]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: add missing call to ->cable_detect() in new EH path
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904{
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930}
931
932/**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941{
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963}
964
965/**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974static u64 ata_hpa_resize(struct ata_device *dev)
975{
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, hpa_sectors = %lld\n",
986 __FUNCTION__, sectors, hpa_sectors);
987
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
993 sectors, hpa_sectors);
994
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 else
999 hpa_sectors = ata_set_native_max_address(dev, hpa_sectors);
1000
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO,
1003 "native size increased to %lld sectors\n", hpa_sectors);
1004 return hpa_sectors;
1005 }
1006 }
1007 }
1008 return sectors;
1009}
1010
2940740b
TH
1011static u64 ata_id_n_sectors(const u16 *id)
1012{
1013 if (ata_id_has_lba(id)) {
1014 if (ata_id_has_lba48(id))
1015 return ata_id_u64(id, 100);
1016 else
1017 return ata_id_u32(id, 60);
1018 } else {
1019 if (ata_id_current_chs_valid(id))
1020 return ata_id_u32(id, 57);
1021 else
1022 return id[1] * id[3] * id[6];
1023 }
1024}
1025
10305f0f
AC
1026/**
1027 * ata_id_to_dma_mode - Identify DMA mode from id block
1028 * @dev: device to identify
cc261267 1029 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1030 *
1031 * Set up the timing values for the device based upon the identify
1032 * reported values for the DMA mode. This function is used by drivers
1033 * which rely upon firmware configured modes, but wish to report the
1034 * mode correctly when possible.
1035 *
1036 * In addition we emit similarly formatted messages to the default
1037 * ata_dev_set_mode handler, in order to provide consistency of
1038 * presentation.
1039 */
1040
1041void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1042{
1043 unsigned int mask;
1044 u8 mode;
1045
1046 /* Pack the DMA modes */
1047 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1048 if (dev->id[53] & 0x04)
1049 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1050
1051 /* Select the mode in use */
1052 mode = ata_xfer_mask2mode(mask);
1053
1054 if (mode != 0) {
1055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1056 ata_mode_string(mask));
1057 } else {
1058 /* SWDMA perhaps ? */
1059 mode = unknown;
1060 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1061 }
1062
1063 /* Configure the device reporting */
1064 dev->xfer_mode = mode;
1065 dev->xfer_shift = ata_xfer_mode2shift(mode);
1066}
1067
0baab86b
EF
1068/**
1069 * ata_noop_dev_select - Select device 0/1 on ATA bus
1070 * @ap: ATA channel to manipulate
1071 * @device: ATA device (numbered from zero) to select
1072 *
1073 * This function performs no actual function.
1074 *
1075 * May be used as the dev_select() entry in ata_port_operations.
1076 *
1077 * LOCKING:
1078 * caller.
1079 */
1da177e4
LT
1080void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1081{
1082}
1083
0baab86b 1084
1da177e4
LT
1085/**
1086 * ata_std_dev_select - Select device 0/1 on ATA bus
1087 * @ap: ATA channel to manipulate
1088 * @device: ATA device (numbered from zero) to select
1089 *
1090 * Use the method defined in the ATA specification to
1091 * make either device 0, or device 1, active on the
0baab86b
EF
1092 * ATA channel. Works with both PIO and MMIO.
1093 *
1094 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1095 *
1096 * LOCKING:
1097 * caller.
1098 */
1099
1100void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1101{
1102 u8 tmp;
1103
1104 if (device == 0)
1105 tmp = ATA_DEVICE_OBS;
1106 else
1107 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1108
0d5ff566 1109 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1110 ata_pause(ap); /* needed; also flushes, for mmio */
1111}
1112
1113/**
1114 * ata_dev_select - Select device 0/1 on ATA bus
1115 * @ap: ATA channel to manipulate
1116 * @device: ATA device (numbered from zero) to select
1117 * @wait: non-zero to wait for Status register BSY bit to clear
1118 * @can_sleep: non-zero if context allows sleeping
1119 *
1120 * Use the method defined in the ATA specification to
1121 * make either device 0, or device 1, active on the
1122 * ATA channel.
1123 *
1124 * This is a high-level version of ata_std_dev_select(),
1125 * which additionally provides the services of inserting
1126 * the proper pauses and status polling, where needed.
1127 *
1128 * LOCKING:
1129 * caller.
1130 */
1131
1132void ata_dev_select(struct ata_port *ap, unsigned int device,
1133 unsigned int wait, unsigned int can_sleep)
1134{
88574551 1135 if (ata_msg_probe(ap))
44877b4e
TH
1136 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1137 "device %u, wait %u\n", device, wait);
1da177e4
LT
1138
1139 if (wait)
1140 ata_wait_idle(ap);
1141
1142 ap->ops->dev_select(ap, device);
1143
1144 if (wait) {
1145 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1146 msleep(150);
1147 ata_wait_idle(ap);
1148 }
1149}
1150
1151/**
1152 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1153 * @id: IDENTIFY DEVICE page to dump
1da177e4 1154 *
0bd3300a
TH
1155 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1156 * page.
1da177e4
LT
1157 *
1158 * LOCKING:
1159 * caller.
1160 */
1161
0bd3300a 1162static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1163{
1164 DPRINTK("49==0x%04x "
1165 "53==0x%04x "
1166 "63==0x%04x "
1167 "64==0x%04x "
1168 "75==0x%04x \n",
0bd3300a
TH
1169 id[49],
1170 id[53],
1171 id[63],
1172 id[64],
1173 id[75]);
1da177e4
LT
1174 DPRINTK("80==0x%04x "
1175 "81==0x%04x "
1176 "82==0x%04x "
1177 "83==0x%04x "
1178 "84==0x%04x \n",
0bd3300a
TH
1179 id[80],
1180 id[81],
1181 id[82],
1182 id[83],
1183 id[84]);
1da177e4
LT
1184 DPRINTK("88==0x%04x "
1185 "93==0x%04x\n",
0bd3300a
TH
1186 id[88],
1187 id[93]);
1da177e4
LT
1188}
1189
cb95d562
TH
1190/**
1191 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1192 * @id: IDENTIFY data to compute xfer mask from
1193 *
1194 * Compute the xfermask for this device. This is not as trivial
1195 * as it seems if we must consider early devices correctly.
1196 *
1197 * FIXME: pre IDE drive timing (do we care ?).
1198 *
1199 * LOCKING:
1200 * None.
1201 *
1202 * RETURNS:
1203 * Computed xfermask
1204 */
1205static unsigned int ata_id_xfermask(const u16 *id)
1206{
1207 unsigned int pio_mask, mwdma_mask, udma_mask;
1208
1209 /* Usual case. Word 53 indicates word 64 is valid */
1210 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1211 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1212 pio_mask <<= 3;
1213 pio_mask |= 0x7;
1214 } else {
1215 /* If word 64 isn't valid then Word 51 high byte holds
1216 * the PIO timing number for the maximum. Turn it into
1217 * a mask.
1218 */
7a0f1c8a 1219 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1220 if (mode < 5) /* Valid PIO range */
1221 pio_mask = (2 << mode) - 1;
1222 else
1223 pio_mask = 1;
cb95d562
TH
1224
1225 /* But wait.. there's more. Design your standards by
1226 * committee and you too can get a free iordy field to
1227 * process. However its the speeds not the modes that
1228 * are supported... Note drivers using the timing API
1229 * will get this right anyway
1230 */
1231 }
1232
1233 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1234
b352e57d
AC
1235 if (ata_id_is_cfa(id)) {
1236 /*
1237 * Process compact flash extended modes
1238 */
1239 int pio = id[163] & 0x7;
1240 int dma = (id[163] >> 3) & 7;
1241
1242 if (pio)
1243 pio_mask |= (1 << 5);
1244 if (pio > 1)
1245 pio_mask |= (1 << 6);
1246 if (dma)
1247 mwdma_mask |= (1 << 3);
1248 if (dma > 1)
1249 mwdma_mask |= (1 << 4);
1250 }
1251
fb21f0d0
TH
1252 udma_mask = 0;
1253 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1254 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1255
1256 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1257}
1258
86e45b6b
TH
1259/**
1260 * ata_port_queue_task - Queue port_task
1261 * @ap: The ata_port to queue port_task for
e2a7f77a 1262 * @fn: workqueue function to be scheduled
65f27f38 1263 * @data: data for @fn to use
e2a7f77a 1264 * @delay: delay time for workqueue function
86e45b6b
TH
1265 *
1266 * Schedule @fn(@data) for execution after @delay jiffies using
1267 * port_task. There is one port_task per port and it's the
1268 * user(low level driver)'s responsibility to make sure that only
1269 * one task is active at any given time.
1270 *
1271 * libata core layer takes care of synchronization between
1272 * port_task and EH. ata_port_queue_task() may be ignored for EH
1273 * synchronization.
1274 *
1275 * LOCKING:
1276 * Inherited from caller.
1277 */
65f27f38 1278void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1279 unsigned long delay)
1280{
1281 int rc;
1282
b51e9e5d 1283 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1284 return;
1285
65f27f38
DH
1286 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1287 ap->port_task_data = data;
86e45b6b 1288
52bad64d 1289 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1290
1291 /* rc == 0 means that another user is using port task */
1292 WARN_ON(rc == 0);
1293}
1294
1295/**
1296 * ata_port_flush_task - Flush port_task
1297 * @ap: The ata_port to flush port_task for
1298 *
1299 * After this function completes, port_task is guranteed not to
1300 * be running or scheduled.
1301 *
1302 * LOCKING:
1303 * Kernel thread context (may sleep)
1304 */
1305void ata_port_flush_task(struct ata_port *ap)
1306{
1307 unsigned long flags;
1308
1309 DPRINTK("ENTER\n");
1310
ba6a1308 1311 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1312 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1313 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1314
1315 DPRINTK("flush #1\n");
1316 flush_workqueue(ata_wq);
1317
1318 /*
1319 * At this point, if a task is running, it's guaranteed to see
1320 * the FLUSH flag; thus, it will never queue pio tasks again.
1321 * Cancel and flush.
1322 */
1323 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1324 if (ata_msg_ctl(ap))
88574551
TH
1325 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1326 __FUNCTION__);
86e45b6b
TH
1327 flush_workqueue(ata_wq);
1328 }
1329
ba6a1308 1330 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1331 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1332 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1333
0dd4b21f
BP
1334 if (ata_msg_ctl(ap))
1335 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1336}
1337
7102d230 1338static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1339{
77853bf2 1340 struct completion *waiting = qc->private_data;
a2a7a662 1341
a2a7a662 1342 complete(waiting);
a2a7a662
TH
1343}
1344
1345/**
2432697b 1346 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1347 * @dev: Device to which the command is sent
1348 * @tf: Taskfile registers for the command and the result
d69cf37d 1349 * @cdb: CDB for packet command
a2a7a662 1350 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1351 * @sg: sg list for the data buffer of the command
1352 * @n_elem: Number of sg entries
a2a7a662
TH
1353 *
1354 * Executes libata internal command with timeout. @tf contains
1355 * command on entry and result on return. Timeout and error
1356 * conditions are reported via return value. No recovery action
1357 * is taken after a command times out. It's caller's duty to
1358 * clean up after timeout.
1359 *
1360 * LOCKING:
1361 * None. Should be called with kernel context, might sleep.
551e8889
TH
1362 *
1363 * RETURNS:
1364 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1365 */
2432697b
TH
1366unsigned ata_exec_internal_sg(struct ata_device *dev,
1367 struct ata_taskfile *tf, const u8 *cdb,
1368 int dma_dir, struct scatterlist *sg,
1369 unsigned int n_elem)
a2a7a662 1370{
3373efd8 1371 struct ata_port *ap = dev->ap;
a2a7a662
TH
1372 u8 command = tf->command;
1373 struct ata_queued_cmd *qc;
2ab7db1f 1374 unsigned int tag, preempted_tag;
dedaf2b0 1375 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1376 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1377 unsigned long flags;
77853bf2 1378 unsigned int err_mask;
d95a717f 1379 int rc;
a2a7a662 1380
ba6a1308 1381 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1382
e3180499 1383 /* no internal command while frozen */
b51e9e5d 1384 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1385 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1386 return AC_ERR_SYSTEM;
1387 }
1388
2ab7db1f 1389 /* initialize internal qc */
a2a7a662 1390
2ab7db1f
TH
1391 /* XXX: Tag 0 is used for drivers with legacy EH as some
1392 * drivers choke if any other tag is given. This breaks
1393 * ata_tag_internal() test for those drivers. Don't use new
1394 * EH stuff without converting to it.
1395 */
1396 if (ap->ops->error_handler)
1397 tag = ATA_TAG_INTERNAL;
1398 else
1399 tag = 0;
1400
6cec4a39 1401 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1402 BUG();
f69499f4 1403 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1404
1405 qc->tag = tag;
1406 qc->scsicmd = NULL;
1407 qc->ap = ap;
1408 qc->dev = dev;
1409 ata_qc_reinit(qc);
1410
1411 preempted_tag = ap->active_tag;
dedaf2b0
TH
1412 preempted_sactive = ap->sactive;
1413 preempted_qc_active = ap->qc_active;
2ab7db1f 1414 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1415 ap->sactive = 0;
1416 ap->qc_active = 0;
2ab7db1f
TH
1417
1418 /* prepare & issue qc */
a2a7a662 1419 qc->tf = *tf;
d69cf37d
TH
1420 if (cdb)
1421 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1422 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1423 qc->dma_dir = dma_dir;
1424 if (dma_dir != DMA_NONE) {
2432697b
TH
1425 unsigned int i, buflen = 0;
1426
1427 for (i = 0; i < n_elem; i++)
1428 buflen += sg[i].length;
1429
1430 ata_sg_init(qc, sg, n_elem);
49c80429 1431 qc->nbytes = buflen;
a2a7a662
TH
1432 }
1433
77853bf2 1434 qc->private_data = &wait;
a2a7a662
TH
1435 qc->complete_fn = ata_qc_complete_internal;
1436
8e0e694a 1437 ata_qc_issue(qc);
a2a7a662 1438
ba6a1308 1439 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1440
a8601e5f 1441 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1442
1443 ata_port_flush_task(ap);
41ade50c 1444
d95a717f 1445 if (!rc) {
ba6a1308 1446 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1447
1448 /* We're racing with irq here. If we lose, the
1449 * following test prevents us from completing the qc
d95a717f
TH
1450 * twice. If we win, the port is frozen and will be
1451 * cleaned up by ->post_internal_cmd().
a2a7a662 1452 */
77853bf2 1453 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1454 qc->err_mask |= AC_ERR_TIMEOUT;
1455
1456 if (ap->ops->error_handler)
1457 ata_port_freeze(ap);
1458 else
1459 ata_qc_complete(qc);
f15a1daf 1460
0dd4b21f
BP
1461 if (ata_msg_warn(ap))
1462 ata_dev_printk(dev, KERN_WARNING,
88574551 1463 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1464 }
1465
ba6a1308 1466 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1467 }
1468
d95a717f
TH
1469 /* do post_internal_cmd */
1470 if (ap->ops->post_internal_cmd)
1471 ap->ops->post_internal_cmd(qc);
1472
a51d644a
TH
1473 /* perform minimal error analysis */
1474 if (qc->flags & ATA_QCFLAG_FAILED) {
1475 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1476 qc->err_mask |= AC_ERR_DEV;
1477
1478 if (!qc->err_mask)
1479 qc->err_mask |= AC_ERR_OTHER;
1480
1481 if (qc->err_mask & ~AC_ERR_OTHER)
1482 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1483 }
1484
15869303 1485 /* finish up */
ba6a1308 1486 spin_lock_irqsave(ap->lock, flags);
15869303 1487
e61e0672 1488 *tf = qc->result_tf;
77853bf2
TH
1489 err_mask = qc->err_mask;
1490
1491 ata_qc_free(qc);
2ab7db1f 1492 ap->active_tag = preempted_tag;
dedaf2b0
TH
1493 ap->sactive = preempted_sactive;
1494 ap->qc_active = preempted_qc_active;
77853bf2 1495
1f7dd3e9
TH
1496 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1497 * Until those drivers are fixed, we detect the condition
1498 * here, fail the command with AC_ERR_SYSTEM and reenable the
1499 * port.
1500 *
1501 * Note that this doesn't change any behavior as internal
1502 * command failure results in disabling the device in the
1503 * higher layer for LLDDs without new reset/EH callbacks.
1504 *
1505 * Kill the following code as soon as those drivers are fixed.
1506 */
198e0fed 1507 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1508 err_mask |= AC_ERR_SYSTEM;
1509 ata_port_probe(ap);
1510 }
1511
ba6a1308 1512 spin_unlock_irqrestore(ap->lock, flags);
15869303 1513
77853bf2 1514 return err_mask;
a2a7a662
TH
1515}
1516
2432697b 1517/**
33480a0e 1518 * ata_exec_internal - execute libata internal command
2432697b
TH
1519 * @dev: Device to which the command is sent
1520 * @tf: Taskfile registers for the command and the result
1521 * @cdb: CDB for packet command
1522 * @dma_dir: Data tranfer direction of the command
1523 * @buf: Data buffer of the command
1524 * @buflen: Length of data buffer
1525 *
1526 * Wrapper around ata_exec_internal_sg() which takes simple
1527 * buffer instead of sg list.
1528 *
1529 * LOCKING:
1530 * None. Should be called with kernel context, might sleep.
1531 *
1532 * RETURNS:
1533 * Zero on success, AC_ERR_* mask on failure
1534 */
1535unsigned ata_exec_internal(struct ata_device *dev,
1536 struct ata_taskfile *tf, const u8 *cdb,
1537 int dma_dir, void *buf, unsigned int buflen)
1538{
33480a0e
TH
1539 struct scatterlist *psg = NULL, sg;
1540 unsigned int n_elem = 0;
2432697b 1541
33480a0e
TH
1542 if (dma_dir != DMA_NONE) {
1543 WARN_ON(!buf);
1544 sg_init_one(&sg, buf, buflen);
1545 psg = &sg;
1546 n_elem++;
1547 }
2432697b 1548
33480a0e 1549 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1550}
1551
977e6b9f
TH
1552/**
1553 * ata_do_simple_cmd - execute simple internal command
1554 * @dev: Device to which the command is sent
1555 * @cmd: Opcode to execute
1556 *
1557 * Execute a 'simple' command, that only consists of the opcode
1558 * 'cmd' itself, without filling any other registers
1559 *
1560 * LOCKING:
1561 * Kernel thread context (may sleep).
1562 *
1563 * RETURNS:
1564 * Zero on success, AC_ERR_* mask on failure
e58eb583 1565 */
77b08fb5 1566unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1567{
1568 struct ata_taskfile tf;
e58eb583
TH
1569
1570 ata_tf_init(dev, &tf);
1571
1572 tf.command = cmd;
1573 tf.flags |= ATA_TFLAG_DEVICE;
1574 tf.protocol = ATA_PROT_NODATA;
1575
977e6b9f 1576 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1577}
1578
1bc4ccff
AC
1579/**
1580 * ata_pio_need_iordy - check if iordy needed
1581 * @adev: ATA device
1582 *
1583 * Check if the current speed of the device requires IORDY. Used
1584 * by various controllers for chip configuration.
