AC_ERR_OTHER;
cf480626 2589 action |= ATA_EH_RESET;
bdd4ddde
JG
2590 }
2591
2592 ehi->serror |= serr;
2593 ehi->action |= action;
2594
2595 if (qc)
2596 qc->err_mask |= err_mask;
2597 else
2598 ehi->err_mask |= err_mask;
2599
37b9046a
ML
2600 if (err_mask == AC_ERR_DEV) {
2601 /*
2602 * Cannot do ata_port_freeze() here,
2603 * because it would kill PIO access,
2604 * which is needed for further diagnosis.
2605 */
2606 mv_eh_freeze(ap);
2607 abort = 1;
2608 } else if (edma_err_cause & eh_freeze_mask) {
2609 /*
2610 * Note to self: ata_port_freeze() calls ata_port_abort()
2611 */
bdd4ddde 2612 ata_port_freeze(ap);
37b9046a
ML
2613 } else {
2614 abort = 1;
2615 }
2616
2617 if (abort) {
2618 if (qc)
2619 ata_link_abort(qc->dev->link);
2620 else
2621 ata_port_abort(ap);
2622 }
bdd4ddde
JG
2623}
2624
fcfb1f77
ML
2625static void mv_process_crpb_response(struct ata_port *ap,
2626 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2627{
2628 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2629
2630 if (qc) {
2631 u8 ata_status;
2632 u16 edma_status = le16_to_cpu(response->flags);
2633 /*
2634 * edma_status from a response queue entry:
2635 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
2636 * MSB is saved ATA status from command completion.
2637 */
2638 if (!ncq_enabled) {
2639 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2640 if (err_cause) {
2641 /*
2642 * Error will be seen/handled by mv_err_intr().
2643 * So do nothing at all here.
2644 */
2645 return;
2646 }
2647 }
2648 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
37b9046a
ML
2649 if (!ac_err_mask(ata_status))
2650 ata_qc_complete(qc);
2651 /* else: leave it for mv_err_intr() */
fcfb1f77
ML
2652 } else {
2653 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2654 __func__, tag);
2655 }
2656}
2657
2658static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2659{
2660 void __iomem *port_mmio = mv_ap_base(ap);
2661 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2662 u32 in_index;
bdd4ddde 2663 bool work_done = false;
fcfb1f77 2664 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2665
fcfb1f77 2666 /* Get the hardware queue position index */
bdd4ddde
JG
2667 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2668 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2669
fcfb1f77
ML
2670 /* Process new responses from since the last time we looked */
2671 while (in_index != pp->resp_idx) {
6c1153e0 2672 unsigned int tag;
fcfb1f77 2673 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2674
fcfb1f77 2675 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2676
fcfb1f77
ML
2677 if (IS_GEN_I(hpriv)) {
2678 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2679 tag = ap->link.active_tag;
fcfb1f77
ML
2680 } else {
2681 /* Gen II/IIE: get command tag from CRPB entry */
2682 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2683 }
fcfb1f77 2684 mv_process_crpb_response(ap, response, tag, ncq_enabled);
bdd4ddde 2685 work_done = true;
bdd4ddde
JG
2686 }
2687
352fab70 2688 /* Update the software queue position index in hardware */
bdd4ddde
JG
2689 if (work_done)
2690 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2691 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
bdd4ddde 2692 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
20f733e7
BR
2693}
2694
a9010329
ML
2695static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2696{
2697 struct mv_port_priv *pp;
2698 int edma_was_enabled;
2699
2700 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2701 mv_unexpected_intr(ap, 0);
2702 return;
2703 }
2704 /*
2705 * Grab a snapshot of the EDMA_EN flag setting,
2706 * so that we have a consistent view for this port,
2707 * even if something we call of our routines changes it.
2708 */
2709 pp = ap->private_data;
2710 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2711 /*
2712 * Process completed CRPB response(s) before other events.
2713 */
2714 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2715 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2716 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2717 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2718 }
2719 /*
2720 * Handle chip-reported errors, or continue on to handle PIO.
2721 */
2722 if (unlikely(port_cause & ERR_IRQ)) {
2723 mv_err_intr(ap);
2724 } else if (!edma_was_enabled) {
2725 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2726 if (qc)
2727 ata_sff_host_intr(ap, qc);
2728 else
2729 mv_unexpected_intr(ap, edma_was_enabled);
2730 }
2731}
2732
05b308e1
BR
2733/**
2734 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2735 * @host: host specific structure
7368f919 2736 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2737 *
2738 * LOCKING:
2739 * Inherited from caller.
2740 */
7368f919 2741static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2742{
f351b2d6 2743 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2744 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2745 unsigned int handled = 0, port;
20f733e7 2746
2b748a0a
ML
2747 /* If asserted, clear the "all ports" IRQ coalescing bit */
2748 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2749 writel(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
2750
a3718c1f 2751 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2752 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2753 unsigned int p, shift, hardport, port_cause;
2754
a3718c1f 2755 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2756 /*
eabd5eb1
ML
2757 * Each hc within the host has its own hc_irq_cause register,
2758 * where the interrupting ports bits get ack'd.
a3718c1f 2759 */
eabd5eb1
ML
2760 if (hardport == 0) { /* first port on this hc ? */
2761 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2762 u32 port_mask, ack_irqs;
2763 /*
2764 * Skip this entire hc if nothing pending for any ports
2765 */
2766 if (!hc_cause) {
2767 port += MV_PORTS_PER_HC - 1;
2768 continue;
2769 }
2770 /*
2771 * We don't need/want to read the hc_irq_cause register,
2772 * because doing so hurts performance, and
2773 * main_irq_cause already gives us everything we need.
2774 *
2775 * But we do have to *write* to the hc_irq_cause to ack
2776 * the ports that we are handling this time through.
2777 *
2778 * This requires that we create a bitmap for those
2779 * ports which interrupted us, and use that bitmap
2780 * to ack (only) those ports via hc_irq_cause.
