]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
[libata] Introduce ata_id_has_unload()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
1da177e4 59#include <scsi/scsi.h>
193515d5 60#include <scsi/scsi_cmnd.h>
1da177e4
LT
61#include <scsi/scsi_host.h>
62#include <linux/libata.h>
1da177e4 63#include <asm/byteorder.h>
140b5e59 64#include <linux/cdrom.h>
1da177e4
LT
65
66#include "libata.h"
67
fda0efc5 68
d7bb4cc7 69/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
70const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 73
029cfd6b 74const struct ata_port_operations ata_base_port_ops = {
0aa1113d 75 .prereset = ata_std_prereset,
203c75b8 76 .postreset = ata_std_postreset,
a1efdaba 77 .error_handler = ata_std_error_handler,
029cfd6b
TH
78};
79
80const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
82
83 .qc_defer = ata_std_qc_defer,
57c9efdf 84 .hardreset = sata_std_hardreset,
029cfd6b
TH
85};
86
3373efd8
TH
87static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
90static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
3373efd8 92static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 93static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 94
f3187195 95unsigned int ata_print_id = 1;
1da177e4
LT
96static struct workqueue_struct *ata_wq;
97
453b07ac
TH
98struct workqueue_struct *ata_aux_wq;
99
33267325
TH
100struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
05944bdf 107 unsigned int lflags;
33267325
TH
108};
109
110struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114};
115
116static struct ata_force_ent *ata_force_tbl;
117static int ata_force_tbl_size;
118
119static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
120/* param_buf is thrown away after initialization, disallow read */
121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
2486fa56 124static int atapi_enabled = 1;
1623c81e
JG
125module_param(atapi_enabled, int, 0444);
126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127
c5c61bda 128static int atapi_dmadir = 0;
95de719a
AL
129module_param(atapi_dmadir, int, 0444);
130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131
baf4fdfa
ML
132int atapi_passthru16 = 1;
133module_param(atapi_passthru16, int, 0444);
134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135
c3c013a2
JG
136int libata_fua = 0;
137module_param_named(fua, libata_fua, int, 0444);
138MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139
2dcb407e 140static int ata_ignore_hpa;
1e999736
AC
141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
b3a70601
AC
144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145module_param_named(dma, libata_dma_mask, int, 0444);
146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
87fbc5a0 148static int ata_probe_timeout;
a8601e5f
AM
149module_param(ata_probe_timeout, int, 0444);
150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
6ebe9d86 152int libata_noacpi = 0;
d7d0dad6 153module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 154MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 155
ae8d4ee7
AC
156int libata_allow_tpm = 0;
157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159
1da177e4
LT
160MODULE_AUTHOR("Jeff Garzik");
161MODULE_DESCRIPTION("Library module for ATA devices");
162MODULE_LICENSE("GPL");
163MODULE_VERSION(DRV_VERSION);
164
0baab86b 165
aadffb68
TH
166/*
167 * Iterator helpers. Don't use directly.
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 */
172struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
174{
175 /* NULL link indicates start of iteration */
176 if (!link) {
177 if (dev_only && sata_pmp_attached(ap))
178 return ap->pmp_link;
179 return &ap->link;
180 }
181
b1c72916
TH
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
aadffb68 187 return NULL;
b1c72916 188 }
aadffb68
TH
189 return ap->pmp_link;
190 }
191
b1c72916
TH
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
194 return NULL;
195
aadffb68
TH
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
198 return link;
199 return NULL;
200}
201
b1c72916
TH
202/**
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
205 *
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
209 *
210 * LOCKING:
211 * Don't care.
212 *
213 * RETURNS:
214 * Pointer to the found physical link.
215 */
216struct ata_link *ata_dev_phys_link(struct ata_device *dev)
217{
218 struct ata_port *ap = dev->link->ap;
219
220 if (!ap->slave_link)
221 return dev->link;
222 if (!dev->devno)
223 return &ap->link;
224 return ap->slave_link;
225}
226
33267325
TH
227/**
228 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 229 * @ap: ATA port of interest
33267325
TH
230 *
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
235 * same effect.
236 *
237 * LOCKING:
238 * EH context.
239 */
240void ata_force_cbl(struct ata_port *ap)
241{
242 int i;
243
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
246
247 if (fe->port != -1 && fe->port != ap->print_id)
248 continue;
249
250 if (fe->param.cbl == ATA_CBL_NONE)
251 continue;
252
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
256 return;
257 }
258}
259
260/**
05944bdf 261 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
262 * @link: ATA link of interest
263 *
05944bdf
TH
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
33267325
TH
272 *
273 * LOCKING:
274 * EH context.
275 */
05944bdf 276static void ata_force_link_limits(struct ata_link *link)
33267325 277{
05944bdf 278 bool did_spd = false;
b1c72916
TH
279 int linkno = link->pmp;
280 int i;
33267325
TH
281
282 if (ata_is_host_link(link))
b1c72916 283 linkno += 15;
33267325
TH
284
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
287
288 if (fe->port != -1 && fe->port != link->ap->print_id)
289 continue;
290
291 if (fe->device != -1 && fe->device != linkno)
292 continue;
293
05944bdf
TH
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
299 fe->param.name);
300 did_spd = true;
301 }
33267325 302
05944bdf
TH
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
309 }
33267325
TH
310 }
311}
312
313/**
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
316 *
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
320 *
321 * LOCKING:
322 * EH context.
323 */
324static void ata_force_xfermask(struct ata_device *dev)
325{
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
328 int i;
329
b1c72916
TH
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
332 alt_devno += 15;
33267325
TH
333
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
337
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
339 continue;
340
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
343 continue;
344
345 if (!fe->param.xfer_mask)
346 continue;
347
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
350 if (udma_mask)
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
353 dev->udma_mask = 0;
354 dev->mwdma_mask = mwdma_mask;
355 } else {
356 dev->udma_mask = 0;
357 dev->mwdma_mask = 0;
358 dev->pio_mask = pio_mask;
359 }
360
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
363 return;
364 }
365}
366
367/**
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
370 *
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
374 *
375 * LOCKING:
376 * EH context.
377 */
378static void ata_force_horkage(struct ata_device *dev)
379{
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
382 int i;
383
b1c72916
TH
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
386 alt_devno += 15;
33267325
TH
387
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
390
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
392 continue;
393
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
396 continue;
397
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
400 continue;
401
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
404
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
407 }
408}
409
436d34b3
TH
410/**
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
413 *
414 * Determine ATAPI command type from @opcode.
415 *
416 * LOCKING:
417 * None.
418 *
419 * RETURNS:
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
421 */
422int atapi_cmd_type(u8 opcode)
423{
424 switch (opcode) {
425 case GPCMD_READ_10:
426 case GPCMD_READ_12:
427 return ATAPI_READ;
428
429 case GPCMD_WRITE_10:
430 case GPCMD_WRITE_12:
431 case GPCMD_WRITE_AND_VERIFY_10:
432 return ATAPI_WRITE;
433
434 case GPCMD_READ_CD:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
437
e52dcc48
TH
438 case ATA_16:
439 case ATA_12:
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
442 /* fall thru */
436d34b3
TH
443 default:
444 return ATAPI_MISC;
445 }
446}
447
1da177e4
LT
448/**
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
1da177e4 451 * @pmp: Port multiplier port
9977126c
TH
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
1da177e4
LT
454 *
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
457 *
458 * LOCKING:
459 * Inherited from caller.
460 */
9977126c 461void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 462{
9977126c
TH
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
465 if (is_cmd)
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
467
1da177e4
LT
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
470
471 fis[4] = tf->lbal;
472 fis[5] = tf->lbam;
473 fis[6] = tf->lbah;
474 fis[7] = tf->device;
475
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
480
481 fis[12] = tf->nsect;
482 fis[13] = tf->hob_nsect;
483 fis[14] = 0;
484 fis[15] = tf->ctl;
485
486 fis[16] = 0;
487 fis[17] = 0;
488 fis[18] = 0;
489 fis[19] = 0;
490}
491
492/**
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
496 *
e12a1be6 497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
498 *
499 * LOCKING:
500 * Inherited from caller.
501 */
502
057ace5e 503void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
504{
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
507
508 tf->lbal = fis[4];
509 tf->lbam = fis[5];
510 tf->lbah = fis[6];
511 tf->device = fis[7];
512
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
516
517 tf->nsect = fis[12];
518 tf->hob_nsect = fis[13];
519}
520
8cbd6df1
AL
521static const u8 ata_rw_cmds[] = {
522 /* pio multi */
523 ATA_CMD_READ_MULTI,
524 ATA_CMD_WRITE_MULTI,
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
527 0,
528 0,
529 0,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
531 /* pio */
532 ATA_CMD_PIO_READ,
533 ATA_CMD_PIO_WRITE,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
536 0,
537 0,
538 0,
539 0,
8cbd6df1
AL
540 /* dma */
541 ATA_CMD_READ,
542 ATA_CMD_WRITE,
543 ATA_CMD_READ_EXT,
9a3dccc4
TH
544 ATA_CMD_WRITE_EXT,
545 0,
546 0,
547 0,
548 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 549};
1da177e4
LT
550
551/**
8cbd6df1 552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
1da177e4 555 *
2e9edbf8 556 * Examine the device configuration and tf->flags to calculate
8cbd6df1 557 * the proper read/write commands and protocol to use.
1da177e4
LT
558 *
559 * LOCKING:
560 * caller.
561 */
bd056d7e 562static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 563{
9a3dccc4 564 u8 cmd;
1da177e4 565
9a3dccc4 566 int index, fua, lba48, write;
2e9edbf8 567
9a3dccc4 568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 571
8cbd6df1
AL
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
9a3dccc4 574 index = dev->multi_count ? 0 : 8;
9af5c9c9 575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
0565c26d 578 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
579 } else {
580 tf->protocol = ATA_PROT_DMA;
9a3dccc4 581 index = 16;
8cbd6df1 582 }
1da177e4 583
9a3dccc4
TH
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
585 if (cmd) {
586 tf->command = cmd;
587 return 0;
588 }
589 return -1;
1da177e4
LT
590}
591
35b649fe
TH
592/**
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
596 *
597 * LOCKING:
598 * None.
599 *
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
603 *
604 * RETURNS:
605 * Block address read from @tf.
606 */
607u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
608{
609 u64 block = 0;
610
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= tf->hob_lbal << 24;
616 } else
617 block |= (tf->device & 0xf) << 24;
618
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
621 block |= tf->lbal;
622 } else {
623 u32 cyl, head, sect;
624
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
627 sect = tf->lbal;
628
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
630 }
631
632 return block;
633}
634
bd056d7e
TH
635/**
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
642 * @tag: tag
643 *
644 * LOCKING:
645 * None.
646 *
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
649 *
650 * RETURNS:
651 *
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
654 */
655int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
657 unsigned int tag)
658{
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
661
6d1245bf 662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
663 /* yay, NCQ */
664 if (!lba_48_ok(block, n_block))
665 return -ERANGE;
666
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
669
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
672 else
673 tf->command = ATA_CMD_FPDMA_READ;
674
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
678
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
685
686 tf->device = 1 << 6;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
691
692 if (lba_28_ok(block, n_block)) {
693 /* use LBA28 */
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
697 return -ERANGE;
698
699 /* use LBA48 */
700 tf->flags |= ATA_TFLAG_LBA48;
701
702 tf->hob_nsect = (n_block >> 8) & 0xff;
703
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 } else
708 /* request too large even for LBA48 */
709 return -ERANGE;
710
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
712 return -EINVAL;
713
714 tf->nsect = n_block & 0xff;
715
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
719
720 tf->device |= ATA_LBA;
721 } else {
722 /* CHS */
723 u32 sect, head, cyl, track;
724
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
727 return -ERANGE;
728
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
730 return -EINVAL;
731
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
737
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
740
741 /* Check whether the converted CHS can fit.
742 Cylinder: 0-65535
743 Head: 0-15
744 Sector: 1-255*/
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
746 return -ERANGE;
747
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
749 tf->lbal = sect;
750 tf->lbam = cyl;
751 tf->lbah = cyl >> 8;
752 tf->device |= head;
753 }
754
755 return 0;
756}
757
cb95d562
TH
758/**
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
763 *
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
766 *
767 * LOCKING:
768 * None.
769 *
770 * RETURNS:
771 * Packed xfer_mask.
772 */
7dc951ae
TH
773unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
cb95d562
TH
776{
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
780}
781
c0489e4e
TH
782/**
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
788 *
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
791 */
7dc951ae
TH
792void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
794{
795 if (pio_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
797 if (mwdma_mask)
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
799 if (udma_mask)
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
801}
802
cb95d562 803static const struct ata_xfer_ent {
be9a50c8 804 int shift, bits;
cb95d562
TH
805 u8 base;
806} ata_xfer_tbl[] = {
70cd071e
TH
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
810 { -1, },
811};
812
813/**
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
816 *
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
819 *
820 * LOCKING:
821 * None.
822 *
823 * RETURNS:
70cd071e 824 * Matching XFER_* value, 0xff if no match found.
cb95d562 825 */
7dc951ae 826u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
827{
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
830
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
70cd071e 834 return 0xff;
cb95d562
TH
835}
836
837/**
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
840 *
841 * Return matching xfer_mask for @xfer_mode.
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Matching xfer_mask, 0 if no match found.
848 */
7dc951ae 849unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
850{
851 const struct ata_xfer_ent *ent;
852
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
cb95d562
TH
857 return 0;
858}
859
860/**
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
863 *
864 * Return matching xfer_shift for @xfer_mode.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Matching xfer_shift, -1 if no match found.
871 */
7dc951ae 872int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
873{
874 const struct ata_xfer_ent *ent;
875
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
878 return ent->shift;
879 return -1;
880}
881
1da177e4 882/**
1da7b0d0
TH
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
885 *
886 * Determine string which represents the highest speed
1da7b0d0 887 * (highest bit in @modemask).
1da177e4
LT
888 *
889 * LOCKING:
890 * None.
891 *
892 * RETURNS:
893 * Constant C string representing highest speed listed in
1da7b0d0 894 * @mode_mask, or the constant C string "<n/a>".
1da177e4 895 */
7dc951ae 896const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 897{
75f554bc
TH
898 static const char * const xfer_mode_str[] = {
899 "PIO0",
900 "PIO1",
901 "PIO2",
902 "PIO3",
903 "PIO4",
b352e57d
AC
904 "PIO5",
905 "PIO6",
75f554bc
TH
906 "MWDMA0",
907 "MWDMA1",
908 "MWDMA2",
b352e57d
AC
909 "MWDMA3",
910 "MWDMA4",
75f554bc
TH
911 "UDMA/16",
912 "UDMA/25",
913 "UDMA/33",
914 "UDMA/44",
915 "UDMA/66",
916 "UDMA/100",
917 "UDMA/133",
918 "UDMA7",
919 };
1da7b0d0 920 int highbit;
1da177e4 921
1da7b0d0
TH
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
1da177e4 925 return "<n/a>";
1da177e4
LT
926}
927
4c360c81
TH
928static const char *sata_spd_string(unsigned int spd)
929{
930 static const char * const spd_str[] = {
931 "1.5 Gbps",
932 "3.0 Gbps",
933 };
934
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
936 return "<unknown>";
937 return spd_str[spd - 1];
938}
939
3373efd8 940void ata_dev_disable(struct ata_device *dev)
0b8efb0a 941{
09d7f9b0 942 if (ata_dev_enabled(dev)) {
9af5c9c9 943 if (ata_msg_drv(dev->link->ap))
09d7f9b0 944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 945 ata_acpi_on_disable(dev);
4ae72a1e
TH
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
947 ATA_DNXFER_QUIET);
0b8efb0a
TH
948 dev->class++;
949 }
950}
951
ca77329f
KCA
952static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
953{
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
956 u32 scontrol;
957 unsigned int err_mask;
958 int rc;
959
960 /*
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
967 */
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
970 return -EINVAL;
971 }
972
973 /*
974 * For DIPM, we will only enable it for the
975 * min_power setting.
976 *
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
982 */
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
984 if (rc)
985 return rc;
986
987 switch (policy) {
988 case MIN_POWER:
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
992 if (rc)
993 return rc;
994
995 /* enable DIPM */
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
999 break;
1000 case MEDIUM_POWER:
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005 if (rc)
1006 return rc;
1007
f5456b63
KCA
1008 /*
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1012 */
ca77329f
KCA
1013 break;
1014 case NOT_AVAILABLE:
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019 if (rc)
1020 return rc;
1021
f5456b63
KCA
1022 /*
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1026 */
ca77329f
KCA
1027 break;
1028 }
1029
1030 /* FIXME: handle SET FEATURES failure */
1031 (void) err_mask;
1032
1033 return 0;
1034}
1035
1036/**
1037 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
ca77329f
KCA
1040 *
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1045 *
1046 * Locking: Caller.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1048 */
1049void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1050{
1051 int rc = 0;
1052 struct ata_port *ap = dev->link->ap;
1053
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1057 if (rc)
1058 goto enable_pm_out;
1059 rc = ata_dev_set_dipm(dev, policy);
1060
1061enable_pm_out:
1062 if (rc)
1063 ap->pm_policy = MAX_PERFORMANCE;
1064 else
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1067}
1068
1992a5ed 1069#ifdef CONFIG_PM
ca77329f
KCA
1070/**
1071 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1072 * @dev: device to disable power management
ca77329f
KCA
1073 *
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1078 *
1079 * Locking: Caller.
1080 * Returns: void
1081 */
1082static void ata_dev_disable_pm(struct ata_device *dev)
1083{
1084 struct ata_port *ap = dev->link->ap;
1085
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1089}
1992a5ed 1090#endif /* CONFIG_PM */
ca77329f
KCA
1091
1092void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1093{
1094 ap->pm_policy = policy;
3ec25ebd 1095 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1098}
1099
1992a5ed 1100#ifdef CONFIG_PM
ca77329f
KCA
1101static void ata_lpm_enable(struct ata_host *host)
1102{
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1106 int i;
1107
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1113 }
1114 }
1115}
1116
1117static void ata_lpm_disable(struct ata_host *host)
1118{
1119 int i;
1120
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1124 }
1125}
1992a5ed 1126#endif /* CONFIG_PM */
ca77329f 1127
1da177e4
LT
1128/**
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1131 *
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1135 *
1136 * LOCKING:
1137 * None.
1138 *
1139 * RETURNS:
633273a3
TH
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1142 */
057ace5e 1143unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1144{
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1148 *
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1158 * SerialATA.
1159 *
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 1162 */
633273a3 1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1164 DPRINTK("found ATA device by sig\n");
1165 return ATA_DEV_ATA;
1166 }
1167
633273a3 1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1171 }
1172
633273a3
TH
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1175 return ATA_DEV_PMP;
1176 }
1177
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 1179 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1181 }
1182
1da177e4
LT
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1185}
1186
1da177e4 1187/**
6a62a04d 1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1193 *
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1197 *
1198 * LOCKING:
1199 * caller.
1200 */
1201
6a62a04d
TH
1202void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1da177e4
LT
1204{
1205 unsigned int c;
1206
963e4975
AC
1207 BUG_ON(len & 1);
1208
1da177e4
LT
1209 while (len > 0) {
1210 c = id[ofs] >> 8;
1211 *s = c;
1212 s++;
1213
1214 c = id[ofs] & 0xff;
1215 *s = c;
1216 s++;
1217
1218 ofs++;
1219 len -= 2;
1220 }
1221}
1222
0e949ff3 1223/**
6a62a04d 1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1229 *
6a62a04d 1230 * This function is identical to ata_id_string except that it
0e949ff3
TH
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1233 *
1234 * LOCKING:
1235 * caller.
1236 */
6a62a04d
TH
1237void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
0e949ff3
TH
1239{
1240 unsigned char *p;
1241
6a62a04d 1242 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1243
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1246 p--;
1247 *p = '\0';
1248}
0baab86b 1249
db6f8759
TH
1250static u64 ata_id_n_sectors(const u16 *id)
1251{
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1255 else
1256 return ata_id_u32(id, 60);
1257 } else {
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1260 else
1261 return id[1] * id[3] * id[6];
1262 }
1263}
1264
a5987e0a 1265u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1266{
1267 u64 sectors = 0;
1268
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= (tf->hob_lbal & 0xff) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1275
a5987e0a 1276 return sectors;
1e999736
AC
1277}
1278
a5987e0a 1279u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1280{
1281 u64 sectors = 0;
1282
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1287
a5987e0a 1288 return sectors;
1e999736
AC
1289}
1290
1291/**
c728a914
TH
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1e999736 1295 *
c728a914
TH
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1297 * question.
1e999736 1298 *
c728a914
TH
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1e999736 1302 */
c728a914 1303static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1304{
c728a914 1305 unsigned int err_mask;
1e999736 1306 struct ata_taskfile tf;
c728a914 1307 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1308
1309 ata_tf_init(dev, &tf);
1310
c728a914 1311 /* always clear all address registers */
1e999736 1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1313
c728a914
TH
1314 if (lba48) {
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1317 } else
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1319
1e999736 1320 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1321 tf.device |= ATA_LBA;
1322
2b789108 1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1324 if (err_mask) {
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328 return -EACCES;
1329 return -EIO;
1330 }
1e999736 1331
c728a914 1332 if (lba48)
a5987e0a 1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1334 else
a5987e0a 1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1337 (*max_sectors)--;
c728a914 1338 return 0;
1e999736
AC
1339}
1340
1341/**
c728a914
TH
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
6b38d1d1 1344 * @new_sectors: new max sectors value to set for the device
1e999736 1345 *
c728a914
TH
1346 * Set max sectors of @dev to @new_sectors.
1347 *
1348 * RETURNS:
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1351 * errors.
1e999736 1352 */
05027adc 1353static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1354{
c728a914 1355 unsigned int err_mask;
1e999736 1356 struct ata_taskfile tf;
c728a914 1357 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1358
1359 new_sectors--;
1360
1361 ata_tf_init(dev, &tf);
1362
1e999736 1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1364
1365 if (lba48) {
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1368
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1372 } else {
c728a914
TH
1373 tf.command = ATA_CMD_SET_MAX;
1374
1e582ba4
TH
1375 tf.device |= (new_sectors >> 24) & 0xf;
1376 }
1377
1e999736 1378 tf.protocol |= ATA_PROT_NODATA;
c728a914 1379 tf.device |= ATA_LBA;
1e999736
AC
1380
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1384
2b789108 1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1386 if (err_mask) {
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391 return -EACCES;
1392 return -EIO;
1393 }
1394
c728a914 1395 return 0;
1e999736
AC
1396}
1397
1398/**
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1401 *
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
05027adc
TH
1405 *
1406 * RETURNS:
1407 * 0 on success, -errno on failure.