1585 */
432729f0 1586
1bc4ccff
AC
1587unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1588{
432729f0
AC
1589 /* Controller doesn't support IORDY. Probably a pointless check
1590 as the caller should know this */
1591 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1592 return 0;
432729f0
AC
1593 /* PIO3 and higher it is mandatory */
1594 if (adev->pio_mode > XFER_PIO_2)
1595 return 1;
1596 /* We turn it on when possible */
1597 if (ata_id_has_iordy(adev->id))
1bc4ccff 1598 return 1;
432729f0
AC
1599 return 0;
1600}
2e9edbf8 1601
432729f0
AC
1602/**
1603 * ata_pio_mask_no_iordy - Return the non IORDY mask
1604 * @adev: ATA device
1605 *
1606 * Compute the highest mode possible if we are not using iordy. Return
1607 * -1 if no iordy mode is available.
1608 */
1609
1610static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1611{
1bc4ccff 1612 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1613 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1614 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1615 /* Is the speed faster than the drive allows non IORDY ? */
1616 if (pio) {
1617 /* This is cycle times not frequency - watch the logic! */
1618 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1619 return 3 << ATA_SHIFT_PIO;
1620 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1621 }
1622 }
432729f0 1623 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1624}
1625
1da177e4 1626/**
49016aca 1627 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1628 * @dev: target device
1629 * @p_class: pointer to class of the target device (may be changed)
bff04647 1630 * @flags: ATA_READID_* flags
fe635c7e 1631 * @id: buffer to read IDENTIFY data into
1da177e4 1632 *
49016aca
TH
1633 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1634 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1635 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1636 * for pre-ATA4 drives.
1da177e4
LT
1637 *
1638 * LOCKING:
49016aca
TH
1639 * Kernel thread context (may sleep)
1640 *
1641 * RETURNS:
1642 * 0 on success, -errno otherwise.
1da177e4 1643 */
a9beec95 1644int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1645 unsigned int flags, u16 *id)
1da177e4 1646{
3373efd8 1647 struct ata_port *ap = dev->ap;
49016aca 1648 unsigned int class = *p_class;
a0123703 1649 struct ata_taskfile tf;
49016aca
TH
1650 unsigned int err_mask = 0;
1651 const char *reason;
169439c2 1652 int tried_spinup = 0;
49016aca 1653 int rc;
1da177e4 1654
0dd4b21f 1655 if (ata_msg_ctl(ap))
44877b4e 1656 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1657
49016aca 1658 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1659 retry:
3373efd8 1660 ata_tf_init(dev, &tf);
a0123703 1661
49016aca
TH
1662 switch (class) {
1663 case ATA_DEV_ATA:
a0123703 1664 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1665 break;
1666 case ATA_DEV_ATAPI:
a0123703 1667 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1668 break;
1669 default:
1670 rc = -ENODEV;
1671 reason = "unsupported class";
1672 goto err_out;
1da177e4
LT
1673 }
1674
a0123703 1675 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1676
1677 /* Some devices choke if TF registers contain garbage. Make
1678 * sure those are properly initialized.
1679 */
1680 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1681
1682 /* Device presence detection is unreliable on some
1683 * controllers. Always poll IDENTIFY if available.
1684 */
1685 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1686
3373efd8 1687 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1688 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1689 if (err_mask) {
800b3996 1690 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1691 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1692 ap->print_id, dev->devno);
55a8e2c8
TH
1693 return -ENOENT;
1694 }
1695
49016aca
TH
1696 rc = -EIO;
1697 reason = "I/O error";
1da177e4
LT
1698 goto err_out;
1699 }
1700
49016aca 1701 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1702
49016aca 1703 /* sanity check */
a4f5749b
TH
1704 rc = -EINVAL;
1705 reason = "device reports illegal type";
1706
1707 if (class == ATA_DEV_ATA) {
1708 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1709 goto err_out;
1710 } else {
1711 if (ata_id_is_ata(id))
1712 goto err_out;
49016aca
TH
1713 }
1714
169439c2
ML
1715 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1716 tried_spinup = 1;
1717 /*
1718 * Drive powered-up in standby mode, and requires a specific
1719 * SET_FEATURES spin-up subcommand before it will accept
1720 * anything other than the original IDENTIFY command.
1721 */
1722 ata_tf_init(dev, &tf);
1723 tf.command = ATA_CMD_SET_FEATURES;
1724 tf.feature = SETFEATURES_SPINUP;
1725 tf.protocol = ATA_PROT_NODATA;
1726 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1727 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1728 if (err_mask) {
1729 rc = -EIO;
1730 reason = "SPINUP failed";
1731 goto err_out;
1732 }
1733 /*
1734 * If the drive initially returned incomplete IDENTIFY info,
1735 * we now must reissue the IDENTIFY command.
1736 */
1737 if (id[2] == 0x37c8)
1738 goto retry;
1739 }
1740
bff04647 1741 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1742 /*
1743 * The exact sequence expected by certain pre-ATA4 drives is:
1744 * SRST RESET
1745 * IDENTIFY
1746 * INITIALIZE DEVICE PARAMETERS
1747 * anything else..
1748 * Some drives were very specific about that exact sequence.
1749 */
1750 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1751 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1752 if (err_mask) {
1753 rc = -EIO;
1754 reason = "INIT_DEV_PARAMS failed";
1755 goto err_out;
1756 }
1757
1758 /* current CHS translation info (id[53-58]) might be
1759 * changed. reread the identify device info.
1760 */
bff04647 1761 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1762 goto retry;
1763 }
1764 }
1765
1766 *p_class = class;
fe635c7e 1767
49016aca
TH
1768 return 0;
1769
1770 err_out:
88574551 1771 if (ata_msg_warn(ap))
0dd4b21f 1772 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1773 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1774 return rc;
1775}
1776
3373efd8 1777static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1778{
3373efd8 1779 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1780}
1781
a6e6ce8e
TH
1782static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784{
1785 struct ata_port *ap = dev->ap;
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
6919a0a6
AC
1792 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
a6e6ce8e 1796 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805}
1806
49016aca 1807/**
ffeae418 1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
49016aca
TH
1813 *
1814 * LOCKING:
ffeae418
TH
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
49016aca 1819 */
efdaedc4 1820int ata_dev_configure(struct ata_device *dev)
49016aca 1821{
3373efd8 1822 struct ata_port *ap = dev->ap;
efdaedc4 1823 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1824 const u16 *id = dev->id;
ff8854b2 1825 unsigned int xfer_mask;
b352e57d 1826 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1827 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1828 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1829 int rc;
49016aca 1830
0dd4b21f 1831 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1832 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1833 __FUNCTION__);
ffeae418 1834 return 0;
49016aca
TH
1835 }
1836
0dd4b21f 1837 if (ata_msg_probe(ap))
44877b4e 1838 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1839
08573a86
KCA
1840 /* set _SDD */
1841 rc = ata_acpi_push_id(ap, dev->devno);
1842 if (rc) {
1843 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1844 rc);
1845 }
1846
1847 /* retrieve and execute the ATA task file of _GTF */
1848 ata_acpi_exec_tfs(ap);
1849
c39f5ebe 1850 /* print device capabilities */
0dd4b21f 1851 if (ata_msg_probe(ap))
88574551
TH
1852 ata_dev_printk(dev, KERN_DEBUG,
1853 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1854 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1855 __FUNCTION__,
f15a1daf
TH
1856 id[49], id[82], id[83], id[84],
1857 id[85], id[86], id[87], id[88]);
c39f5ebe 1858
208a9933 1859 /* initialize to-be-configured parameters */
ea1dd4e1 1860 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1861 dev->max_sectors = 0;
1862 dev->cdb_len = 0;
1863 dev->n_sectors = 0;
1864 dev->cylinders = 0;
1865 dev->heads = 0;
1866 dev->sectors = 0;
1867
1da177e4
LT
1868 /*
1869 * common ATA, ATAPI feature tests
1870 */
1871
ff8854b2 1872 /* find max transfer mode; for printk only */
1148c3a7 1873 xfer_mask = ata_id_xfermask(id);
1da177e4 1874
0dd4b21f
BP
1875 if (ata_msg_probe(ap))
1876 ata_dump_id(id);
1da177e4
LT
1877
1878 /* ATA-specific feature tests */
1879 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1880 if (ata_id_is_cfa(id)) {
1881 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1882 ata_dev_printk(dev, KERN_WARNING,
1883 "supports DRM functions and may "
1884 "not be fully accessable.\n");
b352e57d
AC
1885 snprintf(revbuf, 7, "CFA");
1886 }
1887 else
1888 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1889
1148c3a7 1890 dev->n_sectors = ata_id_n_sectors(id);
1e999736 1891 dev->n_sectors_boot = dev->n_sectors;
2940740b 1892
3f64f565 1893 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1894 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1895 sizeof(fwrevbuf));
1896
591a6e8e 1897 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1898 sizeof(modelbuf));
1899
1900 if (dev->id[59] & 0x100)
1901 dev->multi_count = dev->id[59] & 0xff;
1902
1148c3a7 1903 if (ata_id_has_lba(id)) {
4c2d721a 1904 const char *lba_desc;
a6e6ce8e 1905 char ncq_desc[20];
8bf62ece 1906
4c2d721a
TH
1907 lba_desc = "LBA";
1908 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1909 if (ata_id_has_lba48(id)) {
8bf62ece 1910 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1911 lba_desc = "LBA48";
6fc49adb
TH
1912
1913 if (dev->n_sectors >= (1UL << 28) &&
1914 ata_id_has_flush_ext(id))
1915 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1916 }
8bf62ece 1917
1e999736
AC
1918 if (ata_id_hpa_enabled(dev->id))
1919 dev->n_sectors = ata_hpa_resize(dev);
1920
a6e6ce8e
TH
1921 /* config NCQ */
1922 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1923
8bf62ece 1924 /* print device info to dmesg */
3f64f565
EM
1925 if (ata_msg_drv(ap) && print_info) {
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%s: %s, %s, max %s\n",
1928 revbuf, modelbuf, fwrevbuf,
1929 ata_mode_string(xfer_mask));
1930 ata_dev_printk(dev, KERN_INFO,
1931 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1932 (unsigned long long)dev->n_sectors,
3f64f565
EM
1933 dev->multi_count, lba_desc, ncq_desc);
1934 }
ffeae418 1935 } else {
8bf62ece
AL
1936 /* CHS */
1937
1938 /* Default translation */
1148c3a7
TH
1939 dev->cylinders = id[1];
1940 dev->heads = id[3];
1941 dev->sectors = id[6];
8bf62ece 1942
1148c3a7 1943 if (ata_id_current_chs_valid(id)) {
8bf62ece 1944 /* Current CHS translation is valid. */
1148c3a7
TH
1945 dev->cylinders = id[54];
1946 dev->heads = id[55];
1947 dev->sectors = id[56];
8bf62ece
AL
1948 }
1949
1950 /* print device info to dmesg */
3f64f565 1951 if (ata_msg_drv(ap) && print_info) {
88574551 1952 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1953 "%s: %s, %s, max %s\n",
1954 revbuf, modelbuf, fwrevbuf,
1955 ata_mode_string(xfer_mask));
a84471fe 1956 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1957 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1958 (unsigned long long)dev->n_sectors,
1959 dev->multi_count, dev->cylinders,
1960 dev->heads, dev->sectors);
1961 }
07f6f7d0
AL
1962 }
1963
6e7846e9 1964 dev->cdb_len = 16;
1da177e4
LT
1965 }
1966
1967 /* ATAPI-specific feature tests */
2c13b7ce 1968 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1969 char *cdb_intr_string = "";
1970
1148c3a7 1971 rc = atapi_cdb_len(id);
1da177e4 1972 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1973 if (ata_msg_warn(ap))
88574551
TH
1974 ata_dev_printk(dev, KERN_WARNING,
1975 "unsupported CDB len\n");
ffeae418 1976 rc = -EINVAL;
1da177e4
LT
1977 goto err_out_nosup;
1978 }
6e7846e9 1979 dev->cdb_len = (unsigned int) rc;
1da177e4 1980
08a556db 1981 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1982 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1983 cdb_intr_string = ", CDB intr";
1984 }
312f7da2 1985
1da177e4 1986 /* print device info to dmesg */
5afc8142 1987 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1988 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1989 ata_mode_string(xfer_mask),
1990 cdb_intr_string);
1da177e4
LT
1991 }
1992
914ed354
TH
1993 /* determine max_sectors */
1994 dev->max_sectors = ATA_MAX_SECTORS;
1995 if (dev->flags & ATA_DFLAG_LBA48)
1996 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1997
93590859
AC
1998 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1999 /* Let the user know. We don't want to disallow opens for
2000 rescue purposes, or in case the vendor is just a blithering
2001 idiot */
2002 if (print_info) {
2003 ata_dev_printk(dev, KERN_WARNING,
2004"Drive reports diagnostics failure. This may indicate a drive\n");
2005 ata_dev_printk(dev, KERN_WARNING,
2006"fault or invalid emulation. Contact drive vendor for information.\n");
2007 }
2008 }
2009
4b2f3ede 2010 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2011 if (ata_dev_knobble(dev)) {
5afc8142 2012 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2013 ata_dev_printk(dev, KERN_INFO,
2014 "applying bridge limits\n");
5a529139 2015 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2016 dev->max_sectors = ATA_MAX_SECTORS;
2017 }
2018
18d6e9d5 2019 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2020 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2021 dev->max_sectors);
18d6e9d5 2022
6f23a31d
AL
2023 /* limit ATAPI DMA to R/W commands only */
2024 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2025 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2026
4b2f3ede 2027 if (ap->ops->dev_config)
cd0d3bbc 2028 ap->ops->dev_config(dev);
4b2f3ede 2029
0dd4b21f
BP
2030 if (ata_msg_probe(ap))
2031 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2032 __FUNCTION__, ata_chk_status(ap));
ffeae418 2033 return 0;
1da177e4
LT
2034
2035err_out_nosup:
0dd4b21f 2036 if (ata_msg_probe(ap))
88574551
TH
2037 ata_dev_printk(dev, KERN_DEBUG,
2038 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2039 return rc;
1da177e4
LT
2040}
2041
be0d18df 2042/**
2e41e8e6 2043 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2044 * @ap: port
2045 *
2e41e8e6 2046 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2047 * detection.
2048 */
2049
2050int ata_cable_40wire(struct ata_port *ap)
2051{
2052 return ATA_CBL_PATA40;
2053}
2054
2055/**
2e41e8e6 2056 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2057 * @ap: port
2058 *
2e41e8e6 2059 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2060 * detection.
2061 */
2062
2063int ata_cable_80wire(struct ata_port *ap)
2064{
2065 return ATA_CBL_PATA80;
2066}
2067
2068/**
2069 * ata_cable_unknown - return unknown PATA cable.
2070 * @ap: port
2071 *
2072 * Helper method for drivers which have no PATA cable detection.
2073 */
2074
2075int ata_cable_unknown(struct ata_port *ap)
2076{
2077 return ATA_CBL_PATA_UNK;
2078}
2079
2080/**
2081 * ata_cable_sata - return SATA cable type
2082 * @ap: port
2083 *
2084 * Helper method for drivers which have SATA cables
2085 */
2086
2087int ata_cable_sata(struct ata_port *ap)
2088{
2089 return ATA_CBL_SATA;
2090}
2091
1da177e4
LT
2092/**
2093 * ata_bus_probe - Reset and probe ATA bus
2094 * @ap: Bus to probe
2095 *
0cba632b
JG
2096 * Master ATA bus probing function. Initiates a hardware-dependent
2097 * bus reset, then attempts to identify any devices found on
2098 * the bus.
2099 *
1da177e4 2100 * LOCKING:
0cba632b 2101 * PCI/etc. bus probe sem.
1da177e4
LT
2102 *
2103 * RETURNS:
96072e69 2104 * Zero on success, negative errno otherwise.
1da177e4
LT
2105 */
2106
80289167 2107int ata_bus_probe(struct ata_port *ap)
1da177e4 2108{
28ca5c57 2109 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2110 int tries[ATA_MAX_DEVICES];
4ae72a1e 2111 int i, rc;
e82cbdb9 2112 struct ata_device *dev;
1da177e4 2113
28ca5c57 2114 ata_port_probe(ap);
c19ba8af 2115
14d2bac1
TH
2116 for (i = 0; i < ATA_MAX_DEVICES; i++)
2117 tries[i] = ATA_PROBE_MAX_TRIES;
2118
2119 retry:
2044470c 2120 /* reset and determine device classes */
52783c5d 2121 ap->ops->phy_reset(ap);
2061a47a 2122
52783c5d
TH
2123 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2124 dev = &ap->device[i];
c19ba8af 2125
52783c5d
TH
2126 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2127 dev->class != ATA_DEV_UNKNOWN)
2128 classes[dev->devno] = dev->class;
2129 else
2130 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2131
52783c5d 2132 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2133 }
1da177e4 2134
52783c5d 2135 ata_port_probe(ap);
2044470c 2136
b6079ca4
AC
2137 /* after the reset the device state is PIO 0 and the controller
2138 state is undefined. Record the mode */
2139
2140 for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 ap->device[i].pio_mode = XFER_PIO_0;
2142
f31f0cc2
JG
2143 /* read IDENTIFY page and configure devices. We have to do the identify
2144 specific sequence bass-ackwards so that PDIAG- is released by
2145 the slave device */
2146
2147 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2148 dev = &ap->device[i];
28ca5c57 2149
ec573755
TH
2150 if (tries[i])
2151 dev->class = classes[i];
ffeae418 2152
14d2bac1 2153 if (!ata_dev_enabled(dev))
ffeae418 2154 continue;
ffeae418 2155
bff04647
TH
2156 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2157 dev->id);
14d2bac1
TH
2158 if (rc)
2159 goto fail;
f31f0cc2
JG
2160 }
2161
be0d18df
AC
2162 /* Now ask for the cable type as PDIAG- should have been released */
2163 if (ap->ops->cable_detect)
2164 ap->cbl = ap->ops->cable_detect(ap);
2165
f31f0cc2
JG
2166 /* After the identify sequence we can now set up the devices. We do
2167 this in the normal order so that the user doesn't get confused */
2168
2169 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2170 dev = &ap->device[i];
2171 if (!ata_dev_enabled(dev))
2172 continue;
14d2bac1 2173
efdaedc4
TH
2174 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2175 rc = ata_dev_configure(dev);
2176 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2177 if (rc)
2178 goto fail;
1da177e4
LT
2179 }
2180
e82cbdb9 2181 /* configure transfer mode */
3adcebb2 2182 rc = ata_set_mode(ap, &dev);
4ae72a1e 2183 if (rc)
51713d35 2184 goto fail;
1da177e4 2185
e82cbdb9
TH
2186 for (i = 0; i < ATA_MAX_DEVICES; i++)
2187 if (ata_dev_enabled(&ap->device[i]))
2188 return 0;
1da177e4 2189
e82cbdb9
TH
2190 /* no device present, disable port */
2191 ata_port_disable(ap);
1da177e4 2192 ap->ops->port_disable(ap);
96072e69 2193 return -ENODEV;
14d2bac1
TH
2194
2195 fail:
4ae72a1e
TH
2196 tries[dev->devno]--;
2197
14d2bac1
TH
2198 switch (rc) {
2199 case -EINVAL:
4ae72a1e 2200 /* eeek, something went very wrong, give up */
14d2bac1
TH
2201 tries[dev->devno] = 0;
2202 break;
4ae72a1e
TH
2203
2204 case -ENODEV:
2205 /* give it just one more chance */
2206 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2207 case -EIO:
4ae72a1e
TH
2208 if (tries[dev->devno] == 1) {
2209 /* This is the last chance, better to slow
2210 * down than lose it.
