]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: consider errors not associated with commands for speed down
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
ca77329f
KCA
623static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624{
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* disable DIPM */
680 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_DISABLE, SATA_DIPM);
683 break;
684 case NOT_AVAILABLE:
685 case MAX_PERFORMANCE:
686 /* disable all IPM transitions */
687 scontrol |= (0x3 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
692 /* disable DIPM */
693 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
694 err_mask = ata_dev_set_feature(dev,
695 SETFEATURES_SATA_DISABLE, SATA_DIPM);
696 break;
697 }
698
699 /* FIXME: handle SET FEATURES failure */
700 (void) err_mask;
701
702 return 0;
703}
704
705/**
706 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
707 * @dev: device to enable power management
708 * @policy: the link power management policy
ca77329f
KCA
709 *
710 * Enable SATA Interface power management. This will enable
711 * Device Interface Power Management (DIPM) for min_power
712 * policy, and then call driver specific callbacks for
713 * enabling Host Initiated Power management.
714 *
715 * Locking: Caller.
716 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
717 */
718void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
719{
720 int rc = 0;
721 struct ata_port *ap = dev->link->ap;
722
723 /* set HIPM first, then DIPM */
724 if (ap->ops->enable_pm)
725 rc = ap->ops->enable_pm(ap, policy);
726 if (rc)
727 goto enable_pm_out;
728 rc = ata_dev_set_dipm(dev, policy);
729
730enable_pm_out:
731 if (rc)
732 ap->pm_policy = MAX_PERFORMANCE;
733 else
734 ap->pm_policy = policy;
735 return /* rc */; /* hopefully we can use 'rc' eventually */
736}
737
1992a5ed 738#ifdef CONFIG_PM
ca77329f
KCA
739/**
740 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 741 * @dev: device to disable power management
ca77329f
KCA
742 *
743 * Disable SATA Interface power management. This will disable
744 * Device Interface Power Management (DIPM) without changing
745 * policy, call driver specific callbacks for disabling Host
746 * Initiated Power management.
747 *
748 * Locking: Caller.
749 * Returns: void
750 */
751static void ata_dev_disable_pm(struct ata_device *dev)
752{
753 struct ata_port *ap = dev->link->ap;
754
755 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
756 if (ap->ops->disable_pm)
757 ap->ops->disable_pm(ap);
758}
1992a5ed 759#endif /* CONFIG_PM */
ca77329f
KCA
760
761void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
762{
763 ap->pm_policy = policy;
764 ap->link.eh_info.action |= ATA_EHI_LPM;
765 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
766 ata_port_schedule_eh(ap);
767}
768
1992a5ed 769#ifdef CONFIG_PM
ca77329f
KCA
770static void ata_lpm_enable(struct ata_host *host)
771{
772 struct ata_link *link;
773 struct ata_port *ap;
774 struct ata_device *dev;
775 int i;
776
777 for (i = 0; i < host->n_ports; i++) {
778 ap = host->ports[i];
779 ata_port_for_each_link(link, ap) {
780 ata_link_for_each_dev(dev, link)
781 ata_dev_disable_pm(dev);
782 }
783 }
784}
785
786static void ata_lpm_disable(struct ata_host *host)
787{
788 int i;
789
790 for (i = 0; i < host->n_ports; i++) {
791 struct ata_port *ap = host->ports[i];
792 ata_lpm_schedule(ap, ap->pm_policy);
793 }
794}
1992a5ed 795#endif /* CONFIG_PM */
ca77329f
KCA
796
797
1da177e4 798/**
0d5ff566 799 * ata_devchk - PATA device presence detection
1da177e4
LT
800 * @ap: ATA channel to examine
801 * @device: Device to examine (starting at zero)
802 *
803 * This technique was originally described in
804 * Hale Landis's ATADRVR (www.ata-atapi.com), and
805 * later found its way into the ATA/ATAPI spec.
806 *
807 * Write a pattern to the ATA shadow registers,
808 * and if a device is present, it will respond by
809 * correctly storing and echoing back the
810 * ATA shadow register contents.
811 *
812 * LOCKING:
813 * caller.
814 */
815
0d5ff566 816static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
817{
818 struct ata_ioports *ioaddr = &ap->ioaddr;
819 u8 nsect, lbal;
820
821 ap->ops->dev_select(ap, device);
822
0d5ff566
TH
823 iowrite8(0x55, ioaddr->nsect_addr);
824 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 825
0d5ff566
TH
826 iowrite8(0xaa, ioaddr->nsect_addr);
827 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 828
0d5ff566
TH
829 iowrite8(0x55, ioaddr->nsect_addr);
830 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 831
0d5ff566
TH
832 nsect = ioread8(ioaddr->nsect_addr);
833 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
834
835 if ((nsect == 0x55) && (lbal == 0xaa))
836 return 1; /* we found a device */
837
838 return 0; /* nothing found */
839}
840
1da177e4
LT
841/**
842 * ata_dev_classify - determine device type based on ATA-spec signature
843 * @tf: ATA taskfile register set for device to be identified
844 *
845 * Determine from taskfile register contents whether a device is
846 * ATA or ATAPI, as per "Signature and persistence" section
847 * of ATA/PI spec (volume 1, sect 5.14).
848 *
849 * LOCKING:
850 * None.
851 *
852 * RETURNS:
633273a3
TH
853 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
854 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 855 */
057ace5e 856unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
857{
858 /* Apple's open source Darwin code hints that some devices only
859 * put a proper signature into the LBA mid/high registers,
860 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
861 *
862 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
863 * signatures for ATA and ATAPI devices attached on SerialATA,
864 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
865 * spec has never mentioned about using different signatures
866 * for ATA/ATAPI devices. Then, Serial ATA II: Port
867 * Multiplier specification began to use 0x69/0x96 to identify
868 * port multpliers and 0x3c/0xc3 to identify SEMB device.
869 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
870 * 0x69/0x96 shortly and described them as reserved for
871 * SerialATA.
872 *
873 * We follow the current spec and consider that 0x69/0x96
874 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 875 */
633273a3 876 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
877 DPRINTK("found ATA device by sig\n");
878 return ATA_DEV_ATA;
879 }
880
633273a3 881 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
882 DPRINTK("found ATAPI device by sig\n");
883 return ATA_DEV_ATAPI;
884 }
885
633273a3
TH
886 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
887 DPRINTK("found PMP device by sig\n");
888 return ATA_DEV_PMP;
889 }
890
891 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 892 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
893 return ATA_DEV_SEMB_UNSUP; /* not yet */
894 }
895
1da177e4
LT
896 DPRINTK("unknown device\n");
897 return ATA_DEV_UNKNOWN;
898}
899
900/**
901 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
902 * @dev: ATA device to classify (starting at zero)
903 * @present: device seems present
b4dc7623 904 * @r_err: Value of error register on completion
1da177e4
LT
905 *
906 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
907 * an ATA/ATAPI-defined set of values is placed in the ATA
908 * shadow registers, indicating the results of device detection
909 * and diagnostics.
910 *
911 * Select the ATA device, and read the values from the ATA shadow
912 * registers. Then parse according to the Error register value,
913 * and the spec-defined values examined by ata_dev_classify().
914 *
915 * LOCKING:
916 * caller.
b4dc7623
TH
917 *
918 * RETURNS:
919 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 920 */
3f19859e
TH
921unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
922 u8 *r_err)
1da177e4 923{
3f19859e 924 struct ata_port *ap = dev->link->ap;
1da177e4
LT
925 struct ata_taskfile tf;
926 unsigned int class;
927 u8 err;
928
3f19859e 929 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
930
931 memset(&tf, 0, sizeof(tf));
932
1da177e4 933 ap->ops->tf_read(ap, &tf);
0169e284 934 err = tf.feature;
b4dc7623
TH
935 if (r_err)
936 *r_err = err;
1da177e4 937
93590859 938 /* see if device passed diags: if master then continue and warn later */
3f19859e 939 if (err == 0 && dev->devno == 0)
93590859 940 /* diagnostic fail : do nothing _YET_ */
3f19859e 941 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 942 else if (err == 1)
1da177e4 943 /* do nothing */ ;
3f19859e 944 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
945 /* do nothing */ ;
946 else
b4dc7623 947 return ATA_DEV_NONE;
1da177e4 948
b4dc7623 949 /* determine if device is ATA or ATAPI */
1da177e4 950 class = ata_dev_classify(&tf);
b4dc7623 951
d7fbee05
TH
952 if (class == ATA_DEV_UNKNOWN) {
953 /* If the device failed diagnostic, it's likely to
954 * have reported incorrect device signature too.
955 * Assume ATA device if the device seems present but
956 * device signature is invalid with diagnostic
957 * failure.
958 */
959 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
960 class = ATA_DEV_ATA;
961 else
962 class = ATA_DEV_NONE;
963 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
964 class = ATA_DEV_NONE;
965
b4dc7623 966 return class;
1da177e4
LT
967}
968
969/**
6a62a04d 970 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
971 * @id: IDENTIFY DEVICE results we will examine
972 * @s: string into which data is output
973 * @ofs: offset into identify device page
974 * @len: length of string to return. must be an even number.
975 *
976 * The strings in the IDENTIFY DEVICE page are broken up into
977 * 16-bit chunks. Run through the string, and output each
978 * 8-bit chunk linearly, regardless of platform.
979 *
980 * LOCKING:
981 * caller.
982 */
983
6a62a04d
TH
984void ata_id_string(const u16 *id, unsigned char *s,
985 unsigned int ofs, unsigned int len)
1da177e4
LT
986{
987 unsigned int c;
988
989 while (len > 0) {
990 c = id[ofs] >> 8;
991 *s = c;
992 s++;
993
994 c = id[ofs] & 0xff;
995 *s = c;
996 s++;
997
998 ofs++;
999 len -= 2;
1000 }
1001}
1002
0e949ff3 1003/**
6a62a04d 1004 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1005 * @id: IDENTIFY DEVICE results we will examine
1006 * @s: string into which data is output
1007 * @ofs: offset into identify device page
1008 * @len: length of string to return. must be an odd number.
1009 *
6a62a04d 1010 * This function is identical to ata_id_string except that it
0e949ff3
TH
1011 * trims trailing spaces and terminates the resulting string with
1012 * null. @len must be actual maximum length (even number) + 1.
1013 *
1014 * LOCKING:
1015 * caller.
1016 */
6a62a04d
TH
1017void ata_id_c_string(const u16 *id, unsigned char *s,
1018 unsigned int ofs, unsigned int len)
0e949ff3
TH
1019{
1020 unsigned char *p;
1021
1022 WARN_ON(!(len & 1));
1023
6a62a04d 1024 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1025
1026 p = s + strnlen(s, len - 1);
1027 while (p > s && p[-1] == ' ')
1028 p--;
1029 *p = '\0';
1030}
0baab86b 1031
db6f8759
TH
1032static u64 ata_id_n_sectors(const u16 *id)
1033{
1034 if (ata_id_has_lba(id)) {
1035 if (ata_id_has_lba48(id))
1036 return ata_id_u64(id, 100);
1037 else
1038 return ata_id_u32(id, 60);
1039 } else {
1040 if (ata_id_current_chs_valid(id))
1041 return ata_id_u32(id, 57);
1042 else
1043 return id[1] * id[3] * id[6];
1044 }
1045}
1046
1e999736
AC
1047static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1048{
1049 u64 sectors = 0;
1050
1051 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1052 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1053 sectors |= (tf->hob_lbal & 0xff) << 24;
1054 sectors |= (tf->lbah & 0xff) << 16;
1055 sectors |= (tf->lbam & 0xff) << 8;
1056 sectors |= (tf->lbal & 0xff);
1057
1058 return ++sectors;
1059}
1060
1061static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1062{
1063 u64 sectors = 0;
1064
1065 sectors |= (tf->device & 0x0f) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1069
1070 return ++sectors;
1071}
1072
1073/**
c728a914
TH
1074 * ata_read_native_max_address - Read native max address
1075 * @dev: target device
1076 * @max_sectors: out parameter for the result native max address
1e999736 1077 *
c728a914
TH
1078 * Perform an LBA48 or LBA28 native size query upon the device in
1079 * question.
1e999736 1080 *
c728a914
TH
1081 * RETURNS:
1082 * 0 on success, -EACCES if command is aborted by the drive.
1083 * -EIO on other errors.
1e999736 1084 */
c728a914 1085static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1086{
c728a914 1087 unsigned int err_mask;
1e999736 1088 struct ata_taskfile tf;
c728a914 1089 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1090
1091 ata_tf_init(dev, &tf);
1092
c728a914 1093 /* always clear all address registers */
1e999736 1094 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1095
c728a914
TH
1096 if (lba48) {
1097 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1098 tf.flags |= ATA_TFLAG_LBA48;
1099 } else
1100 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1101
1e999736 1102 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1103 tf.device |= ATA_LBA;
1104
2b789108 1105 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1106 if (err_mask) {
1107 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1108 "max address (err_mask=0x%x)\n", err_mask);
1109 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1110 return -EACCES;
1111 return -EIO;
1112 }
1e999736 1113
c728a914
TH
1114 if (lba48)
1115 *max_sectors = ata_tf_to_lba48(&tf);
1116 else
1117 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1118 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1119 (*max_sectors)--;
c728a914 1120 return 0;
1e999736
AC
1121}
1122
1123/**
c728a914
TH
1124 * ata_set_max_sectors - Set max sectors
1125 * @dev: target device
6b38d1d1 1126 * @new_sectors: new max sectors value to set for the device
1e999736 1127 *
c728a914
TH
1128 * Set max sectors of @dev to @new_sectors.
1129 *
1130 * RETURNS:
1131 * 0 on success, -EACCES if command is aborted or denied (due to
1132 * previous non-volatile SET_MAX) by the drive. -EIO on other
1133 * errors.
1e999736 1134 */
05027adc 1135static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1136{
c728a914 1137 unsigned int err_mask;
1e999736 1138 struct ata_taskfile tf;
c728a914 1139 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1140
1141 new_sectors--;
1142
1143 ata_tf_init(dev, &tf);
1144
1e999736 1145 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1146
1147 if (lba48) {
1148 tf.command = ATA_CMD_SET_MAX_EXT;
1149 tf.flags |= ATA_TFLAG_LBA48;
1150
1151 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1152 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1153 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1154 } else {
c728a914
TH
1155 tf.command = ATA_CMD_SET_MAX;
1156
1e582ba4
TH
1157 tf.device |= (new_sectors >> 24) & 0xf;
1158 }
1159
1e999736 1160 tf.protocol |= ATA_PROT_NODATA;
c728a914 1161 tf.device |= ATA_LBA;
1e999736
AC
1162
1163 tf.lbal = (new_sectors >> 0) & 0xff;
1164 tf.lbam = (new_sectors >> 8) & 0xff;
1165 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1166
2b789108 1167 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1168 if (err_mask) {
1169 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1170 "max address (err_mask=0x%x)\n", err_mask);
1171 if (err_mask == AC_ERR_DEV &&
1172 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1173 return -EACCES;
1174 return -EIO;
1175 }
1176
c728a914 1177 return 0;
1e999736
AC
1178}
1179
1180/**
1181 * ata_hpa_resize - Resize a device with an HPA set
1182 * @dev: Device to resize
1183 *
1184 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1185 * it if required to the full size of the media. The caller must check
1186 * the drive has the HPA feature set enabled.
05027adc
TH
1187 *
1188 * RETURNS:
1189 * 0 on success, -errno on failure.
1e999736 1190 */
05027adc 1191static int ata_hpa_resize(struct ata_device *dev)
1e999736 1192{
05027adc
TH
1193 struct ata_eh_context *ehc = &dev->link->eh_context;
1194 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1195 u64 sectors = ata_id_n_sectors(dev->id);
1196 u64 native_sectors;
c728a914 1197 int rc;
a617c09f 1198
05027adc
TH
1199 /* do we need to do it? */
1200 if (dev->class != ATA_DEV_ATA ||
1201 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1202 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1203 return 0;
1e999736 1204
05027adc
TH
1205 /* read native max address */
1206 rc = ata_read_native_max_address(dev, &native_sectors);
1207 if (rc) {
1208 /* If HPA isn't going to be unlocked, skip HPA
1209 * resizing from the next try.
1210 */
1211 if (!ata_ignore_hpa) {
1212 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1213 "broken, will skip HPA handling\n");
1214 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1215
1216 /* we can continue if device aborted the command */
1217 if (rc == -EACCES)
1218 rc = 0;
1e999736 1219 }
37301a55 1220
05027adc
TH
1221 return rc;
1222 }
1223
1224 /* nothing to do? */
1225 if (native_sectors <= sectors || !ata_ignore_hpa) {
1226 if (!print_info || native_sectors == sectors)
1227 return 0;
1228
1229 if (native_sectors > sectors)
1230 ata_dev_printk(dev, KERN_INFO,
1231 "HPA detected: current %llu, native %llu\n",
1232 (unsigned long long)sectors,
1233 (unsigned long long)native_sectors);
1234 else if (native_sectors < sectors)
1235 ata_dev_printk(dev, KERN_WARNING,
1236 "native sectors (%llu) is smaller than "
1237 "sectors (%llu)\n",
1238 (unsigned long long)native_sectors,
1239 (unsigned long long)sectors);
1240 return 0;
1241 }
1242
1243 /* let's unlock HPA */
1244 rc = ata_set_max_sectors(dev, native_sectors);
1245 if (rc == -EACCES) {
1246 /* if device aborted the command, skip HPA resizing */
1247 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1248 "(%llu -> %llu), skipping HPA handling\n",
1249 (unsigned long long)sectors,
1250 (unsigned long long)native_sectors);
1251 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1252 return 0;
1253 } else if (rc)
1254 return rc;
1255
1256 /* re-read IDENTIFY data */
1257 rc = ata_dev_reread_id(dev, 0);
1258 if (rc) {
1259 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1260 "data after HPA resizing\n");
1261 return rc;
1262 }
1263
1264 if (print_info) {
1265 u64 new_sectors = ata_id_n_sectors(dev->id);
1266 ata_dev_printk(dev, KERN_INFO,
1267 "HPA unlocked: %llu -> %llu, native %llu\n",
1268 (unsigned long long)sectors,
1269 (unsigned long long)new_sectors,
1270 (unsigned long long)native_sectors);
1271 }
1272
1273 return 0;
1e999736
AC
1274}
1275
10305f0f
AC
1276/**
1277 * ata_id_to_dma_mode - Identify DMA mode from id block
1278 * @dev: device to identify
cc261267 1279 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1280 *
1281 * Set up the timing values for the device based upon the identify
1282 * reported values for the DMA mode. This function is used by drivers
1283 * which rely upon firmware configured modes, but wish to report the
1284 * mode correctly when possible.
1285 *
1286 * In addition we emit similarly formatted messages to the default
1287 * ata_dev_set_mode handler, in order to provide consistency of
1288 * presentation.
1289 */
1290
1291void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1292{
1293 unsigned int mask;
1294 u8 mode;
1295
1296 /* Pack the DMA modes */
1297 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1298 if (dev->id[53] & 0x04)
1299 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1300
1301 /* Select the mode in use */
1302 mode = ata_xfer_mask2mode(mask);
1303
1304 if (mode != 0) {
1305 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1306 ata_mode_string(mask));
1307 } else {
1308 /* SWDMA perhaps ? */
1309 mode = unknown;
1310 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1311 }
1312
1313 /* Configure the device reporting */
1314 dev->xfer_mode = mode;
1315 dev->xfer_shift = ata_xfer_mode2shift(mode);
1316}
1317
0baab86b
EF
1318/**
1319 * ata_noop_dev_select - Select device 0/1 on ATA bus
1320 * @ap: ATA channel to manipulate
1321 * @device: ATA device (numbered from zero) to select
1322 *
1323 * This function performs no actual function.
1324 *
1325 * May be used as the dev_select() entry in ata_port_operations.
1326 *
1327 * LOCKING:
1328 * caller.
1329 */
2dcb407e 1330void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1331{
1332}
1333
0baab86b 1334
1da177e4
LT
1335/**
1336 * ata_std_dev_select - Select device 0/1 on ATA bus
1337 * @ap: ATA channel to manipulate
1338 * @device: ATA device (numbered from zero) to select
1339 *
1340 * Use the method defined in the ATA specification to
1341 * make either device 0, or device 1, active on the
0baab86b
EF
1342 * ATA channel. Works with both PIO and MMIO.
1343 *
1344 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1345 *
1346 * LOCKING:
1347 * caller.
1348 */
1349
2dcb407e 1350void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1351{
1352 u8 tmp;
1353
1354 if (device == 0)
1355 tmp = ATA_DEVICE_OBS;
1356 else
1357 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1358
0d5ff566 1359 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1360 ata_pause(ap); /* needed; also flushes, for mmio */
1361}
1362
1363/**
1364 * ata_dev_select - Select device 0/1 on ATA bus
1365 * @ap: ATA channel to manipulate
1366 * @device: ATA device (numbered from zero) to select
1367 * @wait: non-zero to wait for Status register BSY bit to clear
1368 * @can_sleep: non-zero if context allows sleeping
1369 *
1370 * Use the method defined in the ATA specification to
1371 * make either device 0, or device 1, active on the
1372 * ATA channel.
1373 *
1374 * This is a high-level version of ata_std_dev_select(),
1375 * which additionally provides the services of inserting
1376 * the proper pauses and status polling, where needed.
1377 *
1378 * LOCKING:
1379 * caller.
1380 */
1381
1382void ata_dev_select(struct ata_port *ap, unsigned int device,
1383 unsigned int wait, unsigned int can_sleep)
1384{
88574551 1385 if (ata_msg_probe(ap))
44877b4e
TH
1386 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1387 "device %u, wait %u\n", device, wait);
1da177e4
LT
1388
1389 if (wait)
1390 ata_wait_idle(ap);
1391
1392 ap->ops->dev_select(ap, device);
1393
1394 if (wait) {
9af5c9c9 1395 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1396 msleep(150);
1397 ata_wait_idle(ap);
1398 }
1399}
1400
1401/**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1403 * @id: IDENTIFY DEVICE page to dump
1da177e4 1404 *
0bd3300a
TH
1405 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1406 * page.
1da177e4
LT
1407 *
1408 * LOCKING:
1409 * caller.
1410 */
1411
0bd3300a 1412static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1413{
1414 DPRINTK("49==0x%04x "
1415 "53==0x%04x "
1416 "63==0x%04x "
1417 "64==0x%04x "
1418 "75==0x%04x \n",
0bd3300a
TH
1419 id[49],
1420 id[53],
1421 id[63],
1422 id[64],
1423 id[75]);
1da177e4
LT
1424 DPRINTK("80==0x%04x "
1425 "81==0x%04x "
1426 "82==0x%04x "
1427 "83==0x%04x "
1428 "84==0x%04x \n",
0bd3300a
TH
1429 id[80],
1430 id[81],
1431 id[82],
1432 id[83],
1433 id[84]);
1da177e4
LT
1434 DPRINTK("88==0x%04x "
1435 "93==0x%04x\n",
0bd3300a
TH
1436 id[88],
1437 id[93]);
1da177e4
LT
1438}
1439
cb95d562
TH
1440/**
1441 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1442 * @id: IDENTIFY data to compute xfer mask from
1443 *
1444 * Compute the xfermask for this device. This is not as trivial
1445 * as it seems if we must consider early devices correctly.
1446 *
1447 * FIXME: pre IDE drive timing (do we care ?).
1448 *
1449 * LOCKING:
1450 * None.
1451 *
1452 * RETURNS:
1453 * Computed xfermask
1454 */
1455static unsigned int ata_id_xfermask(const u16 *id)
1456{
1457 unsigned int pio_mask, mwdma_mask, udma_mask;
1458
1459 /* Usual case. Word 53 indicates word 64 is valid */
1460 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1461 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1462 pio_mask <<= 3;
1463 pio_mask |= 0x7;
1464 } else {
1465 /* If word 64 isn't valid then Word 51 high byte holds
1466 * the PIO timing number for the maximum. Turn it into
1467 * a mask.
1468 */
7a0f1c8a 1469 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1470 if (mode < 5) /* Valid PIO range */
2dcb407e 1471 pio_mask = (2 << mode) - 1;
46767aeb
AC
1472 else
1473 pio_mask = 1;
cb95d562
TH
1474
1475 /* But wait.. there's more. Design your standards by
1476 * committee and you too can get a free iordy field to
1477 * process. However its the speeds not the modes that
1478 * are supported... Note drivers using the timing API
1479 * will get this right anyway
1480 */
1481 }
1482
1483 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1484
b352e57d
AC
1485 if (ata_id_is_cfa(id)) {
1486 /*
1487 * Process compact flash extended modes
1488 */
1489 int pio = id[163] & 0x7;
1490 int dma = (id[163] >> 3) & 7;
1491
1492 if (pio)
1493 pio_mask |= (1 << 5);
1494 if (pio > 1)
1495 pio_mask |= (1 << 6);
1496 if (dma)
1497 mwdma_mask |= (1 << 3);
1498 if (dma > 1)
1499 mwdma_mask |= (1 << 4);
1500 }
1501
fb21f0d0
TH
1502 udma_mask = 0;
1503 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1504 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1505
1506 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1507}
1508
86e45b6b
TH
1509/**
1510 * ata_port_queue_task - Queue port_task
1511 * @ap: The ata_port to queue port_task for
e2a7f77a 1512 * @fn: workqueue function to be scheduled
65f27f38 1513 * @data: data for @fn to use
e2a7f77a 1514 * @delay: delay time for workqueue function
86e45b6b
TH
1515 *
1516 * Schedule @fn(@data) for execution after @delay jiffies using
1517 * port_task. There is one port_task per port and it's the
1518 * user(low level driver)'s responsibility to make sure that only
1519 * one task is active at any given time.
1520 *
1521 * libata core layer takes care of synchronization between
1522 * port_task and EH. ata_port_queue_task() may be ignored for EH
1523 * synchronization.
1524 *
1525 * LOCKING:
1526 * Inherited from caller.
1527 */
65f27f38 1528void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1529 unsigned long delay)
1530{
65f27f38
DH
1531 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1532 ap->port_task_data = data;
86e45b6b 1533
45a66c1c
ON
1534 /* may fail if ata_port_flush_task() in progress */
1535 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1536}
1537
1538/**
1539 * ata_port_flush_task - Flush port_task
1540 * @ap: The ata_port to flush port_task for
1541 *
1542 * After this function completes, port_task is guranteed not to
1543 * be running or scheduled.
1544 *
1545 * LOCKING:
1546 * Kernel thread context (may sleep)
1547 */
1548void ata_port_flush_task(struct ata_port *ap)
1549{
86e45b6b
TH
1550 DPRINTK("ENTER\n");
1551
45a66c1c 1552 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1553
0dd4b21f
BP
1554 if (ata_msg_ctl(ap))
1555 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1556}
1557
7102d230 1558static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1559{
77853bf2 1560 struct completion *waiting = qc->private_data;
a2a7a662 1561
a2a7a662 1562 complete(waiting);
a2a7a662
TH
1563}
1564
1565/**
2432697b 1566 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1567 * @dev: Device to which the command is sent
1568 * @tf: Taskfile registers for the command and the result
d69cf37d 1569 * @cdb: CDB for packet command
a2a7a662 1570 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1571 * @sgl: sg list for the data buffer of the command
2432697b 1572 * @n_elem: Number of sg entries
2b789108 1573 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1574 *
1575 * Executes libata internal command with timeout. @tf contains
1576 * command on entry and result on return. Timeout and error
1577 * conditions are reported via return value. No recovery action
1578 * is taken after a command times out. It's caller's duty to
1579 * clean up after timeout.