2781 */
2782 ack_irqs = 0;
2b748a0a
ML
2783 if (hc_cause & PORTS_0_3_COAL_DONE)
2784 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2785 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2786 if ((port + p) >= hpriv->n_ports)
2787 break;
2788 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2789 if (hc_cause & port_mask)
2790 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2791 }
a3718c1f 2792 hc_mmio = mv_hc_base_from_port(mmio, port);
eabd5eb1 2793 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
a3718c1f
ML
2794 handled = 1;
2795 }
8f767f8a 2796 /*
a9010329 2797 * Handle interrupts signalled for this port:
8f767f8a 2798 */
a9010329
ML
2799 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2800 if (port_cause)
2801 mv_port_intr(ap, port_cause);
20f733e7 2802 }
a3718c1f 2803 return handled;
20f733e7
BR
2804}
2805
a3718c1f 2806static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2807{
02a121da 2808 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2809 struct ata_port *ap;
2810 struct ata_queued_cmd *qc;
2811 struct ata_eh_info *ehi;
2812 unsigned int i, err_mask, printed = 0;
2813 u32 err_cause;
2814
02a121da 2815 err_cause = readl(mmio + hpriv->irq_cause_ofs);
bdd4ddde
JG
2816
2817 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2818 err_cause);
2819
2820 DPRINTK("All regs @ PCI error\n");
2821 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2822
02a121da 2823 writelfl(0, mmio + hpriv->irq_cause_ofs);
bdd4ddde
JG
2824
2825 for (i = 0; i < host->n_ports; i++) {
2826 ap = host->ports[i];
936fd732 2827 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2828 ehi = &ap->link.eh_info;
bdd4ddde
JG
2829 ata_ehi_clear_desc(ehi);
2830 if (!printed++)
2831 ata_ehi_push_desc(ehi,
2832 "PCI err cause 0x%08x", err_cause);
2833 err_mask = AC_ERR_HOST_BUS;
cf480626 2834 ehi->action = ATA_EH_RESET;
9af5c9c9 2835 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2836 if (qc)
2837 qc->err_mask |= err_mask;
2838 else
2839 ehi->err_mask |= err_mask;
2840
2841 ata_port_freeze(ap);
2842 }
2843 }
a3718c1f 2844 return 1; /* handled */
bdd4ddde
JG
2845}
2846
05b308e1 2847/**
c5d3e45a 2848 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2849 * @irq: unused
2850 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2851 *
2852 * Read the read only register to determine if any host
2853 * controllers have pending interrupts. If so, call lower level
2854 * routine to handle. Also check for PCI errors which are only
2855 * reported here.
2856 *
8b260248 2857 * LOCKING:
cca3974e 2858 * This routine holds the host lock while processing pending
05b308e1
BR
2859 * interrupts.
2860 */
7d12e780 2861static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 2862{
cca3974e 2863 struct ata_host *host = dev_instance;
f351b2d6 2864 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 2865 unsigned int handled = 0;
6d3c30ef 2866 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 2867 u32 main_irq_cause, pending_irqs;
20f733e7 2868
646a4da5 2869 spin_lock(&host->lock);
6d3c30ef
ML
2870
2871 /* for MSI: block new interrupts while in here */
2872 if (using_msi)
2b748a0a 2873 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 2874
7368f919 2875 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 2876 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
2877 /*
2878 * Deal with cases where we either have nothing pending, or have read
2879 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 2880 */
a44253d2 2881 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 2882 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
2883 handled = mv_pci_error(host, hpriv->base);
2884 else
a44253d2 2885 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 2886 }
6d3c30ef
ML
2887
2888 /* for MSI: unmask; interrupt cause bits will retrigger now */
2889 if (using_msi)
2b748a0a 2890 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 2891
9d51af7b
ML
2892 spin_unlock(&host->lock);
2893
20f733e7
BR
2894 return IRQ_RETVAL(handled);
2895}
2896
c9d39130
JG
2897static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2898{
2899 unsigned int ofs;
2900
2901 switch (sc_reg_in) {
2902 case SCR_STATUS:
2903 case SCR_ERROR:
2904 case SCR_CONTROL:
2905 ofs = sc_reg_in * sizeof(u32);
2906 break;
2907 default:
2908 ofs = 0xffffffffU;
2909 break;
2910 }
2911 return ofs;
2912}
2913
82ef04fb 2914static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 2915{
82ef04fb 2916 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 2917 void __iomem *mmio = hpriv->base;
82ef04fb 2918 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
2919 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2920
da3dbb17
TH
2921 if (ofs != 0xffffffffU) {
2922 *val = readl(addr + ofs);
2923 return 0;
2924 } else
2925 return -EINVAL;
c9d39130
JG
2926}
2927
82ef04fb 2928static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 2929{
82ef04fb 2930 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 2931 void __iomem *mmio = hpriv->base;
82ef04fb 2932 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
2933 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2934
da3dbb17 2935 if (ofs != 0xffffffffU) {
0d5ff566 2936 writelfl(val, addr + ofs);
da3dbb17
TH
2937 return 0;
2938 } else
2939 return -EINVAL;
c9d39130
JG
2940}
2941
7bb3c529 2942static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 2943{
7bb3c529 2944 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
2945 int early_5080;
2946
44c10138 2947 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
2948
2949 if (!early_5080) {
2950 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2951 tmp |= (1 << 0);
2952 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2953 }
2954
7bb3c529 2955 mv_reset_pci_bus(host, mmio);
522479fb
JG
2956}
2957
2958static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2959{
8e7decdb 2960 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
522479fb
JG
2961}
2962
47c2b677 2963static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
2964 void __iomem *mmio)
2965{
c9d39130
JG
2966 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2967 u32 tmp;
2968
2969 tmp = readl(phy_mmio + MV5_PHY_MODE);
2970
2971 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2972 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
2973}
2974
47c2b677 2975static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 2976{
522479fb
JG
2977 u32 tmp;
2978
8e7decdb 2979 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
522479fb
JG
2980
2981 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2982
2983 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2984 tmp |= ~(1 << 0);
2985 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
2986}
2987
2a47ce06
JG
2988static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2989 unsigned int port)
bca1c4eb 2990{
c9d39130
JG
2991 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2992 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2993 u32 tmp;
2994 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2995
2996 if (fix_apm_sq) {
8e7decdb 2997 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
c9d39130 2998 tmp |= (1 << 19);