1e999736 1408 */
05027adc 1409static int ata_hpa_resize(struct ata_device *dev)
1e999736 1410{
05027adc
TH
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1414 u64 native_sectors;
c728a914 1415 int rc;
a617c09f 1416
05027adc
TH
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1421 return 0;
1e999736 1422
05027adc
TH
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1425 if (rc) {
dda7aba1
TH
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
05027adc 1428 */
dda7aba1 1429 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1431 "broken, skipping HPA handling\n");
05027adc
TH
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1433
1434 /* we can continue if device aborted the command */
1435 if (rc == -EACCES)
1436 rc = 0;
1e999736 1437 }
37301a55 1438
05027adc
TH
1439 return rc;
1440 }
1441
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1445 return 0;
1446
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1455 "sectors (%llu)\n",
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1458 return 0;
1459 }
1460
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470 return 0;
1471 } else if (rc)
1472 return rc;
1473
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1476 if (rc) {
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1479 return rc;
1480 }
1481
1482 if (print_info) {
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1489 }
1490
1491 return 0;
1e999736
AC
1492}
1493
1da177e4
LT
1494/**
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1496 * @id: IDENTIFY DEVICE page to dump
1da177e4 1497 *
0bd3300a
TH
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 * page.
1da177e4
LT
1500 *
1501 * LOCKING:
1502 * caller.
1503 */
1504
0bd3300a 1505static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1506{
1507 DPRINTK("49==0x%04x "
1508 "53==0x%04x "
1509 "63==0x%04x "
1510 "64==0x%04x "
1511 "75==0x%04x \n",
0bd3300a
TH
1512 id[49],
1513 id[53],
1514 id[63],
1515 id[64],
1516 id[75]);
1da177e4
LT
1517 DPRINTK("80==0x%04x "
1518 "81==0x%04x "
1519 "82==0x%04x "
1520 "83==0x%04x "
1521 "84==0x%04x \n",
0bd3300a
TH
1522 id[80],
1523 id[81],
1524 id[82],
1525 id[83],
1526 id[84]);
1da177e4
LT
1527 DPRINTK("88==0x%04x "
1528 "93==0x%04x\n",
0bd3300a
TH
1529 id[88],
1530 id[93]);
1da177e4
LT
1531}
1532
cb95d562
TH
1533/**
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1536 *
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1539 *
1540 * FIXME: pre IDE drive timing (do we care ?).
1541 *
1542 * LOCKING:
1543 * None.
1544 *
1545 * RETURNS:
1546 * Computed xfermask
1547 */
7dc951ae 1548unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1549{
7dc951ae 1550 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1551
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555 pio_mask <<= 3;
1556 pio_mask |= 0x7;
1557 } else {
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1560 * a mask.
1561 */
7a0f1c8a 1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1563 if (mode < 5) /* Valid PIO range */
2dcb407e 1564 pio_mask = (2 << mode) - 1;
46767aeb
AC
1565 else
1566 pio_mask = 1;
cb95d562
TH
1567
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1573 */
1574 }
1575
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1577
b352e57d
AC
1578 if (ata_id_is_cfa(id)) {
1579 /*
1580 * Process compact flash extended modes
1581 */
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1584
1585 if (pio)
1586 pio_mask |= (1 << 5);
1587 if (pio > 1)
1588 pio_mask |= (1 << 6);
1589 if (dma)
1590 mwdma_mask |= (1 << 3);
1591 if (dma > 1)
1592 mwdma_mask |= (1 << 4);
1593 }
1594
fb21f0d0
TH
1595 udma_mask = 0;
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1598
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1600}
1601
86e45b6b 1602/**
442eacc3 1603 * ata_pio_queue_task - Queue port_task
86e45b6b 1604 * @ap: The ata_port to queue port_task for
e2a7f77a 1605 * @fn: workqueue function to be scheduled
65f27f38 1606 * @data: data for @fn to use
341c2c95 1607 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1608 *
1609 * Schedule @fn(@data) for execution after @delay jiffies using
1610 * port_task. There is one port_task per port and it's the
1611 * user(low level driver)'s responsibility to make sure that only
1612 * one task is active at any given time.
1613 *
1614 * libata core layer takes care of synchronization between
442eacc3 1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1616 * synchronization.
1617 *
1618 * LOCKING:
1619 * Inherited from caller.
1620 */
624d5c51 1621void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1622{
65f27f38 1623 ap->port_task_data = data;
86e45b6b 1624
45a66c1c 1625 /* may fail if ata_port_flush_task() in progress */
341c2c95 1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1627}
1628
1629/**
1630 * ata_port_flush_task - Flush port_task
1631 * @ap: The ata_port to flush port_task for
1632 *
1633 * After this function completes, port_task is guranteed not to
1634 * be running or scheduled.
1635 *
1636 * LOCKING:
1637 * Kernel thread context (may sleep)
1638 */
1639void ata_port_flush_task(struct ata_port *ap)
1640{
86e45b6b
TH
1641 DPRINTK("ENTER\n");
1642
45a66c1c 1643 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1644
0dd4b21f 1645 if (ata_msg_ctl(ap))
7f5e4e8d 1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1647}
1648
7102d230 1649static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1650{
77853bf2 1651 struct completion *waiting = qc->private_data;
a2a7a662 1652
a2a7a662 1653 complete(waiting);
a2a7a662
TH
1654}
1655
1656/**
2432697b 1657 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1658 * @dev: Device to which the command is sent
1659 * @tf: Taskfile registers for the command and the result
d69cf37d 1660 * @cdb: CDB for packet command
a2a7a662 1661 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1662 * @sgl: sg list for the data buffer of the command
2432697b 1663 * @n_elem: Number of sg entries
2b789108 1664 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1665 *
1666 * Executes libata internal command with timeout. @tf contains
1667 * command on entry and result on return. Timeout and error
1668 * conditions are reported via return value. No recovery action
1669 * is taken after a command times out. It's caller's duty to
1670 * clean up after timeout.
1671 *
1672 * LOCKING:
1673 * None. Should be called with kernel context, might sleep.
551e8889
TH
1674 *
1675 * RETURNS:
1676 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1677 */
2432697b
TH
1678unsigned ata_exec_internal_sg(struct ata_device *dev,
1679 struct ata_taskfile *tf, const u8 *cdb,
87260216 1680 int dma_dir, struct scatterlist *sgl,
2b789108 1681 unsigned int n_elem, unsigned long timeout)
a2a7a662 1682{
9af5c9c9
TH
1683 struct ata_link *link = dev->link;
1684 struct ata_port *ap = link->ap;
a2a7a662 1685 u8 command = tf->command;
87fbc5a0 1686 int auto_timeout = 0;
a2a7a662 1687 struct ata_queued_cmd *qc;
2ab7db1f 1688 unsigned int tag, preempted_tag;
dedaf2b0 1689 u32 preempted_sactive, preempted_qc_active;
da917d69 1690 int preempted_nr_active_links;
60be6b9a 1691 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1692 unsigned long flags;
77853bf2 1693 unsigned int err_mask;
d95a717f 1694 int rc;
a2a7a662 1695
ba6a1308 1696 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1697
e3180499 1698 /* no internal command while frozen */
b51e9e5d 1699 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1700 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1701 return AC_ERR_SYSTEM;
1702 }
1703
2ab7db1f 1704 /* initialize internal qc */
a2a7a662 1705
2ab7db1f
TH
1706 /* XXX: Tag 0 is used for drivers with legacy EH as some
1707 * drivers choke if any other tag is given. This breaks
1708 * ata_tag_internal() test for those drivers. Don't use new
1709 * EH stuff without converting to it.
1710 */
1711 if (ap->ops->error_handler)
1712 tag = ATA_TAG_INTERNAL;
1713 else
1714 tag = 0;
1715
6cec4a39 1716 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1717 BUG();
f69499f4 1718 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1719
1720 qc->tag = tag;
1721 qc->scsicmd = NULL;
1722 qc->ap = ap;
1723 qc->dev = dev;
1724 ata_qc_reinit(qc);
1725
9af5c9c9
TH
1726 preempted_tag = link->active_tag;
1727 preempted_sactive = link->sactive;
dedaf2b0 1728 preempted_qc_active = ap->qc_active;
da917d69 1729 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1730 link->active_tag = ATA_TAG_POISON;
1731 link->sactive = 0;
dedaf2b0 1732 ap->qc_active = 0;
da917d69 1733 ap->nr_active_links = 0;
2ab7db1f
TH
1734
1735 /* prepare & issue qc */
a2a7a662 1736 qc->tf = *tf;
d69cf37d
TH
1737 if (cdb)
1738 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1739 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1740 qc->dma_dir = dma_dir;
1741 if (dma_dir != DMA_NONE) {
2432697b 1742 unsigned int i, buflen = 0;
87260216 1743 struct scatterlist *sg;
2432697b 1744
87260216
JA
1745 for_each_sg(sgl, sg, n_elem, i)
1746 buflen += sg->length;
2432697b 1747
87260216 1748 ata_sg_init(qc, sgl, n_elem);
49c80429 1749 qc->nbytes = buflen;
a2a7a662
TH
1750 }
1751
77853bf2 1752 qc->private_data = &wait;
a2a7a662
TH
1753 qc->complete_fn = ata_qc_complete_internal;
1754
8e0e694a 1755 ata_qc_issue(qc);
a2a7a662 1756
ba6a1308 1757 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1758
87fbc5a0
TH
1759 if (!timeout) {
1760 if (ata_probe_timeout)
1761 timeout = ata_probe_timeout * 1000;
1762 else {
1763 timeout = ata_internal_cmd_timeout(dev, command);
1764 auto_timeout = 1;
1765 }
1766 }
2b789108
TH
1767
1768 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1769
1770 ata_port_flush_task(ap);
41ade50c 1771
d95a717f 1772 if (!rc) {
ba6a1308 1773 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1774
1775 /* We're racing with irq here. If we lose, the
1776 * following test prevents us from completing the qc
d95a717f
TH
1777 * twice. If we win, the port is frozen and will be
1778 * cleaned up by ->post_internal_cmd().
a2a7a662 1779 */
77853bf2 1780 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1781 qc->err_mask |= AC_ERR_TIMEOUT;
1782
1783 if (ap->ops->error_handler)
1784 ata_port_freeze(ap);
1785 else
1786 ata_qc_complete(qc);
f15a1daf 1787
0dd4b21f
BP
1788 if (ata_msg_warn(ap))
1789 ata_dev_printk(dev, KERN_WARNING,
88574551 1790 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1791 }
1792
ba6a1308 1793 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1794 }
1795
d95a717f
TH
1796 /* do post_internal_cmd */
1797 if (ap->ops->post_internal_cmd)
1798 ap->ops->post_internal_cmd(qc);
1799
a51d644a
TH
1800 /* perform minimal error analysis */
1801 if (qc->flags & ATA_QCFLAG_FAILED) {
1802 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1803 qc->err_mask |= AC_ERR_DEV;
1804
1805 if (!qc->err_mask)
1806 qc->err_mask |= AC_ERR_OTHER;
1807
1808 if (qc->err_mask & ~AC_ERR_OTHER)
1809 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1810 }
1811
15869303 1812 /* finish up */
ba6a1308 1813 spin_lock_irqsave(ap->lock, flags);
15869303 1814
e61e0672 1815 *tf = qc->result_tf;
77853bf2
TH
1816 err_mask = qc->err_mask;
1817
1818 ata_qc_free(qc);
9af5c9c9
TH
1819 link->active_tag = preempted_tag;
1820 link->sactive = preempted_sactive;
dedaf2b0 1821 ap->qc_active = preempted_qc_active;
da917d69 1822 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1823
1f7dd3e9
TH
1824 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1825 * Until those drivers are fixed, we detect the condition
1826 * here, fail the command with AC_ERR_SYSTEM and reenable the
1827 * port.
1828 *
1829 * Note that this doesn't change any behavior as internal
1830 * command failure results in disabling the device in the
1831 * higher layer for LLDDs without new reset/EH callbacks.
1832 *
1833 * Kill the following code as soon as those drivers are fixed.
1834 */
198e0fed 1835 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1836 err_mask |= AC_ERR_SYSTEM;
1837 ata_port_probe(ap);
1838 }
1839
ba6a1308 1840 spin_unlock_irqrestore(ap->lock, flags);
15869303 1841
87fbc5a0
TH
1842 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1843 ata_internal_cmd_timed_out(dev, command);
1844
77853bf2 1845 return err_mask;
a2a7a662
TH
1846}
1847
2432697b 1848/**
33480a0e 1849 * ata_exec_internal - execute libata internal command
2432697b
TH
1850 * @dev: Device to which the command is sent
1851 * @tf: Taskfile registers for the command and the result
1852 * @cdb: CDB for packet command
1853 * @dma_dir: Data tranfer direction of the command
1854 * @buf: Data buffer of the command
1855 * @buflen: Length of data buffer
2b789108 1856 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1857 *
1858 * Wrapper around ata_exec_internal_sg() which takes simple
1859 * buffer instead of sg list.
1860 *
1861 * LOCKING:
1862 * None. Should be called with kernel context, might sleep.
1863 *
1864 * RETURNS:
1865 * Zero on success, AC_ERR_* mask on failure
1866 */
1867unsigned ata_exec_internal(struct ata_device *dev,
1868 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1869 int dma_dir, void *buf, unsigned int buflen,
1870 unsigned long timeout)
2432697b 1871{
33480a0e
TH
1872 struct scatterlist *psg = NULL, sg;
1873 unsigned int n_elem = 0;
2432697b 1874
33480a0e
TH
1875 if (dma_dir != DMA_NONE) {
1876 WARN_ON(!buf);
1877 sg_init_one(&sg, buf, buflen);
1878 psg = &sg;
1879 n_elem++;
1880 }
2432697b 1881
2b789108
TH
1882 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1883 timeout);
2432697b
TH
1884}
1885
977e6b9f
TH
1886/**
1887 * ata_do_simple_cmd - execute simple internal command
1888 * @dev: Device to which the command is sent
1889 * @cmd: Opcode to execute
1890 *
1891 * Execute a 'simple' command, that only consists of the opcode
1892 * 'cmd' itself, without filling any other registers
1893 *
1894 * LOCKING:
1895 * Kernel thread context (may sleep).
1896 *
1897 * RETURNS:
1898 * Zero on success, AC_ERR_* mask on failure
e58eb583 1899 */
77b08fb5 1900unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1901{
1902 struct ata_taskfile tf;
e58eb583
TH
1903
1904 ata_tf_init(dev, &tf);
1905
1906 tf.command = cmd;
1907 tf.flags |= ATA_TFLAG_DEVICE;
1908 tf.protocol = ATA_PROT_NODATA;
1909
2b789108 1910 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1911}
1912
1bc4ccff
AC
1913/**
1914 * ata_pio_need_iordy - check if iordy needed
1915 * @adev: ATA device
1916 *
1917 * Check if the current speed of the device requires IORDY. Used
1918 * by various controllers for chip configuration.
1919 */
a617c09f 1920
1bc4ccff
AC
1921unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1922{
432729f0
AC
1923 /* Controller doesn't support IORDY. Probably a pointless check
1924 as the caller should know this */
9af5c9c9 1925 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1926 return 0;
432729f0
AC
1927 /* PIO3 and higher it is mandatory */
1928 if (adev->pio_mode > XFER_PIO_2)
1929 return 1;
1930 /* We turn it on when possible */
1931 if (ata_id_has_iordy(adev->id))
1bc4ccff 1932 return 1;
432729f0
AC
1933 return 0;
1934}
2e9edbf8 1935
432729f0
AC
1936/**
1937 * ata_pio_mask_no_iordy - Return the non IORDY mask
1938 * @adev: ATA device
1939 *
1940 * Compute the highest mode possible if we are not using iordy. Return
1941 * -1 if no iordy mode is available.
1942 */
a617c09f 1943
432729f0
AC
1944static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1945{
1bc4ccff 1946 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1948 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1949 /* Is the speed faster than the drive allows non IORDY ? */
1950 if (pio) {
1951 /* This is cycle times not frequency - watch the logic! */
1952 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1953 return 3 << ATA_SHIFT_PIO;
1954 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1955 }
1956 }
432729f0 1957 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1958}
1959
963e4975
AC
1960/**
1961 * ata_do_dev_read_id - default ID read method
1962 * @dev: device
1963 * @tf: proposed taskfile
1964 * @id: data buffer
1965 *
1966 * Issue the identify taskfile and hand back the buffer containing
1967 * identify data. For some RAID controllers and for pre ATA devices
1968 * this function is wrapped or replaced by the driver
1969 */
1970unsigned int ata_do_dev_read_id(struct ata_device *dev,
1971 struct ata_taskfile *tf, u16 *id)
1972{
1973 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1974 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1975}
1976
1da177e4 1977/**
49016aca 1978 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1979 * @dev: target device
1980 * @p_class: pointer to class of the target device (may be changed)
bff04647 1981 * @flags: ATA_READID_* flags
fe635c7e 1982 * @id: buffer to read IDENTIFY data into
1da177e4 1983 *
49016aca
TH
1984 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1985 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1986 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1987 * for pre-ATA4 drives.
1da177e4 1988 *
50a99018 1989 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1990 * now we abort if we hit that case.
50a99018 1991 *
1da177e4 1992 * LOCKING:
49016aca
TH
1993 * Kernel thread context (may sleep)
1994 *
1995 * RETURNS:
1996 * 0 on success, -errno otherwise.
1da177e4 1997 */
a9beec95 1998int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1999 unsigned int flags, u16 *id)
1da177e4 2000{
9af5c9c9 2001 struct ata_port *ap = dev->link->ap;
49016aca 2002 unsigned int class = *p_class;
a0123703 2003 struct ata_taskfile tf;
49016aca
TH
2004 unsigned int err_mask = 0;
2005 const char *reason;
54936f8b 2006 int may_fallback = 1, tried_spinup = 0;
49016aca 2007 int rc;
1da177e4 2008
0dd4b21f 2009 if (ata_msg_ctl(ap))
7f5e4e8d 2010 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2011
963e4975 2012retry:
3373efd8 2013 ata_tf_init(dev, &tf);
a0123703 2014
49016aca
TH
2015 switch (class) {
2016 case ATA_DEV_ATA:
a0123703 2017 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2018 break;
2019 case ATA_DEV_ATAPI:
a0123703 2020 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2021 break;
2022 default:
2023 rc = -ENODEV;
2024 reason = "unsupported class";
2025 goto err_out;
1da177e4
LT
2026 }
2027
a0123703 2028 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2029
2030 /* Some devices choke if TF registers contain garbage. Make
2031 * sure those are properly initialized.
2032 */
2033 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2034
2035 /* Device presence detection is unreliable on some
2036 * controllers. Always poll IDENTIFY if available.
2037 */
2038 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2039
963e4975
AC
2040 if (ap->ops->read_id)
2041 err_mask = ap->ops->read_id(dev, &tf, id);
2042 else
2043 err_mask = ata_do_dev_read_id(dev, &tf, id);
2044
a0123703 2045 if (err_mask) {
800b3996 2046 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2047 ata_dev_printk(dev, KERN_DEBUG,
2048 "NODEV after polling detection\n");
55a8e2c8
TH
2049 return -ENOENT;
2050 }
2051
1ffc151f
TH
2052 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2053 /* Device or controller might have reported
2054 * the wrong device class. Give a shot at the
2055 * other IDENTIFY if the current one is
2056 * aborted by the device.
2057 */
2058 if (may_fallback) {
2059 may_fallback = 0;
2060
2061 if (class == ATA_DEV_ATA)
2062 class = ATA_DEV_ATAPI;
2063 else
2064 class = ATA_DEV_ATA;
2065 goto retry;
2066 }
2067
2068 /* Control reaches here iff the device aborted
2069 * both flavors of IDENTIFYs which happens
2070 * sometimes with phantom devices.
2071 */
2072 ata_dev_printk(dev, KERN_DEBUG,
2073 "both IDENTIFYs aborted, assuming NODEV\n");
2074 return -ENOENT;
54936f8b
TH
2075 }
2076
49016aca
TH
2077 rc = -EIO;
2078 reason = "I/O error";
1da177e4
LT
2079 goto err_out;
2080 }
2081
54936f8b
TH
2082 /* Falling back doesn't make sense if ID data was read
2083 * successfully at least once.
2084 */
2085 may_fallback = 0;
2086
49016aca 2087 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2088
49016aca 2089 /* sanity check */
a4f5749b 2090 rc = -EINVAL;
6070068b 2091 reason = "device reports invalid type";
a4f5749b
TH
2092
2093 if (class == ATA_DEV_ATA) {
2094 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2095 goto err_out;
2096 } else {
2097 if (ata_id_is_ata(id))
2098 goto err_out;
49016aca
TH
2099 }
2100
169439c2
ML
2101 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2102 tried_spinup = 1;
2103 /*
2104 * Drive powered-up in standby mode, and requires a specific
2105 * SET_FEATURES spin-up subcommand before it will accept
2106 * anything other than the original IDENTIFY command.
2107 */
218f3d30 2108 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2109 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2110 rc = -EIO;
2111 reason = "SPINUP failed";
2112 goto err_out;
2113 }
2114 /*
2115 * If the drive initially returned incomplete IDENTIFY info,
2116 * we now must reissue the IDENTIFY command.
2117 */
2118 if (id[2] == 0x37c8)
2119 goto retry;
2120 }
2121
bff04647 2122 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2123 /*
2124 * The exact sequence expected by certain pre-ATA4 drives is:
2125 * SRST RESET
50a99018
AC
2126 * IDENTIFY (optional in early ATA)
2127 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2128 * anything else..
2129 * Some drives were very specific about that exact sequence.
50a99018
AC
2130 *
2131 * Note that ATA4 says lba is mandatory so the second check
2132 * shoud never trigger.
49016aca
TH
2133 */
2134 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2135 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2136 if (err_mask) {
2137 rc = -EIO;
2138 reason = "INIT_DEV_PARAMS failed";
2139 goto err_out;
2140 }
2141
2142 /* current CHS translation info (id[53-58]) might be
2143 * changed. reread the identify device info.
