]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
ata_piix: Add Toshiba Satellite R20 and Tecra M6 to broken suspend list.
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
1da177e4
LT
122MODULE_AUTHOR("Jeff Garzik");
123MODULE_DESCRIPTION("Library module for ATA devices");
124MODULE_LICENSE("GPL");
125MODULE_VERSION(DRV_VERSION);
126
0baab86b 127
1da177e4
LT
128/**
129 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
130 * @tf: Taskfile to convert
1da177e4 131 * @pmp: Port multiplier port
9977126c
TH
132 * @is_cmd: This FIS is for command
133 * @fis: Buffer into which data will output
1da177e4
LT
134 *
135 * Converts a standard ATA taskfile to a Serial ATA
136 * FIS structure (Register - Host to Device).
137 *
138 * LOCKING:
139 * Inherited from caller.
140 */
9977126c 141void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 142{
9977126c
TH
143 fis[0] = 0x27; /* Register - Host to Device FIS */
144 fis[1] = pmp & 0xf; /* Port multiplier number*/
145 if (is_cmd)
146 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
147
1da177e4
LT
148 fis[2] = tf->command;
149 fis[3] = tf->feature;
150
151 fis[4] = tf->lbal;
152 fis[5] = tf->lbam;
153 fis[6] = tf->lbah;
154 fis[7] = tf->device;
155
156 fis[8] = tf->hob_lbal;
157 fis[9] = tf->hob_lbam;
158 fis[10] = tf->hob_lbah;
159 fis[11] = tf->hob_feature;
160
161 fis[12] = tf->nsect;
162 fis[13] = tf->hob_nsect;
163 fis[14] = 0;
164 fis[15] = tf->ctl;
165
166 fis[16] = 0;
167 fis[17] = 0;
168 fis[18] = 0;
169 fis[19] = 0;
170}
171
172/**
173 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
174 * @fis: Buffer from which data will be input
175 * @tf: Taskfile to output
176 *
e12a1be6 177 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
178 *
179 * LOCKING:
180 * Inherited from caller.
181 */
182
057ace5e 183void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
184{
185 tf->command = fis[2]; /* status */
186 tf->feature = fis[3]; /* error */
187
188 tf->lbal = fis[4];
189 tf->lbam = fis[5];
190 tf->lbah = fis[6];
191 tf->device = fis[7];
192
193 tf->hob_lbal = fis[8];
194 tf->hob_lbam = fis[9];
195 tf->hob_lbah = fis[10];
196
197 tf->nsect = fis[12];
198 tf->hob_nsect = fis[13];
199}
200
8cbd6df1
AL
201static const u8 ata_rw_cmds[] = {
202 /* pio multi */
203 ATA_CMD_READ_MULTI,
204 ATA_CMD_WRITE_MULTI,
205 ATA_CMD_READ_MULTI_EXT,
206 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
211 /* pio */
212 ATA_CMD_PIO_READ,
213 ATA_CMD_PIO_WRITE,
214 ATA_CMD_PIO_READ_EXT,
215 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
216 0,
217 0,
218 0,
219 0,
8cbd6df1
AL
220 /* dma */
221 ATA_CMD_READ,
222 ATA_CMD_WRITE,
223 ATA_CMD_READ_EXT,
9a3dccc4
TH
224 ATA_CMD_WRITE_EXT,
225 0,
226 0,
227 0,
228 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 229};
1da177e4
LT
230
231/**
8cbd6df1 232 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
233 * @tf: command to examine and configure
234 * @dev: device tf belongs to
1da177e4 235 *
2e9edbf8 236 * Examine the device configuration and tf->flags to calculate
8cbd6df1 237 * the proper read/write commands and protocol to use.
1da177e4
LT
238 *
239 * LOCKING:
240 * caller.
241 */
bd056d7e 242static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 243{
9a3dccc4 244 u8 cmd;
1da177e4 245
9a3dccc4 246 int index, fua, lba48, write;
2e9edbf8 247
9a3dccc4 248 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
249 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
250 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 251
8cbd6df1
AL
252 if (dev->flags & ATA_DFLAG_PIO) {
253 tf->protocol = ATA_PROT_PIO;
9a3dccc4 254 index = dev->multi_count ? 0 : 8;
9af5c9c9 255 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
256 /* Unable to use DMA due to host limitation */
257 tf->protocol = ATA_PROT_PIO;
0565c26d 258 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
259 } else {
260 tf->protocol = ATA_PROT_DMA;
9a3dccc4 261 index = 16;
8cbd6df1 262 }
1da177e4 263
9a3dccc4
TH
264 cmd = ata_rw_cmds[index + fua + lba48 + write];
265 if (cmd) {
266 tf->command = cmd;
267 return 0;
268 }
269 return -1;
1da177e4
LT
270}
271
35b649fe
TH
272/**
273 * ata_tf_read_block - Read block address from ATA taskfile
274 * @tf: ATA taskfile of interest
275 * @dev: ATA device @tf belongs to
276 *
277 * LOCKING:
278 * None.
279 *
280 * Read block address from @tf. This function can handle all
281 * three address formats - LBA, LBA48 and CHS. tf->protocol and
282 * flags select the address format to use.
283 *
284 * RETURNS:
285 * Block address read from @tf.
286 */
287u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
288{
289 u64 block = 0;
290
291 if (tf->flags & ATA_TFLAG_LBA) {
292 if (tf->flags & ATA_TFLAG_LBA48) {
293 block |= (u64)tf->hob_lbah << 40;
294 block |= (u64)tf->hob_lbam << 32;
295 block |= tf->hob_lbal << 24;
296 } else
297 block |= (tf->device & 0xf) << 24;
298
299 block |= tf->lbah << 16;
300 block |= tf->lbam << 8;
301 block |= tf->lbal;
302 } else {
303 u32 cyl, head, sect;
304
305 cyl = tf->lbam | (tf->lbah << 8);
306 head = tf->device & 0xf;
307 sect = tf->lbal;
308
309 block = (cyl * dev->heads + head) * dev->sectors + sect;
310 }
311
312 return block;
313}
314
bd056d7e
TH
315/**
316 * ata_build_rw_tf - Build ATA taskfile for given read/write request
317 * @tf: Target ATA taskfile
318 * @dev: ATA device @tf belongs to
319 * @block: Block address
320 * @n_block: Number of blocks
321 * @tf_flags: RW/FUA etc...
322 * @tag: tag
323 *
324 * LOCKING:
325 * None.
326 *
327 * Build ATA taskfile @tf for read/write request described by
328 * @block, @n_block, @tf_flags and @tag on @dev.
329 *
330 * RETURNS:
331 *
332 * 0 on success, -ERANGE if the request is too large for @dev,
333 * -EINVAL if the request is invalid.
334 */
335int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
336 u64 block, u32 n_block, unsigned int tf_flags,
337 unsigned int tag)
338{
339 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
340 tf->flags |= tf_flags;
341
6d1245bf 342 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
343 /* yay, NCQ */
344 if (!lba_48_ok(block, n_block))
345 return -ERANGE;
346
347 tf->protocol = ATA_PROT_NCQ;
348 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
349
350 if (tf->flags & ATA_TFLAG_WRITE)
351 tf->command = ATA_CMD_FPDMA_WRITE;
352 else
353 tf->command = ATA_CMD_FPDMA_READ;
354
355 tf->nsect = tag << 3;
356 tf->hob_feature = (n_block >> 8) & 0xff;
357 tf->feature = n_block & 0xff;
358
359 tf->hob_lbah = (block >> 40) & 0xff;
360 tf->hob_lbam = (block >> 32) & 0xff;
361 tf->hob_lbal = (block >> 24) & 0xff;
362 tf->lbah = (block >> 16) & 0xff;
363 tf->lbam = (block >> 8) & 0xff;
364 tf->lbal = block & 0xff;
365
366 tf->device = 1 << 6;
367 if (tf->flags & ATA_TFLAG_FUA)
368 tf->device |= 1 << 7;
369 } else if (dev->flags & ATA_DFLAG_LBA) {
370 tf->flags |= ATA_TFLAG_LBA;
371
372 if (lba_28_ok(block, n_block)) {
373 /* use LBA28 */
374 tf->device |= (block >> 24) & 0xf;
375 } else if (lba_48_ok(block, n_block)) {
376 if (!(dev->flags & ATA_DFLAG_LBA48))
377 return -ERANGE;
378
379 /* use LBA48 */
380 tf->flags |= ATA_TFLAG_LBA48;
381
382 tf->hob_nsect = (n_block >> 8) & 0xff;
383
384 tf->hob_lbah = (block >> 40) & 0xff;
385 tf->hob_lbam = (block >> 32) & 0xff;
386 tf->hob_lbal = (block >> 24) & 0xff;
387 } else
388 /* request too large even for LBA48 */
389 return -ERANGE;
390
391 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
392 return -EINVAL;
393
394 tf->nsect = n_block & 0xff;
395
396 tf->lbah = (block >> 16) & 0xff;
397 tf->lbam = (block >> 8) & 0xff;
398 tf->lbal = block & 0xff;
399
400 tf->device |= ATA_LBA;
401 } else {
402 /* CHS */
403 u32 sect, head, cyl, track;
404
405 /* The request -may- be too large for CHS addressing. */
406 if (!lba_28_ok(block, n_block))
407 return -ERANGE;
408
409 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
410 return -EINVAL;
411
412 /* Convert LBA to CHS */
413 track = (u32)block / dev->sectors;
414 cyl = track / dev->heads;
415 head = track % dev->heads;
416 sect = (u32)block % dev->sectors + 1;
417
418 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
419 (u32)block, track, cyl, head, sect);
420
421 /* Check whether the converted CHS can fit.
422 Cylinder: 0-65535
423 Head: 0-15
424 Sector: 1-255*/
425 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
426 return -ERANGE;
427
428 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
429 tf->lbal = sect;
430 tf->lbam = cyl;
431 tf->lbah = cyl >> 8;
432 tf->device |= head;
433 }
434
435 return 0;
436}
437
cb95d562
TH
438/**
439 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
440 * @pio_mask: pio_mask
441 * @mwdma_mask: mwdma_mask
442 * @udma_mask: udma_mask
443 *
444 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
445 * unsigned int xfer_mask.
446 *
447 * LOCKING:
448 * None.
449 *
450 * RETURNS:
451 * Packed xfer_mask.
452 */
453static unsigned int ata_pack_xfermask(unsigned int pio_mask,
454 unsigned int mwdma_mask,
455 unsigned int udma_mask)
456{
457 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
458 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
459 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
460}
461
c0489e4e
TH
462/**
463 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
464 * @xfer_mask: xfer_mask to unpack
465 * @pio_mask: resulting pio_mask
466 * @mwdma_mask: resulting mwdma_mask
467 * @udma_mask: resulting udma_mask
468 *
469 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
470 * Any NULL distination masks will be ignored.
471 */
472static void ata_unpack_xfermask(unsigned int xfer_mask,
473 unsigned int *pio_mask,
474 unsigned int *mwdma_mask,
475 unsigned int *udma_mask)
476{
477 if (pio_mask)
478 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
479 if (mwdma_mask)
480 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
481 if (udma_mask)
482 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
483}
484
cb95d562 485static const struct ata_xfer_ent {
be9a50c8 486 int shift, bits;
cb95d562
TH
487 u8 base;
488} ata_xfer_tbl[] = {
489 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
490 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
491 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
492 { -1, },
493};
494
495/**
496 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
497 * @xfer_mask: xfer_mask of interest
498 *
499 * Return matching XFER_* value for @xfer_mask. Only the highest
500 * bit of @xfer_mask is considered.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * Matching XFER_* value, 0 if no match found.
507 */
508static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
509{
510 int highbit = fls(xfer_mask) - 1;
511 const struct ata_xfer_ent *ent;
512
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
515 return ent->base + highbit - ent->shift;
516 return 0;
517}
518
519/**
520 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
521 * @xfer_mode: XFER_* of interest
522 *
523 * Return matching xfer_mask for @xfer_mode.
524 *
525 * LOCKING:
526 * None.
527 *
528 * RETURNS:
529 * Matching xfer_mask, 0 if no match found.
530 */
531static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
532{
533 const struct ata_xfer_ent *ent;
534
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return 1 << (ent->shift + xfer_mode - ent->base);
538 return 0;
539}
540
541/**
542 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
543 * @xfer_mode: XFER_* of interest
544 *
545 * Return matching xfer_shift for @xfer_mode.
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Matching xfer_shift, -1 if no match found.
552 */
553static int ata_xfer_mode2shift(unsigned int xfer_mode)
554{
555 const struct ata_xfer_ent *ent;
556
557 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
558 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
559 return ent->shift;
560 return -1;
561}
562
1da177e4 563/**
1da7b0d0
TH
564 * ata_mode_string - convert xfer_mask to string
565 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
566 *
567 * Determine string which represents the highest speed
1da7b0d0 568 * (highest bit in @modemask).
1da177e4
LT
569 *
570 * LOCKING:
571 * None.
572 *
573 * RETURNS:
574 * Constant C string representing highest speed listed in
1da7b0d0 575 * @mode_mask, or the constant C string "<n/a>".
1da177e4 576 */
1da7b0d0 577static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 578{
75f554bc
TH
579 static const char * const xfer_mode_str[] = {
580 "PIO0",
581 "PIO1",
582 "PIO2",
583 "PIO3",
584 "PIO4",
b352e57d
AC
585 "PIO5",
586 "PIO6",
75f554bc
TH
587 "MWDMA0",
588 "MWDMA1",
589 "MWDMA2",
b352e57d
AC
590 "MWDMA3",
591 "MWDMA4",
75f554bc
TH
592 "UDMA/16",
593 "UDMA/25",
594 "UDMA/33",
595 "UDMA/44",
596 "UDMA/66",
597 "UDMA/100",
598 "UDMA/133",
599 "UDMA7",
600 };
1da7b0d0 601 int highbit;
1da177e4 602
1da7b0d0
TH
603 highbit = fls(xfer_mask) - 1;
604 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
605 return xfer_mode_str[highbit];
1da177e4 606 return "<n/a>";
1da177e4
LT
607}
608
4c360c81
TH
609static const char *sata_spd_string(unsigned int spd)
610{
611 static const char * const spd_str[] = {
612 "1.5 Gbps",
613 "3.0 Gbps",
614 };
615
616 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
617 return "<unknown>";
618 return spd_str[spd - 1];
619}
620
3373efd8 621void ata_dev_disable(struct ata_device *dev)
0b8efb0a 622{
09d7f9b0 623 if (ata_dev_enabled(dev)) {
9af5c9c9 624 if (ata_msg_drv(dev->link->ap))
09d7f9b0 625 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 626 ata_acpi_on_disable(dev);
4ae72a1e
TH
627 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
628 ATA_DNXFER_QUIET);
0b8efb0a
TH
629 dev->class++;
630 }
631}
632
ca77329f
KCA
633static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
634{
635 struct ata_link *link = dev->link;
636 struct ata_port *ap = link->ap;
637 u32 scontrol;
638 unsigned int err_mask;
639 int rc;
640
641 /*
642 * disallow DIPM for drivers which haven't set
643 * ATA_FLAG_IPM. This is because when DIPM is enabled,
644 * phy ready will be set in the interrupt status on
645 * state changes, which will cause some drivers to
646 * think there are errors - additionally drivers will
647 * need to disable hot plug.
648 */
649 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
650 ap->pm_policy = NOT_AVAILABLE;
651 return -EINVAL;
652 }
653
654 /*
655 * For DIPM, we will only enable it for the
656 * min_power setting.
657 *
658 * Why? Because Disks are too stupid to know that
659 * If the host rejects a request to go to SLUMBER
660 * they should retry at PARTIAL, and instead it
661 * just would give up. So, for medium_power to
662 * work at all, we need to only allow HIPM.
663 */
664 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
665 if (rc)
666 return rc;
667
668 switch (policy) {
669 case MIN_POWER:
670 /* no restrictions on IPM transitions */
671 scontrol &= ~(0x3 << 8);
672 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
673 if (rc)
674 return rc;
675
676 /* enable DIPM */
677 if (dev->flags & ATA_DFLAG_DIPM)
678 err_mask = ata_dev_set_feature(dev,
679 SETFEATURES_SATA_ENABLE, SATA_DIPM);
680 break;
681 case MEDIUM_POWER:
682 /* allow IPM to PARTIAL */
683 scontrol &= ~(0x1 << 8);
684 scontrol |= (0x2 << 8);
685 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
686 if (rc)
687 return rc;
688
f5456b63
KCA
689 /*
690 * we don't have to disable DIPM since IPM flags
691 * disallow transitions to SLUMBER, which effectively
692 * disable DIPM if it does not support PARTIAL
693 */
ca77329f
KCA
694 break;
695 case NOT_AVAILABLE:
696 case MAX_PERFORMANCE:
697 /* disable all IPM transitions */
698 scontrol |= (0x3 << 8);
699 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
700 if (rc)
701 return rc;
702
f5456b63
KCA
703 /*
704 * we don't have to disable DIPM since IPM flags
705 * disallow all transitions which effectively
706 * disable DIPM anyway.
707 */
ca77329f
KCA
708 break;
709 }
710
711 /* FIXME: handle SET FEATURES failure */
712 (void) err_mask;
713
714 return 0;
715}
716
717/**
718 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
719 * @dev: device to enable power management
720 * @policy: the link power management policy
ca77329f
KCA
721 *
722 * Enable SATA Interface power management. This will enable
723 * Device Interface Power Management (DIPM) for min_power
724 * policy, and then call driver specific callbacks for
725 * enabling Host Initiated Power management.
726 *
727 * Locking: Caller.
728 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
729 */
730void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
731{
732 int rc = 0;
733 struct ata_port *ap = dev->link->ap;
734
735 /* set HIPM first, then DIPM */
736 if (ap->ops->enable_pm)
737 rc = ap->ops->enable_pm(ap, policy);
738 if (rc)
739 goto enable_pm_out;
740 rc = ata_dev_set_dipm(dev, policy);
741
742enable_pm_out:
743 if (rc)
744 ap->pm_policy = MAX_PERFORMANCE;
745 else
746 ap->pm_policy = policy;
747 return /* rc */; /* hopefully we can use 'rc' eventually */
748}
749
1992a5ed 750#ifdef CONFIG_PM
ca77329f
KCA
751/**
752 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 753 * @dev: device to disable power management
ca77329f
KCA
754 *
755 * Disable SATA Interface power management. This will disable
756 * Device Interface Power Management (DIPM) without changing
757 * policy, call driver specific callbacks for disabling Host
758 * Initiated Power management.
759 *
760 * Locking: Caller.
761 * Returns: void
762 */
763static void ata_dev_disable_pm(struct ata_device *dev)
764{
765 struct ata_port *ap = dev->link->ap;
766
767 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
768 if (ap->ops->disable_pm)
769 ap->ops->disable_pm(ap);
770}
1992a5ed 771#endif /* CONFIG_PM */
ca77329f
KCA
772
773void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
774{
775 ap->pm_policy = policy;
776 ap->link.eh_info.action |= ATA_EHI_LPM;
777 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
778 ata_port_schedule_eh(ap);
779}
780
1992a5ed 781#ifdef CONFIG_PM
ca77329f
KCA
782static void ata_lpm_enable(struct ata_host *host)
783{
784 struct ata_link *link;
785 struct ata_port *ap;
786 struct ata_device *dev;
787 int i;
788
789 for (i = 0; i < host->n_ports; i++) {
790 ap = host->ports[i];
791 ata_port_for_each_link(link, ap) {
792 ata_link_for_each_dev(dev, link)
793 ata_dev_disable_pm(dev);
794 }
795 }
796}
797
798static void ata_lpm_disable(struct ata_host *host)
799{
800 int i;
801
802 for (i = 0; i < host->n_ports; i++) {
803 struct ata_port *ap = host->ports[i];
804 ata_lpm_schedule(ap, ap->pm_policy);
805 }
806}
1992a5ed 807#endif /* CONFIG_PM */
ca77329f
KCA
808
809
1da177e4 810/**
0d5ff566 811 * ata_devchk - PATA device presence detection
1da177e4
LT
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
814 *
815 * This technique was originally described in
816 * Hale Landis's ATADRVR (www.ata-atapi.com), and
817 * later found its way into the ATA/ATAPI spec.
818 *
819 * Write a pattern to the ATA shadow registers,
820 * and if a device is present, it will respond by
821 * correctly storing and echoing back the
822 * ATA shadow register contents.
823 *
824 * LOCKING:
825 * caller.
826 */
827
0d5ff566 828static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
829{
830 struct ata_ioports *ioaddr = &ap->ioaddr;
831 u8 nsect, lbal;
832
833 ap->ops->dev_select(ap, device);
834
0d5ff566
TH
835 iowrite8(0x55, ioaddr->nsect_addr);
836 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 837
0d5ff566
TH
838 iowrite8(0xaa, ioaddr->nsect_addr);
839 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 840
0d5ff566
TH
841 iowrite8(0x55, ioaddr->nsect_addr);
842 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 843
0d5ff566
TH
844 nsect = ioread8(ioaddr->nsect_addr);
845 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
846
847 if ((nsect == 0x55) && (lbal == 0xaa))
848 return 1; /* we found a device */
849
850 return 0; /* nothing found */
851}
852
1da177e4
LT
853/**
854 * ata_dev_classify - determine device type based on ATA-spec signature
855 * @tf: ATA taskfile register set for device to be identified
856 *
857 * Determine from taskfile register contents whether a device is
858 * ATA or ATAPI, as per "Signature and persistence" section
859 * of ATA/PI spec (volume 1, sect 5.14).
860 *
861 * LOCKING:
862 * None.
863 *
864 * RETURNS:
633273a3
TH
865 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
866 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 867 */
057ace5e 868unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
869{
870 /* Apple's open source Darwin code hints that some devices only
871 * put a proper signature into the LBA mid/high registers,
872 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
873 *
874 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
875 * signatures for ATA and ATAPI devices attached on SerialATA,
876 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
877 * spec has never mentioned about using different signatures
878 * for ATA/ATAPI devices. Then, Serial ATA II: Port
879 * Multiplier specification began to use 0x69/0x96 to identify
880 * port multpliers and 0x3c/0xc3 to identify SEMB device.
881 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
882 * 0x69/0x96 shortly and described them as reserved for
883 * SerialATA.
884 *
885 * We follow the current spec and consider that 0x69/0x96
886 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 887 */
633273a3 888 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
889 DPRINTK("found ATA device by sig\n");
890 return ATA_DEV_ATA;
891 }
892
633273a3 893 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
894 DPRINTK("found ATAPI device by sig\n");
895 return ATA_DEV_ATAPI;
896 }
897
633273a3
TH
898 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
899 DPRINTK("found PMP device by sig\n");
900 return ATA_DEV_PMP;
901 }
902
903 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 904 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
905 return ATA_DEV_SEMB_UNSUP; /* not yet */
906 }
907
1da177e4
LT
908 DPRINTK("unknown device\n");
909 return ATA_DEV_UNKNOWN;
910}
911
912/**
913 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
914 * @dev: ATA device to classify (starting at zero)
915 * @present: device seems present
b4dc7623 916 * @r_err: Value of error register on completion
1da177e4
LT
917 *
918 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
919 * an ATA/ATAPI-defined set of values is placed in the ATA
920 * shadow registers, indicating the results of device detection
921 * and diagnostics.
922 *
923 * Select the ATA device, and read the values from the ATA shadow
924 * registers. Then parse according to the Error register value,
925 * and the spec-defined values examined by ata_dev_classify().
926 *
927 * LOCKING:
928 * caller.
b4dc7623
TH
929 *
930 * RETURNS:
931 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 932 */
3f19859e
TH
933unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
934 u8 *r_err)
1da177e4 935{
3f19859e 936 struct ata_port *ap = dev->link->ap;
1da177e4
LT
937 struct ata_taskfile tf;
938 unsigned int class;
939 u8 err;
940
3f19859e 941 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
942
943 memset(&tf, 0, sizeof(tf));
944
1da177e4 945 ap->ops->tf_read(ap, &tf);
0169e284 946 err = tf.feature;
b4dc7623
TH
947 if (r_err)
948 *r_err = err;
1da177e4 949
93590859 950 /* see if device passed diags: if master then continue and warn later */
3f19859e 951 if (err == 0 && dev->devno == 0)
93590859 952 /* diagnostic fail : do nothing _YET_ */
3f19859e 953 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 954 else if (err == 1)
1da177e4 955 /* do nothing */ ;
3f19859e 956 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
957 /* do nothing */ ;
958 else
b4dc7623 959 return ATA_DEV_NONE;
1da177e4 960
b4dc7623 961 /* determine if device is ATA or ATAPI */
1da177e4 962 class = ata_dev_classify(&tf);
b4dc7623 963
d7fbee05
TH
964 if (class == ATA_DEV_UNKNOWN) {
965 /* If the device failed diagnostic, it's likely to
966 * have reported incorrect device signature too.
967 * Assume ATA device if the device seems present but
968 * device signature is invalid with diagnostic
969 * failure.
970 */
971 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
972 class = ATA_DEV_ATA;
973 else
974 class = ATA_DEV_NONE;
975 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
976 class = ATA_DEV_NONE;
977
b4dc7623 978 return class;
1da177e4
LT
979}
980
981/**
6a62a04d 982 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
983 * @id: IDENTIFY DEVICE results we will examine
984 * @s: string into which data is output
985 * @ofs: offset into identify device page
986 * @len: length of string to return. must be an even number.
987 *
988 * The strings in the IDENTIFY DEVICE page are broken up into
989 * 16-bit chunks. Run through the string, and output each
990 * 8-bit chunk linearly, regardless of platform.
991 *
992 * LOCKING:
993 * caller.
994 */
995
6a62a04d
TH
996void ata_id_string(const u16 *id, unsigned char *s,
997 unsigned int ofs, unsigned int len)
1da177e4
LT
998{
999 unsigned int c;
1000
1001 while (len > 0) {
1002 c = id[ofs] >> 8;
1003 *s = c;
1004 s++;
1005
1006 c = id[ofs] & 0xff;
1007 *s = c;
1008 s++;
1009
1010 ofs++;
1011 len -= 2;
1012 }
1013}
1014
0e949ff3 1015/**
6a62a04d 1016 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1017 * @id: IDENTIFY DEVICE results we will examine
1018 * @s: string into which data is output
1019 * @ofs: offset into identify device page
1020 * @len: length of string to return. must be an odd number.
1021 *
6a62a04d 1022 * This function is identical to ata_id_string except that it
0e949ff3
TH
1023 * trims trailing spaces and terminates the resulting string with
1024 * null. @len must be actual maximum length (even number) + 1.
1025 *
1026 * LOCKING:
1027 * caller.
1028 */
6a62a04d
TH
1029void ata_id_c_string(const u16 *id, unsigned char *s,
1030 unsigned int ofs, unsigned int len)
0e949ff3
TH
1031{
1032 unsigned char *p;
1033
1034 WARN_ON(!(len & 1));
1035
6a62a04d 1036 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1037
1038 p = s + strnlen(s, len - 1);
1039 while (p > s && p[-1] == ' ')
1040 p--;
1041 *p = '\0';
1042}
0baab86b 1043
db6f8759
TH
1044static u64 ata_id_n_sectors(const u16 *id)
1045{
1046 if (ata_id_has_lba(id)) {
1047 if (ata_id_has_lba48(id))
1048 return ata_id_u64(id, 100);
1049 else
1050 return ata_id_u32(id, 60);
1051 } else {
1052 if (ata_id_current_chs_valid(id))
1053 return ata_id_u32(id, 57);
1054 else
1055 return id[1] * id[3] * id[6];
1056 }
1057}
1058
1e999736
AC
1059static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1060{
1061 u64 sectors = 0;
1062
1063 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1064 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1065 sectors |= (tf->hob_lbal & 0xff) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1069
1070 return ++sectors;
1071}
1072
1073static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1074{
1075 u64 sectors = 0;
1076
1077 sectors |= (tf->device & 0x0f) << 24;
1078 sectors |= (tf->lbah & 0xff) << 16;
1079 sectors |= (tf->lbam & 0xff) << 8;
1080 sectors |= (tf->lbal & 0xff);
1081
1082 return ++sectors;
1083}
1084
1085/**
c728a914
TH
1086 * ata_read_native_max_address - Read native max address
1087 * @dev: target device
1088 * @max_sectors: out parameter for the result native max address
1e999736 1089 *
c728a914
TH
1090 * Perform an LBA48 or LBA28 native size query upon the device in
1091 * question.
1e999736 1092 *
c728a914
TH
1093 * RETURNS:
1094 * 0 on success, -EACCES if command is aborted by the drive.
1095 * -EIO on other errors.
1e999736 1096 */
c728a914 1097static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1098{
c728a914 1099 unsigned int err_mask;
1e999736 1100 struct ata_taskfile tf;
c728a914 1101 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1102
1103 ata_tf_init(dev, &tf);
1104
c728a914 1105 /* always clear all address registers */
1e999736 1106 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1107
c728a914
TH
1108 if (lba48) {
1109 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1110 tf.flags |= ATA_TFLAG_LBA48;
1111 } else
1112 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1113
1e999736 1114 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1115 tf.device |= ATA_LBA;
1116
2b789108 1117 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1118 if (err_mask) {
1119 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1120 "max address (err_mask=0x%x)\n", err_mask);
1121 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1122 return -EACCES;
1123 return -EIO;
1124 }
1e999736 1125
c728a914
TH
1126 if (lba48)
1127 *max_sectors = ata_tf_to_lba48(&tf);
1128 else
1129 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1130 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1131 (*max_sectors)--;
c728a914 1132 return 0;
1e999736
AC
1133}
1134
1135/**
c728a914
TH
1136 * ata_set_max_sectors - Set max sectors
1137 * @dev: target device
6b38d1d1 1138 * @new_sectors: new max sectors value to set for the device
1e999736 1139 *
c728a914
TH
1140 * Set max sectors of @dev to @new_sectors.