8e7decdb 2999 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
c9d39130 3000
8e7decdb 3001 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
c9d39130
JG
3002 tmp &= ~0x3;
3003 tmp |= 0x1;
8e7decdb 3004 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
c9d39130
JG
3005 }
3006
3007 tmp = readl(phy_mmio + MV5_PHY_MODE);
3008 tmp &= ~mask;
3009 tmp |= hpriv->signal[port].pre;
3010 tmp |= hpriv->signal[port].amps;
3011 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3012}
3013
c9d39130
JG
3014
3015#undef ZERO
3016#define ZERO(reg) writel(0, port_mmio + (reg))
3017static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3018 unsigned int port)
3019{
3020 void __iomem *port_mmio = mv_port_base(mmio, port);
3021
e12bef50 3022 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3023
3024 ZERO(0x028); /* command */
3025 writel(0x11f, port_mmio + EDMA_CFG_OFS);
3026 ZERO(0x004); /* timer */
3027 ZERO(0x008); /* irq err cause */
3028 ZERO(0x00c); /* irq err mask */
3029 ZERO(0x010); /* rq bah */
3030 ZERO(0x014); /* rq inp */
3031 ZERO(0x018); /* rq outp */
3032 ZERO(0x01c); /* respq bah */
3033 ZERO(0x024); /* respq outp */
3034 ZERO(0x020); /* respq inp */
3035 ZERO(0x02c); /* test control */
8e7decdb 3036 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
c9d39130
JG
3037}
3038#undef ZERO
3039
3040#define ZERO(reg) writel(0, hc_mmio + (reg))
3041static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3042 unsigned int hc)
47c2b677 3043{
c9d39130
JG
3044 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3045 u32 tmp;
3046
3047 ZERO(0x00c);
3048 ZERO(0x010);
3049 ZERO(0x014);
3050 ZERO(0x018);
3051
3052 tmp = readl(hc_mmio + 0x20);
3053 tmp &= 0x1c1c1c1c;
3054 tmp |= 0x03030303;
3055 writel(tmp, hc_mmio + 0x20);
3056}
3057#undef ZERO
3058
3059static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3060 unsigned int n_hc)
3061{
3062 unsigned int hc, port;
3063
3064 for (hc = 0; hc < n_hc; hc++) {
3065 for (port = 0; port < MV_PORTS_PER_HC; port++)
3066 mv5_reset_hc_port(hpriv, mmio,
3067 (hc * MV_PORTS_PER_HC) + port);
3068
3069 mv5_reset_one_hc(hpriv, mmio, hc);
3070 }
3071
3072 return 0;
47c2b677
JG
3073}
3074
101ffae2
JG
3075#undef ZERO
3076#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3077static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3078{
02a121da 3079 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3080 u32 tmp;
3081
8e7decdb 3082 tmp = readl(mmio + MV_PCI_MODE_OFS);
101ffae2 3083 tmp &= 0xff00ffff;
8e7decdb 3084 writel(tmp, mmio + MV_PCI_MODE_OFS);
101ffae2
JG
3085
3086 ZERO(MV_PCI_DISC_TIMER);
3087 ZERO(MV_PCI_MSI_TRIGGER);
8e7decdb 3088 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
101ffae2 3089 ZERO(MV_PCI_SERR_MASK);
02a121da
ML
3090 ZERO(hpriv->irq_cause_ofs);
3091 ZERO(hpriv->irq_mask_ofs);
101ffae2
JG
3092 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3093 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3094 ZERO(MV_PCI_ERR_ATTRIBUTE);
3095 ZERO(MV_PCI_ERR_COMMAND);
3096}
3097#undef ZERO
3098
3099static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3100{
3101 u32 tmp;
3102
3103 mv5_reset_flash(hpriv, mmio);
3104
8e7decdb 3105 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
101ffae2
JG
3106 tmp &= 0x3;
3107 tmp |= (1 << 5) | (1 << 6);
8e7decdb 3108 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
101ffae2
JG
3109}
3110
3111/**
3112 * mv6_reset_hc - Perform the 6xxx global soft reset
3113 * @mmio: base address of the HBA
3114 *
3115 * This routine only applies to 6xxx parts.
3116 *
3117 * LOCKING:
3118 * Inherited from caller.
3119 */
c9d39130
JG
3120static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3121 unsigned int n_hc)
101ffae2
JG
3122{
3123 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
3124 int i, rc = 0;
3125 u32 t;
3126
3127 /* Following procedure defined in PCI "main command and status
3128 * register" table.
3129 */
3130 t = readl(reg);
3131 writel(t | STOP_PCI_MASTER, reg);
3132
3133 for (i = 0; i < 1000; i++) {
3134 udelay(1);
3135 t = readl(reg);
2dcb407e 3136 if (PCI_MASTER_EMPTY & t)
101ffae2 3137 break;
101ffae2
JG
3138 }
3139 if (!(PCI_MASTER_EMPTY & t)) {
3140 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3141 rc = 1;
3142 goto done;
3143 }
3144
3145 /* set reset */
3146 i = 5;
3147 do {
3148 writel(t | GLOB_SFT_RST, reg);
3149 t = readl(reg);
3150 udelay(1);
3151 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3152
3153 if (!(GLOB_SFT_RST & t)) {
3154 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3155 rc = 1;
3156 goto done;
3157 }
3158
3159 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3160 i = 5;
3161 do {
3162 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3163 t = readl(reg);
3164 udelay(1);
3165 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3166
3167 if (GLOB_SFT_RST & t) {
3168 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3169 rc = 1;
3170 }
3171done:
3172 return rc;
3173}
3174
47c2b677 3175static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3176 void __iomem *mmio)
3177{
3178 void __iomem *port_mmio;
3179 u32 tmp;
3180
8e7decdb 3181 tmp = readl(mmio + MV_RESET_CFG_OFS);
ba3fe8fb 3182 if ((tmp & (1 << 0)) == 0) {
47c2b677 3183 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3184 hpriv->signal[idx].pre = 0x1 << 5;
3185 return;
3186 }
3187
3188 port_mmio = mv_port_base(mmio, idx);
ba68460b 3189 tmp = readl(port_mmio + PHY_MODE2_OFS);
ba3fe8fb
JG
3190
3191 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3192 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3193}
3194
47c2b677 3195static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3196{
8e7decdb 3197 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
ba3fe8fb
JG
3198}
3199
c9d39130 3200static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3201 unsigned int port)
bca1c4eb 3202{
c9d39130
JG
3203 void __iomem *port_mmio = mv_port_base(mmio, port);
3204
bca1c4eb 3205 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3206 int fix_phy_mode2 =
3207 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3208 int fix_phy_mode4 =
47c2b677 3209 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3210 u32 m2, m3;
47c2b677
JG
3211
3212 if (fix_phy_mode2) {
ba68460b 3213 m2 = readl(port_mmio + PHY_MODE2_OFS);
47c2b677
JG
3214 m2 &= ~(1 << 16);
3215 m2 |= (1 << 31);
ba68460b 3216 writel(m2, port_mmio + PHY_MODE2_OFS);
47c2b677
JG
3217
3218 udelay(200);
3219
ba68460b 3220 m2 = readl(port_mmio + PHY_MODE2_OFS);
47c2b677 3221 m2 &= ~((1 << 16) | (1 << 31));
ba68460b 3222 writel(m2, port_mmio + PHY_MODE2_OFS);
47c2b677
JG
3223
3224 udelay(200);
3225 }
3226
8c30a8b9 3227 /*
ba68460b 3228 * Gen-II/IIe PHY_MODE3_OFS errata RM#2:
8c30a8b9
ML
3229 * Achieves better receiver noise performance than the h/w default:
3230 */
ba68460b 3231 m3 = readl(port_mmio + PHY_MODE3_OFS);
8c30a8b9 3232 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3233
0388a8c0
ML
3234 /* Guideline 88F5182 (GL# SATA-S11) */
3235 if (IS_SOC(hpriv))
3236 m3 &= ~0x1c;
3237
bca1c4eb 3238 if (fix_phy_mode4) {
ba68460b 3239 u32 m4 = readl(port_mmio + PHY_MODE4_OFS);
ba069e37
ML
3240 /*
3241 * Enforce reserved-bit restrictions on GenIIe devices only.