2144 */
bff04647 2145 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2146 goto retry;
2147 }
2148 }
2149
2150 *p_class = class;
fe635c7e 2151
49016aca
TH
2152 return 0;
2153
2154 err_out:
88574551 2155 if (ata_msg_warn(ap))
0dd4b21f 2156 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2157 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2158 return rc;
2159}
2160
3373efd8 2161static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2162{
9af5c9c9
TH
2163 struct ata_port *ap = dev->link->ap;
2164 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2165}
2166
a6e6ce8e
TH
2167static void ata_dev_config_ncq(struct ata_device *dev,
2168 char *desc, size_t desc_sz)
2169{
9af5c9c9 2170 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2171 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2172
2173 if (!ata_id_has_ncq(dev->id)) {
2174 desc[0] = '\0';
2175 return;
2176 }
75683fe7 2177 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2178 snprintf(desc, desc_sz, "NCQ (not used)");
2179 return;
2180 }
a6e6ce8e 2181 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2182 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2183 dev->flags |= ATA_DFLAG_NCQ;
2184 }
2185
2186 if (hdepth >= ddepth)
2187 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2188 else
2189 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2190}
2191
49016aca 2192/**
ffeae418 2193 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2194 * @dev: Target device to configure
2195 *
2196 * Configure @dev according to @dev->id. Generic and low-level
2197 * driver specific fixups are also applied.
49016aca
TH
2198 *
2199 * LOCKING:
ffeae418
TH
2200 * Kernel thread context (may sleep)
2201 *
2202 * RETURNS:
2203 * 0 on success, -errno otherwise
49016aca 2204 */
efdaedc4 2205int ata_dev_configure(struct ata_device *dev)
49016aca 2206{
9af5c9c9
TH
2207 struct ata_port *ap = dev->link->ap;
2208 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2210 const u16 *id = dev->id;
7dc951ae 2211 unsigned long xfer_mask;
b352e57d 2212 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2213 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2214 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2215 int rc;
49016aca 2216
0dd4b21f 2217 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2218 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2219 __func__);
ffeae418 2220 return 0;
49016aca
TH
2221 }
2222
0dd4b21f 2223 if (ata_msg_probe(ap))
7f5e4e8d 2224 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2225
75683fe7
TH
2226 /* set horkage */
2227 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2228 ata_force_horkage(dev);
75683fe7 2229
50af2fa1
TH
2230 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2231 ata_dev_printk(dev, KERN_INFO,
2232 "unsupported device, disabling\n");
2233 ata_dev_disable(dev);
2234 return 0;
2235 }
2236
2486fa56
TH
2237 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2238 dev->class == ATA_DEV_ATAPI) {
2239 ata_dev_printk(dev, KERN_WARNING,
2240 "WARNING: ATAPI is %s, device ignored.\n",
2241 atapi_enabled ? "not supported with this driver"
2242 : "disabled");
2243 ata_dev_disable(dev);
2244 return 0;
2245 }
2246
6746544c
TH
2247 /* let ACPI work its magic */
2248 rc = ata_acpi_on_devcfg(dev);
2249 if (rc)
2250 return rc;
08573a86 2251
05027adc
TH
2252 /* massage HPA, do it early as it might change IDENTIFY data */
2253 rc = ata_hpa_resize(dev);
2254 if (rc)
2255 return rc;
2256
c39f5ebe 2257 /* print device capabilities */
0dd4b21f 2258 if (ata_msg_probe(ap))
88574551
TH
2259 ata_dev_printk(dev, KERN_DEBUG,
2260 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2261 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2262 __func__,
f15a1daf
TH
2263 id[49], id[82], id[83], id[84],
2264 id[85], id[86], id[87], id[88]);
c39f5ebe 2265
208a9933 2266 /* initialize to-be-configured parameters */
ea1dd4e1 2267 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2268 dev->max_sectors = 0;
2269 dev->cdb_len = 0;
2270 dev->n_sectors = 0;
2271 dev->cylinders = 0;
2272 dev->heads = 0;
2273 dev->sectors = 0;
2274
1da177e4
LT
2275 /*
2276 * common ATA, ATAPI feature tests
2277 */
2278
ff8854b2 2279 /* find max transfer mode; for printk only */
1148c3a7 2280 xfer_mask = ata_id_xfermask(id);
1da177e4 2281
0dd4b21f
BP
2282 if (ata_msg_probe(ap))
2283 ata_dump_id(id);
1da177e4 2284
ef143d57
AL
2285 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2286 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2287 sizeof(fwrevbuf));
2288
2289 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2290 sizeof(modelbuf));
2291
1da177e4
LT
2292 /* ATA-specific feature tests */
2293 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2294 if (ata_id_is_cfa(id)) {
2295 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2296 ata_dev_printk(dev, KERN_WARNING,
2297 "supports DRM functions and may "
2298 "not be fully accessable.\n");
b352e57d 2299 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2300 } else {
2dcb407e 2301 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2302 /* Warn the user if the device has TPM extensions */
2303 if (ata_id_has_tpm(id))
2304 ata_dev_printk(dev, KERN_WARNING,
2305 "supports DRM functions and may "
2306 "not be fully accessable.\n");
2307 }
b352e57d 2308
1148c3a7 2309 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2310
3f64f565
EM
2311 if (dev->id[59] & 0x100)
2312 dev->multi_count = dev->id[59] & 0xff;
2313
1148c3a7 2314 if (ata_id_has_lba(id)) {
4c2d721a 2315 const char *lba_desc;
a6e6ce8e 2316 char ncq_desc[20];
8bf62ece 2317
4c2d721a
TH
2318 lba_desc = "LBA";
2319 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2320 if (ata_id_has_lba48(id)) {
8bf62ece 2321 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2322 lba_desc = "LBA48";
6fc49adb
TH
2323
2324 if (dev->n_sectors >= (1UL << 28) &&
2325 ata_id_has_flush_ext(id))
2326 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2327 }
8bf62ece 2328
a6e6ce8e
TH
2329 /* config NCQ */
2330 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2331
8bf62ece 2332 /* print device info to dmesg */
3f64f565
EM
2333 if (ata_msg_drv(ap) && print_info) {
2334 ata_dev_printk(dev, KERN_INFO,
2335 "%s: %s, %s, max %s\n",
2336 revbuf, modelbuf, fwrevbuf,
2337 ata_mode_string(xfer_mask));
2338 ata_dev_printk(dev, KERN_INFO,
2339 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2340 (unsigned long long)dev->n_sectors,
3f64f565
EM
2341 dev->multi_count, lba_desc, ncq_desc);
2342 }
ffeae418 2343 } else {
8bf62ece
AL
2344 /* CHS */
2345
2346 /* Default translation */
1148c3a7
TH
2347 dev->cylinders = id[1];
2348 dev->heads = id[3];
2349 dev->sectors = id[6];
8bf62ece 2350
1148c3a7 2351 if (ata_id_current_chs_valid(id)) {
8bf62ece 2352 /* Current CHS translation is valid. */
1148c3a7
TH
2353 dev->cylinders = id[54];
2354 dev->heads = id[55];
2355 dev->sectors = id[56];
8bf62ece
AL
2356 }
2357
2358 /* print device info to dmesg */
3f64f565 2359 if (ata_msg_drv(ap) && print_info) {
88574551 2360 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2361 "%s: %s, %s, max %s\n",
2362 revbuf, modelbuf, fwrevbuf,
2363 ata_mode_string(xfer_mask));
a84471fe 2364 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2365 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2366 (unsigned long long)dev->n_sectors,
2367 dev->multi_count, dev->cylinders,
2368 dev->heads, dev->sectors);
2369 }
07f6f7d0
AL
2370 }
2371
6e7846e9 2372 dev->cdb_len = 16;
1da177e4
LT
2373 }
2374
2375 /* ATAPI-specific feature tests */
2c13b7ce 2376 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2377 const char *cdb_intr_string = "";
2378 const char *atapi_an_string = "";
91163006 2379 const char *dma_dir_string = "";
7d77b247 2380 u32 sntf;
08a556db 2381
1148c3a7 2382 rc = atapi_cdb_len(id);
1da177e4 2383 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2384 if (ata_msg_warn(ap))
88574551
TH
2385 ata_dev_printk(dev, KERN_WARNING,
2386 "unsupported CDB len\n");
ffeae418 2387 rc = -EINVAL;
1da177e4
LT
2388 goto err_out_nosup;
2389 }
6e7846e9 2390 dev->cdb_len = (unsigned int) rc;
1da177e4 2391
7d77b247
TH
2392 /* Enable ATAPI AN if both the host and device have
2393 * the support. If PMP is attached, SNTF is required
2394 * to enable ATAPI AN to discern between PHY status
2395 * changed notifications and ATAPI ANs.
9f45cbd3 2396 */
7d77b247 2397 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2398 (!sata_pmp_attached(ap) ||
7d77b247 2399 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2400 unsigned int err_mask;
2401
9f45cbd3 2402 /* issue SET feature command to turn this on */
218f3d30
JG
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2405 if (err_mask)
9f45cbd3 2406 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2407 "failed to enable ATAPI AN "
2408 "(err_mask=0x%x)\n", err_mask);
2409 else {
9f45cbd3 2410 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2411 atapi_an_string = ", ATAPI AN";
2412 }
9f45cbd3
KCA
2413 }
2414
08a556db 2415 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2416 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2417 cdb_intr_string = ", CDB intr";
2418 }
312f7da2 2419
91163006
TH
2420 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
1da177e4 2425 /* print device info to dmesg */
5afc8142 2426 if (ata_msg_drv(ap) && print_info)
ef143d57 2427 ata_dev_printk(dev, KERN_INFO,
91163006 2428 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2429 modelbuf, fwrevbuf,
12436c30 2430 ata_mode_string(xfer_mask),
91163006
TH
2431 cdb_intr_string, atapi_an_string,
2432 dma_dir_string);
1da177e4
LT
2433 }
2434
914ed354
TH
2435 /* determine max_sectors */
2436 dev->max_sectors = ATA_MAX_SECTORS;
2437 if (dev->flags & ATA_DFLAG_LBA48)
2438 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2439
ca77329f
KCA
2440 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2441 if (ata_id_has_hipm(dev->id))
2442 dev->flags |= ATA_DFLAG_HIPM;
2443 if (ata_id_has_dipm(dev->id))
2444 dev->flags |= ATA_DFLAG_DIPM;
2445 }
2446
c5038fc0
AC
2447 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2448 200 sectors */
3373efd8 2449 if (ata_dev_knobble(dev)) {
5afc8142 2450 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2451 ata_dev_printk(dev, KERN_INFO,
2452 "applying bridge limits\n");
5a529139 2453 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2454 dev->max_sectors = ATA_MAX_SECTORS;
2455 }
2456
f8d8e579 2457 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2458 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2459 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2460 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2461 }
f8d8e579 2462
75683fe7 2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2465 dev->max_sectors);
18d6e9d5 2466
ca77329f
KCA
2467 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2468 dev->horkage |= ATA_HORKAGE_IPM;
2469
2470 /* reset link pm_policy for this port to no pm */
2471 ap->pm_policy = MAX_PERFORMANCE;
2472 }
2473
4b2f3ede 2474 if (ap->ops->dev_config)
cd0d3bbc 2475 ap->ops->dev_config(dev);
4b2f3ede 2476
c5038fc0
AC
2477 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2478 /* Let the user know. We don't want to disallow opens for
2479 rescue purposes, or in case the vendor is just a blithering
2480 idiot. Do this after the dev_config call as some controllers
2481 with buggy firmware may want to avoid reporting false device
2482 bugs */
2483
2484 if (print_info) {
2485 ata_dev_printk(dev, KERN_WARNING,
2486"Drive reports diagnostics failure. This may indicate a drive\n");
2487 ata_dev_printk(dev, KERN_WARNING,
2488"fault or invalid emulation. Contact drive vendor for information.\n");
2489 }
2490 }
2491
ffeae418 2492 return 0;
1da177e4
LT
2493
2494err_out_nosup:
0dd4b21f 2495 if (ata_msg_probe(ap))
88574551 2496 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2497 "%s: EXIT, err\n", __func__);
ffeae418 2498 return rc;
1da177e4
LT
2499}
2500
be0d18df 2501/**
2e41e8e6 2502 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2503 * @ap: port
2504 *
2e41e8e6 2505 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2506 * detection.
2507 */
2508
2509int ata_cable_40wire(struct ata_port *ap)
2510{
2511 return ATA_CBL_PATA40;
2512}
2513
2514/**
2e41e8e6 2515 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2516 * @ap: port
2517 *
2e41e8e6 2518 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2519 * detection.
2520 */
2521
2522int ata_cable_80wire(struct ata_port *ap)
2523{
2524 return ATA_CBL_PATA80;
2525}
2526
2527/**
2528 * ata_cable_unknown - return unknown PATA cable.
2529 * @ap: port
2530 *
2531 * Helper method for drivers which have no PATA cable detection.
2532 */
2533
2534int ata_cable_unknown(struct ata_port *ap)
2535{
2536 return ATA_CBL_PATA_UNK;
2537}
2538
c88f90c3
TH
2539/**
2540 * ata_cable_ignore - return ignored PATA cable.
2541 * @ap: port
2542 *
2543 * Helper method for drivers which don't use cable type to limit
2544 * transfer mode.
2545 */
2546int ata_cable_ignore(struct ata_port *ap)
2547{
2548 return ATA_CBL_PATA_IGN;
2549}
2550
be0d18df
AC
2551/**
2552 * ata_cable_sata - return SATA cable type
2553 * @ap: port
2554 *
2555 * Helper method for drivers which have SATA cables
2556 */
2557
2558int ata_cable_sata(struct ata_port *ap)
2559{
2560 return ATA_CBL_SATA;
2561}
2562
1da177e4
LT
2563/**
2564 * ata_bus_probe - Reset and probe ATA bus
2565 * @ap: Bus to probe
2566 *
0cba632b
JG
2567 * Master ATA bus probing function. Initiates a hardware-dependent
2568 * bus reset, then attempts to identify any devices found on
2569 * the bus.
2570 *
1da177e4 2571 * LOCKING:
0cba632b 2572 * PCI/etc. bus probe sem.
1da177e4
LT
2573 *
2574 * RETURNS:
96072e69 2575 * Zero on success, negative errno otherwise.
1da177e4
LT
2576 */
2577
80289167 2578int ata_bus_probe(struct ata_port *ap)
1da177e4 2579{
28ca5c57 2580 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2581 int tries[ATA_MAX_DEVICES];
f58229f8 2582 int rc;
e82cbdb9 2583 struct ata_device *dev;
1da177e4 2584
28ca5c57 2585 ata_port_probe(ap);
c19ba8af 2586
f58229f8
TH
2587 ata_link_for_each_dev(dev, &ap->link)
2588 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2589
2590 retry:
cdeab114
TH
2591 ata_link_for_each_dev(dev, &ap->link) {
2592 /* If we issue an SRST then an ATA drive (not ATAPI)
2593 * may change configuration and be in PIO0 timing. If
2594 * we do a hard reset (or are coming from power on)
2595 * this is true for ATA or ATAPI. Until we've set a
2596 * suitable controller mode we should not touch the
2597 * bus as we may be talking too fast.
2598 */
2599 dev->pio_mode = XFER_PIO_0;
2600
2601 /* If the controller has a pio mode setup function
2602 * then use it to set the chipset to rights. Don't
2603 * touch the DMA setup as that will be dealt with when
2604 * configuring devices.
2605 */
2606 if (ap->ops->set_piomode)
2607 ap->ops->set_piomode(ap, dev);
2608 }
2609
2044470c 2610 /* reset and determine device classes */
52783c5d 2611 ap->ops->phy_reset(ap);
2061a47a 2612
f58229f8 2613 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2614 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2615 dev->class != ATA_DEV_UNKNOWN)
2616 classes[dev->devno] = dev->class;
2617 else
2618 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2619
52783c5d 2620 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2621 }
1da177e4 2622
52783c5d 2623 ata_port_probe(ap);
2044470c 2624
f31f0cc2
JG
2625 /* read IDENTIFY page and configure devices. We have to do the identify
2626 specific sequence bass-ackwards so that PDIAG- is released by
2627 the slave device */
2628
a4ba7fe2 2629 ata_link_for_each_dev_reverse(dev, &ap->link) {
f58229f8
TH
2630 if (tries[dev->devno])
2631 dev->class = classes[dev->devno];
ffeae418 2632
14d2bac1 2633 if (!ata_dev_enabled(dev))
ffeae418 2634 continue;
ffeae418 2635
bff04647
TH
2636 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2637 dev->id);
14d2bac1
TH
2638 if (rc)
2639 goto fail;
f31f0cc2
JG
2640 }
2641
be0d18df
AC
2642 /* Now ask for the cable type as PDIAG- should have been released */
2643 if (ap->ops->cable_detect)
2644 ap->cbl = ap->ops->cable_detect(ap);
2645
614fe29b
AC
2646 /* We may have SATA bridge glue hiding here irrespective of the
2647 reported cable types and sensed types */
2648 ata_link_for_each_dev(dev, &ap->link) {
2649 if (!ata_dev_enabled(dev))
2650 continue;
2651 /* SATA drives indicate we have a bridge. We don't know which
2652 end of the link the bridge is which is a problem */
2653 if (ata_id_is_sata(dev->id))
2654 ap->cbl = ATA_CBL_SATA;
2655 }
2656
f31f0cc2
JG
2657 /* After the identify sequence we can now set up the devices. We do
2658 this in the normal order so that the user doesn't get confused */
2659
f58229f8 2660 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2661 if (!ata_dev_enabled(dev))
2662 continue;
14d2bac1 2663
9af5c9c9 2664 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2665 rc = ata_dev_configure(dev);
9af5c9c9 2666 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2667 if (rc)
2668 goto fail;
1da177e4
LT
2669 }
2670
e82cbdb9 2671 /* configure transfer mode */
0260731f 2672 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2673 if (rc)
51713d35 2674 goto fail;
1da177e4 2675
f58229f8
TH
2676 ata_link_for_each_dev(dev, &ap->link)
2677 if (ata_dev_enabled(dev))
e82cbdb9 2678 return 0;
1da177e4 2679
e82cbdb9
TH
2680 /* no device present, disable port */
2681 ata_port_disable(ap);
96072e69 2682 return -ENODEV;
14d2bac1
TH
2683
2684 fail:
4ae72a1e
TH
2685 tries[dev->devno]--;
2686
14d2bac1
TH
2687 switch (rc) {
2688 case -EINVAL:
4ae72a1e 2689 /* eeek, something went very wrong, give up */
14d2bac1
TH
2690 tries[dev->devno] = 0;
2691 break;
4ae72a1e
TH
2692
2693 case -ENODEV:
2694 /* give it just one more chance */
2695 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2696 case -EIO:
4ae72a1e
TH
2697 if (tries[dev->devno] == 1) {
2698 /* This is the last chance, better to slow
2699 * down than lose it.
2700 */
936fd732 2701 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2702 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2703 }
14d2bac1
TH
2704 }
2705
4ae72a1e 2706 if (!tries[dev->devno])
3373efd8 2707 ata_dev_disable(dev);
ec573755 2708
14d2bac1 2709 goto retry;
1da177e4
LT
2710}
2711
2712/**
0cba632b
JG
2713 * ata_port_probe - Mark port as enabled
2714 * @ap: Port for which we indicate enablement
1da177e4 2715 *
0cba632b
JG
2716 * Modify @ap data structure such that the system
2717 * thinks that the entire port is enabled.
2718 *
cca3974e 2719 * LOCKING: host lock, or some other form of
0cba632b 2720 * serialization.
1da177e4
LT
2721 */
2722
2723void ata_port_probe(struct ata_port *ap)
2724{
198e0fed 2725 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2726}
2727
3be680b7
TH
2728/**
2729 * sata_print_link_status - Print SATA link status
936fd732 2730 * @link: SATA link to printk link status about
3be680b7
TH
2731 *
2732 * This function prints link speed and status of a SATA link.
2733 *
2734 * LOCKING:
2735 * None.
2736 */
6bdb4fc9 2737static void sata_print_link_status(struct ata_link *link)
3be680b7 2738{
6d5f9732 2739 u32 sstatus, scontrol, tmp;
3be680b7 2740
936fd732 2741 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2742 return;
936fd732 2743 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2744
b1c72916 2745 if (ata_phys_link_online(link)) {
3be680b7 2746 tmp = (sstatus >> 4) & 0xf;
936fd732 2747 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2748 "SATA link up %s (SStatus %X SControl %X)\n",
2749 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2750 } else {
936fd732 2751 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2752 "SATA link down (SStatus %X SControl %X)\n",
2753 sstatus, scontrol);
3be680b7
TH
2754 }
2755}
2756
ebdfca6e
AC
2757/**
2758 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2759 * @adev: device
2760 *
2761 * Obtain the other device on the same cable, or if none is
2762 * present NULL is returned
2763 */
2e9edbf8 2764
3373efd8 2765struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2766{
9af5c9c9
TH
2767 struct ata_link *link = adev->link;
2768 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2769 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2770 return NULL;
2771 return pair;
2772}
2773
1da177e4 2774/**
780a87f7
JG
2775 * ata_port_disable - Disable port.
2776 * @ap: Port to be disabled.
1da177e4 2777 *
780a87f7
JG
2778 * Modify @ap data structure such that the system
2779 * thinks that the entire port is disabled, and should
2780 * never attempt to probe or communicate with devices
2781 * on this port.
2782 *
cca3974e 2783 * LOCKING: host lock, or some other form of
780a87f7 2784 * serialization.
1da177e4
LT
2785 */
2786
2787void ata_port_disable(struct ata_port *ap)
2788{
9af5c9c9
TH
2789 ap->link.device[0].class = ATA_DEV_NONE;
2790 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2791 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2792}
2793
1c3fae4d 2794/**
3c567b7d 2795 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2796 * @link: Link to adjust SATA spd limit for
1c3fae4d 2797 *
936fd732 2798 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2799 * function only adjusts the limit. The change must be applied
3c567b7d 2800 * using sata_set_spd().
1c3fae4d
TH
2801 *
2802 * LOCKING:
2803 * Inherited from caller.
2804 *
2805 * RETURNS:
2806 * 0 on success, negative errno on failure
2807 */
936fd732 2808int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2809{
81952c54
TH
2810 u32 sstatus, spd, mask;
2811 int rc, highbit;
1c3fae4d 2812
936fd732 2813 if (!sata_scr_valid(link))
008a7896
TH
2814 return -EOPNOTSUPP;
2815
2816 /* If SCR can be read, use it to determine the current SPD.
936fd732 2817 * If not, use cached value in link->sata_spd.
008a7896 2818 */
936fd732 2819 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2820 if (rc == 0)
2821 spd = (sstatus >> 4) & 0xf;
2822 else
936fd732 2823 spd = link->sata_spd;
1c3fae4d 2824
936fd732 2825 mask = link->sata_spd_limit;
1c3fae4d
TH
2826 if (mask <= 1)
2827 return -EINVAL;
008a7896
TH
2828
2829 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2830 highbit = fls(mask) - 1;
2831 mask &= ~(1 << highbit);
2832
008a7896
TH
2833 /* Mask off all speeds higher than or equal to the current
2834 * one. Force 1.5Gbps if current SPD is not available.