1580 *
1581 * LOCKING:
1582 * None. Should be called with kernel context, might sleep.
551e8889
TH
1583 *
1584 * RETURNS:
1585 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1586 */
2432697b
TH
1587unsigned ata_exec_internal_sg(struct ata_device *dev,
1588 struct ata_taskfile *tf, const u8 *cdb,
87260216 1589 int dma_dir, struct scatterlist *sgl,
2b789108 1590 unsigned int n_elem, unsigned long timeout)
a2a7a662 1591{
9af5c9c9
TH
1592 struct ata_link *link = dev->link;
1593 struct ata_port *ap = link->ap;
a2a7a662
TH
1594 u8 command = tf->command;
1595 struct ata_queued_cmd *qc;
2ab7db1f 1596 unsigned int tag, preempted_tag;
dedaf2b0 1597 u32 preempted_sactive, preempted_qc_active;
da917d69 1598 int preempted_nr_active_links;
60be6b9a 1599 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1600 unsigned long flags;
77853bf2 1601 unsigned int err_mask;
d95a717f 1602 int rc;
a2a7a662 1603
ba6a1308 1604 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1605
e3180499 1606 /* no internal command while frozen */
b51e9e5d 1607 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1608 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1609 return AC_ERR_SYSTEM;
1610 }
1611
2ab7db1f 1612 /* initialize internal qc */
a2a7a662 1613
2ab7db1f
TH
1614 /* XXX: Tag 0 is used for drivers with legacy EH as some
1615 * drivers choke if any other tag is given. This breaks
1616 * ata_tag_internal() test for those drivers. Don't use new
1617 * EH stuff without converting to it.
1618 */
1619 if (ap->ops->error_handler)
1620 tag = ATA_TAG_INTERNAL;
1621 else
1622 tag = 0;
1623
6cec4a39 1624 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1625 BUG();
f69499f4 1626 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1627
1628 qc->tag = tag;
1629 qc->scsicmd = NULL;
1630 qc->ap = ap;
1631 qc->dev = dev;
1632 ata_qc_reinit(qc);
1633
9af5c9c9
TH
1634 preempted_tag = link->active_tag;
1635 preempted_sactive = link->sactive;
dedaf2b0 1636 preempted_qc_active = ap->qc_active;
da917d69 1637 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1638 link->active_tag = ATA_TAG_POISON;
1639 link->sactive = 0;
dedaf2b0 1640 ap->qc_active = 0;
da917d69 1641 ap->nr_active_links = 0;
2ab7db1f
TH
1642
1643 /* prepare & issue qc */
a2a7a662 1644 qc->tf = *tf;
d69cf37d
TH
1645 if (cdb)
1646 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1647 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1648 qc->dma_dir = dma_dir;
1649 if (dma_dir != DMA_NONE) {
2432697b 1650 unsigned int i, buflen = 0;
87260216 1651 struct scatterlist *sg;
2432697b 1652
87260216
JA
1653 for_each_sg(sgl, sg, n_elem, i)
1654 buflen += sg->length;
2432697b 1655
87260216 1656 ata_sg_init(qc, sgl, n_elem);
49c80429 1657 qc->nbytes = buflen;
a2a7a662
TH
1658 }
1659
77853bf2 1660 qc->private_data = &wait;
a2a7a662
TH
1661 qc->complete_fn = ata_qc_complete_internal;
1662
8e0e694a 1663 ata_qc_issue(qc);
a2a7a662 1664
ba6a1308 1665 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1666
2b789108
TH
1667 if (!timeout)
1668 timeout = ata_probe_timeout * 1000 / HZ;
1669
1670 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1671
1672 ata_port_flush_task(ap);
41ade50c 1673
d95a717f 1674 if (!rc) {
ba6a1308 1675 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1676
1677 /* We're racing with irq here. If we lose, the
1678 * following test prevents us from completing the qc
d95a717f
TH
1679 * twice. If we win, the port is frozen and will be
1680 * cleaned up by ->post_internal_cmd().
a2a7a662 1681 */
77853bf2 1682 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1683 qc->err_mask |= AC_ERR_TIMEOUT;
1684
1685 if (ap->ops->error_handler)
1686 ata_port_freeze(ap);
1687 else
1688 ata_qc_complete(qc);
f15a1daf 1689
0dd4b21f
BP
1690 if (ata_msg_warn(ap))
1691 ata_dev_printk(dev, KERN_WARNING,
88574551 1692 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1693 }
1694
ba6a1308 1695 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1696 }
1697
d95a717f
TH
1698 /* do post_internal_cmd */
1699 if (ap->ops->post_internal_cmd)
1700 ap->ops->post_internal_cmd(qc);
1701
a51d644a
TH
1702 /* perform minimal error analysis */
1703 if (qc->flags & ATA_QCFLAG_FAILED) {
1704 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1705 qc->err_mask |= AC_ERR_DEV;
1706
1707 if (!qc->err_mask)
1708 qc->err_mask |= AC_ERR_OTHER;
1709
1710 if (qc->err_mask & ~AC_ERR_OTHER)
1711 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1712 }
1713
15869303 1714 /* finish up */
ba6a1308 1715 spin_lock_irqsave(ap->lock, flags);
15869303 1716
e61e0672 1717 *tf = qc->result_tf;
77853bf2
TH
1718 err_mask = qc->err_mask;
1719
1720 ata_qc_free(qc);
9af5c9c9
TH
1721 link->active_tag = preempted_tag;
1722 link->sactive = preempted_sactive;
dedaf2b0 1723 ap->qc_active = preempted_qc_active;
da917d69 1724 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1725
1f7dd3e9
TH
1726 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1727 * Until those drivers are fixed, we detect the condition
1728 * here, fail the command with AC_ERR_SYSTEM and reenable the
1729 * port.
1730 *
1731 * Note that this doesn't change any behavior as internal
1732 * command failure results in disabling the device in the
1733 * higher layer for LLDDs without new reset/EH callbacks.
1734 *
1735 * Kill the following code as soon as those drivers are fixed.
1736 */
198e0fed 1737 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1738 err_mask |= AC_ERR_SYSTEM;
1739 ata_port_probe(ap);
1740 }
1741
ba6a1308 1742 spin_unlock_irqrestore(ap->lock, flags);
15869303 1743
77853bf2 1744 return err_mask;
a2a7a662
TH
1745}
1746
2432697b 1747/**
33480a0e 1748 * ata_exec_internal - execute libata internal command
2432697b
TH
1749 * @dev: Device to which the command is sent
1750 * @tf: Taskfile registers for the command and the result
1751 * @cdb: CDB for packet command
1752 * @dma_dir: Data tranfer direction of the command
1753 * @buf: Data buffer of the command
1754 * @buflen: Length of data buffer
2b789108 1755 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1756 *
1757 * Wrapper around ata_exec_internal_sg() which takes simple
1758 * buffer instead of sg list.
1759 *
1760 * LOCKING:
1761 * None. Should be called with kernel context, might sleep.
1762 *
1763 * RETURNS:
1764 * Zero on success, AC_ERR_* mask on failure
1765 */
1766unsigned ata_exec_internal(struct ata_device *dev,
1767 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1768 int dma_dir, void *buf, unsigned int buflen,
1769 unsigned long timeout)
2432697b 1770{
33480a0e
TH
1771 struct scatterlist *psg = NULL, sg;
1772 unsigned int n_elem = 0;
2432697b 1773
33480a0e
TH
1774 if (dma_dir != DMA_NONE) {
1775 WARN_ON(!buf);
1776 sg_init_one(&sg, buf, buflen);
1777 psg = &sg;
1778 n_elem++;
1779 }
2432697b 1780
2b789108
TH
1781 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1782 timeout);
2432697b
TH
1783}
1784
977e6b9f
TH
1785/**
1786 * ata_do_simple_cmd - execute simple internal command
1787 * @dev: Device to which the command is sent
1788 * @cmd: Opcode to execute
1789 *
1790 * Execute a 'simple' command, that only consists of the opcode
1791 * 'cmd' itself, without filling any other registers
1792 *
1793 * LOCKING:
1794 * Kernel thread context (may sleep).
1795 *
1796 * RETURNS:
1797 * Zero on success, AC_ERR_* mask on failure
e58eb583 1798 */
77b08fb5 1799unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1800{
1801 struct ata_taskfile tf;
e58eb583
TH
1802
1803 ata_tf_init(dev, &tf);
1804
1805 tf.command = cmd;
1806 tf.flags |= ATA_TFLAG_DEVICE;
1807 tf.protocol = ATA_PROT_NODATA;
1808
2b789108 1809 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1810}
1811
1bc4ccff
AC
1812/**
1813 * ata_pio_need_iordy - check if iordy needed
1814 * @adev: ATA device
1815 *
1816 * Check if the current speed of the device requires IORDY. Used
1817 * by various controllers for chip configuration.
1818 */
a617c09f 1819
1bc4ccff
AC
1820unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1821{
432729f0
AC
1822 /* Controller doesn't support IORDY. Probably a pointless check
1823 as the caller should know this */
9af5c9c9 1824 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1825 return 0;
432729f0
AC
1826 /* PIO3 and higher it is mandatory */
1827 if (adev->pio_mode > XFER_PIO_2)
1828 return 1;
1829 /* We turn it on when possible */
1830 if (ata_id_has_iordy(adev->id))
1bc4ccff 1831 return 1;
432729f0
AC
1832 return 0;
1833}
2e9edbf8 1834
432729f0
AC
1835/**
1836 * ata_pio_mask_no_iordy - Return the non IORDY mask
1837 * @adev: ATA device
1838 *
1839 * Compute the highest mode possible if we are not using iordy. Return
1840 * -1 if no iordy mode is available.
1841 */
a617c09f 1842
432729f0
AC
1843static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1844{
1bc4ccff 1845 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1846 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1847 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1848 /* Is the speed faster than the drive allows non IORDY ? */
1849 if (pio) {
1850 /* This is cycle times not frequency - watch the logic! */
1851 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1852 return 3 << ATA_SHIFT_PIO;
1853 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1854 }
1855 }
432729f0 1856 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1857}
1858
1da177e4 1859/**
49016aca 1860 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1861 * @dev: target device
1862 * @p_class: pointer to class of the target device (may be changed)
bff04647 1863 * @flags: ATA_READID_* flags
fe635c7e 1864 * @id: buffer to read IDENTIFY data into
1da177e4 1865 *
49016aca
TH
1866 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1867 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1868 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1869 * for pre-ATA4 drives.
1da177e4 1870 *
50a99018 1871 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1872 * now we abort if we hit that case.
50a99018 1873 *
1da177e4 1874 * LOCKING:
49016aca
TH
1875 * Kernel thread context (may sleep)
1876 *
1877 * RETURNS:
1878 * 0 on success, -errno otherwise.
1da177e4 1879 */
a9beec95 1880int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1881 unsigned int flags, u16 *id)
1da177e4 1882{
9af5c9c9 1883 struct ata_port *ap = dev->link->ap;
49016aca 1884 unsigned int class = *p_class;
a0123703 1885 struct ata_taskfile tf;
49016aca
TH
1886 unsigned int err_mask = 0;
1887 const char *reason;
54936f8b 1888 int may_fallback = 1, tried_spinup = 0;
49016aca 1889 int rc;
1da177e4 1890
0dd4b21f 1891 if (ata_msg_ctl(ap))
44877b4e 1892 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1893
49016aca 1894 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1895 retry:
3373efd8 1896 ata_tf_init(dev, &tf);
a0123703 1897
49016aca
TH
1898 switch (class) {
1899 case ATA_DEV_ATA:
a0123703 1900 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1901 break;
1902 case ATA_DEV_ATAPI:
a0123703 1903 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1904 break;
1905 default:
1906 rc = -ENODEV;
1907 reason = "unsupported class";
1908 goto err_out;
1da177e4
LT
1909 }
1910
a0123703 1911 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1912
1913 /* Some devices choke if TF registers contain garbage. Make
1914 * sure those are properly initialized.
1915 */
1916 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1917
1918 /* Device presence detection is unreliable on some
1919 * controllers. Always poll IDENTIFY if available.
1920 */
1921 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1922
3373efd8 1923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1924 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1925 if (err_mask) {
800b3996 1926 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1927 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1928 ap->print_id, dev->devno);
55a8e2c8
TH
1929 return -ENOENT;
1930 }
1931
54936f8b
TH
1932 /* Device or controller might have reported the wrong
1933 * device class. Give a shot at the other IDENTIFY if
1934 * the current one is aborted by the device.
1935 */
1936 if (may_fallback &&
1937 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1938 may_fallback = 0;
1939
1940 if (class == ATA_DEV_ATA)
1941 class = ATA_DEV_ATAPI;
1942 else
1943 class = ATA_DEV_ATA;
1944 goto retry;
1945 }
1946
49016aca
TH
1947 rc = -EIO;
1948 reason = "I/O error";
1da177e4
LT
1949 goto err_out;
1950 }
1951
54936f8b
TH
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
49016aca 1957 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1958
49016aca 1959 /* sanity check */
a4f5749b 1960 rc = -EINVAL;
6070068b 1961 reason = "device reports invalid type";
a4f5749b
TH
1962
1963 if (class == ATA_DEV_ATA) {
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
1966 } else {
1967 if (ata_id_is_ata(id))
1968 goto err_out;
49016aca
TH
1969 }
1970
169439c2
ML
1971 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1972 tried_spinup = 1;
1973 /*
1974 * Drive powered-up in standby mode, and requires a specific
1975 * SET_FEATURES spin-up subcommand before it will accept
1976 * anything other than the original IDENTIFY command.
1977 */
218f3d30 1978 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1979 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1980 rc = -EIO;
1981 reason = "SPINUP failed";
1982 goto err_out;
1983 }
1984 /*
1985 * If the drive initially returned incomplete IDENTIFY info,
1986 * we now must reissue the IDENTIFY command.
1987 */
1988 if (id[2] == 0x37c8)
1989 goto retry;
1990 }
1991
bff04647 1992 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1993 /*
1994 * The exact sequence expected by certain pre-ATA4 drives is:
1995 * SRST RESET
50a99018
AC
1996 * IDENTIFY (optional in early ATA)
1997 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1998 * anything else..
1999 * Some drives were very specific about that exact sequence.
50a99018
AC
2000 *
2001 * Note that ATA4 says lba is mandatory so the second check
2002 * shoud never trigger.
49016aca
TH
2003 */
2004 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2005 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2006 if (err_mask) {
2007 rc = -EIO;
2008 reason = "INIT_DEV_PARAMS failed";
2009 goto err_out;
2010 }
2011
2012 /* current CHS translation info (id[53-58]) might be
2013 * changed. reread the identify device info.
2014 */
bff04647 2015 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2016 goto retry;
2017 }
2018 }
2019
2020 *p_class = class;
fe635c7e 2021
49016aca
TH
2022 return 0;
2023
2024 err_out:
88574551 2025 if (ata_msg_warn(ap))
0dd4b21f 2026 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2027 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2028 return rc;
2029}
2030
3373efd8 2031static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2032{
9af5c9c9
TH
2033 struct ata_port *ap = dev->link->ap;
2034 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2035}
2036
a6e6ce8e
TH
2037static void ata_dev_config_ncq(struct ata_device *dev,
2038 char *desc, size_t desc_sz)
2039{
9af5c9c9 2040 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2041 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2042
2043 if (!ata_id_has_ncq(dev->id)) {
2044 desc[0] = '\0';
2045 return;
2046 }
75683fe7 2047 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2048 snprintf(desc, desc_sz, "NCQ (not used)");
2049 return;
2050 }
a6e6ce8e 2051 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2052 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2053 dev->flags |= ATA_DFLAG_NCQ;
2054 }
2055
2056 if (hdepth >= ddepth)
2057 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2058 else
2059 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2060}
2061
49016aca 2062/**
ffeae418 2063 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2064 * @dev: Target device to configure
2065 *
2066 * Configure @dev according to @dev->id. Generic and low-level
2067 * driver specific fixups are also applied.
49016aca
TH
2068 *
2069 * LOCKING:
ffeae418
TH
2070 * Kernel thread context (may sleep)
2071 *
2072 * RETURNS:
2073 * 0 on success, -errno otherwise
49016aca 2074 */
efdaedc4 2075int ata_dev_configure(struct ata_device *dev)
49016aca 2076{
9af5c9c9
TH
2077 struct ata_port *ap = dev->link->ap;
2078 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2079 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2080 const u16 *id = dev->id;
ff8854b2 2081 unsigned int xfer_mask;
b352e57d 2082 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2083 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2084 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2085 int rc;
49016aca 2086
0dd4b21f 2087 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2088 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2089 __FUNCTION__);
ffeae418 2090 return 0;
49016aca
TH
2091 }
2092
0dd4b21f 2093 if (ata_msg_probe(ap))
44877b4e 2094 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2095
75683fe7
TH
2096 /* set horkage */
2097 dev->horkage |= ata_dev_blacklisted(dev);
2098
6746544c
TH
2099 /* let ACPI work its magic */
2100 rc = ata_acpi_on_devcfg(dev);
2101 if (rc)
2102 return rc;
08573a86 2103
05027adc
TH
2104 /* massage HPA, do it early as it might change IDENTIFY data */
2105 rc = ata_hpa_resize(dev);
2106 if (rc)
2107 return rc;
2108
c39f5ebe 2109 /* print device capabilities */
0dd4b21f 2110 if (ata_msg_probe(ap))
88574551
TH
2111 ata_dev_printk(dev, KERN_DEBUG,
2112 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2113 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2114 __FUNCTION__,
f15a1daf
TH
2115 id[49], id[82], id[83], id[84],
2116 id[85], id[86], id[87], id[88]);
c39f5ebe 2117
208a9933 2118 /* initialize to-be-configured parameters */
ea1dd4e1 2119 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2120 dev->max_sectors = 0;
2121 dev->cdb_len = 0;
2122 dev->n_sectors = 0;
2123 dev->cylinders = 0;
2124 dev->heads = 0;
2125 dev->sectors = 0;
2126
1da177e4
LT
2127 /*
2128 * common ATA, ATAPI feature tests
2129 */
2130
ff8854b2 2131 /* find max transfer mode; for printk only */
1148c3a7 2132 xfer_mask = ata_id_xfermask(id);
1da177e4 2133
0dd4b21f
BP
2134 if (ata_msg_probe(ap))
2135 ata_dump_id(id);
1da177e4 2136
ef143d57
AL
2137 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2138 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2139 sizeof(fwrevbuf));
2140
2141 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2142 sizeof(modelbuf));
2143
1da177e4
LT
2144 /* ATA-specific feature tests */
2145 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2146 if (ata_id_is_cfa(id)) {
2147 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2148 ata_dev_printk(dev, KERN_WARNING,
2149 "supports DRM functions and may "
2150 "not be fully accessable.\n");
b352e57d 2151 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2152 } else
2153 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2154
1148c3a7 2155 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2156
3f64f565
EM
2157 if (dev->id[59] & 0x100)
2158 dev->multi_count = dev->id[59] & 0xff;
2159
1148c3a7 2160 if (ata_id_has_lba(id)) {
4c2d721a 2161 const char *lba_desc;
a6e6ce8e 2162 char ncq_desc[20];
8bf62ece 2163
4c2d721a
TH
2164 lba_desc = "LBA";
2165 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2166 if (ata_id_has_lba48(id)) {
8bf62ece 2167 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2168 lba_desc = "LBA48";
6fc49adb
TH
2169
2170 if (dev->n_sectors >= (1UL << 28) &&
2171 ata_id_has_flush_ext(id))
2172 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2173 }
8bf62ece 2174
a6e6ce8e
TH
2175 /* config NCQ */
2176 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2177
8bf62ece 2178 /* print device info to dmesg */
3f64f565
EM
2179 if (ata_msg_drv(ap) && print_info) {
2180 ata_dev_printk(dev, KERN_INFO,
2181 "%s: %s, %s, max %s\n",
2182 revbuf, modelbuf, fwrevbuf,
2183 ata_mode_string(xfer_mask));
2184 ata_dev_printk(dev, KERN_INFO,
2185 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2186 (unsigned long long)dev->n_sectors,
3f64f565
EM
2187 dev->multi_count, lba_desc, ncq_desc);
2188 }
ffeae418 2189 } else {
8bf62ece
AL
2190 /* CHS */
2191
2192 /* Default translation */
1148c3a7
TH
2193 dev->cylinders = id[1];
2194 dev->heads = id[3];
2195 dev->sectors = id[6];
8bf62ece 2196
1148c3a7 2197 if (ata_id_current_chs_valid(id)) {
8bf62ece 2198 /* Current CHS translation is valid. */
1148c3a7
TH
2199 dev->cylinders = id[54];
2200 dev->heads = id[55];
2201 dev->sectors = id[56];
8bf62ece
AL
2202 }
2203
2204 /* print device info to dmesg */
3f64f565 2205 if (ata_msg_drv(ap) && print_info) {
88574551 2206 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2207 "%s: %s, %s, max %s\n",
2208 revbuf, modelbuf, fwrevbuf,
2209 ata_mode_string(xfer_mask));
a84471fe 2210 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2211 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2212 (unsigned long long)dev->n_sectors,
2213 dev->multi_count, dev->cylinders,
2214 dev->heads, dev->sectors);
2215 }
07f6f7d0
AL
2216 }
2217
6e7846e9 2218 dev->cdb_len = 16;
1da177e4
LT
2219 }
2220
2221 /* ATAPI-specific feature tests */
2c13b7ce 2222 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2223 const char *cdb_intr_string = "";
2224 const char *atapi_an_string = "";
7d77b247 2225 u32 sntf;
08a556db 2226
1148c3a7 2227 rc = atapi_cdb_len(id);
1da177e4 2228 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2229 if (ata_msg_warn(ap))
88574551
TH
2230 ata_dev_printk(dev, KERN_WARNING,
2231 "unsupported CDB len\n");
ffeae418 2232 rc = -EINVAL;
1da177e4
LT
2233 goto err_out_nosup;
2234 }
6e7846e9 2235 dev->cdb_len = (unsigned int) rc;
1da177e4 2236
7d77b247
TH
2237 /* Enable ATAPI AN if both the host and device have
2238 * the support. If PMP is attached, SNTF is required
2239 * to enable ATAPI AN to discern between PHY status
2240 * changed notifications and ATAPI ANs.
9f45cbd3 2241 */
7d77b247
TH
2242 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2243 (!ap->nr_pmp_links ||
2244 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2245 unsigned int err_mask;
2246
9f45cbd3 2247 /* issue SET feature command to turn this on */
218f3d30
JG
2248 err_mask = ata_dev_set_feature(dev,
2249 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2250 if (err_mask)
9f45cbd3 2251 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2252 "failed to enable ATAPI AN "
2253 "(err_mask=0x%x)\n", err_mask);
2254 else {
9f45cbd3 2255 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2256 atapi_an_string = ", ATAPI AN";
2257 }
9f45cbd3
KCA
2258 }
2259
08a556db 2260 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2261 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2262 cdb_intr_string = ", CDB intr";
2263 }
312f7da2 2264
1da177e4 2265 /* print device info to dmesg */
5afc8142 2266 if (ata_msg_drv(ap) && print_info)
ef143d57 2267 ata_dev_printk(dev, KERN_INFO,
854c73a2 2268 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2269 modelbuf, fwrevbuf,
12436c30 2270 ata_mode_string(xfer_mask),
854c73a2 2271 cdb_intr_string, atapi_an_string);
1da177e4
LT
2272 }
2273
914ed354
TH
2274 /* determine max_sectors */
2275 dev->max_sectors = ATA_MAX_SECTORS;
2276 if (dev->flags & ATA_DFLAG_LBA48)
2277 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2278
ca77329f
KCA
2279 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2280 if (ata_id_has_hipm(dev->id))
2281 dev->flags |= ATA_DFLAG_HIPM;
2282 if (ata_id_has_dipm(dev->id))
2283 dev->flags |= ATA_DFLAG_DIPM;
2284 }
2285
93590859
AC
2286 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2287 /* Let the user know. We don't want to disallow opens for
2288 rescue purposes, or in case the vendor is just a blithering
2289 idiot */
2dcb407e 2290 if (print_info) {
93590859
AC
2291 ata_dev_printk(dev, KERN_WARNING,
2292"Drive reports diagnostics failure. This may indicate a drive\n");
2293 ata_dev_printk(dev, KERN_WARNING,
2294"fault or invalid emulation. Contact drive vendor for information.\n");
2295 }
2296 }
2297
4b2f3ede 2298 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2299 if (ata_dev_knobble(dev)) {
5afc8142 2300 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2301 ata_dev_printk(dev, KERN_INFO,
2302 "applying bridge limits\n");
5a529139 2303 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2304 dev->max_sectors = ATA_MAX_SECTORS;
2305 }
2306
f8d8e579
TB
2307 if ((dev->class == ATA_DEV_ATAPI) &&
2308 (atapi_command_packet_set(id) == TYPE_TAPE))
2309 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2310
75683fe7 2311 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2312 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2313 dev->max_sectors);
18d6e9d5 2314
ca77329f
KCA
2315 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2316 dev->horkage |= ATA_HORKAGE_IPM;
2317
2318 /* reset link pm_policy for this port to no pm */
2319 ap->pm_policy = MAX_PERFORMANCE;
2320 }
2321
4b2f3ede 2322 if (ap->ops->dev_config)
cd0d3bbc 2323 ap->ops->dev_config(dev);
4b2f3ede 2324
0dd4b21f
BP
2325 if (ata_msg_probe(ap))
2326 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2327 __FUNCTION__, ata_chk_status(ap));
ffeae418 2328 return 0;
1da177e4
LT
2329
2330err_out_nosup:
0dd4b21f 2331 if (ata_msg_probe(ap))
88574551
TH
2332 ata_dev_printk(dev, KERN_DEBUG,
2333 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2334 return rc;
1da177e4
LT
2335}
2336
be0d18df 2337/**
2e41e8e6 2338 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2339 * @ap: port
2340 *
2e41e8e6 2341 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2342 * detection.
2343 */
2344
2345int ata_cable_40wire(struct ata_port *ap)
2346{
2347 return ATA_CBL_PATA40;
2348}
2349
2350/**
2e41e8e6 2351 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2352 * @ap: port
2353 *
2e41e8e6 2354 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2355 * detection.
2356 */
2357
2358int ata_cable_80wire(struct ata_port *ap)
2359{
2360 return ATA_CBL_PATA80;
2361}
2362
2363/**
2364 * ata_cable_unknown - return unknown PATA cable.
2365 * @ap: port
2366 *
2367 * Helper method for drivers which have no PATA cable detection.
2368 */
2369
2370int ata_cable_unknown(struct ata_port *ap)
2371{
2372 return ATA_CBL_PATA_UNK;
2373}
2374
2375/**
2376 * ata_cable_sata - return SATA cable type
2377 * @ap: port
2378 *
2379 * Helper method for drivers which have SATA cables
2380 */
2381
2382int ata_cable_sata(struct ata_port *ap)
2383{
2384 return ATA_CBL_SATA;
2385}
2386
1da177e4
LT
2387/**
2388 * ata_bus_probe - Reset and probe ATA bus
2389 * @ap: Bus to probe
2390 *
0cba632b
JG
2391 * Master ATA bus probing function. Initiates a hardware-dependent
2392 * bus reset, then attempts to identify any devices found on
2393 * the bus.