2211 */
2212 sata_down_spd_limit(ap);
2213 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2214 }
14d2bac1
TH
2215 }
2216
4ae72a1e 2217 if (!tries[dev->devno])
3373efd8 2218 ata_dev_disable(dev);
ec573755 2219
14d2bac1 2220 goto retry;
1da177e4
LT
2221}
2222
2223/**
0cba632b
JG
2224 * ata_port_probe - Mark port as enabled
2225 * @ap: Port for which we indicate enablement
1da177e4 2226 *
0cba632b
JG
2227 * Modify @ap data structure such that the system
2228 * thinks that the entire port is enabled.
2229 *
cca3974e 2230 * LOCKING: host lock, or some other form of
0cba632b 2231 * serialization.
1da177e4
LT
2232 */
2233
2234void ata_port_probe(struct ata_port *ap)
2235{
198e0fed 2236 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2237}
2238
3be680b7
TH
2239/**
2240 * sata_print_link_status - Print SATA link status
2241 * @ap: SATA port to printk link status about
2242 *
2243 * This function prints link speed and status of a SATA link.
2244 *
2245 * LOCKING:
2246 * None.
2247 */
43727fbc 2248void sata_print_link_status(struct ata_port *ap)
3be680b7 2249{
6d5f9732 2250 u32 sstatus, scontrol, tmp;
3be680b7 2251
81952c54 2252 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2253 return;
81952c54 2254 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2255
81952c54 2256 if (ata_port_online(ap)) {
3be680b7 2257 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2258 ata_port_printk(ap, KERN_INFO,
2259 "SATA link up %s (SStatus %X SControl %X)\n",
2260 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2261 } else {
f15a1daf
TH
2262 ata_port_printk(ap, KERN_INFO,
2263 "SATA link down (SStatus %X SControl %X)\n",
2264 sstatus, scontrol);
3be680b7
TH
2265 }
2266}
2267
1da177e4 2268/**
780a87f7
JG
2269 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2270 * @ap: SATA port associated with target SATA PHY.
1da177e4 2271 *
780a87f7
JG
2272 * This function issues commands to standard SATA Sxxx
2273 * PHY registers, to wake up the phy (and device), and
2274 * clear any reset condition.
1da177e4
LT
2275 *
2276 * LOCKING:
0cba632b 2277 * PCI/etc. bus probe sem.
1da177e4
LT
2278 *
2279 */
2280void __sata_phy_reset(struct ata_port *ap)
2281{
2282 u32 sstatus;
2283 unsigned long timeout = jiffies + (HZ * 5);
2284
2285 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2286 /* issue phy wake/reset */
81952c54 2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2288 /* Couldn't find anything in SATA I/II specs, but
2289 * AHCI-1.1 10.4.2 says at least 1 ms. */
2290 mdelay(1);
1da177e4 2291 }
81952c54
TH
2292 /* phy wake/clear reset */
2293 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2294
2295 /* wait for phy to become ready, if necessary */
2296 do {
2297 msleep(200);
81952c54 2298 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2299 if ((sstatus & 0xf) != 1)
2300 break;
2301 } while (time_before(jiffies, timeout));
2302
3be680b7
TH
2303 /* print link status */
2304 sata_print_link_status(ap);
656563e3 2305
3be680b7 2306 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2307 if (!ata_port_offline(ap))
1da177e4 2308 ata_port_probe(ap);
3be680b7 2309 else
1da177e4 2310 ata_port_disable(ap);
1da177e4 2311
198e0fed 2312 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2313 return;
2314
2315 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2316 ata_port_disable(ap);
2317 return;
2318 }
2319
2320 ap->cbl = ATA_CBL_SATA;
2321}
2322
2323/**
780a87f7
JG
2324 * sata_phy_reset - Reset SATA bus.
2325 * @ap: SATA port associated with target SATA PHY.
1da177e4 2326 *
780a87f7
JG
2327 * This function resets the SATA bus, and then probes
2328 * the bus for devices.
1da177e4
LT
2329 *
2330 * LOCKING:
0cba632b 2331 * PCI/etc. bus probe sem.
1da177e4
LT
2332 *
2333 */
2334void sata_phy_reset(struct ata_port *ap)
2335{
2336 __sata_phy_reset(ap);
198e0fed 2337 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2338 return;
2339 ata_bus_reset(ap);
2340}
2341
ebdfca6e
AC
2342/**
2343 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2344 * @adev: device
2345 *
2346 * Obtain the other device on the same cable, or if none is
2347 * present NULL is returned
2348 */
2e9edbf8 2349
3373efd8 2350struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2351{
3373efd8 2352 struct ata_port *ap = adev->ap;
ebdfca6e 2353 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2354 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2355 return NULL;
2356 return pair;
2357}
2358
1da177e4 2359/**
780a87f7
JG
2360 * ata_port_disable - Disable port.
2361 * @ap: Port to be disabled.
1da177e4 2362 *
780a87f7
JG
2363 * Modify @ap data structure such that the system
2364 * thinks that the entire port is disabled, and should
2365 * never attempt to probe or communicate with devices
2366 * on this port.
2367 *
cca3974e 2368 * LOCKING: host lock, or some other form of
780a87f7 2369 * serialization.
1da177e4
LT
2370 */
2371
2372void ata_port_disable(struct ata_port *ap)
2373{
2374 ap->device[0].class = ATA_DEV_NONE;
2375 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2376 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2377}
2378
1c3fae4d 2379/**
3c567b7d 2380 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2381 * @ap: Port to adjust SATA spd limit for
2382 *
2383 * Adjust SATA spd limit of @ap downward. Note that this
2384 * function only adjusts the limit. The change must be applied
3c567b7d 2385 * using sata_set_spd().
1c3fae4d
TH
2386 *
2387 * LOCKING:
2388 * Inherited from caller.
2389 *
2390 * RETURNS:
2391 * 0 on success, negative errno on failure
2392 */
3c567b7d 2393int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2394{
81952c54
TH
2395 u32 sstatus, spd, mask;
2396 int rc, highbit;
1c3fae4d 2397
81952c54
TH
2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2399 if (rc)
2400 return rc;
1c3fae4d
TH
2401
2402 mask = ap->sata_spd_limit;
2403 if (mask <= 1)
2404 return -EINVAL;
2405 highbit = fls(mask) - 1;
2406 mask &= ~(1 << highbit);
2407
81952c54 2408 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2409 if (spd <= 1)
2410 return -EINVAL;
2411 spd--;
2412 mask &= (1 << spd) - 1;
2413 if (!mask)
2414 return -EINVAL;
2415
2416 ap->sata_spd_limit = mask;
2417
f15a1daf
TH
2418 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2419 sata_spd_string(fls(mask)));
1c3fae4d
TH
2420
2421 return 0;
2422}
2423
3c567b7d 2424static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2425{
2426 u32 spd, limit;
2427
2428 if (ap->sata_spd_limit == UINT_MAX)
2429 limit = 0;
2430 else
2431 limit = fls(ap->sata_spd_limit);
2432
2433 spd = (*scontrol >> 4) & 0xf;
2434 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2435
2436 return spd != limit;
2437}
2438
2439/**
3c567b7d 2440 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2441 * @ap: Port in question
2442 *
2443 * Test whether the spd limit in SControl matches
2444 * @ap->sata_spd_limit. This function is used to determine
2445 * whether hardreset is necessary to apply SATA spd
2446 * configuration.
2447 *
2448 * LOCKING:
2449 * Inherited from caller.
2450 *
2451 * RETURNS:
2452 * 1 if SATA spd configuration is needed, 0 otherwise.
2453 */
3c567b7d 2454int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2455{
2456 u32 scontrol;
2457
81952c54 2458 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2459 return 0;
2460
3c567b7d 2461 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2462}
2463
2464/**
3c567b7d 2465 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2466 * @ap: Port to set SATA spd for
2467 *
2468 * Set SATA spd of @ap according to sata_spd_limit.
2469 *
2470 * LOCKING:
2471 * Inherited from caller.
2472 *
2473 * RETURNS:
2474 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2475 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2476 */
3c567b7d 2477int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2478{
2479 u32 scontrol;
81952c54 2480 int rc;
1c3fae4d 2481
81952c54
TH
2482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2483 return rc;
1c3fae4d 2484
3c567b7d 2485 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2486 return 0;
2487
81952c54
TH
2488 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2489 return rc;
2490
1c3fae4d
TH
2491 return 1;
2492}
2493
452503f9
AC
2494/*
2495 * This mode timing computation functionality is ported over from
2496 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2497 */
2498/*
b352e57d 2499 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2500 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2501 * for UDMA6, which is currently supported only by Maxtor drives.
2502 *
2503 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2504 */
2505
2506static const struct ata_timing ata_timing[] = {
2507
2508 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2509 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2510 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2511 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2512
b352e57d
AC
2513 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2514 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2515 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2516 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2517 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2518
2519/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2520
452503f9
AC
2521 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2522 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2523 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2524
452503f9
AC
2525 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2526 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2527 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2528
b352e57d
AC
2529 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2530 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2531 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2532 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2533
2534 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2535 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2536 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2537
2538/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2539
2540 { 0xFF }
2541};
2542
2543#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2544#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2545
2546static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2547{
2548 q->setup = EZ(t->setup * 1000, T);
2549 q->act8b = EZ(t->act8b * 1000, T);
2550 q->rec8b = EZ(t->rec8b * 1000, T);
2551 q->cyc8b = EZ(t->cyc8b * 1000, T);
2552 q->active = EZ(t->active * 1000, T);
2553 q->recover = EZ(t->recover * 1000, T);
2554 q->cycle = EZ(t->cycle * 1000, T);
2555 q->udma = EZ(t->udma * 1000, UT);
2556}
2557
2558void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2559 struct ata_timing *m, unsigned int what)
2560{
2561 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2562 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2563 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2564 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2565 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2566 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2567 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2568 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2569}
2570
2571static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2572{
2573 const struct ata_timing *t;
2574
2575 for (t = ata_timing; t->mode != speed; t++)
91190758 2576 if (t->mode == 0xFF)
452503f9 2577 return NULL;
2e9edbf8 2578 return t;
452503f9
AC
2579}
2580
2581int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2582 struct ata_timing *t, int T, int UT)
2583{
2584 const struct ata_timing *s;
2585 struct ata_timing p;
2586
2587 /*
2e9edbf8 2588 * Find the mode.
75b1f2f8 2589 */
452503f9
AC
2590
2591 if (!(s = ata_timing_find_mode(speed)))
2592 return -EINVAL;
2593
75b1f2f8
AL
2594 memcpy(t, s, sizeof(*s));
2595
452503f9
AC
2596 /*
2597 * If the drive is an EIDE drive, it can tell us it needs extended
2598 * PIO/MW_DMA cycle timing.
2599 */
2600
2601 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2602 memset(&p, 0, sizeof(p));
2603 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2604 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2605 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2606 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2607 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2608 }
2609 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2610 }
2611
2612 /*
2613 * Convert the timing to bus clock counts.
2614 */
2615
75b1f2f8 2616 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2617
2618 /*
c893a3ae
RD
2619 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2620 * S.M.A.R.T * and some other commands. We have to ensure that the
2621 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2622 */
2623
fd3367af 2624 if (speed > XFER_PIO_6) {
452503f9
AC
2625 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2626 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2627 }
2628
2629 /*
c893a3ae 2630 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2631 */
2632
2633 if (t->act8b + t->rec8b < t->cyc8b) {
2634 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2635 t->rec8b = t->cyc8b - t->act8b;
2636 }
2637
2638 if (t->active + t->recover < t->cycle) {
2639 t->active += (t->cycle - (t->active + t->recover)) / 2;
2640 t->recover = t->cycle - t->active;
2641 }
2642
2643 return 0;
2644}
2645
cf176e1a
TH
2646/**
2647 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2648 * @dev: Device to adjust xfer masks
458337db 2649 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2650 *
2651 * Adjust xfer masks of @dev downward. Note that this function
2652 * does not apply the change. Invoking ata_set_mode() afterwards
2653 * will apply the limit.
2654 *
2655 * LOCKING:
2656 * Inherited from caller.
2657 *
2658 * RETURNS:
2659 * 0 on success, negative errno on failure
2660 */
458337db 2661int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2662{
458337db
TH
2663 char buf[32];
2664 unsigned int orig_mask, xfer_mask;
2665 unsigned int pio_mask, mwdma_mask, udma_mask;
2666 int quiet, highbit;
cf176e1a 2667
458337db
TH
2668 quiet = !!(sel & ATA_DNXFER_QUIET);
2669 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2670
458337db
TH
2671 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2672 dev->mwdma_mask,
2673 dev->udma_mask);
2674 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2675
458337db
TH
2676 switch (sel) {
2677 case ATA_DNXFER_PIO:
2678 highbit = fls(pio_mask) - 1;
2679 pio_mask &= ~(1 << highbit);
2680 break;
2681
2682 case ATA_DNXFER_DMA:
2683 if (udma_mask) {
2684 highbit = fls(udma_mask) - 1;
2685 udma_mask &= ~(1 << highbit);
2686 if (!udma_mask)
2687 return -ENOENT;
2688 } else if (mwdma_mask) {
2689 highbit = fls(mwdma_mask) - 1;
2690 mwdma_mask &= ~(1 << highbit);
2691 if (!mwdma_mask)
2692 return -ENOENT;
2693 }
2694 break;
2695
2696 case ATA_DNXFER_40C:
2697 udma_mask &= ATA_UDMA_MASK_40C;
2698 break;
2699
2700 case ATA_DNXFER_FORCE_PIO0:
2701 pio_mask &= 1;
2702 case ATA_DNXFER_FORCE_PIO:
2703 mwdma_mask = 0;
2704 udma_mask = 0;
2705 break;
2706
458337db
TH
2707 default:
2708 BUG();
2709 }
2710
2711 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2712
2713 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2714 return -ENOENT;
2715
2716 if (!quiet) {
2717 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2718 snprintf(buf, sizeof(buf), "%s:%s",
2719 ata_mode_string(xfer_mask),
2720 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2721 else
2722 snprintf(buf, sizeof(buf), "%s",
2723 ata_mode_string(xfer_mask));
2724
2725 ata_dev_printk(dev, KERN_WARNING,
2726 "limiting speed to %s\n", buf);
2727 }
cf176e1a
TH
2728
2729 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2730 &dev->udma_mask);
2731
cf176e1a 2732 return 0;
cf176e1a
TH
2733}
2734
3373efd8 2735static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2736{
baa1e78a 2737 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2738 unsigned int err_mask;
2739 int rc;
1da177e4 2740
e8384607 2741 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2742 if (dev->xfer_shift == ATA_SHIFT_PIO)
2743 dev->flags |= ATA_DFLAG_PIO;
2744
3373efd8 2745 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2746 /* Old CFA may refuse this command, which is just fine */
2747 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2748 err_mask &= ~AC_ERR_DEV;
2749
83206a29 2750 if (err_mask) {
f15a1daf
TH
2751 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2752 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2753 return -EIO;
2754 }
1da177e4 2755
baa1e78a 2756 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2757 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2758 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2759 if (rc)
83206a29 2760 return rc;
48a8a14f 2761
23e71c3d
TH
2762 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2763 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2764
f15a1daf
TH
2765 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2766 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2767 return 0;
1da177e4
LT
2768}
2769
1da177e4 2770/**
04351821 2771 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2772 * @ap: port on which timings will be programmed
e82cbdb9 2773 * @r_failed_dev: out paramter for failed device
1da177e4 2774 *
04351821
AC
2775 * Standard implementation of the function used to tune and set
2776 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2777 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2778 * returned in @r_failed_dev.
780a87f7 2779 *
1da177e4 2780 * LOCKING:
0cba632b 2781 * PCI/etc. bus probe sem.
e82cbdb9
TH
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
1da177e4 2785 */
04351821
AC
2786
2787int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2788{
e8e0619f 2789 struct ata_device *dev;
e82cbdb9 2790 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2791
3adcebb2 2792
a6d5a51c
TH
2793 /* step 1: calculate xfer_mask */
2794 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2795 unsigned int pio_mask, dma_mask;
a6d5a51c 2796
e8e0619f
TH
2797 dev = &ap->device[i];
2798
e1211e3f 2799 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2800 continue;
2801
3373efd8 2802 ata_dev_xfermask(dev);
1da177e4 2803
acf356b1
TH
2804 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2805 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2806 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2807 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2808
4f65977d 2809 found = 1;
5444a6f4
AC
2810 if (dev->dma_mode)
2811 used_dma = 1;
a6d5a51c 2812 }
4f65977d 2813 if (!found)
e82cbdb9 2814 goto out;
a6d5a51c
TH
2815
2816 /* step 2: always set host PIO timings */
e8e0619f
TH
2817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2818 dev = &ap->device[i];
2819 if (!ata_dev_enabled(dev))
2820 continue;
2821
2822 if (!dev->pio_mode) {
f15a1daf 2823 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2824 rc = -EINVAL;
e82cbdb9 2825 goto out;
e8e0619f
TH
2826 }
2827
2828 dev->xfer_mode = dev->pio_mode;
2829 dev->xfer_shift = ATA_SHIFT_PIO;
2830 if (ap->ops->set_piomode)
2831 ap->ops->set_piomode(ap, dev);
2832 }
1da177e4 2833
a6d5a51c 2834 /* step 3: set host DMA timings */
e8e0619f
TH
2835 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2836 dev = &ap->device[i];
2837
2838 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2839 continue;
2840
2841 dev->xfer_mode = dev->dma_mode;
2842 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2843 if (ap->ops->set_dmamode)
2844 ap->ops->set_dmamode(ap, dev);
2845 }
1da177e4
LT
2846
2847 /* step 4: update devices' xfer mode */
83206a29 2848 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2849 dev = &ap->device[i];
1da177e4 2850
18d90deb 2851 /* don't update suspended devices' xfer mode */
02670bf3 2852 if (!ata_dev_ready(dev))
83206a29
TH
2853 continue;
2854
3373efd8 2855 rc = ata_dev_set_mode(dev);
5bbc53f4 2856 if (rc)
e82cbdb9 2857 goto out;
83206a29 2858 }
1da177e4 2859
e8e0619f
TH
2860 /* Record simplex status. If we selected DMA then the other
2861 * host channels are not permitted to do so.
5444a6f4 2862 */
cca3974e 2863 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2864 ap->host->simplex_claimed = ap;
5444a6f4 2865
e8e0619f 2866 /* step5: chip specific finalisation */
1da177e4
LT
2867 if (ap->ops->post_set_mode)
2868 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2869 out:
2870 if (rc)
2871 *r_failed_dev = dev;
2872 return rc;
1da177e4
LT
2873}
2874
04351821
AC
2875/**
2876 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2877 * @ap: port on which timings will be programmed
2878 * @r_failed_dev: out paramter for failed device
2879 *
2880 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2881 * ata_set_mode() fails, pointer to the failing device is
2882 * returned in @r_failed_dev.
2883 *
2884 * LOCKING:
2885 * PCI/etc. bus probe sem.