1141 *
1142 * RETURNS:
1143 * 0 on success, -EACCES if command is aborted or denied (due to
1144 * previous non-volatile SET_MAX) by the drive. -EIO on other
1145 * errors.
1e999736 1146 */
05027adc 1147static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1148{
c728a914 1149 unsigned int err_mask;
1e999736 1150 struct ata_taskfile tf;
c728a914 1151 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1152
1153 new_sectors--;
1154
1155 ata_tf_init(dev, &tf);
1156
1e999736 1157 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1158
1159 if (lba48) {
1160 tf.command = ATA_CMD_SET_MAX_EXT;
1161 tf.flags |= ATA_TFLAG_LBA48;
1162
1163 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1164 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1165 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1166 } else {
c728a914
TH
1167 tf.command = ATA_CMD_SET_MAX;
1168
1e582ba4
TH
1169 tf.device |= (new_sectors >> 24) & 0xf;
1170 }
1171
1e999736 1172 tf.protocol |= ATA_PROT_NODATA;
c728a914 1173 tf.device |= ATA_LBA;
1e999736
AC
1174
1175 tf.lbal = (new_sectors >> 0) & 0xff;
1176 tf.lbam = (new_sectors >> 8) & 0xff;
1177 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1178
2b789108 1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1180 if (err_mask) {
1181 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1182 "max address (err_mask=0x%x)\n", err_mask);
1183 if (err_mask == AC_ERR_DEV &&
1184 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1185 return -EACCES;
1186 return -EIO;
1187 }
1188
c728a914 1189 return 0;
1e999736
AC
1190}
1191
1192/**
1193 * ata_hpa_resize - Resize a device with an HPA set
1194 * @dev: Device to resize
1195 *
1196 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1197 * it if required to the full size of the media. The caller must check
1198 * the drive has the HPA feature set enabled.
05027adc
TH
1199 *
1200 * RETURNS:
1201 * 0 on success, -errno on failure.
1e999736 1202 */
05027adc 1203static int ata_hpa_resize(struct ata_device *dev)
1e999736 1204{
05027adc
TH
1205 struct ata_eh_context *ehc = &dev->link->eh_context;
1206 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1207 u64 sectors = ata_id_n_sectors(dev->id);
1208 u64 native_sectors;
c728a914 1209 int rc;
a617c09f 1210
05027adc
TH
1211 /* do we need to do it? */
1212 if (dev->class != ATA_DEV_ATA ||
1213 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1214 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1215 return 0;
1e999736 1216
05027adc
TH
1217 /* read native max address */
1218 rc = ata_read_native_max_address(dev, &native_sectors);
1219 if (rc) {
1220 /* If HPA isn't going to be unlocked, skip HPA
1221 * resizing from the next try.
1222 */
1223 if (!ata_ignore_hpa) {
1224 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1225 "broken, will skip HPA handling\n");
1226 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1227
1228 /* we can continue if device aborted the command */
1229 if (rc == -EACCES)
1230 rc = 0;
1e999736 1231 }
37301a55 1232
05027adc
TH
1233 return rc;
1234 }
1235
1236 /* nothing to do? */
1237 if (native_sectors <= sectors || !ata_ignore_hpa) {
1238 if (!print_info || native_sectors == sectors)
1239 return 0;
1240
1241 if (native_sectors > sectors)
1242 ata_dev_printk(dev, KERN_INFO,
1243 "HPA detected: current %llu, native %llu\n",
1244 (unsigned long long)sectors,
1245 (unsigned long long)native_sectors);
1246 else if (native_sectors < sectors)
1247 ata_dev_printk(dev, KERN_WARNING,
1248 "native sectors (%llu) is smaller than "
1249 "sectors (%llu)\n",
1250 (unsigned long long)native_sectors,
1251 (unsigned long long)sectors);
1252 return 0;
1253 }
1254
1255 /* let's unlock HPA */
1256 rc = ata_set_max_sectors(dev, native_sectors);
1257 if (rc == -EACCES) {
1258 /* if device aborted the command, skip HPA resizing */
1259 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1260 "(%llu -> %llu), skipping HPA handling\n",
1261 (unsigned long long)sectors,
1262 (unsigned long long)native_sectors);
1263 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1264 return 0;
1265 } else if (rc)
1266 return rc;
1267
1268 /* re-read IDENTIFY data */
1269 rc = ata_dev_reread_id(dev, 0);
1270 if (rc) {
1271 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1272 "data after HPA resizing\n");
1273 return rc;
1274 }
1275
1276 if (print_info) {
1277 u64 new_sectors = ata_id_n_sectors(dev->id);
1278 ata_dev_printk(dev, KERN_INFO,
1279 "HPA unlocked: %llu -> %llu, native %llu\n",
1280 (unsigned long long)sectors,
1281 (unsigned long long)new_sectors,
1282 (unsigned long long)native_sectors);
1283 }
1284
1285 return 0;
1e999736
AC
1286}
1287
10305f0f
AC
1288/**
1289 * ata_id_to_dma_mode - Identify DMA mode from id block
1290 * @dev: device to identify
cc261267 1291 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1292 *
1293 * Set up the timing values for the device based upon the identify
1294 * reported values for the DMA mode. This function is used by drivers
1295 * which rely upon firmware configured modes, but wish to report the
1296 * mode correctly when possible.
1297 *
1298 * In addition we emit similarly formatted messages to the default
1299 * ata_dev_set_mode handler, in order to provide consistency of
1300 * presentation.
1301 */
1302
1303void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1304{
1305 unsigned int mask;
1306 u8 mode;
1307
1308 /* Pack the DMA modes */
1309 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1310 if (dev->id[53] & 0x04)
1311 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1312
1313 /* Select the mode in use */
1314 mode = ata_xfer_mask2mode(mask);
1315
1316 if (mode != 0) {
1317 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1318 ata_mode_string(mask));
1319 } else {
1320 /* SWDMA perhaps ? */
1321 mode = unknown;
1322 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1323 }
1324
1325 /* Configure the device reporting */
1326 dev->xfer_mode = mode;
1327 dev->xfer_shift = ata_xfer_mode2shift(mode);
1328}
1329
0baab86b
EF
1330/**
1331 * ata_noop_dev_select - Select device 0/1 on ATA bus
1332 * @ap: ATA channel to manipulate
1333 * @device: ATA device (numbered from zero) to select
1334 *
1335 * This function performs no actual function.
1336 *
1337 * May be used as the dev_select() entry in ata_port_operations.
1338 *
1339 * LOCKING:
1340 * caller.
1341 */
2dcb407e 1342void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1343{
1344}
1345
0baab86b 1346
1da177e4
LT
1347/**
1348 * ata_std_dev_select - Select device 0/1 on ATA bus
1349 * @ap: ATA channel to manipulate
1350 * @device: ATA device (numbered from zero) to select
1351 *
1352 * Use the method defined in the ATA specification to
1353 * make either device 0, or device 1, active on the
0baab86b
EF
1354 * ATA channel. Works with both PIO and MMIO.
1355 *
1356 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1357 *
1358 * LOCKING:
1359 * caller.
1360 */
1361
2dcb407e 1362void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1363{
1364 u8 tmp;
1365
1366 if (device == 0)
1367 tmp = ATA_DEVICE_OBS;
1368 else
1369 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1370
0d5ff566 1371 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1372 ata_pause(ap); /* needed; also flushes, for mmio */
1373}
1374
1375/**
1376 * ata_dev_select - Select device 0/1 on ATA bus
1377 * @ap: ATA channel to manipulate
1378 * @device: ATA device (numbered from zero) to select
1379 * @wait: non-zero to wait for Status register BSY bit to clear
1380 * @can_sleep: non-zero if context allows sleeping
1381 *
1382 * Use the method defined in the ATA specification to
1383 * make either device 0, or device 1, active on the
1384 * ATA channel.
1385 *
1386 * This is a high-level version of ata_std_dev_select(),
1387 * which additionally provides the services of inserting
1388 * the proper pauses and status polling, where needed.
1389 *
1390 * LOCKING:
1391 * caller.
1392 */
1393
1394void ata_dev_select(struct ata_port *ap, unsigned int device,
1395 unsigned int wait, unsigned int can_sleep)
1396{
88574551 1397 if (ata_msg_probe(ap))
44877b4e
TH
1398 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1399 "device %u, wait %u\n", device, wait);
1da177e4
LT
1400
1401 if (wait)
1402 ata_wait_idle(ap);
1403
1404 ap->ops->dev_select(ap, device);
1405
1406 if (wait) {
9af5c9c9 1407 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1408 msleep(150);
1409 ata_wait_idle(ap);
1410 }
1411}
1412
1413/**
1414 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1415 * @id: IDENTIFY DEVICE page to dump
1da177e4 1416 *
0bd3300a
TH
1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1418 * page.
1da177e4
LT
1419 *
1420 * LOCKING:
1421 * caller.
1422 */
1423
0bd3300a 1424static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1425{
1426 DPRINTK("49==0x%04x "
1427 "53==0x%04x "
1428 "63==0x%04x "
1429 "64==0x%04x "
1430 "75==0x%04x \n",
0bd3300a
TH
1431 id[49],
1432 id[53],
1433 id[63],
1434 id[64],
1435 id[75]);
1da177e4
LT
1436 DPRINTK("80==0x%04x "
1437 "81==0x%04x "
1438 "82==0x%04x "
1439 "83==0x%04x "
1440 "84==0x%04x \n",
0bd3300a
TH
1441 id[80],
1442 id[81],
1443 id[82],
1444 id[83],
1445 id[84]);
1da177e4
LT
1446 DPRINTK("88==0x%04x "
1447 "93==0x%04x\n",
0bd3300a
TH
1448 id[88],
1449 id[93]);
1da177e4
LT
1450}
1451
cb95d562
TH
1452/**
1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454 * @id: IDENTIFY data to compute xfer mask from
1455 *
1456 * Compute the xfermask for this device. This is not as trivial
1457 * as it seems if we must consider early devices correctly.
1458 *
1459 * FIXME: pre IDE drive timing (do we care ?).
1460 *
1461 * LOCKING:
1462 * None.
1463 *
1464 * RETURNS:
1465 * Computed xfermask
1466 */
1467static unsigned int ata_id_xfermask(const u16 *id)
1468{
1469 unsigned int pio_mask, mwdma_mask, udma_mask;
1470
1471 /* Usual case. Word 53 indicates word 64 is valid */
1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 pio_mask <<= 3;
1475 pio_mask |= 0x7;
1476 } else {
1477 /* If word 64 isn't valid then Word 51 high byte holds
1478 * the PIO timing number for the maximum. Turn it into
1479 * a mask.
1480 */
7a0f1c8a 1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1482 if (mode < 5) /* Valid PIO range */
2dcb407e 1483 pio_mask = (2 << mode) - 1;
46767aeb
AC
1484 else
1485 pio_mask = 1;
cb95d562
TH
1486
1487 /* But wait.. there's more. Design your standards by
1488 * committee and you too can get a free iordy field to
1489 * process. However its the speeds not the modes that
1490 * are supported... Note drivers using the timing API
1491 * will get this right anyway
1492 */
1493 }
1494
1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1496
b352e57d
AC
1497 if (ata_id_is_cfa(id)) {
1498 /*
1499 * Process compact flash extended modes
1500 */
1501 int pio = id[163] & 0x7;
1502 int dma = (id[163] >> 3) & 7;
1503
1504 if (pio)
1505 pio_mask |= (1 << 5);
1506 if (pio > 1)
1507 pio_mask |= (1 << 6);
1508 if (dma)
1509 mwdma_mask |= (1 << 3);
1510 if (dma > 1)
1511 mwdma_mask |= (1 << 4);
1512 }
1513
fb21f0d0
TH
1514 udma_mask = 0;
1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1517
1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519}
1520
86e45b6b
TH
1521/**
1522 * ata_port_queue_task - Queue port_task
1523 * @ap: The ata_port to queue port_task for
e2a7f77a 1524 * @fn: workqueue function to be scheduled
65f27f38 1525 * @data: data for @fn to use
e2a7f77a 1526 * @delay: delay time for workqueue function
86e45b6b
TH
1527 *
1528 * Schedule @fn(@data) for execution after @delay jiffies using
1529 * port_task. There is one port_task per port and it's the
1530 * user(low level driver)'s responsibility to make sure that only
1531 * one task is active at any given time.
1532 *
1533 * libata core layer takes care of synchronization between
1534 * port_task and EH. ata_port_queue_task() may be ignored for EH
1535 * synchronization.
1536 *
1537 * LOCKING:
1538 * Inherited from caller.
1539 */
65f27f38 1540void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1541 unsigned long delay)
1542{
65f27f38
DH
1543 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1544 ap->port_task_data = data;
86e45b6b 1545
45a66c1c
ON
1546 /* may fail if ata_port_flush_task() in progress */
1547 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1548}
1549
1550/**
1551 * ata_port_flush_task - Flush port_task
1552 * @ap: The ata_port to flush port_task for
1553 *
1554 * After this function completes, port_task is guranteed not to
1555 * be running or scheduled.
1556 *
1557 * LOCKING:
1558 * Kernel thread context (may sleep)
1559 */
1560void ata_port_flush_task(struct ata_port *ap)
1561{
86e45b6b
TH
1562 DPRINTK("ENTER\n");
1563
45a66c1c 1564 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1565
0dd4b21f
BP
1566 if (ata_msg_ctl(ap))
1567 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1568}
1569
7102d230 1570static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1571{
77853bf2 1572 struct completion *waiting = qc->private_data;
a2a7a662 1573
a2a7a662 1574 complete(waiting);
a2a7a662
TH
1575}
1576
1577/**
2432697b 1578 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1579 * @dev: Device to which the command is sent
1580 * @tf: Taskfile registers for the command and the result
d69cf37d 1581 * @cdb: CDB for packet command
a2a7a662 1582 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1583 * @sgl: sg list for the data buffer of the command
2432697b 1584 * @n_elem: Number of sg entries
2b789108 1585 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1586 *
1587 * Executes libata internal command with timeout. @tf contains
1588 * command on entry and result on return. Timeout and error
1589 * conditions are reported via return value. No recovery action
1590 * is taken after a command times out. It's caller's duty to
1591 * clean up after timeout.
1592 *
1593 * LOCKING:
1594 * None. Should be called with kernel context, might sleep.
551e8889
TH
1595 *
1596 * RETURNS:
1597 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1598 */
2432697b
TH
1599unsigned ata_exec_internal_sg(struct ata_device *dev,
1600 struct ata_taskfile *tf, const u8 *cdb,
87260216 1601 int dma_dir, struct scatterlist *sgl,
2b789108 1602 unsigned int n_elem, unsigned long timeout)
a2a7a662 1603{
9af5c9c9
TH
1604 struct ata_link *link = dev->link;
1605 struct ata_port *ap = link->ap;
a2a7a662
TH
1606 u8 command = tf->command;
1607 struct ata_queued_cmd *qc;
2ab7db1f 1608 unsigned int tag, preempted_tag;
dedaf2b0 1609 u32 preempted_sactive, preempted_qc_active;
da917d69 1610 int preempted_nr_active_links;
60be6b9a 1611 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1612 unsigned long flags;
77853bf2 1613 unsigned int err_mask;
d95a717f 1614 int rc;
a2a7a662 1615
ba6a1308 1616 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1617
e3180499 1618 /* no internal command while frozen */
b51e9e5d 1619 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1620 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1621 return AC_ERR_SYSTEM;
1622 }
1623
2ab7db1f 1624 /* initialize internal qc */
a2a7a662 1625
2ab7db1f
TH
1626 /* XXX: Tag 0 is used for drivers with legacy EH as some
1627 * drivers choke if any other tag is given. This breaks
1628 * ata_tag_internal() test for those drivers. Don't use new
1629 * EH stuff without converting to it.
1630 */
1631 if (ap->ops->error_handler)
1632 tag = ATA_TAG_INTERNAL;
1633 else
1634 tag = 0;
1635
6cec4a39 1636 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1637 BUG();
f69499f4 1638 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1639
1640 qc->tag = tag;
1641 qc->scsicmd = NULL;
1642 qc->ap = ap;
1643 qc->dev = dev;
1644 ata_qc_reinit(qc);
1645
9af5c9c9
TH
1646 preempted_tag = link->active_tag;
1647 preempted_sactive = link->sactive;
dedaf2b0 1648 preempted_qc_active = ap->qc_active;
da917d69 1649 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1650 link->active_tag = ATA_TAG_POISON;
1651 link->sactive = 0;
dedaf2b0 1652 ap->qc_active = 0;
da917d69 1653 ap->nr_active_links = 0;
2ab7db1f
TH
1654
1655 /* prepare & issue qc */
a2a7a662 1656 qc->tf = *tf;
d69cf37d
TH
1657 if (cdb)
1658 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1659 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1660 qc->dma_dir = dma_dir;
1661 if (dma_dir != DMA_NONE) {
2432697b 1662 unsigned int i, buflen = 0;
87260216 1663 struct scatterlist *sg;
2432697b 1664
87260216
JA
1665 for_each_sg(sgl, sg, n_elem, i)
1666 buflen += sg->length;
2432697b 1667
87260216 1668 ata_sg_init(qc, sgl, n_elem);
49c80429 1669 qc->nbytes = buflen;
a2a7a662
TH
1670 }
1671
77853bf2 1672 qc->private_data = &wait;
a2a7a662
TH
1673 qc->complete_fn = ata_qc_complete_internal;
1674
8e0e694a 1675 ata_qc_issue(qc);
a2a7a662 1676
ba6a1308 1677 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1678
2b789108
TH
1679 if (!timeout)
1680 timeout = ata_probe_timeout * 1000 / HZ;
1681
1682 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1683
1684 ata_port_flush_task(ap);
41ade50c 1685
d95a717f 1686 if (!rc) {
ba6a1308 1687 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1688
1689 /* We're racing with irq here. If we lose, the
1690 * following test prevents us from completing the qc
d95a717f
TH
1691 * twice. If we win, the port is frozen and will be
1692 * cleaned up by ->post_internal_cmd().
a2a7a662 1693 */
77853bf2 1694 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1695 qc->err_mask |= AC_ERR_TIMEOUT;
1696
1697 if (ap->ops->error_handler)
1698 ata_port_freeze(ap);
1699 else
1700 ata_qc_complete(qc);
f15a1daf 1701
0dd4b21f
BP
1702 if (ata_msg_warn(ap))
1703 ata_dev_printk(dev, KERN_WARNING,
88574551 1704 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1705 }
1706
ba6a1308 1707 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1708 }
1709
d95a717f
TH
1710 /* do post_internal_cmd */
1711 if (ap->ops->post_internal_cmd)
1712 ap->ops->post_internal_cmd(qc);
1713
a51d644a
TH
1714 /* perform minimal error analysis */
1715 if (qc->flags & ATA_QCFLAG_FAILED) {
1716 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1717 qc->err_mask |= AC_ERR_DEV;
1718
1719 if (!qc->err_mask)
1720 qc->err_mask |= AC_ERR_OTHER;
1721
1722 if (qc->err_mask & ~AC_ERR_OTHER)
1723 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1724 }
1725
15869303 1726 /* finish up */
ba6a1308 1727 spin_lock_irqsave(ap->lock, flags);
15869303 1728
e61e0672 1729 *tf = qc->result_tf;
77853bf2
TH
1730 err_mask = qc->err_mask;
1731
1732 ata_qc_free(qc);
9af5c9c9
TH
1733 link->active_tag = preempted_tag;
1734 link->sactive = preempted_sactive;
dedaf2b0 1735 ap->qc_active = preempted_qc_active;
da917d69 1736 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1737
1f7dd3e9
TH
1738 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1739 * Until those drivers are fixed, we detect the condition
1740 * here, fail the command with AC_ERR_SYSTEM and reenable the
1741 * port.
1742 *
1743 * Note that this doesn't change any behavior as internal
1744 * command failure results in disabling the device in the
1745 * higher layer for LLDDs without new reset/EH callbacks.
1746 *
1747 * Kill the following code as soon as those drivers are fixed.
1748 */
198e0fed 1749 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1750 err_mask |= AC_ERR_SYSTEM;
1751 ata_port_probe(ap);
1752 }
1753
ba6a1308 1754 spin_unlock_irqrestore(ap->lock, flags);
15869303 1755
77853bf2 1756 return err_mask;
a2a7a662
TH
1757}
1758
2432697b 1759/**
33480a0e 1760 * ata_exec_internal - execute libata internal command
2432697b
TH
1761 * @dev: Device to which the command is sent
1762 * @tf: Taskfile registers for the command and the result
1763 * @cdb: CDB for packet command
1764 * @dma_dir: Data tranfer direction of the command
1765 * @buf: Data buffer of the command
1766 * @buflen: Length of data buffer
2b789108 1767 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1768 *
1769 * Wrapper around ata_exec_internal_sg() which takes simple
1770 * buffer instead of sg list.
1771 *
1772 * LOCKING:
1773 * None. Should be called with kernel context, might sleep.
1774 *
1775 * RETURNS:
1776 * Zero on success, AC_ERR_* mask on failure
1777 */
1778unsigned ata_exec_internal(struct ata_device *dev,
1779 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1780 int dma_dir, void *buf, unsigned int buflen,
1781 unsigned long timeout)
2432697b 1782{
33480a0e
TH
1783 struct scatterlist *psg = NULL, sg;
1784 unsigned int n_elem = 0;
2432697b 1785
33480a0e
TH
1786 if (dma_dir != DMA_NONE) {
1787 WARN_ON(!buf);
1788 sg_init_one(&sg, buf, buflen);
1789 psg = &sg;
1790 n_elem++;
1791 }
2432697b 1792
2b789108
TH
1793 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1794 timeout);
2432697b
TH
1795}
1796
977e6b9f
TH
1797/**
1798 * ata_do_simple_cmd - execute simple internal command
1799 * @dev: Device to which the command is sent
1800 * @cmd: Opcode to execute
1801 *
1802 * Execute a 'simple' command, that only consists of the opcode
1803 * 'cmd' itself, without filling any other registers
1804 *
1805 * LOCKING:
1806 * Kernel thread context (may sleep).
1807 *
1808 * RETURNS:
1809 * Zero on success, AC_ERR_* mask on failure
e58eb583 1810 */
77b08fb5 1811unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1812{
1813 struct ata_taskfile tf;
e58eb583
TH
1814
1815 ata_tf_init(dev, &tf);
1816
1817 tf.command = cmd;
1818 tf.flags |= ATA_TFLAG_DEVICE;
1819 tf.protocol = ATA_PROT_NODATA;
1820
2b789108 1821 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1822}
1823
1bc4ccff
AC
1824/**
1825 * ata_pio_need_iordy - check if iordy needed
1826 * @adev: ATA device
1827 *
1828 * Check if the current speed of the device requires IORDY. Used
1829 * by various controllers for chip configuration.
1830 */
a617c09f 1831
1bc4ccff
AC
1832unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1833{
432729f0
AC
1834 /* Controller doesn't support IORDY. Probably a pointless check
1835 as the caller should know this */
9af5c9c9 1836 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1837 return 0;
432729f0
AC
1838 /* PIO3 and higher it is mandatory */
1839 if (adev->pio_mode > XFER_PIO_2)
1840 return 1;
1841 /* We turn it on when possible */
1842 if (ata_id_has_iordy(adev->id))
1bc4ccff 1843 return 1;
432729f0
AC
1844 return 0;
1845}
2e9edbf8 1846
432729f0
AC
1847/**
1848 * ata_pio_mask_no_iordy - Return the non IORDY mask
1849 * @adev: ATA device
1850 *
1851 * Compute the highest mode possible if we are not using iordy. Return
1852 * -1 if no iordy mode is available.
1853 */
a617c09f 1854
432729f0
AC
1855static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1856{
1bc4ccff 1857 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1858 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1859 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1860 /* Is the speed faster than the drive allows non IORDY ? */
1861 if (pio) {
1862 /* This is cycle times not frequency - watch the logic! */
1863 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1864 return 3 << ATA_SHIFT_PIO;
1865 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1866 }
1867 }
432729f0 1868 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1869}
1870
1da177e4 1871/**
49016aca 1872 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1873 * @dev: target device
1874 * @p_class: pointer to class of the target device (may be changed)
bff04647 1875 * @flags: ATA_READID_* flags
fe635c7e 1876 * @id: buffer to read IDENTIFY data into
1da177e4 1877 *
49016aca
TH
1878 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1879 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1880 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1881 * for pre-ATA4 drives.
1da177e4 1882 *
50a99018 1883 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1884 * now we abort if we hit that case.
50a99018 1885 *
1da177e4 1886 * LOCKING:
49016aca
TH
1887 * Kernel thread context (may sleep)
1888 *
1889 * RETURNS:
1890 * 0 on success, -errno otherwise.
1da177e4 1891 */
a9beec95 1892int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1893 unsigned int flags, u16 *id)
1da177e4 1894{
9af5c9c9 1895 struct ata_port *ap = dev->link->ap;
49016aca 1896 unsigned int class = *p_class;
a0123703 1897 struct ata_taskfile tf;
49016aca
TH
1898 unsigned int err_mask = 0;
1899 const char *reason;
54936f8b 1900 int may_fallback = 1, tried_spinup = 0;
49016aca 1901 int rc;
1da177e4 1902
0dd4b21f 1903 if (ata_msg_ctl(ap))
44877b4e 1904 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1905
49016aca 1906 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1907 retry:
3373efd8 1908 ata_tf_init(dev, &tf);
a0123703 1909
49016aca
TH
1910 switch (class) {
1911 case ATA_DEV_ATA:
a0123703 1912 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1913 break;
1914 case ATA_DEV_ATAPI:
a0123703 1915 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1916 break;
1917 default:
1918 rc = -ENODEV;
1919 reason = "unsupported class";
1920 goto err_out;
1da177e4
LT
1921 }
1922
a0123703 1923 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1924
1925 /* Some devices choke if TF registers contain garbage. Make
1926 * sure those are properly initialized.
1927 */
1928 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1929
1930 /* Device presence detection is unreliable on some
1931 * controllers. Always poll IDENTIFY if available.
1932 */
1933 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1934
3373efd8 1935 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1936 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1937 if (err_mask) {
800b3996 1938 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1939 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1940 ap->print_id, dev->devno);
55a8e2c8
TH
1941 return -ENOENT;
1942 }
1943
54936f8b
TH
1944 /* Device or controller might have reported the wrong
1945 * device class. Give a shot at the other IDENTIFY if
1946 * the current one is aborted by the device.
1947 */
1948 if (may_fallback &&
1949 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1950 may_fallback = 0;
1951
1952 if (class == ATA_DEV_ATA)
1953 class = ATA_DEV_ATAPI;
1954 else
1955 class = ATA_DEV_ATA;
1956 goto retry;
1957 }
1958
49016aca
TH
1959 rc = -EIO;
1960 reason = "I/O error";
1da177e4
LT
1961 goto err_out;
1962 }
1963
54936f8b
TH
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
49016aca 1969 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1970
49016aca 1971 /* sanity check */
a4f5749b 1972 rc = -EINVAL;
6070068b 1973 reason = "device reports invalid type";
a4f5749b
TH
1974
1975 if (class == ATA_DEV_ATA) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 } else {
1979 if (ata_id_is_ata(id))
1980 goto err_out;
49016aca
TH
1981 }
1982
169439c2
ML
1983 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1984 tried_spinup = 1;
1985 /*
1986 * Drive powered-up in standby mode, and requires a specific
1987 * SET_FEATURES spin-up subcommand before it will accept
1988 * anything other than the original IDENTIFY command.
1989 */
218f3d30 1990 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1991 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1992 rc = -EIO;
1993 reason = "SPINUP failed";
1994 goto err_out;
1995 }
1996 /*
1997 * If the drive initially returned incomplete IDENTIFY info,
1998 * we now must reissue the IDENTIFY command.
1999 */
2000 if (id[2] == 0x37c8)
2001 goto retry;
2002 }
2003
bff04647 2004 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2005 /*
2006 * The exact sequence expected by certain pre-ATA4 drives is:
2007 * SRST RESET
50a99018
AC
2008 * IDENTIFY (optional in early ATA)
2009 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2010 * anything else..
2011 * Some drives were very specific about that exact sequence.
50a99018
AC
2012 *
2013 * Note that ATA4 says lba is mandatory so the second check
2014 * shoud never trigger.
49016aca
TH
2015 */
2016 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2017 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2018 if (err_mask) {
2019 rc = -EIO;
2020 reason = "INIT_DEV_PARAMS failed";
2021 goto err_out;
2022 }
2023
2024 /* current CHS translation info (id[53-58]) might be
2025 * changed. reread the identify device info.