2835 */
2836 if (spd > 1)
2837 mask &= (1 << (spd - 1)) - 1;
2838 else
2839 mask &= 1;
2840
2841 /* were we already at the bottom? */
1c3fae4d
TH
2842 if (!mask)
2843 return -EINVAL;
2844
936fd732 2845 link->sata_spd_limit = mask;
1c3fae4d 2846
936fd732 2847 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2848 sata_spd_string(fls(mask)));
1c3fae4d
TH
2849
2850 return 0;
2851}
2852
936fd732 2853static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2854{
5270222f
TH
2855 struct ata_link *host_link = &link->ap->link;
2856 u32 limit, target, spd;
1c3fae4d 2857
5270222f
TH
2858 limit = link->sata_spd_limit;
2859
2860 /* Don't configure downstream link faster than upstream link.
2861 * It doesn't speed up anything and some PMPs choke on such
2862 * configuration.
2863 */
2864 if (!ata_is_host_link(link) && host_link->sata_spd)
2865 limit &= (1 << host_link->sata_spd) - 1;
2866
2867 if (limit == UINT_MAX)
2868 target = 0;
1c3fae4d 2869 else
5270222f 2870 target = fls(limit);
1c3fae4d
TH
2871
2872 spd = (*scontrol >> 4) & 0xf;
5270222f 2873 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2874
5270222f 2875 return spd != target;
1c3fae4d
TH
2876}
2877
2878/**
3c567b7d 2879 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2880 * @link: Link in question
1c3fae4d
TH
2881 *
2882 * Test whether the spd limit in SControl matches
936fd732 2883 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2884 * whether hardreset is necessary to apply SATA spd
2885 * configuration.
2886 *
2887 * LOCKING:
2888 * Inherited from caller.
2889 *
2890 * RETURNS:
2891 * 1 if SATA spd configuration is needed, 0 otherwise.
2892 */
1dc55e87 2893static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2894{
2895 u32 scontrol;
2896
936fd732 2897 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2898 return 1;
1c3fae4d 2899
936fd732 2900 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2901}
2902
2903/**
3c567b7d 2904 * sata_set_spd - set SATA spd according to spd limit
936fd732 2905 * @link: Link to set SATA spd for
1c3fae4d 2906 *
936fd732 2907 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2908 *
2909 * LOCKING:
2910 * Inherited from caller.
2911 *
2912 * RETURNS:
2913 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2914 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2915 */
936fd732 2916int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2917{
2918 u32 scontrol;
81952c54 2919 int rc;
1c3fae4d 2920
936fd732 2921 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2922 return rc;
1c3fae4d 2923
936fd732 2924 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2925 return 0;
2926
936fd732 2927 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2928 return rc;
2929
1c3fae4d
TH
2930 return 1;
2931}
2932
452503f9
AC
2933/*
2934 * This mode timing computation functionality is ported over from
2935 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2936 */
2937/*
b352e57d 2938 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2939 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2940 * for UDMA6, which is currently supported only by Maxtor drives.
2941 *
2942 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2943 */
2944
2945static const struct ata_timing ata_timing[] = {
70cd071e
TH
2946/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2947 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2948 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2949 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2950 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2951 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2952 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2953 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2954
70cd071e
TH
2955 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2956 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2957 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2958
70cd071e
TH
2959 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2960 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2961 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2962 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2963 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2964
2965/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2966 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2967 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2968 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2969 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2970 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2971 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2972 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2973
2974 { 0xFF }
2975};
2976
2dcb407e
JG
2977#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2978#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2979
2980static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2981{
2982 q->setup = EZ(t->setup * 1000, T);
2983 q->act8b = EZ(t->act8b * 1000, T);
2984 q->rec8b = EZ(t->rec8b * 1000, T);
2985 q->cyc8b = EZ(t->cyc8b * 1000, T);
2986 q->active = EZ(t->active * 1000, T);
2987 q->recover = EZ(t->recover * 1000, T);
2988 q->cycle = EZ(t->cycle * 1000, T);
2989 q->udma = EZ(t->udma * 1000, UT);
2990}
2991
2992void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2993 struct ata_timing *m, unsigned int what)
2994{
2995 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2996 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2997 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2998 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2999 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3000 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3001 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3002 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3003}
3004
6357357c 3005const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3006{
70cd071e
TH
3007 const struct ata_timing *t = ata_timing;
3008
3009 while (xfer_mode > t->mode)
3010 t++;
452503f9 3011
70cd071e
TH
3012 if (xfer_mode == t->mode)
3013 return t;
3014 return NULL;
452503f9
AC
3015}
3016
3017int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3018 struct ata_timing *t, int T, int UT)
3019{
3020 const struct ata_timing *s;
3021 struct ata_timing p;
3022
3023 /*
2e9edbf8 3024 * Find the mode.
75b1f2f8 3025 */
452503f9
AC
3026
3027 if (!(s = ata_timing_find_mode(speed)))
3028 return -EINVAL;
3029
75b1f2f8
AL
3030 memcpy(t, s, sizeof(*s));
3031
452503f9
AC
3032 /*
3033 * If the drive is an EIDE drive, it can tell us it needs extended
3034 * PIO/MW_DMA cycle timing.
3035 */
3036
3037 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3038 memset(&p, 0, sizeof(p));
2dcb407e 3039 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
3040 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3041 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 3042 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
3043 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3044 }
3045 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3046 }
3047
3048 /*
3049 * Convert the timing to bus clock counts.
3050 */
3051
75b1f2f8 3052 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3053
3054 /*
c893a3ae
RD
3055 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3056 * S.M.A.R.T * and some other commands. We have to ensure that the
3057 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3058 */
3059
fd3367af 3060 if (speed > XFER_PIO_6) {
452503f9
AC
3061 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3062 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3063 }
3064
3065 /*
c893a3ae 3066 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3067 */
3068
3069 if (t->act8b + t->rec8b < t->cyc8b) {
3070 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3071 t->rec8b = t->cyc8b - t->act8b;
3072 }
3073
3074 if (t->active + t->recover < t->cycle) {
3075 t->active += (t->cycle - (t->active + t->recover)) / 2;
3076 t->recover = t->cycle - t->active;
3077 }
a617c09f 3078
4f701d1e
AC
3079 /* In a few cases quantisation may produce enough errors to
3080 leave t->cycle too low for the sum of active and recovery
3081 if so we must correct this */
3082 if (t->active + t->recover > t->cycle)
3083 t->cycle = t->active + t->recover;
452503f9
AC
3084
3085 return 0;
3086}
3087
a0f79b92
TH
3088/**
3089 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3090 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3091 * @cycle: cycle duration in ns
3092 *
3093 * Return matching xfer mode for @cycle. The returned mode is of
3094 * the transfer type specified by @xfer_shift. If @cycle is too
3095 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3096 * than the fastest known mode, the fasted mode is returned.
3097 *
3098 * LOCKING:
3099 * None.
3100 *
3101 * RETURNS:
3102 * Matching xfer_mode, 0xff if no match found.
3103 */
3104u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3105{
3106 u8 base_mode = 0xff, last_mode = 0xff;
3107 const struct ata_xfer_ent *ent;
3108 const struct ata_timing *t;
3109
3110 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3111 if (ent->shift == xfer_shift)
3112 base_mode = ent->base;
3113
3114 for (t = ata_timing_find_mode(base_mode);
3115 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3116 unsigned short this_cycle;
3117
3118 switch (xfer_shift) {
3119 case ATA_SHIFT_PIO:
3120 case ATA_SHIFT_MWDMA:
3121 this_cycle = t->cycle;
3122 break;
3123 case ATA_SHIFT_UDMA:
3124 this_cycle = t->udma;
3125 break;
3126 default:
3127 return 0xff;
3128 }
3129
3130 if (cycle > this_cycle)
3131 break;
3132
3133 last_mode = t->mode;
3134 }
3135
3136 return last_mode;
3137}
3138
cf176e1a
TH
3139/**
3140 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3141 * @dev: Device to adjust xfer masks
458337db 3142 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3143 *
3144 * Adjust xfer masks of @dev downward. Note that this function
3145 * does not apply the change. Invoking ata_set_mode() afterwards
3146 * will apply the limit.
3147 *
3148 * LOCKING:
3149 * Inherited from caller.
3150 *
3151 * RETURNS:
3152 * 0 on success, negative errno on failure
3153 */
458337db 3154int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3155{
458337db 3156 char buf[32];
7dc951ae
TH
3157 unsigned long orig_mask, xfer_mask;
3158 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3159 int quiet, highbit;
cf176e1a 3160
458337db
TH
3161 quiet = !!(sel & ATA_DNXFER_QUIET);
3162 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3163
458337db
TH
3164 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3165 dev->mwdma_mask,
3166 dev->udma_mask);
3167 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3168
458337db
TH
3169 switch (sel) {
3170 case ATA_DNXFER_PIO:
3171 highbit = fls(pio_mask) - 1;
3172 pio_mask &= ~(1 << highbit);
3173 break;
3174
3175 case ATA_DNXFER_DMA:
3176 if (udma_mask) {
3177 highbit = fls(udma_mask) - 1;
3178 udma_mask &= ~(1 << highbit);
3179 if (!udma_mask)
3180 return -ENOENT;
3181 } else if (mwdma_mask) {
3182 highbit = fls(mwdma_mask) - 1;
3183 mwdma_mask &= ~(1 << highbit);
3184 if (!mwdma_mask)
3185 return -ENOENT;
3186 }
3187 break;
3188
3189 case ATA_DNXFER_40C:
3190 udma_mask &= ATA_UDMA_MASK_40C;
3191 break;
3192
3193 case ATA_DNXFER_FORCE_PIO0:
3194 pio_mask &= 1;
3195 case ATA_DNXFER_FORCE_PIO:
3196 mwdma_mask = 0;
3197 udma_mask = 0;
3198 break;
3199
458337db
TH
3200 default:
3201 BUG();
3202 }
3203
3204 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3205
3206 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3207 return -ENOENT;
3208
3209 if (!quiet) {
3210 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3211 snprintf(buf, sizeof(buf), "%s:%s",
3212 ata_mode_string(xfer_mask),
3213 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3214 else
3215 snprintf(buf, sizeof(buf), "%s",
3216 ata_mode_string(xfer_mask));
3217
3218 ata_dev_printk(dev, KERN_WARNING,
3219 "limiting speed to %s\n", buf);
3220 }
cf176e1a
TH
3221
3222 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3223 &dev->udma_mask);
3224
cf176e1a 3225 return 0;
cf176e1a
TH
3226}
3227
3373efd8 3228static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3229{
9af5c9c9 3230 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3231 const char *dev_err_whine = "";
3232 int ign_dev_err = 0;
83206a29
TH
3233 unsigned int err_mask;
3234 int rc;
1da177e4 3235
e8384607 3236 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3237 if (dev->xfer_shift == ATA_SHIFT_PIO)
3238 dev->flags |= ATA_DFLAG_PIO;
3239
3373efd8 3240 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3241
4055dee7
TH
3242 if (err_mask & ~AC_ERR_DEV)
3243 goto fail;
3244
3245 /* revalidate */
3246 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3247 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3248 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3249 if (rc)
3250 return rc;
3251
b93fda12
AC
3252 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3253 /* Old CFA may refuse this command, which is just fine */
3254 if (ata_id_is_cfa(dev->id))
3255 ign_dev_err = 1;
3256 /* Catch several broken garbage emulations plus some pre
3257 ATA devices */
3258 if (ata_id_major_version(dev->id) == 0 &&
3259 dev->pio_mode <= XFER_PIO_2)
3260 ign_dev_err = 1;
3261 /* Some very old devices and some bad newer ones fail
3262 any kind of SET_XFERMODE request but support PIO0-2
3263 timings and no IORDY */
3264 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3265 ign_dev_err = 1;
3266 }
3acaf94b
AC
3267 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3268 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3269 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3270 dev->dma_mode == XFER_MW_DMA_0 &&
3271 (dev->id[63] >> 8) & 1)
4055dee7 3272 ign_dev_err = 1;
3acaf94b 3273
4055dee7
TH
3274 /* if the device is actually configured correctly, ignore dev err */
3275 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3276 ign_dev_err = 1;
1da177e4 3277
4055dee7
TH
3278 if (err_mask & AC_ERR_DEV) {
3279 if (!ign_dev_err)
3280 goto fail;
3281 else
3282 dev_err_whine = " (device error ignored)";
3283 }
48a8a14f 3284
23e71c3d
TH
3285 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3286 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3287
4055dee7
TH
3288 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3289 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3290 dev_err_whine);
3291
83206a29 3292 return 0;
4055dee7
TH
3293
3294 fail:
3295 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3296 "(err_mask=0x%x)\n", err_mask);
3297 return -EIO;
1da177e4
LT
3298}
3299
1da177e4 3300/**
04351821 3301 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3302 * @link: link on which timings will be programmed
1967b7ff 3303 * @r_failed_dev: out parameter for failed device
1da177e4 3304 *
04351821
AC
3305 * Standard implementation of the function used to tune and set
3306 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3307 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3308 * returned in @r_failed_dev.
780a87f7 3309 *
1da177e4 3310 * LOCKING:
0cba632b 3311 * PCI/etc. bus probe sem.
e82cbdb9
TH
3312 *
3313 * RETURNS:
3314 * 0 on success, negative errno otherwise
1da177e4 3315 */
04351821 3316
0260731f 3317int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3318{
0260731f 3319 struct ata_port *ap = link->ap;
e8e0619f 3320 struct ata_device *dev;
f58229f8 3321 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3322
a6d5a51c 3323 /* step 1: calculate xfer_mask */
f58229f8 3324 ata_link_for_each_dev(dev, link) {
7dc951ae 3325 unsigned long pio_mask, dma_mask;
b3a70601 3326 unsigned int mode_mask;
a6d5a51c 3327
e1211e3f 3328 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3329 continue;
3330
b3a70601
AC
3331 mode_mask = ATA_DMA_MASK_ATA;
3332 if (dev->class == ATA_DEV_ATAPI)
3333 mode_mask = ATA_DMA_MASK_ATAPI;
3334 else if (ata_id_is_cfa(dev->id))
3335 mode_mask = ATA_DMA_MASK_CFA;
3336
3373efd8 3337 ata_dev_xfermask(dev);
33267325 3338 ata_force_xfermask(dev);
1da177e4 3339
acf356b1
TH
3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3341 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3342
3343 if (libata_dma_mask & mode_mask)
3344 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3345 else
3346 dma_mask = 0;
3347
acf356b1
TH
3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3350
4f65977d 3351 found = 1;
b15b3eba 3352 if (ata_dma_enabled(dev))
5444a6f4 3353 used_dma = 1;
a6d5a51c 3354 }
4f65977d 3355 if (!found)
e82cbdb9 3356 goto out;
a6d5a51c
TH
3357
3358 /* step 2: always set host PIO timings */
f58229f8 3359 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3360 if (!ata_dev_enabled(dev))
3361 continue;
3362
70cd071e 3363 if (dev->pio_mode == 0xff) {
f15a1daf 3364 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3365 rc = -EINVAL;
e82cbdb9 3366 goto out;
e8e0619f
TH
3367 }
3368
3369 dev->xfer_mode = dev->pio_mode;
3370 dev->xfer_shift = ATA_SHIFT_PIO;
3371 if (ap->ops->set_piomode)
3372 ap->ops->set_piomode(ap, dev);
3373 }
1da177e4 3374
a6d5a51c 3375 /* step 3: set host DMA timings */
f58229f8 3376 ata_link_for_each_dev(dev, link) {
b15b3eba 3377 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
e8e0619f
TH
3378 continue;
3379
3380 dev->xfer_mode = dev->dma_mode;
3381 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3382 if (ap->ops->set_dmamode)
3383 ap->ops->set_dmamode(ap, dev);
3384 }
1da177e4
LT
3385
3386 /* step 4: update devices' xfer mode */
f58229f8 3387 ata_link_for_each_dev(dev, link) {
18d90deb 3388 /* don't update suspended devices' xfer mode */
9666f400 3389 if (!ata_dev_enabled(dev))
83206a29
TH
3390 continue;
3391
3373efd8 3392 rc = ata_dev_set_mode(dev);
5bbc53f4 3393 if (rc)
e82cbdb9 3394 goto out;
83206a29 3395 }
1da177e4 3396
e8e0619f
TH
3397 /* Record simplex status. If we selected DMA then the other
3398 * host channels are not permitted to do so.
5444a6f4 3399 */
cca3974e 3400 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3401 ap->host->simplex_claimed = ap;
5444a6f4 3402
e82cbdb9
TH
3403 out:
3404 if (rc)
3405 *r_failed_dev = dev;
3406 return rc;
1da177e4
LT
3407}
3408
aa2731ad
TH
3409/**
3410 * ata_wait_ready - wait for link to become ready
3411 * @link: link to be waited on
3412 * @deadline: deadline jiffies for the operation
3413 * @check_ready: callback to check link readiness
3414 *
3415 * Wait for @link to become ready. @check_ready should return
3416 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3417 * link doesn't seem to be occupied, other errno for other error
3418 * conditions.
3419 *
3420 * Transient -ENODEV conditions are allowed for
3421 * ATA_TMOUT_FF_WAIT.
3422 *
3423 * LOCKING:
3424 * EH context.
3425 *
3426 * RETURNS:
3427 * 0 if @linke is ready before @deadline; otherwise, -errno.
3428 */
3429int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3430 int (*check_ready)(struct ata_link *link))
3431{
3432 unsigned long start = jiffies;
341c2c95 3433 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
aa2731ad
TH
3434 int warned = 0;
3435
b1c72916
TH
3436 /* Slave readiness can't be tested separately from master. On
3437 * M/S emulation configuration, this function should be called
3438 * only on the master and it will handle both master and slave.
3439 */
3440 WARN_ON(link == link->ap->slave_link);
3441
aa2731ad
TH
3442 if (time_after(nodev_deadline, deadline))
3443 nodev_deadline = deadline;
3444
3445 while (1) {
3446 unsigned long now = jiffies;
3447 int ready, tmp;
3448
3449 ready = tmp = check_ready(link);
3450 if (ready > 0)
3451 return 0;
3452
3453 /* -ENODEV could be transient. Ignore -ENODEV if link
3454 * is online. Also, some SATA devices take a long
3455 * time to clear 0xff after reset. For example,
3456 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3457 * GoVault needs even more than that. Wait for
3458 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3459 *
3460 * Note that some PATA controllers (pata_ali) explode
3461 * if status register is read more than once when
3462 * there's no device attached.
3463 */
3464 if (ready == -ENODEV) {
3465 if (ata_link_online(link))
3466 ready = 0;
3467 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3468 !ata_link_offline(link) &&
3469 time_before(now, nodev_deadline))
3470 ready = 0;
3471 }
3472
3473 if (ready)
3474 return ready;
3475 if (time_after(now, deadline))
3476 return -EBUSY;
3477
3478 if (!warned && time_after(now, start + 5 * HZ) &&
3479 (deadline - now > 3 * HZ)) {
3480 ata_link_printk(link, KERN_WARNING,
3481 "link is slow to respond, please be patient "
3482 "(ready=%d)\n", tmp);
3483 warned = 1;
3484 }
3485
3486 msleep(50);
3487 }
3488}
3489
3490/**
3491 * ata_wait_after_reset - wait for link to become ready after reset
3492 * @link: link to be waited on
3493 * @deadline: deadline jiffies for the operation
3494 * @check_ready: callback to check link readiness
3495 *
3496 * Wait for @link to become ready after reset.
3497 *
3498 * LOCKING:
3499 * EH context.
3500 *
3501 * RETURNS:
3502 * 0 if @linke is ready before @deadline; otherwise, -errno.
3503 */
2b4221bb 3504int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3505 int (*check_ready)(struct ata_link *link))
3506{
341c2c95 3507 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3508
3509 return ata_wait_ready(link, deadline, check_ready);
3510}
3511
d7bb4cc7 3512/**
936fd732
TH
3513 * sata_link_debounce - debounce SATA phy status
3514 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3515 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3516 * @deadline: deadline jiffies for the operation
d7bb4cc7 3517 *
936fd732 3518* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3519 * holding the same value where DET is not 1 for @duration polled
3520 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3521 * beginning of the stable state. Because DET gets stuck at 1 on
3522 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3523 * until timeout then returns 0 if DET is stable at 1.
3524 *
d4b2bab4
TH
3525 * @timeout is further limited by @deadline. The sooner of the
3526 * two is used.
3527 *
d7bb4cc7
TH
3528 * LOCKING:
3529 * Kernel thread context (may sleep)
3530 *
3531 * RETURNS:
3532 * 0 on success, -errno on failure.
3533 */
936fd732
TH
3534int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3535 unsigned long deadline)
7a7921e8 3536{
341c2c95
TH
3537 unsigned long interval = params[0];
3538 unsigned long duration = params[1];
d4b2bab4 3539 unsigned long last_jiffies, t;
d7bb4cc7
TH
3540 u32 last, cur;
3541 int rc;
3542
341c2c95 3543 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3544 if (time_before(t, deadline))
3545 deadline = t;
3546
936fd732 3547 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3548 return rc;
3549 cur &= 0xf;
3550
3551 last = cur;
3552 last_jiffies = jiffies;
3553
3554 while (1) {
341c2c95 3555 msleep(interval);
936fd732 3556 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3557 return rc;
3558 cur &= 0xf;
3559
3560 /* DET stable? */
3561 if (cur == last) {
d4b2bab4 3562 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3563 continue;
341c2c95
TH
3564 if (time_after(jiffies,
3565 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3566 return 0;
3567 continue;
3568 }
3569
3570 /* unstable, start over */
3571 last = cur;
3572 last_jiffies = jiffies;
3573
f1545154
TH
3574 /* Check deadline. If debouncing failed, return
3575 * -EPIPE to tell upper layer to lower link speed.
3576 */
d4b2bab4 3577 if (time_after(jiffies, deadline))
f1545154 3578 return -EPIPE;
d7bb4cc7
TH
3579 }
3580}
3581
3582/**
936fd732
TH
3583 * sata_link_resume - resume SATA link
3584 * @link: ATA link to resume SATA
d7bb4cc7 3585 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3586 * @deadline: deadline jiffies for the operation
d7bb4cc7 3587 *
936fd732 3588 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3589 *
3590 * LOCKING:
3591 * Kernel thread context (may sleep)
3592 *
3593 * RETURNS:
3594 * 0 on success, -errno on failure.