2394 *
1da177e4 2395 * LOCKING:
0cba632b 2396 * PCI/etc. bus probe sem.
1da177e4
LT
2397 *
2398 * RETURNS:
96072e69 2399 * Zero on success, negative errno otherwise.
1da177e4
LT
2400 */
2401
80289167 2402int ata_bus_probe(struct ata_port *ap)
1da177e4 2403{
28ca5c57 2404 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2405 int tries[ATA_MAX_DEVICES];
f58229f8 2406 int rc;
e82cbdb9 2407 struct ata_device *dev;
1da177e4 2408
28ca5c57 2409 ata_port_probe(ap);
c19ba8af 2410
f58229f8
TH
2411 ata_link_for_each_dev(dev, &ap->link)
2412 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2413
2414 retry:
cdeab114
TH
2415 ata_link_for_each_dev(dev, &ap->link) {
2416 /* If we issue an SRST then an ATA drive (not ATAPI)
2417 * may change configuration and be in PIO0 timing. If
2418 * we do a hard reset (or are coming from power on)
2419 * this is true for ATA or ATAPI. Until we've set a
2420 * suitable controller mode we should not touch the
2421 * bus as we may be talking too fast.
2422 */
2423 dev->pio_mode = XFER_PIO_0;
2424
2425 /* If the controller has a pio mode setup function
2426 * then use it to set the chipset to rights. Don't
2427 * touch the DMA setup as that will be dealt with when
2428 * configuring devices.
2429 */
2430 if (ap->ops->set_piomode)
2431 ap->ops->set_piomode(ap, dev);
2432 }
2433
2044470c 2434 /* reset and determine device classes */
52783c5d 2435 ap->ops->phy_reset(ap);
2061a47a 2436
f58229f8 2437 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2438 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2439 dev->class != ATA_DEV_UNKNOWN)
2440 classes[dev->devno] = dev->class;
2441 else
2442 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2443
52783c5d 2444 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2445 }
1da177e4 2446
52783c5d 2447 ata_port_probe(ap);
2044470c 2448
f31f0cc2
JG
2449 /* read IDENTIFY page and configure devices. We have to do the identify
2450 specific sequence bass-ackwards so that PDIAG- is released by
2451 the slave device */
2452
f58229f8
TH
2453 ata_link_for_each_dev(dev, &ap->link) {
2454 if (tries[dev->devno])
2455 dev->class = classes[dev->devno];
ffeae418 2456
14d2bac1 2457 if (!ata_dev_enabled(dev))
ffeae418 2458 continue;
ffeae418 2459
bff04647
TH
2460 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2461 dev->id);
14d2bac1
TH
2462 if (rc)
2463 goto fail;
f31f0cc2
JG
2464 }
2465
be0d18df
AC
2466 /* Now ask for the cable type as PDIAG- should have been released */
2467 if (ap->ops->cable_detect)
2468 ap->cbl = ap->ops->cable_detect(ap);
2469
614fe29b
AC
2470 /* We may have SATA bridge glue hiding here irrespective of the
2471 reported cable types and sensed types */
2472 ata_link_for_each_dev(dev, &ap->link) {
2473 if (!ata_dev_enabled(dev))
2474 continue;
2475 /* SATA drives indicate we have a bridge. We don't know which
2476 end of the link the bridge is which is a problem */
2477 if (ata_id_is_sata(dev->id))
2478 ap->cbl = ATA_CBL_SATA;
2479 }
2480
f31f0cc2
JG
2481 /* After the identify sequence we can now set up the devices. We do
2482 this in the normal order so that the user doesn't get confused */
2483
f58229f8 2484 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2485 if (!ata_dev_enabled(dev))
2486 continue;
14d2bac1 2487
9af5c9c9 2488 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2489 rc = ata_dev_configure(dev);
9af5c9c9 2490 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2491 if (rc)
2492 goto fail;
1da177e4
LT
2493 }
2494
e82cbdb9 2495 /* configure transfer mode */
0260731f 2496 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2497 if (rc)
51713d35 2498 goto fail;
1da177e4 2499
f58229f8
TH
2500 ata_link_for_each_dev(dev, &ap->link)
2501 if (ata_dev_enabled(dev))
e82cbdb9 2502 return 0;
1da177e4 2503
e82cbdb9
TH
2504 /* no device present, disable port */
2505 ata_port_disable(ap);
96072e69 2506 return -ENODEV;
14d2bac1
TH
2507
2508 fail:
4ae72a1e
TH
2509 tries[dev->devno]--;
2510
14d2bac1
TH
2511 switch (rc) {
2512 case -EINVAL:
4ae72a1e 2513 /* eeek, something went very wrong, give up */
14d2bac1
TH
2514 tries[dev->devno] = 0;
2515 break;
4ae72a1e
TH
2516
2517 case -ENODEV:
2518 /* give it just one more chance */
2519 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2520 case -EIO:
4ae72a1e
TH
2521 if (tries[dev->devno] == 1) {
2522 /* This is the last chance, better to slow
2523 * down than lose it.
2524 */
936fd732 2525 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2526 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2527 }
14d2bac1
TH
2528 }
2529
4ae72a1e 2530 if (!tries[dev->devno])
3373efd8 2531 ata_dev_disable(dev);
ec573755 2532
14d2bac1 2533 goto retry;
1da177e4
LT
2534}
2535
2536/**
0cba632b
JG
2537 * ata_port_probe - Mark port as enabled
2538 * @ap: Port for which we indicate enablement
1da177e4 2539 *
0cba632b
JG
2540 * Modify @ap data structure such that the system
2541 * thinks that the entire port is enabled.
2542 *
cca3974e 2543 * LOCKING: host lock, or some other form of
0cba632b 2544 * serialization.
1da177e4
LT
2545 */
2546
2547void ata_port_probe(struct ata_port *ap)
2548{
198e0fed 2549 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2550}
2551
3be680b7
TH
2552/**
2553 * sata_print_link_status - Print SATA link status
936fd732 2554 * @link: SATA link to printk link status about
3be680b7
TH
2555 *
2556 * This function prints link speed and status of a SATA link.
2557 *
2558 * LOCKING:
2559 * None.
2560 */
936fd732 2561void sata_print_link_status(struct ata_link *link)
3be680b7 2562{
6d5f9732 2563 u32 sstatus, scontrol, tmp;
3be680b7 2564
936fd732 2565 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2566 return;
936fd732 2567 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2568
936fd732 2569 if (ata_link_online(link)) {
3be680b7 2570 tmp = (sstatus >> 4) & 0xf;
936fd732 2571 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2572 "SATA link up %s (SStatus %X SControl %X)\n",
2573 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2574 } else {
936fd732 2575 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2576 "SATA link down (SStatus %X SControl %X)\n",
2577 sstatus, scontrol);
3be680b7
TH
2578 }
2579}
2580
1da177e4 2581/**
780a87f7
JG
2582 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2583 * @ap: SATA port associated with target SATA PHY.
1da177e4 2584 *
780a87f7
JG
2585 * This function issues commands to standard SATA Sxxx
2586 * PHY registers, to wake up the phy (and device), and
2587 * clear any reset condition.
1da177e4
LT
2588 *
2589 * LOCKING:
0cba632b 2590 * PCI/etc. bus probe sem.
1da177e4
LT
2591 *
2592 */
2593void __sata_phy_reset(struct ata_port *ap)
2594{
936fd732 2595 struct ata_link *link = &ap->link;
1da177e4 2596 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2597 u32 sstatus;
1da177e4
LT
2598
2599 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2600 /* issue phy wake/reset */
936fd732 2601 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2602 /* Couldn't find anything in SATA I/II specs, but
2603 * AHCI-1.1 10.4.2 says at least 1 ms. */
2604 mdelay(1);
1da177e4 2605 }
81952c54 2606 /* phy wake/clear reset */
936fd732 2607 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2608
2609 /* wait for phy to become ready, if necessary */
2610 do {
2611 msleep(200);
936fd732 2612 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2613 if ((sstatus & 0xf) != 1)
2614 break;
2615 } while (time_before(jiffies, timeout));
2616
3be680b7 2617 /* print link status */
936fd732 2618 sata_print_link_status(link);
656563e3 2619
3be680b7 2620 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2621 if (!ata_link_offline(link))
1da177e4 2622 ata_port_probe(ap);
3be680b7 2623 else
1da177e4 2624 ata_port_disable(ap);
1da177e4 2625
198e0fed 2626 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2627 return;
2628
2629 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2630 ata_port_disable(ap);
2631 return;
2632 }
2633
2634 ap->cbl = ATA_CBL_SATA;
2635}
2636
2637/**
780a87f7
JG
2638 * sata_phy_reset - Reset SATA bus.
2639 * @ap: SATA port associated with target SATA PHY.
1da177e4 2640 *
780a87f7
JG
2641 * This function resets the SATA bus, and then probes
2642 * the bus for devices.
1da177e4
LT
2643 *
2644 * LOCKING:
0cba632b 2645 * PCI/etc. bus probe sem.
1da177e4
LT
2646 *
2647 */
2648void sata_phy_reset(struct ata_port *ap)
2649{
2650 __sata_phy_reset(ap);
198e0fed 2651 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2652 return;
2653 ata_bus_reset(ap);
2654}
2655
ebdfca6e
AC
2656/**
2657 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2658 * @adev: device
2659 *
2660 * Obtain the other device on the same cable, or if none is
2661 * present NULL is returned
2662 */
2e9edbf8 2663
3373efd8 2664struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2665{
9af5c9c9
TH
2666 struct ata_link *link = adev->link;
2667 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2668 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2669 return NULL;
2670 return pair;
2671}
2672
1da177e4 2673/**
780a87f7
JG
2674 * ata_port_disable - Disable port.
2675 * @ap: Port to be disabled.
1da177e4 2676 *
780a87f7
JG
2677 * Modify @ap data structure such that the system
2678 * thinks that the entire port is disabled, and should
2679 * never attempt to probe or communicate with devices
2680 * on this port.
2681 *
cca3974e 2682 * LOCKING: host lock, or some other form of
780a87f7 2683 * serialization.
1da177e4
LT
2684 */
2685
2686void ata_port_disable(struct ata_port *ap)
2687{
9af5c9c9
TH
2688 ap->link.device[0].class = ATA_DEV_NONE;
2689 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2690 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2691}
2692
1c3fae4d 2693/**
3c567b7d 2694 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2695 * @link: Link to adjust SATA spd limit for
1c3fae4d 2696 *
936fd732 2697 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2698 * function only adjusts the limit. The change must be applied
3c567b7d 2699 * using sata_set_spd().
1c3fae4d
TH
2700 *
2701 * LOCKING:
2702 * Inherited from caller.
2703 *
2704 * RETURNS:
2705 * 0 on success, negative errno on failure
2706 */
936fd732 2707int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2708{
81952c54
TH
2709 u32 sstatus, spd, mask;
2710 int rc, highbit;
1c3fae4d 2711
936fd732 2712 if (!sata_scr_valid(link))
008a7896
TH
2713 return -EOPNOTSUPP;
2714
2715 /* If SCR can be read, use it to determine the current SPD.
936fd732 2716 * If not, use cached value in link->sata_spd.
008a7896 2717 */
936fd732 2718 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2719 if (rc == 0)
2720 spd = (sstatus >> 4) & 0xf;
2721 else
936fd732 2722 spd = link->sata_spd;
1c3fae4d 2723
936fd732 2724 mask = link->sata_spd_limit;
1c3fae4d
TH
2725 if (mask <= 1)
2726 return -EINVAL;
008a7896
TH
2727
2728 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2729 highbit = fls(mask) - 1;
2730 mask &= ~(1 << highbit);
2731
008a7896
TH
2732 /* Mask off all speeds higher than or equal to the current
2733 * one. Force 1.5Gbps if current SPD is not available.
2734 */
2735 if (spd > 1)
2736 mask &= (1 << (spd - 1)) - 1;
2737 else
2738 mask &= 1;
2739
2740 /* were we already at the bottom? */
1c3fae4d
TH
2741 if (!mask)
2742 return -EINVAL;
2743
936fd732 2744 link->sata_spd_limit = mask;
1c3fae4d 2745
936fd732 2746 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2747 sata_spd_string(fls(mask)));
1c3fae4d
TH
2748
2749 return 0;
2750}
2751
936fd732 2752static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2753{
2754 u32 spd, limit;
2755
936fd732 2756 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2757 limit = 0;
2758 else
936fd732 2759 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2760
2761 spd = (*scontrol >> 4) & 0xf;
2762 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2763
2764 return spd != limit;
2765}
2766
2767/**
3c567b7d 2768 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2769 * @link: Link in question
1c3fae4d
TH
2770 *
2771 * Test whether the spd limit in SControl matches
936fd732 2772 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2773 * whether hardreset is necessary to apply SATA spd
2774 * configuration.
2775 *
2776 * LOCKING:
2777 * Inherited from caller.
2778 *
2779 * RETURNS:
2780 * 1 if SATA spd configuration is needed, 0 otherwise.
2781 */
936fd732 2782int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2783{
2784 u32 scontrol;
2785
936fd732 2786 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2787 return 0;
2788
936fd732 2789 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2790}
2791
2792/**
3c567b7d 2793 * sata_set_spd - set SATA spd according to spd limit
936fd732 2794 * @link: Link to set SATA spd for
1c3fae4d 2795 *
936fd732 2796 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2797 *
2798 * LOCKING:
2799 * Inherited from caller.
2800 *
2801 * RETURNS:
2802 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2803 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2804 */
936fd732 2805int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2806{
2807 u32 scontrol;
81952c54 2808 int rc;
1c3fae4d 2809
936fd732 2810 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2811 return rc;
1c3fae4d 2812
936fd732 2813 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2814 return 0;
2815
936fd732 2816 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2817 return rc;
2818
1c3fae4d
TH
2819 return 1;
2820}
2821
452503f9
AC
2822/*
2823 * This mode timing computation functionality is ported over from
2824 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2825 */
2826/*
b352e57d 2827 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2828 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2829 * for UDMA6, which is currently supported only by Maxtor drives.
2830 *
2831 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2832 */
2833
2834static const struct ata_timing ata_timing[] = {
2835
2836 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2837 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2838 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2839 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2840
b352e57d
AC
2841 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2842 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2843 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2844 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2845 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2846
2847/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2848
452503f9
AC
2849 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2850 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2851 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2852
452503f9
AC
2853 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2854 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2855 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2856
b352e57d
AC
2857 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2858 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2859 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2860 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2861
2862 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2863 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2864 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2865
2866/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2867
2868 { 0xFF }
2869};
2870
2dcb407e
JG
2871#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2872#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2873
2874static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2875{
2876 q->setup = EZ(t->setup * 1000, T);
2877 q->act8b = EZ(t->act8b * 1000, T);
2878 q->rec8b = EZ(t->rec8b * 1000, T);
2879 q->cyc8b = EZ(t->cyc8b * 1000, T);
2880 q->active = EZ(t->active * 1000, T);
2881 q->recover = EZ(t->recover * 1000, T);
2882 q->cycle = EZ(t->cycle * 1000, T);
2883 q->udma = EZ(t->udma * 1000, UT);
2884}
2885
2886void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2887 struct ata_timing *m, unsigned int what)
2888{
2889 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2890 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2891 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2892 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2893 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2894 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2895 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2896 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2897}
2898
2dcb407e 2899static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2900{
2901 const struct ata_timing *t;
2902
2903 for (t = ata_timing; t->mode != speed; t++)
91190758 2904 if (t->mode == 0xFF)
452503f9 2905 return NULL;
2e9edbf8 2906 return t;
452503f9
AC
2907}
2908
2909int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2910 struct ata_timing *t, int T, int UT)
2911{
2912 const struct ata_timing *s;
2913 struct ata_timing p;
2914
2915 /*
2e9edbf8 2916 * Find the mode.
75b1f2f8 2917 */
452503f9
AC
2918
2919 if (!(s = ata_timing_find_mode(speed)))
2920 return -EINVAL;
2921
75b1f2f8
AL
2922 memcpy(t, s, sizeof(*s));
2923
452503f9
AC
2924 /*
2925 * If the drive is an EIDE drive, it can tell us it needs extended
2926 * PIO/MW_DMA cycle timing.
2927 */
2928
2929 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2930 memset(&p, 0, sizeof(p));
2dcb407e 2931 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2932 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2933 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2934 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2935 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2936 }
2937 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2938 }
2939
2940 /*
2941 * Convert the timing to bus clock counts.
2942 */
2943
75b1f2f8 2944 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2945
2946 /*
c893a3ae
RD
2947 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2948 * S.M.A.R.T * and some other commands. We have to ensure that the
2949 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2950 */
2951
fd3367af 2952 if (speed > XFER_PIO_6) {
452503f9
AC
2953 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2954 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2955 }
2956
2957 /*
c893a3ae 2958 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2959 */
2960
2961 if (t->act8b + t->rec8b < t->cyc8b) {
2962 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2963 t->rec8b = t->cyc8b - t->act8b;
2964 }
2965
2966 if (t->active + t->recover < t->cycle) {
2967 t->active += (t->cycle - (t->active + t->recover)) / 2;
2968 t->recover = t->cycle - t->active;
2969 }
a617c09f 2970
4f701d1e
AC
2971 /* In a few cases quantisation may produce enough errors to
2972 leave t->cycle too low for the sum of active and recovery
2973 if so we must correct this */
2974 if (t->active + t->recover > t->cycle)
2975 t->cycle = t->active + t->recover;
452503f9
AC
2976
2977 return 0;
2978}
2979
cf176e1a
TH
2980/**
2981 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2982 * @dev: Device to adjust xfer masks
458337db 2983 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2984 *
2985 * Adjust xfer masks of @dev downward. Note that this function
2986 * does not apply the change. Invoking ata_set_mode() afterwards
2987 * will apply the limit.
2988 *
2989 * LOCKING:
2990 * Inherited from caller.
2991 *
2992 * RETURNS:
2993 * 0 on success, negative errno on failure
2994 */
458337db 2995int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2996{
458337db
TH
2997 char buf[32];
2998 unsigned int orig_mask, xfer_mask;
2999 unsigned int pio_mask, mwdma_mask, udma_mask;
3000 int quiet, highbit;
cf176e1a 3001
458337db
TH
3002 quiet = !!(sel & ATA_DNXFER_QUIET);
3003 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3004
458337db
TH
3005 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3006 dev->mwdma_mask,
3007 dev->udma_mask);
3008 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3009
458337db
TH
3010 switch (sel) {
3011 case ATA_DNXFER_PIO:
3012 highbit = fls(pio_mask) - 1;
3013 pio_mask &= ~(1 << highbit);
3014 break;
3015
3016 case ATA_DNXFER_DMA:
3017 if (udma_mask) {
3018 highbit = fls(udma_mask) - 1;
3019 udma_mask &= ~(1 << highbit);
3020 if (!udma_mask)
3021 return -ENOENT;
3022 } else if (mwdma_mask) {
3023 highbit = fls(mwdma_mask) - 1;
3024 mwdma_mask &= ~(1 << highbit);
3025 if (!mwdma_mask)
3026 return -ENOENT;
3027 }
3028 break;
3029
3030 case ATA_DNXFER_40C:
3031 udma_mask &= ATA_UDMA_MASK_40C;
3032 break;
3033
3034 case ATA_DNXFER_FORCE_PIO0:
3035 pio_mask &= 1;
3036 case ATA_DNXFER_FORCE_PIO:
3037 mwdma_mask = 0;
3038 udma_mask = 0;
3039 break;
3040
458337db
TH
3041 default:
3042 BUG();
3043 }
3044
3045 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3046
3047 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3048 return -ENOENT;
3049
3050 if (!quiet) {
3051 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3052 snprintf(buf, sizeof(buf), "%s:%s",
3053 ata_mode_string(xfer_mask),
3054 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3055 else
3056 snprintf(buf, sizeof(buf), "%s",
3057 ata_mode_string(xfer_mask));
3058
3059 ata_dev_printk(dev, KERN_WARNING,
3060 "limiting speed to %s\n", buf);
3061 }
cf176e1a
TH
3062
3063 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3064 &dev->udma_mask);
3065
cf176e1a 3066 return 0;
cf176e1a
TH
3067}
3068
3373efd8 3069static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3070{
9af5c9c9 3071 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3072 unsigned int err_mask;
3073 int rc;
1da177e4 3074
e8384607 3075 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3076 if (dev->xfer_shift == ATA_SHIFT_PIO)
3077 dev->flags |= ATA_DFLAG_PIO;
3078
3373efd8 3079 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3080
11750a40
AC
3081 /* Old CFA may refuse this command, which is just fine */
3082 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3083 err_mask &= ~AC_ERR_DEV;
3084
0bc2a79a
AC
3085 /* Some very old devices and some bad newer ones fail any kind of
3086 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3087 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3088 dev->pio_mode <= XFER_PIO_2)
3089 err_mask &= ~AC_ERR_DEV;
2dcb407e 3090
3acaf94b
AC
3091 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3092 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3093 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3094 dev->dma_mode == XFER_MW_DMA_0 &&
3095 (dev->id[63] >> 8) & 1)
3096 err_mask &= ~AC_ERR_DEV;
3097
83206a29 3098 if (err_mask) {
f15a1daf
TH
3099 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3100 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3101 return -EIO;
3102 }
1da177e4 3103
baa1e78a 3104 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3105 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3106 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3107 if (rc)
83206a29 3108 return rc;
48a8a14f 3109
23e71c3d
TH
3110 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3111 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3112
f15a1daf
TH
3113 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3114 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3115 return 0;
1da177e4
LT
3116}
3117
1da177e4 3118/**
04351821 3119 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3120 * @link: link on which timings will be programmed
e82cbdb9 3121 * @r_failed_dev: out paramter for failed device
1da177e4 3122 *
04351821
AC
3123 * Standard implementation of the function used to tune and set
3124 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3125 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3126 * returned in @r_failed_dev.
780a87f7 3127 *
1da177e4 3128 * LOCKING:
0cba632b 3129 * PCI/etc. bus probe sem.
e82cbdb9
TH
3130 *
3131 * RETURNS:
3132 * 0 on success, negative errno otherwise
1da177e4 3133 */
04351821 3134
0260731f 3135int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3136{
0260731f 3137 struct ata_port *ap = link->ap;
e8e0619f 3138 struct ata_device *dev;
f58229f8 3139 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3140
a6d5a51c 3141 /* step 1: calculate xfer_mask */
f58229f8 3142 ata_link_for_each_dev(dev, link) {
acf356b1 3143 unsigned int pio_mask, dma_mask;
b3a70601 3144 unsigned int mode_mask;
a6d5a51c 3145
e1211e3f 3146 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3147 continue;
3148
b3a70601
AC
3149 mode_mask = ATA_DMA_MASK_ATA;
3150 if (dev->class == ATA_DEV_ATAPI)
3151 mode_mask = ATA_DMA_MASK_ATAPI;
3152 else if (ata_id_is_cfa(dev->id))
3153 mode_mask = ATA_DMA_MASK_CFA;
3154
3373efd8 3155 ata_dev_xfermask(dev);
1da177e4 3156
acf356b1
TH
3157 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3158 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3159
3160 if (libata_dma_mask & mode_mask)
3161 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3162 else
3163 dma_mask = 0;
3164
acf356b1
TH
3165 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3166 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3167
4f65977d 3168 found = 1;
5444a6f4
AC
3169 if (dev->dma_mode)
3170 used_dma = 1;
a6d5a51c 3171 }
4f65977d 3172 if (!found)
e82cbdb9 3173 goto out;
a6d5a51c
TH
3174
3175 /* step 2: always set host PIO timings */
f58229f8 3176 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3177 if (!ata_dev_enabled(dev))
3178 continue;
3179
3180 if (!dev->pio_mode) {
f15a1daf 3181 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3182 rc = -EINVAL;
e82cbdb9 3183 goto out;
e8e0619f
TH
3184 }
3185
3186 dev->xfer_mode = dev->pio_mode;
3187 dev->xfer_shift = ATA_SHIFT_PIO;
3188 if (ap->ops->set_piomode)
3189 ap->ops->set_piomode(ap, dev);
3190 }
1da177e4 3191
a6d5a51c 3192 /* step 3: set host DMA timings */
f58229f8 3193 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3194 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3195 continue;
3196
3197 dev->xfer_mode = dev->dma_mode;
3198 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3199 if (ap->ops->set_dmamode)
3200 ap->ops->set_dmamode(ap, dev);
3201 }
1da177e4
LT
3202
3203 /* step 4: update devices' xfer mode */
f58229f8 3204 ata_link_for_each_dev(dev, link) {
18d90deb 3205 /* don't update suspended devices' xfer mode */
9666f400 3206 if (!ata_dev_enabled(dev))
83206a29
TH
3207 continue;
3208
3373efd8 3209 rc = ata_dev_set_mode(dev);
5bbc53f4 3210 if (rc)
e82cbdb9 3211 goto out;
83206a29 3212 }
1da177e4 3213
e8e0619f
TH
3214 /* Record simplex status. If we selected DMA then the other
3215 * host channels are not permitted to do so.
5444a6f4 3216 */
cca3974e 3217 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3218 ap->host->simplex_claimed = ap;
5444a6f4 3219
e82cbdb9
TH
3220 out:
3221 if (rc)
3222 *r_failed_dev = dev;
3223 return rc;
1da177e4
LT
3224}
3225
04351821
AC
3226/**
3227 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3228 * @link: link on which timings will be programmed
04351821
AC
3229 * @r_failed_dev: out paramter for failed device
3230 *
3231 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3232 * ata_set_mode() fails, pointer to the failing device is
3233 * returned in @r_failed_dev.
3234 *
3235 * LOCKING:
3236 * PCI/etc. bus probe sem.
3237 *
3238 * RETURNS:
3239 * 0 on success, negative errno otherwise
3240 */
0260731f 3241int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3242{
0260731f
TH
3243 struct ata_port *ap = link->ap;
3244
04351821
AC
3245 /* has private set_mode? */
3246 if (ap->ops->set_mode)
0260731f
TH
3247 return ap->ops->set_mode(link, r_failed_dev);
3248 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3249}
3250
1fdffbce
JG
3251/**
3252 * ata_tf_to_host - issue ATA taskfile to host controller
3253 * @ap: port to which command is being issued
3254 * @tf: ATA taskfile register set
3255 *
3256 * Issues ATA taskfile register set to ATA host controller,
3257 * with proper synchronization with interrupt handler and
3258 * other threads.
3259 *
3260 * LOCKING:
cca3974e 3261 * spin_lock_irqsave(host lock)
1fdffbce
JG
3262 */
3263
3264static inline void ata_tf_to_host(struct ata_port *ap,
3265 const struct ata_taskfile *tf)
3266{
3267 ap->ops->tf_load(ap, tf);
3268 ap->ops->exec_command(ap, tf);
3269}
3270
1da177e4
LT
3271/**
3272 * ata_busy_sleep - sleep until BSY clears, or timeout
3273 * @ap: port containing status register to be polled
3274 * @tmout_pat: impatience timeout
3275 * @tmout: overall timeout
3276 *
780a87f7
JG
3277 * Sleep until ATA Status register bit BSY clears,
3278 * or a timeout occurs.