2026 */
bff04647 2027 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2028 goto retry;
2029 }
2030 }
2031
2032 *p_class = class;
fe635c7e 2033
49016aca
TH
2034 return 0;
2035
2036 err_out:
88574551 2037 if (ata_msg_warn(ap))
0dd4b21f 2038 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2039 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2040 return rc;
2041}
2042
3373efd8 2043static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2044{
9af5c9c9
TH
2045 struct ata_port *ap = dev->link->ap;
2046 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2047}
2048
a6e6ce8e
TH
2049static void ata_dev_config_ncq(struct ata_device *dev,
2050 char *desc, size_t desc_sz)
2051{
9af5c9c9 2052 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2053 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2054
2055 if (!ata_id_has_ncq(dev->id)) {
2056 desc[0] = '\0';
2057 return;
2058 }
75683fe7 2059 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2060 snprintf(desc, desc_sz, "NCQ (not used)");
2061 return;
2062 }
a6e6ce8e 2063 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2064 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2065 dev->flags |= ATA_DFLAG_NCQ;
2066 }
2067
2068 if (hdepth >= ddepth)
2069 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2070 else
2071 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2072}
2073
49016aca 2074/**
ffeae418 2075 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2076 * @dev: Target device to configure
2077 *
2078 * Configure @dev according to @dev->id. Generic and low-level
2079 * driver specific fixups are also applied.
49016aca
TH
2080 *
2081 * LOCKING:
ffeae418
TH
2082 * Kernel thread context (may sleep)
2083 *
2084 * RETURNS:
2085 * 0 on success, -errno otherwise
49016aca 2086 */
efdaedc4 2087int ata_dev_configure(struct ata_device *dev)
49016aca 2088{
9af5c9c9
TH
2089 struct ata_port *ap = dev->link->ap;
2090 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2091 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2092 const u16 *id = dev->id;
ff8854b2 2093 unsigned int xfer_mask;
b352e57d 2094 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2095 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2096 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2097 int rc;
49016aca 2098
0dd4b21f 2099 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2100 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2101 __FUNCTION__);
ffeae418 2102 return 0;
49016aca
TH
2103 }
2104
0dd4b21f 2105 if (ata_msg_probe(ap))
44877b4e 2106 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2107
75683fe7
TH
2108 /* set horkage */
2109 dev->horkage |= ata_dev_blacklisted(dev);
2110
6746544c
TH
2111 /* let ACPI work its magic */
2112 rc = ata_acpi_on_devcfg(dev);
2113 if (rc)
2114 return rc;
08573a86 2115
05027adc
TH
2116 /* massage HPA, do it early as it might change IDENTIFY data */
2117 rc = ata_hpa_resize(dev);
2118 if (rc)
2119 return rc;
2120
c39f5ebe 2121 /* print device capabilities */
0dd4b21f 2122 if (ata_msg_probe(ap))
88574551
TH
2123 ata_dev_printk(dev, KERN_DEBUG,
2124 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2125 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2126 __FUNCTION__,
f15a1daf
TH
2127 id[49], id[82], id[83], id[84],
2128 id[85], id[86], id[87], id[88]);
c39f5ebe 2129
208a9933 2130 /* initialize to-be-configured parameters */
ea1dd4e1 2131 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2132 dev->max_sectors = 0;
2133 dev->cdb_len = 0;
2134 dev->n_sectors = 0;
2135 dev->cylinders = 0;
2136 dev->heads = 0;
2137 dev->sectors = 0;
2138
1da177e4
LT
2139 /*
2140 * common ATA, ATAPI feature tests
2141 */
2142
ff8854b2 2143 /* find max transfer mode; for printk only */
1148c3a7 2144 xfer_mask = ata_id_xfermask(id);
1da177e4 2145
0dd4b21f
BP
2146 if (ata_msg_probe(ap))
2147 ata_dump_id(id);
1da177e4 2148
ef143d57
AL
2149 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2150 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2151 sizeof(fwrevbuf));
2152
2153 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2154 sizeof(modelbuf));
2155
1da177e4
LT
2156 /* ATA-specific feature tests */
2157 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2158 if (ata_id_is_cfa(id)) {
2159 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2160 ata_dev_printk(dev, KERN_WARNING,
2161 "supports DRM functions and may "
2162 "not be fully accessable.\n");
b352e57d 2163 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2164 } else
2165 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2166
1148c3a7 2167 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2168
3f64f565
EM
2169 if (dev->id[59] & 0x100)
2170 dev->multi_count = dev->id[59] & 0xff;
2171
1148c3a7 2172 if (ata_id_has_lba(id)) {
4c2d721a 2173 const char *lba_desc;
a6e6ce8e 2174 char ncq_desc[20];
8bf62ece 2175
4c2d721a
TH
2176 lba_desc = "LBA";
2177 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2178 if (ata_id_has_lba48(id)) {
8bf62ece 2179 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2180 lba_desc = "LBA48";
6fc49adb
TH
2181
2182 if (dev->n_sectors >= (1UL << 28) &&
2183 ata_id_has_flush_ext(id))
2184 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2185 }
8bf62ece 2186
a6e6ce8e
TH
2187 /* config NCQ */
2188 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2189
8bf62ece 2190 /* print device info to dmesg */
3f64f565
EM
2191 if (ata_msg_drv(ap) && print_info) {
2192 ata_dev_printk(dev, KERN_INFO,
2193 "%s: %s, %s, max %s\n",
2194 revbuf, modelbuf, fwrevbuf,
2195 ata_mode_string(xfer_mask));
2196 ata_dev_printk(dev, KERN_INFO,
2197 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2198 (unsigned long long)dev->n_sectors,
3f64f565
EM
2199 dev->multi_count, lba_desc, ncq_desc);
2200 }
ffeae418 2201 } else {
8bf62ece
AL
2202 /* CHS */
2203
2204 /* Default translation */
1148c3a7
TH
2205 dev->cylinders = id[1];
2206 dev->heads = id[3];
2207 dev->sectors = id[6];
8bf62ece 2208
1148c3a7 2209 if (ata_id_current_chs_valid(id)) {
8bf62ece 2210 /* Current CHS translation is valid. */
1148c3a7
TH
2211 dev->cylinders = id[54];
2212 dev->heads = id[55];
2213 dev->sectors = id[56];
8bf62ece
AL
2214 }
2215
2216 /* print device info to dmesg */
3f64f565 2217 if (ata_msg_drv(ap) && print_info) {
88574551 2218 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2219 "%s: %s, %s, max %s\n",
2220 revbuf, modelbuf, fwrevbuf,
2221 ata_mode_string(xfer_mask));
a84471fe 2222 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2223 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2224 (unsigned long long)dev->n_sectors,
2225 dev->multi_count, dev->cylinders,
2226 dev->heads, dev->sectors);
2227 }
07f6f7d0
AL
2228 }
2229
6e7846e9 2230 dev->cdb_len = 16;
1da177e4
LT
2231 }
2232
2233 /* ATAPI-specific feature tests */
2c13b7ce 2234 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2235 const char *cdb_intr_string = "";
2236 const char *atapi_an_string = "";
7d77b247 2237 u32 sntf;
08a556db 2238
1148c3a7 2239 rc = atapi_cdb_len(id);
1da177e4 2240 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2241 if (ata_msg_warn(ap))
88574551
TH
2242 ata_dev_printk(dev, KERN_WARNING,
2243 "unsupported CDB len\n");
ffeae418 2244 rc = -EINVAL;
1da177e4
LT
2245 goto err_out_nosup;
2246 }
6e7846e9 2247 dev->cdb_len = (unsigned int) rc;
1da177e4 2248
7d77b247
TH
2249 /* Enable ATAPI AN if both the host and device have
2250 * the support. If PMP is attached, SNTF is required
2251 * to enable ATAPI AN to discern between PHY status
2252 * changed notifications and ATAPI ANs.
9f45cbd3 2253 */
7d77b247
TH
2254 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2255 (!ap->nr_pmp_links ||
2256 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2257 unsigned int err_mask;
2258
9f45cbd3 2259 /* issue SET feature command to turn this on */
218f3d30
JG
2260 err_mask = ata_dev_set_feature(dev,
2261 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2262 if (err_mask)
9f45cbd3 2263 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2264 "failed to enable ATAPI AN "
2265 "(err_mask=0x%x)\n", err_mask);
2266 else {
9f45cbd3 2267 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2268 atapi_an_string = ", ATAPI AN";
2269 }
9f45cbd3
KCA
2270 }
2271
08a556db 2272 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2273 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2274 cdb_intr_string = ", CDB intr";
2275 }
312f7da2 2276
1da177e4 2277 /* print device info to dmesg */
5afc8142 2278 if (ata_msg_drv(ap) && print_info)
ef143d57 2279 ata_dev_printk(dev, KERN_INFO,
854c73a2 2280 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2281 modelbuf, fwrevbuf,
12436c30 2282 ata_mode_string(xfer_mask),
854c73a2 2283 cdb_intr_string, atapi_an_string);
1da177e4
LT
2284 }
2285
914ed354
TH
2286 /* determine max_sectors */
2287 dev->max_sectors = ATA_MAX_SECTORS;
2288 if (dev->flags & ATA_DFLAG_LBA48)
2289 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2290
ca77329f
KCA
2291 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2292 if (ata_id_has_hipm(dev->id))
2293 dev->flags |= ATA_DFLAG_HIPM;
2294 if (ata_id_has_dipm(dev->id))
2295 dev->flags |= ATA_DFLAG_DIPM;
2296 }
2297
93590859
AC
2298 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2299 /* Let the user know. We don't want to disallow opens for
2300 rescue purposes, or in case the vendor is just a blithering
2301 idiot */
2dcb407e 2302 if (print_info) {
93590859
AC
2303 ata_dev_printk(dev, KERN_WARNING,
2304"Drive reports diagnostics failure. This may indicate a drive\n");
2305 ata_dev_printk(dev, KERN_WARNING,
2306"fault or invalid emulation. Contact drive vendor for information.\n");
2307 }
2308 }
2309
4b2f3ede 2310 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2311 if (ata_dev_knobble(dev)) {
5afc8142 2312 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2313 ata_dev_printk(dev, KERN_INFO,
2314 "applying bridge limits\n");
5a529139 2315 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2316 dev->max_sectors = ATA_MAX_SECTORS;
2317 }
2318
f8d8e579 2319 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2320 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2321 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2322 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2323 }
f8d8e579 2324
75683fe7 2325 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2326 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2327 dev->max_sectors);
18d6e9d5 2328
ca77329f
KCA
2329 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2330 dev->horkage |= ATA_HORKAGE_IPM;
2331
2332 /* reset link pm_policy for this port to no pm */
2333 ap->pm_policy = MAX_PERFORMANCE;
2334 }
2335
4b2f3ede 2336 if (ap->ops->dev_config)
cd0d3bbc 2337 ap->ops->dev_config(dev);
4b2f3ede 2338
0dd4b21f
BP
2339 if (ata_msg_probe(ap))
2340 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2341 __FUNCTION__, ata_chk_status(ap));
ffeae418 2342 return 0;
1da177e4
LT
2343
2344err_out_nosup:
0dd4b21f 2345 if (ata_msg_probe(ap))
88574551
TH
2346 ata_dev_printk(dev, KERN_DEBUG,
2347 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2348 return rc;
1da177e4
LT
2349}
2350
be0d18df 2351/**
2e41e8e6 2352 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2353 * @ap: port
2354 *
2e41e8e6 2355 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2356 * detection.
2357 */
2358
2359int ata_cable_40wire(struct ata_port *ap)
2360{
2361 return ATA_CBL_PATA40;
2362}
2363
2364/**
2e41e8e6 2365 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2366 * @ap: port
2367 *
2e41e8e6 2368 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2369 * detection.
2370 */
2371
2372int ata_cable_80wire(struct ata_port *ap)
2373{
2374 return ATA_CBL_PATA80;
2375}
2376
2377/**
2378 * ata_cable_unknown - return unknown PATA cable.
2379 * @ap: port
2380 *
2381 * Helper method for drivers which have no PATA cable detection.
2382 */
2383
2384int ata_cable_unknown(struct ata_port *ap)
2385{
2386 return ATA_CBL_PATA_UNK;
2387}
2388
2389/**
2390 * ata_cable_sata - return SATA cable type
2391 * @ap: port
2392 *
2393 * Helper method for drivers which have SATA cables
2394 */
2395
2396int ata_cable_sata(struct ata_port *ap)
2397{
2398 return ATA_CBL_SATA;
2399}
2400
1da177e4
LT
2401/**
2402 * ata_bus_probe - Reset and probe ATA bus
2403 * @ap: Bus to probe
2404 *
0cba632b
JG
2405 * Master ATA bus probing function. Initiates a hardware-dependent
2406 * bus reset, then attempts to identify any devices found on
2407 * the bus.
2408 *
1da177e4 2409 * LOCKING:
0cba632b 2410 * PCI/etc. bus probe sem.
1da177e4
LT
2411 *
2412 * RETURNS:
96072e69 2413 * Zero on success, negative errno otherwise.
1da177e4
LT
2414 */
2415
80289167 2416int ata_bus_probe(struct ata_port *ap)
1da177e4 2417{
28ca5c57 2418 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2419 int tries[ATA_MAX_DEVICES];
f58229f8 2420 int rc;
e82cbdb9 2421 struct ata_device *dev;
1da177e4 2422
28ca5c57 2423 ata_port_probe(ap);
c19ba8af 2424
f58229f8
TH
2425 ata_link_for_each_dev(dev, &ap->link)
2426 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2427
2428 retry:
cdeab114
TH
2429 ata_link_for_each_dev(dev, &ap->link) {
2430 /* If we issue an SRST then an ATA drive (not ATAPI)
2431 * may change configuration and be in PIO0 timing. If
2432 * we do a hard reset (or are coming from power on)
2433 * this is true for ATA or ATAPI. Until we've set a
2434 * suitable controller mode we should not touch the
2435 * bus as we may be talking too fast.
2436 */
2437 dev->pio_mode = XFER_PIO_0;
2438
2439 /* If the controller has a pio mode setup function
2440 * then use it to set the chipset to rights. Don't
2441 * touch the DMA setup as that will be dealt with when
2442 * configuring devices.
2443 */
2444 if (ap->ops->set_piomode)
2445 ap->ops->set_piomode(ap, dev);
2446 }
2447
2044470c 2448 /* reset and determine device classes */
52783c5d 2449 ap->ops->phy_reset(ap);
2061a47a 2450
f58229f8 2451 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2452 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2453 dev->class != ATA_DEV_UNKNOWN)
2454 classes[dev->devno] = dev->class;
2455 else
2456 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2457
52783c5d 2458 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2459 }
1da177e4 2460
52783c5d 2461 ata_port_probe(ap);
2044470c 2462
f31f0cc2
JG
2463 /* read IDENTIFY page and configure devices. We have to do the identify
2464 specific sequence bass-ackwards so that PDIAG- is released by
2465 the slave device */
2466
f58229f8
TH
2467 ata_link_for_each_dev(dev, &ap->link) {
2468 if (tries[dev->devno])
2469 dev->class = classes[dev->devno];
ffeae418 2470
14d2bac1 2471 if (!ata_dev_enabled(dev))
ffeae418 2472 continue;
ffeae418 2473
bff04647
TH
2474 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2475 dev->id);
14d2bac1
TH
2476 if (rc)
2477 goto fail;
f31f0cc2
JG
2478 }
2479
be0d18df
AC
2480 /* Now ask for the cable type as PDIAG- should have been released */
2481 if (ap->ops->cable_detect)
2482 ap->cbl = ap->ops->cable_detect(ap);
2483
614fe29b
AC
2484 /* We may have SATA bridge glue hiding here irrespective of the
2485 reported cable types and sensed types */
2486 ata_link_for_each_dev(dev, &ap->link) {
2487 if (!ata_dev_enabled(dev))
2488 continue;
2489 /* SATA drives indicate we have a bridge. We don't know which
2490 end of the link the bridge is which is a problem */
2491 if (ata_id_is_sata(dev->id))
2492 ap->cbl = ATA_CBL_SATA;
2493 }
2494
f31f0cc2
JG
2495 /* After the identify sequence we can now set up the devices. We do
2496 this in the normal order so that the user doesn't get confused */
2497
f58229f8 2498 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2499 if (!ata_dev_enabled(dev))
2500 continue;
14d2bac1 2501
9af5c9c9 2502 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2503 rc = ata_dev_configure(dev);
9af5c9c9 2504 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2505 if (rc)
2506 goto fail;
1da177e4
LT
2507 }
2508
e82cbdb9 2509 /* configure transfer mode */
0260731f 2510 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2511 if (rc)
51713d35 2512 goto fail;
1da177e4 2513
f58229f8
TH
2514 ata_link_for_each_dev(dev, &ap->link)
2515 if (ata_dev_enabled(dev))
e82cbdb9 2516 return 0;
1da177e4 2517
e82cbdb9
TH
2518 /* no device present, disable port */
2519 ata_port_disable(ap);
96072e69 2520 return -ENODEV;
14d2bac1
TH
2521
2522 fail:
4ae72a1e
TH
2523 tries[dev->devno]--;
2524
14d2bac1
TH
2525 switch (rc) {
2526 case -EINVAL:
4ae72a1e 2527 /* eeek, something went very wrong, give up */
14d2bac1
TH
2528 tries[dev->devno] = 0;
2529 break;
4ae72a1e
TH
2530
2531 case -ENODEV:
2532 /* give it just one more chance */
2533 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2534 case -EIO:
4ae72a1e
TH
2535 if (tries[dev->devno] == 1) {
2536 /* This is the last chance, better to slow
2537 * down than lose it.
2538 */
936fd732 2539 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2540 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2541 }
14d2bac1
TH
2542 }
2543
4ae72a1e 2544 if (!tries[dev->devno])
3373efd8 2545 ata_dev_disable(dev);
ec573755 2546
14d2bac1 2547 goto retry;
1da177e4
LT
2548}
2549
2550/**
0cba632b
JG
2551 * ata_port_probe - Mark port as enabled
2552 * @ap: Port for which we indicate enablement
1da177e4 2553 *
0cba632b
JG
2554 * Modify @ap data structure such that the system
2555 * thinks that the entire port is enabled.
2556 *
cca3974e 2557 * LOCKING: host lock, or some other form of
0cba632b 2558 * serialization.
1da177e4
LT
2559 */
2560
2561void ata_port_probe(struct ata_port *ap)
2562{
198e0fed 2563 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2564}
2565
3be680b7
TH
2566/**
2567 * sata_print_link_status - Print SATA link status
936fd732 2568 * @link: SATA link to printk link status about
3be680b7
TH
2569 *
2570 * This function prints link speed and status of a SATA link.
2571 *
2572 * LOCKING:
2573 * None.
2574 */
936fd732 2575void sata_print_link_status(struct ata_link *link)
3be680b7 2576{
6d5f9732 2577 u32 sstatus, scontrol, tmp;
3be680b7 2578
936fd732 2579 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2580 return;
936fd732 2581 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2582
936fd732 2583 if (ata_link_online(link)) {
3be680b7 2584 tmp = (sstatus >> 4) & 0xf;
936fd732 2585 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2586 "SATA link up %s (SStatus %X SControl %X)\n",
2587 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2588 } else {
936fd732 2589 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2590 "SATA link down (SStatus %X SControl %X)\n",
2591 sstatus, scontrol);
3be680b7
TH
2592 }
2593}
2594
ebdfca6e
AC
2595/**
2596 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2597 * @adev: device
2598 *
2599 * Obtain the other device on the same cable, or if none is
2600 * present NULL is returned
2601 */
2e9edbf8 2602
3373efd8 2603struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2604{
9af5c9c9
TH
2605 struct ata_link *link = adev->link;
2606 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2607 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2608 return NULL;
2609 return pair;
2610}
2611
1da177e4 2612/**
780a87f7
JG
2613 * ata_port_disable - Disable port.
2614 * @ap: Port to be disabled.
1da177e4 2615 *
780a87f7
JG
2616 * Modify @ap data structure such that the system
2617 * thinks that the entire port is disabled, and should
2618 * never attempt to probe or communicate with devices
2619 * on this port.
2620 *
cca3974e 2621 * LOCKING: host lock, or some other form of
780a87f7 2622 * serialization.
1da177e4
LT
2623 */
2624
2625void ata_port_disable(struct ata_port *ap)
2626{
9af5c9c9
TH
2627 ap->link.device[0].class = ATA_DEV_NONE;
2628 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2629 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2630}
2631
1c3fae4d 2632/**
3c567b7d 2633 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2634 * @link: Link to adjust SATA spd limit for
1c3fae4d 2635 *
936fd732 2636 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2637 * function only adjusts the limit. The change must be applied
3c567b7d 2638 * using sata_set_spd().
1c3fae4d
TH
2639 *
2640 * LOCKING:
2641 * Inherited from caller.
2642 *
2643 * RETURNS:
2644 * 0 on success, negative errno on failure
2645 */
936fd732 2646int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2647{
81952c54
TH
2648 u32 sstatus, spd, mask;
2649 int rc, highbit;
1c3fae4d 2650
936fd732 2651 if (!sata_scr_valid(link))
008a7896
TH
2652 return -EOPNOTSUPP;
2653
2654 /* If SCR can be read, use it to determine the current SPD.
936fd732 2655 * If not, use cached value in link->sata_spd.
008a7896 2656 */
936fd732 2657 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2658 if (rc == 0)
2659 spd = (sstatus >> 4) & 0xf;
2660 else
936fd732 2661 spd = link->sata_spd;
1c3fae4d 2662
936fd732 2663 mask = link->sata_spd_limit;
1c3fae4d
TH
2664 if (mask <= 1)
2665 return -EINVAL;
008a7896
TH
2666
2667 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2668 highbit = fls(mask) - 1;
2669 mask &= ~(1 << highbit);
2670
008a7896
TH
2671 /* Mask off all speeds higher than or equal to the current
2672 * one. Force 1.5Gbps if current SPD is not available.
2673 */
2674 if (spd > 1)
2675 mask &= (1 << (spd - 1)) - 1;
2676 else
2677 mask &= 1;
2678
2679 /* were we already at the bottom? */
1c3fae4d
TH
2680 if (!mask)
2681 return -EINVAL;
2682
936fd732 2683 link->sata_spd_limit = mask;
1c3fae4d 2684
936fd732 2685 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2686 sata_spd_string(fls(mask)));
1c3fae4d
TH
2687
2688 return 0;
2689}
2690
936fd732 2691static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2692{
5270222f
TH
2693 struct ata_link *host_link = &link->ap->link;
2694 u32 limit, target, spd;
1c3fae4d 2695
5270222f
TH
2696 limit = link->sata_spd_limit;
2697
2698 /* Don't configure downstream link faster than upstream link.
2699 * It doesn't speed up anything and some PMPs choke on such
2700 * configuration.
2701 */
2702 if (!ata_is_host_link(link) && host_link->sata_spd)
2703 limit &= (1 << host_link->sata_spd) - 1;
2704
2705 if (limit == UINT_MAX)
2706 target = 0;
1c3fae4d 2707 else
5270222f 2708 target = fls(limit);
1c3fae4d
TH
2709
2710 spd = (*scontrol >> 4) & 0xf;
5270222f 2711 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2712
5270222f 2713 return spd != target;
1c3fae4d
TH
2714}
2715
2716/**
3c567b7d 2717 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2718 * @link: Link in question
1c3fae4d
TH
2719 *
2720 * Test whether the spd limit in SControl matches
936fd732 2721 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2722 * whether hardreset is necessary to apply SATA spd
2723 * configuration.
2724 *
2725 * LOCKING:
2726 * Inherited from caller.
2727 *
2728 * RETURNS:
2729 * 1 if SATA spd configuration is needed, 0 otherwise.
2730 */
936fd732 2731int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2732{
2733 u32 scontrol;
2734
936fd732 2735 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2736 return 1;
1c3fae4d 2737
936fd732 2738 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2739}
2740
2741/**
3c567b7d 2742 * sata_set_spd - set SATA spd according to spd limit
936fd732 2743 * @link: Link to set SATA spd for
1c3fae4d 2744 *
936fd732 2745 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2746 *
2747 * LOCKING:
2748 * Inherited from caller.
2749 *
2750 * RETURNS:
2751 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2752 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2753 */
936fd732 2754int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2755{
2756 u32 scontrol;
81952c54 2757 int rc;
1c3fae4d 2758
936fd732 2759 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2760 return rc;
1c3fae4d 2761
936fd732 2762 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2763 return 0;
2764
936fd732 2765 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2766 return rc;
2767
1c3fae4d
TH
2768 return 1;
2769}
2770
452503f9
AC
2771/*
2772 * This mode timing computation functionality is ported over from
2773 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2774 */
2775/*
b352e57d 2776 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2777 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2778 * for UDMA6, which is currently supported only by Maxtor drives.
2779 *
2780 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2781 */
2782
2783static const struct ata_timing ata_timing[] = {
2784
2785 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2786 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2787 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2788 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2789
b352e57d
AC
2790 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2791 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2792 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2793 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2794 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2795
2796/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2797
452503f9
AC
2798 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2799 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2800 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2801
452503f9
AC
2802 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2803 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2804 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2805
b352e57d
AC
2806 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2807 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2808 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2809 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2810
2811 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2812 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2813 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2814
2815/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2816
2817 { 0xFF }
2818};
2819
2dcb407e
JG
2820#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2821#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2822
2823static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2824{
2825 q->setup = EZ(t->setup * 1000, T);
2826 q->act8b = EZ(t->act8b * 1000, T);
2827 q->rec8b = EZ(t->rec8b * 1000, T);
2828 q->cyc8b = EZ(t->cyc8b * 1000, T);
2829 q->active = EZ(t->active * 1000, T);
2830 q->recover = EZ(t->recover * 1000, T);
2831 q->cycle = EZ(t->cycle * 1000, T);
2832 q->udma = EZ(t->udma * 1000, UT);
2833}
2834
2835void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2836 struct ata_timing *m, unsigned int what)
2837{
2838 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2839 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2840 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2841 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2842 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2843 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2844 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2845 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2846}
2847
2dcb407e 2848static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2849{
2850 const struct ata_timing *t;
2851
2852 for (t = ata_timing; t->mode != speed; t++)
91190758 2853 if (t->mode == 0xFF)
452503f9 2854 return NULL;
2e9edbf8 2855 return t;
452503f9
AC
2856}
2857
2858int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2859 struct ata_timing *t, int T, int UT)
2860{
2861 const struct ata_timing *s;
2862 struct ata_timing p;
2863
2864 /*
2e9edbf8 2865 * Find the mode.
75b1f2f8 2866 */
452503f9
AC
2867
2868 if (!(s = ata_timing_find_mode(speed)))
2869 return -EINVAL;
2870
75b1f2f8
AL
2871 memcpy(t, s, sizeof(*s));
2872
452503f9
AC
2873 /*
2874 * If the drive is an EIDE drive, it can tell us it needs extended
2875 * PIO/MW_DMA cycle timing.
2876 */
2877
2878 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2879 memset(&p, 0, sizeof(p));
2dcb407e 2880 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2881 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2882 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2883 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2884 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2885 }
2886 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2887 }
2888
2889 /*
2890 * Convert the timing to bus clock counts.
2891 */
2892
75b1f2f8 2893 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2894
2895 /*
c893a3ae
RD
2896 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2897 * S.M.A.R.T * and some other commands. We have to ensure that the
2898 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2899 */
2900
fd3367af 2901 if (speed > XFER_PIO_6) {
452503f9
AC
2902 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2903 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2904 }
2905
2906 /*
c893a3ae 2907 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2908 */
2909
2910 if (t->act8b + t->rec8b < t->cyc8b) {
2911 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2912 t->rec8b = t->cyc8b - t->act8b;
2913 }
2914
2915 if (t->active + t->recover < t->cycle) {
2916 t->active += (t->cycle - (t->active + t->recover)) / 2;
2917 t->recover = t->cycle - t->active;
2918 }
a617c09f 2919
4f701d1e
AC
2920 /* In a few cases quantisation may produce enough errors to
2921 leave t->cycle too low for the sum of active and recovery
2922 if so we must correct this */
2923 if (t->active + t->recover > t->cycle)
2924 t->cycle = t->active + t->recover;
452503f9
AC
2925
2926 return 0;
2927}
2928
cf176e1a
TH
2929/**
2930 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2931 * @dev: Device to adjust xfer masks
458337db 2932 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2933 *
2934 * Adjust xfer masks of @dev downward. Note that this function
2935 * does not apply the change. Invoking ata_set_mode() afterwards
2936 * will apply the limit.
2937 *
2938 * LOCKING:
2939 * Inherited from caller.