3242 * For earlier chipsets, force only the internal config field
3243 * (workaround for errata FEr SATA#10 part 1).
3244 */
8c30a8b9 3245 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3246 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3247 else
3248 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
ba68460b 3249 writel(m4, port_mmio + PHY_MODE4_OFS);
bca1c4eb 3250 }
b406c7a6
ML
3251 /*
3252 * Workaround for 60x1-B2 errata SATA#13:
3253 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3254 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3255 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6 3256 */
ba68460b 3257 writel(m3, port_mmio + PHY_MODE3_OFS);
bca1c4eb
JG
3258
3259 /* Revert values of pre-emphasis and signal amps to the saved ones */
ba68460b 3260 m2 = readl(port_mmio + PHY_MODE2_OFS);
bca1c4eb
JG
3261
3262 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3263 m2 |= hpriv->signal[port].amps;
3264 m2 |= hpriv->signal[port].pre;
47c2b677 3265 m2 &= ~(1 << 16);
bca1c4eb 3266
e4e7b892
JG
3267 /* according to mvSata 3.6.1, some IIE values are fixed */
3268 if (IS_GEN_IIE(hpriv)) {
3269 m2 &= ~0xC30FF01F;
3270 m2 |= 0x0000900F;
3271 }
3272
ba68460b 3273 writel(m2, port_mmio + PHY_MODE2_OFS);
bca1c4eb
JG
3274}
3275
f351b2d6
SB
3276/* TODO: use the generic LED interface to configure the SATA Presence */
3277/* & Acitivy LEDs on the board */
3278static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3279 void __iomem *mmio)
3280{
3281 return;
3282}
3283
3284static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3285 void __iomem *mmio)
3286{
3287 void __iomem *port_mmio;
3288 u32 tmp;
3289
3290 port_mmio = mv_port_base(mmio, idx);
ba68460b 3291 tmp = readl(port_mmio + PHY_MODE2_OFS);
f351b2d6
SB
3292
3293 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3294 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3295}
3296
3297#undef ZERO
3298#define ZERO(reg) writel(0, port_mmio + (reg))
3299static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3300 void __iomem *mmio, unsigned int port)
3301{
3302 void __iomem *port_mmio = mv_port_base(mmio, port);
3303
e12bef50 3304 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3305
3306 ZERO(0x028); /* command */
3307 writel(0x101f, port_mmio + EDMA_CFG_OFS);
3308 ZERO(0x004); /* timer */
3309 ZERO(0x008); /* irq err cause */
3310 ZERO(0x00c); /* irq err mask */
3311 ZERO(0x010); /* rq bah */
3312 ZERO(0x014); /* rq inp */
3313 ZERO(0x018); /* rq outp */
3314 ZERO(0x01c); /* respq bah */
3315 ZERO(0x024); /* respq outp */
3316 ZERO(0x020); /* respq inp */
3317 ZERO(0x02c); /* test control */
8e7decdb 3318 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
f351b2d6
SB
3319}
3320
3321#undef ZERO
3322
3323#define ZERO(reg) writel(0, hc_mmio + (reg))
3324static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3325 void __iomem *mmio)
3326{
3327 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3328
3329 ZERO(0x00c);
3330 ZERO(0x010);
3331 ZERO(0x014);
3332
3333}
3334
3335#undef ZERO
3336
3337static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3338 void __iomem *mmio, unsigned int n_hc)
3339{
3340 unsigned int port;
3341
3342 for (port = 0; port < hpriv->n_ports; port++)
3343 mv_soc_reset_hc_port(hpriv, mmio, port);
3344
3345 mv_soc_reset_one_hc(hpriv, mmio);
3346
3347 return 0;
3348}
3349
3350static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3351 void __iomem *mmio)
3352{
3353 return;
3354}
3355
3356static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3357{
3358 return;
3359}
3360
8e7decdb 3361static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3362{
8e7decdb 3363 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
b67a1064 3364
8e7decdb 3365 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3366 if (want_gen2i)
8e7decdb
ML
3367 ifcfg |= (1 << 7); /* enable gen2i speed */
3368 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
b67a1064
ML
3369}
3370
e12bef50 3371static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3372 unsigned int port_no)
3373{
3374 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3375
8e7decdb
ML
3376 /*
3377 * The datasheet warns against setting EDMA_RESET when EDMA is active
3378 * (but doesn't say what the problem might be). So we first try
3379 * to disable the EDMA engine before doing the EDMA_RESET operation.