3595 */
936fd732
TH
3596int sata_link_resume(struct ata_link *link, const unsigned long *params,
3597 unsigned long deadline)
d7bb4cc7 3598{
ac371987 3599 u32 scontrol, serror;
81952c54
TH
3600 int rc;
3601
936fd732 3602 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3603 return rc;
7a7921e8 3604
852ee16a 3605 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3606
936fd732 3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3608 return rc;
7a7921e8 3609
d7bb4cc7
TH
3610 /* Some PHYs react badly if SStatus is pounded immediately
3611 * after resuming. Delay 200ms before debouncing.
3612 */
3613 msleep(200);
7a7921e8 3614
ac371987
TH
3615 if ((rc = sata_link_debounce(link, params, deadline)))
3616 return rc;
3617
f046519f 3618 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3619 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3620 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3621
f046519f 3622 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3623}
3624
f5914a46 3625/**
0aa1113d 3626 * ata_std_prereset - prepare for reset
cc0680a5 3627 * @link: ATA link to be reset
d4b2bab4 3628 * @deadline: deadline jiffies for the operation
f5914a46 3629 *
cc0680a5 3630 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3631 * prereset makes libata abort whole reset sequence and give up
3632 * that port, so prereset should be best-effort. It does its
3633 * best to prepare for reset sequence but if things go wrong, it
3634 * should just whine, not fail.
f5914a46
TH
3635 *
3636 * LOCKING:
3637 * Kernel thread context (may sleep)
3638 *
3639 * RETURNS:
3640 * 0 on success, -errno otherwise.
3641 */
0aa1113d 3642int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3643{
cc0680a5 3644 struct ata_port *ap = link->ap;
936fd732 3645 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3646 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3647 int rc;
3648
f5914a46
TH
3649 /* if we're about to do hardreset, nothing more to do */
3650 if (ehc->i.action & ATA_EH_HARDRESET)
3651 return 0;
3652
936fd732 3653 /* if SATA, resume link */
a16abc0b 3654 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3655 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3656 /* whine about phy resume failure but proceed */
3657 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3658 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3659 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3660 }
3661
45db2f6c 3662 /* no point in trying softreset on offline link */
b1c72916 3663 if (ata_phys_link_offline(link))
45db2f6c
TH
3664 ehc->i.action &= ~ATA_EH_SOFTRESET;
3665
f5914a46
TH
3666 return 0;
3667}
3668
c2bd5804 3669/**
624d5c51
TH
3670 * sata_link_hardreset - reset link via SATA phy reset
3671 * @link: link to reset
3672 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3673 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3674 * @online: optional out parameter indicating link onlineness
3675 * @check_ready: optional callback to check link readiness
c2bd5804 3676 *
624d5c51 3677 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3678 * After hardreset, link readiness is waited upon using
3679 * ata_wait_ready() if @check_ready is specified. LLDs are
3680 * allowed to not specify @check_ready and wait itself after this
3681 * function returns. Device classification is LLD's
3682 * responsibility.
3683 *
3684 * *@online is set to one iff reset succeeded and @link is online
3685 * after reset.
c2bd5804
TH
3686 *
3687 * LOCKING:
3688 * Kernel thread context (may sleep)
3689 *
3690 * RETURNS:
3691 * 0 on success, -errno otherwise.
3692 */
624d5c51 3693int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3694 unsigned long deadline,
3695 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3696{
624d5c51 3697 u32 scontrol;
81952c54 3698 int rc;
852ee16a 3699
c2bd5804
TH
3700 DPRINTK("ENTER\n");
3701
9dadd45b
TH
3702 if (online)
3703 *online = false;
3704
936fd732 3705 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3706 /* SATA spec says nothing about how to reconfigure
3707 * spd. To be on the safe side, turn off phy during
3708 * reconfiguration. This works for at least ICH7 AHCI
3709 * and Sil3124.
3710 */
936fd732 3711 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3712 goto out;
81952c54 3713
a34b6fc0 3714 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3715
936fd732 3716 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3717 goto out;
1c3fae4d 3718
936fd732 3719 sata_set_spd(link);
1c3fae4d
TH
3720 }
3721
3722 /* issue phy wake/reset */
936fd732 3723 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3724 goto out;
81952c54 3725
852ee16a 3726 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3727
936fd732 3728 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3729 goto out;
c2bd5804 3730
1c3fae4d 3731 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3732 * 10.4.2 says at least 1 ms.
3733 */
3734 msleep(1);
3735
936fd732
TH
3736 /* bring link back */
3737 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3738 if (rc)
3739 goto out;
3740 /* if link is offline nothing more to do */
b1c72916 3741 if (ata_phys_link_offline(link))
9dadd45b
TH
3742 goto out;
3743
3744 /* Link is online. From this point, -ENODEV too is an error. */
3745 if (online)
3746 *online = true;
3747
071f44b1 3748 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3749 /* If PMP is supported, we have to do follow-up SRST.
3750 * Some PMPs don't send D2H Reg FIS after hardreset if
3751 * the first port is empty. Wait only for
3752 * ATA_TMOUT_PMP_SRST_WAIT.
3753 */
3754 if (check_ready) {
3755 unsigned long pmp_deadline;
3756
341c2c95
TH
3757 pmp_deadline = ata_deadline(jiffies,
3758 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3759 if (time_after(pmp_deadline, deadline))
3760 pmp_deadline = deadline;
3761 ata_wait_ready(link, pmp_deadline, check_ready);
3762 }
3763 rc = -EAGAIN;
3764 goto out;
3765 }
3766
3767 rc = 0;
3768 if (check_ready)
3769 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3770 out:
0cbf0711
TH
3771 if (rc && rc != -EAGAIN) {
3772 /* online is set iff link is online && reset succeeded */
3773 if (online)
3774 *online = false;
9dadd45b
TH
3775 ata_link_printk(link, KERN_ERR,
3776 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3777 }
b6103f6d
TH
3778 DPRINTK("EXIT, rc=%d\n", rc);
3779 return rc;
3780}
3781
57c9efdf
TH
3782/**
3783 * sata_std_hardreset - COMRESET w/o waiting or classification
3784 * @link: link to reset
3785 * @class: resulting class of attached device
3786 * @deadline: deadline jiffies for the operation
3787 *
3788 * Standard SATA COMRESET w/o waiting or classification.
3789 *
3790 * LOCKING:
3791 * Kernel thread context (may sleep)
3792 *
3793 * RETURNS:
3794 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3795 */
3796int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3797 unsigned long deadline)
3798{
3799 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3800 bool online;
3801 int rc;
3802
3803 /* do hardreset */
3804 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3805 return online ? -EAGAIN : rc;
3806}
3807
c2bd5804 3808/**
203c75b8 3809 * ata_std_postreset - standard postreset callback
cc0680a5 3810 * @link: the target ata_link
c2bd5804
TH
3811 * @classes: classes of attached devices
3812 *
3813 * This function is invoked after a successful reset. Note that
3814 * the device might have been reset more than once using
3815 * different reset methods before postreset is invoked.
c2bd5804 3816 *
c2bd5804
TH
3817 * LOCKING:
3818 * Kernel thread context (may sleep)
3819 */
203c75b8 3820void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3821{
f046519f
TH
3822 u32 serror;
3823
c2bd5804
TH
3824 DPRINTK("ENTER\n");
3825
f046519f
TH
3826 /* reset complete, clear SError */
3827 if (!sata_scr_read(link, SCR_ERROR, &serror))
3828 sata_scr_write(link, SCR_ERROR, serror);
3829
c2bd5804 3830 /* print link status */
936fd732 3831 sata_print_link_status(link);
c2bd5804 3832
c2bd5804
TH
3833 DPRINTK("EXIT\n");
3834}
3835
623a3128
TH
3836/**
3837 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3838 * @dev: device to compare against
3839 * @new_class: class of the new device
3840 * @new_id: IDENTIFY page of the new device
3841 *
3842 * Compare @new_class and @new_id against @dev and determine
3843 * whether @dev is the device indicated by @new_class and
3844 * @new_id.
3845 *
3846 * LOCKING:
3847 * None.
3848 *
3849 * RETURNS:
3850 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3851 */
3373efd8
TH
3852static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3853 const u16 *new_id)
623a3128
TH
3854{
3855 const u16 *old_id = dev->id;
a0cf733b
TH
3856 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3857 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3858
3859 if (dev->class != new_class) {
f15a1daf
TH
3860 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3861 dev->class, new_class);
623a3128
TH
3862 return 0;
3863 }
3864
a0cf733b
TH
3865 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3866 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3867 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3868 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3869
3870 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3871 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3872 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3873 return 0;
3874 }
3875
3876 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3877 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3878 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3879 return 0;
3880 }
3881
623a3128
TH
3882 return 1;
3883}
3884
3885/**
fe30911b 3886 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3887 * @dev: target ATA device
bff04647 3888 * @readid_flags: read ID flags
623a3128
TH
3889 *
3890 * Re-read IDENTIFY page and make sure @dev is still attached to
3891 * the port.
3892 *
3893 * LOCKING:
3894 * Kernel thread context (may sleep)
3895 *
3896 * RETURNS:
3897 * 0 on success, negative errno otherwise
3898 */
fe30911b 3899int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3900{
5eb45c02 3901 unsigned int class = dev->class;
9af5c9c9 3902 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3903 int rc;
3904
fe635c7e 3905 /* read ID data */
bff04647 3906 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3907 if (rc)
fe30911b 3908 return rc;
623a3128
TH
3909
3910 /* is the device still there? */
fe30911b
TH
3911 if (!ata_dev_same_device(dev, class, id))
3912 return -ENODEV;
623a3128 3913
fe635c7e 3914 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3915 return 0;
3916}
3917
3918/**
3919 * ata_dev_revalidate - Revalidate ATA device
3920 * @dev: device to revalidate
422c9daa 3921 * @new_class: new class code
fe30911b
TH
3922 * @readid_flags: read ID flags
3923 *
3924 * Re-read IDENTIFY page, make sure @dev is still attached to the
3925 * port and reconfigure it according to the new IDENTIFY page.
3926 *
3927 * LOCKING:
3928 * Kernel thread context (may sleep)
3929 *
3930 * RETURNS:
3931 * 0 on success, negative errno otherwise
3932 */
422c9daa
TH
3933int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3934 unsigned int readid_flags)
fe30911b 3935{
6ddcd3b0 3936 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3937 int rc;
3938
3939 if (!ata_dev_enabled(dev))
3940 return -ENODEV;
3941
422c9daa
TH
3942 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3943 if (ata_class_enabled(new_class) &&
3944 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3945 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3946 dev->class, new_class);
3947 rc = -ENODEV;
3948 goto fail;
3949 }
3950
fe30911b
TH
3951 /* re-read ID */
3952 rc = ata_dev_reread_id(dev, readid_flags);
3953 if (rc)
3954 goto fail;
623a3128
TH
3955
3956 /* configure device according to the new ID */
efdaedc4 3957 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3958 if (rc)
3959 goto fail;
3960
3961 /* verify n_sectors hasn't changed */
b54eebd6
TH
3962 if (dev->class == ATA_DEV_ATA && n_sectors &&
3963 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3964 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3965 "%llu != %llu\n",
3966 (unsigned long long)n_sectors,
3967 (unsigned long long)dev->n_sectors);
8270bec4
TH
3968
3969 /* restore original n_sectors */
3970 dev->n_sectors = n_sectors;
3971
6ddcd3b0
TH
3972 rc = -ENODEV;
3973 goto fail;
3974 }
3975
3976 return 0;
623a3128
TH
3977
3978 fail:
f15a1daf 3979 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3980 return rc;
3981}
3982
6919a0a6
AC
3983struct ata_blacklist_entry {
3984 const char *model_num;
3985 const char *model_rev;
3986 unsigned long horkage;
3987};
3988
3989static const struct ata_blacklist_entry ata_device_blacklist [] = {
3990 /* Devices with DMA related problems under Linux */
3991 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3992 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3993 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3994 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3995 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3996 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3997 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3998 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3999 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4000 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4001 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4002 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4003 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4004 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4005 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4006 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4007 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4008 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4009 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4010 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4011 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4012 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4013 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4014 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4015 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4016 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4017 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4018 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4019 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4020 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4021 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4022 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4023
18d6e9d5 4024 /* Weird ATAPI devices */
40a1d531 4025 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4026
6919a0a6
AC
4027 /* Devices we expect to fail diagnostics */
4028
4029 /* Devices where NCQ should be avoided */
4030 /* NCQ is slow */
2dcb407e 4031 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4032 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4033 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4034 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4035 /* NCQ is broken */
539cc7c7 4036 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4037 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4038 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4039 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4040
36e337d0
RH
4041 /* Blacklist entries taken from Silicon Image 3124/3132
4042 Windows driver .inf file - also several Linux problem reports */
4043 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4044 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4045 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4046
16c55b03
TH
4047 /* devices which puke on READ_NATIVE_MAX */
4048 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4049 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4050 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4051 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4052
93328e11
AC
4053 /* Devices which report 1 sector over size HPA */
4054 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4055 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4056 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4057
6bbfd53d
AC
4058 /* Devices which get the IVB wrong */
4059 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4060 /* Maybe we should just blacklist TSSTcorp... */
4061 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4062 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4063 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4064 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4065 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4066 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4067
6919a0a6
AC
4068 /* End Marker */
4069 { }
1da177e4 4070};
2e9edbf8 4071
741b7763 4072static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4073{
4074 const char *p;
4075 int len;
4076
4077 /*
4078 * check for trailing wildcard: *\0
4079 */
4080 p = strchr(patt, wildchar);
4081 if (p && ((*(p + 1)) == 0))
4082 len = p - patt;
317b50b8 4083 else {
539cc7c7 4084 len = strlen(name);
317b50b8
AP
4085 if (!len) {
4086 if (!*patt)
4087 return 0;
4088 return -1;
4089 }
4090 }
539cc7c7
JG
4091
4092 return strncmp(patt, name, len);
4093}
4094
75683fe7 4095static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4096{
8bfa79fc
TH
4097 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4098 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4099 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4100
8bfa79fc
TH
4101 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4102 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4103
6919a0a6 4104 while (ad->model_num) {
539cc7c7 4105 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4106 if (ad->model_rev == NULL)
4107 return ad->horkage;
539cc7c7 4108 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4109 return ad->horkage;
f4b15fef 4110 }
6919a0a6 4111 ad++;
f4b15fef 4112 }
1da177e4
LT
4113 return 0;
4114}
4115
6919a0a6
AC
4116static int ata_dma_blacklisted(const struct ata_device *dev)
4117{
4118 /* We don't support polling DMA.
4119 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4120 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4121 */
9af5c9c9 4122 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4123 (dev->flags & ATA_DFLAG_CDB_INTR))
4124 return 1;
75683fe7 4125 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4126}
4127
6bbfd53d
AC
4128/**
4129 * ata_is_40wire - check drive side detection
4130 * @dev: device
4131 *
4132 * Perform drive side detection decoding, allowing for device vendors
4133 * who can't follow the documentation.
4134 */
4135
4136static int ata_is_40wire(struct ata_device *dev)
4137{
4138 if (dev->horkage & ATA_HORKAGE_IVB)
4139 return ata_drive_40wire_relaxed(dev->id);
4140 return ata_drive_40wire(dev->id);
4141}
4142
15a5551c
AC
4143/**
4144 * cable_is_40wire - 40/80/SATA decider
4145 * @ap: port to consider
4146 *
4147 * This function encapsulates the policy for speed management
4148 * in one place. At the moment we don't cache the result but
4149 * there is a good case for setting ap->cbl to the result when
4150 * we are called with unknown cables (and figuring out if it
4151 * impacts hotplug at all).
4152 *
4153 * Return 1 if the cable appears to be 40 wire.
4154 */
4155
4156static int cable_is_40wire(struct ata_port *ap)
4157{
4158 struct ata_link *link;
4159 struct ata_device *dev;
4160
4161 /* If the controller thinks we are 40 wire, we are */
4162 if (ap->cbl == ATA_CBL_PATA40)
4163 return 1;
4164 /* If the controller thinks we are 80 wire, we are */
4165 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4166 return 0;
f792068e
AC
4167 /* If the system is known to be 40 wire short cable (eg laptop),
4168 then we allow 80 wire modes even if the drive isn't sure */
4169 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4170 return 0;
15a5551c
AC
4171 /* If the controller doesn't know we scan
4172
4173 - Note: We look for all 40 wire detects at this point.
4174 Any 80 wire detect is taken to be 80 wire cable
4175 because
4176 - In many setups only the one drive (slave if present)
4177 will give a valid detect
4178 - If you have a non detect capable drive you don't
4179 want it to colour the choice
4180 */
4181 ata_port_for_each_link(link, ap) {
4182 ata_link_for_each_dev(dev, link) {
4183 if (!ata_is_40wire(dev))
4184 return 0;
4185 }
4186 }
4187 return 1;
4188}
4189
a6d5a51c
TH
4190/**
4191 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4192 * @dev: Device to compute xfermask for
4193 *
acf356b1
TH
4194 * Compute supported xfermask of @dev and store it in
4195 * dev->*_mask. This function is responsible for applying all
4196 * known limits including host controller limits, device
4197 * blacklist, etc...
a6d5a51c
TH
4198 *
4199 * LOCKING:
4200 * None.
a6d5a51c 4201 */
3373efd8 4202static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4203{
9af5c9c9
TH
4204 struct ata_link *link = dev->link;
4205 struct ata_port *ap = link->ap;
cca3974e 4206 struct ata_host *host = ap->host;
a6d5a51c 4207 unsigned long xfer_mask;
1da177e4 4208
37deecb5 4209 /* controller modes available */
565083e1
TH
4210 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4211 ap->mwdma_mask, ap->udma_mask);
4212
8343f889 4213 /* drive modes available */
37deecb5
TH
4214 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4215 dev->mwdma_mask, dev->udma_mask);
4216 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4217
b352e57d
AC
4218 /*
4219 * CFA Advanced TrueIDE timings are not allowed on a shared
4220 * cable
4221 */
4222 if (ata_dev_pair(dev)) {
4223 /* No PIO5 or PIO6 */
4224 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4225 /* No MWDMA3 or MWDMA 4 */
4226 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4227 }
4228
37deecb5
TH
4229 if (ata_dma_blacklisted(dev)) {
4230 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4231 ata_dev_printk(dev, KERN_WARNING,
4232 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4233 }
a6d5a51c 4234
14d66ab7 4235 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4236 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4237 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4238 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4239 "other device, disabling DMA\n");
5444a6f4 4240 }
565083e1 4241
e424675f
JG
4242 if (ap->flags & ATA_FLAG_NO_IORDY)
4243 xfer_mask &= ata_pio_mask_no_iordy(dev);
4244
5444a6f4 4245 if (ap->ops->mode_filter)
a76b62ca 4246 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4247
8343f889
RH
4248 /* Apply cable rule here. Don't apply it early because when
4249 * we handle hot plug the cable type can itself change.
4250 * Check this last so that we know if the transfer rate was
4251 * solely limited by the cable.
4252 * Unknown or 80 wire cables reported host side are checked
4253 * drive side as well. Cases where we know a 40wire cable
4254 * is used safely for 80 are not checked here.
4255 */
4256 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4257 /* UDMA/44 or higher would be available */
15a5551c 4258 if (cable_is_40wire(ap)) {
2dcb407e 4259 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4260 "limited to UDMA/33 due to 40-wire cable\n");
4261 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4262 }
4263
565083e1
TH
4264 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4265 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4266}
4267
1da177e4
LT
4268/**
4269 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4270 * @dev: Device to which command will be sent
4271 *
780a87f7
JG
4272 * Issue SET FEATURES - XFER MODE command to device @dev
4273 * on port @ap.
4274 *
1da177e4 4275 * LOCKING:
0cba632b 4276 * PCI/etc. bus probe sem.
83206a29
TH
4277 *
4278 * RETURNS:
4279 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4280 */
4281
3373efd8 4282static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4283{
a0123703 4284 struct ata_taskfile tf;
83206a29 4285 unsigned int err_mask;
1da177e4
LT
4286
4287 /* set up set-features taskfile */
4288 DPRINTK("set features - xfer mode\n");
4289
464cf177
TH
4290 /* Some controllers and ATAPI devices show flaky interrupt
4291 * behavior after setting xfer mode. Use polling instead.
4292 */
3373efd8 4293 ata_tf_init(dev, &tf);
a0123703
TH
4294 tf.command = ATA_CMD_SET_FEATURES;
4295 tf.feature = SETFEATURES_XFER;
464cf177 4296 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4297 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4298 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4299 if (ata_pio_need_iordy(dev))
4300 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4301 /* If the device has IORDY and the controller does not - turn it off */
4302 else if (ata_id_has_iordy(dev->id))
11b7becc 4303 tf.nsect = 0x01;
b9f8ab2d
AC
4304 else /* In the ancient relic department - skip all of this */
4305 return 0;
1da177e4 4306
2b789108 4307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4308
4309 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4310 return err_mask;
4311}
9f45cbd3 4312/**
218f3d30 4313 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4314 * @dev: Device to which command will be sent
4315 * @enable: Whether to enable or disable the feature
218f3d30 4316 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4317 *
4318 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4319 * on port @ap with sector count
9f45cbd3
KCA
4320 *
4321 * LOCKING:
4322 * PCI/etc. bus probe sem.
4323 *
4324 * RETURNS:
4325 * 0 on success, AC_ERR_* mask otherwise.