2940 *
2941 * RETURNS:
2942 * 0 on success, negative errno on failure
2943 */
458337db 2944int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2945{
458337db
TH
2946 char buf[32];
2947 unsigned int orig_mask, xfer_mask;
2948 unsigned int pio_mask, mwdma_mask, udma_mask;
2949 int quiet, highbit;
cf176e1a 2950
458337db
TH
2951 quiet = !!(sel & ATA_DNXFER_QUIET);
2952 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2953
458337db
TH
2954 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2955 dev->mwdma_mask,
2956 dev->udma_mask);
2957 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2958
458337db
TH
2959 switch (sel) {
2960 case ATA_DNXFER_PIO:
2961 highbit = fls(pio_mask) - 1;
2962 pio_mask &= ~(1 << highbit);
2963 break;
2964
2965 case ATA_DNXFER_DMA:
2966 if (udma_mask) {
2967 highbit = fls(udma_mask) - 1;
2968 udma_mask &= ~(1 << highbit);
2969 if (!udma_mask)
2970 return -ENOENT;
2971 } else if (mwdma_mask) {
2972 highbit = fls(mwdma_mask) - 1;
2973 mwdma_mask &= ~(1 << highbit);
2974 if (!mwdma_mask)
2975 return -ENOENT;
2976 }
2977 break;
2978
2979 case ATA_DNXFER_40C:
2980 udma_mask &= ATA_UDMA_MASK_40C;
2981 break;
2982
2983 case ATA_DNXFER_FORCE_PIO0:
2984 pio_mask &= 1;
2985 case ATA_DNXFER_FORCE_PIO:
2986 mwdma_mask = 0;
2987 udma_mask = 0;
2988 break;
2989
458337db
TH
2990 default:
2991 BUG();
2992 }
2993
2994 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2995
2996 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2997 return -ENOENT;
2998
2999 if (!quiet) {
3000 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3001 snprintf(buf, sizeof(buf), "%s:%s",
3002 ata_mode_string(xfer_mask),
3003 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3004 else
3005 snprintf(buf, sizeof(buf), "%s",
3006 ata_mode_string(xfer_mask));
3007
3008 ata_dev_printk(dev, KERN_WARNING,
3009 "limiting speed to %s\n", buf);
3010 }
cf176e1a
TH
3011
3012 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3013 &dev->udma_mask);
3014
cf176e1a 3015 return 0;
cf176e1a
TH
3016}
3017
3373efd8 3018static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3019{
9af5c9c9 3020 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3021 unsigned int err_mask;
3022 int rc;
1da177e4 3023
e8384607 3024 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3025 if (dev->xfer_shift == ATA_SHIFT_PIO)
3026 dev->flags |= ATA_DFLAG_PIO;
3027
3373efd8 3028 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3029
11750a40
AC
3030 /* Old CFA may refuse this command, which is just fine */
3031 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3032 err_mask &= ~AC_ERR_DEV;
3033
0bc2a79a
AC
3034 /* Some very old devices and some bad newer ones fail any kind of
3035 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3036 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3037 dev->pio_mode <= XFER_PIO_2)
3038 err_mask &= ~AC_ERR_DEV;
2dcb407e 3039
3acaf94b
AC
3040 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3041 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3042 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3043 dev->dma_mode == XFER_MW_DMA_0 &&
3044 (dev->id[63] >> 8) & 1)
3045 err_mask &= ~AC_ERR_DEV;
3046
83206a29 3047 if (err_mask) {
f15a1daf
TH
3048 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3049 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3050 return -EIO;
3051 }
1da177e4 3052
baa1e78a 3053 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3054 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3055 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3056 if (rc)
83206a29 3057 return rc;
48a8a14f 3058
23e71c3d
TH
3059 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3060 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3061
f15a1daf
TH
3062 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3063 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3064 return 0;
1da177e4
LT
3065}
3066
1da177e4 3067/**
04351821 3068 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3069 * @link: link on which timings will be programmed
e82cbdb9 3070 * @r_failed_dev: out paramter for failed device
1da177e4 3071 *
04351821
AC
3072 * Standard implementation of the function used to tune and set
3073 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3074 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3075 * returned in @r_failed_dev.
780a87f7 3076 *
1da177e4 3077 * LOCKING:
0cba632b 3078 * PCI/etc. bus probe sem.
e82cbdb9
TH
3079 *
3080 * RETURNS:
3081 * 0 on success, negative errno otherwise
1da177e4 3082 */
04351821 3083
0260731f 3084int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3085{
0260731f 3086 struct ata_port *ap = link->ap;
e8e0619f 3087 struct ata_device *dev;
f58229f8 3088 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3089
a6d5a51c 3090 /* step 1: calculate xfer_mask */
f58229f8 3091 ata_link_for_each_dev(dev, link) {
acf356b1 3092 unsigned int pio_mask, dma_mask;
b3a70601 3093 unsigned int mode_mask;
a6d5a51c 3094
e1211e3f 3095 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3096 continue;
3097
b3a70601
AC
3098 mode_mask = ATA_DMA_MASK_ATA;
3099 if (dev->class == ATA_DEV_ATAPI)
3100 mode_mask = ATA_DMA_MASK_ATAPI;
3101 else if (ata_id_is_cfa(dev->id))
3102 mode_mask = ATA_DMA_MASK_CFA;
3103
3373efd8 3104 ata_dev_xfermask(dev);
1da177e4 3105
acf356b1
TH
3106 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3107 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3108
3109 if (libata_dma_mask & mode_mask)
3110 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3111 else
3112 dma_mask = 0;
3113
acf356b1
TH
3114 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3115 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3116
4f65977d 3117 found = 1;
5444a6f4
AC
3118 if (dev->dma_mode)
3119 used_dma = 1;
a6d5a51c 3120 }
4f65977d 3121 if (!found)
e82cbdb9 3122 goto out;
a6d5a51c
TH
3123
3124 /* step 2: always set host PIO timings */
f58229f8 3125 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3126 if (!ata_dev_enabled(dev))
3127 continue;
3128
3129 if (!dev->pio_mode) {
f15a1daf 3130 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3131 rc = -EINVAL;
e82cbdb9 3132 goto out;
e8e0619f
TH
3133 }
3134
3135 dev->xfer_mode = dev->pio_mode;
3136 dev->xfer_shift = ATA_SHIFT_PIO;
3137 if (ap->ops->set_piomode)
3138 ap->ops->set_piomode(ap, dev);
3139 }
1da177e4 3140
a6d5a51c 3141 /* step 3: set host DMA timings */
f58229f8 3142 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3143 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3144 continue;
3145
3146 dev->xfer_mode = dev->dma_mode;
3147 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3148 if (ap->ops->set_dmamode)
3149 ap->ops->set_dmamode(ap, dev);
3150 }
1da177e4
LT
3151
3152 /* step 4: update devices' xfer mode */
f58229f8 3153 ata_link_for_each_dev(dev, link) {
18d90deb 3154 /* don't update suspended devices' xfer mode */
9666f400 3155 if (!ata_dev_enabled(dev))
83206a29
TH
3156 continue;
3157
3373efd8 3158 rc = ata_dev_set_mode(dev);
5bbc53f4 3159 if (rc)
e82cbdb9 3160 goto out;
83206a29 3161 }
1da177e4 3162
e8e0619f
TH
3163 /* Record simplex status. If we selected DMA then the other
3164 * host channels are not permitted to do so.
5444a6f4 3165 */
cca3974e 3166 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3167 ap->host->simplex_claimed = ap;
5444a6f4 3168
e82cbdb9
TH
3169 out:
3170 if (rc)
3171 *r_failed_dev = dev;
3172 return rc;
1da177e4
LT
3173}
3174
04351821
AC
3175/**
3176 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3177 * @link: link on which timings will be programmed
04351821
AC
3178 * @r_failed_dev: out paramter for failed device
3179 *
3180 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3181 * ata_set_mode() fails, pointer to the failing device is
3182 * returned in @r_failed_dev.
3183 *
3184 * LOCKING:
3185 * PCI/etc. bus probe sem.
3186 *
3187 * RETURNS:
3188 * 0 on success, negative errno otherwise
3189 */
0260731f 3190int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3191{
0260731f
TH
3192 struct ata_port *ap = link->ap;
3193
04351821
AC
3194 /* has private set_mode? */
3195 if (ap->ops->set_mode)
0260731f
TH
3196 return ap->ops->set_mode(link, r_failed_dev);
3197 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3198}
3199
1fdffbce
JG
3200/**
3201 * ata_tf_to_host - issue ATA taskfile to host controller
3202 * @ap: port to which command is being issued
3203 * @tf: ATA taskfile register set
3204 *
3205 * Issues ATA taskfile register set to ATA host controller,
3206 * with proper synchronization with interrupt handler and
3207 * other threads.
3208 *
3209 * LOCKING:
cca3974e 3210 * spin_lock_irqsave(host lock)
1fdffbce
JG
3211 */
3212
3213static inline void ata_tf_to_host(struct ata_port *ap,
3214 const struct ata_taskfile *tf)
3215{
3216 ap->ops->tf_load(ap, tf);
3217 ap->ops->exec_command(ap, tf);
3218}
3219
1da177e4
LT
3220/**
3221 * ata_busy_sleep - sleep until BSY clears, or timeout
3222 * @ap: port containing status register to be polled
3223 * @tmout_pat: impatience timeout
3224 * @tmout: overall timeout
3225 *
780a87f7
JG
3226 * Sleep until ATA Status register bit BSY clears,
3227 * or a timeout occurs.
3228 *
d1adc1bb
TH
3229 * LOCKING:
3230 * Kernel thread context (may sleep).
3231 *
3232 * RETURNS:
3233 * 0 on success, -errno otherwise.
1da177e4 3234 */
d1adc1bb
TH
3235int ata_busy_sleep(struct ata_port *ap,
3236 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3237{
3238 unsigned long timer_start, timeout;
3239 u8 status;
3240
3241 status = ata_busy_wait(ap, ATA_BUSY, 300);
3242 timer_start = jiffies;
3243 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3244 while (status != 0xff && (status & ATA_BUSY) &&
3245 time_before(jiffies, timeout)) {
1da177e4
LT
3246 msleep(50);
3247 status = ata_busy_wait(ap, ATA_BUSY, 3);
3248 }
3249
d1adc1bb 3250 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3251 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3252 "port is slow to respond, please be patient "
3253 "(Status 0x%x)\n", status);
1da177e4
LT
3254
3255 timeout = timer_start + tmout;
d1adc1bb
TH
3256 while (status != 0xff && (status & ATA_BUSY) &&
3257 time_before(jiffies, timeout)) {
1da177e4
LT
3258 msleep(50);
3259 status = ata_chk_status(ap);
3260 }
3261
d1adc1bb
TH
3262 if (status == 0xff)
3263 return -ENODEV;
3264
1da177e4 3265 if (status & ATA_BUSY) {
f15a1daf 3266 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3267 "(%lu secs, Status 0x%x)\n",
3268 tmout / HZ, status);
d1adc1bb 3269 return -EBUSY;
1da177e4
LT
3270 }
3271
3272 return 0;
3273}
3274
88ff6eaf
TH
3275/**
3276 * ata_wait_after_reset - wait before checking status after reset
3277 * @ap: port containing status register to be polled
3278 * @deadline: deadline jiffies for the operation
3279 *
3280 * After reset, we need to pause a while before reading status.
3281 * Also, certain combination of controller and device report 0xff
3282 * for some duration (e.g. until SATA PHY is up and running)
3283 * which is interpreted as empty port in ATA world. This
3284 * function also waits for such devices to get out of 0xff
3285 * status.
3286 *
3287 * LOCKING:
3288 * Kernel thread context (may sleep).
3289 */
3290void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3291{
3292 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3293
3294 if (time_before(until, deadline))
3295 deadline = until;
3296
3297 /* Spec mandates ">= 2ms" before checking status. We wait
3298 * 150ms, because that was the magic delay used for ATAPI
3299 * devices in Hale Landis's ATADRVR, for the period of time
3300 * between when the ATA command register is written, and then
3301 * status is checked. Because waiting for "a while" before
3302 * checking status is fine, post SRST, we perform this magic
3303 * delay here as well.
3304 *
3305 * Old drivers/ide uses the 2mS rule and then waits for ready.
3306 */
3307 msleep(150);
3308
3309 /* Wait for 0xff to clear. Some SATA devices take a long time
3310 * to clear 0xff after reset. For example, HHD424020F7SV00
3311 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3312 * than that.
1974e201
TH
3313 *
3314 * Note that some PATA controllers (pata_ali) explode if
3315 * status register is read more than once when there's no
3316 * device attached.
88ff6eaf 3317 */
1974e201
TH
3318 if (ap->flags & ATA_FLAG_SATA) {
3319 while (1) {
3320 u8 status = ata_chk_status(ap);
88ff6eaf 3321
1974e201
TH
3322 if (status != 0xff || time_after(jiffies, deadline))
3323 return;
88ff6eaf 3324
1974e201
TH
3325 msleep(50);
3326 }
88ff6eaf
TH
3327 }
3328}
3329
d4b2bab4
TH
3330/**
3331 * ata_wait_ready - sleep until BSY clears, or timeout
3332 * @ap: port containing status register to be polled
3333 * @deadline: deadline jiffies for the operation
3334 *
3335 * Sleep until ATA Status register bit BSY clears, or timeout
3336 * occurs.
3337 *
3338 * LOCKING:
3339 * Kernel thread context (may sleep).
3340 *
3341 * RETURNS:
3342 * 0 on success, -errno otherwise.
3343 */
3344int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3345{
3346 unsigned long start = jiffies;
3347 int warned = 0;
3348
3349 while (1) {
3350 u8 status = ata_chk_status(ap);
3351 unsigned long now = jiffies;
3352
3353 if (!(status & ATA_BUSY))
3354 return 0;
936fd732 3355 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3356 return -ENODEV;
3357 if (time_after(now, deadline))
3358 return -EBUSY;
3359
3360 if (!warned && time_after(now, start + 5 * HZ) &&
3361 (deadline - now > 3 * HZ)) {
3362 ata_port_printk(ap, KERN_WARNING,
3363 "port is slow to respond, please be patient "
3364 "(Status 0x%x)\n", status);
3365 warned = 1;
3366 }
3367
3368 msleep(50);
3369 }
3370}
3371
3372static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3373 unsigned long deadline)
1da177e4
LT
3374{
3375 struct ata_ioports *ioaddr = &ap->ioaddr;
3376 unsigned int dev0 = devmask & (1 << 0);
3377 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3378 int rc, ret = 0;
1da177e4
LT
3379
3380 /* if device 0 was found in ata_devchk, wait for its
3381 * BSY bit to clear
3382 */
d4b2bab4
TH
3383 if (dev0) {
3384 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3385 if (rc) {
3386 if (rc != -ENODEV)
3387 return rc;
3388 ret = rc;
3389 }
d4b2bab4 3390 }
1da177e4 3391
e141d999
TH
3392 /* if device 1 was found in ata_devchk, wait for register
3393 * access briefly, then wait for BSY to clear.
1da177e4 3394 */
e141d999
TH
3395 if (dev1) {
3396 int i;
1da177e4
LT
3397
3398 ap->ops->dev_select(ap, 1);
e141d999
TH
3399
3400 /* Wait for register access. Some ATAPI devices fail
3401 * to set nsect/lbal after reset, so don't waste too
3402 * much time on it. We're gonna wait for !BSY anyway.
3403 */
3404 for (i = 0; i < 2; i++) {
3405 u8 nsect, lbal;
3406
3407 nsect = ioread8(ioaddr->nsect_addr);
3408 lbal = ioread8(ioaddr->lbal_addr);
3409 if ((nsect == 1) && (lbal == 1))
3410 break;
3411 msleep(50); /* give drive a breather */
3412 }
3413
d4b2bab4 3414 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3415 if (rc) {
3416 if (rc != -ENODEV)
3417 return rc;
3418 ret = rc;
3419 }
d4b2bab4 3420 }
1da177e4
LT
3421
3422 /* is all this really necessary? */
3423 ap->ops->dev_select(ap, 0);
3424 if (dev1)
3425 ap->ops->dev_select(ap, 1);
3426 if (dev0)
3427 ap->ops->dev_select(ap, 0);
d4b2bab4 3428
9b89391c 3429 return ret;
1da177e4
LT
3430}
3431
d4b2bab4
TH
3432static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3433 unsigned long deadline)
1da177e4
LT
3434{
3435 struct ata_ioports *ioaddr = &ap->ioaddr;
3436
44877b4e 3437 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3438
3439 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3440 iowrite8(ap->ctl, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3443 udelay(20); /* FIXME: flush */
3444 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3445
88ff6eaf
TH
3446 /* wait a while before checking status */
3447 ata_wait_after_reset(ap, deadline);
1da177e4 3448
2e9edbf8 3449 /* Before we perform post reset processing we want to see if
298a41ca
TH
3450 * the bus shows 0xFF because the odd clown forgets the D7
3451 * pulldown resistor.
3452 */
150981b0 3453 if (ata_chk_status(ap) == 0xFF)
9b89391c 3454 return -ENODEV;
09c7ad79 3455
d4b2bab4 3456 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3457}
3458
3459/**
3460 * ata_bus_reset - reset host port and associated ATA channel
3461 * @ap: port to reset
3462 *
3463 * This is typically the first time we actually start issuing
3464 * commands to the ATA channel. We wait for BSY to clear, then
3465 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3466 * result. Determine what devices, if any, are on the channel
3467 * by looking at the device 0/1 error register. Look at the signature
3468 * stored in each device's taskfile registers, to determine if
3469 * the device is ATA or ATAPI.
3470 *
3471 * LOCKING:
0cba632b 3472 * PCI/etc. bus probe sem.
cca3974e 3473 * Obtains host lock.
1da177e4
LT
3474 *
3475 * SIDE EFFECTS:
198e0fed 3476 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3477 */
3478
3479void ata_bus_reset(struct ata_port *ap)
3480{
9af5c9c9 3481 struct ata_device *device = ap->link.device;
1da177e4
LT
3482 struct ata_ioports *ioaddr = &ap->ioaddr;
3483 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3484 u8 err;
aec5c3c1 3485 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3486 int rc;
1da177e4 3487
44877b4e 3488 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3489
3490 /* determine if device 0/1 are present */
3491 if (ap->flags & ATA_FLAG_SATA_RESET)
3492 dev0 = 1;
3493 else {
3494 dev0 = ata_devchk(ap, 0);
3495 if (slave_possible)
3496 dev1 = ata_devchk(ap, 1);
3497 }
3498
3499 if (dev0)
3500 devmask |= (1 << 0);
3501 if (dev1)
3502 devmask |= (1 << 1);
3503
3504 /* select device 0 again */
3505 ap->ops->dev_select(ap, 0);
3506
3507 /* issue bus reset */
9b89391c
TH
3508 if (ap->flags & ATA_FLAG_SRST) {
3509 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3510 if (rc && rc != -ENODEV)
aec5c3c1 3511 goto err_out;
9b89391c 3512 }
1da177e4
LT
3513
3514 /*
3515 * determine by signature whether we have ATA or ATAPI devices
3516 */
3f19859e 3517 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3518 if ((slave_possible) && (err != 0x81))
3f19859e 3519 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3520
1da177e4 3521 /* is double-select really necessary? */
9af5c9c9 3522 if (device[1].class != ATA_DEV_NONE)
1da177e4 3523 ap->ops->dev_select(ap, 1);
9af5c9c9 3524 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3525 ap->ops->dev_select(ap, 0);
3526
3527 /* if no devices were detected, disable this port */
9af5c9c9
TH
3528 if ((device[0].class == ATA_DEV_NONE) &&
3529 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3530 goto err_out;
3531
3532 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3533 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3534 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3535 }
3536
3537 DPRINTK("EXIT\n");
3538 return;
3539
3540err_out:
f15a1daf 3541 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3542 ata_port_disable(ap);
1da177e4
LT
3543
3544 DPRINTK("EXIT\n");
3545}
3546
d7bb4cc7 3547/**
936fd732
TH
3548 * sata_link_debounce - debounce SATA phy status
3549 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3550 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3551 * @deadline: deadline jiffies for the operation
d7bb4cc7 3552 *
936fd732 3553* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3554 * holding the same value where DET is not 1 for @duration polled
3555 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3556 * beginning of the stable state. Because DET gets stuck at 1 on
3557 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3558 * until timeout then returns 0 if DET is stable at 1.
3559 *
d4b2bab4
TH
3560 * @timeout is further limited by @deadline. The sooner of the
3561 * two is used.
3562 *
d7bb4cc7
TH
3563 * LOCKING:
3564 * Kernel thread context (may sleep)
3565 *
3566 * RETURNS:
3567 * 0 on success, -errno on failure.
3568 */
936fd732
TH
3569int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3570 unsigned long deadline)
7a7921e8 3571{
d7bb4cc7 3572 unsigned long interval_msec = params[0];
d4b2bab4
TH
3573 unsigned long duration = msecs_to_jiffies(params[1]);
3574 unsigned long last_jiffies, t;
d7bb4cc7
TH
3575 u32 last, cur;
3576 int rc;
3577
d4b2bab4
TH
3578 t = jiffies + msecs_to_jiffies(params[2]);
3579 if (time_before(t, deadline))
3580 deadline = t;
3581
936fd732 3582 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3583 return rc;
3584 cur &= 0xf;
3585
3586 last = cur;
3587 last_jiffies = jiffies;
3588
3589 while (1) {
3590 msleep(interval_msec);
936fd732 3591 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3592 return rc;
3593 cur &= 0xf;
3594
3595 /* DET stable? */
3596 if (cur == last) {
d4b2bab4 3597 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3598 continue;
3599 if (time_after(jiffies, last_jiffies + duration))
3600 return 0;
3601 continue;
3602 }
3603
3604 /* unstable, start over */
3605 last = cur;
3606 last_jiffies = jiffies;
3607
f1545154
TH
3608 /* Check deadline. If debouncing failed, return
3609 * -EPIPE to tell upper layer to lower link speed.
3610 */
d4b2bab4 3611 if (time_after(jiffies, deadline))
f1545154 3612 return -EPIPE;
d7bb4cc7
TH
3613 }
3614}
3615
3616/**
936fd732
TH
3617 * sata_link_resume - resume SATA link
3618 * @link: ATA link to resume SATA
d7bb4cc7 3619 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3620 * @deadline: deadline jiffies for the operation
d7bb4cc7 3621 *
936fd732 3622 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3623 *
3624 * LOCKING:
3625 * Kernel thread context (may sleep)
3626 *
3627 * RETURNS:
3628 * 0 on success, -errno on failure.
3629 */
936fd732
TH
3630int sata_link_resume(struct ata_link *link, const unsigned long *params,
3631 unsigned long deadline)
d7bb4cc7
TH
3632{
3633 u32 scontrol;
81952c54
TH
3634 int rc;
3635
936fd732 3636 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3637 return rc;
7a7921e8 3638
852ee16a 3639 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3640
936fd732 3641 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3642 return rc;
7a7921e8 3643
d7bb4cc7
TH
3644 /* Some PHYs react badly if SStatus is pounded immediately
3645 * after resuming. Delay 200ms before debouncing.
3646 */
3647 msleep(200);
7a7921e8 3648
936fd732 3649 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3650}
3651
f5914a46
TH
3652/**
3653 * ata_std_prereset - prepare for reset
cc0680a5 3654 * @link: ATA link to be reset
d4b2bab4 3655 * @deadline: deadline jiffies for the operation
f5914a46 3656 *
cc0680a5 3657 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3658 * prereset makes libata abort whole reset sequence and give up
3659 * that port, so prereset should be best-effort. It does its
3660 * best to prepare for reset sequence but if things go wrong, it
3661 * should just whine, not fail.
f5914a46
TH
3662 *
3663 * LOCKING:
3664 * Kernel thread context (may sleep)
3665 *
3666 * RETURNS:
3667 * 0 on success, -errno otherwise.
3668 */
cc0680a5 3669int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3670{
cc0680a5 3671 struct ata_port *ap = link->ap;
936fd732 3672 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3673 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3674 int rc;
3675
31daabda 3676 /* handle link resume */
28324304 3677 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3678 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3679 ehc->i.action |= ATA_EH_HARDRESET;
3680
633273a3
TH
3681 /* Some PMPs don't work with only SRST, force hardreset if PMP
3682 * is supported.
3683 */
3684 if (ap->flags & ATA_FLAG_PMP)
3685 ehc->i.action |= ATA_EH_HARDRESET;
3686
f5914a46
TH
3687 /* if we're about to do hardreset, nothing more to do */
3688 if (ehc->i.action & ATA_EH_HARDRESET)
3689 return 0;
3690
936fd732 3691 /* if SATA, resume link */
a16abc0b 3692 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3693 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3694 /* whine about phy resume failure but proceed */
3695 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3696 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3697 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3698 }
3699
3700 /* Wait for !BSY if the controller can wait for the first D2H
3701 * Reg FIS and we don't know that no device is attached.
3702 */
0c88758b 3703 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3704 rc = ata_wait_ready(ap, deadline);
6dffaf61 3705 if (rc && rc != -ENODEV) {
cc0680a5 3706 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3707 "(errno=%d), forcing hardreset\n", rc);
3708 ehc->i.action |= ATA_EH_HARDRESET;
3709 }
3710 }
f5914a46
TH
3711
3712 return 0;
3713}
3714
c2bd5804
TH
3715/**
3716 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3717 * @link: ATA link to reset
c2bd5804 3718 * @classes: resulting classes of attached devices
d4b2bab4 3719 * @deadline: deadline jiffies for the operation
c2bd5804 3720 *
52783c5d 3721 * Reset host port using ATA SRST.
c2bd5804
TH
3722 *
3723 * LOCKING:
3724 * Kernel thread context (may sleep)
3725 *
3726 * RETURNS:
3727 * 0 on success, -errno otherwise.
3728 */
cc0680a5 3729int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3730 unsigned long deadline)
c2bd5804 3731{
cc0680a5 3732 struct ata_port *ap = link->ap;
c2bd5804 3733 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3734 unsigned int devmask = 0;
3735 int rc;
c2bd5804
TH
3736 u8 err;
3737
3738 DPRINTK("ENTER\n");
3739
936fd732 3740 if (ata_link_offline(link)) {
3a39746a
TH
3741 classes[0] = ATA_DEV_NONE;
3742 goto out;
3743 }
3744
c2bd5804
TH
3745 /* determine if device 0/1 are present */
3746 if (ata_devchk(ap, 0))
3747 devmask |= (1 << 0);
3748 if (slave_possible && ata_devchk(ap, 1))
3749 devmask |= (1 << 1);
3750
c2bd5804
TH
3751 /* select device 0 again */
3752 ap->ops->dev_select(ap, 0);
3753
3754 /* issue bus reset */
3755 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3756 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3757 /* if link is occupied, -ENODEV too is an error */
936fd732 3758 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3759 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3760 return rc;
c2bd5804
TH
3761 }
3762
3763 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3764 classes[0] = ata_dev_try_classify(&link->device[0],
3765 devmask & (1 << 0), &err);
c2bd5804 3766 if (slave_possible && err != 0x81)
3f19859e
TH
3767 classes[1] = ata_dev_try_classify(&link->device[1],
3768 devmask & (1 << 1), &err);
c2bd5804 3769
3a39746a 3770 out:
c2bd5804
TH
3771 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3772 return 0;
3773}
3774
3775/**
cc0680a5
TH
3776 * sata_link_hardreset - reset link via SATA phy reset
3777 * @link: link to reset
b6103f6d 3778 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3779 * @deadline: deadline jiffies for the operation
c2bd5804 3780 *
cc0680a5 3781 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3782 *
3783 * LOCKING:
3784 * Kernel thread context (may sleep)
3785 *
3786 * RETURNS:
3787 * 0 on success, -errno otherwise.
3788 */
cc0680a5 3789int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3790 unsigned long deadline)
c2bd5804 3791{
852ee16a 3792 u32 scontrol;
81952c54 3793 int rc;
852ee16a 3794
c2bd5804
TH
3795 DPRINTK("ENTER\n");
3796
936fd732 3797 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3798 /* SATA spec says nothing about how to reconfigure
3799 * spd. To be on the safe side, turn off phy during
3800 * reconfiguration. This works for at least ICH7 AHCI
3801 * and Sil3124.
3802 */
936fd732 3803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3804 goto out;
81952c54 3805
a34b6fc0 3806 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3807
936fd732 3808 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3809 goto out;
1c3fae4d 3810
936fd732 3811 sata_set_spd(link);
1c3fae4d
TH
3812 }
3813
3814 /* issue phy wake/reset */
936fd732 3815 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3816 goto out;
81952c54 3817
852ee16a 3818 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3819
936fd732 3820 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3821 goto out;
c2bd5804 3822
1c3fae4d 3823 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3824 * 10.4.2 says at least 1 ms.
3825 */
3826 msleep(1);
3827
936fd732
TH
3828 /* bring link back */
3829 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3830 out:
3831 DPRINTK("EXIT, rc=%d\n", rc);
3832 return rc;
3833}
3834
3835/**
3836 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3837 * @link: link to reset
b6103f6d 3838 * @class: resulting class of attached device
d4b2bab4 3839 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3840 *
3841 * SATA phy-reset host port using DET bits of SControl register,
3842 * wait for !BSY and classify the attached device.
3843 *
3844 * LOCKING:
3845 * Kernel thread context (may sleep)
3846 *
3847 * RETURNS:
3848 * 0 on success, -errno otherwise.
3849 */
cc0680a5 3850int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3851 unsigned long deadline)
b6103f6d 3852{
cc0680a5 3853 struct ata_port *ap = link->ap;
936fd732 3854 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3855 int rc;
3856
3857 DPRINTK("ENTER\n");
3858
3859 /* do hardreset */
cc0680a5 3860 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3861 if (rc) {
cc0680a5 3862 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3863 "COMRESET failed (errno=%d)\n", rc);
3864 return rc;
3865 }
c2bd5804 3866
c2bd5804 3867 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3868 if (ata_link_offline(link)) {
c2bd5804
TH
3869 *class = ATA_DEV_NONE;
3870 DPRINTK("EXIT, link offline\n");
3871 return 0;
3872 }
3873
88ff6eaf
TH
3874 /* wait a while before checking status */
3875 ata_wait_after_reset(ap, deadline);
34fee227 3876
633273a3
TH
3877 /* If PMP is supported, we have to do follow-up SRST. Note
3878 * that some PMPs don't send D2H Reg FIS after hardreset at
3879 * all if the first port is empty. Wait for it just for a
3880 * second and request follow-up SRST.