3380 */
0d8be5cb 3381 mv_stop_edma_engine(port_mmio);
8e7decdb 3382 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
c9d39130 3383
b67a1064 3384 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3385 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3386 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3387 }
b67a1064 3388 /*
8e7decdb 3389 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064
ML
3390 * link, and physical layers. It resets all SATA interface registers
3391 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
c9d39130 3392 */
8e7decdb 3393 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
b67a1064 3394 udelay(25); /* allow reset propagation */
c9d39130
JG
3395 writelfl(0, port_mmio + EDMA_CMD_OFS);
3396
3397 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3398
ee9ccdf7 3399 if (IS_GEN_I(hpriv))
c9d39130
JG
3400 mdelay(1);
3401}
3402
e49856d8 3403static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3404{
e49856d8
ML
3405 if (sata_pmp_supported(ap)) {
3406 void __iomem *port_mmio = mv_ap_base(ap);
3407 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
3408 int old = reg & 0xf;
22374677 3409
e49856d8
ML
3410 if (old != pmp) {
3411 reg = (reg & ~0xf) | pmp;
3412 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
3413 }
22374677 3414 }
20f733e7
BR
3415}
3416
e49856d8
ML
3417static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3418 unsigned long deadline)
22374677 3419{
e49856d8
ML
3420 mv_pmp_select(link->ap, sata_srst_pmp(link));
3421 return sata_std_hardreset(link, class, deadline);
3422}
bdd4ddde 3423
e49856d8
ML
3424static int mv_softreset(struct ata_link *link, unsigned int *class,
3425 unsigned long deadline)
3426{
3427 mv_pmp_select(link->ap, sata_srst_pmp(link));
3428 return ata_sff_softreset(link, class, deadline);
22374677
JG
3429}
3430
cc0680a5 3431static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3432 unsigned long deadline)
31961943 3433{
cc0680a5 3434 struct ata_port *ap = link->ap;
bdd4ddde 3435 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3436 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3437 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3438 int rc, attempts = 0, extra = 0;
3439 u32 sstatus;
3440 bool online;
31961943 3441
e12bef50 3442 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3443 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3444 pp->pp_flags &=
3445 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3446
0d8be5cb
ML
3447 /* Workaround for errata FEr SATA#10 (part 2) */
3448 do {
17c5aab5
ML
3449 const unsigned long *timing =
3450 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3451
17c5aab5
ML
3452 rc = sata_link_hardreset(link, timing, deadline + extra,
3453 &online, NULL);
9dcffd99 3454 rc = online ? -EAGAIN : rc;
17c5aab5 3455 if (rc)
0d8be5cb 3456 return rc;
0d8be5cb
ML
3457 sata_scr_read(link, SCR_STATUS, &sstatus);
3458 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3459 /* Force 1.5gb/s link speed and try again */
8e7decdb 3460 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3461 if (time_after(jiffies + HZ, deadline))
3462 extra = HZ; /* only extend it once, max */
3463 }
3464 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3465 mv_save_cached_regs(ap);
66e57a2c 3466 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3467
17c5aab5 3468 return rc;
bdd4ddde
JG
3469}
3470
bdd4ddde
JG
3471static void mv_eh_freeze(struct ata_port *ap)
3472{
1cfd19ae 3473 mv_stop_edma(ap);
c4de573b 3474 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3475}
3476
3477static void mv_eh_thaw(struct ata_port *ap)
3478{
f351b2d6 3479 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3480 unsigned int port = ap->port_no;
3481 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3482 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3483 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3484 u32 hc_irq_cause;
bdd4ddde 3485
bdd4ddde
JG
3486 /* clear EDMA errors on this port */
3487 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
3488
3489 /* clear pending irq events */
cae6edc3 3490 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1cfd19ae 3491 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
bdd4ddde 3492
88e675e1 3493 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3494}
3495
05b308e1
BR
3496/**
3497 * mv_port_init - Perform some early initialization on a single port.
3498 * @port: libata data structure storing shadow register addresses
3499 * @port_mmio: base address of the port
3500 *
3501 * Initialize shadow register mmio addresses, clear outstanding
3502 * interrupts on the port, and unmask interrupts for the future
3503 * start of the port.
3504 *
3505 * LOCKING:
3506 * Inherited from caller.
3507 */
31961943 3508static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3509{
0d5ff566 3510 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
31961943
BR
3511 unsigned serr_ofs;
3512
8b260248 3513 /* PIO related setup
31961943
BR
3514 */
3515 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3516 port->error_addr =
31961943
BR
3517 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3518 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3519 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3520 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3521 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3522 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3523 port->status_addr =
31961943
BR
3524 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3525 /* special case: control/altstatus doesn't have ATA_REG_ address */
3526 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
3527
3528 /* unused: */
8d9db2d2 3529 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
20f733e7 3530
31961943
BR
3531 /* Clear any currently outstanding port interrupt conditions */
3532 serr_ofs = mv_scr_offset(SCR_ERROR);
3533 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
3534 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
3535
646a4da5
ML
3536 /* unmask all non-transient EDMA error interrupts */
3537 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
20f733e7 3538
8b260248 3539 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
31961943
BR
3540 readl(port_mmio + EDMA_CFG_OFS),
3541 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
3542 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