4326 */
218f3d30
JG
4327static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4328 u8 feature)
9f45cbd3
KCA
4329{
4330 struct ata_taskfile tf;
4331 unsigned int err_mask;
4332
4333 /* set up set-features taskfile */
4334 DPRINTK("set features - SATA features\n");
4335
4336 ata_tf_init(dev, &tf);
4337 tf.command = ATA_CMD_SET_FEATURES;
4338 tf.feature = enable;
4339 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4340 tf.protocol = ATA_PROT_NODATA;
218f3d30 4341 tf.nsect = feature;
9f45cbd3 4342
2b789108 4343 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4344
83206a29
TH
4345 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4346 return err_mask;
1da177e4
LT
4347}
4348
8bf62ece
AL
4349/**
4350 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4351 * @dev: Device to which command will be sent
e2a7f77a
RD
4352 * @heads: Number of heads (taskfile parameter)
4353 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4354 *
4355 * LOCKING:
6aff8f1f
TH
4356 * Kernel thread context (may sleep)
4357 *
4358 * RETURNS:
4359 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4360 */
3373efd8
TH
4361static unsigned int ata_dev_init_params(struct ata_device *dev,
4362 u16 heads, u16 sectors)
8bf62ece 4363{
a0123703 4364 struct ata_taskfile tf;
6aff8f1f 4365 unsigned int err_mask;
8bf62ece
AL
4366
4367 /* Number of sectors per track 1-255. Number of heads 1-16 */
4368 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4369 return AC_ERR_INVALID;
8bf62ece
AL
4370
4371 /* set up init dev params taskfile */
4372 DPRINTK("init dev params \n");
4373
3373efd8 4374 ata_tf_init(dev, &tf);
a0123703
TH
4375 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4376 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4377 tf.protocol = ATA_PROT_NODATA;
4378 tf.nsect = sectors;
4379 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4380
2b789108 4381 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4382 /* A clean abort indicates an original or just out of spec drive
4383 and we should continue as we issue the setup based on the
4384 drive reported working geometry */
4385 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4386 err_mask = 0;
8bf62ece 4387
6aff8f1f
TH
4388 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4389 return err_mask;
8bf62ece
AL
4390}
4391
1da177e4 4392/**
0cba632b
JG
4393 * ata_sg_clean - Unmap DMA memory associated with command
4394 * @qc: Command containing DMA memory to be released
4395 *
4396 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4397 *
4398 * LOCKING:
cca3974e 4399 * spin_lock_irqsave(host lock)
1da177e4 4400 */
70e6ad0c 4401void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4402{
4403 struct ata_port *ap = qc->ap;
ff2aeb1e 4404 struct scatterlist *sg = qc->sg;
1da177e4
LT
4405 int dir = qc->dma_dir;
4406
a4631474 4407 WARN_ON(sg == NULL);
1da177e4 4408
dde20207 4409 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4410
dde20207
JB
4411 if (qc->n_elem)
4412 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
1da177e4
LT
4413
4414 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4415 qc->sg = NULL;
1da177e4
LT
4416}
4417
1da177e4 4418/**
5895ef9a 4419 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4420 * @qc: Metadata associated with taskfile to check
4421 *
780a87f7
JG
4422 * Allow low-level driver to filter ATA PACKET commands, returning
4423 * a status indicating whether or not it is OK to use DMA for the
4424 * supplied PACKET command.
4425 *
1da177e4 4426 * LOCKING:
624d5c51
TH
4427 * spin_lock_irqsave(host lock)
4428 *
4429 * RETURNS: 0 when ATAPI DMA can be used
4430 * nonzero otherwise
4431 */
5895ef9a 4432int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4433{
4434 struct ata_port *ap = qc->ap;
71601958 4435
624d5c51
TH
4436 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4437 * few ATAPI devices choke on such DMA requests.
4438 */
4439 if (unlikely(qc->nbytes & 15))
4440 return 1;
e2cec771 4441
624d5c51
TH
4442 if (ap->ops->check_atapi_dma)
4443 return ap->ops->check_atapi_dma(qc);
e2cec771 4444
624d5c51
TH
4445 return 0;
4446}
1da177e4 4447
624d5c51
TH
4448/**
4449 * ata_std_qc_defer - Check whether a qc needs to be deferred
4450 * @qc: ATA command in question
4451 *
4452 * Non-NCQ commands cannot run with any other command, NCQ or
4453 * not. As upper layer only knows the queue depth, we are
4454 * responsible for maintaining exclusion. This function checks
4455 * whether a new command @qc can be issued.
4456 *
4457 * LOCKING:
4458 * spin_lock_irqsave(host lock)
4459 *
4460 * RETURNS:
4461 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4462 */
4463int ata_std_qc_defer(struct ata_queued_cmd *qc)
4464{
4465 struct ata_link *link = qc->dev->link;
e2cec771 4466
624d5c51
TH
4467 if (qc->tf.protocol == ATA_PROT_NCQ) {
4468 if (!ata_tag_valid(link->active_tag))
4469 return 0;
4470 } else {
4471 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4472 return 0;
4473 }
e2cec771 4474
624d5c51
TH
4475 return ATA_DEFER_LINK;
4476}
6912ccd5 4477
624d5c51 4478void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4479
624d5c51
TH
4480/**
4481 * ata_sg_init - Associate command with scatter-gather table.
4482 * @qc: Command to be associated
4483 * @sg: Scatter-gather table.
4484 * @n_elem: Number of elements in s/g table.
4485 *
4486 * Initialize the data-related elements of queued_cmd @qc
4487 * to point to a scatter-gather table @sg, containing @n_elem
4488 * elements.
4489 *
4490 * LOCKING:
4491 * spin_lock_irqsave(host lock)
4492 */
4493void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4494 unsigned int n_elem)
4495{
4496 qc->sg = sg;
4497 qc->n_elem = n_elem;
4498 qc->cursg = qc->sg;
4499}
bb5cb290 4500
624d5c51
TH
4501/**
4502 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4503 * @qc: Command with scatter-gather table to be mapped.
4504 *
4505 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4506 *
4507 * LOCKING:
4508 * spin_lock_irqsave(host lock)
4509 *
4510 * RETURNS:
4511 * Zero on success, negative on error.
4512 *
4513 */
4514static int ata_sg_setup(struct ata_queued_cmd *qc)
4515{
4516 struct ata_port *ap = qc->ap;
4517 unsigned int n_elem;
1da177e4 4518
624d5c51 4519 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4520
624d5c51
TH
4521 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4522 if (n_elem < 1)
4523 return -1;
bb5cb290 4524
624d5c51 4525 DPRINTK("%d sg elements mapped\n", n_elem);
bb5cb290 4526
624d5c51
TH
4527 qc->n_elem = n_elem;
4528 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4529
624d5c51 4530 return 0;
1da177e4
LT
4531}
4532
624d5c51
TH
4533/**
4534 * swap_buf_le16 - swap halves of 16-bit words in place
4535 * @buf: Buffer to swap
4536 * @buf_words: Number of 16-bit words in buffer.
4537 *
4538 * Swap halves of 16-bit words if needed to convert from
4539 * little-endian byte order to native cpu byte order, or
4540 * vice-versa.
4541 *
4542 * LOCKING:
4543 * Inherited from caller.
4544 */
4545void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4546{
624d5c51
TH
4547#ifdef __BIG_ENDIAN
4548 unsigned int i;
8061f5f0 4549
624d5c51
TH
4550 for (i = 0; i < buf_words; i++)
4551 buf[i] = le16_to_cpu(buf[i]);
4552#endif /* __BIG_ENDIAN */
8061f5f0
TH
4553}
4554
1da177e4
LT
4555/**
4556 * ata_qc_new - Request an available ATA command, for queueing
4557 * @ap: Port associated with device @dev
4558 * @dev: Device from whom we request an available command structure
4559 *
4560 * LOCKING:
0cba632b 4561 * None.
1da177e4
LT
4562 */
4563
4564static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4565{
4566 struct ata_queued_cmd *qc = NULL;
4567 unsigned int i;
4568
e3180499 4569 /* no command while frozen */
b51e9e5d 4570 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4571 return NULL;
4572
2ab7db1f
TH
4573 /* the last tag is reserved for internal command. */
4574 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4575 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4576 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4577 break;
4578 }
4579
4580 if (qc)
4581 qc->tag = i;
4582
4583 return qc;
4584}
4585
4586/**
4587 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4588 * @dev: Device from whom we request an available command structure
4589 *
4590 * LOCKING:
0cba632b 4591 * None.
1da177e4
LT
4592 */
4593
3373efd8 4594struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4595{
9af5c9c9 4596 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4597 struct ata_queued_cmd *qc;
4598
4599 qc = ata_qc_new(ap);
4600 if (qc) {
1da177e4
LT
4601 qc->scsicmd = NULL;
4602 qc->ap = ap;
4603 qc->dev = dev;
1da177e4 4604
2c13b7ce 4605 ata_qc_reinit(qc);
1da177e4
LT
4606 }
4607
4608 return qc;
4609}
4610
1da177e4
LT
4611/**
4612 * ata_qc_free - free unused ata_queued_cmd
4613 * @qc: Command to complete
4614 *
4615 * Designed to free unused ata_queued_cmd object
4616 * in case something prevents using it.
4617 *
4618 * LOCKING:
cca3974e 4619 * spin_lock_irqsave(host lock)
1da177e4
LT
4620 */
4621void ata_qc_free(struct ata_queued_cmd *qc)
4622{
4ba946e9
TH
4623 struct ata_port *ap = qc->ap;
4624 unsigned int tag;
4625
a4631474 4626 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4627
4ba946e9
TH
4628 qc->flags = 0;
4629 tag = qc->tag;
4630 if (likely(ata_tag_valid(tag))) {
4ba946e9 4631 qc->tag = ATA_TAG_POISON;
6cec4a39 4632 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4633 }
1da177e4
LT
4634}
4635
76014427 4636void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4637{
dedaf2b0 4638 struct ata_port *ap = qc->ap;
9af5c9c9 4639 struct ata_link *link = qc->dev->link;
dedaf2b0 4640
a4631474
TH
4641 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4642 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4643
4644 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4645 ata_sg_clean(qc);
4646
7401abf2 4647 /* command should be marked inactive atomically with qc completion */
da917d69 4648 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4649 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4650 if (!link->sactive)
4651 ap->nr_active_links--;
4652 } else {
9af5c9c9 4653 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4654 ap->nr_active_links--;
4655 }
4656
4657 /* clear exclusive status */
4658 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4659 ap->excl_link == link))
4660 ap->excl_link = NULL;
7401abf2 4661
3f3791d3
AL
4662 /* atapi: mark qc as inactive to prevent the interrupt handler
4663 * from completing the command twice later, before the error handler
4664 * is called. (when rc != 0 and atapi request sense is needed)
4665 */
4666 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4667 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4668
1da177e4 4669 /* call completion callback */
77853bf2 4670 qc->complete_fn(qc);
1da177e4
LT
4671}
4672
39599a53
TH
4673static void fill_result_tf(struct ata_queued_cmd *qc)
4674{
4675 struct ata_port *ap = qc->ap;
4676
39599a53 4677 qc->result_tf.flags = qc->tf.flags;
22183bf5 4678 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4679}
4680
00115e0f
TH
4681static void ata_verify_xfer(struct ata_queued_cmd *qc)
4682{
4683 struct ata_device *dev = qc->dev;
4684
4685 if (ata_tag_internal(qc->tag))
4686 return;
4687
4688 if (ata_is_nodata(qc->tf.protocol))
4689 return;
4690
4691 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4692 return;
4693
4694 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4695}
4696
f686bcb8
TH
4697/**
4698 * ata_qc_complete - Complete an active ATA command
4699 * @qc: Command to complete
4700 * @err_mask: ATA Status register contents
4701 *
4702 * Indicate to the mid and upper layers that an ATA
4703 * command has completed, with either an ok or not-ok status.
4704 *
4705 * LOCKING:
cca3974e 4706 * spin_lock_irqsave(host lock)
f686bcb8
TH
4707 */
4708void ata_qc_complete(struct ata_queued_cmd *qc)
4709{
4710 struct ata_port *ap = qc->ap;
4711
4712 /* XXX: New EH and old EH use different mechanisms to
4713 * synchronize EH with regular execution path.
4714 *
4715 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4716 * Normal execution path is responsible for not accessing a
4717 * failed qc. libata core enforces the rule by returning NULL
4718 * from ata_qc_from_tag() for failed qcs.
4719 *
4720 * Old EH depends on ata_qc_complete() nullifying completion
4721 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4722 * not synchronize with interrupt handler. Only PIO task is
4723 * taken care of.
4724 */
4725 if (ap->ops->error_handler) {
4dbfa39b
TH
4726 struct ata_device *dev = qc->dev;
4727 struct ata_eh_info *ehi = &dev->link->eh_info;
4728
b51e9e5d 4729 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4730
4731 if (unlikely(qc->err_mask))
4732 qc->flags |= ATA_QCFLAG_FAILED;
4733
4734 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4735 if (!ata_tag_internal(qc->tag)) {
4736 /* always fill result TF for failed qc */
39599a53 4737 fill_result_tf(qc);
f686bcb8
TH
4738 ata_qc_schedule_eh(qc);
4739 return;
4740 }
4741 }
4742
4743 /* read result TF if requested */
4744 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4745 fill_result_tf(qc);
f686bcb8 4746
4dbfa39b
TH
4747 /* Some commands need post-processing after successful
4748 * completion.
4749 */
4750 switch (qc->tf.command) {
4751 case ATA_CMD_SET_FEATURES:
4752 if (qc->tf.feature != SETFEATURES_WC_ON &&
4753 qc->tf.feature != SETFEATURES_WC_OFF)
4754 break;
4755 /* fall through */
4756 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4757 case ATA_CMD_SET_MULTI: /* multi_count changed */
4758 /* revalidate device */
4759 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4760 ata_port_schedule_eh(ap);
4761 break;
054a5fba
TH
4762
4763 case ATA_CMD_SLEEP:
4764 dev->flags |= ATA_DFLAG_SLEEPING;
4765 break;
4dbfa39b
TH
4766 }
4767
00115e0f
TH
4768 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4769 ata_verify_xfer(qc);
4770
f686bcb8
TH
4771 __ata_qc_complete(qc);
4772 } else {
4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4774 return;
4775
4776 /* read result TF if failed or requested */
4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4778 fill_result_tf(qc);
f686bcb8
TH
4779
4780 __ata_qc_complete(qc);
4781 }
4782}
4783
dedaf2b0
TH
4784/**
4785 * ata_qc_complete_multiple - Complete multiple qcs successfully
4786 * @ap: port in question
4787 * @qc_active: new qc_active mask
dedaf2b0
TH
4788 *
4789 * Complete in-flight commands. This functions is meant to be
4790 * called from low-level driver's interrupt routine to complete
4791 * requests normally. ap->qc_active and @qc_active is compared
4792 * and commands are completed accordingly.
4793 *
4794 * LOCKING:
cca3974e 4795 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4796 *
4797 * RETURNS:
4798 * Number of completed commands on success, -errno otherwise.
4799 */
79f97dad 4800int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4801{
4802 int nr_done = 0;
4803 u32 done_mask;
4804 int i;
4805
4806 done_mask = ap->qc_active ^ qc_active;
4807
4808 if (unlikely(done_mask & qc_active)) {
4809 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4810 "(%08x->%08x)\n", ap->qc_active, qc_active);
4811 return -EINVAL;
4812 }
4813
4814 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4815 struct ata_queued_cmd *qc;
4816
4817 if (!(done_mask & (1 << i)))
4818 continue;
4819
4820 if ((qc = ata_qc_from_tag(ap, i))) {
dedaf2b0
TH
4821 ata_qc_complete(qc);
4822 nr_done++;
4823 }
4824 }
4825
4826 return nr_done;
4827}
4828
1da177e4
LT
4829/**
4830 * ata_qc_issue - issue taskfile to device
4831 * @qc: command to issue to device
4832 *
4833 * Prepare an ATA command to submission to device.
4834 * This includes mapping the data into a DMA-able
4835 * area, filling in the S/G table, and finally
4836 * writing the taskfile to hardware, starting the command.
4837 *
4838 * LOCKING:
cca3974e 4839 * spin_lock_irqsave(host lock)
1da177e4 4840 */
8e0e694a 4841void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4842{
4843 struct ata_port *ap = qc->ap;
9af5c9c9 4844 struct ata_link *link = qc->dev->link;
405e66b3 4845 u8 prot = qc->tf.protocol;
1da177e4 4846
dedaf2b0
TH
4847 /* Make sure only one non-NCQ command is outstanding. The
4848 * check is skipped for old EH because it reuses active qc to
4849 * request ATAPI sense.
4850 */
9af5c9c9 4851 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 4852
1973a023 4853 if (ata_is_ncq(prot)) {
9af5c9c9 4854 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
4855
4856 if (!link->sactive)
4857 ap->nr_active_links++;
9af5c9c9 4858 link->sactive |= 1 << qc->tag;
dedaf2b0 4859 } else {
9af5c9c9 4860 WARN_ON(link->sactive);
da917d69
TH
4861
4862 ap->nr_active_links++;
9af5c9c9 4863 link->active_tag = qc->tag;
dedaf2b0
TH
4864 }
4865
e4a70e76 4866 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4867 ap->qc_active |= 1 << qc->tag;
e4a70e76 4868
f92a2636
TH
4869 /* We guarantee to LLDs that they will have at least one
4870 * non-zero sg if the command is a data command.
4871 */
ff2aeb1e 4872 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 4873
405e66b3 4874 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 4875 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
4876 if (ata_sg_setup(qc))
4877 goto sg_err;
1da177e4 4878
cf480626 4879 /* if device is sleeping, schedule reset and abort the link */
054a5fba 4880 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 4881 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
4882 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4883 ata_link_abort(link);
4884 return;
4885 }
4886
1da177e4
LT
4887 ap->ops->qc_prep(qc);
4888
8e0e694a
TH
4889 qc->err_mask |= ap->ops->qc_issue(qc);
4890 if (unlikely(qc->err_mask))
4891 goto err;
4892 return;
1da177e4 4893
8e436af9 4894sg_err:
8e0e694a
TH
4895 qc->err_mask |= AC_ERR_SYSTEM;
4896err:
4897 ata_qc_complete(qc);
1da177e4
LT
4898}
4899
34bf2170
TH
4900/**
4901 * sata_scr_valid - test whether SCRs are accessible
936fd732 4902 * @link: ATA link to test SCR accessibility for
34bf2170 4903 *
936fd732 4904 * Test whether SCRs are accessible for @link.
34bf2170
TH
4905 *
4906 * LOCKING:
4907 * None.
4908 *
4909 * RETURNS:
4910 * 1 if SCRs are accessible, 0 otherwise.
4911 */
936fd732 4912int sata_scr_valid(struct ata_link *link)
34bf2170 4913{
936fd732
TH
4914 struct ata_port *ap = link->ap;
4915
a16abc0b 4916 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
4917}
4918
4919/**
4920 * sata_scr_read - read SCR register of the specified port
936fd732 4921 * @link: ATA link to read SCR for
34bf2170
TH
4922 * @reg: SCR to read
4923 * @val: Place to store read value
4924 *
936fd732 4925 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
4926 * guaranteed to succeed if @link is ap->link, the cable type of
4927 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
4928 *
4929 * LOCKING:
633273a3 4930 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4931 *
4932 * RETURNS:
4933 * 0 on success, negative errno on failure.
4934 */
936fd732 4935int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 4936{
633273a3 4937 if (ata_is_host_link(link)) {
633273a3 4938 if (sata_scr_valid(link))
82ef04fb 4939 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
4940 return -EOPNOTSUPP;
4941 }
4942
4943 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
4944}
4945
4946/**
4947 * sata_scr_write - write SCR register of the specified port
936fd732 4948 * @link: ATA link to write SCR for
34bf2170
TH
4949 * @reg: SCR to write
4950 * @val: value to write
4951 *
936fd732 4952 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
4953 * guaranteed to succeed if @link is ap->link, the cable type of
4954 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
4955 *
4956 * LOCKING:
633273a3 4957 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4958 *
4959 * RETURNS:
4960 * 0 on success, negative errno on failure.
4961 */
936fd732 4962int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 4963{
633273a3 4964 if (ata_is_host_link(link)) {
633273a3 4965 if (sata_scr_valid(link))
82ef04fb 4966 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
4967 return -EOPNOTSUPP;
4968 }
936fd732 4969
633273a3 4970 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
4971}
4972
4973/**
4974 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 4975 * @link: ATA link to write SCR for
34bf2170
TH
4976 * @reg: SCR to write
4977 * @val: value to write
4978 *
4979 * This function is identical to sata_scr_write() except that this
4980 * function performs flush after writing to the register.
4981 *
4982 * LOCKING:
633273a3 4983 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4984 *
4985 * RETURNS:
4986 * 0 on success, negative errno on failure.
4987 */
936fd732 4988int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 4989{
633273a3 4990 if (ata_is_host_link(link)) {
633273a3 4991 int rc;
da3dbb17 4992
633273a3 4993 if (sata_scr_valid(link)) {
82ef04fb 4994 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 4995 if (rc == 0)
82ef04fb 4996 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
4997 return rc;
4998 }
4999 return -EOPNOTSUPP;
34bf2170 5000 }
633273a3
TH
5001
5002 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5003}
5004
5005/**
b1c72916 5006 * ata_phys_link_online - test whether the given link is online
936fd732 5007 * @link: ATA link to test
34bf2170 5008 *
936fd732
TH
5009 * Test whether @link is online. Note that this function returns
5010 * 0 if online status of @link cannot be obtained, so
5011 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5012 *
5013 * LOCKING:
5014 * None.
5015 *
5016 * RETURNS:
b5b3fa38 5017 * True if the port online status is available and online.
34bf2170 5018 */
b1c72916 5019bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5020{
5021 u32 sstatus;
5022
936fd732
TH
5023 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5024 (sstatus & 0xf) == 0x3)
b5b3fa38
TH
5025 return true;
5026 return false;
34bf2170
TH
5027}
5028
5029/**
b1c72916 5030 * ata_phys_link_offline - test whether the given link is offline
936fd732 5031 * @link: ATA link to test
34bf2170 5032 *
936fd732
TH
5033 * Test whether @link is offline. Note that this function
5034 * returns 0 if offline status of @link cannot be obtained, so
5035 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5036 *
5037 * LOCKING:
5038 * None.
5039 *
5040 * RETURNS:
b5b3fa38 5041 * True if the port offline status is available and offline.
34bf2170 5042 */
b1c72916 5043bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5044{
5045 u32 sstatus;
5046
936fd732
TH
5047 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5048 (sstatus & 0xf) != 0x3)
b5b3fa38
TH
5049 return true;
5050 return false;
34bf2170 5051}
0baab86b 5052
b1c72916
TH
5053/**
5054 * ata_link_online - test whether the given link is online
5055 * @link: ATA link to test
5056 *
5057 * Test whether @link is online. This is identical to
5058 * ata_phys_link_online() when there's no slave link. When
5059 * there's a slave link, this function should only be called on
5060 * the master link and will return true if any of M/S links is
5061 * online.
5062 *
5063 * LOCKING:
5064 * None.
5065 *
5066 * RETURNS:
5067 * True if the port online status is available and online.