3881 */
3882 if (ap->flags & ATA_FLAG_PMP) {
3883 ata_wait_ready(ap, jiffies + HZ);
3884 return -EAGAIN;
3885 }
3886
d4b2bab4 3887 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3888 /* link occupied, -ENODEV too is an error */
3889 if (rc) {
cc0680a5 3890 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3891 "COMRESET failed (errno=%d)\n", rc);
3892 return rc;
c2bd5804
TH
3893 }
3894
3a39746a
TH
3895 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3896
3f19859e 3897 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3898
3899 DPRINTK("EXIT, class=%u\n", *class);
3900 return 0;
3901}
3902
3903/**
3904 * ata_std_postreset - standard postreset callback
cc0680a5 3905 * @link: the target ata_link
c2bd5804
TH
3906 * @classes: classes of attached devices
3907 *
3908 * This function is invoked after a successful reset. Note that
3909 * the device might have been reset more than once using
3910 * different reset methods before postreset is invoked.
c2bd5804 3911 *
c2bd5804
TH
3912 * LOCKING:
3913 * Kernel thread context (may sleep)
3914 */
cc0680a5 3915void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3916{
cc0680a5 3917 struct ata_port *ap = link->ap;
dc2b3515
TH
3918 u32 serror;
3919
c2bd5804
TH
3920 DPRINTK("ENTER\n");
3921
c2bd5804 3922 /* print link status */
936fd732 3923 sata_print_link_status(link);
c2bd5804 3924
dc2b3515 3925 /* clear SError */
936fd732
TH
3926 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3927 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3928 link->eh_info.serror = 0;
dc2b3515 3929
c2bd5804
TH
3930 /* is double-select really necessary? */
3931 if (classes[0] != ATA_DEV_NONE)
3932 ap->ops->dev_select(ap, 1);
3933 if (classes[1] != ATA_DEV_NONE)
3934 ap->ops->dev_select(ap, 0);
3935
3a39746a
TH
3936 /* bail out if no device is present */
3937 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3938 DPRINTK("EXIT, no device\n");
3939 return;
3940 }
3941
3942 /* set up device control */
0d5ff566
TH
3943 if (ap->ioaddr.ctl_addr)
3944 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3945
3946 DPRINTK("EXIT\n");
3947}
3948
623a3128
TH
3949/**
3950 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3951 * @dev: device to compare against
3952 * @new_class: class of the new device
3953 * @new_id: IDENTIFY page of the new device
3954 *
3955 * Compare @new_class and @new_id against @dev and determine
3956 * whether @dev is the device indicated by @new_class and
3957 * @new_id.
3958 *
3959 * LOCKING:
3960 * None.
3961 *
3962 * RETURNS:
3963 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3964 */
3373efd8
TH
3965static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3966 const u16 *new_id)
623a3128
TH
3967{
3968 const u16 *old_id = dev->id;
a0cf733b
TH
3969 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3970 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3971
3972 if (dev->class != new_class) {
f15a1daf
TH
3973 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3974 dev->class, new_class);
623a3128
TH
3975 return 0;
3976 }
3977
a0cf733b
TH
3978 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3979 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3980 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3981 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3982
3983 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3984 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3985 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3986 return 0;
3987 }
3988
3989 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3990 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3991 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3992 return 0;
3993 }
3994
623a3128
TH
3995 return 1;
3996}
3997
3998/**
fe30911b 3999 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4000 * @dev: target ATA device
bff04647 4001 * @readid_flags: read ID flags
623a3128
TH
4002 *
4003 * Re-read IDENTIFY page and make sure @dev is still attached to
4004 * the port.
4005 *
4006 * LOCKING:
4007 * Kernel thread context (may sleep)
4008 *
4009 * RETURNS:
4010 * 0 on success, negative errno otherwise
4011 */
fe30911b 4012int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4013{
5eb45c02 4014 unsigned int class = dev->class;
9af5c9c9 4015 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4016 int rc;
4017
fe635c7e 4018 /* read ID data */
bff04647 4019 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4020 if (rc)
fe30911b 4021 return rc;
623a3128
TH
4022
4023 /* is the device still there? */
fe30911b
TH
4024 if (!ata_dev_same_device(dev, class, id))
4025 return -ENODEV;
623a3128 4026
fe635c7e 4027 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4028 return 0;
4029}
4030
4031/**
4032 * ata_dev_revalidate - Revalidate ATA device
4033 * @dev: device to revalidate
422c9daa 4034 * @new_class: new class code
fe30911b
TH
4035 * @readid_flags: read ID flags
4036 *
4037 * Re-read IDENTIFY page, make sure @dev is still attached to the
4038 * port and reconfigure it according to the new IDENTIFY page.
4039 *
4040 * LOCKING:
4041 * Kernel thread context (may sleep)
4042 *
4043 * RETURNS:
4044 * 0 on success, negative errno otherwise
4045 */
422c9daa
TH
4046int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4047 unsigned int readid_flags)
fe30911b 4048{
6ddcd3b0 4049 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4050 int rc;
4051
4052 if (!ata_dev_enabled(dev))
4053 return -ENODEV;
4054
422c9daa
TH
4055 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4056 if (ata_class_enabled(new_class) &&
4057 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4058 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4059 dev->class, new_class);
4060 rc = -ENODEV;
4061 goto fail;
4062 }
4063
fe30911b
TH
4064 /* re-read ID */
4065 rc = ata_dev_reread_id(dev, readid_flags);
4066 if (rc)
4067 goto fail;
623a3128
TH
4068
4069 /* configure device according to the new ID */
efdaedc4 4070 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4071 if (rc)
4072 goto fail;
4073
4074 /* verify n_sectors hasn't changed */
b54eebd6
TH
4075 if (dev->class == ATA_DEV_ATA && n_sectors &&
4076 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4077 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4078 "%llu != %llu\n",
4079 (unsigned long long)n_sectors,
4080 (unsigned long long)dev->n_sectors);
8270bec4
TH
4081
4082 /* restore original n_sectors */
4083 dev->n_sectors = n_sectors;
4084
6ddcd3b0
TH
4085 rc = -ENODEV;
4086 goto fail;
4087 }
4088
4089 return 0;
623a3128
TH
4090
4091 fail:
f15a1daf 4092 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4093 return rc;
4094}
4095
6919a0a6
AC
4096struct ata_blacklist_entry {
4097 const char *model_num;
4098 const char *model_rev;
4099 unsigned long horkage;
4100};
4101
4102static const struct ata_blacklist_entry ata_device_blacklist [] = {
4103 /* Devices with DMA related problems under Linux */
4104 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4105 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4106 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4107 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4108 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4109 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4110 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4111 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4112 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4113 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4114 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4115 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4116 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4117 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4118 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4119 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4120 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4121 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4122 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4123 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4124 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4125 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4126 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4127 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4128 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4129 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4130 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4131 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4132 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4133 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4134 /* Odd clown on sil3726/4726 PMPs */
4135 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4136 ATA_HORKAGE_SKIP_PM },
6919a0a6 4137
18d6e9d5 4138 /* Weird ATAPI devices */
40a1d531 4139 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4140
6919a0a6
AC
4141 /* Devices we expect to fail diagnostics */
4142
4143 /* Devices where NCQ should be avoided */
4144 /* NCQ is slow */
2dcb407e 4145 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4146 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4147 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4148 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4149 /* NCQ is broken */
539cc7c7 4150 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4151 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4152 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4153 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4154 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4155 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4156
36e337d0
RH
4157 /* Blacklist entries taken from Silicon Image 3124/3132
4158 Windows driver .inf file - also several Linux problem reports */
4159 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4160 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4161 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4162
16c55b03
TH
4163 /* devices which puke on READ_NATIVE_MAX */
4164 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4165 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4166 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4167 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4168
93328e11
AC
4169 /* Devices which report 1 sector over size HPA */
4170 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4171 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4172
6bbfd53d
AC
4173 /* Devices which get the IVB wrong */
4174 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4175 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4176 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4178 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4179
6919a0a6
AC
4180 /* End Marker */
4181 { }
1da177e4 4182};
2e9edbf8 4183
741b7763 4184static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4185{
4186 const char *p;
4187 int len;
4188
4189 /*
4190 * check for trailing wildcard: *\0
4191 */
4192 p = strchr(patt, wildchar);
4193 if (p && ((*(p + 1)) == 0))
4194 len = p - patt;
317b50b8 4195 else {
539cc7c7 4196 len = strlen(name);
317b50b8
AP
4197 if (!len) {
4198 if (!*patt)
4199 return 0;
4200 return -1;
4201 }
4202 }
539cc7c7
JG
4203
4204 return strncmp(patt, name, len);
4205}
4206
75683fe7 4207static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4208{
8bfa79fc
TH
4209 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4210 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4211 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4212
8bfa79fc
TH
4213 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4214 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4215
6919a0a6 4216 while (ad->model_num) {
539cc7c7 4217 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4218 if (ad->model_rev == NULL)
4219 return ad->horkage;
539cc7c7 4220 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4221 return ad->horkage;
f4b15fef 4222 }
6919a0a6 4223 ad++;
f4b15fef 4224 }
1da177e4
LT
4225 return 0;
4226}
4227
6919a0a6
AC
4228static int ata_dma_blacklisted(const struct ata_device *dev)
4229{
4230 /* We don't support polling DMA.
4231 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4232 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4233 */
9af5c9c9 4234 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4235 (dev->flags & ATA_DFLAG_CDB_INTR))
4236 return 1;
75683fe7 4237 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4238}
4239
6bbfd53d
AC
4240/**
4241 * ata_is_40wire - check drive side detection
4242 * @dev: device
4243 *
4244 * Perform drive side detection decoding, allowing for device vendors
4245 * who can't follow the documentation.
4246 */
4247
4248static int ata_is_40wire(struct ata_device *dev)
4249{
4250 if (dev->horkage & ATA_HORKAGE_IVB)
4251 return ata_drive_40wire_relaxed(dev->id);
4252 return ata_drive_40wire(dev->id);
4253}
4254
a6d5a51c
TH
4255/**
4256 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4257 * @dev: Device to compute xfermask for
4258 *
acf356b1
TH
4259 * Compute supported xfermask of @dev and store it in
4260 * dev->*_mask. This function is responsible for applying all
4261 * known limits including host controller limits, device
4262 * blacklist, etc...
a6d5a51c
TH
4263 *
4264 * LOCKING:
4265 * None.
a6d5a51c 4266 */
3373efd8 4267static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4268{
9af5c9c9
TH
4269 struct ata_link *link = dev->link;
4270 struct ata_port *ap = link->ap;
cca3974e 4271 struct ata_host *host = ap->host;
a6d5a51c 4272 unsigned long xfer_mask;
1da177e4 4273
37deecb5 4274 /* controller modes available */
565083e1
TH
4275 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4276 ap->mwdma_mask, ap->udma_mask);
4277
8343f889 4278 /* drive modes available */
37deecb5
TH
4279 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4280 dev->mwdma_mask, dev->udma_mask);
4281 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4282
b352e57d
AC
4283 /*
4284 * CFA Advanced TrueIDE timings are not allowed on a shared
4285 * cable
4286 */
4287 if (ata_dev_pair(dev)) {
4288 /* No PIO5 or PIO6 */
4289 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4290 /* No MWDMA3 or MWDMA 4 */
4291 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4292 }
4293
37deecb5
TH
4294 if (ata_dma_blacklisted(dev)) {
4295 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4296 ata_dev_printk(dev, KERN_WARNING,
4297 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4298 }
a6d5a51c 4299
14d66ab7 4300 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4301 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4302 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4303 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4304 "other device, disabling DMA\n");
5444a6f4 4305 }
565083e1 4306
e424675f
JG
4307 if (ap->flags & ATA_FLAG_NO_IORDY)
4308 xfer_mask &= ata_pio_mask_no_iordy(dev);
4309
5444a6f4 4310 if (ap->ops->mode_filter)
a76b62ca 4311 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4312
8343f889
RH
4313 /* Apply cable rule here. Don't apply it early because when
4314 * we handle hot plug the cable type can itself change.
4315 * Check this last so that we know if the transfer rate was
4316 * solely limited by the cable.
4317 * Unknown or 80 wire cables reported host side are checked
4318 * drive side as well. Cases where we know a 40wire cable
4319 * is used safely for 80 are not checked here.
4320 */
4321 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4322 /* UDMA/44 or higher would be available */
2dcb407e 4323 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4324 (ata_is_40wire(dev) &&
2dcb407e
JG
4325 (ap->cbl == ATA_CBL_PATA_UNK ||
4326 ap->cbl == ATA_CBL_PATA80))) {
4327 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4328 "limited to UDMA/33 due to 40-wire cable\n");
4329 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4330 }
4331
565083e1
TH
4332 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4333 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4334}
4335
1da177e4
LT
4336/**
4337 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4338 * @dev: Device to which command will be sent
4339 *
780a87f7
JG
4340 * Issue SET FEATURES - XFER MODE command to device @dev
4341 * on port @ap.
4342 *
1da177e4 4343 * LOCKING:
0cba632b 4344 * PCI/etc. bus probe sem.
83206a29
TH
4345 *
4346 * RETURNS:
4347 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4348 */
4349
3373efd8 4350static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4351{
a0123703 4352 struct ata_taskfile tf;
83206a29 4353 unsigned int err_mask;
1da177e4
LT
4354
4355 /* set up set-features taskfile */
4356 DPRINTK("set features - xfer mode\n");
4357
464cf177
TH
4358 /* Some controllers and ATAPI devices show flaky interrupt
4359 * behavior after setting xfer mode. Use polling instead.
4360 */
3373efd8 4361 ata_tf_init(dev, &tf);
a0123703
TH
4362 tf.command = ATA_CMD_SET_FEATURES;
4363 tf.feature = SETFEATURES_XFER;
464cf177 4364 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4365 tf.protocol = ATA_PROT_NODATA;
4366 tf.nsect = dev->xfer_mode;
1da177e4 4367
2b789108 4368 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4369
4370 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4371 return err_mask;
4372}
9f45cbd3 4373/**
218f3d30 4374 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4375 * @dev: Device to which command will be sent
4376 * @enable: Whether to enable or disable the feature
218f3d30 4377 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4378 *
4379 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4380 * on port @ap with sector count
9f45cbd3
KCA
4381 *
4382 * LOCKING:
4383 * PCI/etc. bus probe sem.
4384 *
4385 * RETURNS:
4386 * 0 on success, AC_ERR_* mask otherwise.
4387 */
218f3d30
JG
4388static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4389 u8 feature)
9f45cbd3
KCA
4390{
4391 struct ata_taskfile tf;
4392 unsigned int err_mask;
4393
4394 /* set up set-features taskfile */
4395 DPRINTK("set features - SATA features\n");
4396
4397 ata_tf_init(dev, &tf);
4398 tf.command = ATA_CMD_SET_FEATURES;
4399 tf.feature = enable;
4400 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4401 tf.protocol = ATA_PROT_NODATA;
218f3d30 4402 tf.nsect = feature;
9f45cbd3 4403
2b789108 4404 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4405
83206a29
TH
4406 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4407 return err_mask;
1da177e4
LT
4408}
4409
8bf62ece
AL
4410/**
4411 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4412 * @dev: Device to which command will be sent
e2a7f77a
RD
4413 * @heads: Number of heads (taskfile parameter)
4414 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4415 *
4416 * LOCKING:
6aff8f1f
TH
4417 * Kernel thread context (may sleep)
4418 *
4419 * RETURNS:
4420 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4421 */
3373efd8
TH
4422static unsigned int ata_dev_init_params(struct ata_device *dev,
4423 u16 heads, u16 sectors)
8bf62ece 4424{
a0123703 4425 struct ata_taskfile tf;
6aff8f1f 4426 unsigned int err_mask;
8bf62ece
AL
4427
4428 /* Number of sectors per track 1-255. Number of heads 1-16 */
4429 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4430 return AC_ERR_INVALID;
8bf62ece
AL
4431
4432 /* set up init dev params taskfile */
4433 DPRINTK("init dev params \n");
4434
3373efd8 4435 ata_tf_init(dev, &tf);
a0123703
TH
4436 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4437 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4438 tf.protocol = ATA_PROT_NODATA;
4439 tf.nsect = sectors;
4440 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4441
2b789108 4442 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4443 /* A clean abort indicates an original or just out of spec drive
4444 and we should continue as we issue the setup based on the
4445 drive reported working geometry */
4446 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4447 err_mask = 0;
8bf62ece 4448
6aff8f1f
TH
4449 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4450 return err_mask;
8bf62ece
AL
4451}
4452
1da177e4 4453/**
0cba632b
JG
4454 * ata_sg_clean - Unmap DMA memory associated with command
4455 * @qc: Command containing DMA memory to be released
4456 *
4457 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4458 *
4459 * LOCKING:
cca3974e 4460 * spin_lock_irqsave(host lock)
1da177e4 4461 */
70e6ad0c 4462void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4463{
4464 struct ata_port *ap = qc->ap;
cedc9a47 4465 struct scatterlist *sg = qc->__sg;
1da177e4 4466 int dir = qc->dma_dir;
cedc9a47 4467 void *pad_buf = NULL;
1da177e4 4468
a4631474
TH
4469 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4470 WARN_ON(sg == NULL);
1da177e4
LT
4471
4472 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4473 WARN_ON(qc->n_elem > 1);
1da177e4 4474
2c13b7ce 4475 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4476
cedc9a47
JG
4477 /* if we padded the buffer out to 32-bit bound, and data
4478 * xfer direction is from-device, we must copy from the
4479 * pad buffer back into the supplied buffer
4480 */
4481 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4482 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4483
4484 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4485 if (qc->n_elem)
2f1f610b 4486 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4487 /* restore last sg */
87260216 4488 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4489 if (pad_buf) {
4490 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4491 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4492 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4493 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4494 }
4495 } else {
2e242fa9 4496 if (qc->n_elem)
2f1f610b 4497 dma_unmap_single(ap->dev,
e1410f2d
JG
4498 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4499 dir);
cedc9a47
JG
4500 /* restore sg */
4501 sg->length += qc->pad_len;
4502 if (pad_buf)
4503 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4504 pad_buf, qc->pad_len);
4505 }
1da177e4
LT
4506
4507 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4508 qc->__sg = NULL;
1da177e4
LT
4509}
4510
4511/**
4512 * ata_fill_sg - Fill PCI IDE PRD table
4513 * @qc: Metadata associated with taskfile to be transferred
4514 *
780a87f7
JG
4515 * Fill PCI IDE PRD (scatter-gather) table with segments
4516 * associated with the current disk command.
4517 *
1da177e4 4518 * LOCKING:
cca3974e 4519 * spin_lock_irqsave(host lock)
1da177e4
LT
4520 *
4521 */
4522static void ata_fill_sg(struct ata_queued_cmd *qc)
4523{
1da177e4 4524 struct ata_port *ap = qc->ap;
cedc9a47
JG
4525 struct scatterlist *sg;
4526 unsigned int idx;
1da177e4 4527
a4631474 4528 WARN_ON(qc->__sg == NULL);
f131883e 4529 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4530
4531 idx = 0;
cedc9a47 4532 ata_for_each_sg(sg, qc) {
1da177e4
LT
4533 u32 addr, offset;
4534 u32 sg_len, len;
4535
4536 /* determine if physical DMA addr spans 64K boundary.
4537 * Note h/w doesn't support 64-bit, so we unconditionally
4538 * truncate dma_addr_t to u32.
4539 */
4540 addr = (u32) sg_dma_address(sg);
4541 sg_len = sg_dma_len(sg);
4542
4543 while (sg_len) {
4544 offset = addr & 0xffff;
4545 len = sg_len;
4546 if ((offset + sg_len) > 0x10000)
4547 len = 0x10000 - offset;
4548
4549 ap->prd[idx].addr = cpu_to_le32(addr);
4550 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4551 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4552
4553 idx++;
4554 sg_len -= len;
4555 addr += len;
4556 }
4557 }
4558
4559 if (idx)
4560 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4561}
b9a4197e 4562
d26fc955
AC
4563/**
4564 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4565 * @qc: Metadata associated with taskfile to be transferred
4566 *
4567 * Fill PCI IDE PRD (scatter-gather) table with segments
4568 * associated with the current disk command. Perform the fill
4569 * so that we avoid writing any length 64K records for
4570 * controllers that don't follow the spec.
4571 *
4572 * LOCKING:
4573 * spin_lock_irqsave(host lock)
4574 *
4575 */
4576static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4577{
4578 struct ata_port *ap = qc->ap;
4579 struct scatterlist *sg;
4580 unsigned int idx;
4581
4582 WARN_ON(qc->__sg == NULL);
4583 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4584
4585 idx = 0;
4586 ata_for_each_sg(sg, qc) {
4587 u32 addr, offset;
4588 u32 sg_len, len, blen;
4589
2dcb407e 4590 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4591 * Note h/w doesn't support 64-bit, so we unconditionally
4592 * truncate dma_addr_t to u32.
4593 */
4594 addr = (u32) sg_dma_address(sg);
4595 sg_len = sg_dma_len(sg);
4596
4597 while (sg_len) {
4598 offset = addr & 0xffff;
4599 len = sg_len;
4600 if ((offset + sg_len) > 0x10000)
4601 len = 0x10000 - offset;
4602
4603 blen = len & 0xffff;
4604 ap->prd[idx].addr = cpu_to_le32(addr);
4605 if (blen == 0) {
4606 /* Some PATA chipsets like the CS5530 can't
4607 cope with 0x0000 meaning 64K as the spec says */
4608 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4609 blen = 0x8000;
4610 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4611 }
4612 ap->prd[idx].flags_len = cpu_to_le32(blen);
4613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4614
4615 idx++;
4616 sg_len -= len;
4617 addr += len;
4618 }
4619 }
4620
4621 if (idx)
4622 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4623}
4624
1da177e4
LT
4625/**
4626 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4627 * @qc: Metadata associated with taskfile to check
4628 *
780a87f7
JG
4629 * Allow low-level driver to filter ATA PACKET commands, returning
4630 * a status indicating whether or not it is OK to use DMA for the
4631 * supplied PACKET command.
4632 *
1da177e4 4633 * LOCKING:
cca3974e 4634 * spin_lock_irqsave(host lock)
0cba632b 4635 *
1da177e4
LT
4636 * RETURNS: 0 when ATAPI DMA can be used
4637 * nonzero otherwise
4638 */
4639int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4640{
4641 struct ata_port *ap = qc->ap;
b9a4197e
TH
4642
4643 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4644 * few ATAPI devices choke on such DMA requests.
4645 */
4646 if (unlikely(qc->nbytes & 15))
4647 return 1;
6f23a31d 4648
1da177e4 4649 if (ap->ops->check_atapi_dma)
b9a4197e 4650 return ap->ops->check_atapi_dma(qc);
1da177e4 4651
b9a4197e 4652 return 0;
1da177e4 4653}
b9a4197e 4654
140b5e59
TH
4655/**
4656 * atapi_qc_may_overflow - Check whether data transfer may overflow
4657 * @qc: ATA command in question
4658 *
4659 * ATAPI commands which transfer variable length data to host
4660 * might overflow due to application error or hardare bug. This
4661 * function checks whether overflow should be drained and ignored
4662 * for @qc.
4663 *
4664 * LOCKING:
4665 * None.
4666 *
4667 * RETURNS:
4668 * 1 if @qc may overflow; otherwise, 0.
4669 */
4670static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4671{
4672 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4673 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4674 return 0;
4675
4676 if (qc->tf.flags & ATA_TFLAG_WRITE)
4677 return 0;
4678
4679 switch (qc->cdb[0]) {
4680 case READ_10:
4681 case READ_12:
4682 case WRITE_10:
4683 case WRITE_12:
4684 case GPCMD_READ_CD:
4685 case GPCMD_READ_CD_MSF:
4686 return 0;
4687 }
4688
4689 return 1;
4690}
4691
31cc23b3
TH
4692/**
4693 * ata_std_qc_defer - Check whether a qc needs to be deferred
4694 * @qc: ATA command in question
4695 *
4696 * Non-NCQ commands cannot run with any other command, NCQ or
4697 * not. As upper layer only knows the queue depth, we are
4698 * responsible for maintaining exclusion. This function checks
4699 * whether a new command @qc can be issued.
4700 *
4701 * LOCKING:
4702 * spin_lock_irqsave(host lock)
4703 *
4704 * RETURNS:
4705 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4706 */
4707int ata_std_qc_defer(struct ata_queued_cmd *qc)
4708{
4709 struct ata_link *link = qc->dev->link;
4710
4711 if (qc->tf.protocol == ATA_PROT_NCQ) {
4712 if (!ata_tag_valid(link->active_tag))
4713 return 0;
4714 } else {
4715 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4716 return 0;
4717 }
4718
4719 return ATA_DEFER_LINK;
4720}
4721
1da177e4
LT
4722/**
4723 * ata_qc_prep - Prepare taskfile for submission
4724 * @qc: Metadata associated with taskfile to be prepared
4725 *
780a87f7
JG
4726 * Prepare ATA taskfile for submission.
4727 *
1da177e4 4728 * LOCKING:
cca3974e 4729 * spin_lock_irqsave(host lock)
1da177e4
LT
4730 */
4731void ata_qc_prep(struct ata_queued_cmd *qc)
4732{
4733 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4734 return;
4735
4736 ata_fill_sg(qc);
4737}
4738
d26fc955
AC
4739/**
4740 * ata_dumb_qc_prep - Prepare taskfile for submission
4741 * @qc: Metadata associated with taskfile to be prepared
4742 *
4743 * Prepare ATA taskfile for submission.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 */
4748void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4749{
4750 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4751 return;
4752
4753 ata_fill_sg_dumb(qc);
4754}
4755
e46834cd
BK
4756void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4757
0cba632b
JG
4758/**
4759 * ata_sg_init_one - Associate command with memory buffer
4760 * @qc: Command to be associated
4761 * @buf: Memory buffer
4762 * @buflen: Length of memory buffer, in bytes.
4763 *
4764 * Initialize the data-related elements of queued_cmd @qc
4765 * to point to a single memory buffer, @buf of byte length @buflen.
4766 *
4767 * LOCKING:
cca3974e 4768 * spin_lock_irqsave(host lock)
0cba632b
JG
4769 */
4770
1da177e4
LT
4771void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4772{
1da177e4
LT
4773 qc->flags |= ATA_QCFLAG_SINGLE;
4774
cedc9a47 4775 qc->__sg = &qc->sgent;
1da177e4 4776 qc->n_elem = 1;
cedc9a47 4777 qc->orig_n_elem = 1;
1da177e4 4778 qc->buf_virt = buf;
233277ca 4779 qc->nbytes = buflen;
87260216 4780 qc->cursg = qc->__sg;
1da177e4 4781
61c0596c 4782 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4783}
4784
0cba632b
JG
4785/**
4786 * ata_sg_init - Associate command with scatter-gather table.
4787 * @qc: Command to be associated
4788 * @sg: Scatter-gather table.
4789 * @n_elem: Number of elements in s/g table.
4790 *
4791 * Initialize the data-related elements of queued_cmd @qc
4792 * to point to a scatter-gather table @sg, containing @n_elem
4793 * elements.
4794 *
4795 * LOCKING:
cca3974e 4796 * spin_lock_irqsave(host lock)
0cba632b
JG
4797 */
4798
1da177e4
LT
4799void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4800 unsigned int n_elem)
4801{
4802 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4803 qc->__sg = sg;
1da177e4 4804 qc->n_elem = n_elem;
cedc9a47 4805 qc->orig_n_elem = n_elem;
87260216 4806 qc->cursg = qc->__sg;
1da177e4
LT
4807}
4808
4809/**
0cba632b
JG
4810 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4811 * @qc: Command with memory buffer to be mapped.
4812 *
4813 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4814 *
4815 * LOCKING:
cca3974e 4816 * spin_lock_irqsave(host lock)
1da177e4
LT
4817 *
4818 * RETURNS:
0cba632b 4819 * Zero on success, negative on error.
1da177e4
LT
4820 */
4821
4822static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4823{
4824 struct ata_port *ap = qc->ap;
4825 int dir = qc->dma_dir;
cedc9a47 4826 struct scatterlist *sg = qc->__sg;
1da177e4 4827 dma_addr_t dma_address;
2e242fa9 4828 int trim_sg = 0;
1da177e4 4829
cedc9a47
JG
4830 /* we must lengthen transfers to end on a 32-bit boundary */
4831 qc->pad_len = sg->length & 3;
4832 if (qc->pad_len) {
4833 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4834 struct scatterlist *psg = &qc->pad_sgent;
4835
a4631474 4836 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4837
4838 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4839
4840 if (qc->tf.flags & ATA_TFLAG_WRITE)
4841 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4842 qc->pad_len);
4843
4844 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4845 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4846 /* trim sg */
4847 sg->length -= qc->pad_len;
2e242fa9
TH
4848 if (sg->length == 0)
4849 trim_sg = 1;
cedc9a47
JG
4850
4851 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4852 sg->length, qc->pad_len);
4853 }
4854
2e242fa9
TH
4855 if (trim_sg) {
4856 qc->n_elem--;
e1410f2d
JG
4857 goto skip_map;
4858 }
4859
2f1f610b 4860 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4861 sg->length, dir);
537a95d9
TH
4862 if (dma_mapping_error(dma_address)) {
4863 /* restore sg */
4864 sg->length += qc->pad_len;
1da177e4 4865 return -1;
537a95d9 4866 }
1da177e4
LT
4867
4868 sg_dma_address(sg) = dma_address;
32529e01 4869 sg_dma_len(sg) = sg->length;
1da177e4 4870
2e242fa9 4871skip_map:
1da177e4
LT
4872 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4873 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4874
4875 return 0;
4876}
4877
4878/**
0cba632b
JG
4879 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4880 * @qc: Command with scatter-gather table to be mapped.
4881 *
4882 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4883 *
4884 * LOCKING:
cca3974e 4885 * spin_lock_irqsave(host lock)
1da177e4
LT
4886 *
4887 * RETURNS:
0cba632b 4888 * Zero on success, negative on error.