2886 *
2887 * RETURNS:
2888 * 0 on success, negative errno otherwise
2889 */
2890int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2891{
2892 /* has private set_mode? */
2893 if (ap->ops->set_mode)
2894 return ap->ops->set_mode(ap, r_failed_dev);
2895 return ata_do_set_mode(ap, r_failed_dev);
2896}
2897
1fdffbce
JG
2898/**
2899 * ata_tf_to_host - issue ATA taskfile to host controller
2900 * @ap: port to which command is being issued
2901 * @tf: ATA taskfile register set
2902 *
2903 * Issues ATA taskfile register set to ATA host controller,
2904 * with proper synchronization with interrupt handler and
2905 * other threads.
2906 *
2907 * LOCKING:
cca3974e 2908 * spin_lock_irqsave(host lock)
1fdffbce
JG
2909 */
2910
2911static inline void ata_tf_to_host(struct ata_port *ap,
2912 const struct ata_taskfile *tf)
2913{
2914 ap->ops->tf_load(ap, tf);
2915 ap->ops->exec_command(ap, tf);
2916}
2917
1da177e4
LT
2918/**
2919 * ata_busy_sleep - sleep until BSY clears, or timeout
2920 * @ap: port containing status register to be polled
2921 * @tmout_pat: impatience timeout
2922 * @tmout: overall timeout
2923 *
780a87f7
JG
2924 * Sleep until ATA Status register bit BSY clears,
2925 * or a timeout occurs.
2926 *
d1adc1bb
TH
2927 * LOCKING:
2928 * Kernel thread context (may sleep).
2929 *
2930 * RETURNS:
2931 * 0 on success, -errno otherwise.
1da177e4 2932 */
d1adc1bb
TH
2933int ata_busy_sleep(struct ata_port *ap,
2934 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2935{
2936 unsigned long timer_start, timeout;
2937 u8 status;
2938
2939 status = ata_busy_wait(ap, ATA_BUSY, 300);
2940 timer_start = jiffies;
2941 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2942 while (status != 0xff && (status & ATA_BUSY) &&
2943 time_before(jiffies, timeout)) {
1da177e4
LT
2944 msleep(50);
2945 status = ata_busy_wait(ap, ATA_BUSY, 3);
2946 }
2947
d1adc1bb 2948 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2949 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2950 "port is slow to respond, please be patient "
2951 "(Status 0x%x)\n", status);
1da177e4
LT
2952
2953 timeout = timer_start + tmout;
d1adc1bb
TH
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
1da177e4
LT
2956 msleep(50);
2957 status = ata_chk_status(ap);
2958 }
2959
d1adc1bb
TH
2960 if (status == 0xff)
2961 return -ENODEV;
2962
1da177e4 2963 if (status & ATA_BUSY) {
f15a1daf 2964 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2965 "(%lu secs, Status 0x%x)\n",
2966 tmout / HZ, status);
d1adc1bb 2967 return -EBUSY;
1da177e4
LT
2968 }
2969
2970 return 0;
2971}
2972
2973static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2974{
2975 struct ata_ioports *ioaddr = &ap->ioaddr;
2976 unsigned int dev0 = devmask & (1 << 0);
2977 unsigned int dev1 = devmask & (1 << 1);
2978 unsigned long timeout;
2979
2980 /* if device 0 was found in ata_devchk, wait for its
2981 * BSY bit to clear
2982 */
2983 if (dev0)
2984 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2985
2986 /* if device 1 was found in ata_devchk, wait for
2987 * register access, then wait for BSY to clear
2988 */
2989 timeout = jiffies + ATA_TMOUT_BOOT;
2990 while (dev1) {
2991 u8 nsect, lbal;
2992
2993 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2994 nsect = ioread8(ioaddr->nsect_addr);
2995 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2996 if ((nsect == 1) && (lbal == 1))
2997 break;
2998 if (time_after(jiffies, timeout)) {
2999 dev1 = 0;
3000 break;
3001 }
3002 msleep(50); /* give drive a breather */
3003 }
3004 if (dev1)
3005 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3006
3007 /* is all this really necessary? */
3008 ap->ops->dev_select(ap, 0);
3009 if (dev1)
3010 ap->ops->dev_select(ap, 1);
3011 if (dev0)
3012 ap->ops->dev_select(ap, 0);
3013}
3014
1da177e4
LT
3015static unsigned int ata_bus_softreset(struct ata_port *ap,
3016 unsigned int devmask)
3017{
3018 struct ata_ioports *ioaddr = &ap->ioaddr;
3019
44877b4e 3020 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3021
3022 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3023 iowrite8(ap->ctl, ioaddr->ctl_addr);
3024 udelay(20); /* FIXME: flush */
3025 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3026 udelay(20); /* FIXME: flush */
3027 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3028
3029 /* spec mandates ">= 2ms" before checking status.
3030 * We wait 150ms, because that was the magic delay used for
3031 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3032 * between when the ATA command register is written, and then
3033 * status is checked. Because waiting for "a while" before
3034 * checking status is fine, post SRST, we perform this magic
3035 * delay here as well.
09c7ad79
AC
3036 *
3037 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3038 */
3039 msleep(150);
3040
2e9edbf8 3041 /* Before we perform post reset processing we want to see if
298a41ca
TH
3042 * the bus shows 0xFF because the odd clown forgets the D7
3043 * pulldown resistor.
3044 */
d1adc1bb
TH
3045 if (ata_check_status(ap) == 0xFF)
3046 return 0;
09c7ad79 3047
1da177e4
LT
3048 ata_bus_post_reset(ap, devmask);
3049
3050 return 0;
3051}
3052
3053/**
3054 * ata_bus_reset - reset host port and associated ATA channel
3055 * @ap: port to reset
3056 *
3057 * This is typically the first time we actually start issuing
3058 * commands to the ATA channel. We wait for BSY to clear, then
3059 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3060 * result. Determine what devices, if any, are on the channel
3061 * by looking at the device 0/1 error register. Look at the signature
3062 * stored in each device's taskfile registers, to determine if
3063 * the device is ATA or ATAPI.
3064 *
3065 * LOCKING:
0cba632b 3066 * PCI/etc. bus probe sem.
cca3974e 3067 * Obtains host lock.
1da177e4
LT
3068 *
3069 * SIDE EFFECTS:
198e0fed 3070 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3071 */
3072
3073void ata_bus_reset(struct ata_port *ap)
3074{
3075 struct ata_ioports *ioaddr = &ap->ioaddr;
3076 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3077 u8 err;
aec5c3c1 3078 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4 3079
44877b4e 3080 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3081
3082 /* determine if device 0/1 are present */
3083 if (ap->flags & ATA_FLAG_SATA_RESET)
3084 dev0 = 1;
3085 else {
3086 dev0 = ata_devchk(ap, 0);
3087 if (slave_possible)
3088 dev1 = ata_devchk(ap, 1);
3089 }
3090
3091 if (dev0)
3092 devmask |= (1 << 0);
3093 if (dev1)
3094 devmask |= (1 << 1);
3095
3096 /* select device 0 again */
3097 ap->ops->dev_select(ap, 0);
3098
3099 /* issue bus reset */
3100 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
3101 if (ata_bus_softreset(ap, devmask))
3102 goto err_out;
1da177e4
LT
3103
3104 /*
3105 * determine by signature whether we have ATA or ATAPI devices
3106 */
b4dc7623 3107 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3108 if ((slave_possible) && (err != 0x81))
b4dc7623 3109 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3110
3111 /* re-enable interrupts */
83625006 3112 ap->ops->irq_on(ap);
1da177e4
LT
3113
3114 /* is double-select really necessary? */
3115 if (ap->device[1].class != ATA_DEV_NONE)
3116 ap->ops->dev_select(ap, 1);
3117 if (ap->device[0].class != ATA_DEV_NONE)
3118 ap->ops->dev_select(ap, 0);
3119
3120 /* if no devices were detected, disable this port */
3121 if ((ap->device[0].class == ATA_DEV_NONE) &&
3122 (ap->device[1].class == ATA_DEV_NONE))
3123 goto err_out;
3124
3125 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3126 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3127 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3128 }
3129
3130 DPRINTK("EXIT\n");
3131 return;
3132
3133err_out:
f15a1daf 3134 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3135 ap->ops->port_disable(ap);
3136
3137 DPRINTK("EXIT\n");
3138}
3139
d7bb4cc7
TH
3140/**
3141 * sata_phy_debounce - debounce SATA phy status
3142 * @ap: ATA port to debounce SATA phy status for
3143 * @params: timing parameters { interval, duratinon, timeout } in msec
3144 *
3145 * Make sure SStatus of @ap reaches stable state, determined by
3146 * holding the same value where DET is not 1 for @duration polled
3147 * every @interval, before @timeout. Timeout constraints the
3148 * beginning of the stable state. Because, after hot unplugging,
3149 * DET gets stuck at 1 on some controllers, this functions waits
3150 * until timeout then returns 0 if DET is stable at 1.
3151 *
3152 * LOCKING:
3153 * Kernel thread context (may sleep)
3154 *
3155 * RETURNS:
3156 * 0 on success, -errno on failure.
3157 */
3158int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 3159{
d7bb4cc7
TH
3160 unsigned long interval_msec = params[0];
3161 unsigned long duration = params[1] * HZ / 1000;
3162 unsigned long timeout = jiffies + params[2] * HZ / 1000;
3163 unsigned long last_jiffies;
3164 u32 last, cur;
3165 int rc;
3166
3167 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3168 return rc;
3169 cur &= 0xf;
3170
3171 last = cur;
3172 last_jiffies = jiffies;
3173
3174 while (1) {
3175 msleep(interval_msec);
3176 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3177 return rc;
3178 cur &= 0xf;
3179
3180 /* DET stable? */
3181 if (cur == last) {
3182 if (cur == 1 && time_before(jiffies, timeout))
3183 continue;
3184 if (time_after(jiffies, last_jiffies + duration))
3185 return 0;
3186 continue;
3187 }
3188
3189 /* unstable, start over */
3190 last = cur;
3191 last_jiffies = jiffies;
3192
3193 /* check timeout */
3194 if (time_after(jiffies, timeout))
3195 return -EBUSY;
3196 }
3197}
3198
3199/**
3200 * sata_phy_resume - resume SATA phy
3201 * @ap: ATA port to resume SATA phy for
3202 * @params: timing parameters { interval, duratinon, timeout } in msec
3203 *
3204 * Resume SATA phy of @ap and debounce it.
3205 *
3206 * LOCKING:
3207 * Kernel thread context (may sleep)
3208 *
3209 * RETURNS:
3210 * 0 on success, -errno on failure.
3211 */
3212int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
3213{
3214 u32 scontrol;
81952c54
TH
3215 int rc;
3216
3217 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3218 return rc;
7a7921e8 3219
852ee16a 3220 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3221
3222 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3223 return rc;
7a7921e8 3224
d7bb4cc7
TH
3225 /* Some PHYs react badly if SStatus is pounded immediately
3226 * after resuming. Delay 200ms before debouncing.
3227 */
3228 msleep(200);
7a7921e8 3229
d7bb4cc7 3230 return sata_phy_debounce(ap, params);
7a7921e8
TH
3231}
3232
f5914a46
TH
3233static void ata_wait_spinup(struct ata_port *ap)
3234{
3235 struct ata_eh_context *ehc = &ap->eh_context;
3236 unsigned long end, secs;
3237 int rc;
3238
3239 /* first, debounce phy if SATA */
3240 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 3241 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
3242
3243 /* if debounced successfully and offline, no need to wait */
3244 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3245 return;
3246 }
3247
3248 /* okay, let's give the drive time to spin up */
3249 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3250 secs = ((end - jiffies) + HZ - 1) / HZ;
3251
3252 if (time_after(jiffies, end))
3253 return;
3254
3255 if (secs > 5)
3256 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3257 "(%lu secs)\n", secs);
3258
3259 schedule_timeout_uninterruptible(end - jiffies);
3260}
3261
3262/**
3263 * ata_std_prereset - prepare for reset
3264 * @ap: ATA port to be reset
3265 *
3266 * @ap is about to be reset. Initialize it.
3267 *
3268 * LOCKING:
3269 * Kernel thread context (may sleep)
3270 *
3271 * RETURNS:
3272 * 0 on success, -errno otherwise.
3273 */
3274int ata_std_prereset(struct ata_port *ap)
3275{
3276 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3277 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3278 int rc;
3279
28324304
TH
3280 /* handle link resume & hotplug spinup */
3281 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3282 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3283 ehc->i.action |= ATA_EH_HARDRESET;
3284
3285 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3286 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3287 ata_wait_spinup(ap);
f5914a46
TH
3288
3289 /* if we're about to do hardreset, nothing more to do */
3290 if (ehc->i.action & ATA_EH_HARDRESET)
3291 return 0;
3292
3293 /* if SATA, resume phy */
3294 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
3295 rc = sata_phy_resume(ap, timing);
3296 if (rc && rc != -EOPNOTSUPP) {
3297 /* phy resume failed */
3298 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3299 "link for reset (errno=%d)\n", rc);
3300 return rc;
3301 }
3302 }
3303
3304 /* Wait for !BSY if the controller can wait for the first D2H
3305 * Reg FIS and we don't know that no device is attached.
3306 */
3307 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3308 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3309
3310 return 0;
3311}
3312
c2bd5804
TH
3313/**
3314 * ata_std_softreset - reset host port via ATA SRST
3315 * @ap: port to reset
c2bd5804
TH
3316 * @classes: resulting classes of attached devices
3317 *
52783c5d 3318 * Reset host port using ATA SRST.
c2bd5804
TH
3319 *
3320 * LOCKING:
3321 * Kernel thread context (may sleep)
3322 *
3323 * RETURNS:
3324 * 0 on success, -errno otherwise.
3325 */
2bf2cb26 3326int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
3327{
3328 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3329 unsigned int devmask = 0, err_mask;
3330 u8 err;
3331
3332 DPRINTK("ENTER\n");
3333
81952c54 3334 if (ata_port_offline(ap)) {
3a39746a
TH
3335 classes[0] = ATA_DEV_NONE;
3336 goto out;
3337 }
3338
c2bd5804
TH
3339 /* determine if device 0/1 are present */
3340 if (ata_devchk(ap, 0))
3341 devmask |= (1 << 0);
3342 if (slave_possible && ata_devchk(ap, 1))
3343 devmask |= (1 << 1);
3344
c2bd5804
TH
3345 /* select device 0 again */
3346 ap->ops->dev_select(ap, 0);
3347
3348 /* issue bus reset */
3349 DPRINTK("about to softreset, devmask=%x\n", devmask);
3350 err_mask = ata_bus_softreset(ap, devmask);
3351 if (err_mask) {
f15a1daf
TH
3352 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3353 err_mask);
c2bd5804
TH
3354 return -EIO;
3355 }
3356
3357 /* determine by signature whether we have ATA or ATAPI devices */
3358 classes[0] = ata_dev_try_classify(ap, 0, &err);
3359 if (slave_possible && err != 0x81)
3360 classes[1] = ata_dev_try_classify(ap, 1, &err);
3361
3a39746a 3362 out:
c2bd5804
TH
3363 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3364 return 0;
3365}
3366
3367/**
b6103f6d 3368 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3369 * @ap: port to reset
b6103f6d 3370 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3371 *
3372 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3373 *
3374 * LOCKING:
3375 * Kernel thread context (may sleep)
3376 *
3377 * RETURNS:
3378 * 0 on success, -errno otherwise.
3379 */
b6103f6d 3380int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3381{
852ee16a 3382 u32 scontrol;
81952c54 3383 int rc;
852ee16a 3384
c2bd5804
TH
3385 DPRINTK("ENTER\n");
3386
3c567b7d 3387 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3388 /* SATA spec says nothing about how to reconfigure
3389 * spd. To be on the safe side, turn off phy during
3390 * reconfiguration. This works for at least ICH7 AHCI
3391 * and Sil3124.
3392 */
81952c54 3393 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3394 goto out;
81952c54 3395
a34b6fc0 3396 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3397
3398 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3399 goto out;
1c3fae4d 3400
3c567b7d 3401 sata_set_spd(ap);
1c3fae4d
TH
3402 }
3403
3404 /* issue phy wake/reset */
81952c54 3405 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3406 goto out;
81952c54 3407
852ee16a 3408 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3409
3410 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3411 goto out;
c2bd5804 3412
1c3fae4d 3413 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3414 * 10.4.2 says at least 1 ms.
3415 */
3416 msleep(1);
3417
1c3fae4d 3418 /* bring phy back */
b6103f6d
TH
3419 rc = sata_phy_resume(ap, timing);
3420 out:
3421 DPRINTK("EXIT, rc=%d\n", rc);
3422 return rc;
3423}
3424
3425/**
3426 * sata_std_hardreset - reset host port via SATA phy reset
3427 * @ap: port to reset
3428 * @class: resulting class of attached device
3429 *
3430 * SATA phy-reset host port using DET bits of SControl register,
3431 * wait for !BSY and classify the attached device.
3432 *
3433 * LOCKING:
3434 * Kernel thread context (may sleep)
3435 *
3436 * RETURNS:
3437 * 0 on success, -errno otherwise.
3438 */
3439int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3440{
3441 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3442 int rc;
3443
3444 DPRINTK("ENTER\n");
3445
3446 /* do hardreset */
3447 rc = sata_port_hardreset(ap, timing);
3448 if (rc) {
3449 ata_port_printk(ap, KERN_ERR,
3450 "COMRESET failed (errno=%d)\n", rc);
3451 return rc;
3452 }
c2bd5804 3453
c2bd5804 3454 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3455 if (ata_port_offline(ap)) {
c2bd5804
TH
3456 *class = ATA_DEV_NONE;
3457 DPRINTK("EXIT, link offline\n");
3458 return 0;
3459 }
3460
34fee227
TH
3461 /* wait a while before checking status, see SRST for more info */
3462 msleep(150);
3463
c2bd5804 3464 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3465 ata_port_printk(ap, KERN_ERR,
3466 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3467 return -EIO;
3468 }
3469
3a39746a
TH
3470 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3471
c2bd5804
TH
3472 *class = ata_dev_try_classify(ap, 0, NULL);
3473
3474 DPRINTK("EXIT, class=%u\n", *class);
3475 return 0;
3476}
3477
3478/**
3479 * ata_std_postreset - standard postreset callback
3480 * @ap: the target ata_port
3481 * @classes: classes of attached devices
3482 *
3483 * This function is invoked after a successful reset. Note that
3484 * the device might have been reset more than once using
3485 * different reset methods before postreset is invoked.
c2bd5804 3486 *
c2bd5804
TH
3487 * LOCKING:
3488 * Kernel thread context (may sleep)
3489 */
3490void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3491{
dc2b3515
TH
3492 u32 serror;
3493
c2bd5804
TH
3494 DPRINTK("ENTER\n");
3495
c2bd5804 3496 /* print link status */
81952c54 3497 sata_print_link_status(ap);
c2bd5804 3498
dc2b3515
TH
3499 /* clear SError */
3500 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3501 sata_scr_write(ap, SCR_ERROR, serror);
3502
3a39746a 3503 /* re-enable interrupts */
83625006
AI
3504 if (!ap->ops->error_handler)
3505 ap->ops->irq_on(ap);
c2bd5804
TH
3506
3507 /* is double-select really necessary? */
3508 if (classes[0] != ATA_DEV_NONE)
3509 ap->ops->dev_select(ap, 1);
3510 if (classes[1] != ATA_DEV_NONE)
3511 ap->ops->dev_select(ap, 0);
3512
3a39746a
TH
3513 /* bail out if no device is present */
3514 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3515 DPRINTK("EXIT, no device\n");
3516 return;
3517 }
3518
3519 /* set up device control */
0d5ff566
TH
3520 if (ap->ioaddr.ctl_addr)
3521 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3522
3523 DPRINTK("EXIT\n");
3524}
3525
623a3128
TH
3526/**
3527 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3528 * @dev: device to compare against
3529 * @new_class: class of the new device
3530 * @new_id: IDENTIFY page of the new device
3531 *
3532 * Compare @new_class and @new_id against @dev and determine
3533 * whether @dev is the device indicated by @new_class and
3534 * @new_id.