3279 *
d1adc1bb
TH
3280 * LOCKING:
3281 * Kernel thread context (may sleep).
3282 *
3283 * RETURNS:
3284 * 0 on success, -errno otherwise.
1da177e4 3285 */
d1adc1bb
TH
3286int ata_busy_sleep(struct ata_port *ap,
3287 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3288{
3289 unsigned long timer_start, timeout;
3290 u8 status;
3291
3292 status = ata_busy_wait(ap, ATA_BUSY, 300);
3293 timer_start = jiffies;
3294 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3295 while (status != 0xff && (status & ATA_BUSY) &&
3296 time_before(jiffies, timeout)) {
1da177e4
LT
3297 msleep(50);
3298 status = ata_busy_wait(ap, ATA_BUSY, 3);
3299 }
3300
d1adc1bb 3301 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3302 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3303 "port is slow to respond, please be patient "
3304 "(Status 0x%x)\n", status);
1da177e4
LT
3305
3306 timeout = timer_start + tmout;
d1adc1bb
TH
3307 while (status != 0xff && (status & ATA_BUSY) &&
3308 time_before(jiffies, timeout)) {
1da177e4
LT
3309 msleep(50);
3310 status = ata_chk_status(ap);
3311 }
3312
d1adc1bb
TH
3313 if (status == 0xff)
3314 return -ENODEV;
3315
1da177e4 3316 if (status & ATA_BUSY) {
f15a1daf 3317 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3318 "(%lu secs, Status 0x%x)\n",
3319 tmout / HZ, status);
d1adc1bb 3320 return -EBUSY;
1da177e4
LT
3321 }
3322
3323 return 0;
3324}
3325
88ff6eaf
TH
3326/**
3327 * ata_wait_after_reset - wait before checking status after reset
3328 * @ap: port containing status register to be polled
3329 * @deadline: deadline jiffies for the operation
3330 *
3331 * After reset, we need to pause a while before reading status.
3332 * Also, certain combination of controller and device report 0xff
3333 * for some duration (e.g. until SATA PHY is up and running)
3334 * which is interpreted as empty port in ATA world. This
3335 * function also waits for such devices to get out of 0xff
3336 * status.
3337 *
3338 * LOCKING:
3339 * Kernel thread context (may sleep).
3340 */
3341void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3342{
3343 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3344
3345 if (time_before(until, deadline))
3346 deadline = until;
3347
3348 /* Spec mandates ">= 2ms" before checking status. We wait
3349 * 150ms, because that was the magic delay used for ATAPI
3350 * devices in Hale Landis's ATADRVR, for the period of time
3351 * between when the ATA command register is written, and then
3352 * status is checked. Because waiting for "a while" before
3353 * checking status is fine, post SRST, we perform this magic
3354 * delay here as well.
3355 *
3356 * Old drivers/ide uses the 2mS rule and then waits for ready.
3357 */
3358 msleep(150);
3359
3360 /* Wait for 0xff to clear. Some SATA devices take a long time
3361 * to clear 0xff after reset. For example, HHD424020F7SV00
3362 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3363 * than that.
3364 */
3365 while (1) {
3366 u8 status = ata_chk_status(ap);
3367
3368 if (status != 0xff || time_after(jiffies, deadline))
3369 return;
3370
3371 msleep(50);
3372 }
3373}
3374
d4b2bab4
TH
3375/**
3376 * ata_wait_ready - sleep until BSY clears, or timeout
3377 * @ap: port containing status register to be polled
3378 * @deadline: deadline jiffies for the operation
3379 *
3380 * Sleep until ATA Status register bit BSY clears, or timeout
3381 * occurs.
3382 *
3383 * LOCKING:
3384 * Kernel thread context (may sleep).
3385 *
3386 * RETURNS:
3387 * 0 on success, -errno otherwise.
3388 */
3389int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3390{
3391 unsigned long start = jiffies;
3392 int warned = 0;
3393
3394 while (1) {
3395 u8 status = ata_chk_status(ap);
3396 unsigned long now = jiffies;
3397
3398 if (!(status & ATA_BUSY))
3399 return 0;
936fd732 3400 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3401 return -ENODEV;
3402 if (time_after(now, deadline))
3403 return -EBUSY;
3404
3405 if (!warned && time_after(now, start + 5 * HZ) &&
3406 (deadline - now > 3 * HZ)) {
3407 ata_port_printk(ap, KERN_WARNING,
3408 "port is slow to respond, please be patient "
3409 "(Status 0x%x)\n", status);
3410 warned = 1;
3411 }
3412
3413 msleep(50);
3414 }
3415}
3416
3417static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3418 unsigned long deadline)
1da177e4
LT
3419{
3420 struct ata_ioports *ioaddr = &ap->ioaddr;
3421 unsigned int dev0 = devmask & (1 << 0);
3422 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3423 int rc, ret = 0;
1da177e4
LT
3424
3425 /* if device 0 was found in ata_devchk, wait for its
3426 * BSY bit to clear
3427 */
d4b2bab4
TH
3428 if (dev0) {
3429 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3430 if (rc) {
3431 if (rc != -ENODEV)
3432 return rc;
3433 ret = rc;
3434 }
d4b2bab4 3435 }
1da177e4 3436
e141d999
TH
3437 /* if device 1 was found in ata_devchk, wait for register
3438 * access briefly, then wait for BSY to clear.
1da177e4 3439 */
e141d999
TH
3440 if (dev1) {
3441 int i;
1da177e4
LT
3442
3443 ap->ops->dev_select(ap, 1);
e141d999
TH
3444
3445 /* Wait for register access. Some ATAPI devices fail
3446 * to set nsect/lbal after reset, so don't waste too
3447 * much time on it. We're gonna wait for !BSY anyway.
3448 */
3449 for (i = 0; i < 2; i++) {
3450 u8 nsect, lbal;
3451
3452 nsect = ioread8(ioaddr->nsect_addr);
3453 lbal = ioread8(ioaddr->lbal_addr);
3454 if ((nsect == 1) && (lbal == 1))
3455 break;
3456 msleep(50); /* give drive a breather */
3457 }
3458
d4b2bab4 3459 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3460 if (rc) {
3461 if (rc != -ENODEV)
3462 return rc;
3463 ret = rc;
3464 }
d4b2bab4 3465 }
1da177e4
LT
3466
3467 /* is all this really necessary? */
3468 ap->ops->dev_select(ap, 0);
3469 if (dev1)
3470 ap->ops->dev_select(ap, 1);
3471 if (dev0)
3472 ap->ops->dev_select(ap, 0);
d4b2bab4 3473
9b89391c 3474 return ret;
1da177e4
LT
3475}
3476
d4b2bab4
TH
3477static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3478 unsigned long deadline)
1da177e4
LT
3479{
3480 struct ata_ioports *ioaddr = &ap->ioaddr;
3481
44877b4e 3482 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3483
3484 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3485 iowrite8(ap->ctl, ioaddr->ctl_addr);
3486 udelay(20); /* FIXME: flush */
3487 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3488 udelay(20); /* FIXME: flush */
3489 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3490
88ff6eaf
TH
3491 /* wait a while before checking status */
3492 ata_wait_after_reset(ap, deadline);
1da177e4 3493
2e9edbf8 3494 /* Before we perform post reset processing we want to see if
298a41ca
TH
3495 * the bus shows 0xFF because the odd clown forgets the D7
3496 * pulldown resistor.
3497 */
150981b0 3498 if (ata_chk_status(ap) == 0xFF)
9b89391c 3499 return -ENODEV;
09c7ad79 3500
d4b2bab4 3501 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3502}
3503
3504/**
3505 * ata_bus_reset - reset host port and associated ATA channel
3506 * @ap: port to reset
3507 *
3508 * This is typically the first time we actually start issuing
3509 * commands to the ATA channel. We wait for BSY to clear, then
3510 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3511 * result. Determine what devices, if any, are on the channel
3512 * by looking at the device 0/1 error register. Look at the signature
3513 * stored in each device's taskfile registers, to determine if
3514 * the device is ATA or ATAPI.
3515 *
3516 * LOCKING:
0cba632b 3517 * PCI/etc. bus probe sem.
cca3974e 3518 * Obtains host lock.
1da177e4
LT
3519 *
3520 * SIDE EFFECTS:
198e0fed 3521 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3522 */
3523
3524void ata_bus_reset(struct ata_port *ap)
3525{
9af5c9c9 3526 struct ata_device *device = ap->link.device;
1da177e4
LT
3527 struct ata_ioports *ioaddr = &ap->ioaddr;
3528 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3529 u8 err;
aec5c3c1 3530 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3531 int rc;
1da177e4 3532
44877b4e 3533 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3534
3535 /* determine if device 0/1 are present */
3536 if (ap->flags & ATA_FLAG_SATA_RESET)
3537 dev0 = 1;
3538 else {
3539 dev0 = ata_devchk(ap, 0);
3540 if (slave_possible)
3541 dev1 = ata_devchk(ap, 1);
3542 }
3543
3544 if (dev0)
3545 devmask |= (1 << 0);
3546 if (dev1)
3547 devmask |= (1 << 1);
3548
3549 /* select device 0 again */
3550 ap->ops->dev_select(ap, 0);
3551
3552 /* issue bus reset */
9b89391c
TH
3553 if (ap->flags & ATA_FLAG_SRST) {
3554 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3555 if (rc && rc != -ENODEV)
aec5c3c1 3556 goto err_out;
9b89391c 3557 }
1da177e4
LT
3558
3559 /*
3560 * determine by signature whether we have ATA or ATAPI devices
3561 */
3f19859e 3562 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3563 if ((slave_possible) && (err != 0x81))
3f19859e 3564 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3565
1da177e4 3566 /* is double-select really necessary? */
9af5c9c9 3567 if (device[1].class != ATA_DEV_NONE)
1da177e4 3568 ap->ops->dev_select(ap, 1);
9af5c9c9 3569 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3570 ap->ops->dev_select(ap, 0);
3571
3572 /* if no devices were detected, disable this port */
9af5c9c9
TH
3573 if ((device[0].class == ATA_DEV_NONE) &&
3574 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3575 goto err_out;
3576
3577 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3578 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3579 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3580 }
3581
3582 DPRINTK("EXIT\n");
3583 return;
3584
3585err_out:
f15a1daf 3586 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3587 ata_port_disable(ap);
1da177e4
LT
3588
3589 DPRINTK("EXIT\n");
3590}
3591
d7bb4cc7 3592/**
936fd732
TH
3593 * sata_link_debounce - debounce SATA phy status
3594 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3595 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3596 * @deadline: deadline jiffies for the operation
d7bb4cc7 3597 *
936fd732 3598* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3599 * holding the same value where DET is not 1 for @duration polled
3600 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3601 * beginning of the stable state. Because DET gets stuck at 1 on
3602 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3603 * until timeout then returns 0 if DET is stable at 1.
3604 *
d4b2bab4
TH
3605 * @timeout is further limited by @deadline. The sooner of the
3606 * two is used.
3607 *
d7bb4cc7
TH
3608 * LOCKING:
3609 * Kernel thread context (may sleep)
3610 *
3611 * RETURNS:
3612 * 0 on success, -errno on failure.
3613 */
936fd732
TH
3614int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3615 unsigned long deadline)
7a7921e8 3616{
d7bb4cc7 3617 unsigned long interval_msec = params[0];
d4b2bab4
TH
3618 unsigned long duration = msecs_to_jiffies(params[1]);
3619 unsigned long last_jiffies, t;
d7bb4cc7
TH
3620 u32 last, cur;
3621 int rc;
3622
d4b2bab4
TH
3623 t = jiffies + msecs_to_jiffies(params[2]);
3624 if (time_before(t, deadline))
3625 deadline = t;
3626
936fd732 3627 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3628 return rc;
3629 cur &= 0xf;
3630
3631 last = cur;
3632 last_jiffies = jiffies;
3633
3634 while (1) {
3635 msleep(interval_msec);
936fd732 3636 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3637 return rc;
3638 cur &= 0xf;
3639
3640 /* DET stable? */
3641 if (cur == last) {
d4b2bab4 3642 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3643 continue;
3644 if (time_after(jiffies, last_jiffies + duration))
3645 return 0;
3646 continue;
3647 }
3648
3649 /* unstable, start over */
3650 last = cur;
3651 last_jiffies = jiffies;
3652
f1545154
TH
3653 /* Check deadline. If debouncing failed, return
3654 * -EPIPE to tell upper layer to lower link speed.
3655 */
d4b2bab4 3656 if (time_after(jiffies, deadline))
f1545154 3657 return -EPIPE;
d7bb4cc7
TH
3658 }
3659}
3660
3661/**
936fd732
TH
3662 * sata_link_resume - resume SATA link
3663 * @link: ATA link to resume SATA
d7bb4cc7 3664 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3665 * @deadline: deadline jiffies for the operation
d7bb4cc7 3666 *
936fd732 3667 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3668 *
3669 * LOCKING:
3670 * Kernel thread context (may sleep)
3671 *
3672 * RETURNS:
3673 * 0 on success, -errno on failure.
3674 */
936fd732
TH
3675int sata_link_resume(struct ata_link *link, const unsigned long *params,
3676 unsigned long deadline)
d7bb4cc7
TH
3677{
3678 u32 scontrol;
81952c54
TH
3679 int rc;
3680
936fd732 3681 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3682 return rc;
7a7921e8 3683
852ee16a 3684 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3685
936fd732 3686 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3687 return rc;
7a7921e8 3688
d7bb4cc7
TH
3689 /* Some PHYs react badly if SStatus is pounded immediately
3690 * after resuming. Delay 200ms before debouncing.
3691 */
3692 msleep(200);
7a7921e8 3693
936fd732 3694 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3695}
3696
f5914a46
TH
3697/**
3698 * ata_std_prereset - prepare for reset
cc0680a5 3699 * @link: ATA link to be reset
d4b2bab4 3700 * @deadline: deadline jiffies for the operation
f5914a46 3701 *
cc0680a5 3702 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3703 * prereset makes libata abort whole reset sequence and give up
3704 * that port, so prereset should be best-effort. It does its
3705 * best to prepare for reset sequence but if things go wrong, it
3706 * should just whine, not fail.
f5914a46
TH
3707 *
3708 * LOCKING:
3709 * Kernel thread context (may sleep)
3710 *
3711 * RETURNS:
3712 * 0 on success, -errno otherwise.
3713 */
cc0680a5 3714int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3715{
cc0680a5 3716 struct ata_port *ap = link->ap;
936fd732 3717 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3718 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3719 int rc;
3720
31daabda 3721 /* handle link resume */
28324304 3722 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3723 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3724 ehc->i.action |= ATA_EH_HARDRESET;
3725
633273a3
TH
3726 /* Some PMPs don't work with only SRST, force hardreset if PMP
3727 * is supported.
3728 */
3729 if (ap->flags & ATA_FLAG_PMP)
3730 ehc->i.action |= ATA_EH_HARDRESET;
3731
f5914a46
TH
3732 /* if we're about to do hardreset, nothing more to do */
3733 if (ehc->i.action & ATA_EH_HARDRESET)
3734 return 0;
3735
936fd732 3736 /* if SATA, resume link */
a16abc0b 3737 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3738 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3739 /* whine about phy resume failure but proceed */
3740 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3741 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3742 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3743 }
3744
3745 /* Wait for !BSY if the controller can wait for the first D2H
3746 * Reg FIS and we don't know that no device is attached.
3747 */
0c88758b 3748 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3749 rc = ata_wait_ready(ap, deadline);
6dffaf61 3750 if (rc && rc != -ENODEV) {
cc0680a5 3751 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3752 "(errno=%d), forcing hardreset\n", rc);
3753 ehc->i.action |= ATA_EH_HARDRESET;
3754 }
3755 }
f5914a46
TH
3756
3757 return 0;
3758}
3759
c2bd5804
TH
3760/**
3761 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3762 * @link: ATA link to reset
c2bd5804 3763 * @classes: resulting classes of attached devices
d4b2bab4 3764 * @deadline: deadline jiffies for the operation
c2bd5804 3765 *
52783c5d 3766 * Reset host port using ATA SRST.
c2bd5804
TH
3767 *
3768 * LOCKING:
3769 * Kernel thread context (may sleep)
3770 *
3771 * RETURNS:
3772 * 0 on success, -errno otherwise.
3773 */
cc0680a5 3774int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3775 unsigned long deadline)
c2bd5804 3776{
cc0680a5 3777 struct ata_port *ap = link->ap;
c2bd5804 3778 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3779 unsigned int devmask = 0;
3780 int rc;
c2bd5804
TH
3781 u8 err;
3782
3783 DPRINTK("ENTER\n");
3784
936fd732 3785 if (ata_link_offline(link)) {
3a39746a
TH
3786 classes[0] = ATA_DEV_NONE;
3787 goto out;
3788 }
3789
c2bd5804
TH
3790 /* determine if device 0/1 are present */
3791 if (ata_devchk(ap, 0))
3792 devmask |= (1 << 0);
3793 if (slave_possible && ata_devchk(ap, 1))
3794 devmask |= (1 << 1);
3795
c2bd5804
TH
3796 /* select device 0 again */
3797 ap->ops->dev_select(ap, 0);
3798
3799 /* issue bus reset */
3800 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3801 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3802 /* if link is occupied, -ENODEV too is an error */
936fd732 3803 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3804 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3805 return rc;
c2bd5804
TH
3806 }
3807
3808 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3809 classes[0] = ata_dev_try_classify(&link->device[0],
3810 devmask & (1 << 0), &err);
c2bd5804 3811 if (slave_possible && err != 0x81)
3f19859e
TH
3812 classes[1] = ata_dev_try_classify(&link->device[1],
3813 devmask & (1 << 1), &err);
c2bd5804 3814
3a39746a 3815 out:
c2bd5804
TH
3816 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3817 return 0;
3818}
3819
3820/**
cc0680a5
TH
3821 * sata_link_hardreset - reset link via SATA phy reset
3822 * @link: link to reset
b6103f6d 3823 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3824 * @deadline: deadline jiffies for the operation
c2bd5804 3825 *
cc0680a5 3826 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3827 *
3828 * LOCKING:
3829 * Kernel thread context (may sleep)
3830 *
3831 * RETURNS:
3832 * 0 on success, -errno otherwise.
3833 */
cc0680a5 3834int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3835 unsigned long deadline)
c2bd5804 3836{
852ee16a 3837 u32 scontrol;
81952c54 3838 int rc;
852ee16a 3839
c2bd5804
TH
3840 DPRINTK("ENTER\n");
3841
936fd732 3842 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3843 /* SATA spec says nothing about how to reconfigure
3844 * spd. To be on the safe side, turn off phy during
3845 * reconfiguration. This works for at least ICH7 AHCI
3846 * and Sil3124.
3847 */
936fd732 3848 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3849 goto out;
81952c54 3850
a34b6fc0 3851 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3852
936fd732 3853 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3854 goto out;
1c3fae4d 3855
936fd732 3856 sata_set_spd(link);
1c3fae4d
TH
3857 }
3858
3859 /* issue phy wake/reset */
936fd732 3860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3861 goto out;
81952c54 3862
852ee16a 3863 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3864
936fd732 3865 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3866 goto out;
c2bd5804 3867
1c3fae4d 3868 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3869 * 10.4.2 says at least 1 ms.
3870 */
3871 msleep(1);
3872
936fd732
TH
3873 /* bring link back */
3874 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3875 out:
3876 DPRINTK("EXIT, rc=%d\n", rc);
3877 return rc;
3878}
3879
3880/**
3881 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3882 * @link: link to reset
b6103f6d 3883 * @class: resulting class of attached device
d4b2bab4 3884 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3885 *
3886 * SATA phy-reset host port using DET bits of SControl register,
3887 * wait for !BSY and classify the attached device.
3888 *
3889 * LOCKING:
3890 * Kernel thread context (may sleep)
3891 *
3892 * RETURNS:
3893 * 0 on success, -errno otherwise.
3894 */
cc0680a5 3895int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3896 unsigned long deadline)
b6103f6d 3897{
cc0680a5 3898 struct ata_port *ap = link->ap;
936fd732 3899 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3900 int rc;
3901
3902 DPRINTK("ENTER\n");
3903
3904 /* do hardreset */
cc0680a5 3905 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3906 if (rc) {
cc0680a5 3907 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3908 "COMRESET failed (errno=%d)\n", rc);
3909 return rc;
3910 }
c2bd5804 3911
c2bd5804 3912 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3913 if (ata_link_offline(link)) {
c2bd5804
TH
3914 *class = ATA_DEV_NONE;
3915 DPRINTK("EXIT, link offline\n");
3916 return 0;
3917 }
3918
88ff6eaf
TH
3919 /* wait a while before checking status */
3920 ata_wait_after_reset(ap, deadline);
34fee227 3921
633273a3
TH
3922 /* If PMP is supported, we have to do follow-up SRST. Note
3923 * that some PMPs don't send D2H Reg FIS after hardreset at
3924 * all if the first port is empty. Wait for it just for a
3925 * second and request follow-up SRST.
3926 */
3927 if (ap->flags & ATA_FLAG_PMP) {
3928 ata_wait_ready(ap, jiffies + HZ);
3929 return -EAGAIN;
3930 }
3931
d4b2bab4 3932 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3933 /* link occupied, -ENODEV too is an error */
3934 if (rc) {
cc0680a5 3935 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3936 "COMRESET failed (errno=%d)\n", rc);
3937 return rc;
c2bd5804
TH
3938 }
3939
3a39746a
TH
3940 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3941
3f19859e 3942 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3943
3944 DPRINTK("EXIT, class=%u\n", *class);
3945 return 0;
3946}
3947
3948/**
3949 * ata_std_postreset - standard postreset callback
cc0680a5 3950 * @link: the target ata_link
c2bd5804
TH
3951 * @classes: classes of attached devices
3952 *
3953 * This function is invoked after a successful reset. Note that
3954 * the device might have been reset more than once using
3955 * different reset methods before postreset is invoked.
c2bd5804 3956 *
c2bd5804
TH
3957 * LOCKING:
3958 * Kernel thread context (may sleep)
3959 */
cc0680a5 3960void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3961{
cc0680a5 3962 struct ata_port *ap = link->ap;
dc2b3515
TH
3963 u32 serror;
3964
c2bd5804
TH
3965 DPRINTK("ENTER\n");
3966
c2bd5804 3967 /* print link status */
936fd732 3968 sata_print_link_status(link);
c2bd5804 3969
dc2b3515 3970 /* clear SError */
936fd732
TH
3971 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3972 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3973
c2bd5804
TH
3974 /* is double-select really necessary? */
3975 if (classes[0] != ATA_DEV_NONE)
3976 ap->ops->dev_select(ap, 1);
3977 if (classes[1] != ATA_DEV_NONE)
3978 ap->ops->dev_select(ap, 0);
3979
3a39746a
TH
3980 /* bail out if no device is present */
3981 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3982 DPRINTK("EXIT, no device\n");
3983 return;
3984 }
3985
3986 /* set up device control */
0d5ff566
TH
3987 if (ap->ioaddr.ctl_addr)
3988 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3989
3990 DPRINTK("EXIT\n");
3991}
3992
623a3128
TH
3993/**
3994 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3995 * @dev: device to compare against
3996 * @new_class: class of the new device
3997 * @new_id: IDENTIFY page of the new device
3998 *
3999 * Compare @new_class and @new_id against @dev and determine
4000 * whether @dev is the device indicated by @new_class and
4001 * @new_id.
4002 *
4003 * LOCKING:
4004 * None.
4005 *
4006 * RETURNS:
4007 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4008 */
3373efd8
TH
4009static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4010 const u16 *new_id)
623a3128
TH
4011{
4012 const u16 *old_id = dev->id;
a0cf733b
TH
4013 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4014 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4015
4016 if (dev->class != new_class) {
f15a1daf
TH
4017 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4018 dev->class, new_class);
623a3128
TH
4019 return 0;
4020 }
4021
a0cf733b
TH
4022 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4023 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4024 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4025 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4026
4027 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4028 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4029 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4030 return 0;
4031 }
4032
4033 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4034 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4035 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4036 return 0;
4037 }
4038
623a3128
TH
4039 return 1;
4040}
4041
4042/**
fe30911b 4043 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4044 * @dev: target ATA device
bff04647 4045 * @readid_flags: read ID flags
623a3128
TH
4046 *
4047 * Re-read IDENTIFY page and make sure @dev is still attached to
4048 * the port.
4049 *
4050 * LOCKING:
4051 * Kernel thread context (may sleep)
4052 *
4053 * RETURNS:
4054 * 0 on success, negative errno otherwise
4055 */
fe30911b 4056int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4057{
5eb45c02 4058 unsigned int class = dev->class;
9af5c9c9 4059 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4060 int rc;
4061
fe635c7e 4062 /* read ID data */
bff04647 4063 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4064 if (rc)
fe30911b 4065 return rc;
623a3128
TH
4066
4067 /* is the device still there? */
fe30911b
TH
4068 if (!ata_dev_same_device(dev, class, id))
4069 return -ENODEV;
623a3128 4070
fe635c7e 4071 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4072 return 0;
4073}
4074
4075/**
4076 * ata_dev_revalidate - Revalidate ATA device
4077 * @dev: device to revalidate
422c9daa 4078 * @new_class: new class code
fe30911b
TH
4079 * @readid_flags: read ID flags
4080 *
4081 * Re-read IDENTIFY page, make sure @dev is still attached to the
4082 * port and reconfigure it according to the new IDENTIFY page.