1da177e4
LT
4889 *
4890 */
4891
4892static int ata_sg_setup(struct ata_queued_cmd *qc)
4893{
4894 struct ata_port *ap = qc->ap;
cedc9a47 4895 struct scatterlist *sg = qc->__sg;
87260216 4896 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4897 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4898
44877b4e 4899 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4900 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4901
cedc9a47
JG
4902 /* we must lengthen transfers to end on a 32-bit boundary */
4903 qc->pad_len = lsg->length & 3;
4904 if (qc->pad_len) {
4905 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4906 struct scatterlist *psg = &qc->pad_sgent;
4907 unsigned int offset;
4908
a4631474 4909 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4910
4911 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4912
4913 /*
4914 * psg->page/offset are used to copy to-be-written
4915 * data in this function or read data in ata_sg_clean.
4916 */
4917 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4918 sg_init_table(psg, 1);
642f1490
JA
4919 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4920 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4921
4922 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4923 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4924 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4925 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4926 }
4927
4928 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4929 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4930 /* trim last sg */
4931 lsg->length -= qc->pad_len;
e1410f2d
JG
4932 if (lsg->length == 0)
4933 trim_sg = 1;
cedc9a47
JG
4934
4935 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4936 qc->n_elem - 1, lsg->length, qc->pad_len);
4937 }
4938
e1410f2d
JG
4939 pre_n_elem = qc->n_elem;
4940 if (trim_sg && pre_n_elem)
4941 pre_n_elem--;
4942
4943 if (!pre_n_elem) {
4944 n_elem = 0;
4945 goto skip_map;
4946 }
4947
1da177e4 4948 dir = qc->dma_dir;
2f1f610b 4949 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4950 if (n_elem < 1) {
4951 /* restore last sg */
4952 lsg->length += qc->pad_len;
1da177e4 4953 return -1;
537a95d9 4954 }
1da177e4
LT
4955
4956 DPRINTK("%d sg elements mapped\n", n_elem);
4957
e1410f2d 4958skip_map:
1da177e4
LT
4959 qc->n_elem = n_elem;
4960
4961 return 0;
4962}
4963
0baab86b 4964/**
c893a3ae 4965 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4966 * @buf: Buffer to swap
4967 * @buf_words: Number of 16-bit words in buffer.
4968 *
4969 * Swap halves of 16-bit words if needed to convert from
4970 * little-endian byte order to native cpu byte order, or
4971 * vice-versa.
4972 *
4973 * LOCKING:
6f0ef4fa 4974 * Inherited from caller.
0baab86b 4975 */
1da177e4
LT
4976void swap_buf_le16(u16 *buf, unsigned int buf_words)
4977{
4978#ifdef __BIG_ENDIAN
4979 unsigned int i;
4980
4981 for (i = 0; i < buf_words; i++)
4982 buf[i] = le16_to_cpu(buf[i]);
4983#endif /* __BIG_ENDIAN */
4984}
4985
6ae4cfb5 4986/**
0d5ff566 4987 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4988 * @adev: device to target
6ae4cfb5
AL
4989 * @buf: data buffer
4990 * @buflen: buffer length
344babaa 4991 * @write_data: read/write
6ae4cfb5
AL
4992 *
4993 * Transfer data from/to the device data register by PIO.
4994 *
4995 * LOCKING:
4996 * Inherited from caller.
6ae4cfb5 4997 */
0d5ff566
TH
4998void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4999 unsigned int buflen, int write_data)
1da177e4 5000{
9af5c9c9 5001 struct ata_port *ap = adev->link->ap;
6ae4cfb5 5002 unsigned int words = buflen >> 1;
1da177e4 5003
6ae4cfb5 5004 /* Transfer multiple of 2 bytes */
1da177e4 5005 if (write_data)
0d5ff566 5006 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 5007 else
0d5ff566 5008 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5009
5010 /* Transfer trailing 1 byte, if any. */
5011 if (unlikely(buflen & 0x01)) {
5012 u16 align_buf[1] = { 0 };
5013 unsigned char *trailing_buf = buf + buflen - 1;
5014
5015 if (write_data) {
5016 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5017 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5018 } else {
0d5ff566 5019 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5020 memcpy(trailing_buf, align_buf, 1);
5021 }
5022 }
1da177e4
LT
5023}
5024
75e99585 5025/**
0d5ff566 5026 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5027 * @adev: device to target
5028 * @buf: data buffer
5029 * @buflen: buffer length
5030 * @write_data: read/write
5031 *
88574551 5032 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5033 * transfer with interrupts disabled.
5034 *
5035 * LOCKING:
5036 * Inherited from caller.
5037 */
0d5ff566
TH
5038void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5039 unsigned int buflen, int write_data)
75e99585
AC
5040{
5041 unsigned long flags;
5042 local_irq_save(flags);
0d5ff566 5043 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5044 local_irq_restore(flags);
5045}
5046
5047
6ae4cfb5 5048/**
5a5dbd18 5049 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5050 * @qc: Command on going
5051 *
5a5dbd18 5052 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5053 *
5054 * LOCKING:
5055 * Inherited from caller.
5056 */
5057
1da177e4
LT
5058static void ata_pio_sector(struct ata_queued_cmd *qc)
5059{
5060 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5061 struct ata_port *ap = qc->ap;
5062 struct page *page;
5063 unsigned int offset;
5064 unsigned char *buf;
5065
5a5dbd18 5066 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5067 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5068
45711f1a 5069 page = sg_page(qc->cursg);
87260216 5070 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5071
5072 /* get the current page and offset */
5073 page = nth_page(page, (offset >> PAGE_SHIFT));
5074 offset %= PAGE_SIZE;
5075
1da177e4
LT
5076 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5077
91b8b313
AL
5078 if (PageHighMem(page)) {
5079 unsigned long flags;
5080
a6b2c5d4 5081 /* FIXME: use a bounce buffer */
91b8b313
AL
5082 local_irq_save(flags);
5083 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5084
91b8b313 5085 /* do the actual data transfer */
5a5dbd18 5086 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5087
91b8b313
AL
5088 kunmap_atomic(buf, KM_IRQ0);
5089 local_irq_restore(flags);
5090 } else {
5091 buf = page_address(page);
5a5dbd18 5092 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5093 }
1da177e4 5094
5a5dbd18
ML
5095 qc->curbytes += qc->sect_size;
5096 qc->cursg_ofs += qc->sect_size;
1da177e4 5097
87260216
JA
5098 if (qc->cursg_ofs == qc->cursg->length) {
5099 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5100 qc->cursg_ofs = 0;
5101 }
1da177e4 5102}
1da177e4 5103
07f6f7d0 5104/**
5a5dbd18 5105 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5106 * @qc: Command on going
5107 *
5a5dbd18 5108 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5109 * ATA device for the DRQ request.
5110 *
5111 * LOCKING:
5112 * Inherited from caller.
5113 */
1da177e4 5114
07f6f7d0
AL
5115static void ata_pio_sectors(struct ata_queued_cmd *qc)
5116{
5117 if (is_multi_taskfile(&qc->tf)) {
5118 /* READ/WRITE MULTIPLE */
5119 unsigned int nsect;
5120
587005de 5121 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5122
5a5dbd18 5123 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5124 qc->dev->multi_count);
07f6f7d0
AL
5125 while (nsect--)
5126 ata_pio_sector(qc);
5127 } else
5128 ata_pio_sector(qc);
4cc980b3
AL
5129
5130 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5131}
5132
c71c1857
AL
5133/**
5134 * atapi_send_cdb - Write CDB bytes to hardware
5135 * @ap: Port to which ATAPI device is attached.
5136 * @qc: Taskfile currently active
5137 *
5138 * When device has indicated its readiness to accept
5139 * a CDB, this function is called. Send the CDB.
5140 *
5141 * LOCKING:
5142 * caller.
5143 */
5144
5145static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5146{
5147 /* send SCSI cdb */
5148 DPRINTK("send cdb\n");
db024d53 5149 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5150
a6b2c5d4 5151 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5152 ata_altstatus(ap); /* flush */
5153
5154 switch (qc->tf.protocol) {
5155 case ATA_PROT_ATAPI:
5156 ap->hsm_task_state = HSM_ST;
5157 break;
5158 case ATA_PROT_ATAPI_NODATA:
5159 ap->hsm_task_state = HSM_ST_LAST;
5160 break;
5161 case ATA_PROT_ATAPI_DMA:
5162 ap->hsm_task_state = HSM_ST_LAST;
5163 /* initiate bmdma */
5164 ap->ops->bmdma_start(qc);
5165 break;
5166 }
1da177e4
LT
5167}
5168
6ae4cfb5
AL
5169/**
5170 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5171 * @qc: Command on going
5172 * @bytes: number of bytes
5173 *
5174 * Transfer Transfer data from/to the ATAPI device.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 *
5179 */
140b5e59 5180static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5181{
5182 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5183 struct ata_port *ap = qc->ap;
140b5e59
TH
5184 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5185 struct scatterlist *sg;
1da177e4
LT
5186 struct page *page;
5187 unsigned char *buf;
5188 unsigned int offset, count;
1da177e4
LT
5189
5190next_sg:
140b5e59
TH
5191 sg = qc->cursg;
5192 if (unlikely(!sg)) {
7fb6ec28 5193 /*
563a6e1f
AL
5194 * The end of qc->sg is reached and the device expects
5195 * more data to transfer. In order not to overrun qc->sg
5196 * and fulfill length specified in the byte count register,
5197 * - for read case, discard trailing data from the device
5198 * - for write case, padding zero data to the device
5199 */
5200 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5201 unsigned int i;
5202
140b5e59
TH
5203 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5204 ata_ehi_push_desc(ehi, "too much trailing data "
5205 "buf=%u cur=%u bytes=%u",
5206 qc->nbytes, qc->curbytes, bytes);
5207 return -1;
5208 }
5209
5210 /* overflow is exptected for misc ATAPI commands */
5211 if (bytes && !atapi_qc_may_overflow(qc))
5212 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5213 "trailing data (cdb=%02x nbytes=%u)\n",
5214 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5215
140b5e59 5216 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5217 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5218
140b5e59 5219 qc->curbytes += bytes;
563a6e1f 5220
140b5e59
TH
5221 return 0;
5222 }
1da177e4 5223
45711f1a 5224 page = sg_page(sg);
1da177e4
LT
5225 offset = sg->offset + qc->cursg_ofs;
5226
5227 /* get the current page and offset */
5228 page = nth_page(page, (offset >> PAGE_SHIFT));
5229 offset %= PAGE_SIZE;
5230
6952df03 5231 /* don't overrun current sg */
32529e01 5232 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5233
5234 /* don't cross page boundaries */
5235 count = min(count, (unsigned int)PAGE_SIZE - offset);
5236
7282aa4b
AL
5237 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5238
91b8b313
AL
5239 if (PageHighMem(page)) {
5240 unsigned long flags;
5241
a6b2c5d4 5242 /* FIXME: use bounce buffer */
91b8b313
AL
5243 local_irq_save(flags);
5244 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5245
91b8b313 5246 /* do the actual data transfer */
a6b2c5d4 5247 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5248
91b8b313
AL
5249 kunmap_atomic(buf, KM_IRQ0);
5250 local_irq_restore(flags);
5251 } else {
5252 buf = page_address(page);
a6b2c5d4 5253 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5254 }
1da177e4
LT
5255
5256 bytes -= count;
140b5e59
TH
5257 if ((count & 1) && bytes)
5258 bytes--;
1da177e4
LT
5259 qc->curbytes += count;
5260 qc->cursg_ofs += count;
5261
32529e01 5262 if (qc->cursg_ofs == sg->length) {
87260216 5263 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5264 qc->cursg_ofs = 0;
5265 }
5266
563a6e1f 5267 if (bytes)
1da177e4 5268 goto next_sg;
140b5e59
TH
5269
5270 return 0;
1da177e4
LT
5271}
5272
6ae4cfb5
AL
5273/**
5274 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5275 * @qc: Command on going
5276 *
5277 * Transfer Transfer data from/to the ATAPI device.
5278 *
5279 * LOCKING:
5280 * Inherited from caller.
6ae4cfb5
AL
5281 */
5282
1da177e4
LT
5283static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5284{
5285 struct ata_port *ap = qc->ap;
5286 struct ata_device *dev = qc->dev;
5287 unsigned int ireason, bc_lo, bc_hi, bytes;
5288 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5289
eec4c3f3
AL
5290 /* Abuse qc->result_tf for temp storage of intermediate TF
5291 * here to save some kernel stack usage.
5292 * For normal completion, qc->result_tf is not relevant. For
5293 * error, qc->result_tf is later overwritten by ata_qc_complete().
5294 * So, the correctness of qc->result_tf is not affected.
5295 */
5296 ap->ops->tf_read(ap, &qc->result_tf);
5297 ireason = qc->result_tf.nsect;
5298 bc_lo = qc->result_tf.lbam;
5299 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5300 bytes = (bc_hi << 8) | bc_lo;
5301
5302 /* shall be cleared to zero, indicating xfer of data */
5303 if (ireason & (1 << 0))
5304 goto err_out;
5305
5306 /* make sure transfer direction matches expected */
5307 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5308 if (do_write != i_write)
5309 goto err_out;
5310
44877b4e 5311 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5312
140b5e59
TH
5313 if (__atapi_pio_bytes(qc, bytes))
5314 goto err_out;
4cc980b3 5315 ata_altstatus(ap); /* flush */
1da177e4
LT
5316
5317 return;
5318
5319err_out:
f15a1daf 5320 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5321 qc->err_mask |= AC_ERR_HSM;
14be71f4 5322 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5323}
5324
5325/**
c234fb00
AL
5326 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5327 * @ap: the target ata_port
5328 * @qc: qc on going
1da177e4 5329 *
c234fb00
AL
5330 * RETURNS:
5331 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5332 */
c234fb00
AL
5333
5334static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5335{
c234fb00
AL
5336 if (qc->tf.flags & ATA_TFLAG_POLLING)
5337 return 1;
1da177e4 5338
c234fb00
AL
5339 if (ap->hsm_task_state == HSM_ST_FIRST) {
5340 if (qc->tf.protocol == ATA_PROT_PIO &&
5341 (qc->tf.flags & ATA_TFLAG_WRITE))
5342 return 1;
1da177e4 5343
c234fb00
AL
5344 if (is_atapi_taskfile(&qc->tf) &&
5345 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5346 return 1;
fe79e683
AL
5347 }
5348
c234fb00
AL
5349 return 0;
5350}
1da177e4 5351
c17ea20d
TH
5352/**
5353 * ata_hsm_qc_complete - finish a qc running on standard HSM
5354 * @qc: Command to complete
5355 * @in_wq: 1 if called from workqueue, 0 otherwise
5356 *
5357 * Finish @qc which is running on standard HSM.
5358 *
5359 * LOCKING:
cca3974e 5360 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5361 * Otherwise, none on entry and grabs host lock.
5362 */
5363static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5364{
5365 struct ata_port *ap = qc->ap;
5366 unsigned long flags;
5367
5368 if (ap->ops->error_handler) {
5369 if (in_wq) {
ba6a1308 5370 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5371
cca3974e
JG
5372 /* EH might have kicked in while host lock is
5373 * released.
c17ea20d
TH
5374 */
5375 qc = ata_qc_from_tag(ap, qc->tag);
5376 if (qc) {
5377 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5378 ap->ops->irq_on(ap);
c17ea20d
TH
5379 ata_qc_complete(qc);
5380 } else
5381 ata_port_freeze(ap);
5382 }
5383
ba6a1308 5384 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5385 } else {
5386 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5387 ata_qc_complete(qc);
5388 else
5389 ata_port_freeze(ap);
5390 }
5391 } else {
5392 if (in_wq) {
ba6a1308 5393 spin_lock_irqsave(ap->lock, flags);
83625006 5394 ap->ops->irq_on(ap);
c17ea20d 5395 ata_qc_complete(qc);
ba6a1308 5396 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5397 } else
5398 ata_qc_complete(qc);
5399 }
5400}
5401
bb5cb290
AL
5402/**
5403 * ata_hsm_move - move the HSM to the next state.
5404 * @ap: the target ata_port
5405 * @qc: qc on going
5406 * @status: current device status
5407 * @in_wq: 1 if called from workqueue, 0 otherwise
5408 *
5409 * RETURNS:
5410 * 1 when poll next status needed, 0 otherwise.
5411 */
9a1004d0
TH
5412int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5413 u8 status, int in_wq)
e2cec771 5414{
bb5cb290
AL
5415 unsigned long flags = 0;
5416 int poll_next;
5417
6912ccd5
AL
5418 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5419
bb5cb290
AL
5420 /* Make sure ata_qc_issue_prot() does not throw things
5421 * like DMA polling into the workqueue. Notice that
5422 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5423 */
c234fb00 5424 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5425
e2cec771 5426fsm_start:
999bb6f4 5427 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5428 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5429
e2cec771
AL
5430 switch (ap->hsm_task_state) {
5431 case HSM_ST_FIRST:
bb5cb290
AL
5432 /* Send first data block or PACKET CDB */
5433
5434 /* If polling, we will stay in the work queue after
5435 * sending the data. Otherwise, interrupt handler
5436 * takes over after sending the data.
5437 */
5438 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5439
e2cec771 5440 /* check device status */
3655d1d3
AL
5441 if (unlikely((status & ATA_DRQ) == 0)) {
5442 /* handle BSY=0, DRQ=0 as error */
5443 if (likely(status & (ATA_ERR | ATA_DF)))
5444 /* device stops HSM for abort/error */
5445 qc->err_mask |= AC_ERR_DEV;
5446 else
5447 /* HSM violation. Let EH handle this */
5448 qc->err_mask |= AC_ERR_HSM;
5449
14be71f4 5450 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5451 goto fsm_start;
1da177e4
LT
5452 }
5453
71601958
AL
5454 /* Device should not ask for data transfer (DRQ=1)
5455 * when it finds something wrong.
eee6c32f
AL
5456 * We ignore DRQ here and stop the HSM by
5457 * changing hsm_task_state to HSM_ST_ERR and
5458 * let the EH abort the command or reset the device.
71601958
AL
5459 */
5460 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5461 /* Some ATAPI tape drives forget to clear the ERR bit
5462 * when doing the next command (mostly request sense).
5463 * We ignore ERR here to workaround and proceed sending
5464 * the CDB.
5465 */
5466 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5467 ata_port_printk(ap, KERN_WARNING,
5468 "DRQ=1 with device error, "
5469 "dev_stat 0x%X\n", status);
5470 qc->err_mask |= AC_ERR_HSM;
5471 ap->hsm_task_state = HSM_ST_ERR;
5472 goto fsm_start;
5473 }
71601958 5474 }
1da177e4 5475
bb5cb290
AL
5476 /* Send the CDB (atapi) or the first data block (ata pio out).
5477 * During the state transition, interrupt handler shouldn't
5478 * be invoked before the data transfer is complete and
5479 * hsm_task_state is changed. Hence, the following locking.
5480 */
5481 if (in_wq)
ba6a1308 5482 spin_lock_irqsave(ap->lock, flags);
1da177e4 5483
bb5cb290
AL
5484 if (qc->tf.protocol == ATA_PROT_PIO) {
5485 /* PIO data out protocol.
5486 * send first data block.
5487 */
0565c26d 5488
bb5cb290
AL
5489 /* ata_pio_sectors() might change the state
5490 * to HSM_ST_LAST. so, the state is changed here
5491 * before ata_pio_sectors().
5492 */
5493 ap->hsm_task_state = HSM_ST;
5494 ata_pio_sectors(qc);
bb5cb290
AL
5495 } else
5496 /* send CDB */
5497 atapi_send_cdb(ap, qc);
5498
5499 if (in_wq)
ba6a1308 5500 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5501
5502 /* if polling, ata_pio_task() handles the rest.
5503 * otherwise, interrupt handler takes over from here.
5504 */
e2cec771 5505 break;
1c848984 5506
e2cec771
AL
5507 case HSM_ST:
5508 /* complete command or read/write the data register */
5509 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5510 /* ATAPI PIO protocol */
5511 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5512 /* No more data to transfer or device error.
5513 * Device error will be tagged in HSM_ST_LAST.
5514 */
e2cec771
AL
5515 ap->hsm_task_state = HSM_ST_LAST;
5516 goto fsm_start;
5517 }
1da177e4 5518
71601958
AL
5519 /* Device should not ask for data transfer (DRQ=1)
5520 * when it finds something wrong.
eee6c32f
AL
5521 * We ignore DRQ here and stop the HSM by
5522 * changing hsm_task_state to HSM_ST_ERR and
5523 * let the EH abort the command or reset the device.
71601958
AL
5524 */
5525 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5526 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5527 "device error, dev_stat 0x%X\n",
5528 status);
3655d1d3 5529 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5530 ap->hsm_task_state = HSM_ST_ERR;
5531 goto fsm_start;
71601958 5532 }
1da177e4 5533
e2cec771 5534 atapi_pio_bytes(qc);
7fb6ec28 5535
e2cec771
AL
5536 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5537 /* bad ireason reported by device */
5538 goto fsm_start;
1da177e4 5539
e2cec771
AL
5540 } else {
5541 /* ATA PIO protocol */
5542 if (unlikely((status & ATA_DRQ) == 0)) {
5543 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5544 if (likely(status & (ATA_ERR | ATA_DF)))
5545 /* device stops HSM for abort/error */
5546 qc->err_mask |= AC_ERR_DEV;
5547 else
55a8e2c8
TH
5548 /* HSM violation. Let EH handle this.
5549 * Phantom devices also trigger this
5550 * condition. Mark hint.
5551 */
5552 qc->err_mask |= AC_ERR_HSM |
5553 AC_ERR_NODEV_HINT;
3655d1d3 5554
e2cec771
AL
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
5557 }
1da177e4 5558
eee6c32f
AL
5559 /* For PIO reads, some devices may ask for
5560 * data transfer (DRQ=1) alone with ERR=1.
5561 * We respect DRQ here and transfer one
5562 * block of junk data before changing the
5563 * hsm_task_state to HSM_ST_ERR.
5564 *
5565 * For PIO writes, ERR=1 DRQ=1 doesn't make
5566 * sense since the data block has been
5567 * transferred to the device.
71601958
AL
5568 */
5569 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5570 /* data might be corrputed */
5571 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5572
5573 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5574 ata_pio_sectors(qc);
eee6c32f
AL
5575 status = ata_wait_idle(ap);
5576 }
5577
3655d1d3
AL
5578 if (status & (ATA_BUSY | ATA_DRQ))
5579 qc->err_mask |= AC_ERR_HSM;
5580
eee6c32f
AL
5581 /* ata_pio_sectors() might change the
5582 * state to HSM_ST_LAST. so, the state
5583 * is changed after ata_pio_sectors().
5584 */
5585 ap->hsm_task_state = HSM_ST_ERR;
5586 goto fsm_start;
71601958
AL
5587 }
5588
e2cec771
AL
5589 ata_pio_sectors(qc);
5590
5591 if (ap->hsm_task_state == HSM_ST_LAST &&
5592 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5593 /* all data read */
52a32205 5594 status = ata_wait_idle(ap);
e2cec771
AL
5595 goto fsm_start;
5596 }
5597 }
5598
bb5cb290 5599 poll_next = 1;
1da177e4
LT
5600 break;
5601
14be71f4 5602 case HSM_ST_LAST:
6912ccd5
AL
5603 if (unlikely(!ata_ok(status))) {
5604 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5605 ap->hsm_task_state = HSM_ST_ERR;
5606 goto fsm_start;
5607 }
5608
5609 /* no more data to transfer */
4332a771 5610 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5611 ap->print_id, qc->dev->devno, status);
e2cec771 5612
6912ccd5
AL
5613 WARN_ON(qc->err_mask);
5614
e2cec771 5615 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5616
e2cec771 5617 /* complete taskfile transaction */
c17ea20d 5618 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5619
5620 poll_next = 0;
1da177e4
LT
5621 break;
5622
14be71f4 5623 case HSM_ST_ERR:
e2cec771
AL
5624 /* make sure qc->err_mask is available to
5625 * know what's wrong and recover
5626 */
5627 WARN_ON(qc->err_mask == 0);
5628
5629 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5630
999bb6f4 5631 /* complete taskfile transaction */
c17ea20d 5632 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5633
5634 poll_next = 0;
e2cec771
AL
5635 break;
5636 default:
bb5cb290 5637 poll_next = 0;
6912ccd5 5638 BUG();
1da177e4
LT
5639 }
5640
bb5cb290 5641 return poll_next;
1da177e4
LT
5642}
5643
65f27f38 5644static void ata_pio_task(struct work_struct *work)
8061f5f0 5645{
65f27f38
DH
5646 struct ata_port *ap =
5647 container_of(work, struct ata_port, port_task.work);
5648 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5649 u8 status;
a1af3734 5650 int poll_next;
8061f5f0 5651
7fb6ec28 5652fsm_start:
a1af3734 5653 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5654
a1af3734
AL
5655 /*
5656 * This is purely heuristic. This is a fast path.
5657 * Sometimes when we enter, BSY will be cleared in
5658 * a chk-status or two. If not, the drive is probably seeking
5659 * or something. Snooze for a couple msecs, then
5660 * chk-status again. If still busy, queue delayed work.
5661 */
5662 status = ata_busy_wait(ap, ATA_BUSY, 5);
5663 if (status & ATA_BUSY) {
5664 msleep(2);
5665 status = ata_busy_wait(ap, ATA_BUSY, 10);
5666 if (status & ATA_BUSY) {
31ce6dae 5667 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5668 return;
5669 }
8061f5f0
TH
5670 }
5671
a1af3734
AL
5672 /* move the HSM */
5673 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5674
a1af3734
AL
5675 /* another command or interrupt handler
5676 * may be running at this point.
5677 */
5678 if (poll_next)
7fb6ec28 5679 goto fsm_start;
8061f5f0
TH
5680}
5681
1da177e4
LT
5682/**
5683 * ata_qc_new - Request an available ATA command, for queueing
5684 * @ap: Port associated with device @dev
5685 * @dev: Device from whom we request an available command structure
5686 *
5687 * LOCKING:
0cba632b 5688 * None.
1da177e4
LT
5689 */
5690
5691static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5692{
5693 struct ata_queued_cmd *qc = NULL;
5694 unsigned int i;
5695
e3180499 5696 /* no command while frozen */
b51e9e5d 5697 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5698 return NULL;
5699
2ab7db1f
TH
5700 /* the last tag is reserved for internal command. */
5701 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5702 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5703 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5704 break;
5705 }
5706
5707 if (qc)
5708 qc->tag = i;
5709
5710 return qc;
5711}
5712
5713/**
5714 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5715 * @dev: Device from whom we request an available command structure
5716 *
5717 * LOCKING:
0cba632b 5718 * None.
1da177e4
LT
5719 */
5720
3373efd8 5721struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5722{
9af5c9c9 5723 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5724 struct ata_queued_cmd *qc;
5725
5726 qc = ata_qc_new(ap);
5727 if (qc) {
1da177e4
LT
5728 qc->scsicmd = NULL;
5729 qc->ap = ap;
5730 qc->dev = dev;
1da177e4 5731
2c13b7ce 5732 ata_qc_reinit(qc);
1da177e4
LT
5733 }
5734
5735 return qc;
5736}
5737
1da177e4
LT
5738/**
5739 * ata_qc_free - free unused ata_queued_cmd
5740 * @qc: Command to complete
5741 *
5742 * Designed to free unused ata_queued_cmd object
5743 * in case something prevents using it.
5744 *
5745 * LOCKING:
cca3974e 5746 * spin_lock_irqsave(host lock)
1da177e4
LT
5747 */
5748void ata_qc_free(struct ata_queued_cmd *qc)
5749{
4ba946e9
TH
5750 struct ata_port *ap = qc->ap;
5751 unsigned int tag;
5752
a4631474 5753 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5754
4ba946e9
TH
5755 qc->flags = 0;
5756 tag = qc->tag;
5757 if (likely(ata_tag_valid(tag))) {
4ba946e9 5758 qc->tag = ATA_TAG_POISON;
6cec4a39 5759 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5760 }
1da177e4
LT
5761}
5762
76014427 5763void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5764{
dedaf2b0 5765 struct ata_port *ap = qc->ap;
9af5c9c9 5766 struct ata_link *link = qc->dev->link;
dedaf2b0 5767
a4631474
TH
5768 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5769 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5770
5771 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5772 ata_sg_clean(qc);
5773
7401abf2 5774 /* command should be marked inactive atomically with qc completion */
da917d69 5775 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5776 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5777 if (!link->sactive)
5778 ap->nr_active_links--;
5779 } else {
9af5c9c9 5780 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5781 ap->nr_active_links--;
5782 }
5783
5784 /* clear exclusive status */
5785 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5786 ap->excl_link == link))
5787 ap->excl_link = NULL;
7401abf2 5788
3f3791d3
AL
5789 /* atapi: mark qc as inactive to prevent the interrupt handler
5790 * from completing the command twice later, before the error handler
5791 * is called. (when rc != 0 and atapi request sense is needed)
5792 */
5793 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5794 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5795
1da177e4 5796 /* call completion callback */
77853bf2 5797 qc->complete_fn(qc);
1da177e4
LT
5798}
5799
39599a53
TH
5800static void fill_result_tf(struct ata_queued_cmd *qc)
5801{
5802 struct ata_port *ap = qc->ap;
5803
39599a53 5804 qc->result_tf.flags = qc->tf.flags;
4742d54f 5805 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5806}
5807
f686bcb8
TH
5808/**
5809 * ata_qc_complete - Complete an active ATA command
5810 * @qc: Command to complete
5811 * @err_mask: ATA Status register contents
5812 *
5813 * Indicate to the mid and upper layers that an ATA
5814 * command has completed, with either an ok or not-ok status.