3535 *
3536 * LOCKING:
3537 * None.
3538 *
3539 * RETURNS:
3540 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3541 */
3373efd8
TH
3542static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3543 const u16 *new_id)
623a3128
TH
3544{
3545 const u16 *old_id = dev->id;
a0cf733b
TH
3546 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3547 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3548 u64 new_n_sectors;
3549
3550 if (dev->class != new_class) {
f15a1daf
TH
3551 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3552 dev->class, new_class);
623a3128
TH
3553 return 0;
3554 }
3555
a0cf733b
TH
3556 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3557 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3558 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3559 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3560 new_n_sectors = ata_id_n_sectors(new_id);
3561
3562 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3563 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3564 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3565 return 0;
3566 }
3567
3568 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3569 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3570 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3571 return 0;
3572 }
3573
3574 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3575 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3576 "%llu != %llu\n",
3577 (unsigned long long)dev->n_sectors,
3578 (unsigned long long)new_n_sectors);
1e999736
AC
3579 /* Are we the boot time size - if so we appear to be the
3580 same disk at this point and our HPA got reapplied */
3581 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3582 && ata_id_hpa_enabled(new_id))
3583 return 1;
623a3128
TH
3584 return 0;
3585 }
3586
3587 return 1;
3588}
3589
3590/**
3591 * ata_dev_revalidate - Revalidate ATA device
623a3128 3592 * @dev: device to revalidate
bff04647 3593 * @readid_flags: read ID flags
623a3128
TH
3594 *
3595 * Re-read IDENTIFY page and make sure @dev is still attached to
3596 * the port.
3597 *
3598 * LOCKING:
3599 * Kernel thread context (may sleep)
3600 *
3601 * RETURNS:
3602 * 0 on success, negative errno otherwise
3603 */
bff04647 3604int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3605{
5eb45c02 3606 unsigned int class = dev->class;
f15a1daf 3607 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3608 int rc;
3609
5eb45c02
TH
3610 if (!ata_dev_enabled(dev)) {
3611 rc = -ENODEV;
3612 goto fail;
3613 }
623a3128 3614
fe635c7e 3615 /* read ID data */
bff04647 3616 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3617 if (rc)
3618 goto fail;
3619
3620 /* is the device still there? */
3373efd8 3621 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3622 rc = -ENODEV;
3623 goto fail;
3624 }
3625
fe635c7e 3626 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3627
3628 /* configure device according to the new ID */
efdaedc4 3629 rc = ata_dev_configure(dev);
5eb45c02
TH
3630 if (rc == 0)
3631 return 0;
623a3128
TH
3632
3633 fail:
f15a1daf 3634 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3635 return rc;
3636}
3637
6919a0a6
AC
3638struct ata_blacklist_entry {
3639 const char *model_num;
3640 const char *model_rev;
3641 unsigned long horkage;
3642};
3643
3644static const struct ata_blacklist_entry ata_device_blacklist [] = {
3645 /* Devices with DMA related problems under Linux */
3646 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3647 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3648 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3649 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3650 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3651 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3652 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3653 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3654 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3655 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3656 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3657 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3658 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3659 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3660 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3661 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3662 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3663 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3664 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3665 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3666 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3667 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3668 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3669 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3670 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3671 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3672 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3673 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3674 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3675
18d6e9d5 3676 /* Weird ATAPI devices */
6f23a31d
AL
3677 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3678 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3679
6919a0a6
AC
3680 /* Devices we expect to fail diagnostics */
3681
3682 /* Devices where NCQ should be avoided */
3683 /* NCQ is slow */
3684 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3685 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3686 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3687 /* NCQ is broken */
3688 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3689 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3690 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3691 /* Blacklist entries taken from Silicon Image 3124/3132
3692 Windows driver .inf file - also several Linux problem reports */
3693 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3694 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3695 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3696
3697 /* Devices with NCQ limits */
3698
3699 /* End Marker */
3700 { }
1da177e4 3701};
2e9edbf8 3702
6919a0a6 3703unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3704{
8bfa79fc
TH
3705 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3706 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3707 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3708
8bfa79fc
TH
3709 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3710 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3711
6919a0a6 3712 while (ad->model_num) {
8bfa79fc 3713 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3714 if (ad->model_rev == NULL)
3715 return ad->horkage;
8bfa79fc 3716 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3717 return ad->horkage;
f4b15fef 3718 }
6919a0a6 3719 ad++;
f4b15fef 3720 }
1da177e4
LT
3721 return 0;
3722}
3723
6919a0a6
AC
3724static int ata_dma_blacklisted(const struct ata_device *dev)
3725{
3726 /* We don't support polling DMA.
3727 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3728 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3729 */
3730 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3731 (dev->flags & ATA_DFLAG_CDB_INTR))
3732 return 1;
3733 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3734}
3735
a6d5a51c
TH
3736/**
3737 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3738 * @dev: Device to compute xfermask for
3739 *
acf356b1
TH
3740 * Compute supported xfermask of @dev and store it in
3741 * dev->*_mask. This function is responsible for applying all
3742 * known limits including host controller limits, device
3743 * blacklist, etc...
a6d5a51c
TH
3744 *
3745 * LOCKING:
3746 * None.
a6d5a51c 3747 */
3373efd8 3748static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3749{
3373efd8 3750 struct ata_port *ap = dev->ap;
cca3974e 3751 struct ata_host *host = ap->host;
a6d5a51c 3752 unsigned long xfer_mask;
1da177e4 3753
37deecb5 3754 /* controller modes available */
565083e1
TH
3755 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3756 ap->mwdma_mask, ap->udma_mask);
3757
8343f889 3758 /* drive modes available */
37deecb5
TH
3759 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3760 dev->mwdma_mask, dev->udma_mask);
3761 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3762
b352e57d
AC
3763 /*
3764 * CFA Advanced TrueIDE timings are not allowed on a shared
3765 * cable
3766 */
3767 if (ata_dev_pair(dev)) {
3768 /* No PIO5 or PIO6 */
3769 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3770 /* No MWDMA3 or MWDMA 4 */
3771 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3772 }
3773
37deecb5
TH
3774 if (ata_dma_blacklisted(dev)) {
3775 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3776 ata_dev_printk(dev, KERN_WARNING,
3777 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3778 }
a6d5a51c 3779
14d66ab7
PV
3780 if ((host->flags & ATA_HOST_SIMPLEX) &&
3781 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3782 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3783 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3784 "other device, disabling DMA\n");
5444a6f4 3785 }
565083e1 3786
e424675f
JG
3787 if (ap->flags & ATA_FLAG_NO_IORDY)
3788 xfer_mask &= ata_pio_mask_no_iordy(dev);
3789
5444a6f4 3790 if (ap->ops->mode_filter)
a76b62ca 3791 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3792
8343f889
RH
3793 /* Apply cable rule here. Don't apply it early because when
3794 * we handle hot plug the cable type can itself change.
3795 * Check this last so that we know if the transfer rate was
3796 * solely limited by the cable.
3797 * Unknown or 80 wire cables reported host side are checked
3798 * drive side as well. Cases where we know a 40wire cable
3799 * is used safely for 80 are not checked here.
3800 */
3801 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3802 /* UDMA/44 or higher would be available */
3803 if((ap->cbl == ATA_CBL_PATA40) ||
3804 (ata_drive_40wire(dev->id) &&
3805 (ap->cbl == ATA_CBL_PATA_UNK ||
3806 ap->cbl == ATA_CBL_PATA80))) {
3807 ata_dev_printk(dev, KERN_WARNING,
3808 "limited to UDMA/33 due to 40-wire cable\n");
3809 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3810 }
3811
565083e1
TH
3812 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3813 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3814}
3815
1da177e4
LT
3816/**
3817 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3818 * @dev: Device to which command will be sent
3819 *
780a87f7
JG
3820 * Issue SET FEATURES - XFER MODE command to device @dev
3821 * on port @ap.
3822 *
1da177e4 3823 * LOCKING:
0cba632b 3824 * PCI/etc. bus probe sem.
83206a29
TH
3825 *
3826 * RETURNS:
3827 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3828 */
3829
3373efd8 3830static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3831{
a0123703 3832 struct ata_taskfile tf;
83206a29 3833 unsigned int err_mask;
1da177e4
LT
3834
3835 /* set up set-features taskfile */
3836 DPRINTK("set features - xfer mode\n");
3837
3373efd8 3838 ata_tf_init(dev, &tf);
a0123703
TH
3839 tf.command = ATA_CMD_SET_FEATURES;
3840 tf.feature = SETFEATURES_XFER;
3841 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3842 tf.protocol = ATA_PROT_NODATA;
3843 tf.nsect = dev->xfer_mode;
1da177e4 3844
3373efd8 3845 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3846
83206a29
TH
3847 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3848 return err_mask;
1da177e4
LT
3849}
3850
8bf62ece
AL
3851/**
3852 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3853 * @dev: Device to which command will be sent
e2a7f77a
RD
3854 * @heads: Number of heads (taskfile parameter)
3855 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3856 *
3857 * LOCKING:
6aff8f1f
TH
3858 * Kernel thread context (may sleep)
3859 *
3860 * RETURNS:
3861 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3862 */
3373efd8
TH
3863static unsigned int ata_dev_init_params(struct ata_device *dev,
3864 u16 heads, u16 sectors)
8bf62ece 3865{
a0123703 3866 struct ata_taskfile tf;
6aff8f1f 3867 unsigned int err_mask;
8bf62ece
AL
3868
3869 /* Number of sectors per track 1-255. Number of heads 1-16 */
3870 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3871 return AC_ERR_INVALID;
8bf62ece
AL
3872
3873 /* set up init dev params taskfile */
3874 DPRINTK("init dev params \n");
3875
3373efd8 3876 ata_tf_init(dev, &tf);
a0123703
TH
3877 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3878 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3879 tf.protocol = ATA_PROT_NODATA;
3880 tf.nsect = sectors;
3881 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3882
3373efd8 3883 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3884
6aff8f1f
TH
3885 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3886 return err_mask;
8bf62ece
AL
3887}
3888
1da177e4 3889/**
0cba632b
JG
3890 * ata_sg_clean - Unmap DMA memory associated with command
3891 * @qc: Command containing DMA memory to be released
3892 *
3893 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3894 *
3895 * LOCKING:
cca3974e 3896 * spin_lock_irqsave(host lock)
1da177e4 3897 */
70e6ad0c 3898void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3899{
3900 struct ata_port *ap = qc->ap;
cedc9a47 3901 struct scatterlist *sg = qc->__sg;
1da177e4 3902 int dir = qc->dma_dir;
cedc9a47 3903 void *pad_buf = NULL;
1da177e4 3904
a4631474
TH
3905 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3906 WARN_ON(sg == NULL);
1da177e4
LT
3907
3908 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3909 WARN_ON(qc->n_elem > 1);
1da177e4 3910
2c13b7ce 3911 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3912
cedc9a47
JG
3913 /* if we padded the buffer out to 32-bit bound, and data
3914 * xfer direction is from-device, we must copy from the
3915 * pad buffer back into the supplied buffer
3916 */
3917 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3918 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3919
3920 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3921 if (qc->n_elem)
2f1f610b 3922 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3923 /* restore last sg */
3924 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3925 if (pad_buf) {
3926 struct scatterlist *psg = &qc->pad_sgent;
3927 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3928 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3929 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3930 }
3931 } else {
2e242fa9 3932 if (qc->n_elem)
2f1f610b 3933 dma_unmap_single(ap->dev,
e1410f2d
JG
3934 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3935 dir);
cedc9a47
JG
3936 /* restore sg */
3937 sg->length += qc->pad_len;
3938 if (pad_buf)
3939 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3940 pad_buf, qc->pad_len);
3941 }
1da177e4
LT
3942
3943 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3944 qc->__sg = NULL;
1da177e4
LT
3945}
3946
3947/**
3948 * ata_fill_sg - Fill PCI IDE PRD table
3949 * @qc: Metadata associated with taskfile to be transferred
3950 *
780a87f7
JG
3951 * Fill PCI IDE PRD (scatter-gather) table with segments
3952 * associated with the current disk command.
3953 *
1da177e4 3954 * LOCKING:
cca3974e 3955 * spin_lock_irqsave(host lock)
1da177e4
LT
3956 *
3957 */
3958static void ata_fill_sg(struct ata_queued_cmd *qc)
3959{
1da177e4 3960 struct ata_port *ap = qc->ap;
cedc9a47
JG
3961 struct scatterlist *sg;
3962 unsigned int idx;
1da177e4 3963
a4631474 3964 WARN_ON(qc->__sg == NULL);
f131883e 3965 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3966
3967 idx = 0;
cedc9a47 3968 ata_for_each_sg(sg, qc) {
1da177e4
LT
3969 u32 addr, offset;
3970 u32 sg_len, len;
3971
3972 /* determine if physical DMA addr spans 64K boundary.
3973 * Note h/w doesn't support 64-bit, so we unconditionally
3974 * truncate dma_addr_t to u32.
3975 */
3976 addr = (u32) sg_dma_address(sg);
3977 sg_len = sg_dma_len(sg);
3978
3979 while (sg_len) {
3980 offset = addr & 0xffff;
3981 len = sg_len;
3982 if ((offset + sg_len) > 0x10000)
3983 len = 0x10000 - offset;
3984
3985 ap->prd[idx].addr = cpu_to_le32(addr);
3986 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3987 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3988
3989 idx++;
3990 sg_len -= len;
3991 addr += len;
3992 }
3993 }
3994
3995 if (idx)
3996 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3997}
3998/**
3999 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4000 * @qc: Metadata associated with taskfile to check
4001 *
780a87f7
JG
4002 * Allow low-level driver to filter ATA PACKET commands, returning
4003 * a status indicating whether or not it is OK to use DMA for the
4004 * supplied PACKET command.
4005 *
1da177e4 4006 * LOCKING:
cca3974e 4007 * spin_lock_irqsave(host lock)
0cba632b 4008 *
1da177e4
LT
4009 * RETURNS: 0 when ATAPI DMA can be used
4010 * nonzero otherwise
4011 */
4012int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4013{
4014 struct ata_port *ap = qc->ap;
4015 int rc = 0; /* Assume ATAPI DMA is OK by default */
4016
6f23a31d
AL
4017 /* some drives can only do ATAPI DMA on read/write */
4018 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4019 struct scsi_cmnd *cmd = qc->scsicmd;
4020 u8 *scsicmd = cmd->cmnd;
4021
4022 switch (scsicmd[0]) {
4023 case READ_10:
4024 case WRITE_10:
4025 case READ_12:
4026 case WRITE_12:
4027 case READ_6:
4028 case WRITE_6:
4029 /* atapi dma maybe ok */
4030 break;
4031 default:
4032 /* turn off atapi dma */
4033 return 1;
4034 }
4035 }
4036
1da177e4
LT
4037 if (ap->ops->check_atapi_dma)
4038 rc = ap->ops->check_atapi_dma(qc);
4039
4040 return rc;
4041}
4042/**
4043 * ata_qc_prep - Prepare taskfile for submission
4044 * @qc: Metadata associated with taskfile to be prepared
4045 *
780a87f7
JG
4046 * Prepare ATA taskfile for submission.
4047 *
1da177e4 4048 * LOCKING:
cca3974e 4049 * spin_lock_irqsave(host lock)
1da177e4
LT
4050 */
4051void ata_qc_prep(struct ata_queued_cmd *qc)
4052{
4053 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4054 return;
4055
4056 ata_fill_sg(qc);
4057}
4058
e46834cd
BK
4059void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4060
0cba632b
JG
4061/**
4062 * ata_sg_init_one - Associate command with memory buffer
4063 * @qc: Command to be associated
4064 * @buf: Memory buffer
4065 * @buflen: Length of memory buffer, in bytes.
4066 *
4067 * Initialize the data-related elements of queued_cmd @qc
4068 * to point to a single memory buffer, @buf of byte length @buflen.
4069 *
4070 * LOCKING:
cca3974e 4071 * spin_lock_irqsave(host lock)
0cba632b
JG
4072 */
4073
1da177e4
LT
4074void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4075{
1da177e4
LT
4076 qc->flags |= ATA_QCFLAG_SINGLE;
4077
cedc9a47 4078 qc->__sg = &qc->sgent;
1da177e4 4079 qc->n_elem = 1;
cedc9a47 4080 qc->orig_n_elem = 1;
1da177e4 4081 qc->buf_virt = buf;
233277ca 4082 qc->nbytes = buflen;
1da177e4 4083
61c0596c 4084 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4085}
4086
0cba632b
JG
4087/**
4088 * ata_sg_init - Associate command with scatter-gather table.
4089 * @qc: Command to be associated
4090 * @sg: Scatter-gather table.
4091 * @n_elem: Number of elements in s/g table.
4092 *
4093 * Initialize the data-related elements of queued_cmd @qc
4094 * to point to a scatter-gather table @sg, containing @n_elem
4095 * elements.
4096 *
4097 * LOCKING:
cca3974e 4098 * spin_lock_irqsave(host lock)
0cba632b
JG
4099 */
4100
1da177e4
LT
4101void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4102 unsigned int n_elem)
4103{
4104 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4105 qc->__sg = sg;
1da177e4 4106 qc->n_elem = n_elem;
cedc9a47 4107 qc->orig_n_elem = n_elem;
1da177e4
LT
4108}
4109
4110/**
0cba632b
JG
4111 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4112 * @qc: Command with memory buffer to be mapped.
4113 *
4114 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4115 *
4116 * LOCKING:
cca3974e 4117 * spin_lock_irqsave(host lock)
1da177e4
LT
4118 *
4119 * RETURNS:
0cba632b 4120 * Zero on success, negative on error.
1da177e4
LT
4121 */
4122
4123static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4124{
4125 struct ata_port *ap = qc->ap;
4126 int dir = qc->dma_dir;
cedc9a47 4127 struct scatterlist *sg = qc->__sg;
1da177e4 4128 dma_addr_t dma_address;
2e242fa9 4129 int trim_sg = 0;
1da177e4 4130
cedc9a47
JG
4131 /* we must lengthen transfers to end on a 32-bit boundary */
4132 qc->pad_len = sg->length & 3;
4133 if (qc->pad_len) {
4134 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4135 struct scatterlist *psg = &qc->pad_sgent;
4136
a4631474 4137 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4138
4139 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4140
4141 if (qc->tf.flags & ATA_TFLAG_WRITE)
4142 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4143 qc->pad_len);
4144
4145 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4146 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4147 /* trim sg */
4148 sg->length -= qc->pad_len;
2e242fa9
TH
4149 if (sg->length == 0)
4150 trim_sg = 1;
cedc9a47
JG
4151
4152 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4153 sg->length, qc->pad_len);
4154 }
4155
2e242fa9
TH
4156 if (trim_sg) {
4157 qc->n_elem--;
e1410f2d
JG
4158 goto skip_map;
4159 }
4160
2f1f610b 4161 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4162 sg->length, dir);
537a95d9
TH
4163 if (dma_mapping_error(dma_address)) {
4164 /* restore sg */
4165 sg->length += qc->pad_len;
1da177e4 4166 return -1;
537a95d9 4167 }
1da177e4
LT
4168
4169 sg_dma_address(sg) = dma_address;
32529e01 4170 sg_dma_len(sg) = sg->length;
1da177e4 4171
2e242fa9 4172skip_map:
1da177e4
LT
4173 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4174 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4175
4176 return 0;
4177}
4178
4179/**
0cba632b
JG
4180 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4181 * @qc: Command with scatter-gather table to be mapped.