4083 *
4084 * LOCKING:
4085 * Kernel thread context (may sleep)
4086 *
4087 * RETURNS:
4088 * 0 on success, negative errno otherwise
4089 */
422c9daa
TH
4090int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4091 unsigned int readid_flags)
fe30911b 4092{
6ddcd3b0 4093 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4094 int rc;
4095
4096 if (!ata_dev_enabled(dev))
4097 return -ENODEV;
4098
422c9daa
TH
4099 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4100 if (ata_class_enabled(new_class) &&
4101 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4102 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4103 dev->class, new_class);
4104 rc = -ENODEV;
4105 goto fail;
4106 }
4107
fe30911b
TH
4108 /* re-read ID */
4109 rc = ata_dev_reread_id(dev, readid_flags);
4110 if (rc)
4111 goto fail;
623a3128
TH
4112
4113 /* configure device according to the new ID */
efdaedc4 4114 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4115 if (rc)
4116 goto fail;
4117
4118 /* verify n_sectors hasn't changed */
b54eebd6
TH
4119 if (dev->class == ATA_DEV_ATA && n_sectors &&
4120 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4121 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4122 "%llu != %llu\n",
4123 (unsigned long long)n_sectors,
4124 (unsigned long long)dev->n_sectors);
8270bec4
TH
4125
4126 /* restore original n_sectors */
4127 dev->n_sectors = n_sectors;
4128
6ddcd3b0
TH
4129 rc = -ENODEV;
4130 goto fail;
4131 }
4132
4133 return 0;
623a3128
TH
4134
4135 fail:
f15a1daf 4136 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4137 return rc;
4138}
4139
6919a0a6
AC
4140struct ata_blacklist_entry {
4141 const char *model_num;
4142 const char *model_rev;
4143 unsigned long horkage;
4144};
4145
4146static const struct ata_blacklist_entry ata_device_blacklist [] = {
4147 /* Devices with DMA related problems under Linux */
4148 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4149 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4150 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4151 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4152 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4153 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4154 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4155 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4156 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4157 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4158 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4159 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4160 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4161 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4162 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4163 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4164 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4165 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4166 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4167 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4168 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4169 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4170 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4171 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4172 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4173 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4174 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4175 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4176 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4177 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4178 /* Odd clown on sil3726/4726 PMPs */
4179 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4180 ATA_HORKAGE_SKIP_PM },
6919a0a6 4181
18d6e9d5 4182 /* Weird ATAPI devices */
40a1d531 4183 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4184
6919a0a6
AC
4185 /* Devices we expect to fail diagnostics */
4186
4187 /* Devices where NCQ should be avoided */
4188 /* NCQ is slow */
2dcb407e 4189 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4190 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4191 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4192 /* NCQ is broken */
539cc7c7 4193 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4194 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4195 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4196 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4197 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4198
36e337d0
RH
4199 /* Blacklist entries taken from Silicon Image 3124/3132
4200 Windows driver .inf file - also several Linux problem reports */
4201 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4202 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4203 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4204 /* Drives which do spurious command completion */
4205 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4206 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4207 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4208 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4209 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4210 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4211 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4212 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4213 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4214 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4215 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4216 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4217 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4218 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4219 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4220 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4221
16c55b03
TH
4222 /* devices which puke on READ_NATIVE_MAX */
4223 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4224 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4225 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4226 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4227
93328e11
AC
4228 /* Devices which report 1 sector over size HPA */
4229 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4230 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4231
6919a0a6
AC
4232 /* End Marker */
4233 { }
1da177e4 4234};
2e9edbf8 4235
741b7763 4236static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4237{
4238 const char *p;
4239 int len;
4240
4241 /*
4242 * check for trailing wildcard: *\0
4243 */
4244 p = strchr(patt, wildchar);
4245 if (p && ((*(p + 1)) == 0))
4246 len = p - patt;
317b50b8 4247 else {
539cc7c7 4248 len = strlen(name);
317b50b8
AP
4249 if (!len) {
4250 if (!*patt)
4251 return 0;
4252 return -1;
4253 }
4254 }
539cc7c7
JG
4255
4256 return strncmp(patt, name, len);
4257}
4258
75683fe7 4259static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4260{
8bfa79fc
TH
4261 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4263 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4264
8bfa79fc
TH
4265 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4266 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4267
6919a0a6 4268 while (ad->model_num) {
539cc7c7 4269 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4270 if (ad->model_rev == NULL)
4271 return ad->horkage;
539cc7c7 4272 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4273 return ad->horkage;
f4b15fef 4274 }
6919a0a6 4275 ad++;
f4b15fef 4276 }
1da177e4
LT
4277 return 0;
4278}
4279
6919a0a6
AC
4280static int ata_dma_blacklisted(const struct ata_device *dev)
4281{
4282 /* We don't support polling DMA.
4283 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4284 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4285 */
9af5c9c9 4286 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4287 (dev->flags & ATA_DFLAG_CDB_INTR))
4288 return 1;
75683fe7 4289 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4290}
4291
a6d5a51c
TH
4292/**
4293 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4294 * @dev: Device to compute xfermask for
4295 *
acf356b1
TH
4296 * Compute supported xfermask of @dev and store it in
4297 * dev->*_mask. This function is responsible for applying all
4298 * known limits including host controller limits, device
4299 * blacklist, etc...
a6d5a51c
TH
4300 *
4301 * LOCKING:
4302 * None.
a6d5a51c 4303 */
3373efd8 4304static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4305{
9af5c9c9
TH
4306 struct ata_link *link = dev->link;
4307 struct ata_port *ap = link->ap;
cca3974e 4308 struct ata_host *host = ap->host;
a6d5a51c 4309 unsigned long xfer_mask;
1da177e4 4310
37deecb5 4311 /* controller modes available */
565083e1
TH
4312 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4313 ap->mwdma_mask, ap->udma_mask);
4314
8343f889 4315 /* drive modes available */
37deecb5
TH
4316 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4317 dev->mwdma_mask, dev->udma_mask);
4318 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4319
b352e57d
AC
4320 /*
4321 * CFA Advanced TrueIDE timings are not allowed on a shared
4322 * cable
4323 */
4324 if (ata_dev_pair(dev)) {
4325 /* No PIO5 or PIO6 */
4326 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4327 /* No MWDMA3 or MWDMA 4 */
4328 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4329 }
4330
37deecb5
TH
4331 if (ata_dma_blacklisted(dev)) {
4332 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4333 ata_dev_printk(dev, KERN_WARNING,
4334 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4335 }
a6d5a51c 4336
14d66ab7 4337 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4338 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4339 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4340 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4341 "other device, disabling DMA\n");
5444a6f4 4342 }
565083e1 4343
e424675f
JG
4344 if (ap->flags & ATA_FLAG_NO_IORDY)
4345 xfer_mask &= ata_pio_mask_no_iordy(dev);
4346
5444a6f4 4347 if (ap->ops->mode_filter)
a76b62ca 4348 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4349
8343f889
RH
4350 /* Apply cable rule here. Don't apply it early because when
4351 * we handle hot plug the cable type can itself change.
4352 * Check this last so that we know if the transfer rate was
4353 * solely limited by the cable.
4354 * Unknown or 80 wire cables reported host side are checked
4355 * drive side as well. Cases where we know a 40wire cable
4356 * is used safely for 80 are not checked here.
4357 */
4358 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4359 /* UDMA/44 or higher would be available */
2dcb407e
JG
4360 if ((ap->cbl == ATA_CBL_PATA40) ||
4361 (ata_drive_40wire(dev->id) &&
4362 (ap->cbl == ATA_CBL_PATA_UNK ||
4363 ap->cbl == ATA_CBL_PATA80))) {
4364 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4365 "limited to UDMA/33 due to 40-wire cable\n");
4366 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4367 }
4368
565083e1
TH
4369 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4370 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4371}
4372
1da177e4
LT
4373/**
4374 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4375 * @dev: Device to which command will be sent
4376 *
780a87f7
JG
4377 * Issue SET FEATURES - XFER MODE command to device @dev
4378 * on port @ap.
4379 *
1da177e4 4380 * LOCKING:
0cba632b 4381 * PCI/etc. bus probe sem.
83206a29
TH
4382 *
4383 * RETURNS:
4384 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4385 */
4386
3373efd8 4387static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4388{
a0123703 4389 struct ata_taskfile tf;
83206a29 4390 unsigned int err_mask;
1da177e4
LT
4391
4392 /* set up set-features taskfile */
4393 DPRINTK("set features - xfer mode\n");
4394
464cf177
TH
4395 /* Some controllers and ATAPI devices show flaky interrupt
4396 * behavior after setting xfer mode. Use polling instead.
4397 */
3373efd8 4398 ata_tf_init(dev, &tf);
a0123703
TH
4399 tf.command = ATA_CMD_SET_FEATURES;
4400 tf.feature = SETFEATURES_XFER;
464cf177 4401 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4402 tf.protocol = ATA_PROT_NODATA;
4403 tf.nsect = dev->xfer_mode;
1da177e4 4404
2b789108 4405 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4406
4407 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4408 return err_mask;
4409}
9f45cbd3 4410/**
218f3d30 4411 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4412 * @dev: Device to which command will be sent
4413 * @enable: Whether to enable or disable the feature
218f3d30 4414 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4415 *
4416 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4417 * on port @ap with sector count
9f45cbd3
KCA
4418 *
4419 * LOCKING:
4420 * PCI/etc. bus probe sem.
4421 *
4422 * RETURNS:
4423 * 0 on success, AC_ERR_* mask otherwise.
4424 */
218f3d30
JG
4425static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4426 u8 feature)
9f45cbd3
KCA
4427{
4428 struct ata_taskfile tf;
4429 unsigned int err_mask;
4430
4431 /* set up set-features taskfile */
4432 DPRINTK("set features - SATA features\n");
4433
4434 ata_tf_init(dev, &tf);
4435 tf.command = ATA_CMD_SET_FEATURES;
4436 tf.feature = enable;
4437 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4438 tf.protocol = ATA_PROT_NODATA;
218f3d30 4439 tf.nsect = feature;
9f45cbd3 4440
2b789108 4441 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4442
83206a29
TH
4443 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4444 return err_mask;
1da177e4
LT
4445}
4446
8bf62ece
AL
4447/**
4448 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4449 * @dev: Device to which command will be sent
e2a7f77a
RD
4450 * @heads: Number of heads (taskfile parameter)
4451 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4452 *
4453 * LOCKING:
6aff8f1f
TH
4454 * Kernel thread context (may sleep)
4455 *
4456 * RETURNS:
4457 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4458 */
3373efd8
TH
4459static unsigned int ata_dev_init_params(struct ata_device *dev,
4460 u16 heads, u16 sectors)
8bf62ece 4461{
a0123703 4462 struct ata_taskfile tf;
6aff8f1f 4463 unsigned int err_mask;
8bf62ece
AL
4464
4465 /* Number of sectors per track 1-255. Number of heads 1-16 */
4466 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4467 return AC_ERR_INVALID;
8bf62ece
AL
4468
4469 /* set up init dev params taskfile */
4470 DPRINTK("init dev params \n");
4471
3373efd8 4472 ata_tf_init(dev, &tf);
a0123703
TH
4473 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4474 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4475 tf.protocol = ATA_PROT_NODATA;
4476 tf.nsect = sectors;
4477 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4478
2b789108 4479 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4480 /* A clean abort indicates an original or just out of spec drive
4481 and we should continue as we issue the setup based on the
4482 drive reported working geometry */
4483 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4484 err_mask = 0;
8bf62ece 4485
6aff8f1f
TH
4486 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4487 return err_mask;
8bf62ece
AL
4488}
4489
1da177e4 4490/**
0cba632b
JG
4491 * ata_sg_clean - Unmap DMA memory associated with command
4492 * @qc: Command containing DMA memory to be released
4493 *
4494 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4495 *
4496 * LOCKING:
cca3974e 4497 * spin_lock_irqsave(host lock)
1da177e4 4498 */
70e6ad0c 4499void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4500{
4501 struct ata_port *ap = qc->ap;
cedc9a47 4502 struct scatterlist *sg = qc->__sg;
1da177e4 4503 int dir = qc->dma_dir;
cedc9a47 4504 void *pad_buf = NULL;
1da177e4 4505
a4631474
TH
4506 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4507 WARN_ON(sg == NULL);
1da177e4
LT
4508
4509 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4510 WARN_ON(qc->n_elem > 1);
1da177e4 4511
2c13b7ce 4512 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4513
cedc9a47
JG
4514 /* if we padded the buffer out to 32-bit bound, and data
4515 * xfer direction is from-device, we must copy from the
4516 * pad buffer back into the supplied buffer
4517 */
4518 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4519 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4520
4521 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4522 if (qc->n_elem)
2f1f610b 4523 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4524 /* restore last sg */
87260216 4525 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4526 if (pad_buf) {
4527 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4528 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4529 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4530 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4531 }
4532 } else {
2e242fa9 4533 if (qc->n_elem)
2f1f610b 4534 dma_unmap_single(ap->dev,
e1410f2d
JG
4535 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4536 dir);
cedc9a47
JG
4537 /* restore sg */
4538 sg->length += qc->pad_len;
4539 if (pad_buf)
4540 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4541 pad_buf, qc->pad_len);
4542 }
1da177e4
LT
4543
4544 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4545 qc->__sg = NULL;
1da177e4
LT
4546}
4547
4548/**
4549 * ata_fill_sg - Fill PCI IDE PRD table
4550 * @qc: Metadata associated with taskfile to be transferred
4551 *
780a87f7
JG
4552 * Fill PCI IDE PRD (scatter-gather) table with segments
4553 * associated with the current disk command.
4554 *
1da177e4 4555 * LOCKING:
cca3974e 4556 * spin_lock_irqsave(host lock)
1da177e4
LT
4557 *
4558 */
4559static void ata_fill_sg(struct ata_queued_cmd *qc)
4560{
1da177e4 4561 struct ata_port *ap = qc->ap;
cedc9a47
JG
4562 struct scatterlist *sg;
4563 unsigned int idx;
1da177e4 4564
a4631474 4565 WARN_ON(qc->__sg == NULL);
f131883e 4566 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4567
4568 idx = 0;
cedc9a47 4569 ata_for_each_sg(sg, qc) {
1da177e4
LT
4570 u32 addr, offset;
4571 u32 sg_len, len;
4572
4573 /* determine if physical DMA addr spans 64K boundary.
4574 * Note h/w doesn't support 64-bit, so we unconditionally
4575 * truncate dma_addr_t to u32.
4576 */
4577 addr = (u32) sg_dma_address(sg);
4578 sg_len = sg_dma_len(sg);
4579
4580 while (sg_len) {
4581 offset = addr & 0xffff;
4582 len = sg_len;
4583 if ((offset + sg_len) > 0x10000)
4584 len = 0x10000 - offset;
4585
4586 ap->prd[idx].addr = cpu_to_le32(addr);
4587 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4588 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4589
4590 idx++;
4591 sg_len -= len;
4592 addr += len;
4593 }
4594 }
4595
4596 if (idx)
4597 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4598}
b9a4197e 4599
d26fc955
AC
4600/**
4601 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4602 * @qc: Metadata associated with taskfile to be transferred
4603 *
4604 * Fill PCI IDE PRD (scatter-gather) table with segments
4605 * associated with the current disk command. Perform the fill
4606 * so that we avoid writing any length 64K records for
4607 * controllers that don't follow the spec.
4608 *
4609 * LOCKING:
4610 * spin_lock_irqsave(host lock)
4611 *
4612 */
4613static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4614{
4615 struct ata_port *ap = qc->ap;
4616 struct scatterlist *sg;
4617 unsigned int idx;
4618
4619 WARN_ON(qc->__sg == NULL);
4620 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4621
4622 idx = 0;
4623 ata_for_each_sg(sg, qc) {
4624 u32 addr, offset;
4625 u32 sg_len, len, blen;
4626
2dcb407e 4627 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4628 * Note h/w doesn't support 64-bit, so we unconditionally
4629 * truncate dma_addr_t to u32.
4630 */
4631 addr = (u32) sg_dma_address(sg);
4632 sg_len = sg_dma_len(sg);
4633
4634 while (sg_len) {
4635 offset = addr & 0xffff;
4636 len = sg_len;
4637 if ((offset + sg_len) > 0x10000)
4638 len = 0x10000 - offset;
4639
4640 blen = len & 0xffff;
4641 ap->prd[idx].addr = cpu_to_le32(addr);
4642 if (blen == 0) {
4643 /* Some PATA chipsets like the CS5530 can't
4644 cope with 0x0000 meaning 64K as the spec says */
4645 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4646 blen = 0x8000;
4647 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4648 }
4649 ap->prd[idx].flags_len = cpu_to_le32(blen);
4650 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4651
4652 idx++;
4653 sg_len -= len;
4654 addr += len;
4655 }
4656 }
4657
4658 if (idx)
4659 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4660}
4661
1da177e4
LT
4662/**
4663 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4664 * @qc: Metadata associated with taskfile to check
4665 *
780a87f7
JG
4666 * Allow low-level driver to filter ATA PACKET commands, returning
4667 * a status indicating whether or not it is OK to use DMA for the
4668 * supplied PACKET command.
4669 *
1da177e4 4670 * LOCKING:
cca3974e 4671 * spin_lock_irqsave(host lock)
0cba632b 4672 *
1da177e4
LT
4673 * RETURNS: 0 when ATAPI DMA can be used
4674 * nonzero otherwise
4675 */
4676int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4677{
4678 struct ata_port *ap = qc->ap;
b9a4197e
TH
4679
4680 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4681 * few ATAPI devices choke on such DMA requests.
4682 */
4683 if (unlikely(qc->nbytes & 15))
4684 return 1;
6f23a31d 4685
1da177e4 4686 if (ap->ops->check_atapi_dma)
b9a4197e 4687 return ap->ops->check_atapi_dma(qc);
1da177e4 4688
b9a4197e 4689 return 0;
1da177e4 4690}
b9a4197e 4691
31cc23b3
TH
4692/**
4693 * ata_std_qc_defer - Check whether a qc needs to be deferred
4694 * @qc: ATA command in question
4695 *
4696 * Non-NCQ commands cannot run with any other command, NCQ or
4697 * not. As upper layer only knows the queue depth, we are
4698 * responsible for maintaining exclusion. This function checks
4699 * whether a new command @qc can be issued.
4700 *
4701 * LOCKING:
4702 * spin_lock_irqsave(host lock)
4703 *
4704 * RETURNS:
4705 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4706 */
4707int ata_std_qc_defer(struct ata_queued_cmd *qc)
4708{
4709 struct ata_link *link = qc->dev->link;
4710
4711 if (qc->tf.protocol == ATA_PROT_NCQ) {
4712 if (!ata_tag_valid(link->active_tag))
4713 return 0;
4714 } else {
4715 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4716 return 0;
4717 }
4718
4719 return ATA_DEFER_LINK;
4720}
4721
1da177e4
LT
4722/**
4723 * ata_qc_prep - Prepare taskfile for submission
4724 * @qc: Metadata associated with taskfile to be prepared
4725 *
780a87f7
JG
4726 * Prepare ATA taskfile for submission.
4727 *
1da177e4 4728 * LOCKING:
cca3974e 4729 * spin_lock_irqsave(host lock)
1da177e4
LT
4730 */
4731void ata_qc_prep(struct ata_queued_cmd *qc)
4732{
4733 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4734 return;
4735
4736 ata_fill_sg(qc);
4737}
4738
d26fc955
AC
4739/**
4740 * ata_dumb_qc_prep - Prepare taskfile for submission
4741 * @qc: Metadata associated with taskfile to be prepared
4742 *
4743 * Prepare ATA taskfile for submission.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 */
4748void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4749{
4750 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4751 return;
4752
4753 ata_fill_sg_dumb(qc);
4754}
4755
e46834cd
BK
4756void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4757
0cba632b
JG
4758/**
4759 * ata_sg_init_one - Associate command with memory buffer
4760 * @qc: Command to be associated
4761 * @buf: Memory buffer
4762 * @buflen: Length of memory buffer, in bytes.
4763 *
4764 * Initialize the data-related elements of queued_cmd @qc
4765 * to point to a single memory buffer, @buf of byte length @buflen.
4766 *
4767 * LOCKING:
cca3974e 4768 * spin_lock_irqsave(host lock)
0cba632b
JG
4769 */
4770
1da177e4
LT
4771void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4772{
1da177e4
LT
4773 qc->flags |= ATA_QCFLAG_SINGLE;
4774
cedc9a47 4775 qc->__sg = &qc->sgent;
1da177e4 4776 qc->n_elem = 1;
cedc9a47 4777 qc->orig_n_elem = 1;
1da177e4 4778 qc->buf_virt = buf;
233277ca 4779 qc->nbytes = buflen;
87260216 4780 qc->cursg = qc->__sg;
1da177e4 4781
61c0596c 4782 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4783}
4784
0cba632b
JG
4785/**
4786 * ata_sg_init - Associate command with scatter-gather table.
4787 * @qc: Command to be associated
4788 * @sg: Scatter-gather table.
4789 * @n_elem: Number of elements in s/g table.
4790 *
4791 * Initialize the data-related elements of queued_cmd @qc
4792 * to point to a scatter-gather table @sg, containing @n_elem
4793 * elements.
4794 *
4795 * LOCKING:
cca3974e 4796 * spin_lock_irqsave(host lock)
0cba632b
JG
4797 */
4798
1da177e4
LT
4799void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4800 unsigned int n_elem)
4801{
4802 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4803 qc->__sg = sg;
1da177e4 4804 qc->n_elem = n_elem;
cedc9a47 4805 qc->orig_n_elem = n_elem;
87260216 4806 qc->cursg = qc->__sg;
1da177e4
LT
4807}
4808
4809/**
0cba632b
JG
4810 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4811 * @qc: Command with memory buffer to be mapped.
4812 *
4813 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4814 *
4815 * LOCKING:
cca3974e 4816 * spin_lock_irqsave(host lock)
1da177e4
LT
4817 *
4818 * RETURNS:
0cba632b 4819 * Zero on success, negative on error.
1da177e4
LT
4820 */
4821
4822static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4823{
4824 struct ata_port *ap = qc->ap;
4825 int dir = qc->dma_dir;
cedc9a47 4826 struct scatterlist *sg = qc->__sg;
1da177e4 4827 dma_addr_t dma_address;
2e242fa9 4828 int trim_sg = 0;
1da177e4 4829
cedc9a47
JG
4830 /* we must lengthen transfers to end on a 32-bit boundary */
4831 qc->pad_len = sg->length & 3;
4832 if (qc->pad_len) {
4833 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4834 struct scatterlist *psg = &qc->pad_sgent;
4835
a4631474 4836 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4837
4838 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4839
4840 if (qc->tf.flags & ATA_TFLAG_WRITE)
4841 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4842 qc->pad_len);
4843
4844 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4845 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4846 /* trim sg */
4847 sg->length -= qc->pad_len;
2e242fa9
TH
4848 if (sg->length == 0)
4849 trim_sg = 1;
cedc9a47
JG
4850
4851 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4852 sg->length, qc->pad_len);
4853 }
4854
2e242fa9
TH
4855 if (trim_sg) {
4856 qc->n_elem--;
e1410f2d
JG
4857 goto skip_map;
4858 }
4859
2f1f610b 4860 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4861 sg->length, dir);
537a95d9
TH
4862 if (dma_mapping_error(dma_address)) {
4863 /* restore sg */
4864 sg->length += qc->pad_len;
1da177e4 4865 return -1;
537a95d9 4866 }
1da177e4
LT
4867
4868 sg_dma_address(sg) = dma_address;
32529e01 4869 sg_dma_len(sg) = sg->length;
1da177e4 4870
2e242fa9 4871skip_map:
1da177e4
LT
4872 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4873 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4874
4875 return 0;
4876}
4877
4878/**
0cba632b
JG
4879 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4880 * @qc: Command with scatter-gather table to be mapped.
4881 *
4882 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4883 *
4884 * LOCKING:
cca3974e 4885 * spin_lock_irqsave(host lock)
1da177e4
LT
4886 *
4887 * RETURNS:
0cba632b 4888 * Zero on success, negative on error.
1da177e4
LT
4889 *
4890 */
4891
4892static int ata_sg_setup(struct ata_queued_cmd *qc)
4893{
4894 struct ata_port *ap = qc->ap;
cedc9a47 4895 struct scatterlist *sg = qc->__sg;
87260216 4896 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4897 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4898
44877b4e 4899 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4900 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4901
cedc9a47
JG
4902 /* we must lengthen transfers to end on a 32-bit boundary */
4903 qc->pad_len = lsg->length & 3;
4904 if (qc->pad_len) {
4905 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4906 struct scatterlist *psg = &qc->pad_sgent;
4907 unsigned int offset;
4908
a4631474 4909 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4910
4911 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4912
4913 /*
4914 * psg->page/offset are used to copy to-be-written
4915 * data in this function or read data in ata_sg_clean.
4916 */
4917 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4918 sg_init_table(psg, 1);
642f1490
JA
4919 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4920 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4921
4922 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4923 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4924 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4925 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4926 }
4927
4928 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4929 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4930 /* trim last sg */
4931 lsg->length -= qc->pad_len;
e1410f2d
JG
4932 if (lsg->length == 0)
4933 trim_sg = 1;
cedc9a47
JG
4934
4935 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4936 qc->n_elem - 1, lsg->length, qc->pad_len);
4937 }
4938
e1410f2d
JG
4939 pre_n_elem = qc->n_elem;
4940 if (trim_sg && pre_n_elem)
4941 pre_n_elem--;
4942
4943 if (!pre_n_elem) {
4944 n_elem = 0;
4945 goto skip_map;
4946 }
4947
1da177e4 4948 dir = qc->dma_dir;
2f1f610b 4949 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4950 if (n_elem < 1) {
4951 /* restore last sg */
4952 lsg->length += qc->pad_len;
1da177e4 4953 return -1;
537a95d9 4954 }
1da177e4
LT
4955
4956 DPRINTK("%d sg elements mapped\n", n_elem);
4957
e1410f2d 4958skip_map:
1da177e4
LT
4959 qc->n_elem = n_elem;
4960
4961 return 0;
4962}
4963
0baab86b 4964/**
c893a3ae 4965 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4966 * @buf: Buffer to swap
4967 * @buf_words: Number of 16-bit words in buffer.
4968 *
4969 * Swap halves of 16-bit words if needed to convert from
4970 * little-endian byte order to native cpu byte order, or
4971 * vice-versa.
4972 *
4973 * LOCKING:
6f0ef4fa 4974 * Inherited from caller.
0baab86b 4975 */
1da177e4
LT
4976void swap_buf_le16(u16 *buf, unsigned int buf_words)
4977{
4978#ifdef __BIG_ENDIAN
4979 unsigned int i;
4980
4981 for (i = 0; i < buf_words; i++)
4982 buf[i] = le16_to_cpu(buf[i]);
4983#endif /* __BIG_ENDIAN */
4984}
4985
6ae4cfb5 4986/**
0d5ff566 4987 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4988 * @adev: device to target
6ae4cfb5
AL
4989 * @buf: data buffer
4990 * @buflen: buffer length
344babaa 4991 * @write_data: read/write
6ae4cfb5
AL
4992 *
4993 * Transfer data from/to the device data register by PIO.
4994 *
4995 * LOCKING:
4996 * Inherited from caller.
6ae4cfb5 4997 */
0d5ff566
TH
4998void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4999 unsigned int buflen, int write_data)
1da177e4 5000{
9af5c9c9 5001 struct ata_port *ap = adev->link->ap;
6ae4cfb5 5002 unsigned int words = buflen >> 1;
1da177e4 5003
6ae4cfb5 5004 /* Transfer multiple of 2 bytes */
1da177e4 5005 if (write_data)
0d5ff566 5006 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 5007 else
0d5ff566 5008 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5009
5010 /* Transfer trailing 1 byte, if any. */
5011 if (unlikely(buflen & 0x01)) {
5012 u16 align_buf[1] = { 0 };
5013 unsigned char *trailing_buf = buf + buflen - 1;
5014
5015 if (write_data) {
5016 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5017 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5018 } else {
0d5ff566 5019 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5020 memcpy(trailing_buf, align_buf, 1);
5021 }
5022 }
1da177e4
LT
5023}
5024
75e99585 5025/**
0d5ff566 5026 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5027 * @adev: device to target
5028 * @buf: data buffer
5029 * @buflen: buffer length
5030 * @write_data: read/write
5031 *
88574551 5032 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5033 * transfer with interrupts disabled.
5034 *
5035 * LOCKING:
5036 * Inherited from caller.
5037 */
0d5ff566
TH
5038void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5039 unsigned int buflen, int write_data)
75e99585
AC
5040{
5041 unsigned long flags;
5042 local_irq_save(flags);
0d5ff566 5043 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5044 local_irq_restore(flags);
5045}
5046
5047
6ae4cfb5 5048/**
5a5dbd18 5049 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5050 * @qc: Command on going
5051 *
5a5dbd18 5052 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5053 *
5054 * LOCKING:
5055 * Inherited from caller.