5815 *
5816 * LOCKING:
cca3974e 5817 * spin_lock_irqsave(host lock)
f686bcb8
TH
5818 */
5819void ata_qc_complete(struct ata_queued_cmd *qc)
5820{
5821 struct ata_port *ap = qc->ap;
5822
5823 /* XXX: New EH and old EH use different mechanisms to
5824 * synchronize EH with regular execution path.
5825 *
5826 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5827 * Normal execution path is responsible for not accessing a
5828 * failed qc. libata core enforces the rule by returning NULL
5829 * from ata_qc_from_tag() for failed qcs.
5830 *
5831 * Old EH depends on ata_qc_complete() nullifying completion
5832 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5833 * not synchronize with interrupt handler. Only PIO task is
5834 * taken care of.
5835 */
5836 if (ap->ops->error_handler) {
4dbfa39b
TH
5837 struct ata_device *dev = qc->dev;
5838 struct ata_eh_info *ehi = &dev->link->eh_info;
5839
b51e9e5d 5840 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5841
5842 if (unlikely(qc->err_mask))
5843 qc->flags |= ATA_QCFLAG_FAILED;
5844
5845 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5846 if (!ata_tag_internal(qc->tag)) {
5847 /* always fill result TF for failed qc */
39599a53 5848 fill_result_tf(qc);
f686bcb8
TH
5849 ata_qc_schedule_eh(qc);
5850 return;
5851 }
5852 }
5853
5854 /* read result TF if requested */
5855 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5856 fill_result_tf(qc);
f686bcb8 5857
4dbfa39b
TH
5858 /* Some commands need post-processing after successful
5859 * completion.
5860 */
5861 switch (qc->tf.command) {
5862 case ATA_CMD_SET_FEATURES:
5863 if (qc->tf.feature != SETFEATURES_WC_ON &&
5864 qc->tf.feature != SETFEATURES_WC_OFF)
5865 break;
5866 /* fall through */
5867 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5868 case ATA_CMD_SET_MULTI: /* multi_count changed */
5869 /* revalidate device */
5870 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5871 ata_port_schedule_eh(ap);
5872 break;
054a5fba
TH
5873
5874 case ATA_CMD_SLEEP:
5875 dev->flags |= ATA_DFLAG_SLEEPING;
5876 break;
4dbfa39b
TH
5877 }
5878
f686bcb8
TH
5879 __ata_qc_complete(qc);
5880 } else {
5881 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5882 return;
5883
5884 /* read result TF if failed or requested */
5885 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5886 fill_result_tf(qc);
f686bcb8
TH
5887
5888 __ata_qc_complete(qc);
5889 }
5890}
5891
dedaf2b0
TH
5892/**
5893 * ata_qc_complete_multiple - Complete multiple qcs successfully
5894 * @ap: port in question
5895 * @qc_active: new qc_active mask
5896 * @finish_qc: LLDD callback invoked before completing a qc
5897 *
5898 * Complete in-flight commands. This functions is meant to be
5899 * called from low-level driver's interrupt routine to complete
5900 * requests normally. ap->qc_active and @qc_active is compared
5901 * and commands are completed accordingly.
5902 *
5903 * LOCKING:
cca3974e 5904 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5905 *
5906 * RETURNS:
5907 * Number of completed commands on success, -errno otherwise.
5908 */
5909int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5910 void (*finish_qc)(struct ata_queued_cmd *))
5911{
5912 int nr_done = 0;
5913 u32 done_mask;
5914 int i;
5915
5916 done_mask = ap->qc_active ^ qc_active;
5917
5918 if (unlikely(done_mask & qc_active)) {
5919 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5920 "(%08x->%08x)\n", ap->qc_active, qc_active);
5921 return -EINVAL;
5922 }
5923
5924 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5925 struct ata_queued_cmd *qc;
5926
5927 if (!(done_mask & (1 << i)))
5928 continue;
5929
5930 if ((qc = ata_qc_from_tag(ap, i))) {
5931 if (finish_qc)
5932 finish_qc(qc);
5933 ata_qc_complete(qc);
5934 nr_done++;
5935 }
5936 }
5937
5938 return nr_done;
5939}
5940
1da177e4
LT
5941static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5942{
5943 struct ata_port *ap = qc->ap;
5944
5945 switch (qc->tf.protocol) {
3dc1d881 5946 case ATA_PROT_NCQ:
1da177e4
LT
5947 case ATA_PROT_DMA:
5948 case ATA_PROT_ATAPI_DMA:
5949 return 1;
5950
5951 case ATA_PROT_ATAPI:
5952 case ATA_PROT_PIO:
1da177e4
LT
5953 if (ap->flags & ATA_FLAG_PIO_DMA)
5954 return 1;
5955
5956 /* fall through */
5957
5958 default:
5959 return 0;
5960 }
5961
5962 /* never reached */
5963}
5964
5965/**
5966 * ata_qc_issue - issue taskfile to device
5967 * @qc: command to issue to device
5968 *
5969 * Prepare an ATA command to submission to device.
5970 * This includes mapping the data into a DMA-able
5971 * area, filling in the S/G table, and finally
5972 * writing the taskfile to hardware, starting the command.
5973 *
5974 * LOCKING:
cca3974e 5975 * spin_lock_irqsave(host lock)
1da177e4 5976 */
8e0e694a 5977void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5978{
5979 struct ata_port *ap = qc->ap;
9af5c9c9 5980 struct ata_link *link = qc->dev->link;
1da177e4 5981
dedaf2b0
TH
5982 /* Make sure only one non-NCQ command is outstanding. The
5983 * check is skipped for old EH because it reuses active qc to
5984 * request ATAPI sense.
5985 */
9af5c9c9 5986 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5987
5988 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5989 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5990
5991 if (!link->sactive)
5992 ap->nr_active_links++;
9af5c9c9 5993 link->sactive |= 1 << qc->tag;
dedaf2b0 5994 } else {
9af5c9c9 5995 WARN_ON(link->sactive);
da917d69
TH
5996
5997 ap->nr_active_links++;
9af5c9c9 5998 link->active_tag = qc->tag;
dedaf2b0
TH
5999 }
6000
e4a70e76 6001 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 6002 ap->qc_active |= 1 << qc->tag;
e4a70e76 6003
1da177e4
LT
6004 if (ata_should_dma_map(qc)) {
6005 if (qc->flags & ATA_QCFLAG_SG) {
6006 if (ata_sg_setup(qc))
8e436af9 6007 goto sg_err;
1da177e4
LT
6008 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6009 if (ata_sg_setup_one(qc))
8e436af9 6010 goto sg_err;
1da177e4
LT
6011 }
6012 } else {
6013 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6014 }
6015
054a5fba
TH
6016 /* if device is sleeping, schedule softreset and abort the link */
6017 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6018 link->eh_info.action |= ATA_EH_SOFTRESET;
6019 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6020 ata_link_abort(link);
6021 return;
6022 }
6023
1da177e4
LT
6024 ap->ops->qc_prep(qc);
6025
8e0e694a
TH
6026 qc->err_mask |= ap->ops->qc_issue(qc);
6027 if (unlikely(qc->err_mask))
6028 goto err;
6029 return;
1da177e4 6030
8e436af9
TH
6031sg_err:
6032 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6033 qc->err_mask |= AC_ERR_SYSTEM;
6034err:
6035 ata_qc_complete(qc);
1da177e4
LT
6036}
6037
6038/**
6039 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6040 * @qc: command to issue to device
6041 *
6042 * Using various libata functions and hooks, this function
6043 * starts an ATA command. ATA commands are grouped into
6044 * classes called "protocols", and issuing each type of protocol
6045 * is slightly different.
6046 *
0baab86b
EF
6047 * May be used as the qc_issue() entry in ata_port_operations.
6048 *
1da177e4 6049 * LOCKING:
cca3974e 6050 * spin_lock_irqsave(host lock)
1da177e4
LT
6051 *
6052 * RETURNS:
9a3d9eb0 6053 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6054 */
6055
9a3d9eb0 6056unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6057{
6058 struct ata_port *ap = qc->ap;
6059
e50362ec
AL
6060 /* Use polling pio if the LLD doesn't handle
6061 * interrupt driven pio and atapi CDB interrupt.
6062 */
6063 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6064 switch (qc->tf.protocol) {
6065 case ATA_PROT_PIO:
e3472cbe 6066 case ATA_PROT_NODATA:
e50362ec
AL
6067 case ATA_PROT_ATAPI:
6068 case ATA_PROT_ATAPI_NODATA:
6069 qc->tf.flags |= ATA_TFLAG_POLLING;
6070 break;
6071 case ATA_PROT_ATAPI_DMA:
6072 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6073 /* see ata_dma_blacklisted() */
e50362ec
AL
6074 BUG();
6075 break;
6076 default:
6077 break;
6078 }
6079 }
6080
312f7da2 6081 /* select the device */
1da177e4
LT
6082 ata_dev_select(ap, qc->dev->devno, 1, 0);
6083
312f7da2 6084 /* start the command */
1da177e4
LT
6085 switch (qc->tf.protocol) {
6086 case ATA_PROT_NODATA:
312f7da2
AL
6087 if (qc->tf.flags & ATA_TFLAG_POLLING)
6088 ata_qc_set_polling(qc);
6089
e5338254 6090 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6091 ap->hsm_task_state = HSM_ST_LAST;
6092
6093 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6094 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6095
1da177e4
LT
6096 break;
6097
6098 case ATA_PROT_DMA:
587005de 6099 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6100
1da177e4
LT
6101 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6102 ap->ops->bmdma_setup(qc); /* set up bmdma */
6103 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6104 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6105 break;
6106
312f7da2
AL
6107 case ATA_PROT_PIO:
6108 if (qc->tf.flags & ATA_TFLAG_POLLING)
6109 ata_qc_set_polling(qc);
1da177e4 6110
e5338254 6111 ata_tf_to_host(ap, &qc->tf);
312f7da2 6112
54f00389
AL
6113 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6114 /* PIO data out protocol */
6115 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6116 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6117
6118 /* always send first data block using
e27486db 6119 * the ata_pio_task() codepath.
54f00389 6120 */
312f7da2 6121 } else {
54f00389
AL
6122 /* PIO data in protocol */
6123 ap->hsm_task_state = HSM_ST;
6124
6125 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6126 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6127
6128 /* if polling, ata_pio_task() handles the rest.
6129 * otherwise, interrupt handler takes over from here.
6130 */
312f7da2
AL
6131 }
6132
1da177e4
LT
6133 break;
6134
1da177e4 6135 case ATA_PROT_ATAPI:
1da177e4 6136 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6137 if (qc->tf.flags & ATA_TFLAG_POLLING)
6138 ata_qc_set_polling(qc);
6139
e5338254 6140 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6141
312f7da2
AL
6142 ap->hsm_task_state = HSM_ST_FIRST;
6143
6144 /* send cdb by polling if no cdb interrupt */
6145 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6146 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6147 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6148 break;
6149
6150 case ATA_PROT_ATAPI_DMA:
587005de 6151 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6152
1da177e4
LT
6153 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6154 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6155 ap->hsm_task_state = HSM_ST_FIRST;
6156
6157 /* send cdb by polling if no cdb interrupt */
6158 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6159 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6160 break;
6161
6162 default:
6163 WARN_ON(1);
9a3d9eb0 6164 return AC_ERR_SYSTEM;
1da177e4
LT
6165 }
6166
6167 return 0;
6168}
6169
1da177e4
LT
6170/**
6171 * ata_host_intr - Handle host interrupt for given (port, task)
6172 * @ap: Port on which interrupt arrived (possibly...)
6173 * @qc: Taskfile currently active in engine
6174 *
6175 * Handle host interrupt for given queued command. Currently,
6176 * only DMA interrupts are handled. All other commands are
6177 * handled via polling with interrupts disabled (nIEN bit).
6178 *
6179 * LOCKING:
cca3974e 6180 * spin_lock_irqsave(host lock)
1da177e4
LT
6181 *
6182 * RETURNS:
6183 * One if interrupt was handled, zero if not (shared irq).
6184 */
6185
2dcb407e
JG
6186inline unsigned int ata_host_intr(struct ata_port *ap,
6187 struct ata_queued_cmd *qc)
1da177e4 6188{
9af5c9c9 6189 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6190 u8 status, host_stat = 0;
1da177e4 6191
312f7da2 6192 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6193 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6194
312f7da2
AL
6195 /* Check whether we are expecting interrupt in this state */
6196 switch (ap->hsm_task_state) {
6197 case HSM_ST_FIRST:
6912ccd5
AL
6198 /* Some pre-ATAPI-4 devices assert INTRQ
6199 * at this state when ready to receive CDB.
6200 */
1da177e4 6201
312f7da2
AL
6202 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6203 * The flag was turned on only for atapi devices.
6204 * No need to check is_atapi_taskfile(&qc->tf) again.
6205 */
6206 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6207 goto idle_irq;
1da177e4 6208 break;
312f7da2
AL
6209 case HSM_ST_LAST:
6210 if (qc->tf.protocol == ATA_PROT_DMA ||
6211 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6212 /* check status of DMA engine */
6213 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6214 VPRINTK("ata%u: host_stat 0x%X\n",
6215 ap->print_id, host_stat);
312f7da2
AL
6216
6217 /* if it's not our irq... */
6218 if (!(host_stat & ATA_DMA_INTR))
6219 goto idle_irq;
6220
6221 /* before we do anything else, clear DMA-Start bit */
6222 ap->ops->bmdma_stop(qc);
a4f16610
AL
6223
6224 if (unlikely(host_stat & ATA_DMA_ERR)) {
6225 /* error when transfering data to/from memory */
6226 qc->err_mask |= AC_ERR_HOST_BUS;
6227 ap->hsm_task_state = HSM_ST_ERR;
6228 }
312f7da2
AL
6229 }
6230 break;
6231 case HSM_ST:
6232 break;
1da177e4
LT
6233 default:
6234 goto idle_irq;
6235 }
6236
312f7da2
AL
6237 /* check altstatus */
6238 status = ata_altstatus(ap);
6239 if (status & ATA_BUSY)
6240 goto idle_irq;
1da177e4 6241
312f7da2
AL
6242 /* check main status, clearing INTRQ */
6243 status = ata_chk_status(ap);
6244 if (unlikely(status & ATA_BUSY))
6245 goto idle_irq;
1da177e4 6246
312f7da2
AL
6247 /* ack bmdma irq events */
6248 ap->ops->irq_clear(ap);
1da177e4 6249
bb5cb290 6250 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6251
6252 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6253 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6254 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6255
1da177e4
LT
6256 return 1; /* irq handled */
6257
6258idle_irq:
6259 ap->stats.idle_irq++;
6260
6261#ifdef ATA_IRQ_TRAP
6262 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6263 ata_chk_status(ap);
6264 ap->ops->irq_clear(ap);
f15a1daf 6265 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6266 return 1;
1da177e4
LT
6267 }
6268#endif
6269 return 0; /* irq not handled */
6270}
6271
6272/**
6273 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6274 * @irq: irq line (unused)
cca3974e 6275 * @dev_instance: pointer to our ata_host information structure
1da177e4 6276 *
0cba632b
JG
6277 * Default interrupt handler for PCI IDE devices. Calls
6278 * ata_host_intr() for each port that is not disabled.
6279 *
1da177e4 6280 * LOCKING:
cca3974e 6281 * Obtains host lock during operation.
1da177e4
LT
6282 *
6283 * RETURNS:
0cba632b 6284 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6285 */
6286
2dcb407e 6287irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6288{
cca3974e 6289 struct ata_host *host = dev_instance;
1da177e4
LT
6290 unsigned int i;
6291 unsigned int handled = 0;
6292 unsigned long flags;
6293
6294 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6295 spin_lock_irqsave(&host->lock, flags);
1da177e4 6296
cca3974e 6297 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6298 struct ata_port *ap;
6299
cca3974e 6300 ap = host->ports[i];
c1389503 6301 if (ap &&
029f5468 6302 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6303 struct ata_queued_cmd *qc;
6304
9af5c9c9 6305 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6306 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6307 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6308 handled |= ata_host_intr(ap, qc);
6309 }
6310 }
6311
cca3974e 6312 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6313
6314 return IRQ_RETVAL(handled);
6315}
6316
34bf2170
TH
6317/**
6318 * sata_scr_valid - test whether SCRs are accessible
936fd732 6319 * @link: ATA link to test SCR accessibility for
34bf2170 6320 *
936fd732 6321 * Test whether SCRs are accessible for @link.
34bf2170
TH
6322 *
6323 * LOCKING:
6324 * None.
6325 *
6326 * RETURNS:
6327 * 1 if SCRs are accessible, 0 otherwise.
6328 */
936fd732 6329int sata_scr_valid(struct ata_link *link)
34bf2170 6330{
936fd732
TH
6331 struct ata_port *ap = link->ap;
6332
a16abc0b 6333 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6334}
6335
6336/**
6337 * sata_scr_read - read SCR register of the specified port
936fd732 6338 * @link: ATA link to read SCR for
34bf2170
TH
6339 * @reg: SCR to read
6340 * @val: Place to store read value
6341 *
936fd732 6342 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6343 * guaranteed to succeed if @link is ap->link, the cable type of
6344 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6345 *
6346 * LOCKING:
633273a3 6347 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6348 *
6349 * RETURNS:
6350 * 0 on success, negative errno on failure.
6351 */
936fd732 6352int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6353{
633273a3
TH
6354 if (ata_is_host_link(link)) {
6355 struct ata_port *ap = link->ap;
936fd732 6356
633273a3
TH
6357 if (sata_scr_valid(link))
6358 return ap->ops->scr_read(ap, reg, val);
6359 return -EOPNOTSUPP;
6360 }
6361
6362 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6363}
6364
6365/**
6366 * sata_scr_write - write SCR register of the specified port
936fd732 6367 * @link: ATA link to write SCR for
34bf2170
TH
6368 * @reg: SCR to write
6369 * @val: value to write
6370 *
936fd732 6371 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6372 * guaranteed to succeed if @link is ap->link, the cable type of
6373 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6374 *
6375 * LOCKING:
633273a3 6376 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6377 *
6378 * RETURNS:
6379 * 0 on success, negative errno on failure.
6380 */
936fd732 6381int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6382{
633273a3
TH
6383 if (ata_is_host_link(link)) {
6384 struct ata_port *ap = link->ap;
6385
6386 if (sata_scr_valid(link))
6387 return ap->ops->scr_write(ap, reg, val);
6388 return -EOPNOTSUPP;
6389 }
936fd732 6390
633273a3 6391 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6392}
6393
6394/**
6395 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6396 * @link: ATA link to write SCR for
34bf2170
TH
6397 * @reg: SCR to write
6398 * @val: value to write
6399 *
6400 * This function is identical to sata_scr_write() except that this
6401 * function performs flush after writing to the register.
6402 *
6403 * LOCKING:
633273a3 6404 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6405 *
6406 * RETURNS:
6407 * 0 on success, negative errno on failure.
6408 */
936fd732 6409int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6410{
633273a3
TH
6411 if (ata_is_host_link(link)) {
6412 struct ata_port *ap = link->ap;
6413 int rc;
da3dbb17 6414
633273a3
TH
6415 if (sata_scr_valid(link)) {
6416 rc = ap->ops->scr_write(ap, reg, val);
6417 if (rc == 0)
6418 rc = ap->ops->scr_read(ap, reg, &val);
6419 return rc;
6420 }
6421 return -EOPNOTSUPP;
34bf2170 6422 }
633273a3
TH
6423
6424 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6425}
6426
6427/**
936fd732
TH
6428 * ata_link_online - test whether the given link is online
6429 * @link: ATA link to test
34bf2170 6430 *
936fd732
TH
6431 * Test whether @link is online. Note that this function returns
6432 * 0 if online status of @link cannot be obtained, so
6433 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6434 *
6435 * LOCKING:
6436 * None.
6437 *
6438 * RETURNS:
6439 * 1 if the port online status is available and online.
6440 */
936fd732 6441int ata_link_online(struct ata_link *link)
34bf2170
TH
6442{
6443 u32 sstatus;
6444
936fd732
TH
6445 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6446 (sstatus & 0xf) == 0x3)
34bf2170
TH
6447 return 1;
6448 return 0;
6449}
6450
6451/**
936fd732
TH
6452 * ata_link_offline - test whether the given link is offline
6453 * @link: ATA link to test
34bf2170 6454 *
936fd732
TH
6455 * Test whether @link is offline. Note that this function
6456 * returns 0 if offline status of @link cannot be obtained, so
6457 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6458 *
6459 * LOCKING:
6460 * None.
6461 *
6462 * RETURNS:
6463 * 1 if the port offline status is available and offline.
6464 */
936fd732 6465int ata_link_offline(struct ata_link *link)
34bf2170
TH
6466{
6467 u32 sstatus;
6468
936fd732
TH
6469 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6470 (sstatus & 0xf) != 0x3)
34bf2170
TH
6471 return 1;
6472 return 0;
6473}
0baab86b 6474
77b08fb5 6475int ata_flush_cache(struct ata_device *dev)
9b847548 6476{
977e6b9f 6477 unsigned int err_mask;
9b847548
JA
6478 u8 cmd;
6479
6480 if (!ata_try_flush_cache(dev))
6481 return 0;
6482
6fc49adb 6483 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6484 cmd = ATA_CMD_FLUSH_EXT;
6485 else
6486 cmd = ATA_CMD_FLUSH;
6487
4f34337b
AC
6488 /* This is wrong. On a failed flush we get back the LBA of the lost
6489 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6490 a further flush command to continue the writeback until it
4f34337b 6491 does not error */
977e6b9f
TH
6492 err_mask = ata_do_simple_cmd(dev, cmd);
6493 if (err_mask) {
6494 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6495 return -EIO;
6496 }
6497
6498 return 0;
9b847548
JA
6499}
6500
6ffa01d8 6501#ifdef CONFIG_PM
cca3974e
JG
6502static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6503 unsigned int action, unsigned int ehi_flags,
6504 int wait)
500530f6
TH
6505{
6506 unsigned long flags;
6507 int i, rc;
6508
cca3974e
JG
6509 for (i = 0; i < host->n_ports; i++) {
6510 struct ata_port *ap = host->ports[i];
e3667ebf 6511 struct ata_link *link;
500530f6
TH
6512
6513 /* Previous resume operation might still be in
6514 * progress. Wait for PM_PENDING to clear.
6515 */
6516 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6517 ata_port_wait_eh(ap);
6518 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6519 }
6520
6521 /* request PM ops to EH */
6522 spin_lock_irqsave(ap->lock, flags);
6523
6524 ap->pm_mesg = mesg;
6525 if (wait) {
6526 rc = 0;
6527 ap->pm_result = &rc;
6528 }
6529
6530 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6531 __ata_port_for_each_link(link, ap) {
6532 link->eh_info.action |= action;
6533 link->eh_info.flags |= ehi_flags;
6534 }
500530f6
TH
6535
6536 ata_port_schedule_eh(ap);
6537
6538 spin_unlock_irqrestore(ap->lock, flags);
6539
6540 /* wait and check result */
6541 if (wait) {
6542 ata_port_wait_eh(ap);
6543 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6544 if (rc)
6545 return rc;
6546 }
6547 }
6548
6549 return 0;
6550}
6551
6552/**
cca3974e
JG
6553 * ata_host_suspend - suspend host
6554 * @host: host to suspend
500530f6
TH
6555 * @mesg: PM message
6556 *
cca3974e 6557 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6558 * function requests EH to perform PM operations and waits for EH
6559 * to finish.
6560 *
6561 * LOCKING:
6562 * Kernel thread context (may sleep).
6563 *
6564 * RETURNS:
6565 * 0 on success, -errno on failure.
6566 */
cca3974e 6567int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6568{
9666f400 6569 int rc;
500530f6 6570
ca77329f
KCA
6571 /*
6572 * disable link pm on all ports before requesting
6573 * any pm activity
6574 */
6575 ata_lpm_enable(host);
6576
cca3974e 6577 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6578 if (rc == 0)
6579 host->dev->power.power_state = mesg;
500530f6
TH
6580 return rc;
6581}
6582
6583/**
cca3974e
JG
6584 * ata_host_resume - resume host
6585 * @host: host to resume
500530f6 6586 *
cca3974e 6587 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6588 * function requests EH to perform PM operations and returns.
6589 * Note that all resume operations are performed parallely.
6590 *
6591 * LOCKING:
6592 * Kernel thread context (may sleep).
6593 */
cca3974e 6594void ata_host_resume(struct ata_host *host)
500530f6 6595{
cca3974e
JG
6596 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6597 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6598 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6599
6600 /* reenable link pm */
6601 ata_lpm_disable(host);
500530f6 6602}
6ffa01d8 6603#endif
500530f6 6604
c893a3ae
RD
6605/**
6606 * ata_port_start - Set port up for dma.
6607 * @ap: Port to initialize
6608 *
6609 * Called just after data structures for each port are
6610 * initialized. Allocates space for PRD table.
6611 *
6612 * May be used as the port_start() entry in ata_port_operations.
6613 *
6614 * LOCKING:
6615 * Inherited from caller.
6616 */
f0d36efd 6617int ata_port_start(struct ata_port *ap)
1da177e4 6618{
2f1f610b 6619 struct device *dev = ap->dev;
6037d6bb 6620 int rc;
1da177e4 6621
f0d36efd
TH
6622 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6623 GFP_KERNEL);
1da177e4
LT
6624 if (!ap->prd)
6625 return -ENOMEM;
6626
6037d6bb 6627 rc = ata_pad_alloc(ap, dev);
f0d36efd 6628 if (rc)
6037d6bb 6629 return rc;
1da177e4 6630
f0d36efd
TH
6631 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6632 (unsigned long long)ap->prd_dma);
1da177e4
LT
6633 return 0;
6634}
6635
3ef3b43d
TH
6636/**
6637 * ata_dev_init - Initialize an ata_device structure
6638 * @dev: Device structure to initialize
6639 *
6640 * Initialize @dev in preparation for probing.
6641 *
6642 * LOCKING:
6643 * Inherited from caller.
6644 */
6645void ata_dev_init(struct ata_device *dev)
6646{
9af5c9c9
TH
6647 struct ata_link *link = dev->link;
6648 struct ata_port *ap = link->ap;
72fa4b74
TH
6649 unsigned long flags;
6650
5a04bf4b 6651 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6652 link->sata_spd_limit = link->hw_sata_spd_limit;
6653 link->sata_spd = 0;
5a04bf4b 6654
72fa4b74
TH
6655 /* High bits of dev->flags are used to record warm plug
6656 * requests which occur asynchronously. Synchronize using
cca3974e 6657 * host lock.
72fa4b74 6658 */
ba6a1308 6659 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6660 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6661 dev->horkage = 0;
ba6a1308 6662 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6663
72fa4b74
TH
6664 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6665 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6666 dev->pio_mask = UINT_MAX;
6667 dev->mwdma_mask = UINT_MAX;
6668 dev->udma_mask = UINT_MAX;
6669}
6670
4fb37a25
TH
6671/**
6672 * ata_link_init - Initialize an ata_link structure
6673 * @ap: ATA port link is attached to
6674 * @link: Link structure to initialize
8989805d 6675 * @pmp: Port multiplier port number
4fb37a25
TH
6676 *
6677 * Initialize @link.
6678 *
6679 * LOCKING:
6680 * Kernel thread context (may sleep)
6681 */
fb7fd614 6682void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6683{
6684 int i;
6685
6686 /* clear everything except for devices */
6687 memset(link, 0, offsetof(struct ata_link, device[0]));
6688
6689 link->ap = ap;
8989805d 6690 link->pmp = pmp;
4fb37a25
TH
6691 link->active_tag = ATA_TAG_POISON;
6692 link->hw_sata_spd_limit = UINT_MAX;
6693
6694 /* can't use iterator, ap isn't initialized yet */
6695 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6696 struct ata_device *dev = &link->device[i];
6697
6698 dev->link = link;
6699 dev->devno = dev - link->device;
6700 ata_dev_init(dev);
6701 }
6702}
6703
6704/**
6705 * sata_link_init_spd - Initialize link->sata_spd_limit
6706 * @link: Link to configure sata_spd_limit for
6707 *
6708 * Initialize @link->[hw_]sata_spd_limit to the currently
6709 * configured value.
6710 *
6711 * LOCKING:
6712 * Kernel thread context (may sleep).
6713 *
6714 * RETURNS:
6715 * 0 on success, -errno on failure.
6716 */
fb7fd614 6717int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6718{
6719 u32 scontrol, spd;
6720 int rc;
6721
6722 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6723 if (rc)
6724 return rc;
6725
6726 spd = (scontrol >> 4) & 0xf;
6727 if (spd)
6728 link->hw_sata_spd_limit &= (1 << spd) - 1;
6729
6730 link->sata_spd_limit = link->hw_sata_spd_limit;
6731
6732 return 0;
6733}
6734
1da177e4 6735/**
f3187195
TH
6736 * ata_port_alloc - allocate and initialize basic ATA port resources
6737 * @host: ATA host this allocated port belongs to
1da177e4 6738 *
f3187195
TH
6739 * Allocate and initialize basic ATA port resources.
6740 *
6741 * RETURNS:
6742 * Allocate ATA port on success, NULL on failure.
0cba632b 6743 *
1da177e4 6744 * LOCKING:
f3187195 6745 * Inherited from calling layer (may sleep).