4182 *
4183 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4184 *
4185 * LOCKING:
cca3974e 4186 * spin_lock_irqsave(host lock)
1da177e4
LT
4187 *
4188 * RETURNS:
0cba632b 4189 * Zero on success, negative on error.
1da177e4
LT
4190 *
4191 */
4192
4193static int ata_sg_setup(struct ata_queued_cmd *qc)
4194{
4195 struct ata_port *ap = qc->ap;
cedc9a47
JG
4196 struct scatterlist *sg = qc->__sg;
4197 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4198 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4199
44877b4e 4200 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4201 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4202
cedc9a47
JG
4203 /* we must lengthen transfers to end on a 32-bit boundary */
4204 qc->pad_len = lsg->length & 3;
4205 if (qc->pad_len) {
4206 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4207 struct scatterlist *psg = &qc->pad_sgent;
4208 unsigned int offset;
4209
a4631474 4210 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4211
4212 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4213
4214 /*
4215 * psg->page/offset are used to copy to-be-written
4216 * data in this function or read data in ata_sg_clean.
4217 */
4218 offset = lsg->offset + lsg->length - qc->pad_len;
4219 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4220 psg->offset = offset_in_page(offset);
4221
4222 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4223 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4224 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4225 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4226 }
4227
4228 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4229 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4230 /* trim last sg */
4231 lsg->length -= qc->pad_len;
e1410f2d
JG
4232 if (lsg->length == 0)
4233 trim_sg = 1;
cedc9a47
JG
4234
4235 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4236 qc->n_elem - 1, lsg->length, qc->pad_len);
4237 }
4238
e1410f2d
JG
4239 pre_n_elem = qc->n_elem;
4240 if (trim_sg && pre_n_elem)
4241 pre_n_elem--;
4242
4243 if (!pre_n_elem) {
4244 n_elem = 0;
4245 goto skip_map;
4246 }
4247
1da177e4 4248 dir = qc->dma_dir;
2f1f610b 4249 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4250 if (n_elem < 1) {
4251 /* restore last sg */
4252 lsg->length += qc->pad_len;
1da177e4 4253 return -1;
537a95d9 4254 }
1da177e4
LT
4255
4256 DPRINTK("%d sg elements mapped\n", n_elem);
4257
e1410f2d 4258skip_map:
1da177e4
LT
4259 qc->n_elem = n_elem;
4260
4261 return 0;
4262}
4263
0baab86b 4264/**
c893a3ae 4265 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4266 * @buf: Buffer to swap
4267 * @buf_words: Number of 16-bit words in buffer.
4268 *
4269 * Swap halves of 16-bit words if needed to convert from
4270 * little-endian byte order to native cpu byte order, or
4271 * vice-versa.
4272 *
4273 * LOCKING:
6f0ef4fa 4274 * Inherited from caller.
0baab86b 4275 */
1da177e4
LT
4276void swap_buf_le16(u16 *buf, unsigned int buf_words)
4277{
4278#ifdef __BIG_ENDIAN
4279 unsigned int i;
4280
4281 for (i = 0; i < buf_words; i++)
4282 buf[i] = le16_to_cpu(buf[i]);
4283#endif /* __BIG_ENDIAN */
4284}
4285
6ae4cfb5 4286/**
0d5ff566 4287 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4288 * @adev: device to target
6ae4cfb5
AL
4289 * @buf: data buffer
4290 * @buflen: buffer length
344babaa 4291 * @write_data: read/write
6ae4cfb5
AL
4292 *
4293 * Transfer data from/to the device data register by PIO.
4294 *
4295 * LOCKING:
4296 * Inherited from caller.
6ae4cfb5 4297 */
0d5ff566
TH
4298void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4299 unsigned int buflen, int write_data)
1da177e4 4300{
a6b2c5d4 4301 struct ata_port *ap = adev->ap;
6ae4cfb5 4302 unsigned int words = buflen >> 1;
1da177e4 4303
6ae4cfb5 4304 /* Transfer multiple of 2 bytes */
1da177e4 4305 if (write_data)
0d5ff566 4306 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4307 else
0d5ff566 4308 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4309
4310 /* Transfer trailing 1 byte, if any. */
4311 if (unlikely(buflen & 0x01)) {
4312 u16 align_buf[1] = { 0 };
4313 unsigned char *trailing_buf = buf + buflen - 1;
4314
4315 if (write_data) {
4316 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4317 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4318 } else {
0d5ff566 4319 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4320 memcpy(trailing_buf, align_buf, 1);
4321 }
4322 }
1da177e4
LT
4323}
4324
75e99585 4325/**
0d5ff566 4326 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4327 * @adev: device to target
4328 * @buf: data buffer
4329 * @buflen: buffer length
4330 * @write_data: read/write
4331 *
88574551 4332 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4333 * transfer with interrupts disabled.
4334 *
4335 * LOCKING:
4336 * Inherited from caller.
4337 */
0d5ff566
TH
4338void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4339 unsigned int buflen, int write_data)
75e99585
AC
4340{
4341 unsigned long flags;
4342 local_irq_save(flags);
0d5ff566 4343 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4344 local_irq_restore(flags);
4345}
4346
4347
6ae4cfb5 4348/**
5a5dbd18 4349 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4350 * @qc: Command on going
4351 *
5a5dbd18 4352 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4353 *
4354 * LOCKING:
4355 * Inherited from caller.
4356 */
4357
1da177e4
LT
4358static void ata_pio_sector(struct ata_queued_cmd *qc)
4359{
4360 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4361 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4362 struct ata_port *ap = qc->ap;
4363 struct page *page;
4364 unsigned int offset;
4365 unsigned char *buf;
4366
5a5dbd18 4367 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4368 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4369
4370 page = sg[qc->cursg].page;
726f0785 4371 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4372
4373 /* get the current page and offset */
4374 page = nth_page(page, (offset >> PAGE_SHIFT));
4375 offset %= PAGE_SIZE;
4376
1da177e4
LT
4377 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4378
91b8b313
AL
4379 if (PageHighMem(page)) {
4380 unsigned long flags;
4381
a6b2c5d4 4382 /* FIXME: use a bounce buffer */
91b8b313
AL
4383 local_irq_save(flags);
4384 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4385
91b8b313 4386 /* do the actual data transfer */
5a5dbd18 4387 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4388
91b8b313
AL
4389 kunmap_atomic(buf, KM_IRQ0);
4390 local_irq_restore(flags);
4391 } else {
4392 buf = page_address(page);
5a5dbd18 4393 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4394 }
1da177e4 4395
5a5dbd18
ML
4396 qc->curbytes += qc->sect_size;
4397 qc->cursg_ofs += qc->sect_size;
1da177e4 4398
726f0785 4399 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4400 qc->cursg++;
4401 qc->cursg_ofs = 0;
4402 }
1da177e4 4403}
1da177e4 4404
07f6f7d0 4405/**
5a5dbd18 4406 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4407 * @qc: Command on going
4408 *
5a5dbd18 4409 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4410 * ATA device for the DRQ request.
4411 *
4412 * LOCKING:
4413 * Inherited from caller.
4414 */
1da177e4 4415
07f6f7d0
AL
4416static void ata_pio_sectors(struct ata_queued_cmd *qc)
4417{
4418 if (is_multi_taskfile(&qc->tf)) {
4419 /* READ/WRITE MULTIPLE */
4420 unsigned int nsect;
4421
587005de 4422 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4423
5a5dbd18 4424 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4425 qc->dev->multi_count);
07f6f7d0
AL
4426 while (nsect--)
4427 ata_pio_sector(qc);
4428 } else
4429 ata_pio_sector(qc);
4430}
4431
c71c1857
AL
4432/**
4433 * atapi_send_cdb - Write CDB bytes to hardware
4434 * @ap: Port to which ATAPI device is attached.
4435 * @qc: Taskfile currently active
4436 *
4437 * When device has indicated its readiness to accept
4438 * a CDB, this function is called. Send the CDB.
4439 *
4440 * LOCKING:
4441 * caller.
4442 */
4443
4444static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4445{
4446 /* send SCSI cdb */
4447 DPRINTK("send cdb\n");
db024d53 4448 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4449
a6b2c5d4 4450 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4451 ata_altstatus(ap); /* flush */
4452
4453 switch (qc->tf.protocol) {
4454 case ATA_PROT_ATAPI:
4455 ap->hsm_task_state = HSM_ST;
4456 break;
4457 case ATA_PROT_ATAPI_NODATA:
4458 ap->hsm_task_state = HSM_ST_LAST;
4459 break;
4460 case ATA_PROT_ATAPI_DMA:
4461 ap->hsm_task_state = HSM_ST_LAST;
4462 /* initiate bmdma */
4463 ap->ops->bmdma_start(qc);
4464 break;
4465 }
1da177e4
LT
4466}
4467
6ae4cfb5
AL
4468/**
4469 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4470 * @qc: Command on going
4471 * @bytes: number of bytes
4472 *
4473 * Transfer Transfer data from/to the ATAPI device.
4474 *
4475 * LOCKING:
4476 * Inherited from caller.
4477 *
4478 */
4479
1da177e4
LT
4480static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4481{
4482 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4483 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4484 struct ata_port *ap = qc->ap;
4485 struct page *page;
4486 unsigned char *buf;
4487 unsigned int offset, count;
4488
563a6e1f 4489 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4490 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4491
4492next_sg:
563a6e1f 4493 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4494 /*
563a6e1f
AL
4495 * The end of qc->sg is reached and the device expects
4496 * more data to transfer. In order not to overrun qc->sg
4497 * and fulfill length specified in the byte count register,
4498 * - for read case, discard trailing data from the device
4499 * - for write case, padding zero data to the device
4500 */
4501 u16 pad_buf[1] = { 0 };
4502 unsigned int words = bytes >> 1;
4503 unsigned int i;
4504
4505 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4506 ata_dev_printk(qc->dev, KERN_WARNING,
4507 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4508
4509 for (i = 0; i < words; i++)
a6b2c5d4 4510 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4511
14be71f4 4512 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4513 return;
4514 }
4515
cedc9a47 4516 sg = &qc->__sg[qc->cursg];
1da177e4 4517
1da177e4
LT
4518 page = sg->page;
4519 offset = sg->offset + qc->cursg_ofs;
4520
4521 /* get the current page and offset */
4522 page = nth_page(page, (offset >> PAGE_SHIFT));
4523 offset %= PAGE_SIZE;
4524
6952df03 4525 /* don't overrun current sg */
32529e01 4526 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4527
4528 /* don't cross page boundaries */
4529 count = min(count, (unsigned int)PAGE_SIZE - offset);
4530
7282aa4b
AL
4531 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4532
91b8b313
AL
4533 if (PageHighMem(page)) {
4534 unsigned long flags;
4535
a6b2c5d4 4536 /* FIXME: use bounce buffer */
91b8b313
AL
4537 local_irq_save(flags);
4538 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4539
91b8b313 4540 /* do the actual data transfer */
a6b2c5d4 4541 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4542
91b8b313
AL
4543 kunmap_atomic(buf, KM_IRQ0);
4544 local_irq_restore(flags);
4545 } else {
4546 buf = page_address(page);
a6b2c5d4 4547 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4548 }
1da177e4
LT
4549
4550 bytes -= count;
4551 qc->curbytes += count;
4552 qc->cursg_ofs += count;
4553
32529e01 4554 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4555 qc->cursg++;
4556 qc->cursg_ofs = 0;
4557 }
4558
563a6e1f 4559 if (bytes)
1da177e4 4560 goto next_sg;
1da177e4
LT
4561}
4562
6ae4cfb5
AL
4563/**
4564 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4565 * @qc: Command on going
4566 *
4567 * Transfer Transfer data from/to the ATAPI device.
4568 *
4569 * LOCKING:
4570 * Inherited from caller.
6ae4cfb5
AL
4571 */
4572
1da177e4
LT
4573static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4574{
4575 struct ata_port *ap = qc->ap;
4576 struct ata_device *dev = qc->dev;
4577 unsigned int ireason, bc_lo, bc_hi, bytes;
4578 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4579
eec4c3f3
AL
4580 /* Abuse qc->result_tf for temp storage of intermediate TF
4581 * here to save some kernel stack usage.
4582 * For normal completion, qc->result_tf is not relevant. For
4583 * error, qc->result_tf is later overwritten by ata_qc_complete().
4584 * So, the correctness of qc->result_tf is not affected.
4585 */
4586 ap->ops->tf_read(ap, &qc->result_tf);
4587 ireason = qc->result_tf.nsect;
4588 bc_lo = qc->result_tf.lbam;
4589 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4590 bytes = (bc_hi << 8) | bc_lo;
4591
4592 /* shall be cleared to zero, indicating xfer of data */
4593 if (ireason & (1 << 0))
4594 goto err_out;
4595
4596 /* make sure transfer direction matches expected */
4597 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4598 if (do_write != i_write)
4599 goto err_out;
4600
44877b4e 4601 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4602
1da177e4
LT
4603 __atapi_pio_bytes(qc, bytes);
4604
4605 return;
4606
4607err_out:
f15a1daf 4608 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4609 qc->err_mask |= AC_ERR_HSM;
14be71f4 4610 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4611}
4612
4613/**
c234fb00
AL
4614 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4615 * @ap: the target ata_port
4616 * @qc: qc on going
1da177e4 4617 *
c234fb00
AL
4618 * RETURNS:
4619 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4620 */
c234fb00
AL
4621
4622static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4623{
c234fb00
AL
4624 if (qc->tf.flags & ATA_TFLAG_POLLING)
4625 return 1;
1da177e4 4626
c234fb00
AL
4627 if (ap->hsm_task_state == HSM_ST_FIRST) {
4628 if (qc->tf.protocol == ATA_PROT_PIO &&
4629 (qc->tf.flags & ATA_TFLAG_WRITE))
4630 return 1;
1da177e4 4631
c234fb00
AL
4632 if (is_atapi_taskfile(&qc->tf) &&
4633 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4634 return 1;
fe79e683
AL
4635 }
4636
c234fb00
AL
4637 return 0;
4638}
1da177e4 4639
c17ea20d
TH
4640/**
4641 * ata_hsm_qc_complete - finish a qc running on standard HSM
4642 * @qc: Command to complete
4643 * @in_wq: 1 if called from workqueue, 0 otherwise
4644 *
4645 * Finish @qc which is running on standard HSM.
4646 *
4647 * LOCKING:
cca3974e 4648 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4649 * Otherwise, none on entry and grabs host lock.
4650 */
4651static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4652{
4653 struct ata_port *ap = qc->ap;
4654 unsigned long flags;
4655
4656 if (ap->ops->error_handler) {
4657 if (in_wq) {
ba6a1308 4658 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4659
cca3974e
JG
4660 /* EH might have kicked in while host lock is
4661 * released.
c17ea20d
TH
4662 */
4663 qc = ata_qc_from_tag(ap, qc->tag);
4664 if (qc) {
4665 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4666 ap->ops->irq_on(ap);
c17ea20d
TH
4667 ata_qc_complete(qc);
4668 } else
4669 ata_port_freeze(ap);
4670 }
4671
ba6a1308 4672 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4673 } else {
4674 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4675 ata_qc_complete(qc);
4676 else
4677 ata_port_freeze(ap);
4678 }
4679 } else {
4680 if (in_wq) {
ba6a1308 4681 spin_lock_irqsave(ap->lock, flags);
83625006 4682 ap->ops->irq_on(ap);
c17ea20d 4683 ata_qc_complete(qc);
ba6a1308 4684 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4685 } else
4686 ata_qc_complete(qc);
4687 }
1da177e4 4688
c81e29b4 4689 ata_altstatus(ap); /* flush */
c17ea20d
TH
4690}
4691
bb5cb290
AL
4692/**
4693 * ata_hsm_move - move the HSM to the next state.
4694 * @ap: the target ata_port
4695 * @qc: qc on going
4696 * @status: current device status
4697 * @in_wq: 1 if called from workqueue, 0 otherwise
4698 *
4699 * RETURNS:
4700 * 1 when poll next status needed, 0 otherwise.
4701 */
9a1004d0
TH
4702int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4703 u8 status, int in_wq)
e2cec771 4704{
bb5cb290
AL
4705 unsigned long flags = 0;
4706 int poll_next;
4707
6912ccd5
AL
4708 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4709
bb5cb290
AL
4710 /* Make sure ata_qc_issue_prot() does not throw things
4711 * like DMA polling into the workqueue. Notice that
4712 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4713 */
c234fb00 4714 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4715
e2cec771 4716fsm_start:
999bb6f4 4717 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4718 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4719
e2cec771
AL
4720 switch (ap->hsm_task_state) {
4721 case HSM_ST_FIRST:
bb5cb290
AL
4722 /* Send first data block or PACKET CDB */
4723
4724 /* If polling, we will stay in the work queue after
4725 * sending the data. Otherwise, interrupt handler
4726 * takes over after sending the data.
4727 */
4728 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4729
e2cec771 4730 /* check device status */
3655d1d3
AL
4731 if (unlikely((status & ATA_DRQ) == 0)) {
4732 /* handle BSY=0, DRQ=0 as error */
4733 if (likely(status & (ATA_ERR | ATA_DF)))
4734 /* device stops HSM for abort/error */
4735 qc->err_mask |= AC_ERR_DEV;
4736 else
4737 /* HSM violation. Let EH handle this */
4738 qc->err_mask |= AC_ERR_HSM;
4739
14be71f4 4740 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4741 goto fsm_start;
1da177e4
LT
4742 }
4743
71601958
AL
4744 /* Device should not ask for data transfer (DRQ=1)
4745 * when it finds something wrong.
eee6c32f
AL
4746 * We ignore DRQ here and stop the HSM by
4747 * changing hsm_task_state to HSM_ST_ERR and
4748 * let the EH abort the command or reset the device.
71601958
AL
4749 */
4750 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4751 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4752 "error, dev_stat 0x%X\n", status);
3655d1d3 4753 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4754 ap->hsm_task_state = HSM_ST_ERR;
4755 goto fsm_start;
71601958 4756 }
1da177e4 4757
bb5cb290
AL
4758 /* Send the CDB (atapi) or the first data block (ata pio out).
4759 * During the state transition, interrupt handler shouldn't
4760 * be invoked before the data transfer is complete and
4761 * hsm_task_state is changed. Hence, the following locking.
4762 */
4763 if (in_wq)
ba6a1308 4764 spin_lock_irqsave(ap->lock, flags);
1da177e4 4765
bb5cb290
AL
4766 if (qc->tf.protocol == ATA_PROT_PIO) {
4767 /* PIO data out protocol.
4768 * send first data block.
4769 */
0565c26d 4770
bb5cb290
AL
4771 /* ata_pio_sectors() might change the state
4772 * to HSM_ST_LAST. so, the state is changed here
4773 * before ata_pio_sectors().