5056 */
5057
1da177e4
LT
5058static void ata_pio_sector(struct ata_queued_cmd *qc)
5059{
5060 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5061 struct ata_port *ap = qc->ap;
5062 struct page *page;
5063 unsigned int offset;
5064 unsigned char *buf;
5065
5a5dbd18 5066 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5067 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5068
45711f1a 5069 page = sg_page(qc->cursg);
87260216 5070 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5071
5072 /* get the current page and offset */
5073 page = nth_page(page, (offset >> PAGE_SHIFT));
5074 offset %= PAGE_SIZE;
5075
1da177e4
LT
5076 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5077
91b8b313
AL
5078 if (PageHighMem(page)) {
5079 unsigned long flags;
5080
a6b2c5d4 5081 /* FIXME: use a bounce buffer */
91b8b313
AL
5082 local_irq_save(flags);
5083 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5084
91b8b313 5085 /* do the actual data transfer */
5a5dbd18 5086 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5087
91b8b313
AL
5088 kunmap_atomic(buf, KM_IRQ0);
5089 local_irq_restore(flags);
5090 } else {
5091 buf = page_address(page);
5a5dbd18 5092 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5093 }
1da177e4 5094
5a5dbd18
ML
5095 qc->curbytes += qc->sect_size;
5096 qc->cursg_ofs += qc->sect_size;
1da177e4 5097
87260216
JA
5098 if (qc->cursg_ofs == qc->cursg->length) {
5099 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5100 qc->cursg_ofs = 0;
5101 }
1da177e4 5102}
1da177e4 5103
07f6f7d0 5104/**
5a5dbd18 5105 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5106 * @qc: Command on going
5107 *
5a5dbd18 5108 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5109 * ATA device for the DRQ request.
5110 *
5111 * LOCKING:
5112 * Inherited from caller.
5113 */
1da177e4 5114
07f6f7d0
AL
5115static void ata_pio_sectors(struct ata_queued_cmd *qc)
5116{
5117 if (is_multi_taskfile(&qc->tf)) {
5118 /* READ/WRITE MULTIPLE */
5119 unsigned int nsect;
5120
587005de 5121 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5122
5a5dbd18 5123 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5124 qc->dev->multi_count);
07f6f7d0
AL
5125 while (nsect--)
5126 ata_pio_sector(qc);
5127 } else
5128 ata_pio_sector(qc);
4cc980b3
AL
5129
5130 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5131}
5132
c71c1857
AL
5133/**
5134 * atapi_send_cdb - Write CDB bytes to hardware
5135 * @ap: Port to which ATAPI device is attached.
5136 * @qc: Taskfile currently active
5137 *
5138 * When device has indicated its readiness to accept
5139 * a CDB, this function is called. Send the CDB.
5140 *
5141 * LOCKING:
5142 * caller.
5143 */
5144
5145static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5146{
5147 /* send SCSI cdb */
5148 DPRINTK("send cdb\n");
db024d53 5149 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5150
a6b2c5d4 5151 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5152 ata_altstatus(ap); /* flush */
5153
5154 switch (qc->tf.protocol) {
5155 case ATA_PROT_ATAPI:
5156 ap->hsm_task_state = HSM_ST;
5157 break;
5158 case ATA_PROT_ATAPI_NODATA:
5159 ap->hsm_task_state = HSM_ST_LAST;
5160 break;
5161 case ATA_PROT_ATAPI_DMA:
5162 ap->hsm_task_state = HSM_ST_LAST;
5163 /* initiate bmdma */
5164 ap->ops->bmdma_start(qc);
5165 break;
5166 }
1da177e4
LT
5167}
5168
6ae4cfb5
AL
5169/**
5170 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5171 * @qc: Command on going
5172 * @bytes: number of bytes
5173 *
5174 * Transfer Transfer data from/to the ATAPI device.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 *
5179 */
5180
1da177e4
LT
5181static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5182{
5183 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5184 struct scatterlist *sg = qc->__sg;
0874ee76 5185 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5186 struct ata_port *ap = qc->ap;
5187 struct page *page;
5188 unsigned char *buf;
5189 unsigned int offset, count;
0874ee76 5190 int no_more_sg = 0;
1da177e4 5191
563a6e1f 5192 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5193 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5194
5195next_sg:
0874ee76 5196 if (unlikely(no_more_sg)) {
7fb6ec28 5197 /*
563a6e1f
AL
5198 * The end of qc->sg is reached and the device expects
5199 * more data to transfer. In order not to overrun qc->sg
5200 * and fulfill length specified in the byte count register,
5201 * - for read case, discard trailing data from the device
5202 * - for write case, padding zero data to the device
5203 */
5204 u16 pad_buf[1] = { 0 };
5205 unsigned int words = bytes >> 1;
5206 unsigned int i;
5207
5208 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5209 ata_dev_printk(qc->dev, KERN_WARNING,
5210 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5211
5212 for (i = 0; i < words; i++)
2dcb407e 5213 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5214
14be71f4 5215 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5216 return;
5217 }
5218
87260216 5219 sg = qc->cursg;
1da177e4 5220
45711f1a 5221 page = sg_page(sg);
1da177e4
LT
5222 offset = sg->offset + qc->cursg_ofs;
5223
5224 /* get the current page and offset */
5225 page = nth_page(page, (offset >> PAGE_SHIFT));
5226 offset %= PAGE_SIZE;
5227
6952df03 5228 /* don't overrun current sg */
32529e01 5229 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5230
5231 /* don't cross page boundaries */
5232 count = min(count, (unsigned int)PAGE_SIZE - offset);
5233
7282aa4b
AL
5234 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5235
91b8b313
AL
5236 if (PageHighMem(page)) {
5237 unsigned long flags;
5238
a6b2c5d4 5239 /* FIXME: use bounce buffer */
91b8b313
AL
5240 local_irq_save(flags);
5241 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5242
91b8b313 5243 /* do the actual data transfer */
a6b2c5d4 5244 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5245
91b8b313
AL
5246 kunmap_atomic(buf, KM_IRQ0);
5247 local_irq_restore(flags);
5248 } else {
5249 buf = page_address(page);
a6b2c5d4 5250 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5251 }
1da177e4
LT
5252
5253 bytes -= count;
5254 qc->curbytes += count;
5255 qc->cursg_ofs += count;
5256
32529e01 5257 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5258 if (qc->cursg == lsg)
5259 no_more_sg = 1;
5260
87260216 5261 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5262 qc->cursg_ofs = 0;
5263 }
5264
563a6e1f 5265 if (bytes)
1da177e4 5266 goto next_sg;
1da177e4
LT
5267}
5268
6ae4cfb5
AL
5269/**
5270 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5271 * @qc: Command on going
5272 *
5273 * Transfer Transfer data from/to the ATAPI device.
5274 *
5275 * LOCKING:
5276 * Inherited from caller.
6ae4cfb5
AL
5277 */
5278
1da177e4
LT
5279static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5280{
5281 struct ata_port *ap = qc->ap;
5282 struct ata_device *dev = qc->dev;
5283 unsigned int ireason, bc_lo, bc_hi, bytes;
5284 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5285
eec4c3f3
AL
5286 /* Abuse qc->result_tf for temp storage of intermediate TF
5287 * here to save some kernel stack usage.
5288 * For normal completion, qc->result_tf is not relevant. For
5289 * error, qc->result_tf is later overwritten by ata_qc_complete().
5290 * So, the correctness of qc->result_tf is not affected.
5291 */
5292 ap->ops->tf_read(ap, &qc->result_tf);
5293 ireason = qc->result_tf.nsect;
5294 bc_lo = qc->result_tf.lbam;
5295 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5296 bytes = (bc_hi << 8) | bc_lo;
5297
5298 /* shall be cleared to zero, indicating xfer of data */
5299 if (ireason & (1 << 0))
5300 goto err_out;
5301
5302 /* make sure transfer direction matches expected */
5303 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5304 if (do_write != i_write)
5305 goto err_out;
5306
44877b4e 5307 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5308
1da177e4 5309 __atapi_pio_bytes(qc, bytes);
4cc980b3 5310 ata_altstatus(ap); /* flush */
1da177e4
LT
5311
5312 return;
5313
5314err_out:
f15a1daf 5315 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5316 qc->err_mask |= AC_ERR_HSM;
14be71f4 5317 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5318}
5319
5320/**
c234fb00
AL
5321 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5322 * @ap: the target ata_port
5323 * @qc: qc on going
1da177e4 5324 *
c234fb00
AL
5325 * RETURNS:
5326 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5327 */
c234fb00
AL
5328
5329static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5330{
c234fb00
AL
5331 if (qc->tf.flags & ATA_TFLAG_POLLING)
5332 return 1;
1da177e4 5333
c234fb00
AL
5334 if (ap->hsm_task_state == HSM_ST_FIRST) {
5335 if (qc->tf.protocol == ATA_PROT_PIO &&
5336 (qc->tf.flags & ATA_TFLAG_WRITE))
5337 return 1;
1da177e4 5338
c234fb00
AL
5339 if (is_atapi_taskfile(&qc->tf) &&
5340 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5341 return 1;
fe79e683
AL
5342 }
5343
c234fb00
AL
5344 return 0;
5345}
1da177e4 5346
c17ea20d
TH
5347/**
5348 * ata_hsm_qc_complete - finish a qc running on standard HSM
5349 * @qc: Command to complete
5350 * @in_wq: 1 if called from workqueue, 0 otherwise
5351 *
5352 * Finish @qc which is running on standard HSM.
5353 *
5354 * LOCKING:
cca3974e 5355 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5356 * Otherwise, none on entry and grabs host lock.
5357 */
5358static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5359{
5360 struct ata_port *ap = qc->ap;
5361 unsigned long flags;
5362
5363 if (ap->ops->error_handler) {
5364 if (in_wq) {
ba6a1308 5365 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5366
cca3974e
JG
5367 /* EH might have kicked in while host lock is
5368 * released.
c17ea20d
TH
5369 */
5370 qc = ata_qc_from_tag(ap, qc->tag);
5371 if (qc) {
5372 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5373 ap->ops->irq_on(ap);
c17ea20d
TH
5374 ata_qc_complete(qc);
5375 } else
5376 ata_port_freeze(ap);
5377 }
5378
ba6a1308 5379 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5380 } else {
5381 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5382 ata_qc_complete(qc);
5383 else
5384 ata_port_freeze(ap);
5385 }
5386 } else {
5387 if (in_wq) {
ba6a1308 5388 spin_lock_irqsave(ap->lock, flags);
83625006 5389 ap->ops->irq_on(ap);
c17ea20d 5390 ata_qc_complete(qc);
ba6a1308 5391 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5392 } else
5393 ata_qc_complete(qc);
5394 }
5395}
5396
bb5cb290
AL
5397/**
5398 * ata_hsm_move - move the HSM to the next state.
5399 * @ap: the target ata_port
5400 * @qc: qc on going
5401 * @status: current device status
5402 * @in_wq: 1 if called from workqueue, 0 otherwise
5403 *
5404 * RETURNS:
5405 * 1 when poll next status needed, 0 otherwise.
5406 */
9a1004d0
TH
5407int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5408 u8 status, int in_wq)
e2cec771 5409{
bb5cb290
AL
5410 unsigned long flags = 0;
5411 int poll_next;
5412
6912ccd5
AL
5413 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5414
bb5cb290
AL
5415 /* Make sure ata_qc_issue_prot() does not throw things
5416 * like DMA polling into the workqueue. Notice that
5417 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5418 */
c234fb00 5419 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5420
e2cec771 5421fsm_start:
999bb6f4 5422 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5423 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5424
e2cec771
AL
5425 switch (ap->hsm_task_state) {
5426 case HSM_ST_FIRST:
bb5cb290
AL
5427 /* Send first data block or PACKET CDB */
5428
5429 /* If polling, we will stay in the work queue after
5430 * sending the data. Otherwise, interrupt handler
5431 * takes over after sending the data.
5432 */
5433 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5434
e2cec771 5435 /* check device status */
3655d1d3
AL
5436 if (unlikely((status & ATA_DRQ) == 0)) {
5437 /* handle BSY=0, DRQ=0 as error */
5438 if (likely(status & (ATA_ERR | ATA_DF)))
5439 /* device stops HSM for abort/error */
5440 qc->err_mask |= AC_ERR_DEV;
5441 else
5442 /* HSM violation. Let EH handle this */
5443 qc->err_mask |= AC_ERR_HSM;
5444
14be71f4 5445 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5446 goto fsm_start;
1da177e4
LT
5447 }
5448
71601958
AL
5449 /* Device should not ask for data transfer (DRQ=1)
5450 * when it finds something wrong.
eee6c32f
AL
5451 * We ignore DRQ here and stop the HSM by
5452 * changing hsm_task_state to HSM_ST_ERR and
5453 * let the EH abort the command or reset the device.
71601958
AL
5454 */
5455 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5456 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5457 "error, dev_stat 0x%X\n", status);
3655d1d3 5458 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5459 ap->hsm_task_state = HSM_ST_ERR;
5460 goto fsm_start;
71601958 5461 }
1da177e4 5462
bb5cb290
AL
5463 /* Send the CDB (atapi) or the first data block (ata pio out).
5464 * During the state transition, interrupt handler shouldn't
5465 * be invoked before the data transfer is complete and
5466 * hsm_task_state is changed. Hence, the following locking.
5467 */
5468 if (in_wq)
ba6a1308 5469 spin_lock_irqsave(ap->lock, flags);
1da177e4 5470
bb5cb290
AL
5471 if (qc->tf.protocol == ATA_PROT_PIO) {
5472 /* PIO data out protocol.
5473 * send first data block.
5474 */
0565c26d 5475
bb5cb290
AL
5476 /* ata_pio_sectors() might change the state
5477 * to HSM_ST_LAST. so, the state is changed here
5478 * before ata_pio_sectors().
5479 */
5480 ap->hsm_task_state = HSM_ST;
5481 ata_pio_sectors(qc);
bb5cb290
AL
5482 } else
5483 /* send CDB */
5484 atapi_send_cdb(ap, qc);
5485
5486 if (in_wq)
ba6a1308 5487 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5488
5489 /* if polling, ata_pio_task() handles the rest.
5490 * otherwise, interrupt handler takes over from here.
5491 */
e2cec771 5492 break;
1c848984 5493
e2cec771
AL
5494 case HSM_ST:
5495 /* complete command or read/write the data register */
5496 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5497 /* ATAPI PIO protocol */
5498 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5499 /* No more data to transfer or device error.
5500 * Device error will be tagged in HSM_ST_LAST.
5501 */
e2cec771
AL
5502 ap->hsm_task_state = HSM_ST_LAST;
5503 goto fsm_start;
5504 }
1da177e4 5505
71601958
AL
5506 /* Device should not ask for data transfer (DRQ=1)
5507 * when it finds something wrong.
eee6c32f
AL
5508 * We ignore DRQ here and stop the HSM by
5509 * changing hsm_task_state to HSM_ST_ERR and
5510 * let the EH abort the command or reset the device.
71601958
AL
5511 */
5512 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5513 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5514 "device error, dev_stat 0x%X\n",
5515 status);
3655d1d3 5516 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5517 ap->hsm_task_state = HSM_ST_ERR;
5518 goto fsm_start;
71601958 5519 }
1da177e4 5520
e2cec771 5521 atapi_pio_bytes(qc);
7fb6ec28 5522
e2cec771
AL
5523 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5524 /* bad ireason reported by device */
5525 goto fsm_start;
1da177e4 5526
e2cec771
AL
5527 } else {
5528 /* ATA PIO protocol */
5529 if (unlikely((status & ATA_DRQ) == 0)) {
5530 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5531 if (likely(status & (ATA_ERR | ATA_DF)))
5532 /* device stops HSM for abort/error */
5533 qc->err_mask |= AC_ERR_DEV;
5534 else
55a8e2c8
TH
5535 /* HSM violation. Let EH handle this.
5536 * Phantom devices also trigger this
5537 * condition. Mark hint.
5538 */
5539 qc->err_mask |= AC_ERR_HSM |
5540 AC_ERR_NODEV_HINT;
3655d1d3 5541
e2cec771
AL
5542 ap->hsm_task_state = HSM_ST_ERR;
5543 goto fsm_start;
5544 }
1da177e4 5545
eee6c32f
AL
5546 /* For PIO reads, some devices may ask for
5547 * data transfer (DRQ=1) alone with ERR=1.
5548 * We respect DRQ here and transfer one
5549 * block of junk data before changing the
5550 * hsm_task_state to HSM_ST_ERR.
5551 *
5552 * For PIO writes, ERR=1 DRQ=1 doesn't make
5553 * sense since the data block has been
5554 * transferred to the device.
71601958
AL
5555 */
5556 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5557 /* data might be corrputed */
5558 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5559
5560 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5561 ata_pio_sectors(qc);
eee6c32f
AL
5562 status = ata_wait_idle(ap);
5563 }
5564
3655d1d3
AL
5565 if (status & (ATA_BUSY | ATA_DRQ))
5566 qc->err_mask |= AC_ERR_HSM;
5567
eee6c32f
AL
5568 /* ata_pio_sectors() might change the
5569 * state to HSM_ST_LAST. so, the state
5570 * is changed after ata_pio_sectors().
5571 */
5572 ap->hsm_task_state = HSM_ST_ERR;
5573 goto fsm_start;
71601958
AL
5574 }
5575
e2cec771
AL
5576 ata_pio_sectors(qc);
5577
5578 if (ap->hsm_task_state == HSM_ST_LAST &&
5579 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5580 /* all data read */
52a32205 5581 status = ata_wait_idle(ap);
e2cec771
AL
5582 goto fsm_start;
5583 }
5584 }
5585
bb5cb290 5586 poll_next = 1;
1da177e4
LT
5587 break;
5588
14be71f4 5589 case HSM_ST_LAST:
6912ccd5
AL
5590 if (unlikely(!ata_ok(status))) {
5591 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5592 ap->hsm_task_state = HSM_ST_ERR;
5593 goto fsm_start;
5594 }
5595
5596 /* no more data to transfer */
4332a771 5597 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5598 ap->print_id, qc->dev->devno, status);
e2cec771 5599
6912ccd5
AL
5600 WARN_ON(qc->err_mask);
5601
e2cec771 5602 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5603
e2cec771 5604 /* complete taskfile transaction */
c17ea20d 5605 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5606
5607 poll_next = 0;
1da177e4
LT
5608 break;
5609
14be71f4 5610 case HSM_ST_ERR:
e2cec771
AL
5611 /* make sure qc->err_mask is available to
5612 * know what's wrong and recover
5613 */
5614 WARN_ON(qc->err_mask == 0);
5615
5616 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5617
999bb6f4 5618 /* complete taskfile transaction */
c17ea20d 5619 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5620
5621 poll_next = 0;
e2cec771
AL
5622 break;
5623 default:
bb5cb290 5624 poll_next = 0;
6912ccd5 5625 BUG();
1da177e4
LT
5626 }
5627
bb5cb290 5628 return poll_next;
1da177e4
LT
5629}
5630
65f27f38 5631static void ata_pio_task(struct work_struct *work)
8061f5f0 5632{
65f27f38
DH
5633 struct ata_port *ap =
5634 container_of(work, struct ata_port, port_task.work);
5635 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5636 u8 status;
a1af3734 5637 int poll_next;
8061f5f0 5638
7fb6ec28 5639fsm_start:
a1af3734 5640 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5641
a1af3734
AL
5642 /*
5643 * This is purely heuristic. This is a fast path.
5644 * Sometimes when we enter, BSY will be cleared in
5645 * a chk-status or two. If not, the drive is probably seeking
5646 * or something. Snooze for a couple msecs, then
5647 * chk-status again. If still busy, queue delayed work.
5648 */
5649 status = ata_busy_wait(ap, ATA_BUSY, 5);
5650 if (status & ATA_BUSY) {
5651 msleep(2);
5652 status = ata_busy_wait(ap, ATA_BUSY, 10);
5653 if (status & ATA_BUSY) {
31ce6dae 5654 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5655 return;
5656 }
8061f5f0
TH
5657 }
5658
a1af3734
AL
5659 /* move the HSM */
5660 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5661
a1af3734
AL
5662 /* another command or interrupt handler
5663 * may be running at this point.
5664 */
5665 if (poll_next)
7fb6ec28 5666 goto fsm_start;
8061f5f0
TH
5667}
5668
1da177e4
LT
5669/**
5670 * ata_qc_new - Request an available ATA command, for queueing
5671 * @ap: Port associated with device @dev
5672 * @dev: Device from whom we request an available command structure
5673 *
5674 * LOCKING:
0cba632b 5675 * None.
1da177e4
LT
5676 */
5677
5678static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5679{
5680 struct ata_queued_cmd *qc = NULL;
5681 unsigned int i;
5682
e3180499 5683 /* no command while frozen */
b51e9e5d 5684 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5685 return NULL;
5686
2ab7db1f
TH
5687 /* the last tag is reserved for internal command. */
5688 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5689 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5690 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5691 break;
5692 }
5693
5694 if (qc)
5695 qc->tag = i;
5696
5697 return qc;
5698}
5699
5700/**
5701 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5702 * @dev: Device from whom we request an available command structure
5703 *
5704 * LOCKING:
0cba632b 5705 * None.
1da177e4
LT
5706 */
5707
3373efd8 5708struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5709{
9af5c9c9 5710 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5711 struct ata_queued_cmd *qc;
5712
5713 qc = ata_qc_new(ap);
5714 if (qc) {
1da177e4
LT
5715 qc->scsicmd = NULL;
5716 qc->ap = ap;
5717 qc->dev = dev;
1da177e4 5718
2c13b7ce 5719 ata_qc_reinit(qc);
1da177e4
LT
5720 }
5721
5722 return qc;
5723}
5724
1da177e4
LT
5725/**
5726 * ata_qc_free - free unused ata_queued_cmd
5727 * @qc: Command to complete
5728 *
5729 * Designed to free unused ata_queued_cmd object
5730 * in case something prevents using it.
5731 *
5732 * LOCKING:
cca3974e 5733 * spin_lock_irqsave(host lock)
1da177e4
LT
5734 */
5735void ata_qc_free(struct ata_queued_cmd *qc)
5736{
4ba946e9
TH
5737 struct ata_port *ap = qc->ap;
5738 unsigned int tag;
5739
a4631474 5740 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5741
4ba946e9
TH
5742 qc->flags = 0;
5743 tag = qc->tag;
5744 if (likely(ata_tag_valid(tag))) {
4ba946e9 5745 qc->tag = ATA_TAG_POISON;
6cec4a39 5746 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5747 }
1da177e4
LT
5748}
5749
76014427 5750void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5751{
dedaf2b0 5752 struct ata_port *ap = qc->ap;
9af5c9c9 5753 struct ata_link *link = qc->dev->link;
dedaf2b0 5754
a4631474
TH
5755 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5756 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5757
5758 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5759 ata_sg_clean(qc);
5760
7401abf2 5761 /* command should be marked inactive atomically with qc completion */
da917d69 5762 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5763 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5764 if (!link->sactive)
5765 ap->nr_active_links--;
5766 } else {
9af5c9c9 5767 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5768 ap->nr_active_links--;
5769 }
5770
5771 /* clear exclusive status */
5772 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5773 ap->excl_link == link))
5774 ap->excl_link = NULL;
7401abf2 5775
3f3791d3
AL
5776 /* atapi: mark qc as inactive to prevent the interrupt handler
5777 * from completing the command twice later, before the error handler
5778 * is called. (when rc != 0 and atapi request sense is needed)
5779 */
5780 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5781 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5782
1da177e4 5783 /* call completion callback */
77853bf2 5784 qc->complete_fn(qc);
1da177e4
LT
5785}
5786
39599a53
TH
5787static void fill_result_tf(struct ata_queued_cmd *qc)
5788{
5789 struct ata_port *ap = qc->ap;
5790
39599a53 5791 qc->result_tf.flags = qc->tf.flags;
4742d54f 5792 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5793}
5794
f686bcb8
TH
5795/**
5796 * ata_qc_complete - Complete an active ATA command
5797 * @qc: Command to complete
5798 * @err_mask: ATA Status register contents
5799 *
5800 * Indicate to the mid and upper layers that an ATA
5801 * command has completed, with either an ok or not-ok status.
5802 *
5803 * LOCKING:
cca3974e 5804 * spin_lock_irqsave(host lock)
f686bcb8
TH
5805 */
5806void ata_qc_complete(struct ata_queued_cmd *qc)
5807{
5808 struct ata_port *ap = qc->ap;
5809
5810 /* XXX: New EH and old EH use different mechanisms to
5811 * synchronize EH with regular execution path.
5812 *
5813 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5814 * Normal execution path is responsible for not accessing a
5815 * failed qc. libata core enforces the rule by returning NULL
5816 * from ata_qc_from_tag() for failed qcs.
5817 *
5818 * Old EH depends on ata_qc_complete() nullifying completion
5819 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5820 * not synchronize with interrupt handler. Only PIO task is
5821 * taken care of.
5822 */
5823 if (ap->ops->error_handler) {
4dbfa39b
TH
5824 struct ata_device *dev = qc->dev;
5825 struct ata_eh_info *ehi = &dev->link->eh_info;
5826
b51e9e5d 5827 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5828
5829 if (unlikely(qc->err_mask))
5830 qc->flags |= ATA_QCFLAG_FAILED;
5831
5832 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5833 if (!ata_tag_internal(qc->tag)) {
5834 /* always fill result TF for failed qc */
39599a53 5835 fill_result_tf(qc);
f686bcb8
TH
5836 ata_qc_schedule_eh(qc);
5837 return;
5838 }
5839 }
5840
5841 /* read result TF if requested */
5842 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5843 fill_result_tf(qc);
f686bcb8 5844
4dbfa39b
TH
5845 /* Some commands need post-processing after successful
5846 * completion.
5847 */
5848 switch (qc->tf.command) {
5849 case ATA_CMD_SET_FEATURES:
5850 if (qc->tf.feature != SETFEATURES_WC_ON &&
5851 qc->tf.feature != SETFEATURES_WC_OFF)
5852 break;
5853 /* fall through */
5854 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5855 case ATA_CMD_SET_MULTI: /* multi_count changed */
5856 /* revalidate device */
5857 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5858 ata_port_schedule_eh(ap);
5859 break;
054a5fba
TH
5860
5861 case ATA_CMD_SLEEP:
5862 dev->flags |= ATA_DFLAG_SLEEPING;
5863 break;
4dbfa39b
TH
5864 }
5865
f686bcb8
TH
5866 __ata_qc_complete(qc);
5867 } else {
5868 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5869 return;
5870
5871 /* read result TF if failed or requested */
5872 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5873 fill_result_tf(qc);
f686bcb8
TH
5874
5875 __ata_qc_complete(qc);
5876 }
5877}
5878
dedaf2b0
TH
5879/**
5880 * ata_qc_complete_multiple - Complete multiple qcs successfully
5881 * @ap: port in question
5882 * @qc_active: new qc_active mask
5883 * @finish_qc: LLDD callback invoked before completing a qc
5884 *
5885 * Complete in-flight commands. This functions is meant to be
5886 * called from low-level driver's interrupt routine to complete
5887 * requests normally. ap->qc_active and @qc_active is compared
5888 * and commands are completed accordingly.