1da177e4 6746 */
f3187195 6747struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6748{
f3187195 6749 struct ata_port *ap;
1da177e4 6750
f3187195
TH
6751 DPRINTK("ENTER\n");
6752
6753 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6754 if (!ap)
6755 return NULL;
6756
f4d6d004 6757 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6758 ap->lock = &host->lock;
198e0fed 6759 ap->flags = ATA_FLAG_DISABLED;
f3187195 6760 ap->print_id = -1;
1da177e4 6761 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6762 ap->host = host;
f3187195 6763 ap->dev = host->dev;
1da177e4 6764 ap->last_ctl = 0xFF;
bd5d825c
BP
6765
6766#if defined(ATA_VERBOSE_DEBUG)
6767 /* turn on all debugging levels */
6768 ap->msg_enable = 0x00FF;
6769#elif defined(ATA_DEBUG)
6770 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6771#else
0dd4b21f 6772 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6773#endif
1da177e4 6774
65f27f38
DH
6775 INIT_DELAYED_WORK(&ap->port_task, NULL);
6776 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6777 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6778 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6779 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6780 init_timer_deferrable(&ap->fastdrain_timer);
6781 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6782 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6783
838df628 6784 ap->cbl = ATA_CBL_NONE;
838df628 6785
8989805d 6786 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6787
6788#ifdef ATA_IRQ_TRAP
6789 ap->stats.unhandled_irq = 1;
6790 ap->stats.idle_irq = 1;
6791#endif
1da177e4 6792 return ap;
1da177e4
LT
6793}
6794
f0d36efd
TH
6795static void ata_host_release(struct device *gendev, void *res)
6796{
6797 struct ata_host *host = dev_get_drvdata(gendev);
6798 int i;
6799
1aa506e4
TH
6800 for (i = 0; i < host->n_ports; i++) {
6801 struct ata_port *ap = host->ports[i];
6802
4911487a
TH
6803 if (!ap)
6804 continue;
6805
6806 if (ap->scsi_host)
1aa506e4
TH
6807 scsi_host_put(ap->scsi_host);
6808
633273a3 6809 kfree(ap->pmp_link);
4911487a 6810 kfree(ap);
1aa506e4
TH
6811 host->ports[i] = NULL;
6812 }
6813
1aa56cca 6814 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6815}
6816
f3187195
TH
6817/**
6818 * ata_host_alloc - allocate and init basic ATA host resources
6819 * @dev: generic device this host is associated with
6820 * @max_ports: maximum number of ATA ports associated with this host
6821 *
6822 * Allocate and initialize basic ATA host resources. LLD calls
6823 * this function to allocate a host, initializes it fully and
6824 * attaches it using ata_host_register().
6825 *
6826 * @max_ports ports are allocated and host->n_ports is
6827 * initialized to @max_ports. The caller is allowed to decrease
6828 * host->n_ports before calling ata_host_register(). The unused
6829 * ports will be automatically freed on registration.
6830 *
6831 * RETURNS:
6832 * Allocate ATA host on success, NULL on failure.
6833 *
6834 * LOCKING:
6835 * Inherited from calling layer (may sleep).
6836 */
6837struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6838{
6839 struct ata_host *host;
6840 size_t sz;
6841 int i;
6842
6843 DPRINTK("ENTER\n");
6844
6845 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6846 return NULL;
6847
6848 /* alloc a container for our list of ATA ports (buses) */
6849 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6850 /* alloc a container for our list of ATA ports (buses) */
6851 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6852 if (!host)
6853 goto err_out;
6854
6855 devres_add(dev, host);
6856 dev_set_drvdata(dev, host);
6857
6858 spin_lock_init(&host->lock);
6859 host->dev = dev;
6860 host->n_ports = max_ports;
6861
6862 /* allocate ports bound to this host */
6863 for (i = 0; i < max_ports; i++) {
6864 struct ata_port *ap;
6865
6866 ap = ata_port_alloc(host);
6867 if (!ap)
6868 goto err_out;
6869
6870 ap->port_no = i;
6871 host->ports[i] = ap;
6872 }
6873
6874 devres_remove_group(dev, NULL);
6875 return host;
6876
6877 err_out:
6878 devres_release_group(dev, NULL);
6879 return NULL;
6880}
6881
f5cda257
TH
6882/**
6883 * ata_host_alloc_pinfo - alloc host and init with port_info array
6884 * @dev: generic device this host is associated with
6885 * @ppi: array of ATA port_info to initialize host with
6886 * @n_ports: number of ATA ports attached to this host
6887 *
6888 * Allocate ATA host and initialize with info from @ppi. If NULL
6889 * terminated, @ppi may contain fewer entries than @n_ports. The
6890 * last entry will be used for the remaining ports.
6891 *
6892 * RETURNS:
6893 * Allocate ATA host on success, NULL on failure.
6894 *
6895 * LOCKING:
6896 * Inherited from calling layer (may sleep).
6897 */
6898struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6899 const struct ata_port_info * const * ppi,
6900 int n_ports)
6901{
6902 const struct ata_port_info *pi;
6903 struct ata_host *host;
6904 int i, j;
6905
6906 host = ata_host_alloc(dev, n_ports);
6907 if (!host)
6908 return NULL;
6909
6910 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6911 struct ata_port *ap = host->ports[i];
6912
6913 if (ppi[j])
6914 pi = ppi[j++];
6915
6916 ap->pio_mask = pi->pio_mask;
6917 ap->mwdma_mask = pi->mwdma_mask;
6918 ap->udma_mask = pi->udma_mask;
6919 ap->flags |= pi->flags;
0c88758b 6920 ap->link.flags |= pi->link_flags;
f5cda257
TH
6921 ap->ops = pi->port_ops;
6922
6923 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6924 host->ops = pi->port_ops;
6925 if (!host->private_data && pi->private_data)
6926 host->private_data = pi->private_data;
6927 }
6928
6929 return host;
6930}
6931
32ebbc0c
TH
6932static void ata_host_stop(struct device *gendev, void *res)
6933{
6934 struct ata_host *host = dev_get_drvdata(gendev);
6935 int i;
6936
6937 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6938
6939 for (i = 0; i < host->n_ports; i++) {
6940 struct ata_port *ap = host->ports[i];
6941
6942 if (ap->ops->port_stop)
6943 ap->ops->port_stop(ap);
6944 }
6945
6946 if (host->ops->host_stop)
6947 host->ops->host_stop(host);
6948}
6949
ecef7253
TH
6950/**
6951 * ata_host_start - start and freeze ports of an ATA host
6952 * @host: ATA host to start ports for
6953 *
6954 * Start and then freeze ports of @host. Started status is
6955 * recorded in host->flags, so this function can be called
6956 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6957 * once. If host->ops isn't initialized yet, its set to the
6958 * first non-dummy port ops.
ecef7253
TH
6959 *
6960 * LOCKING:
6961 * Inherited from calling layer (may sleep).
6962 *
6963 * RETURNS:
6964 * 0 if all ports are started successfully, -errno otherwise.
6965 */
6966int ata_host_start(struct ata_host *host)
6967{
32ebbc0c
TH
6968 int have_stop = 0;
6969 void *start_dr = NULL;
ecef7253
TH
6970 int i, rc;
6971
6972 if (host->flags & ATA_HOST_STARTED)
6973 return 0;
6974
6975 for (i = 0; i < host->n_ports; i++) {
6976 struct ata_port *ap = host->ports[i];
6977
f3187195
TH
6978 if (!host->ops && !ata_port_is_dummy(ap))
6979 host->ops = ap->ops;
6980
32ebbc0c
TH
6981 if (ap->ops->port_stop)
6982 have_stop = 1;
6983 }
6984
6985 if (host->ops->host_stop)
6986 have_stop = 1;
6987
6988 if (have_stop) {
6989 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6990 if (!start_dr)
6991 return -ENOMEM;
6992 }
6993
6994 for (i = 0; i < host->n_ports; i++) {
6995 struct ata_port *ap = host->ports[i];
6996
ecef7253
TH
6997 if (ap->ops->port_start) {
6998 rc = ap->ops->port_start(ap);
6999 if (rc) {
0f9fe9b7 7000 if (rc != -ENODEV)
0f757743
AM
7001 dev_printk(KERN_ERR, host->dev,
7002 "failed to start port %d "
7003 "(errno=%d)\n", i, rc);
ecef7253
TH
7004 goto err_out;
7005 }
7006 }
ecef7253
TH
7007 ata_eh_freeze_port(ap);
7008 }
7009
32ebbc0c
TH
7010 if (start_dr)
7011 devres_add(host->dev, start_dr);
ecef7253
TH
7012 host->flags |= ATA_HOST_STARTED;
7013 return 0;
7014
7015 err_out:
7016 while (--i >= 0) {
7017 struct ata_port *ap = host->ports[i];
7018
7019 if (ap->ops->port_stop)
7020 ap->ops->port_stop(ap);
7021 }
32ebbc0c 7022 devres_free(start_dr);
ecef7253
TH
7023 return rc;
7024}
7025
b03732f0 7026/**
cca3974e
JG
7027 * ata_sas_host_init - Initialize a host struct
7028 * @host: host to initialize
7029 * @dev: device host is attached to
7030 * @flags: host flags
7031 * @ops: port_ops
b03732f0
BK
7032 *
7033 * LOCKING:
7034 * PCI/etc. bus probe sem.
7035 *
7036 */
f3187195 7037/* KILLME - the only user left is ipr */
cca3974e
JG
7038void ata_host_init(struct ata_host *host, struct device *dev,
7039 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7040{
cca3974e
JG
7041 spin_lock_init(&host->lock);
7042 host->dev = dev;
7043 host->flags = flags;
7044 host->ops = ops;
b03732f0
BK
7045}
7046
f3187195
TH
7047/**
7048 * ata_host_register - register initialized ATA host
7049 * @host: ATA host to register
7050 * @sht: template for SCSI host
7051 *
7052 * Register initialized ATA host. @host is allocated using
7053 * ata_host_alloc() and fully initialized by LLD. This function
7054 * starts ports, registers @host with ATA and SCSI layers and
7055 * probe registered devices.
7056 *
7057 * LOCKING:
7058 * Inherited from calling layer (may sleep).
7059 *
7060 * RETURNS:
7061 * 0 on success, -errno otherwise.
7062 */
7063int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7064{
7065 int i, rc;
7066
7067 /* host must have been started */
7068 if (!(host->flags & ATA_HOST_STARTED)) {
7069 dev_printk(KERN_ERR, host->dev,
7070 "BUG: trying to register unstarted host\n");
7071 WARN_ON(1);
7072 return -EINVAL;
7073 }
7074
7075 /* Blow away unused ports. This happens when LLD can't
7076 * determine the exact number of ports to allocate at
7077 * allocation time.
7078 */
7079 for (i = host->n_ports; host->ports[i]; i++)
7080 kfree(host->ports[i]);
7081
7082 /* give ports names and add SCSI hosts */
7083 for (i = 0; i < host->n_ports; i++)
7084 host->ports[i]->print_id = ata_print_id++;
7085
7086 rc = ata_scsi_add_hosts(host, sht);
7087 if (rc)
7088 return rc;
7089
fafbae87
TH
7090 /* associate with ACPI nodes */
7091 ata_acpi_associate(host);
7092
f3187195
TH
7093 /* set cable, sata_spd_limit and report */
7094 for (i = 0; i < host->n_ports; i++) {
7095 struct ata_port *ap = host->ports[i];
f3187195
TH
7096 unsigned long xfer_mask;
7097
7098 /* set SATA cable type if still unset */
7099 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7100 ap->cbl = ATA_CBL_SATA;
7101
7102 /* init sata_spd_limit to the current value */
4fb37a25 7103 sata_link_init_spd(&ap->link);
f3187195 7104
cbcdd875 7105 /* print per-port info to dmesg */
f3187195
TH
7106 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7107 ap->udma_mask);
7108
abf6e8ed 7109 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7110 ata_port_printk(ap, KERN_INFO,
7111 "%cATA max %s %s\n",
a16abc0b 7112 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7113 ata_mode_string(xfer_mask),
cbcdd875 7114 ap->link.eh_info.desc);
abf6e8ed
TH
7115 ata_ehi_clear_desc(&ap->link.eh_info);
7116 } else
f3187195
TH
7117 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7118 }
7119
7120 /* perform each probe synchronously */
7121 DPRINTK("probe begin\n");
7122 for (i = 0; i < host->n_ports; i++) {
7123 struct ata_port *ap = host->ports[i];
7124 int rc;
7125
7126 /* probe */
7127 if (ap->ops->error_handler) {
9af5c9c9 7128 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7129 unsigned long flags;
7130
7131 ata_port_probe(ap);
7132
7133 /* kick EH for boot probing */
7134 spin_lock_irqsave(ap->lock, flags);
7135
f58229f8
TH
7136 ehi->probe_mask =
7137 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7138 ehi->action |= ATA_EH_SOFTRESET;
7139 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7140
f4d6d004 7141 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7142 ap->pflags |= ATA_PFLAG_LOADING;
7143 ata_port_schedule_eh(ap);
7144
7145 spin_unlock_irqrestore(ap->lock, flags);
7146
7147 /* wait for EH to finish */
7148 ata_port_wait_eh(ap);
7149 } else {
7150 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7151 rc = ata_bus_probe(ap);
7152 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7153
7154 if (rc) {
7155 /* FIXME: do something useful here?
7156 * Current libata behavior will
7157 * tear down everything when
7158 * the module is removed
7159 * or the h/w is unplugged.
7160 */
7161 }
7162 }
7163 }
7164
7165 /* probes are done, now scan each port's disk(s) */
7166 DPRINTK("host probe begin\n");
7167 for (i = 0; i < host->n_ports; i++) {
7168 struct ata_port *ap = host->ports[i];
7169
1ae46317 7170 ata_scsi_scan_host(ap, 1);
ca77329f 7171 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7172 }
7173
7174 return 0;
7175}
7176
f5cda257
TH
7177/**
7178 * ata_host_activate - start host, request IRQ and register it
7179 * @host: target ATA host
7180 * @irq: IRQ to request
7181 * @irq_handler: irq_handler used when requesting IRQ
7182 * @irq_flags: irq_flags used when requesting IRQ
7183 * @sht: scsi_host_template to use when registering the host
7184 *
7185 * After allocating an ATA host and initializing it, most libata
7186 * LLDs perform three steps to activate the host - start host,
7187 * request IRQ and register it. This helper takes necessasry
7188 * arguments and performs the three steps in one go.
7189 *
3d46b2e2
PM
7190 * An invalid IRQ skips the IRQ registration and expects the host to
7191 * have set polling mode on the port. In this case, @irq_handler
7192 * should be NULL.
7193 *
f5cda257
TH
7194 * LOCKING:
7195 * Inherited from calling layer (may sleep).
7196 *
7197 * RETURNS:
7198 * 0 on success, -errno otherwise.
7199 */
7200int ata_host_activate(struct ata_host *host, int irq,
7201 irq_handler_t irq_handler, unsigned long irq_flags,
7202 struct scsi_host_template *sht)
7203{
cbcdd875 7204 int i, rc;
f5cda257
TH
7205
7206 rc = ata_host_start(host);
7207 if (rc)
7208 return rc;
7209
3d46b2e2
PM
7210 /* Special case for polling mode */
7211 if (!irq) {
7212 WARN_ON(irq_handler);
7213 return ata_host_register(host, sht);
7214 }
7215
f5cda257
TH
7216 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7217 dev_driver_string(host->dev), host);
7218 if (rc)
7219 return rc;
7220
cbcdd875
TH
7221 for (i = 0; i < host->n_ports; i++)
7222 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7223
f5cda257
TH
7224 rc = ata_host_register(host, sht);
7225 /* if failed, just free the IRQ and leave ports alone */
7226 if (rc)
7227 devm_free_irq(host->dev, irq, host);
7228
7229 return rc;
7230}
7231
720ba126
TH
7232/**
7233 * ata_port_detach - Detach ATA port in prepration of device removal
7234 * @ap: ATA port to be detached
7235 *
7236 * Detach all ATA devices and the associated SCSI devices of @ap;
7237 * then, remove the associated SCSI host. @ap is guaranteed to
7238 * be quiescent on return from this function.
7239 *
7240 * LOCKING:
7241 * Kernel thread context (may sleep).
7242 */
741b7763 7243static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7244{
7245 unsigned long flags;
41bda9c9 7246 struct ata_link *link;
f58229f8 7247 struct ata_device *dev;
720ba126
TH
7248
7249 if (!ap->ops->error_handler)
c3cf30a9 7250 goto skip_eh;
720ba126
TH
7251
7252 /* tell EH we're leaving & flush EH */
ba6a1308 7253 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7254 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7255 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7256
7257 ata_port_wait_eh(ap);
7258
7f9ad9b8
TH
7259 /* EH is now guaranteed to see UNLOADING - EH context belongs
7260 * to us. Disable all existing devices.
720ba126 7261 */
41bda9c9
TH
7262 ata_port_for_each_link(link, ap) {
7263 ata_link_for_each_dev(dev, link)
7264 ata_dev_disable(dev);
7265 }
720ba126 7266
720ba126
TH
7267 /* Final freeze & EH. All in-flight commands are aborted. EH
7268 * will be skipped and retrials will be terminated with bad
7269 * target.
7270 */
ba6a1308 7271 spin_lock_irqsave(ap->lock, flags);
720ba126 7272 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7273 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7274
7275 ata_port_wait_eh(ap);
45a66c1c 7276 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7277
c3cf30a9 7278 skip_eh:
720ba126 7279 /* remove the associated SCSI host */
cca3974e 7280 scsi_remove_host(ap->scsi_host);
720ba126
TH
7281}
7282
0529c159
TH
7283/**
7284 * ata_host_detach - Detach all ports of an ATA host
7285 * @host: Host to detach
7286 *
7287 * Detach all ports of @host.
7288 *
7289 * LOCKING:
7290 * Kernel thread context (may sleep).
7291 */
7292void ata_host_detach(struct ata_host *host)
7293{
7294 int i;
7295
7296 for (i = 0; i < host->n_ports; i++)
7297 ata_port_detach(host->ports[i]);
562f0c2d
TH
7298
7299 /* the host is dead now, dissociate ACPI */
7300 ata_acpi_dissociate(host);
0529c159
TH
7301}
7302
1da177e4
LT
7303/**
7304 * ata_std_ports - initialize ioaddr with standard port offsets.
7305 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7306 *
7307 * Utility function which initializes data_addr, error_addr,
7308 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7309 * device_addr, status_addr, and command_addr to standard offsets
7310 * relative to cmd_addr.
7311 *
7312 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7313 */
0baab86b 7314
1da177e4
LT
7315void ata_std_ports(struct ata_ioports *ioaddr)
7316{
7317 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7318 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7319 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7320 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7321 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7322 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7323 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7324 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7325 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7326 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7327}
7328
0baab86b 7329
374b1873
JG
7330#ifdef CONFIG_PCI
7331
1da177e4
LT
7332/**
7333 * ata_pci_remove_one - PCI layer callback for device removal
7334 * @pdev: PCI device that was removed
7335 *
b878ca5d
TH
7336 * PCI layer indicates to libata via this hook that hot-unplug or
7337 * module unload event has occurred. Detach all ports. Resource
7338 * release is handled via devres.
1da177e4
LT
7339 *
7340 * LOCKING:
7341 * Inherited from PCI layer (may sleep).
7342 */
f0d36efd 7343void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7344{
2855568b 7345 struct device *dev = &pdev->dev;
cca3974e 7346 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7347
b878ca5d 7348 ata_host_detach(host);
1da177e4
LT
7349}
7350
7351/* move to PCI subsystem */
057ace5e 7352int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7353{
7354 unsigned long tmp = 0;
7355
7356 switch (bits->width) {
7357 case 1: {
7358 u8 tmp8 = 0;
7359 pci_read_config_byte(pdev, bits->reg, &tmp8);
7360 tmp = tmp8;
7361 break;
7362 }
7363 case 2: {
7364 u16 tmp16 = 0;
7365 pci_read_config_word(pdev, bits->reg, &tmp16);
7366 tmp = tmp16;
7367 break;
7368 }
7369 case 4: {
7370 u32 tmp32 = 0;
7371 pci_read_config_dword(pdev, bits->reg, &tmp32);
7372 tmp = tmp32;
7373 break;
7374 }
7375
7376 default:
7377 return -EINVAL;
7378 }
7379
7380 tmp &= bits->mask;
7381
7382 return (tmp == bits->val) ? 1 : 0;
7383}
9b847548 7384
6ffa01d8 7385#ifdef CONFIG_PM
3c5100c1 7386void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7387{
7388 pci_save_state(pdev);
4c90d971 7389 pci_disable_device(pdev);
500530f6 7390
4c90d971 7391 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7392 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7393}
7394
553c4aa6 7395int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7396{
553c4aa6
TH
7397 int rc;
7398
9b847548
JA
7399 pci_set_power_state(pdev, PCI_D0);
7400 pci_restore_state(pdev);
553c4aa6 7401
b878ca5d 7402 rc = pcim_enable_device(pdev);
553c4aa6
TH
7403 if (rc) {
7404 dev_printk(KERN_ERR, &pdev->dev,
7405 "failed to enable device after resume (%d)\n", rc);
7406 return rc;
7407 }
7408
9b847548 7409 pci_set_master(pdev);
553c4aa6 7410 return 0;
500530f6
TH
7411}
7412
3c5100c1 7413int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7414{
cca3974e 7415 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7416 int rc = 0;
7417
cca3974e 7418 rc = ata_host_suspend(host, mesg);
500530f6
TH
7419 if (rc)
7420 return rc;
7421
3c5100c1 7422 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7423
7424 return 0;
7425}
7426
7427int ata_pci_device_resume(struct pci_dev *pdev)
7428{
cca3974e 7429 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7430 int rc;
500530f6 7431
553c4aa6
TH
7432 rc = ata_pci_device_do_resume(pdev);
7433 if (rc == 0)
7434 ata_host_resume(host);
7435 return rc;
9b847548 7436}
6ffa01d8
TH
7437#endif /* CONFIG_PM */
7438
1da177e4
LT
7439#endif /* CONFIG_PCI */
7440
7441
1da177e4
LT
7442static int __init ata_init(void)
7443{
a8601e5f 7444 ata_probe_timeout *= HZ;
1da177e4
LT
7445 ata_wq = create_workqueue("ata");
7446 if (!ata_wq)
7447 return -ENOMEM;
7448
453b07ac
TH
7449 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7450 if (!ata_aux_wq) {
7451 destroy_workqueue(ata_wq);
7452 return -ENOMEM;
7453 }
7454
1da177e4
LT
7455 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7456 return 0;
7457}
7458
7459static void __exit ata_exit(void)
7460{
7461 destroy_workqueue(ata_wq);
453b07ac 7462 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7463}
7464
a4625085 7465subsys_initcall(ata_init);
1da177e4
LT
7466module_exit(ata_exit);
7467
67846b30 7468static unsigned long ratelimit_time;
34af946a 7469static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7470
7471int ata_ratelimit(void)
7472{
7473 int rc;
7474 unsigned long flags;
7475
7476 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7477
7478 if (time_after(jiffies, ratelimit_time)) {
7479 rc = 1;
7480 ratelimit_time = jiffies + (HZ/5);
7481 } else
7482 rc = 0;
7483
7484 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7485
7486 return rc;
7487}
7488
c22daff4
TH
7489/**
7490 * ata_wait_register - wait until register value changes
7491 * @reg: IO-mapped register
7492 * @mask: Mask to apply to read register value
7493 * @val: Wait condition
7494 * @interval_msec: polling interval in milliseconds
7495 * @timeout_msec: timeout in milliseconds
7496 *
7497 * Waiting for some bits of register to change is a common
7498 * operation for ATA controllers. This function reads 32bit LE
7499 * IO-mapped register @reg and tests for the following condition.
7500 *
7501 * (*@reg & mask) != val
7502 *
7503 * If the condition is met, it returns; otherwise, the process is
7504 * repeated after @interval_msec until timeout.
7505 *
7506 * LOCKING:
7507 * Kernel thread context (may sleep)
7508 *
7509 * RETURNS:
7510 * The final register value.
7511 */
7512u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7513 unsigned long interval_msec,
7514 unsigned long timeout_msec)
7515{
7516 unsigned long timeout;
7517 u32 tmp;
7518
7519 tmp = ioread32(reg);
7520
7521 /* Calculate timeout _after_ the first read to make sure
7522 * preceding writes reach the controller before starting to
7523 * eat away the timeout.
7524 */
7525 timeout = jiffies + (timeout_msec * HZ) / 1000;
7526
7527 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7528 msleep(interval_msec);
7529 tmp = ioread32(reg);
7530 }
7531
7532 return tmp;
7533}
7534
dd5b06c4
TH
7535/*
7536 * Dummy port_ops
7537 */
7538static void ata_dummy_noret(struct ata_port *ap) { }
7539static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7540static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7541
7542static u8 ata_dummy_check_status(struct ata_port *ap)
7543{
7544 return ATA_DRDY;
7545}
7546
7547static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7548{
7549 return AC_ERR_SYSTEM;
7550}
7551
7552const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7553 .check_status = ata_dummy_check_status,
7554 .check_altstatus = ata_dummy_check_status,
7555 .dev_select = ata_noop_dev_select,
7556 .qc_prep = ata_noop_qc_prep,
7557 .qc_issue = ata_dummy_qc_issue,
7558 .freeze = ata_dummy_noret,
7559 .thaw = ata_dummy_noret,
7560 .error_handler = ata_dummy_noret,
7561 .post_internal_cmd = ata_dummy_qc_noret,
7562 .irq_clear = ata_dummy_noret,
7563 .port_start = ata_dummy_ret0,
7564 .port_stop = ata_dummy_noret,
7565};
7566
21b0ad4f
TH
7567const struct ata_port_info ata_dummy_port_info = {
7568 .port_ops = &ata_dummy_port_ops,
7569};
7570
1da177e4
LT
7571/*
7572 * libata is essentially a library of internal helper functions for
7573 * low-level ATA host controller drivers. As such, the API/ABI is
7574 * likely to change as new drivers are added and updated.
7575 * Do not depend on ABI/API stability.
7576 */
e9c83914
TH
7577EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7578EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7579EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7580EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7581EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7582EXPORT_SYMBOL_GPL(ata_std_bios_param);
7583EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7584EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7585EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7586EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7587EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7588EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7589EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7590EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7591EXPORT_SYMBOL_GPL(ata_sg_init);
7592EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7593EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7594EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7595EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7596EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7597EXPORT_SYMBOL_GPL(ata_tf_load);
7598EXPORT_SYMBOL_GPL(ata_tf_read);
7599EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7600EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7601EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7602EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7603EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7604EXPORT_SYMBOL_GPL(ata_check_status);
7605EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7606EXPORT_SYMBOL_GPL(ata_exec_command);
7607EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7608EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7609EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7610EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7611EXPORT_SYMBOL_GPL(ata_data_xfer);
7612EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7613EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7614EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7615EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7616EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7617EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7618EXPORT_SYMBOL_GPL(ata_bmdma_start);
7619EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7620EXPORT_SYMBOL_GPL(ata_bmdma_status);
7621EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7622EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7623EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7624EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7625EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7626EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7627EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7628EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7629EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7630EXPORT_SYMBOL_GPL(sata_link_debounce);
7631EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7632EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7633EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7634EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7635EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7636EXPORT_SYMBOL_GPL(sata_std_hardreset);
7637EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7638EXPORT_SYMBOL_GPL(ata_dev_classify);
7639EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7640EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7641EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7642EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7643EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7644EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7645EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7646EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7647EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7648EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7649EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7650EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7651EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7652EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7653EXPORT_SYMBOL_GPL(sata_scr_valid);
7654EXPORT_SYMBOL_GPL(sata_scr_read);
7655EXPORT_SYMBOL_GPL(sata_scr_write);
7656EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7657EXPORT_SYMBOL_GPL(ata_link_online);
7658EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7659#ifdef CONFIG_PM
cca3974e
JG
7660EXPORT_SYMBOL_GPL(ata_host_suspend);
7661EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7662#endif /* CONFIG_PM */
6a62a04d
TH
7663EXPORT_SYMBOL_GPL(ata_id_string);
7664EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7665EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7666EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7667
1bc4ccff 7668EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7669EXPORT_SYMBOL_GPL(ata_timing_compute);
7670EXPORT_SYMBOL_GPL(ata_timing_merge);
7671
1da177e4
LT
7672#ifdef CONFIG_PCI
7673EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7674EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7675EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7676EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7677EXPORT_SYMBOL_GPL(ata_pci_init_one);
7678EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7679#ifdef CONFIG_PM
500530f6
TH
7680EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7681EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7682EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7683EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7684#endif /* CONFIG_PM */
67951ade
AC
7685EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7686EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7687#endif /* CONFIG_PCI */
9b847548 7688
31f88384 7689EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7690EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7691EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7692EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7693EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7694
b64bbc39
TH
7695EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7696EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7697EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7698EXPORT_SYMBOL_GPL(ata_port_desc);
7699#ifdef CONFIG_PCI
7700EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7701#endif /* CONFIG_PCI */
7b70fc03 7702EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7703EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7704EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7705EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7706EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7707EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7708EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7709EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7710EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7711EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7712EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7713EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7714
7715EXPORT_SYMBOL_GPL(ata_cable_40wire);
7716EXPORT_SYMBOL_GPL(ata_cable_80wire);
7717EXPORT_SYMBOL_GPL(ata_cable_unknown);
7718EXPORT_SYMBOL_GPL(ata_cable_sata);