4774 */
4775 ap->hsm_task_state = HSM_ST;
4776 ata_pio_sectors(qc);
4777 ata_altstatus(ap); /* flush */
4778 } else
4779 /* send CDB */
4780 atapi_send_cdb(ap, qc);
4781
4782 if (in_wq)
ba6a1308 4783 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4784
4785 /* if polling, ata_pio_task() handles the rest.
4786 * otherwise, interrupt handler takes over from here.
4787 */
e2cec771 4788 break;
1c848984 4789
e2cec771
AL
4790 case HSM_ST:
4791 /* complete command or read/write the data register */
4792 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4793 /* ATAPI PIO protocol */
4794 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4795 /* No more data to transfer or device error.
4796 * Device error will be tagged in HSM_ST_LAST.
4797 */
e2cec771
AL
4798 ap->hsm_task_state = HSM_ST_LAST;
4799 goto fsm_start;
4800 }
1da177e4 4801
71601958
AL
4802 /* Device should not ask for data transfer (DRQ=1)
4803 * when it finds something wrong.
eee6c32f
AL
4804 * We ignore DRQ here and stop the HSM by
4805 * changing hsm_task_state to HSM_ST_ERR and
4806 * let the EH abort the command or reset the device.
71601958
AL
4807 */
4808 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4809 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4810 "device error, dev_stat 0x%X\n",
4811 status);
3655d1d3 4812 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4813 ap->hsm_task_state = HSM_ST_ERR;
4814 goto fsm_start;
71601958 4815 }
1da177e4 4816
e2cec771 4817 atapi_pio_bytes(qc);
7fb6ec28 4818
e2cec771
AL
4819 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4820 /* bad ireason reported by device */
4821 goto fsm_start;
1da177e4 4822
e2cec771
AL
4823 } else {
4824 /* ATA PIO protocol */
4825 if (unlikely((status & ATA_DRQ) == 0)) {
4826 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4827 if (likely(status & (ATA_ERR | ATA_DF)))
4828 /* device stops HSM for abort/error */
4829 qc->err_mask |= AC_ERR_DEV;
4830 else
55a8e2c8
TH
4831 /* HSM violation. Let EH handle this.
4832 * Phantom devices also trigger this
4833 * condition. Mark hint.
4834 */
4835 qc->err_mask |= AC_ERR_HSM |
4836 AC_ERR_NODEV_HINT;
3655d1d3 4837
e2cec771
AL
4838 ap->hsm_task_state = HSM_ST_ERR;
4839 goto fsm_start;
4840 }
1da177e4 4841
eee6c32f
AL
4842 /* For PIO reads, some devices may ask for
4843 * data transfer (DRQ=1) alone with ERR=1.
4844 * We respect DRQ here and transfer one
4845 * block of junk data before changing the
4846 * hsm_task_state to HSM_ST_ERR.
4847 *
4848 * For PIO writes, ERR=1 DRQ=1 doesn't make
4849 * sense since the data block has been
4850 * transferred to the device.
71601958
AL
4851 */
4852 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4853 /* data might be corrputed */
4854 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4855
4856 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4857 ata_pio_sectors(qc);
4858 ata_altstatus(ap);
4859 status = ata_wait_idle(ap);
4860 }
4861
3655d1d3
AL
4862 if (status & (ATA_BUSY | ATA_DRQ))
4863 qc->err_mask |= AC_ERR_HSM;
4864
eee6c32f
AL
4865 /* ata_pio_sectors() might change the
4866 * state to HSM_ST_LAST. so, the state
4867 * is changed after ata_pio_sectors().
4868 */
4869 ap->hsm_task_state = HSM_ST_ERR;
4870 goto fsm_start;
71601958
AL
4871 }
4872
e2cec771
AL
4873 ata_pio_sectors(qc);
4874
4875 if (ap->hsm_task_state == HSM_ST_LAST &&
4876 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4877 /* all data read */
4878 ata_altstatus(ap);
52a32205 4879 status = ata_wait_idle(ap);
e2cec771
AL
4880 goto fsm_start;
4881 }
4882 }
4883
4884 ata_altstatus(ap); /* flush */
bb5cb290 4885 poll_next = 1;
1da177e4
LT
4886 break;
4887
14be71f4 4888 case HSM_ST_LAST:
6912ccd5
AL
4889 if (unlikely(!ata_ok(status))) {
4890 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4891 ap->hsm_task_state = HSM_ST_ERR;
4892 goto fsm_start;
4893 }
4894
4895 /* no more data to transfer */
4332a771 4896 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4897 ap->print_id, qc->dev->devno, status);
e2cec771 4898
6912ccd5
AL
4899 WARN_ON(qc->err_mask);
4900
e2cec771 4901 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4902
e2cec771 4903 /* complete taskfile transaction */
c17ea20d 4904 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4905
4906 poll_next = 0;
1da177e4
LT
4907 break;
4908
14be71f4 4909 case HSM_ST_ERR:
e2cec771
AL
4910 /* make sure qc->err_mask is available to
4911 * know what's wrong and recover
4912 */
4913 WARN_ON(qc->err_mask == 0);
4914
4915 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4916
999bb6f4 4917 /* complete taskfile transaction */
c17ea20d 4918 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4919
4920 poll_next = 0;
e2cec771
AL
4921 break;
4922 default:
bb5cb290 4923 poll_next = 0;
6912ccd5 4924 BUG();
1da177e4
LT
4925 }
4926
bb5cb290 4927 return poll_next;
1da177e4
LT
4928}
4929
65f27f38 4930static void ata_pio_task(struct work_struct *work)
8061f5f0 4931{
65f27f38
DH
4932 struct ata_port *ap =
4933 container_of(work, struct ata_port, port_task.work);
4934 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4935 u8 status;
a1af3734 4936 int poll_next;
8061f5f0 4937
7fb6ec28 4938fsm_start:
a1af3734 4939 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4940
a1af3734
AL
4941 /*
4942 * This is purely heuristic. This is a fast path.
4943 * Sometimes when we enter, BSY will be cleared in
4944 * a chk-status or two. If not, the drive is probably seeking
4945 * or something. Snooze for a couple msecs, then
4946 * chk-status again. If still busy, queue delayed work.
4947 */
4948 status = ata_busy_wait(ap, ATA_BUSY, 5);
4949 if (status & ATA_BUSY) {
4950 msleep(2);
4951 status = ata_busy_wait(ap, ATA_BUSY, 10);
4952 if (status & ATA_BUSY) {
31ce6dae 4953 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4954 return;
4955 }
8061f5f0
TH
4956 }
4957
a1af3734
AL
4958 /* move the HSM */
4959 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4960
a1af3734
AL
4961 /* another command or interrupt handler
4962 * may be running at this point.
4963 */
4964 if (poll_next)
7fb6ec28 4965 goto fsm_start;
8061f5f0
TH
4966}
4967
1da177e4
LT
4968/**
4969 * ata_qc_new - Request an available ATA command, for queueing
4970 * @ap: Port associated with device @dev
4971 * @dev: Device from whom we request an available command structure
4972 *
4973 * LOCKING:
0cba632b 4974 * None.
1da177e4
LT
4975 */
4976
4977static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4978{
4979 struct ata_queued_cmd *qc = NULL;
4980 unsigned int i;
4981
e3180499 4982 /* no command while frozen */
b51e9e5d 4983 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4984 return NULL;
4985
2ab7db1f
TH
4986 /* the last tag is reserved for internal command. */
4987 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4988 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4989 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4990 break;
4991 }
4992
4993 if (qc)
4994 qc->tag = i;
4995
4996 return qc;
4997}
4998
4999/**
5000 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5001 * @dev: Device from whom we request an available command structure
5002 *
5003 * LOCKING:
0cba632b 5004 * None.
1da177e4
LT
5005 */
5006
3373efd8 5007struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5008{
3373efd8 5009 struct ata_port *ap = dev->ap;
1da177e4
LT
5010 struct ata_queued_cmd *qc;
5011
5012 qc = ata_qc_new(ap);
5013 if (qc) {
1da177e4
LT
5014 qc->scsicmd = NULL;
5015 qc->ap = ap;
5016 qc->dev = dev;
1da177e4 5017
2c13b7ce 5018 ata_qc_reinit(qc);
1da177e4
LT
5019 }
5020
5021 return qc;
5022}
5023
1da177e4
LT
5024/**
5025 * ata_qc_free - free unused ata_queued_cmd
5026 * @qc: Command to complete
5027 *
5028 * Designed to free unused ata_queued_cmd object
5029 * in case something prevents using it.
5030 *
5031 * LOCKING:
cca3974e 5032 * spin_lock_irqsave(host lock)
1da177e4
LT
5033 */
5034void ata_qc_free(struct ata_queued_cmd *qc)
5035{
4ba946e9
TH
5036 struct ata_port *ap = qc->ap;
5037 unsigned int tag;
5038
a4631474 5039 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5040
4ba946e9
TH
5041 qc->flags = 0;
5042 tag = qc->tag;
5043 if (likely(ata_tag_valid(tag))) {
4ba946e9 5044 qc->tag = ATA_TAG_POISON;
6cec4a39 5045 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5046 }
1da177e4
LT
5047}
5048
76014427 5049void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5050{
dedaf2b0
TH
5051 struct ata_port *ap = qc->ap;
5052
a4631474
TH
5053 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5054 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5055
5056 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5057 ata_sg_clean(qc);
5058
7401abf2 5059 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5060 if (qc->tf.protocol == ATA_PROT_NCQ)
5061 ap->sactive &= ~(1 << qc->tag);
5062 else
5063 ap->active_tag = ATA_TAG_POISON;
7401abf2 5064
3f3791d3
AL
5065 /* atapi: mark qc as inactive to prevent the interrupt handler
5066 * from completing the command twice later, before the error handler
5067 * is called. (when rc != 0 and atapi request sense is needed)
5068 */
5069 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5070 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5071
1da177e4 5072 /* call completion callback */
77853bf2 5073 qc->complete_fn(qc);
1da177e4
LT
5074}
5075
39599a53
TH
5076static void fill_result_tf(struct ata_queued_cmd *qc)
5077{
5078 struct ata_port *ap = qc->ap;
5079
39599a53 5080 qc->result_tf.flags = qc->tf.flags;
4742d54f 5081 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5082}
5083
f686bcb8
TH
5084/**
5085 * ata_qc_complete - Complete an active ATA command
5086 * @qc: Command to complete
5087 * @err_mask: ATA Status register contents
5088 *
5089 * Indicate to the mid and upper layers that an ATA
5090 * command has completed, with either an ok or not-ok status.
5091 *
5092 * LOCKING:
cca3974e 5093 * spin_lock_irqsave(host lock)
f686bcb8
TH
5094 */
5095void ata_qc_complete(struct ata_queued_cmd *qc)
5096{
5097 struct ata_port *ap = qc->ap;
5098
5099 /* XXX: New EH and old EH use different mechanisms to
5100 * synchronize EH with regular execution path.
5101 *
5102 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5103 * Normal execution path is responsible for not accessing a
5104 * failed qc. libata core enforces the rule by returning NULL
5105 * from ata_qc_from_tag() for failed qcs.
5106 *
5107 * Old EH depends on ata_qc_complete() nullifying completion
5108 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5109 * not synchronize with interrupt handler. Only PIO task is
5110 * taken care of.
5111 */
5112 if (ap->ops->error_handler) {
b51e9e5d 5113 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5114
5115 if (unlikely(qc->err_mask))
5116 qc->flags |= ATA_QCFLAG_FAILED;
5117
5118 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5119 if (!ata_tag_internal(qc->tag)) {
5120 /* always fill result TF for failed qc */
39599a53 5121 fill_result_tf(qc);
f686bcb8
TH
5122 ata_qc_schedule_eh(qc);
5123 return;
5124 }
5125 }
5126
5127 /* read result TF if requested */
5128 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5129 fill_result_tf(qc);
f686bcb8
TH
5130
5131 __ata_qc_complete(qc);
5132 } else {
5133 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5134 return;
5135
5136 /* read result TF if failed or requested */
5137 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5138 fill_result_tf(qc);
f686bcb8
TH
5139
5140 __ata_qc_complete(qc);
5141 }
5142}
5143
dedaf2b0
TH
5144/**
5145 * ata_qc_complete_multiple - Complete multiple qcs successfully
5146 * @ap: port in question
5147 * @qc_active: new qc_active mask
5148 * @finish_qc: LLDD callback invoked before completing a qc
5149 *
5150 * Complete in-flight commands. This functions is meant to be
5151 * called from low-level driver's interrupt routine to complete
5152 * requests normally. ap->qc_active and @qc_active is compared
5153 * and commands are completed accordingly.
5154 *
5155 * LOCKING:
cca3974e 5156 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5157 *
5158 * RETURNS:
5159 * Number of completed commands on success, -errno otherwise.
5160 */
5161int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5162 void (*finish_qc)(struct ata_queued_cmd *))
5163{
5164 int nr_done = 0;
5165 u32 done_mask;
5166 int i;
5167
5168 done_mask = ap->qc_active ^ qc_active;
5169
5170 if (unlikely(done_mask & qc_active)) {
5171 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5172 "(%08x->%08x)\n", ap->qc_active, qc_active);
5173 return -EINVAL;
5174 }
5175
5176 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5177 struct ata_queued_cmd *qc;
5178
5179 if (!(done_mask & (1 << i)))
5180 continue;
5181
5182 if ((qc = ata_qc_from_tag(ap, i))) {
5183 if (finish_qc)
5184 finish_qc(qc);
5185 ata_qc_complete(qc);
5186 nr_done++;
5187 }
5188 }
5189
5190 return nr_done;
5191}
5192
1da177e4
LT
5193static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5194{
5195 struct ata_port *ap = qc->ap;
5196
5197 switch (qc->tf.protocol) {
3dc1d881 5198 case ATA_PROT_NCQ:
1da177e4
LT
5199 case ATA_PROT_DMA:
5200 case ATA_PROT_ATAPI_DMA:
5201 return 1;
5202
5203 case ATA_PROT_ATAPI:
5204 case ATA_PROT_PIO:
1da177e4
LT
5205 if (ap->flags & ATA_FLAG_PIO_DMA)
5206 return 1;
5207
5208 /* fall through */
5209
5210 default:
5211 return 0;
5212 }
5213
5214 /* never reached */
5215}
5216
5217/**
5218 * ata_qc_issue - issue taskfile to device
5219 * @qc: command to issue to device
5220 *
5221 * Prepare an ATA command to submission to device.
5222 * This includes mapping the data into a DMA-able
5223 * area, filling in the S/G table, and finally
5224 * writing the taskfile to hardware, starting the command.
5225 *
5226 * LOCKING:
cca3974e 5227 * spin_lock_irqsave(host lock)
1da177e4 5228 */
8e0e694a 5229void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5230{
5231 struct ata_port *ap = qc->ap;
5232
dedaf2b0
TH
5233 /* Make sure only one non-NCQ command is outstanding. The
5234 * check is skipped for old EH because it reuses active qc to
5235 * request ATAPI sense.
5236 */
5237 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5238
5239 if (qc->tf.protocol == ATA_PROT_NCQ) {
5240 WARN_ON(ap->sactive & (1 << qc->tag));
5241 ap->sactive |= 1 << qc->tag;
5242 } else {
5243 WARN_ON(ap->sactive);
5244 ap->active_tag = qc->tag;
5245 }
5246
e4a70e76 5247 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5248 ap->qc_active |= 1 << qc->tag;
e4a70e76 5249
1da177e4
LT
5250 if (ata_should_dma_map(qc)) {
5251 if (qc->flags & ATA_QCFLAG_SG) {
5252 if (ata_sg_setup(qc))
8e436af9 5253 goto sg_err;
1da177e4
LT
5254 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5255 if (ata_sg_setup_one(qc))
8e436af9 5256 goto sg_err;
1da177e4
LT
5257 }
5258 } else {
5259 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5260 }
5261
5262 ap->ops->qc_prep(qc);
5263
8e0e694a
TH
5264 qc->err_mask |= ap->ops->qc_issue(qc);
5265 if (unlikely(qc->err_mask))
5266 goto err;
5267 return;
1da177e4 5268
8e436af9
TH
5269sg_err:
5270 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5271 qc->err_mask |= AC_ERR_SYSTEM;
5272err:
5273 ata_qc_complete(qc);
1da177e4
LT
5274}
5275
5276/**
5277 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5278 * @qc: command to issue to device
5279 *
5280 * Using various libata functions and hooks, this function
5281 * starts an ATA command. ATA commands are grouped into
5282 * classes called "protocols", and issuing each type of protocol
5283 * is slightly different.
5284 *
0baab86b
EF
5285 * May be used as the qc_issue() entry in ata_port_operations.
5286 *
1da177e4 5287 * LOCKING:
cca3974e 5288 * spin_lock_irqsave(host lock)
1da177e4
LT
5289 *
5290 * RETURNS:
9a3d9eb0 5291 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5292 */
5293
9a3d9eb0 5294unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5295{
5296 struct ata_port *ap = qc->ap;
5297
e50362ec
AL
5298 /* Use polling pio if the LLD doesn't handle
5299 * interrupt driven pio and atapi CDB interrupt.
5300 */
5301 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5302 switch (qc->tf.protocol) {
5303 case ATA_PROT_PIO:
e3472cbe 5304 case ATA_PROT_NODATA:
e50362ec
AL
5305 case ATA_PROT_ATAPI:
5306 case ATA_PROT_ATAPI_NODATA:
5307 qc->tf.flags |= ATA_TFLAG_POLLING;
5308 break;
5309 case ATA_PROT_ATAPI_DMA:
5310 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5311 /* see ata_dma_blacklisted() */
e50362ec
AL
5312 BUG();
5313 break;
5314 default:
5315 break;
5316 }
5317 }
5318
3d3cca37
TH
5319 /* Some controllers show flaky interrupt behavior after
5320 * setting xfer mode. Use polling instead.
5321 */
5322 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5323 qc->tf.feature == SETFEATURES_XFER) &&
5324 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5325 qc->tf.flags |= ATA_TFLAG_POLLING;
5326
312f7da2 5327 /* select the device */
1da177e4
LT
5328 ata_dev_select(ap, qc->dev->devno, 1, 0);
5329
312f7da2 5330 /* start the command */
1da177e4
LT
5331 switch (qc->tf.protocol) {
5332 case ATA_PROT_NODATA:
312f7da2
AL
5333 if (qc->tf.flags & ATA_TFLAG_POLLING)
5334 ata_qc_set_polling(qc);
5335
e5338254 5336 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5337 ap->hsm_task_state = HSM_ST_LAST;
5338
5339 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5340 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5341
1da177e4
LT
5342 break;
5343
5344 case ATA_PROT_DMA:
587005de 5345 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5346
1da177e4
LT
5347 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5348 ap->ops->bmdma_setup(qc); /* set up bmdma */
5349 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5350 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5351 break;
5352
312f7da2
AL
5353 case ATA_PROT_PIO:
5354 if (qc->tf.flags & ATA_TFLAG_POLLING)
5355 ata_qc_set_polling(qc);
1da177e4 5356
e5338254 5357 ata_tf_to_host(ap, &qc->tf);
312f7da2 5358
54f00389
AL
5359 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5360 /* PIO data out protocol */
5361 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5362 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5363
5364 /* always send first data block using
e27486db 5365 * the ata_pio_task() codepath.