20f733e7
BR
3543}
3544
616d4a98
ML
3545static unsigned int mv_in_pcix_mode(struct ata_host *host)
3546{
3547 struct mv_host_priv *hpriv = host->private_data;
3548 void __iomem *mmio = hpriv->base;
3549 u32 reg;
3550
1f398472 3551 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98
ML
3552 return 0; /* not PCI-X capable */
3553 reg = readl(mmio + MV_PCI_MODE_OFS);
3554 if ((reg & MV_PCI_MODE_MASK) == 0)
3555 return 0; /* conventional PCI mode */
3556 return 1; /* chip is in PCI-X mode */
3557}
3558
3559static int mv_pci_cut_through_okay(struct ata_host *host)
3560{
3561 struct mv_host_priv *hpriv = host->private_data;
3562 void __iomem *mmio = hpriv->base;
3563 u32 reg;
3564
3565 if (!mv_in_pcix_mode(host)) {
3566 reg = readl(mmio + PCI_COMMAND_OFS);
3567 if (reg & PCI_COMMAND_MRDTRIG)
3568 return 0; /* not okay */
3569 }
3570 return 1; /* okay */
3571}
3572
65ad7fef
ML
3573static void mv_60x1b2_errata_pci7(struct ata_host *host)
3574{
3575 struct mv_host_priv *hpriv = host->private_data;
3576 void __iomem *mmio = hpriv->base;
3577
3578 /* workaround for 60x1-B2 errata PCI#7 */
3579 if (mv_in_pcix_mode(host)) {
3580 u32 reg = readl(mmio + PCI_COMMAND_OFS);
3581 writelfl(reg & ~PCI_COMMAND_MWRCOM, mmio + PCI_COMMAND_OFS);
3582 }
3583}
3584
4447d351 3585static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3586{
4447d351
TH
3587 struct pci_dev *pdev = to_pci_dev(host->dev);
3588 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3589 u32 hp_flags = hpriv->hp_flags;
3590
5796d1c4 3591 switch (board_idx) {
47c2b677
JG
3592 case chip_5080:
3593 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3594 hp_flags |= MV_HP_GEN_I;
47c2b677 3595
44c10138 3596 switch (pdev->revision) {
47c2b677
JG
3597 case 0x1:
3598 hp_flags |= MV_HP_ERRATA_50XXB0;
3599 break;
3600 case 0x3:
3601 hp_flags |= MV_HP_ERRATA_50XXB2;
3602 break;
3603 default:
3604 dev_printk(KERN_WARNING, &pdev->dev,
3605 "Applying 50XXB2 workarounds to unknown rev\n");
3606 hp_flags |= MV_HP_ERRATA_50XXB2;
3607 break;
3608 }
3609 break;
3610
bca1c4eb
JG
3611 case chip_504x:
3612 case chip_508x:
47c2b677 3613 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3614 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3615
44c10138 3616 switch (pdev->revision) {
47c2b677
JG
3617 case 0x0:
3618 hp_flags |= MV_HP_ERRATA_50XXB0;
3619 break;
3620 case 0x3:
3621 hp_flags |= MV_HP_ERRATA_50XXB2;
3622 break;
3623 default:
3624 dev_printk(KERN_WARNING, &pdev->dev,
3625 "Applying B2 workarounds to unknown rev\n");
3626 hp_flags |= MV_HP_ERRATA_50XXB2;
3627 break;
bca1c4eb
JG
3628 }
3629 break;
3630
3631 case chip_604x:
3632 case chip_608x:
47c2b677 3633 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3634 hp_flags |= MV_HP_GEN_II;
47c2b677 3635
44c10138 3636 switch (pdev->revision) {
47c2b677 3637 case 0x7:
65ad7fef 3638 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3639 hp_flags |= MV_HP_ERRATA_60X1B2;
3640 break;
3641 case 0x9:
3642 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3643 break;
3644 default:
3645 dev_printk(KERN_WARNING, &pdev->dev,
47c2b677
JG
3646 "Applying B2 workarounds to unknown rev\n");
3647 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3648 break;
3649 }
3650 break;
3651
e4e7b892 3652 case chip_7042:
616d4a98 3653 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3654 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3655 (pdev->device == 0x2300 || pdev->device == 0x2310))
3656 {
4e520033
ML
3657 /*
3658 * Highpoint RocketRAID PCIe 23xx series cards:
3659 *
3660 * Unconfigured drives are treated as "Legacy"
3661 * by the BIOS, and it overwrites sector 8 with
3662 * a "Lgcy" metadata block prior to Linux boot.
3663 *
3664 * Configured drives (RAID or JBOD) leave sector 8
3665 * alone, but instead overwrite a high numbered
3666 * sector for the RAID metadata. This sector can
3667 * be determined exactly, by truncating the physical
3668 * drive capacity to a nice even GB value.
3669 *
3670 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3671 *
3672 * Warn the user, lest they think we're just buggy.
3673 */
3674 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3675 " BIOS CORRUPTS DATA on all attached drives,"
3676 " regardless of if/how they are configured."
3677 " BEWARE!\n");
3678 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3679 " use sectors 8-9 on \"Legacy\" drives,"
3680 " and avoid the final two gigabytes on"
3681 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3682 }
8e7decdb 3683 /* drop through */
e4e7b892
JG
3684 case chip_6042:
3685 hpriv->ops = &mv6xxx_ops;
e4e7b892 3686 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3687 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3688 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3689
44c10138 3690 switch (pdev->revision) {
5cf73bfb 3691 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3692 hp_flags |= MV_HP_ERRATA_60X1C0;
3693 break;
3694 default:
3695 dev_printk(KERN_WARNING, &pdev->dev,
3696 "Applying 60X1C0 workarounds to unknown rev\n");
3697 hp_flags |= MV_HP_ERRATA_60X1C0;
3698 break;
3699 }
3700 break;
f351b2d6
SB
3701 case chip_soc:
3702 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3703 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3704 MV_HP_ERRATA_60X1C0;
f351b2d6 3705 break;
e4e7b892 3706
bca1c4eb 3707 default:
f351b2d6 3708 dev_printk(KERN_ERR, host->dev,
5796d1c4 3709 "BUG: invalid board index %u\n", board_idx);
bca1c4eb
JG
3710 return 1;
3711 }
3712
3713 hpriv->hp_flags = hp_flags;
02a121da
ML
3714 if (hp_flags & MV_HP_PCIE) {
3715 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3716 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3717 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3718 } else {
3719 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3720 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3721 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3722 }
bca1c4eb
JG
3723
3724 return 0;
3725}
3726
05b308e1 3727/**
47c2b677 3728 * mv_init_host - Perform some early initialization of the host.
4447d351
TH
3729 * @host: ATA host to initialize
3730 * @board_idx: controller index
05b308e1
BR
3731 *
3732 * If possible, do an early global reset of the host. Then do
3733 * our port init and clear/unmask all/relevant host interrupts.
3734 *
3735 * LOCKING:
3736 * Inherited from caller.