5889 *
5890 * LOCKING:
cca3974e 5891 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5892 *
5893 * RETURNS:
5894 * Number of completed commands on success, -errno otherwise.
5895 */
5896int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5897 void (*finish_qc)(struct ata_queued_cmd *))
5898{
5899 int nr_done = 0;
5900 u32 done_mask;
5901 int i;
5902
5903 done_mask = ap->qc_active ^ qc_active;
5904
5905 if (unlikely(done_mask & qc_active)) {
5906 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5907 "(%08x->%08x)\n", ap->qc_active, qc_active);
5908 return -EINVAL;
5909 }
5910
5911 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5912 struct ata_queued_cmd *qc;
5913
5914 if (!(done_mask & (1 << i)))
5915 continue;
5916
5917 if ((qc = ata_qc_from_tag(ap, i))) {
5918 if (finish_qc)
5919 finish_qc(qc);
5920 ata_qc_complete(qc);
5921 nr_done++;
5922 }
5923 }
5924
5925 return nr_done;
5926}
5927
1da177e4
LT
5928static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5929{
5930 struct ata_port *ap = qc->ap;
5931
5932 switch (qc->tf.protocol) {
3dc1d881 5933 case ATA_PROT_NCQ:
1da177e4
LT
5934 case ATA_PROT_DMA:
5935 case ATA_PROT_ATAPI_DMA:
5936 return 1;
5937
5938 case ATA_PROT_ATAPI:
5939 case ATA_PROT_PIO:
1da177e4
LT
5940 if (ap->flags & ATA_FLAG_PIO_DMA)
5941 return 1;
5942
5943 /* fall through */
5944
5945 default:
5946 return 0;
5947 }
5948
5949 /* never reached */
5950}
5951
5952/**
5953 * ata_qc_issue - issue taskfile to device
5954 * @qc: command to issue to device
5955 *
5956 * Prepare an ATA command to submission to device.
5957 * This includes mapping the data into a DMA-able
5958 * area, filling in the S/G table, and finally
5959 * writing the taskfile to hardware, starting the command.
5960 *
5961 * LOCKING:
cca3974e 5962 * spin_lock_irqsave(host lock)
1da177e4 5963 */
8e0e694a 5964void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5965{
5966 struct ata_port *ap = qc->ap;
9af5c9c9 5967 struct ata_link *link = qc->dev->link;
1da177e4 5968
dedaf2b0
TH
5969 /* Make sure only one non-NCQ command is outstanding. The
5970 * check is skipped for old EH because it reuses active qc to
5971 * request ATAPI sense.
5972 */
9af5c9c9 5973 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5974
5975 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5976 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5977
5978 if (!link->sactive)
5979 ap->nr_active_links++;
9af5c9c9 5980 link->sactive |= 1 << qc->tag;
dedaf2b0 5981 } else {
9af5c9c9 5982 WARN_ON(link->sactive);
da917d69
TH
5983
5984 ap->nr_active_links++;
9af5c9c9 5985 link->active_tag = qc->tag;
dedaf2b0
TH
5986 }
5987
e4a70e76 5988 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5989 ap->qc_active |= 1 << qc->tag;
e4a70e76 5990
1da177e4
LT
5991 if (ata_should_dma_map(qc)) {
5992 if (qc->flags & ATA_QCFLAG_SG) {
5993 if (ata_sg_setup(qc))
8e436af9 5994 goto sg_err;
1da177e4
LT
5995 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5996 if (ata_sg_setup_one(qc))
8e436af9 5997 goto sg_err;
1da177e4
LT
5998 }
5999 } else {
6000 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6001 }
6002
054a5fba
TH
6003 /* if device is sleeping, schedule softreset and abort the link */
6004 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6005 link->eh_info.action |= ATA_EH_SOFTRESET;
6006 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6007 ata_link_abort(link);
6008 return;
6009 }
6010
1da177e4
LT
6011 ap->ops->qc_prep(qc);
6012
8e0e694a
TH
6013 qc->err_mask |= ap->ops->qc_issue(qc);
6014 if (unlikely(qc->err_mask))
6015 goto err;
6016 return;
1da177e4 6017
8e436af9
TH
6018sg_err:
6019 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6020 qc->err_mask |= AC_ERR_SYSTEM;
6021err:
6022 ata_qc_complete(qc);
1da177e4
LT
6023}
6024
6025/**
6026 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6027 * @qc: command to issue to device
6028 *
6029 * Using various libata functions and hooks, this function
6030 * starts an ATA command. ATA commands are grouped into
6031 * classes called "protocols", and issuing each type of protocol
6032 * is slightly different.
6033 *
0baab86b
EF
6034 * May be used as the qc_issue() entry in ata_port_operations.
6035 *
1da177e4 6036 * LOCKING:
cca3974e 6037 * spin_lock_irqsave(host lock)
1da177e4
LT
6038 *
6039 * RETURNS:
9a3d9eb0 6040 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6041 */
6042
9a3d9eb0 6043unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6044{
6045 struct ata_port *ap = qc->ap;
6046
e50362ec
AL
6047 /* Use polling pio if the LLD doesn't handle
6048 * interrupt driven pio and atapi CDB interrupt.
6049 */
6050 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6051 switch (qc->tf.protocol) {
6052 case ATA_PROT_PIO:
e3472cbe 6053 case ATA_PROT_NODATA:
e50362ec
AL
6054 case ATA_PROT_ATAPI:
6055 case ATA_PROT_ATAPI_NODATA:
6056 qc->tf.flags |= ATA_TFLAG_POLLING;
6057 break;
6058 case ATA_PROT_ATAPI_DMA:
6059 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6060 /* see ata_dma_blacklisted() */
e50362ec
AL
6061 BUG();
6062 break;
6063 default:
6064 break;
6065 }
6066 }
6067
312f7da2 6068 /* select the device */
1da177e4
LT
6069 ata_dev_select(ap, qc->dev->devno, 1, 0);
6070
312f7da2 6071 /* start the command */
1da177e4
LT
6072 switch (qc->tf.protocol) {
6073 case ATA_PROT_NODATA:
312f7da2
AL
6074 if (qc->tf.flags & ATA_TFLAG_POLLING)
6075 ata_qc_set_polling(qc);
6076
e5338254 6077 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6078 ap->hsm_task_state = HSM_ST_LAST;
6079
6080 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6081 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6082
1da177e4
LT
6083 break;
6084
6085 case ATA_PROT_DMA:
587005de 6086 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6087
1da177e4
LT
6088 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6089 ap->ops->bmdma_setup(qc); /* set up bmdma */
6090 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6091 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6092 break;
6093
312f7da2
AL
6094 case ATA_PROT_PIO:
6095 if (qc->tf.flags & ATA_TFLAG_POLLING)
6096 ata_qc_set_polling(qc);
1da177e4 6097
e5338254 6098 ata_tf_to_host(ap, &qc->tf);
312f7da2 6099
54f00389
AL
6100 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6101 /* PIO data out protocol */
6102 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6103 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6104
6105 /* always send first data block using
e27486db 6106 * the ata_pio_task() codepath.
54f00389 6107 */
312f7da2 6108 } else {
54f00389
AL
6109 /* PIO data in protocol */
6110 ap->hsm_task_state = HSM_ST;
6111
6112 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6113 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6114
6115 /* if polling, ata_pio_task() handles the rest.
6116 * otherwise, interrupt handler takes over from here.
6117 */
312f7da2
AL
6118 }
6119
1da177e4
LT
6120 break;
6121
1da177e4 6122 case ATA_PROT_ATAPI:
1da177e4 6123 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6124 if (qc->tf.flags & ATA_TFLAG_POLLING)
6125 ata_qc_set_polling(qc);
6126
e5338254 6127 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6128
312f7da2
AL
6129 ap->hsm_task_state = HSM_ST_FIRST;
6130
6131 /* send cdb by polling if no cdb interrupt */
6132 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6133 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6134 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6135 break;
6136
6137 case ATA_PROT_ATAPI_DMA:
587005de 6138 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6139
1da177e4
LT
6140 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6141 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6142 ap->hsm_task_state = HSM_ST_FIRST;
6143
6144 /* send cdb by polling if no cdb interrupt */
6145 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6146 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6147 break;
6148
6149 default:
6150 WARN_ON(1);
9a3d9eb0 6151 return AC_ERR_SYSTEM;
1da177e4
LT
6152 }
6153
6154 return 0;
6155}
6156
1da177e4
LT
6157/**
6158 * ata_host_intr - Handle host interrupt for given (port, task)
6159 * @ap: Port on which interrupt arrived (possibly...)
6160 * @qc: Taskfile currently active in engine
6161 *
6162 * Handle host interrupt for given queued command. Currently,
6163 * only DMA interrupts are handled. All other commands are
6164 * handled via polling with interrupts disabled (nIEN bit).
6165 *
6166 * LOCKING:
cca3974e 6167 * spin_lock_irqsave(host lock)
1da177e4
LT
6168 *
6169 * RETURNS:
6170 * One if interrupt was handled, zero if not (shared irq).
6171 */
6172
2dcb407e
JG
6173inline unsigned int ata_host_intr(struct ata_port *ap,
6174 struct ata_queued_cmd *qc)
1da177e4 6175{
9af5c9c9 6176 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6177 u8 status, host_stat = 0;
1da177e4 6178
312f7da2 6179 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6180 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6181
312f7da2
AL
6182 /* Check whether we are expecting interrupt in this state */
6183 switch (ap->hsm_task_state) {
6184 case HSM_ST_FIRST:
6912ccd5
AL
6185 /* Some pre-ATAPI-4 devices assert INTRQ
6186 * at this state when ready to receive CDB.
6187 */
1da177e4 6188
312f7da2
AL
6189 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6190 * The flag was turned on only for atapi devices.
6191 * No need to check is_atapi_taskfile(&qc->tf) again.
6192 */
6193 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6194 goto idle_irq;
1da177e4 6195 break;
312f7da2
AL
6196 case HSM_ST_LAST:
6197 if (qc->tf.protocol == ATA_PROT_DMA ||
6198 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6199 /* check status of DMA engine */
6200 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6201 VPRINTK("ata%u: host_stat 0x%X\n",
6202 ap->print_id, host_stat);
312f7da2
AL
6203
6204 /* if it's not our irq... */
6205 if (!(host_stat & ATA_DMA_INTR))
6206 goto idle_irq;
6207
6208 /* before we do anything else, clear DMA-Start bit */
6209 ap->ops->bmdma_stop(qc);
a4f16610
AL
6210
6211 if (unlikely(host_stat & ATA_DMA_ERR)) {
6212 /* error when transfering data to/from memory */
6213 qc->err_mask |= AC_ERR_HOST_BUS;
6214 ap->hsm_task_state = HSM_ST_ERR;
6215 }
312f7da2
AL
6216 }
6217 break;
6218 case HSM_ST:
6219 break;
1da177e4
LT
6220 default:
6221 goto idle_irq;
6222 }
6223
312f7da2
AL
6224 /* check altstatus */
6225 status = ata_altstatus(ap);
6226 if (status & ATA_BUSY)
6227 goto idle_irq;
1da177e4 6228
312f7da2
AL
6229 /* check main status, clearing INTRQ */
6230 status = ata_chk_status(ap);
6231 if (unlikely(status & ATA_BUSY))
6232 goto idle_irq;
1da177e4 6233
312f7da2
AL
6234 /* ack bmdma irq events */
6235 ap->ops->irq_clear(ap);
1da177e4 6236
bb5cb290 6237 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6238
6239 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6240 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6241 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6242
1da177e4
LT
6243 return 1; /* irq handled */
6244
6245idle_irq:
6246 ap->stats.idle_irq++;
6247
6248#ifdef ATA_IRQ_TRAP
6249 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6250 ata_chk_status(ap);
6251 ap->ops->irq_clear(ap);
f15a1daf 6252 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6253 return 1;
1da177e4
LT
6254 }
6255#endif
6256 return 0; /* irq not handled */
6257}
6258
6259/**
6260 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6261 * @irq: irq line (unused)
cca3974e 6262 * @dev_instance: pointer to our ata_host information structure
1da177e4 6263 *
0cba632b
JG
6264 * Default interrupt handler for PCI IDE devices. Calls
6265 * ata_host_intr() for each port that is not disabled.
6266 *
1da177e4 6267 * LOCKING:
cca3974e 6268 * Obtains host lock during operation.
1da177e4
LT
6269 *
6270 * RETURNS:
0cba632b 6271 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6272 */
6273
2dcb407e 6274irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6275{
cca3974e 6276 struct ata_host *host = dev_instance;
1da177e4
LT
6277 unsigned int i;
6278 unsigned int handled = 0;
6279 unsigned long flags;
6280
6281 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6282 spin_lock_irqsave(&host->lock, flags);
1da177e4 6283
cca3974e 6284 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6285 struct ata_port *ap;
6286
cca3974e 6287 ap = host->ports[i];
c1389503 6288 if (ap &&
029f5468 6289 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6290 struct ata_queued_cmd *qc;
6291
9af5c9c9 6292 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6293 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6294 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6295 handled |= ata_host_intr(ap, qc);
6296 }
6297 }
6298
cca3974e 6299 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6300
6301 return IRQ_RETVAL(handled);
6302}
6303
34bf2170
TH
6304/**
6305 * sata_scr_valid - test whether SCRs are accessible
936fd732 6306 * @link: ATA link to test SCR accessibility for
34bf2170 6307 *
936fd732 6308 * Test whether SCRs are accessible for @link.
34bf2170
TH
6309 *
6310 * LOCKING:
6311 * None.
6312 *
6313 * RETURNS:
6314 * 1 if SCRs are accessible, 0 otherwise.
6315 */
936fd732 6316int sata_scr_valid(struct ata_link *link)
34bf2170 6317{
936fd732
TH
6318 struct ata_port *ap = link->ap;
6319
a16abc0b 6320 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6321}
6322
6323/**
6324 * sata_scr_read - read SCR register of the specified port
936fd732 6325 * @link: ATA link to read SCR for
34bf2170
TH
6326 * @reg: SCR to read
6327 * @val: Place to store read value
6328 *
936fd732 6329 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6330 * guaranteed to succeed if @link is ap->link, the cable type of
6331 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6332 *
6333 * LOCKING:
633273a3 6334 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6335 *
6336 * RETURNS:
6337 * 0 on success, negative errno on failure.
6338 */
936fd732 6339int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6340{
633273a3
TH
6341 if (ata_is_host_link(link)) {
6342 struct ata_port *ap = link->ap;
936fd732 6343
633273a3
TH
6344 if (sata_scr_valid(link))
6345 return ap->ops->scr_read(ap, reg, val);
6346 return -EOPNOTSUPP;
6347 }
6348
6349 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6350}
6351
6352/**
6353 * sata_scr_write - write SCR register of the specified port
936fd732 6354 * @link: ATA link to write SCR for
34bf2170
TH
6355 * @reg: SCR to write
6356 * @val: value to write
6357 *
936fd732 6358 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6359 * guaranteed to succeed if @link is ap->link, the cable type of
6360 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6361 *
6362 * LOCKING:
633273a3 6363 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6364 *
6365 * RETURNS:
6366 * 0 on success, negative errno on failure.
6367 */
936fd732 6368int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6369{
633273a3
TH
6370 if (ata_is_host_link(link)) {
6371 struct ata_port *ap = link->ap;
6372
6373 if (sata_scr_valid(link))
6374 return ap->ops->scr_write(ap, reg, val);
6375 return -EOPNOTSUPP;
6376 }
936fd732 6377
633273a3 6378 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6379}
6380
6381/**
6382 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6383 * @link: ATA link to write SCR for
34bf2170
TH
6384 * @reg: SCR to write
6385 * @val: value to write
6386 *
6387 * This function is identical to sata_scr_write() except that this
6388 * function performs flush after writing to the register.
6389 *
6390 * LOCKING:
633273a3 6391 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6392 *
6393 * RETURNS:
6394 * 0 on success, negative errno on failure.
6395 */
936fd732 6396int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6397{
633273a3
TH
6398 if (ata_is_host_link(link)) {
6399 struct ata_port *ap = link->ap;
6400 int rc;
da3dbb17 6401
633273a3
TH
6402 if (sata_scr_valid(link)) {
6403 rc = ap->ops->scr_write(ap, reg, val);
6404 if (rc == 0)
6405 rc = ap->ops->scr_read(ap, reg, &val);
6406 return rc;
6407 }
6408 return -EOPNOTSUPP;
34bf2170 6409 }
633273a3
TH
6410
6411 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6412}
6413
6414/**
936fd732
TH
6415 * ata_link_online - test whether the given link is online
6416 * @link: ATA link to test
34bf2170 6417 *
936fd732
TH
6418 * Test whether @link is online. Note that this function returns
6419 * 0 if online status of @link cannot be obtained, so
6420 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6421 *
6422 * LOCKING:
6423 * None.
6424 *
6425 * RETURNS:
6426 * 1 if the port online status is available and online.
6427 */
936fd732 6428int ata_link_online(struct ata_link *link)
34bf2170
TH
6429{
6430 u32 sstatus;
6431
936fd732
TH
6432 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6433 (sstatus & 0xf) == 0x3)
34bf2170
TH
6434 return 1;
6435 return 0;
6436}
6437
6438/**
936fd732
TH
6439 * ata_link_offline - test whether the given link is offline
6440 * @link: ATA link to test
34bf2170 6441 *
936fd732
TH
6442 * Test whether @link is offline. Note that this function
6443 * returns 0 if offline status of @link cannot be obtained, so
6444 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6445 *
6446 * LOCKING:
6447 * None.
6448 *
6449 * RETURNS:
6450 * 1 if the port offline status is available and offline.
6451 */
936fd732 6452int ata_link_offline(struct ata_link *link)
34bf2170
TH
6453{
6454 u32 sstatus;
6455
936fd732
TH
6456 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6457 (sstatus & 0xf) != 0x3)
34bf2170
TH
6458 return 1;
6459 return 0;
6460}
0baab86b 6461
77b08fb5 6462int ata_flush_cache(struct ata_device *dev)
9b847548 6463{
977e6b9f 6464 unsigned int err_mask;
9b847548
JA
6465 u8 cmd;
6466
6467 if (!ata_try_flush_cache(dev))
6468 return 0;
6469
6fc49adb 6470 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6471 cmd = ATA_CMD_FLUSH_EXT;
6472 else
6473 cmd = ATA_CMD_FLUSH;
6474
4f34337b
AC
6475 /* This is wrong. On a failed flush we get back the LBA of the lost
6476 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6477 a further flush command to continue the writeback until it
4f34337b 6478 does not error */
977e6b9f
TH
6479 err_mask = ata_do_simple_cmd(dev, cmd);
6480 if (err_mask) {
6481 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6482 return -EIO;
6483 }
6484
6485 return 0;
9b847548
JA
6486}
6487
6ffa01d8 6488#ifdef CONFIG_PM
cca3974e
JG
6489static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6490 unsigned int action, unsigned int ehi_flags,
6491 int wait)
500530f6
TH
6492{
6493 unsigned long flags;
6494 int i, rc;
6495
cca3974e
JG
6496 for (i = 0; i < host->n_ports; i++) {
6497 struct ata_port *ap = host->ports[i];
e3667ebf 6498 struct ata_link *link;
500530f6
TH
6499
6500 /* Previous resume operation might still be in
6501 * progress. Wait for PM_PENDING to clear.
6502 */
6503 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6504 ata_port_wait_eh(ap);
6505 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6506 }
6507
6508 /* request PM ops to EH */
6509 spin_lock_irqsave(ap->lock, flags);
6510
6511 ap->pm_mesg = mesg;
6512 if (wait) {
6513 rc = 0;
6514 ap->pm_result = &rc;
6515 }
6516
6517 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6518 __ata_port_for_each_link(link, ap) {
6519 link->eh_info.action |= action;
6520 link->eh_info.flags |= ehi_flags;
6521 }
500530f6
TH
6522
6523 ata_port_schedule_eh(ap);
6524
6525 spin_unlock_irqrestore(ap->lock, flags);
6526
6527 /* wait and check result */
6528 if (wait) {
6529 ata_port_wait_eh(ap);
6530 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6531 if (rc)
6532 return rc;
6533 }
6534 }
6535
6536 return 0;
6537}
6538
6539/**
cca3974e
JG
6540 * ata_host_suspend - suspend host
6541 * @host: host to suspend
500530f6
TH
6542 * @mesg: PM message
6543 *
cca3974e 6544 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6545 * function requests EH to perform PM operations and waits for EH
6546 * to finish.
6547 *
6548 * LOCKING:
6549 * Kernel thread context (may sleep).
6550 *
6551 * RETURNS:
6552 * 0 on success, -errno on failure.
6553 */
cca3974e 6554int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6555{
9666f400 6556 int rc;
500530f6 6557
ca77329f
KCA
6558 /*
6559 * disable link pm on all ports before requesting
6560 * any pm activity
6561 */
6562 ata_lpm_enable(host);
6563
cca3974e 6564 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6565 if (rc == 0)
6566 host->dev->power.power_state = mesg;
500530f6
TH
6567 return rc;
6568}
6569
6570/**
cca3974e
JG
6571 * ata_host_resume - resume host
6572 * @host: host to resume
500530f6 6573 *
cca3974e 6574 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6575 * function requests EH to perform PM operations and returns.
6576 * Note that all resume operations are performed parallely.
6577 *
6578 * LOCKING:
6579 * Kernel thread context (may sleep).
6580 */
cca3974e 6581void ata_host_resume(struct ata_host *host)
500530f6 6582{
cca3974e
JG
6583 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6584 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6585 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6586
6587 /* reenable link pm */
6588 ata_lpm_disable(host);
500530f6 6589}
6ffa01d8 6590#endif
500530f6 6591
c893a3ae
RD
6592/**
6593 * ata_port_start - Set port up for dma.
6594 * @ap: Port to initialize
6595 *
6596 * Called just after data structures for each port are
6597 * initialized. Allocates space for PRD table.
6598 *
6599 * May be used as the port_start() entry in ata_port_operations.
6600 *
6601 * LOCKING:
6602 * Inherited from caller.
6603 */
f0d36efd 6604int ata_port_start(struct ata_port *ap)
1da177e4 6605{
2f1f610b 6606 struct device *dev = ap->dev;
6037d6bb 6607 int rc;
1da177e4 6608
f0d36efd
TH
6609 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6610 GFP_KERNEL);
1da177e4
LT
6611 if (!ap->prd)
6612 return -ENOMEM;
6613
6037d6bb 6614 rc = ata_pad_alloc(ap, dev);
f0d36efd 6615 if (rc)
6037d6bb 6616 return rc;
1da177e4 6617
f0d36efd
TH
6618 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6619 (unsigned long long)ap->prd_dma);
1da177e4
LT
6620 return 0;
6621}
6622
3ef3b43d
TH
6623/**
6624 * ata_dev_init - Initialize an ata_device structure
6625 * @dev: Device structure to initialize
6626 *
6627 * Initialize @dev in preparation for probing.
6628 *
6629 * LOCKING:
6630 * Inherited from caller.
6631 */
6632void ata_dev_init(struct ata_device *dev)
6633{
9af5c9c9
TH
6634 struct ata_link *link = dev->link;
6635 struct ata_port *ap = link->ap;
72fa4b74
TH
6636 unsigned long flags;
6637
5a04bf4b 6638 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6639 link->sata_spd_limit = link->hw_sata_spd_limit;
6640 link->sata_spd = 0;
5a04bf4b 6641
72fa4b74
TH
6642 /* High bits of dev->flags are used to record warm plug
6643 * requests which occur asynchronously. Synchronize using
cca3974e 6644 * host lock.
72fa4b74 6645 */
ba6a1308 6646 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6647 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6648 dev->horkage = 0;
ba6a1308 6649 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6650
72fa4b74
TH
6651 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6652 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6653 dev->pio_mask = UINT_MAX;
6654 dev->mwdma_mask = UINT_MAX;
6655 dev->udma_mask = UINT_MAX;
6656}
6657
4fb37a25
TH
6658/**
6659 * ata_link_init - Initialize an ata_link structure
6660 * @ap: ATA port link is attached to
6661 * @link: Link structure to initialize
8989805d 6662 * @pmp: Port multiplier port number
4fb37a25
TH
6663 *
6664 * Initialize @link.
6665 *
6666 * LOCKING:
6667 * Kernel thread context (may sleep)
6668 */
fb7fd614 6669void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6670{
6671 int i;
6672
6673 /* clear everything except for devices */
6674 memset(link, 0, offsetof(struct ata_link, device[0]));
6675
6676 link->ap = ap;
8989805d 6677 link->pmp = pmp;
4fb37a25
TH
6678 link->active_tag = ATA_TAG_POISON;
6679 link->hw_sata_spd_limit = UINT_MAX;
6680
6681 /* can't use iterator, ap isn't initialized yet */
6682 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6683 struct ata_device *dev = &link->device[i];
6684
6685 dev->link = link;
6686 dev->devno = dev - link->device;
6687 ata_dev_init(dev);
6688 }
6689}
6690
6691/**
6692 * sata_link_init_spd - Initialize link->sata_spd_limit
6693 * @link: Link to configure sata_spd_limit for
6694 *
6695 * Initialize @link->[hw_]sata_spd_limit to the currently
6696 * configured value.
6697 *
6698 * LOCKING:
6699 * Kernel thread context (may sleep).
6700 *
6701 * RETURNS:
6702 * 0 on success, -errno on failure.
6703 */
fb7fd614 6704int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6705{
6706 u32 scontrol, spd;
6707 int rc;
6708
6709 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6710 if (rc)
6711 return rc;
6712
6713 spd = (scontrol >> 4) & 0xf;
6714 if (spd)
6715 link->hw_sata_spd_limit &= (1 << spd) - 1;
6716
6717 link->sata_spd_limit = link->hw_sata_spd_limit;
6718
6719 return 0;
6720}
6721
1da177e4 6722/**
f3187195
TH
6723 * ata_port_alloc - allocate and initialize basic ATA port resources
6724 * @host: ATA host this allocated port belongs to
1da177e4 6725 *
f3187195
TH
6726 * Allocate and initialize basic ATA port resources.
6727 *
6728 * RETURNS:
6729 * Allocate ATA port on success, NULL on failure.
0cba632b 6730 *
1da177e4 6731 * LOCKING:
f3187195 6732 * Inherited from calling layer (may sleep).