5068 */
5069bool ata_link_online(struct ata_link *link)
5070{
5071 struct ata_link *slave = link->ap->slave_link;
5072
5073 WARN_ON(link == slave); /* shouldn't be called on slave link */
5074
5075 return ata_phys_link_online(link) ||
5076 (slave && ata_phys_link_online(slave));
5077}
5078
5079/**
5080 * ata_link_offline - test whether the given link is offline
5081 * @link: ATA link to test
5082 *
5083 * Test whether @link is offline. This is identical to
5084 * ata_phys_link_offline() when there's no slave link. When
5085 * there's a slave link, this function should only be called on
5086 * the master link and will return true if both M/S links are
5087 * offline.
5088 *
5089 * LOCKING:
5090 * None.
5091 *
5092 * RETURNS:
5093 * True if the port offline status is available and offline.
5094 */
5095bool ata_link_offline(struct ata_link *link)
5096{
5097 struct ata_link *slave = link->ap->slave_link;
5098
5099 WARN_ON(link == slave); /* shouldn't be called on slave link */
5100
5101 return ata_phys_link_offline(link) &&
5102 (!slave || ata_phys_link_offline(slave));
5103}
5104
6ffa01d8 5105#ifdef CONFIG_PM
cca3974e
JG
5106static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5107 unsigned int action, unsigned int ehi_flags,
5108 int wait)
500530f6
TH
5109{
5110 unsigned long flags;
5111 int i, rc;
5112
cca3974e
JG
5113 for (i = 0; i < host->n_ports; i++) {
5114 struct ata_port *ap = host->ports[i];
e3667ebf 5115 struct ata_link *link;
500530f6
TH
5116
5117 /* Previous resume operation might still be in
5118 * progress. Wait for PM_PENDING to clear.
5119 */
5120 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5121 ata_port_wait_eh(ap);
5122 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5123 }
5124
5125 /* request PM ops to EH */
5126 spin_lock_irqsave(ap->lock, flags);
5127
5128 ap->pm_mesg = mesg;
5129 if (wait) {
5130 rc = 0;
5131 ap->pm_result = &rc;
5132 }
5133
5134 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
5135 __ata_port_for_each_link(link, ap) {
5136 link->eh_info.action |= action;
5137 link->eh_info.flags |= ehi_flags;
5138 }
500530f6
TH
5139
5140 ata_port_schedule_eh(ap);
5141
5142 spin_unlock_irqrestore(ap->lock, flags);
5143
5144 /* wait and check result */
5145 if (wait) {
5146 ata_port_wait_eh(ap);
5147 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5148 if (rc)
5149 return rc;
5150 }
5151 }
5152
5153 return 0;
5154}
5155
5156/**
cca3974e
JG
5157 * ata_host_suspend - suspend host
5158 * @host: host to suspend
500530f6
TH
5159 * @mesg: PM message
5160 *
cca3974e 5161 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5162 * function requests EH to perform PM operations and waits for EH
5163 * to finish.
5164 *
5165 * LOCKING:
5166 * Kernel thread context (may sleep).
5167 *
5168 * RETURNS:
5169 * 0 on success, -errno on failure.
5170 */
cca3974e 5171int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5172{
9666f400 5173 int rc;
500530f6 5174
ca77329f
KCA
5175 /*
5176 * disable link pm on all ports before requesting
5177 * any pm activity
5178 */
5179 ata_lpm_enable(host);
5180
cca3974e 5181 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5182 if (rc == 0)
5183 host->dev->power.power_state = mesg;
500530f6
TH
5184 return rc;
5185}
5186
5187/**
cca3974e
JG
5188 * ata_host_resume - resume host
5189 * @host: host to resume
500530f6 5190 *
cca3974e 5191 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5192 * function requests EH to perform PM operations and returns.
5193 * Note that all resume operations are performed parallely.
5194 *
5195 * LOCKING:
5196 * Kernel thread context (may sleep).
5197 */
cca3974e 5198void ata_host_resume(struct ata_host *host)
500530f6 5199{
cf480626 5200 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5201 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5202 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5203
5204 /* reenable link pm */
5205 ata_lpm_disable(host);
500530f6 5206}
6ffa01d8 5207#endif
500530f6 5208
c893a3ae
RD
5209/**
5210 * ata_port_start - Set port up for dma.
5211 * @ap: Port to initialize
5212 *
5213 * Called just after data structures for each port are
5214 * initialized. Allocates space for PRD table.
5215 *
5216 * May be used as the port_start() entry in ata_port_operations.
5217 *
5218 * LOCKING:
5219 * Inherited from caller.
5220 */
f0d36efd 5221int ata_port_start(struct ata_port *ap)
1da177e4 5222{
2f1f610b 5223 struct device *dev = ap->dev;
1da177e4 5224
f0d36efd
TH
5225 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5226 GFP_KERNEL);
1da177e4
LT
5227 if (!ap->prd)
5228 return -ENOMEM;
5229
1da177e4
LT
5230 return 0;
5231}
5232
3ef3b43d
TH
5233/**
5234 * ata_dev_init - Initialize an ata_device structure
5235 * @dev: Device structure to initialize
5236 *
5237 * Initialize @dev in preparation for probing.
5238 *
5239 * LOCKING:
5240 * Inherited from caller.
5241 */
5242void ata_dev_init(struct ata_device *dev)
5243{
b1c72916 5244 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5245 struct ata_port *ap = link->ap;
72fa4b74
TH
5246 unsigned long flags;
5247
b1c72916 5248 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5249 link->sata_spd_limit = link->hw_sata_spd_limit;
5250 link->sata_spd = 0;
5a04bf4b 5251
72fa4b74
TH
5252 /* High bits of dev->flags are used to record warm plug
5253 * requests which occur asynchronously. Synchronize using
cca3974e 5254 * host lock.
72fa4b74 5255 */
ba6a1308 5256 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5257 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5258 dev->horkage = 0;
ba6a1308 5259 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5260
72fa4b74
TH
5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5263 dev->pio_mask = UINT_MAX;
5264 dev->mwdma_mask = UINT_MAX;
5265 dev->udma_mask = UINT_MAX;
5266}
5267
4fb37a25
TH
5268/**
5269 * ata_link_init - Initialize an ata_link structure
5270 * @ap: ATA port link is attached to
5271 * @link: Link structure to initialize
8989805d 5272 * @pmp: Port multiplier port number
4fb37a25
TH
5273 *
5274 * Initialize @link.
5275 *
5276 * LOCKING:
5277 * Kernel thread context (may sleep)
5278 */
fb7fd614 5279void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5280{
5281 int i;
5282
5283 /* clear everything except for devices */
5284 memset(link, 0, offsetof(struct ata_link, device[0]));
5285
5286 link->ap = ap;
8989805d 5287 link->pmp = pmp;
4fb37a25
TH
5288 link->active_tag = ATA_TAG_POISON;
5289 link->hw_sata_spd_limit = UINT_MAX;
5290
5291 /* can't use iterator, ap isn't initialized yet */
5292 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5293 struct ata_device *dev = &link->device[i];
5294
5295 dev->link = link;
5296 dev->devno = dev - link->device;
5297 ata_dev_init(dev);
5298 }
5299}
5300
5301/**
5302 * sata_link_init_spd - Initialize link->sata_spd_limit
5303 * @link: Link to configure sata_spd_limit for
5304 *
5305 * Initialize @link->[hw_]sata_spd_limit to the currently
5306 * configured value.
5307 *
5308 * LOCKING:
5309 * Kernel thread context (may sleep).
5310 *
5311 * RETURNS:
5312 * 0 on success, -errno on failure.
5313 */
fb7fd614 5314int sata_link_init_spd(struct ata_link *link)
4fb37a25 5315{
33267325 5316 u8 spd;
4fb37a25
TH
5317 int rc;
5318
d127ea7b 5319 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5320 if (rc)
5321 return rc;
5322
d127ea7b 5323 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5324 if (spd)
5325 link->hw_sata_spd_limit &= (1 << spd) - 1;
5326
05944bdf 5327 ata_force_link_limits(link);
33267325 5328
4fb37a25
TH
5329 link->sata_spd_limit = link->hw_sata_spd_limit;
5330
5331 return 0;
5332}
5333
1da177e4 5334/**
f3187195
TH
5335 * ata_port_alloc - allocate and initialize basic ATA port resources
5336 * @host: ATA host this allocated port belongs to
1da177e4 5337 *
f3187195
TH
5338 * Allocate and initialize basic ATA port resources.
5339 *
5340 * RETURNS:
5341 * Allocate ATA port on success, NULL on failure.
0cba632b 5342 *
1da177e4 5343 * LOCKING:
f3187195 5344 * Inherited from calling layer (may sleep).
1da177e4 5345 */
f3187195 5346struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5347{
f3187195 5348 struct ata_port *ap;
1da177e4 5349
f3187195
TH
5350 DPRINTK("ENTER\n");
5351
5352 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5353 if (!ap)
5354 return NULL;
5355
f4d6d004 5356 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5357 ap->lock = &host->lock;
198e0fed 5358 ap->flags = ATA_FLAG_DISABLED;
f3187195 5359 ap->print_id = -1;
1da177e4 5360 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5361 ap->host = host;
f3187195 5362 ap->dev = host->dev;
1da177e4 5363 ap->last_ctl = 0xFF;
bd5d825c
BP
5364
5365#if defined(ATA_VERBOSE_DEBUG)
5366 /* turn on all debugging levels */
5367 ap->msg_enable = 0x00FF;
5368#elif defined(ATA_DEBUG)
5369 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5370#else
0dd4b21f 5371 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5372#endif
1da177e4 5373
127102ae 5374#ifdef CONFIG_ATA_SFF
442eacc3 5375 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
127102ae 5376#endif
65f27f38
DH
5377 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5378 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5379 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5380 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
5381 init_timer_deferrable(&ap->fastdrain_timer);
5382 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5383 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5384
838df628 5385 ap->cbl = ATA_CBL_NONE;
838df628 5386
8989805d 5387 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5388
5389#ifdef ATA_IRQ_TRAP
5390 ap->stats.unhandled_irq = 1;
5391 ap->stats.idle_irq = 1;
5392#endif
1da177e4 5393 return ap;
1da177e4
LT
5394}
5395
f0d36efd
TH
5396static void ata_host_release(struct device *gendev, void *res)
5397{
5398 struct ata_host *host = dev_get_drvdata(gendev);
5399 int i;
5400
1aa506e4
TH
5401 for (i = 0; i < host->n_ports; i++) {
5402 struct ata_port *ap = host->ports[i];
5403
4911487a
TH
5404 if (!ap)
5405 continue;
5406
5407 if (ap->scsi_host)
1aa506e4
TH
5408 scsi_host_put(ap->scsi_host);
5409
633273a3 5410 kfree(ap->pmp_link);
b1c72916 5411 kfree(ap->slave_link);
4911487a 5412 kfree(ap);
1aa506e4
TH
5413 host->ports[i] = NULL;
5414 }
5415
1aa56cca 5416 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5417}
5418
f3187195
TH
5419/**
5420 * ata_host_alloc - allocate and init basic ATA host resources
5421 * @dev: generic device this host is associated with
5422 * @max_ports: maximum number of ATA ports associated with this host
5423 *
5424 * Allocate and initialize basic ATA host resources. LLD calls
5425 * this function to allocate a host, initializes it fully and
5426 * attaches it using ata_host_register().
5427 *
5428 * @max_ports ports are allocated and host->n_ports is
5429 * initialized to @max_ports. The caller is allowed to decrease
5430 * host->n_ports before calling ata_host_register(). The unused
5431 * ports will be automatically freed on registration.
5432 *
5433 * RETURNS:
5434 * Allocate ATA host on success, NULL on failure.
5435 *
5436 * LOCKING:
5437 * Inherited from calling layer (may sleep).
5438 */
5439struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5440{
5441 struct ata_host *host;
5442 size_t sz;
5443 int i;
5444
5445 DPRINTK("ENTER\n");
5446
5447 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5448 return NULL;
5449
5450 /* alloc a container for our list of ATA ports (buses) */
5451 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5452 /* alloc a container for our list of ATA ports (buses) */
5453 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5454 if (!host)
5455 goto err_out;
5456
5457 devres_add(dev, host);
5458 dev_set_drvdata(dev, host);
5459
5460 spin_lock_init(&host->lock);
5461 host->dev = dev;
5462 host->n_ports = max_ports;
5463
5464 /* allocate ports bound to this host */
5465 for (i = 0; i < max_ports; i++) {
5466 struct ata_port *ap;
5467
5468 ap = ata_port_alloc(host);
5469 if (!ap)
5470 goto err_out;
5471
5472 ap->port_no = i;
5473 host->ports[i] = ap;
5474 }
5475
5476 devres_remove_group(dev, NULL);
5477 return host;
5478
5479 err_out:
5480 devres_release_group(dev, NULL);
5481 return NULL;
5482}
5483
f5cda257
TH
5484/**
5485 * ata_host_alloc_pinfo - alloc host and init with port_info array
5486 * @dev: generic device this host is associated with
5487 * @ppi: array of ATA port_info to initialize host with
5488 * @n_ports: number of ATA ports attached to this host
5489 *
5490 * Allocate ATA host and initialize with info from @ppi. If NULL
5491 * terminated, @ppi may contain fewer entries than @n_ports. The
5492 * last entry will be used for the remaining ports.
5493 *
5494 * RETURNS:
5495 * Allocate ATA host on success, NULL on failure.
5496 *
5497 * LOCKING:
5498 * Inherited from calling layer (may sleep).
5499 */
5500struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5501 const struct ata_port_info * const * ppi,
5502 int n_ports)
5503{
5504 const struct ata_port_info *pi;
5505 struct ata_host *host;
5506 int i, j;
5507
5508 host = ata_host_alloc(dev, n_ports);
5509 if (!host)
5510 return NULL;
5511
5512 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5513 struct ata_port *ap = host->ports[i];
5514
5515 if (ppi[j])
5516 pi = ppi[j++];
5517
5518 ap->pio_mask = pi->pio_mask;
5519 ap->mwdma_mask = pi->mwdma_mask;
5520 ap->udma_mask = pi->udma_mask;
5521 ap->flags |= pi->flags;
0c88758b 5522 ap->link.flags |= pi->link_flags;
f5cda257
TH
5523 ap->ops = pi->port_ops;
5524
5525 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5526 host->ops = pi->port_ops;
f5cda257
TH
5527 }
5528
5529 return host;
5530}
5531
b1c72916
TH
5532/**
5533 * ata_slave_link_init - initialize slave link
5534 * @ap: port to initialize slave link for
5535 *
5536 * Create and initialize slave link for @ap. This enables slave
5537 * link handling on the port.
5538 *
5539 * In libata, a port contains links and a link contains devices.
5540 * There is single host link but if a PMP is attached to it,
5541 * there can be multiple fan-out links. On SATA, there's usually
5542 * a single device connected to a link but PATA and SATA
5543 * controllers emulating TF based interface can have two - master
5544 * and slave.
5545 *
5546 * However, there are a few controllers which don't fit into this
5547 * abstraction too well - SATA controllers which emulate TF
5548 * interface with both master and slave devices but also have
5549 * separate SCR register sets for each device. These controllers
5550 * need separate links for physical link handling
5551 * (e.g. onlineness, link speed) but should be treated like a
5552 * traditional M/S controller for everything else (e.g. command
5553 * issue, softreset).
5554 *
5555 * slave_link is libata's way of handling this class of
5556 * controllers without impacting core layer too much. For
5557 * anything other than physical link handling, the default host
5558 * link is used for both master and slave. For physical link
5559 * handling, separate @ap->slave_link is used. All dirty details
5560 * are implemented inside libata core layer. From LLD's POV, the
5561 * only difference is that prereset, hardreset and postreset are
5562 * called once more for the slave link, so the reset sequence
5563 * looks like the following.
5564 *
5565 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5566 * softreset(M) -> postreset(M) -> postreset(S)
5567 *
5568 * Note that softreset is called only for the master. Softreset
5569 * resets both M/S by definition, so SRST on master should handle
5570 * both (the standard method will work just fine).
5571 *
5572 * LOCKING:
5573 * Should be called before host is registered.
5574 *
5575 * RETURNS:
5576 * 0 on success, -errno on failure.
5577 */
5578int ata_slave_link_init(struct ata_port *ap)
5579{
5580 struct ata_link *link;
5581
5582 WARN_ON(ap->slave_link);
5583 WARN_ON(ap->flags & ATA_FLAG_PMP);
5584
5585 link = kzalloc(sizeof(*link), GFP_KERNEL);
5586 if (!link)
5587 return -ENOMEM;
5588
5589 ata_link_init(ap, link, 1);
5590 ap->slave_link = link;
5591 return 0;
5592}
5593
32ebbc0c
TH
5594static void ata_host_stop(struct device *gendev, void *res)
5595{
5596 struct ata_host *host = dev_get_drvdata(gendev);
5597 int i;
5598
5599 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5600
5601 for (i = 0; i < host->n_ports; i++) {
5602 struct ata_port *ap = host->ports[i];
5603
5604 if (ap->ops->port_stop)
5605 ap->ops->port_stop(ap);
5606 }
5607
5608 if (host->ops->host_stop)
5609 host->ops->host_stop(host);
5610}
5611
029cfd6b
TH
5612/**
5613 * ata_finalize_port_ops - finalize ata_port_operations
5614 * @ops: ata_port_operations to finalize
5615 *
5616 * An ata_port_operations can inherit from another ops and that
5617 * ops can again inherit from another. This can go on as many
5618 * times as necessary as long as there is no loop in the
5619 * inheritance chain.
5620 *
5621 * Ops tables are finalized when the host is started. NULL or
5622 * unspecified entries are inherited from the closet ancestor
5623 * which has the method and the entry is populated with it.
5624 * After finalization, the ops table directly points to all the
5625 * methods and ->inherits is no longer necessary and cleared.
5626 *
5627 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5628 *
5629 * LOCKING:
5630 * None.
5631 */
5632static void ata_finalize_port_ops(struct ata_port_operations *ops)
5633{
2da67659 5634 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5635 const struct ata_port_operations *cur;
5636 void **begin = (void **)ops;
5637 void **end = (void **)&ops->inherits;
5638 void **pp;
5639
5640 if (!ops || !ops->inherits)
5641 return;
5642
5643 spin_lock(&lock);
5644
5645 for (cur = ops->inherits; cur; cur = cur->inherits) {
5646 void **inherit = (void **)cur;
5647
5648 for (pp = begin; pp < end; pp++, inherit++)
5649 if (!*pp)
5650 *pp = *inherit;
5651 }
5652
5653 for (pp = begin; pp < end; pp++)
5654 if (IS_ERR(*pp))
5655 *pp = NULL;
5656
5657 ops->inherits = NULL;
5658
5659 spin_unlock(&lock);
5660}
5661
ecef7253
TH
5662/**
5663 * ata_host_start - start and freeze ports of an ATA host
5664 * @host: ATA host to start ports for
5665 *
5666 * Start and then freeze ports of @host. Started status is
5667 * recorded in host->flags, so this function can be called
5668 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5669 * once. If host->ops isn't initialized yet, its set to the
5670 * first non-dummy port ops.
ecef7253
TH
5671 *
5672 * LOCKING:
5673 * Inherited from calling layer (may sleep).
5674 *
5675 * RETURNS:
5676 * 0 if all ports are started successfully, -errno otherwise.
5677 */
5678int ata_host_start(struct ata_host *host)
5679{
32ebbc0c
TH
5680 int have_stop = 0;
5681 void *start_dr = NULL;
ecef7253
TH
5682 int i, rc;
5683
5684 if (host->flags & ATA_HOST_STARTED)
5685 return 0;
5686
029cfd6b
TH
5687 ata_finalize_port_ops(host->ops);
5688
ecef7253
TH
5689 for (i = 0; i < host->n_ports; i++) {
5690 struct ata_port *ap = host->ports[i];
5691
029cfd6b
TH
5692 ata_finalize_port_ops(ap->ops);
5693
f3187195
TH
5694 if (!host->ops && !ata_port_is_dummy(ap))
5695 host->ops = ap->ops;
5696
32ebbc0c
TH
5697 if (ap->ops->port_stop)
5698 have_stop = 1;
5699 }
5700
5701 if (host->ops->host_stop)
5702 have_stop = 1;
5703
5704 if (have_stop) {
5705 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5706 if (!start_dr)
5707 return -ENOMEM;
5708 }
5709
5710 for (i = 0; i < host->n_ports; i++) {
5711 struct ata_port *ap = host->ports[i];
5712
ecef7253
TH
5713 if (ap->ops->port_start) {
5714 rc = ap->ops->port_start(ap);
5715 if (rc) {
0f9fe9b7 5716 if (rc != -ENODEV)
0f757743
AM
5717 dev_printk(KERN_ERR, host->dev,
5718 "failed to start port %d "
5719 "(errno=%d)\n", i, rc);
ecef7253
TH
5720 goto err_out;
5721 }
5722 }
ecef7253
TH
5723 ata_eh_freeze_port(ap);
5724 }
5725
32ebbc0c
TH
5726 if (start_dr)
5727 devres_add(host->dev, start_dr);
ecef7253
TH
5728 host->flags |= ATA_HOST_STARTED;
5729 return 0;
5730
5731 err_out:
5732 while (--i >= 0) {
5733 struct ata_port *ap = host->ports[i];
5734
5735 if (ap->ops->port_stop)
5736 ap->ops->port_stop(ap);
5737 }
32ebbc0c 5738 devres_free(start_dr);
ecef7253
TH
5739 return rc;
5740}
5741
b03732f0 5742/**
cca3974e
JG
5743 * ata_sas_host_init - Initialize a host struct
5744 * @host: host to initialize
5745 * @dev: device host is attached to
5746 * @flags: host flags
5747 * @ops: port_ops
b03732f0
BK
5748 *
5749 * LOCKING:
5750 * PCI/etc. bus probe sem.
5751 *
5752 */
f3187195 5753/* KILLME - the only user left is ipr */
cca3974e 5754void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5755 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5756{
cca3974e
JG
5757 spin_lock_init(&host->lock);
5758 host->dev = dev;
5759 host->flags = flags;
5760 host->ops = ops;
b03732f0
BK
5761}
5762
f3187195
TH
5763/**
5764 * ata_host_register - register initialized ATA host
5765 * @host: ATA host to register
5766 * @sht: template for SCSI host
5767 *
5768 * Register initialized ATA host. @host is allocated using
5769 * ata_host_alloc() and fully initialized by LLD. This function
5770 * starts ports, registers @host with ATA and SCSI layers and
5771 * probe registered devices.
5772 *
5773 * LOCKING:
5774 * Inherited from calling layer (may sleep).
5775 *
5776 * RETURNS:
5777 * 0 on success, -errno otherwise.