3737 */
4447d351 3738static int mv_init_host(struct ata_host *host, unsigned int board_idx)
20f733e7
BR
3739{
3740 int rc = 0, n_hc, port, hc;
4447d351 3741 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3742 void __iomem *mmio = hpriv->base;
47c2b677 3743
4447d351 3744 rc = mv_chip_id(host, board_idx);
bca1c4eb 3745 if (rc)
352fab70 3746 goto done;
f351b2d6 3747
1f398472 3748 if (IS_SOC(hpriv)) {
7368f919
ML
3749 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3750 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
1f398472
ML
3751 } else {
3752 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3753 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
f351b2d6 3754 }
352fab70 3755
5d0fb2e7
TR
3756 /* initialize shadow irq mask with register's value */
3757 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3758
352fab70 3759 /* global interrupt mask: 0 == mask everything */
c4de573b 3760 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3761
4447d351 3762 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3763
4447d351 3764 for (port = 0; port < host->n_ports; port++)
47c2b677 3765 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3766
c9d39130 3767 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3768 if (rc)
20f733e7 3769 goto done;
20f733e7 3770
522479fb 3771 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3772 hpriv->ops->reset_bus(host, mmio);
47c2b677 3773 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3774
4447d351 3775 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3776 struct ata_port *ap = host->ports[port];
2a47ce06 3777 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3778
3779 mv_port_init(&ap->ioaddr, port_mmio);
3780
7bb3c529 3781#ifdef CONFIG_PCI
1f398472 3782 if (!IS_SOC(hpriv)) {
f351b2d6
SB
3783 unsigned int offset = port_mmio - mmio;
3784 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3785 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3786 }
7bb3c529 3787#endif
20f733e7
BR
3788 }
3789
3790 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3791 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3792
3793 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3794 "(before clear)=0x%08x\n", hc,
3795 readl(hc_mmio + HC_CFG_OFS),
3796 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3797
3798 /* Clear any currently outstanding hc interrupt conditions */
3799 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
20f733e7
BR
3800 }
3801
44c65d16
ML
3802 if (!IS_SOC(hpriv)) {
3803 /* Clear any currently outstanding host interrupt conditions */
3804 writelfl(0, mmio + hpriv->irq_cause_ofs);
31961943 3805
44c65d16
ML
3806 /* and unmask interrupt generation for host regs */
3807 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3808 }
51de32d2 3809
6be96ac1
ML
3810 /*
3811 * enable only global host interrupts for now.
3812 * The per-port interrupts get done later as ports are set up.
3813 */
3814 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3815 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3816 irq_coalescing_usecs);
f351b2d6
SB
3817done:
3818 return rc;
3819}
fb621e2f 3820
fbf14e2f
BB
3821static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3822{
3823 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3824 MV_CRQB_Q_SZ, 0);
3825 if (!hpriv->crqb_pool)
3826 return -ENOMEM;
3827
3828 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3829 MV_CRPB_Q_SZ, 0);
3830 if (!hpriv->crpb_pool)
3831 return -ENOMEM;
3832
3833 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3834 MV_SG_TBL_SZ, 0);
3835 if (!hpriv->sg_tbl_pool)
3836 return -ENOMEM;
3837
3838 return 0;
3839}
3840
15a32632
LB
3841static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3842 struct mbus_dram_target_info *dram)
3843{
3844 int i;
3845
3846 for (i = 0; i < 4; i++) {
3847 writel(0, hpriv->base + WINDOW_CTRL(i));
3848 writel(0, hpriv->base + WINDOW_BASE(i));
3849 }
3850
3851 for (i = 0; i < dram->num_cs; i++) {
3852 struct mbus_dram_window *cs = dram->cs + i;
3853
3854 writel(((cs->size - 1) & 0xffff0000) |
3855 (cs->mbus_attr << 8) |
3856 (dram->mbus_dram_target_id << 4) | 1,
3857 hpriv->base + WINDOW_CTRL(i));
3858 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3859 }
3860}
3861
f351b2d6
SB
3862/**
3863 * mv_platform_probe - handle a positive probe of an soc Marvell
3864 * host
3865 * @pdev: platform device found
3866 *
3867 * LOCKING:
3868 * Inherited from caller.
3869 */
3870static int mv_platform_probe(struct platform_device *pdev)
3871{
3872 static int printed_version;
3873 const struct mv_sata_platform_data *mv_platform_data;
3874 const struct ata_port_info *ppi[] =
3875 { &mv_port_info[chip_soc], NULL };
3876 struct ata_host *host;
3877 struct mv_host_priv *hpriv;
3878 struct resource *res;
3879 int n_ports, rc;
20f733e7 3880
f351b2d6
SB
3881 if (!printed_version++)
3882 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
bca1c4eb 3883
f351b2d6
SB
3884 /*
3885 * Simple resource validation ..
3886 */
3887 if (unlikely(pdev->num_resources != 2)) {
3888 dev_err(&pdev->dev, "invalid number of resources\n");
3889 return -EINVAL;
3890 }
3891
3892 /*
3893 * Get the register base first
3894 */
3895 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3896 if (res == NULL)
3897 return -EINVAL;
3898
3899 /* allocate host */
3900 mv_platform_data = pdev->dev.platform_data;
3901 n_ports = mv_platform_data->n_ports;
3902
3903 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3904 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3905
3906 if (!host || !hpriv)
3907 return -ENOMEM;
3908 host->private_data = hpriv;
3909 hpriv->n_ports = n_ports;
3910
3911 host->iomap = NULL;
f1cb0ea1
SB
3912 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3913 res->end - res->start + 1);
f351b2d6
SB
3914 hpriv->base -= MV_SATAHC0_REG_BASE;
3915
15a32632
LB
3916 /*
3917 * (Re-)program MBUS remapping windows if we are asked to.
3918 */
3919 if (mv_platform_data->dram != NULL)
3920 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3921
fbf14e2f
BB
3922 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3923 if (rc)
3924 return rc;
3925
f351b2d6
SB
3926 /* initialize adapter */
3927 rc = mv_init_host(host, chip_soc);
3928 if (rc)
3929 return rc;
3930
3931 dev_printk(KERN_INFO, &pdev->dev,
3932 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3933 host->n_ports);
3934
3935 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3936 IRQF_SHARED, &mv6_sht);
3937}
3938
3939/*
3940 *
3941 * mv_platform_remove - unplug a platform interface
3942 * @pdev: platform device
3943 *
3944 * A platform bus SATA device has been unplugged. Perform the needed
3945 * cleanup. Also called on module unload for any active devices.