1da177e4 6733 */
f3187195 6734struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6735{
f3187195 6736 struct ata_port *ap;
1da177e4 6737
f3187195
TH
6738 DPRINTK("ENTER\n");
6739
6740 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6741 if (!ap)
6742 return NULL;
6743
f4d6d004 6744 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6745 ap->lock = &host->lock;
198e0fed 6746 ap->flags = ATA_FLAG_DISABLED;
f3187195 6747 ap->print_id = -1;
1da177e4 6748 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6749 ap->host = host;
f3187195 6750 ap->dev = host->dev;
1da177e4 6751 ap->last_ctl = 0xFF;
bd5d825c
BP
6752
6753#if defined(ATA_VERBOSE_DEBUG)
6754 /* turn on all debugging levels */
6755 ap->msg_enable = 0x00FF;
6756#elif defined(ATA_DEBUG)
6757 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6758#else
0dd4b21f 6759 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6760#endif
1da177e4 6761
65f27f38
DH
6762 INIT_DELAYED_WORK(&ap->port_task, NULL);
6763 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6764 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6765 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6766 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6767 init_timer_deferrable(&ap->fastdrain_timer);
6768 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6769 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6770
838df628 6771 ap->cbl = ATA_CBL_NONE;
838df628 6772
8989805d 6773 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6774
6775#ifdef ATA_IRQ_TRAP
6776 ap->stats.unhandled_irq = 1;
6777 ap->stats.idle_irq = 1;
6778#endif
1da177e4 6779 return ap;
1da177e4
LT
6780}
6781
f0d36efd
TH
6782static void ata_host_release(struct device *gendev, void *res)
6783{
6784 struct ata_host *host = dev_get_drvdata(gendev);
6785 int i;
6786
6787 for (i = 0; i < host->n_ports; i++) {
6788 struct ata_port *ap = host->ports[i];
6789
ecef7253
TH
6790 if (!ap)
6791 continue;
6792
6793 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6794 ap->ops->port_stop(ap);
f0d36efd
TH
6795 }
6796
ecef7253 6797 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6798 host->ops->host_stop(host);
1aa56cca 6799
1aa506e4
TH
6800 for (i = 0; i < host->n_ports; i++) {
6801 struct ata_port *ap = host->ports[i];
6802
4911487a
TH
6803 if (!ap)
6804 continue;
6805
6806 if (ap->scsi_host)
1aa506e4
TH
6807 scsi_host_put(ap->scsi_host);
6808
633273a3 6809 kfree(ap->pmp_link);
4911487a 6810 kfree(ap);
1aa506e4
TH
6811 host->ports[i] = NULL;
6812 }
6813
1aa56cca 6814 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6815}
6816
f3187195
TH
6817/**
6818 * ata_host_alloc - allocate and init basic ATA host resources
6819 * @dev: generic device this host is associated with
6820 * @max_ports: maximum number of ATA ports associated with this host
6821 *
6822 * Allocate and initialize basic ATA host resources. LLD calls
6823 * this function to allocate a host, initializes it fully and
6824 * attaches it using ata_host_register().
6825 *
6826 * @max_ports ports are allocated and host->n_ports is
6827 * initialized to @max_ports. The caller is allowed to decrease
6828 * host->n_ports before calling ata_host_register(). The unused
6829 * ports will be automatically freed on registration.
6830 *
6831 * RETURNS:
6832 * Allocate ATA host on success, NULL on failure.
6833 *
6834 * LOCKING:
6835 * Inherited from calling layer (may sleep).
6836 */
6837struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6838{
6839 struct ata_host *host;
6840 size_t sz;
6841 int i;
6842
6843 DPRINTK("ENTER\n");
6844
6845 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6846 return NULL;
6847
6848 /* alloc a container for our list of ATA ports (buses) */
6849 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6850 /* alloc a container for our list of ATA ports (buses) */
6851 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6852 if (!host)
6853 goto err_out;
6854
6855 devres_add(dev, host);
6856 dev_set_drvdata(dev, host);
6857
6858 spin_lock_init(&host->lock);
6859 host->dev = dev;
6860 host->n_ports = max_ports;
6861
6862 /* allocate ports bound to this host */
6863 for (i = 0; i < max_ports; i++) {
6864 struct ata_port *ap;
6865
6866 ap = ata_port_alloc(host);
6867 if (!ap)
6868 goto err_out;
6869
6870 ap->port_no = i;
6871 host->ports[i] = ap;
6872 }
6873
6874 devres_remove_group(dev, NULL);
6875 return host;
6876
6877 err_out:
6878 devres_release_group(dev, NULL);
6879 return NULL;
6880}
6881
f5cda257
TH
6882/**
6883 * ata_host_alloc_pinfo - alloc host and init with port_info array
6884 * @dev: generic device this host is associated with
6885 * @ppi: array of ATA port_info to initialize host with
6886 * @n_ports: number of ATA ports attached to this host
6887 *
6888 * Allocate ATA host and initialize with info from @ppi. If NULL
6889 * terminated, @ppi may contain fewer entries than @n_ports. The
6890 * last entry will be used for the remaining ports.
6891 *
6892 * RETURNS:
6893 * Allocate ATA host on success, NULL on failure.
6894 *
6895 * LOCKING:
6896 * Inherited from calling layer (may sleep).
6897 */
6898struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6899 const struct ata_port_info * const * ppi,
6900 int n_ports)
6901{
6902 const struct ata_port_info *pi;
6903 struct ata_host *host;
6904 int i, j;
6905
6906 host = ata_host_alloc(dev, n_ports);
6907 if (!host)
6908 return NULL;
6909
6910 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6911 struct ata_port *ap = host->ports[i];
6912
6913 if (ppi[j])
6914 pi = ppi[j++];
6915
6916 ap->pio_mask = pi->pio_mask;
6917 ap->mwdma_mask = pi->mwdma_mask;
6918 ap->udma_mask = pi->udma_mask;
6919 ap->flags |= pi->flags;
0c88758b 6920 ap->link.flags |= pi->link_flags;
f5cda257
TH
6921 ap->ops = pi->port_ops;
6922
6923 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6924 host->ops = pi->port_ops;
6925 if (!host->private_data && pi->private_data)
6926 host->private_data = pi->private_data;
6927 }
6928
6929 return host;
6930}
6931
ecef7253
TH
6932/**
6933 * ata_host_start - start and freeze ports of an ATA host
6934 * @host: ATA host to start ports for
6935 *
6936 * Start and then freeze ports of @host. Started status is
6937 * recorded in host->flags, so this function can be called
6938 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6939 * once. If host->ops isn't initialized yet, its set to the
6940 * first non-dummy port ops.
ecef7253
TH
6941 *
6942 * LOCKING:
6943 * Inherited from calling layer (may sleep).
6944 *
6945 * RETURNS:
6946 * 0 if all ports are started successfully, -errno otherwise.
6947 */
6948int ata_host_start(struct ata_host *host)
6949{
6950 int i, rc;
6951
6952 if (host->flags & ATA_HOST_STARTED)
6953 return 0;
6954
6955 for (i = 0; i < host->n_ports; i++) {
6956 struct ata_port *ap = host->ports[i];
6957
f3187195
TH
6958 if (!host->ops && !ata_port_is_dummy(ap))
6959 host->ops = ap->ops;
6960
ecef7253
TH
6961 if (ap->ops->port_start) {
6962 rc = ap->ops->port_start(ap);
6963 if (rc) {
6964 ata_port_printk(ap, KERN_ERR, "failed to "
6965 "start port (errno=%d)\n", rc);
6966 goto err_out;
6967 }
6968 }
6969
6970 ata_eh_freeze_port(ap);
6971 }
6972
6973 host->flags |= ATA_HOST_STARTED;
6974 return 0;
6975
6976 err_out:
6977 while (--i >= 0) {
6978 struct ata_port *ap = host->ports[i];
6979
6980 if (ap->ops->port_stop)
6981 ap->ops->port_stop(ap);
6982 }
6983 return rc;
6984}
6985
b03732f0 6986/**
cca3974e
JG
6987 * ata_sas_host_init - Initialize a host struct
6988 * @host: host to initialize
6989 * @dev: device host is attached to
6990 * @flags: host flags
6991 * @ops: port_ops
b03732f0
BK
6992 *
6993 * LOCKING:
6994 * PCI/etc. bus probe sem.
6995 *
6996 */
f3187195 6997/* KILLME - the only user left is ipr */
cca3974e
JG
6998void ata_host_init(struct ata_host *host, struct device *dev,
6999 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7000{
cca3974e
JG
7001 spin_lock_init(&host->lock);
7002 host->dev = dev;
7003 host->flags = flags;
7004 host->ops = ops;
b03732f0
BK
7005}
7006
f3187195
TH
7007/**
7008 * ata_host_register - register initialized ATA host
7009 * @host: ATA host to register
7010 * @sht: template for SCSI host
7011 *
7012 * Register initialized ATA host. @host is allocated using
7013 * ata_host_alloc() and fully initialized by LLD. This function
7014 * starts ports, registers @host with ATA and SCSI layers and
7015 * probe registered devices.
7016 *
7017 * LOCKING:
7018 * Inherited from calling layer (may sleep).
7019 *
7020 * RETURNS:
7021 * 0 on success, -errno otherwise.
7022 */
7023int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7024{
7025 int i, rc;
7026
7027 /* host must have been started */
7028 if (!(host->flags & ATA_HOST_STARTED)) {
7029 dev_printk(KERN_ERR, host->dev,
7030 "BUG: trying to register unstarted host\n");
7031 WARN_ON(1);
7032 return -EINVAL;
7033 }
7034
7035 /* Blow away unused ports. This happens when LLD can't
7036 * determine the exact number of ports to allocate at
7037 * allocation time.
7038 */
7039 for (i = host->n_ports; host->ports[i]; i++)
7040 kfree(host->ports[i]);
7041
7042 /* give ports names and add SCSI hosts */
7043 for (i = 0; i < host->n_ports; i++)
7044 host->ports[i]->print_id = ata_print_id++;
7045
7046 rc = ata_scsi_add_hosts(host, sht);
7047 if (rc)
7048 return rc;
7049
fafbae87
TH
7050 /* associate with ACPI nodes */
7051 ata_acpi_associate(host);
7052
f3187195
TH
7053 /* set cable, sata_spd_limit and report */
7054 for (i = 0; i < host->n_ports; i++) {
7055 struct ata_port *ap = host->ports[i];
f3187195
TH
7056 unsigned long xfer_mask;
7057
7058 /* set SATA cable type if still unset */
7059 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7060 ap->cbl = ATA_CBL_SATA;
7061
7062 /* init sata_spd_limit to the current value */
4fb37a25 7063 sata_link_init_spd(&ap->link);
f3187195 7064
cbcdd875 7065 /* print per-port info to dmesg */
f3187195
TH
7066 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7067 ap->udma_mask);
7068
abf6e8ed 7069 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7070 ata_port_printk(ap, KERN_INFO,
7071 "%cATA max %s %s\n",
a16abc0b 7072 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7073 ata_mode_string(xfer_mask),
cbcdd875 7074 ap->link.eh_info.desc);
abf6e8ed
TH
7075 ata_ehi_clear_desc(&ap->link.eh_info);
7076 } else
f3187195
TH
7077 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7078 }
7079
7080 /* perform each probe synchronously */
7081 DPRINTK("probe begin\n");
7082 for (i = 0; i < host->n_ports; i++) {
7083 struct ata_port *ap = host->ports[i];
7084 int rc;
7085
7086 /* probe */
7087 if (ap->ops->error_handler) {
9af5c9c9 7088 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7089 unsigned long flags;
7090
7091 ata_port_probe(ap);
7092
7093 /* kick EH for boot probing */
7094 spin_lock_irqsave(ap->lock, flags);
7095
f58229f8
TH
7096 ehi->probe_mask =
7097 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7098 ehi->action |= ATA_EH_SOFTRESET;
7099 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7100
f4d6d004 7101 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7102 ap->pflags |= ATA_PFLAG_LOADING;
7103 ata_port_schedule_eh(ap);
7104
7105 spin_unlock_irqrestore(ap->lock, flags);
7106
7107 /* wait for EH to finish */
7108 ata_port_wait_eh(ap);
7109 } else {
7110 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7111 rc = ata_bus_probe(ap);
7112 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7113
7114 if (rc) {
7115 /* FIXME: do something useful here?
7116 * Current libata behavior will
7117 * tear down everything when
7118 * the module is removed
7119 * or the h/w is unplugged.
7120 */
7121 }
7122 }
7123 }
7124
7125 /* probes are done, now scan each port's disk(s) */
7126 DPRINTK("host probe begin\n");
7127 for (i = 0; i < host->n_ports; i++) {
7128 struct ata_port *ap = host->ports[i];
7129
1ae46317 7130 ata_scsi_scan_host(ap, 1);
ca77329f 7131 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7132 }
7133
7134 return 0;
7135}
7136
f5cda257
TH
7137/**
7138 * ata_host_activate - start host, request IRQ and register it
7139 * @host: target ATA host
7140 * @irq: IRQ to request
7141 * @irq_handler: irq_handler used when requesting IRQ
7142 * @irq_flags: irq_flags used when requesting IRQ
7143 * @sht: scsi_host_template to use when registering the host
7144 *
7145 * After allocating an ATA host and initializing it, most libata
7146 * LLDs perform three steps to activate the host - start host,
7147 * request IRQ and register it. This helper takes necessasry
7148 * arguments and performs the three steps in one go.
7149 *
7150 * LOCKING:
7151 * Inherited from calling layer (may sleep).
7152 *
7153 * RETURNS:
7154 * 0 on success, -errno otherwise.
7155 */
7156int ata_host_activate(struct ata_host *host, int irq,
7157 irq_handler_t irq_handler, unsigned long irq_flags,
7158 struct scsi_host_template *sht)
7159{
cbcdd875 7160 int i, rc;
f5cda257
TH
7161
7162 rc = ata_host_start(host);
7163 if (rc)
7164 return rc;
7165
7166 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7167 dev_driver_string(host->dev), host);
7168 if (rc)
7169 return rc;
7170
cbcdd875
TH
7171 for (i = 0; i < host->n_ports; i++)
7172 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7173
f5cda257
TH
7174 rc = ata_host_register(host, sht);
7175 /* if failed, just free the IRQ and leave ports alone */
7176 if (rc)
7177 devm_free_irq(host->dev, irq, host);
7178
7179 return rc;
7180}
7181
720ba126
TH
7182/**
7183 * ata_port_detach - Detach ATA port in prepration of device removal
7184 * @ap: ATA port to be detached
7185 *
7186 * Detach all ATA devices and the associated SCSI devices of @ap;
7187 * then, remove the associated SCSI host. @ap is guaranteed to
7188 * be quiescent on return from this function.
7189 *
7190 * LOCKING:
7191 * Kernel thread context (may sleep).
7192 */
741b7763 7193static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7194{
7195 unsigned long flags;
41bda9c9 7196 struct ata_link *link;
f58229f8 7197 struct ata_device *dev;
720ba126
TH
7198
7199 if (!ap->ops->error_handler)
c3cf30a9 7200 goto skip_eh;
720ba126
TH
7201
7202 /* tell EH we're leaving & flush EH */
ba6a1308 7203 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7204 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7205 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7206
7207 ata_port_wait_eh(ap);
7208
7209 /* EH is now guaranteed to see UNLOADING, so no new device
7210 * will be attached. Disable all existing devices.
7211 */
ba6a1308 7212 spin_lock_irqsave(ap->lock, flags);
720ba126 7213
41bda9c9
TH
7214 ata_port_for_each_link(link, ap) {
7215 ata_link_for_each_dev(dev, link)
7216 ata_dev_disable(dev);
7217 }
720ba126 7218
ba6a1308 7219 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7220
7221 /* Final freeze & EH. All in-flight commands are aborted. EH
7222 * will be skipped and retrials will be terminated with bad
7223 * target.
7224 */
ba6a1308 7225 spin_lock_irqsave(ap->lock, flags);
720ba126 7226 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7227 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7228
7229 ata_port_wait_eh(ap);
45a66c1c 7230 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7231
c3cf30a9 7232 skip_eh:
720ba126 7233 /* remove the associated SCSI host */
cca3974e 7234 scsi_remove_host(ap->scsi_host);
720ba126
TH
7235}
7236
0529c159
TH
7237/**
7238 * ata_host_detach - Detach all ports of an ATA host
7239 * @host: Host to detach
7240 *
7241 * Detach all ports of @host.
7242 *
7243 * LOCKING:
7244 * Kernel thread context (may sleep).
7245 */
7246void ata_host_detach(struct ata_host *host)
7247{
7248 int i;
7249
7250 for (i = 0; i < host->n_ports; i++)
7251 ata_port_detach(host->ports[i]);
7252}
7253
1da177e4
LT
7254/**
7255 * ata_std_ports - initialize ioaddr with standard port offsets.
7256 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7257 *
7258 * Utility function which initializes data_addr, error_addr,
7259 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7260 * device_addr, status_addr, and command_addr to standard offsets
7261 * relative to cmd_addr.
7262 *
7263 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7264 */
0baab86b 7265
1da177e4
LT
7266void ata_std_ports(struct ata_ioports *ioaddr)
7267{
7268 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7269 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7270 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7271 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7272 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7273 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7274 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7275 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7276 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7277 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7278}
7279
0baab86b 7280
374b1873
JG
7281#ifdef CONFIG_PCI
7282
1da177e4
LT
7283/**
7284 * ata_pci_remove_one - PCI layer callback for device removal
7285 * @pdev: PCI device that was removed
7286 *
b878ca5d
TH
7287 * PCI layer indicates to libata via this hook that hot-unplug or
7288 * module unload event has occurred. Detach all ports. Resource
7289 * release is handled via devres.
1da177e4
LT
7290 *
7291 * LOCKING:
7292 * Inherited from PCI layer (may sleep).
7293 */
f0d36efd 7294void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7295{
2855568b 7296 struct device *dev = &pdev->dev;
cca3974e 7297 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7298
b878ca5d 7299 ata_host_detach(host);
1da177e4
LT
7300}
7301
7302/* move to PCI subsystem */
057ace5e 7303int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7304{
7305 unsigned long tmp = 0;
7306
7307 switch (bits->width) {
7308 case 1: {
7309 u8 tmp8 = 0;
7310 pci_read_config_byte(pdev, bits->reg, &tmp8);
7311 tmp = tmp8;
7312 break;
7313 }
7314 case 2: {
7315 u16 tmp16 = 0;
7316 pci_read_config_word(pdev, bits->reg, &tmp16);
7317 tmp = tmp16;
7318 break;
7319 }
7320 case 4: {
7321 u32 tmp32 = 0;
7322 pci_read_config_dword(pdev, bits->reg, &tmp32);
7323 tmp = tmp32;
7324 break;
7325 }
7326
7327 default:
7328 return -EINVAL;
7329 }
7330
7331 tmp &= bits->mask;
7332
7333 return (tmp == bits->val) ? 1 : 0;
7334}
9b847548 7335
6ffa01d8 7336#ifdef CONFIG_PM
3c5100c1 7337void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7338{
7339 pci_save_state(pdev);
4c90d971 7340 pci_disable_device(pdev);
500530f6 7341
4c90d971 7342 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7343 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7344}
7345
553c4aa6 7346int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7347{
553c4aa6
TH
7348 int rc;
7349
9b847548
JA
7350 pci_set_power_state(pdev, PCI_D0);
7351 pci_restore_state(pdev);
553c4aa6 7352
b878ca5d 7353 rc = pcim_enable_device(pdev);
553c4aa6
TH
7354 if (rc) {
7355 dev_printk(KERN_ERR, &pdev->dev,
7356 "failed to enable device after resume (%d)\n", rc);
7357 return rc;
7358 }
7359
9b847548 7360 pci_set_master(pdev);
553c4aa6 7361 return 0;
500530f6
TH
7362}
7363
3c5100c1 7364int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7365{
cca3974e 7366 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7367 int rc = 0;
7368
cca3974e 7369 rc = ata_host_suspend(host, mesg);
500530f6
TH
7370 if (rc)
7371 return rc;
7372
3c5100c1 7373 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7374
7375 return 0;
7376}
7377
7378int ata_pci_device_resume(struct pci_dev *pdev)
7379{
cca3974e 7380 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7381 int rc;
500530f6 7382
553c4aa6
TH
7383 rc = ata_pci_device_do_resume(pdev);
7384 if (rc == 0)
7385 ata_host_resume(host);
7386 return rc;
9b847548 7387}
6ffa01d8
TH
7388#endif /* CONFIG_PM */
7389
1da177e4
LT
7390#endif /* CONFIG_PCI */
7391
7392
1da177e4
LT
7393static int __init ata_init(void)
7394{
a8601e5f 7395 ata_probe_timeout *= HZ;
1da177e4
LT
7396 ata_wq = create_workqueue("ata");
7397 if (!ata_wq)
7398 return -ENOMEM;
7399
453b07ac
TH
7400 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7401 if (!ata_aux_wq) {
7402 destroy_workqueue(ata_wq);
7403 return -ENOMEM;
7404 }
7405
1da177e4
LT
7406 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7407 return 0;
7408}
7409
7410static void __exit ata_exit(void)
7411{
7412 destroy_workqueue(ata_wq);
453b07ac 7413 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7414}
7415
a4625085 7416subsys_initcall(ata_init);
1da177e4
LT
7417module_exit(ata_exit);
7418
67846b30 7419static unsigned long ratelimit_time;
34af946a 7420static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7421
7422int ata_ratelimit(void)
7423{
7424 int rc;
7425 unsigned long flags;
7426
7427 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7428
7429 if (time_after(jiffies, ratelimit_time)) {
7430 rc = 1;
7431 ratelimit_time = jiffies + (HZ/5);
7432 } else
7433 rc = 0;
7434
7435 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7436
7437 return rc;
7438}
7439
c22daff4
TH
7440/**
7441 * ata_wait_register - wait until register value changes
7442 * @reg: IO-mapped register
7443 * @mask: Mask to apply to read register value
7444 * @val: Wait condition
7445 * @interval_msec: polling interval in milliseconds
7446 * @timeout_msec: timeout in milliseconds
7447 *
7448 * Waiting for some bits of register to change is a common
7449 * operation for ATA controllers. This function reads 32bit LE
7450 * IO-mapped register @reg and tests for the following condition.
7451 *
7452 * (*@reg & mask) != val
7453 *
7454 * If the condition is met, it returns; otherwise, the process is
7455 * repeated after @interval_msec until timeout.
7456 *
7457 * LOCKING:
7458 * Kernel thread context (may sleep)
7459 *
7460 * RETURNS:
7461 * The final register value.
7462 */
7463u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7464 unsigned long interval_msec,
7465 unsigned long timeout_msec)
7466{
7467 unsigned long timeout;
7468 u32 tmp;
7469
7470 tmp = ioread32(reg);
7471
7472 /* Calculate timeout _after_ the first read to make sure
7473 * preceding writes reach the controller before starting to
7474 * eat away the timeout.
7475 */
7476 timeout = jiffies + (timeout_msec * HZ) / 1000;
7477
7478 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7479 msleep(interval_msec);
7480 tmp = ioread32(reg);
7481 }
7482
7483 return tmp;
7484}
7485
dd5b06c4
TH
7486/*
7487 * Dummy port_ops
7488 */
7489static void ata_dummy_noret(struct ata_port *ap) { }
7490static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7491static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7492
7493static u8 ata_dummy_check_status(struct ata_port *ap)
7494{
7495 return ATA_DRDY;
7496}
7497
7498static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7499{
7500 return AC_ERR_SYSTEM;
7501}
7502
7503const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7504 .check_status = ata_dummy_check_status,
7505 .check_altstatus = ata_dummy_check_status,
7506 .dev_select = ata_noop_dev_select,
7507 .qc_prep = ata_noop_qc_prep,
7508 .qc_issue = ata_dummy_qc_issue,
7509 .freeze = ata_dummy_noret,
7510 .thaw = ata_dummy_noret,
7511 .error_handler = ata_dummy_noret,
7512 .post_internal_cmd = ata_dummy_qc_noret,
7513 .irq_clear = ata_dummy_noret,
7514 .port_start = ata_dummy_ret0,
7515 .port_stop = ata_dummy_noret,
7516};
7517
21b0ad4f
TH
7518const struct ata_port_info ata_dummy_port_info = {
7519 .port_ops = &ata_dummy_port_ops,
7520};
7521
1da177e4
LT
7522/*
7523 * libata is essentially a library of internal helper functions for
7524 * low-level ATA host controller drivers. As such, the API/ABI is
7525 * likely to change as new drivers are added and updated.
7526 * Do not depend on ABI/API stability.
7527 */
e9c83914
TH
7528EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7529EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7530EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7531EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7532EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7533EXPORT_SYMBOL_GPL(ata_std_bios_param);
7534EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7535EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7536EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7537EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7538EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7539EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7540EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7541EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7542EXPORT_SYMBOL_GPL(ata_sg_init);
7543EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7544EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7545EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7546EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7547EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7548EXPORT_SYMBOL_GPL(ata_tf_load);
7549EXPORT_SYMBOL_GPL(ata_tf_read);
7550EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7551EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7552EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7553EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7554EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7555EXPORT_SYMBOL_GPL(ata_check_status);
7556EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7557EXPORT_SYMBOL_GPL(ata_exec_command);
7558EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7559EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7560EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7561EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7562EXPORT_SYMBOL_GPL(ata_data_xfer);
7563EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7564EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7565EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7566EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7567EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7568EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7569EXPORT_SYMBOL_GPL(ata_bmdma_start);
7570EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7571EXPORT_SYMBOL_GPL(ata_bmdma_status);
7572EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7573EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7574EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7575EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7576EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7577EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7578EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7579EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7580EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7581EXPORT_SYMBOL_GPL(sata_link_debounce);
7582EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7583EXPORT_SYMBOL_GPL(sata_phy_reset);
7584EXPORT_SYMBOL_GPL(__sata_phy_reset);
7585EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7586EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7587EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7588EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7589EXPORT_SYMBOL_GPL(sata_std_hardreset);
7590EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7591EXPORT_SYMBOL_GPL(ata_dev_classify);
7592EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7593EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7594EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7595EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7596EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7597EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7598EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7599EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7600EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7601EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7602EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7603EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7604EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7605EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7606EXPORT_SYMBOL_GPL(sata_scr_valid);
7607EXPORT_SYMBOL_GPL(sata_scr_read);
7608EXPORT_SYMBOL_GPL(sata_scr_write);
7609EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7610EXPORT_SYMBOL_GPL(ata_link_online);
7611EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7612#ifdef CONFIG_PM
cca3974e
JG
7613EXPORT_SYMBOL_GPL(ata_host_suspend);
7614EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7615#endif /* CONFIG_PM */
6a62a04d
TH
7616EXPORT_SYMBOL_GPL(ata_id_string);
7617EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7618EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7619EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7620
1bc4ccff 7621EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7622EXPORT_SYMBOL_GPL(ata_timing_compute);
7623EXPORT_SYMBOL_GPL(ata_timing_merge);
7624
1da177e4
LT
7625#ifdef CONFIG_PCI
7626EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7627EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7628EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7629EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7630EXPORT_SYMBOL_GPL(ata_pci_init_one);
7631EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7632#ifdef CONFIG_PM
500530f6
TH
7633EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7634EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7635EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7636EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7637#endif /* CONFIG_PM */
67951ade
AC
7638EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7639EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7640#endif /* CONFIG_PCI */
9b847548 7641
31f88384 7642EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7643EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7644EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7645EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7646EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7647
b64bbc39
TH
7648EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7649EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7650EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7651EXPORT_SYMBOL_GPL(ata_port_desc);
7652#ifdef CONFIG_PCI
7653EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7654#endif /* CONFIG_PCI */
ece1d636 7655EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7656EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7657EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7658EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7659EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7660EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7661EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7662EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7663EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7664EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7665EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7666EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7667EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7668
7669EXPORT_SYMBOL_GPL(ata_cable_40wire);
7670EXPORT_SYMBOL_GPL(ata_cable_80wire);
7671EXPORT_SYMBOL_GPL(ata_cable_unknown);
7672EXPORT_SYMBOL_GPL(ata_cable_sata);