5778 */
5779int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5780{
5781 int i, rc;
5782
5783 /* host must have been started */
5784 if (!(host->flags & ATA_HOST_STARTED)) {
5785 dev_printk(KERN_ERR, host->dev,
5786 "BUG: trying to register unstarted host\n");
5787 WARN_ON(1);
5788 return -EINVAL;
5789 }
5790
5791 /* Blow away unused ports. This happens when LLD can't
5792 * determine the exact number of ports to allocate at
5793 * allocation time.
5794 */
5795 for (i = host->n_ports; host->ports[i]; i++)
5796 kfree(host->ports[i]);
5797
5798 /* give ports names and add SCSI hosts */
5799 for (i = 0; i < host->n_ports; i++)
5800 host->ports[i]->print_id = ata_print_id++;
5801
5802 rc = ata_scsi_add_hosts(host, sht);
5803 if (rc)
5804 return rc;
5805
fafbae87
TH
5806 /* associate with ACPI nodes */
5807 ata_acpi_associate(host);
5808
f3187195
TH
5809 /* set cable, sata_spd_limit and report */
5810 for (i = 0; i < host->n_ports; i++) {
5811 struct ata_port *ap = host->ports[i];
f3187195
TH
5812 unsigned long xfer_mask;
5813
5814 /* set SATA cable type if still unset */
5815 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5816 ap->cbl = ATA_CBL_SATA;
5817
5818 /* init sata_spd_limit to the current value */
4fb37a25 5819 sata_link_init_spd(&ap->link);
b1c72916
TH
5820 if (ap->slave_link)
5821 sata_link_init_spd(ap->slave_link);
f3187195 5822
cbcdd875 5823 /* print per-port info to dmesg */
f3187195
TH
5824 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5825 ap->udma_mask);
5826
abf6e8ed 5827 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
5828 ata_port_printk(ap, KERN_INFO,
5829 "%cATA max %s %s\n",
a16abc0b 5830 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 5831 ata_mode_string(xfer_mask),
cbcdd875 5832 ap->link.eh_info.desc);
abf6e8ed
TH
5833 ata_ehi_clear_desc(&ap->link.eh_info);
5834 } else
f3187195
TH
5835 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5836 }
5837
5838 /* perform each probe synchronously */
5839 DPRINTK("probe begin\n");
5840 for (i = 0; i < host->n_ports; i++) {
5841 struct ata_port *ap = host->ports[i];
f3187195
TH
5842
5843 /* probe */
5844 if (ap->ops->error_handler) {
9af5c9c9 5845 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
5846 unsigned long flags;
5847
5848 ata_port_probe(ap);
5849
5850 /* kick EH for boot probing */
5851 spin_lock_irqsave(ap->lock, flags);
5852
b558eddd 5853 ehi->probe_mask |= ATA_ALL_DEVICES;
391191c1 5854 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
f3187195
TH
5855 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5856
f4d6d004 5857 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
5858 ap->pflags |= ATA_PFLAG_LOADING;
5859 ata_port_schedule_eh(ap);
5860
5861 spin_unlock_irqrestore(ap->lock, flags);
5862
5863 /* wait for EH to finish */
5864 ata_port_wait_eh(ap);
5865 } else {
5866 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5867 rc = ata_bus_probe(ap);
5868 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5869
5870 if (rc) {
5871 /* FIXME: do something useful here?
5872 * Current libata behavior will
5873 * tear down everything when
5874 * the module is removed
5875 * or the h/w is unplugged.
5876 */
5877 }
5878 }
5879 }
5880
5881 /* probes are done, now scan each port's disk(s) */
5882 DPRINTK("host probe begin\n");
5883 for (i = 0; i < host->n_ports; i++) {
5884 struct ata_port *ap = host->ports[i];
5885
1ae46317 5886 ata_scsi_scan_host(ap, 1);
f3187195
TH
5887 }
5888
5889 return 0;
5890}
5891
f5cda257
TH
5892/**
5893 * ata_host_activate - start host, request IRQ and register it
5894 * @host: target ATA host
5895 * @irq: IRQ to request
5896 * @irq_handler: irq_handler used when requesting IRQ
5897 * @irq_flags: irq_flags used when requesting IRQ
5898 * @sht: scsi_host_template to use when registering the host
5899 *
5900 * After allocating an ATA host and initializing it, most libata
5901 * LLDs perform three steps to activate the host - start host,
5902 * request IRQ and register it. This helper takes necessasry
5903 * arguments and performs the three steps in one go.
5904 *
3d46b2e2
PM
5905 * An invalid IRQ skips the IRQ registration and expects the host to
5906 * have set polling mode on the port. In this case, @irq_handler
5907 * should be NULL.
5908 *
f5cda257
TH
5909 * LOCKING:
5910 * Inherited from calling layer (may sleep).
5911 *
5912 * RETURNS:
5913 * 0 on success, -errno otherwise.
5914 */
5915int ata_host_activate(struct ata_host *host, int irq,
5916 irq_handler_t irq_handler, unsigned long irq_flags,
5917 struct scsi_host_template *sht)
5918{
cbcdd875 5919 int i, rc;
f5cda257
TH
5920
5921 rc = ata_host_start(host);
5922 if (rc)
5923 return rc;
5924
3d46b2e2
PM
5925 /* Special case for polling mode */
5926 if (!irq) {
5927 WARN_ON(irq_handler);
5928 return ata_host_register(host, sht);
5929 }
5930
f5cda257
TH
5931 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5932 dev_driver_string(host->dev), host);
5933 if (rc)
5934 return rc;
5935
cbcdd875
TH
5936 for (i = 0; i < host->n_ports; i++)
5937 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 5938
f5cda257
TH
5939 rc = ata_host_register(host, sht);
5940 /* if failed, just free the IRQ and leave ports alone */
5941 if (rc)
5942 devm_free_irq(host->dev, irq, host);
5943
5944 return rc;
5945}
5946
720ba126
TH
5947/**
5948 * ata_port_detach - Detach ATA port in prepration of device removal
5949 * @ap: ATA port to be detached
5950 *
5951 * Detach all ATA devices and the associated SCSI devices of @ap;
5952 * then, remove the associated SCSI host. @ap is guaranteed to
5953 * be quiescent on return from this function.
5954 *
5955 * LOCKING:
5956 * Kernel thread context (may sleep).
5957 */
741b7763 5958static void ata_port_detach(struct ata_port *ap)
720ba126
TH
5959{
5960 unsigned long flags;
41bda9c9 5961 struct ata_link *link;
f58229f8 5962 struct ata_device *dev;
720ba126
TH
5963
5964 if (!ap->ops->error_handler)
c3cf30a9 5965 goto skip_eh;
720ba126
TH
5966
5967 /* tell EH we're leaving & flush EH */
ba6a1308 5968 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5969 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5970 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5971
5972 ata_port_wait_eh(ap);
5973
7f9ad9b8 5974 /* EH is now guaranteed to see UNLOADING - EH context belongs
d127ea7b 5975 * to us. Restore SControl and disable all existing devices.
720ba126 5976 */
d127ea7b
TH
5977 __ata_port_for_each_link(link, ap) {
5978 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
41bda9c9
TH
5979 ata_link_for_each_dev(dev, link)
5980 ata_dev_disable(dev);
5981 }
720ba126 5982
720ba126
TH
5983 /* Final freeze & EH. All in-flight commands are aborted. EH
5984 * will be skipped and retrials will be terminated with bad
5985 * target.
5986 */
ba6a1308 5987 spin_lock_irqsave(ap->lock, flags);
720ba126 5988 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5989 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5990
5991 ata_port_wait_eh(ap);
45a66c1c 5992 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 5993
c3cf30a9 5994 skip_eh:
720ba126 5995 /* remove the associated SCSI host */
cca3974e 5996 scsi_remove_host(ap->scsi_host);
720ba126
TH
5997}
5998
0529c159
TH
5999/**
6000 * ata_host_detach - Detach all ports of an ATA host
6001 * @host: Host to detach
6002 *
6003 * Detach all ports of @host.
6004 *
6005 * LOCKING:
6006 * Kernel thread context (may sleep).
6007 */
6008void ata_host_detach(struct ata_host *host)
6009{
6010 int i;
6011
6012 for (i = 0; i < host->n_ports; i++)
6013 ata_port_detach(host->ports[i]);
562f0c2d
TH
6014
6015 /* the host is dead now, dissociate ACPI */
6016 ata_acpi_dissociate(host);
0529c159
TH
6017}
6018
374b1873
JG
6019#ifdef CONFIG_PCI
6020
1da177e4
LT
6021/**
6022 * ata_pci_remove_one - PCI layer callback for device removal
6023 * @pdev: PCI device that was removed
6024 *
b878ca5d
TH
6025 * PCI layer indicates to libata via this hook that hot-unplug or
6026 * module unload event has occurred. Detach all ports. Resource
6027 * release is handled via devres.
1da177e4
LT
6028 *
6029 * LOCKING:
6030 * Inherited from PCI layer (may sleep).
6031 */
f0d36efd 6032void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6033{
2855568b 6034 struct device *dev = &pdev->dev;
cca3974e 6035 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6036
b878ca5d 6037 ata_host_detach(host);
1da177e4
LT
6038}
6039
6040/* move to PCI subsystem */
057ace5e 6041int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6042{
6043 unsigned long tmp = 0;
6044
6045 switch (bits->width) {
6046 case 1: {
6047 u8 tmp8 = 0;
6048 pci_read_config_byte(pdev, bits->reg, &tmp8);
6049 tmp = tmp8;
6050 break;
6051 }
6052 case 2: {
6053 u16 tmp16 = 0;
6054 pci_read_config_word(pdev, bits->reg, &tmp16);
6055 tmp = tmp16;
6056 break;
6057 }
6058 case 4: {
6059 u32 tmp32 = 0;
6060 pci_read_config_dword(pdev, bits->reg, &tmp32);
6061 tmp = tmp32;
6062 break;
6063 }
6064
6065 default:
6066 return -EINVAL;
6067 }
6068
6069 tmp &= bits->mask;
6070
6071 return (tmp == bits->val) ? 1 : 0;
6072}
9b847548 6073
6ffa01d8 6074#ifdef CONFIG_PM
3c5100c1 6075void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6076{
6077 pci_save_state(pdev);
4c90d971 6078 pci_disable_device(pdev);
500530f6 6079
3a2d5b70 6080 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6081 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6082}
6083
553c4aa6 6084int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6085{
553c4aa6
TH
6086 int rc;
6087
9b847548
JA
6088 pci_set_power_state(pdev, PCI_D0);
6089 pci_restore_state(pdev);
553c4aa6 6090
b878ca5d 6091 rc = pcim_enable_device(pdev);
553c4aa6
TH
6092 if (rc) {
6093 dev_printk(KERN_ERR, &pdev->dev,
6094 "failed to enable device after resume (%d)\n", rc);
6095 return rc;
6096 }
6097
9b847548 6098 pci_set_master(pdev);
553c4aa6 6099 return 0;
500530f6
TH
6100}
6101
3c5100c1 6102int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6103{
cca3974e 6104 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6105 int rc = 0;
6106
cca3974e 6107 rc = ata_host_suspend(host, mesg);
500530f6
TH
6108 if (rc)
6109 return rc;
6110
3c5100c1 6111 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6112
6113 return 0;
6114}
6115
6116int ata_pci_device_resume(struct pci_dev *pdev)
6117{
cca3974e 6118 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6119 int rc;
500530f6 6120
553c4aa6
TH
6121 rc = ata_pci_device_do_resume(pdev);
6122 if (rc == 0)
6123 ata_host_resume(host);
6124 return rc;
9b847548 6125}
6ffa01d8
TH
6126#endif /* CONFIG_PM */
6127
1da177e4
LT
6128#endif /* CONFIG_PCI */
6129
33267325
TH
6130static int __init ata_parse_force_one(char **cur,
6131 struct ata_force_ent *force_ent,
6132 const char **reason)
6133{
6134 /* FIXME: Currently, there's no way to tag init const data and
6135 * using __initdata causes build failure on some versions of
6136 * gcc. Once __initdataconst is implemented, add const to the
6137 * following structure.
6138 */
6139 static struct ata_force_param force_tbl[] __initdata = {
6140 { "40c", .cbl = ATA_CBL_PATA40 },
6141 { "80c", .cbl = ATA_CBL_PATA80 },
6142 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6143 { "unk", .cbl = ATA_CBL_PATA_UNK },
6144 { "ign", .cbl = ATA_CBL_PATA_IGN },
6145 { "sata", .cbl = ATA_CBL_SATA },
6146 { "1.5Gbps", .spd_limit = 1 },
6147 { "3.0Gbps", .spd_limit = 2 },
6148 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6149 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6150 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6151 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6152 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6153 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6154 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6155 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6156 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6157 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6158 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6159 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6160 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6161 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6162 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6163 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6164 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6165 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6166 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6167 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6168 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6169 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6170 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6171 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6172 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6173 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6174 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6175 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6176 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6177 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6178 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6179 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6180 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6181 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6182 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6183 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6184 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6185 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6186 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6187 };
6188 char *start = *cur, *p = *cur;
6189 char *id, *val, *endp;
6190 const struct ata_force_param *match_fp = NULL;
6191 int nr_matches = 0, i;
6192
6193 /* find where this param ends and update *cur */
6194 while (*p != '\0' && *p != ',')
6195 p++;
6196
6197 if (*p == '\0')
6198 *cur = p;
6199 else
6200 *cur = p + 1;
6201
6202 *p = '\0';
6203
6204 /* parse */
6205 p = strchr(start, ':');
6206 if (!p) {
6207 val = strstrip(start);
6208 goto parse_val;
6209 }
6210 *p = '\0';
6211
6212 id = strstrip(start);
6213 val = strstrip(p + 1);
6214
6215 /* parse id */
6216 p = strchr(id, '.');
6217 if (p) {
6218 *p++ = '\0';
6219 force_ent->device = simple_strtoul(p, &endp, 10);
6220 if (p == endp || *endp != '\0') {
6221 *reason = "invalid device";
6222 return -EINVAL;
6223 }
6224 }
6225
6226 force_ent->port = simple_strtoul(id, &endp, 10);
6227 if (p == endp || *endp != '\0') {
6228 *reason = "invalid port/link";
6229 return -EINVAL;
6230 }
6231
6232 parse_val:
6233 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6234 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6235 const struct ata_force_param *fp = &force_tbl[i];
6236
6237 if (strncasecmp(val, fp->name, strlen(val)))
6238 continue;
6239
6240 nr_matches++;
6241 match_fp = fp;
6242
6243 if (strcasecmp(val, fp->name) == 0) {
6244 nr_matches = 1;
6245 break;
6246 }
6247 }
6248
6249 if (!nr_matches) {
6250 *reason = "unknown value";
6251 return -EINVAL;
6252 }
6253 if (nr_matches > 1) {
6254 *reason = "ambigious value";
6255 return -EINVAL;
6256 }
6257
6258 force_ent->param = *match_fp;
6259
6260 return 0;
6261}
6262
6263static void __init ata_parse_force_param(void)
6264{
6265 int idx = 0, size = 1;
6266 int last_port = -1, last_device = -1;
6267 char *p, *cur, *next;
6268
6269 /* calculate maximum number of params and allocate force_tbl */
6270 for (p = ata_force_param_buf; *p; p++)
6271 if (*p == ',')
6272 size++;
6273
6274 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6275 if (!ata_force_tbl) {
6276 printk(KERN_WARNING "ata: failed to extend force table, "
6277 "libata.force ignored\n");
6278 return;
6279 }
6280
6281 /* parse and populate the table */
6282 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6283 const char *reason = "";
6284 struct ata_force_ent te = { .port = -1, .device = -1 };
6285
6286 next = cur;
6287 if (ata_parse_force_one(&next, &te, &reason)) {
6288 printk(KERN_WARNING "ata: failed to parse force "
6289 "parameter \"%s\" (%s)\n",
6290 cur, reason);
6291 continue;
6292 }
6293
6294 if (te.port == -1) {
6295 te.port = last_port;
6296 te.device = last_device;
6297 }
6298
6299 ata_force_tbl[idx++] = te;
6300
6301 last_port = te.port;
6302 last_device = te.device;
6303 }
6304
6305 ata_force_tbl_size = idx;
6306}
1da177e4 6307
1da177e4
LT
6308static int __init ata_init(void)
6309{
33267325
TH
6310 ata_parse_force_param();
6311
1da177e4
LT
6312 ata_wq = create_workqueue("ata");
6313 if (!ata_wq)
49ea3b04 6314 goto free_force_tbl;
1da177e4 6315
453b07ac 6316 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6317 if (!ata_aux_wq)
6318 goto free_wq;
453b07ac 6319
1da177e4
LT
6320 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6321 return 0;
49ea3b04
EO
6322
6323free_wq:
6324 destroy_workqueue(ata_wq);
6325free_force_tbl:
6326 kfree(ata_force_tbl);
6327 return -ENOMEM;
1da177e4
LT
6328}
6329
6330static void __exit ata_exit(void)
6331{
33267325 6332 kfree(ata_force_tbl);
1da177e4 6333 destroy_workqueue(ata_wq);
453b07ac 6334 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6335}
6336
a4625085 6337subsys_initcall(ata_init);
1da177e4
LT
6338module_exit(ata_exit);
6339
67846b30 6340static unsigned long ratelimit_time;
34af946a 6341static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6342
6343int ata_ratelimit(void)
6344{
6345 int rc;
6346 unsigned long flags;
6347
6348 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6349
6350 if (time_after(jiffies, ratelimit_time)) {
6351 rc = 1;
6352 ratelimit_time = jiffies + (HZ/5);
6353 } else
6354 rc = 0;
6355
6356 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6357
6358 return rc;
6359}
6360
c22daff4
TH
6361/**
6362 * ata_wait_register - wait until register value changes
6363 * @reg: IO-mapped register
6364 * @mask: Mask to apply to read register value
6365 * @val: Wait condition
341c2c95
TH
6366 * @interval: polling interval in milliseconds
6367 * @timeout: timeout in milliseconds
c22daff4
TH
6368 *
6369 * Waiting for some bits of register to change is a common
6370 * operation for ATA controllers. This function reads 32bit LE
6371 * IO-mapped register @reg and tests for the following condition.
6372 *
6373 * (*@reg & mask) != val
6374 *
6375 * If the condition is met, it returns; otherwise, the process is
6376 * repeated after @interval_msec until timeout.
6377 *
6378 * LOCKING:
6379 * Kernel thread context (may sleep)
6380 *
6381 * RETURNS:
6382 * The final register value.
6383 */
6384u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6385 unsigned long interval, unsigned long timeout)
c22daff4 6386{
341c2c95 6387 unsigned long deadline;
c22daff4
TH
6388 u32 tmp;
6389
6390 tmp = ioread32(reg);
6391
6392 /* Calculate timeout _after_ the first read to make sure
6393 * preceding writes reach the controller before starting to
6394 * eat away the timeout.
6395 */
341c2c95 6396 deadline = ata_deadline(jiffies, timeout);
c22daff4 6397
341c2c95
TH
6398 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6399 msleep(interval);
c22daff4
TH
6400 tmp = ioread32(reg);
6401 }
6402
6403 return tmp;
6404}
6405
dd5b06c4
TH
6406/*
6407 * Dummy port_ops
6408 */
182d7bba 6409static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6410{
182d7bba 6411 return AC_ERR_SYSTEM;
dd5b06c4
TH
6412}
6413
182d7bba 6414static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6415{
182d7bba 6416 /* truly dummy */
dd5b06c4
TH
6417}
6418
029cfd6b 6419struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6420 .qc_prep = ata_noop_qc_prep,
6421 .qc_issue = ata_dummy_qc_issue,
182d7bba 6422 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6423};
6424
21b0ad4f
TH
6425const struct ata_port_info ata_dummy_port_info = {
6426 .port_ops = &ata_dummy_port_ops,
6427};
6428
1da177e4
LT
6429/*
6430 * libata is essentially a library of internal helper functions for
6431 * low-level ATA host controller drivers. As such, the API/ABI is
6432 * likely to change as new drivers are added and updated.
6433 * Do not depend on ABI/API stability.
6434 */
e9c83914
TH
6435EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6436EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6437EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6438EXPORT_SYMBOL_GPL(ata_base_port_ops);
6439EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6440EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6441EXPORT_SYMBOL_GPL(ata_dummy_port_info);
aadffb68 6442EXPORT_SYMBOL_GPL(__ata_port_next_link);
1da177e4 6443EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6444EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6445EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6446EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6447EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6448EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6449EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6450EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6451EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6452EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6453EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6454EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6455EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6456EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6457EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6458EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6459EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6460EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6461EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6462EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6463EXPORT_SYMBOL_GPL(ata_mode_string);
6464EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6465EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6466EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6467EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6468EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6469EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6470EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6471EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6472EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6473EXPORT_SYMBOL_GPL(sata_link_debounce);
6474EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6475EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6476EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6477EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6478EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6479EXPORT_SYMBOL_GPL(ata_dev_classify);
6480EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6481EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6482EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6483EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4
LT
6484EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6485EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6486EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6487EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6488EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6489EXPORT_SYMBOL_GPL(sata_scr_valid);
6490EXPORT_SYMBOL_GPL(sata_scr_read);
6491EXPORT_SYMBOL_GPL(sata_scr_write);
6492EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6493EXPORT_SYMBOL_GPL(ata_link_online);
6494EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6495#ifdef CONFIG_PM
cca3974e
JG
6496EXPORT_SYMBOL_GPL(ata_host_suspend);
6497EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6498#endif /* CONFIG_PM */
6a62a04d
TH
6499EXPORT_SYMBOL_GPL(ata_id_string);
6500EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6501EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6502EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6503
1bc4ccff 6504EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6505EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6506EXPORT_SYMBOL_GPL(ata_timing_compute);
6507EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6508EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6509
1da177e4
LT
6510#ifdef CONFIG_PCI
6511EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6512EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6513#ifdef CONFIG_PM
500530f6
TH
6514EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6515EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6516EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6517EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6518#endif /* CONFIG_PM */
1da177e4 6519#endif /* CONFIG_PCI */
9b847548 6520
b64bbc39
TH
6521EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6522EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6523EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6524EXPORT_SYMBOL_GPL(ata_port_desc);
6525#ifdef CONFIG_PCI
6526EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6527#endif /* CONFIG_PCI */
7b70fc03 6528EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6529EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6530EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6531EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6532EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6533EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6534EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6535EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6536EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6537EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6538EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6539EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6540
6541EXPORT_SYMBOL_GPL(ata_cable_40wire);
6542EXPORT_SYMBOL_GPL(ata_cable_80wire);
6543EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6544EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6545EXPORT_SYMBOL_GPL(ata_cable_sata);