3946 */
3947static int __devexit mv_platform_remove(struct platform_device *pdev)
3948{
3949 struct device *dev = &pdev->dev;
3950 struct ata_host *host = dev_get_drvdata(dev);
f351b2d6
SB
3951
3952 ata_host_detach(host);
f351b2d6 3953 return 0;
20f733e7
BR
3954}
3955
f351b2d6
SB
3956static struct platform_driver mv_platform_driver = {
3957 .probe = mv_platform_probe,
3958 .remove = __devexit_p(mv_platform_remove),
3959 .driver = {
3960 .name = DRV_NAME,
3961 .owner = THIS_MODULE,
3962 },
3963};
3964
3965
7bb3c529 3966#ifdef CONFIG_PCI
f351b2d6
SB
3967static int mv_pci_init_one(struct pci_dev *pdev,
3968 const struct pci_device_id *ent);
3969
7bb3c529
SB
3970
3971static struct pci_driver mv_pci_driver = {
3972 .name = DRV_NAME,
3973 .id_table = mv_pci_tbl,
f351b2d6 3974 .probe = mv_pci_init_one,
7bb3c529
SB
3975 .remove = ata_pci_remove_one,
3976};
3977
7bb3c529
SB
3978/* move to PCI layer or libata core? */
3979static int pci_go_64(struct pci_dev *pdev)
3980{
3981 int rc;
3982
3983 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3984 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3985 if (rc) {
3986 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3987 if (rc) {
3988 dev_printk(KERN_ERR, &pdev->dev,
3989 "64-bit DMA enable failed\n");
3990 return rc;
3991 }
3992 }
3993 } else {
3994 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3995 if (rc) {
3996 dev_printk(KERN_ERR, &pdev->dev,
3997 "32-bit DMA enable failed\n");
3998 return rc;
3999 }
4000 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
4001 if (rc) {
4002 dev_printk(KERN_ERR, &pdev->dev,
4003 "32-bit consistent DMA enable failed\n");
4004 return rc;
4005 }
4006 }
4007
4008 return rc;
4009}
4010
05b308e1
BR
4011/**
4012 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4013 * @host: ATA host to print info about
05b308e1
BR
4014 *
4015 * FIXME: complete this.
4016 *
4017 * LOCKING:
4018 * Inherited from caller.
4019 */
4447d351 4020static void mv_print_info(struct ata_host *host)
31961943 4021{
4447d351
TH
4022 struct pci_dev *pdev = to_pci_dev(host->dev);
4023 struct mv_host_priv *hpriv = host->private_data;
44c10138 4024 u8 scc;
c1e4fe71 4025 const char *scc_s, *gen;
31961943
BR
4026
4027 /* Use this to determine the HW stepping of the chip so we know
4028 * what errata to workaround
4029 */
31961943
BR
4030 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4031 if (scc == 0)
4032 scc_s = "SCSI";
4033 else if (scc == 0x01)
4034 scc_s = "RAID";
4035 else
c1e4fe71
JG
4036 scc_s = "?";
4037
4038 if (IS_GEN_I(hpriv))
4039 gen = "I";
4040 else if (IS_GEN_II(hpriv))
4041 gen = "II";
4042 else if (IS_GEN_IIE(hpriv))
4043 gen = "IIE";
4044 else
4045 gen = "?";
31961943 4046
a9524a76 4047 dev_printk(KERN_INFO, &pdev->dev,
c1e4fe71
JG
4048 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4049 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
31961943
BR
4050 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4051}
4052
05b308e1 4053/**
f351b2d6 4054 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4055 * @pdev: PCI device found
4056 * @ent: PCI device ID entry for the matched host
4057 *
4058 * LOCKING:
4059 * Inherited from caller.
4060 */
f351b2d6
SB
4061static int mv_pci_init_one(struct pci_dev *pdev,
4062 const struct pci_device_id *ent)
20f733e7 4063{
2dcb407e 4064 static int printed_version;
20f733e7 4065 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4066 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4067 struct ata_host *host;
4068 struct mv_host_priv *hpriv;
4069 int n_ports, rc;
20f733e7 4070
a9524a76
JG
4071 if (!printed_version++)
4072 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
20f733e7 4073
4447d351
TH
4074 /* allocate host */
4075 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4076
4077 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4078 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4079 if (!host || !hpriv)
4080 return -ENOMEM;
4081 host->private_data = hpriv;
f351b2d6 4082 hpriv->n_ports = n_ports;
4447d351
TH
4083
4084 /* acquire resources */
24dc5f33
TH
4085 rc = pcim_enable_device(pdev);
4086 if (rc)
20f733e7 4087 return rc;
20f733e7 4088
0d5ff566
TH
4089 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4090 if (rc == -EBUSY)
24dc5f33 4091 pcim_pin_device(pdev);
0d5ff566 4092 if (rc)
24dc5f33 4093 return rc;
4447d351 4094 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4095 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4096
d88184fb
JG
4097 rc = pci_go_64(pdev);
4098 if (rc)
4099 return rc;
4100
da2fa9ba
ML
4101 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4102 if (rc)
4103 return rc;
4104
20f733e7 4105 /* initialize adapter */
4447d351 4106 rc = mv_init_host(host, board_idx);
24dc5f33
TH
4107 if (rc)
4108 return rc;
20f733e7 4109
6d3c30ef
ML
4110 /* Enable message-switched interrupts, if requested */
4111 if (msi && pci_enable_msi(pdev) == 0)
4112 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4113
31961943 4114 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4115 mv_print_info(host);
20f733e7 4116
4447d351 4117 pci_set_master(pdev);
ea8b4db9 4118 pci_try_set_mwi(pdev);
4447d351 4119 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4120 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4121}
7bb3c529 4122#endif
20f733e7 4123
f351b2d6
SB
4124static int mv_platform_probe(struct platform_device *pdev);
4125static int __devexit mv_platform_remove(struct platform_device *pdev);
4126
20f733e7
BR
4127static int __init mv_init(void)
4128{
7bb3c529
SB
4129 int rc = -ENODEV;
4130#ifdef CONFIG_PCI
4131 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4132 if (rc < 0)
4133 return rc;
4134#endif
4135 rc = platform_driver_register(&mv_platform_driver);
4136
4137#ifdef CONFIG_PCI
4138 if (rc < 0)
4139 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4140#endif
4141 return rc;
20f733e7
BR
4142}
4143
4144static void __exit mv_exit(void)
4145{
7bb3c529 4146#ifdef CONFIG_PCI
20f733e7 4147 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4148#endif
f351b2d6 4149 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4150}
4151
4152MODULE_AUTHOR("Brett Russ");
4153MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4154MODULE_LICENSE("GPL");
4155MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4156MODULE_VERSION(DRV_VERSION);
17c5aab5 4157MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4158
4159module_init(mv_init);
4160module_exit(mv_exit);