54f00389 5366 */
312f7da2 5367 } else {
54f00389
AL
5368 /* PIO data in protocol */
5369 ap->hsm_task_state = HSM_ST;
5370
5371 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5372 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5373
5374 /* if polling, ata_pio_task() handles the rest.
5375 * otherwise, interrupt handler takes over from here.
5376 */
312f7da2
AL
5377 }
5378
1da177e4
LT
5379 break;
5380
1da177e4 5381 case ATA_PROT_ATAPI:
1da177e4 5382 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5383 if (qc->tf.flags & ATA_TFLAG_POLLING)
5384 ata_qc_set_polling(qc);
5385
e5338254 5386 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5387
312f7da2
AL
5388 ap->hsm_task_state = HSM_ST_FIRST;
5389
5390 /* send cdb by polling if no cdb interrupt */
5391 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5392 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5393 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5394 break;
5395
5396 case ATA_PROT_ATAPI_DMA:
587005de 5397 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5398
1da177e4
LT
5399 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5400 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5401 ap->hsm_task_state = HSM_ST_FIRST;
5402
5403 /* send cdb by polling if no cdb interrupt */
5404 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5405 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5406 break;
5407
5408 default:
5409 WARN_ON(1);
9a3d9eb0 5410 return AC_ERR_SYSTEM;
1da177e4
LT
5411 }
5412
5413 return 0;
5414}
5415
1da177e4
LT
5416/**
5417 * ata_host_intr - Handle host interrupt for given (port, task)
5418 * @ap: Port on which interrupt arrived (possibly...)
5419 * @qc: Taskfile currently active in engine
5420 *
5421 * Handle host interrupt for given queued command. Currently,
5422 * only DMA interrupts are handled. All other commands are
5423 * handled via polling with interrupts disabled (nIEN bit).
5424 *
5425 * LOCKING:
cca3974e 5426 * spin_lock_irqsave(host lock)
1da177e4
LT
5427 *
5428 * RETURNS:
5429 * One if interrupt was handled, zero if not (shared irq).
5430 */
5431
5432inline unsigned int ata_host_intr (struct ata_port *ap,
5433 struct ata_queued_cmd *qc)
5434{
ea54763f 5435 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5436 u8 status, host_stat = 0;
1da177e4 5437
312f7da2 5438 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5439 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5440
312f7da2
AL
5441 /* Check whether we are expecting interrupt in this state */
5442 switch (ap->hsm_task_state) {
5443 case HSM_ST_FIRST:
6912ccd5
AL
5444 /* Some pre-ATAPI-4 devices assert INTRQ
5445 * at this state when ready to receive CDB.
5446 */
1da177e4 5447
312f7da2
AL
5448 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5449 * The flag was turned on only for atapi devices.
5450 * No need to check is_atapi_taskfile(&qc->tf) again.
5451 */
5452 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5453 goto idle_irq;
1da177e4 5454 break;
312f7da2
AL
5455 case HSM_ST_LAST:
5456 if (qc->tf.protocol == ATA_PROT_DMA ||
5457 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5458 /* check status of DMA engine */
5459 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5460 VPRINTK("ata%u: host_stat 0x%X\n",
5461 ap->print_id, host_stat);
312f7da2
AL
5462
5463 /* if it's not our irq... */
5464 if (!(host_stat & ATA_DMA_INTR))
5465 goto idle_irq;
5466
5467 /* before we do anything else, clear DMA-Start bit */
5468 ap->ops->bmdma_stop(qc);
a4f16610
AL
5469
5470 if (unlikely(host_stat & ATA_DMA_ERR)) {
5471 /* error when transfering data to/from memory */
5472 qc->err_mask |= AC_ERR_HOST_BUS;
5473 ap->hsm_task_state = HSM_ST_ERR;
5474 }
312f7da2
AL
5475 }
5476 break;
5477 case HSM_ST:
5478 break;
1da177e4
LT
5479 default:
5480 goto idle_irq;
5481 }
5482
312f7da2
AL
5483 /* check altstatus */
5484 status = ata_altstatus(ap);
5485 if (status & ATA_BUSY)
5486 goto idle_irq;
1da177e4 5487
312f7da2
AL
5488 /* check main status, clearing INTRQ */
5489 status = ata_chk_status(ap);
5490 if (unlikely(status & ATA_BUSY))
5491 goto idle_irq;
1da177e4 5492
312f7da2
AL
5493 /* ack bmdma irq events */
5494 ap->ops->irq_clear(ap);
1da177e4 5495
bb5cb290 5496 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5497
5498 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5499 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5500 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5501
1da177e4
LT
5502 return 1; /* irq handled */
5503
5504idle_irq:
5505 ap->stats.idle_irq++;
5506
5507#ifdef ATA_IRQ_TRAP
5508 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5509 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5510 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5511 return 1;
1da177e4
LT
5512 }
5513#endif
5514 return 0; /* irq not handled */
5515}
5516
5517/**
5518 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5519 * @irq: irq line (unused)
cca3974e 5520 * @dev_instance: pointer to our ata_host information structure
1da177e4 5521 *
0cba632b
JG
5522 * Default interrupt handler for PCI IDE devices. Calls
5523 * ata_host_intr() for each port that is not disabled.
5524 *
1da177e4 5525 * LOCKING:
cca3974e 5526 * Obtains host lock during operation.
1da177e4
LT
5527 *
5528 * RETURNS:
0cba632b 5529 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5530 */
5531
7d12e780 5532irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5533{
cca3974e 5534 struct ata_host *host = dev_instance;
1da177e4
LT
5535 unsigned int i;
5536 unsigned int handled = 0;
5537 unsigned long flags;
5538
5539 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5540 spin_lock_irqsave(&host->lock, flags);
1da177e4 5541
cca3974e 5542 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5543 struct ata_port *ap;
5544
cca3974e 5545 ap = host->ports[i];
c1389503 5546 if (ap &&
029f5468 5547 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5548 struct ata_queued_cmd *qc;
5549
5550 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5551 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5552 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5553 handled |= ata_host_intr(ap, qc);
5554 }
5555 }
5556
cca3974e 5557 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5558
5559 return IRQ_RETVAL(handled);
5560}
5561
34bf2170
TH
5562/**
5563 * sata_scr_valid - test whether SCRs are accessible
5564 * @ap: ATA port to test SCR accessibility for
5565 *
5566 * Test whether SCRs are accessible for @ap.
5567 *
5568 * LOCKING:
5569 * None.
5570 *
5571 * RETURNS:
5572 * 1 if SCRs are accessible, 0 otherwise.
5573 */
5574int sata_scr_valid(struct ata_port *ap)
5575{
5576 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5577}
5578
5579/**
5580 * sata_scr_read - read SCR register of the specified port
5581 * @ap: ATA port to read SCR for
5582 * @reg: SCR to read
5583 * @val: Place to store read value
5584 *
5585 * Read SCR register @reg of @ap into *@val. This function is
5586 * guaranteed to succeed if the cable type of the port is SATA
5587 * and the port implements ->scr_read.
5588 *
5589 * LOCKING:
5590 * None.
5591 *
5592 * RETURNS:
5593 * 0 on success, negative errno on failure.
5594 */
5595int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5596{
5597 if (sata_scr_valid(ap)) {
5598 *val = ap->ops->scr_read(ap, reg);
5599 return 0;
5600 }
5601 return -EOPNOTSUPP;
5602}
5603
5604/**
5605 * sata_scr_write - write SCR register of the specified port
5606 * @ap: ATA port to write SCR for
5607 * @reg: SCR to write
5608 * @val: value to write
5609 *
5610 * Write @val to SCR register @reg of @ap. This function is
5611 * guaranteed to succeed if the cable type of the port is SATA
5612 * and the port implements ->scr_read.
5613 *
5614 * LOCKING:
5615 * None.
5616 *
5617 * RETURNS:
5618 * 0 on success, negative errno on failure.
5619 */
5620int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5621{
5622 if (sata_scr_valid(ap)) {
5623 ap->ops->scr_write(ap, reg, val);
5624 return 0;
5625 }
5626 return -EOPNOTSUPP;
5627}
5628
5629/**
5630 * sata_scr_write_flush - write SCR register of the specified port and flush
5631 * @ap: ATA port to write SCR for
5632 * @reg: SCR to write
5633 * @val: value to write
5634 *
5635 * This function is identical to sata_scr_write() except that this
5636 * function performs flush after writing to the register.
5637 *
5638 * LOCKING:
5639 * None.
5640 *
5641 * RETURNS:
5642 * 0 on success, negative errno on failure.
5643 */
5644int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5645{
5646 if (sata_scr_valid(ap)) {
5647 ap->ops->scr_write(ap, reg, val);
5648 ap->ops->scr_read(ap, reg);
5649 return 0;
5650 }
5651 return -EOPNOTSUPP;
5652}
5653
5654/**
5655 * ata_port_online - test whether the given port is online
5656 * @ap: ATA port to test
5657 *
5658 * Test whether @ap is online. Note that this function returns 0
5659 * if online status of @ap cannot be obtained, so
5660 * ata_port_online(ap) != !ata_port_offline(ap).
5661 *
5662 * LOCKING:
5663 * None.
5664 *
5665 * RETURNS:
5666 * 1 if the port online status is available and online.
5667 */
5668int ata_port_online(struct ata_port *ap)
5669{
5670 u32 sstatus;
5671
5672 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5673 return 1;
5674 return 0;
5675}
5676
5677/**
5678 * ata_port_offline - test whether the given port is offline
5679 * @ap: ATA port to test
5680 *
5681 * Test whether @ap is offline. Note that this function returns
5682 * 0 if offline status of @ap cannot be obtained, so
5683 * ata_port_online(ap) != !ata_port_offline(ap).
5684 *
5685 * LOCKING:
5686 * None.
5687 *
5688 * RETURNS:
5689 * 1 if the port offline status is available and offline.
5690 */
5691int ata_port_offline(struct ata_port *ap)
5692{
5693 u32 sstatus;
5694
5695 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5696 return 1;
5697 return 0;
5698}
0baab86b 5699
77b08fb5 5700int ata_flush_cache(struct ata_device *dev)
9b847548 5701{
977e6b9f 5702 unsigned int err_mask;
9b847548
JA
5703 u8 cmd;
5704
5705 if (!ata_try_flush_cache(dev))
5706 return 0;
5707
6fc49adb 5708 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5709 cmd = ATA_CMD_FLUSH_EXT;
5710 else
5711 cmd = ATA_CMD_FLUSH;
5712
977e6b9f
TH
5713 err_mask = ata_do_simple_cmd(dev, cmd);
5714 if (err_mask) {
5715 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5716 return -EIO;
5717 }
5718
5719 return 0;
9b847548
JA
5720}
5721
6ffa01d8 5722#ifdef CONFIG_PM
cca3974e
JG
5723static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5724 unsigned int action, unsigned int ehi_flags,
5725 int wait)
500530f6
TH
5726{
5727 unsigned long flags;
5728 int i, rc;
5729
cca3974e
JG
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
500530f6
TH
5732
5733 /* Previous resume operation might still be in
5734 * progress. Wait for PM_PENDING to clear.
5735 */
5736 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5737 ata_port_wait_eh(ap);
5738 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5739 }
5740
5741 /* request PM ops to EH */
5742 spin_lock_irqsave(ap->lock, flags);
5743
5744 ap->pm_mesg = mesg;
5745 if (wait) {
5746 rc = 0;
5747 ap->pm_result = &rc;
5748 }
5749
5750 ap->pflags |= ATA_PFLAG_PM_PENDING;
5751 ap->eh_info.action |= action;
5752 ap->eh_info.flags |= ehi_flags;
5753
5754 ata_port_schedule_eh(ap);
5755
5756 spin_unlock_irqrestore(ap->lock, flags);
5757
5758 /* wait and check result */
5759 if (wait) {
5760 ata_port_wait_eh(ap);
5761 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5762 if (rc)
5763 return rc;
5764 }
5765 }
5766
5767 return 0;
5768}
5769
5770/**
cca3974e
JG
5771 * ata_host_suspend - suspend host
5772 * @host: host to suspend
500530f6
TH
5773 * @mesg: PM message
5774 *
cca3974e 5775 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5776 * function requests EH to perform PM operations and waits for EH
5777 * to finish.
5778 *
5779 * LOCKING:
5780 * Kernel thread context (may sleep).
5781 *
5782 * RETURNS:
5783 * 0 on success, -errno on failure.
5784 */
cca3974e 5785int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5786{
5787 int i, j, rc;
5788
cca3974e 5789 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5790 if (rc)
5791 goto fail;
5792
5793 /* EH is quiescent now. Fail if we have any ready device.
5794 * This happens if hotplug occurs between completion of device
5795 * suspension and here.
5796 */
cca3974e
JG
5797 for (i = 0; i < host->n_ports; i++) {
5798 struct ata_port *ap = host->ports[i];
500530f6
TH
5799
5800 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5801 struct ata_device *dev = &ap->device[j];
5802
5803 if (ata_dev_ready(dev)) {
5804 ata_port_printk(ap, KERN_WARNING,
5805 "suspend failed, device %d "
5806 "still active\n", dev->devno);
5807 rc = -EBUSY;
5808 goto fail;
5809 }
5810 }
5811 }
5812
cca3974e 5813 host->dev->power.power_state = mesg;
500530f6
TH
5814 return 0;
5815
5816 fail:
cca3974e 5817 ata_host_resume(host);
500530f6
TH
5818 return rc;
5819}
5820
5821/**
cca3974e
JG
5822 * ata_host_resume - resume host
5823 * @host: host to resume
500530f6 5824 *
cca3974e 5825 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5826 * function requests EH to perform PM operations and returns.
5827 * Note that all resume operations are performed parallely.
5828 *
5829 * LOCKING:
5830 * Kernel thread context (may sleep).
5831 */
cca3974e 5832void ata_host_resume(struct ata_host *host)
500530f6 5833{
cca3974e
JG
5834 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5835 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5836 host->dev->power.power_state = PMSG_ON;
500530f6 5837}
6ffa01d8 5838#endif
500530f6 5839
c893a3ae
RD
5840/**
5841 * ata_port_start - Set port up for dma.
5842 * @ap: Port to initialize
5843 *
5844 * Called just after data structures for each port are
5845 * initialized. Allocates space for PRD table.
5846 *
5847 * May be used as the port_start() entry in ata_port_operations.
5848 *
5849 * LOCKING:
5850 * Inherited from caller.
5851 */
f0d36efd 5852int ata_port_start(struct ata_port *ap)
1da177e4 5853{
2f1f610b 5854 struct device *dev = ap->dev;
6037d6bb 5855 int rc;
1da177e4 5856
f0d36efd
TH
5857 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5858 GFP_KERNEL);
1da177e4
LT
5859 if (!ap->prd)
5860 return -ENOMEM;
5861
6037d6bb 5862 rc = ata_pad_alloc(ap, dev);
f0d36efd 5863 if (rc)
6037d6bb 5864 return rc;
1da177e4 5865
f0d36efd
TH
5866 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5867 (unsigned long long)ap->prd_dma);
1da177e4
LT
5868 return 0;
5869}
5870
3ef3b43d
TH
5871/**
5872 * ata_dev_init - Initialize an ata_device structure
5873 * @dev: Device structure to initialize
5874 *
5875 * Initialize @dev in preparation for probing.
5876 *
5877 * LOCKING:
5878 * Inherited from caller.
5879 */
5880void ata_dev_init(struct ata_device *dev)
5881{
5882 struct ata_port *ap = dev->ap;
72fa4b74
TH
5883 unsigned long flags;
5884
5a04bf4b
TH
5885 /* SATA spd limit is bound to the first device */
5886 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5887
72fa4b74
TH
5888 /* High bits of dev->flags are used to record warm plug
5889 * requests which occur asynchronously. Synchronize using
cca3974e 5890 * host lock.
72fa4b74 5891 */
ba6a1308 5892 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5893 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5894 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5895
72fa4b74
TH
5896 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5897 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5898 dev->pio_mask = UINT_MAX;
5899 dev->mwdma_mask = UINT_MAX;
5900 dev->udma_mask = UINT_MAX;
5901}
5902
1da177e4 5903/**
f3187195
TH
5904 * ata_port_alloc - allocate and initialize basic ATA port resources
5905 * @host: ATA host this allocated port belongs to
1da177e4 5906 *
f3187195
TH
5907 * Allocate and initialize basic ATA port resources.
5908 *
5909 * RETURNS:
5910 * Allocate ATA port on success, NULL on failure.
0cba632b 5911 *
1da177e4 5912 * LOCKING:
f3187195 5913 * Inherited from calling layer (may sleep).
1da177e4 5914 */
f3187195 5915struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5916{
f3187195 5917 struct ata_port *ap;
1da177e4
LT
5918 unsigned int i;
5919
f3187195
TH
5920 DPRINTK("ENTER\n");
5921
5922 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5923 if (!ap)
5924 return NULL;
5925
cca3974e 5926 ap->lock = &host->lock;
198e0fed 5927 ap->flags = ATA_FLAG_DISABLED;
f3187195 5928 ap->print_id = -1;
1da177e4 5929 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5930 ap->host = host;
f3187195
TH
5931 ap->dev = host->dev;
5932
5a04bf4b 5933 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5934 ap->active_tag = ATA_TAG_POISON;
5935 ap->last_ctl = 0xFF;
bd5d825c
BP
5936
5937#if defined(ATA_VERBOSE_DEBUG)
5938 /* turn on all debugging levels */
5939 ap->msg_enable = 0x00FF;
5940#elif defined(ATA_DEBUG)
5941 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5942#else
0dd4b21f 5943 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5944#endif
1da177e4 5945
65f27f38
DH
5946 INIT_DELAYED_WORK(&ap->port_task, NULL);
5947 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5948 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5949 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5950 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5951
838df628 5952 ap->cbl = ATA_CBL_NONE;
838df628 5953
acf356b1
TH
5954 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5955 struct ata_device *dev = &ap->device[i];
38d87234 5956 dev->ap = ap;
72fa4b74 5957 dev->devno = i;
3ef3b43d 5958 ata_dev_init(dev);
acf356b1 5959 }
1da177e4
LT
5960
5961#ifdef ATA_IRQ_TRAP
5962 ap->stats.unhandled_irq = 1;
5963 ap->stats.idle_irq = 1;
5964#endif
1da177e4 5965 return ap;
1da177e4
LT
5966}
5967
f0d36efd
TH
5968static void ata_host_release(struct device *gendev, void *res)
5969{
5970 struct ata_host *host = dev_get_drvdata(gendev);
5971 int i;
5972
5973 for (i = 0; i < host->n_ports; i++) {
5974 struct ata_port *ap = host->ports[i];
5975
ecef7253
TH
5976 if (!ap)
5977 continue;
5978
5979 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 5980 ap->ops->port_stop(ap);
f0d36efd
TH
5981 }
5982
ecef7253 5983 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 5984 host->ops->host_stop(host);
1aa56cca 5985
1aa506e4
TH
5986 for (i = 0; i < host->n_ports; i++) {
5987 struct ata_port *ap = host->ports[i];
5988
4911487a
TH
5989 if (!ap)
5990 continue;
5991
5992 if (ap->scsi_host)
1aa506e4
TH
5993 scsi_host_put(ap->scsi_host);
5994
4911487a 5995 kfree(ap);
1aa506e4
TH
5996 host->ports[i] = NULL;
5997 }
5998
1aa56cca 5999 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6000}
6001
f3187195
TH
6002/**
6003 * ata_host_alloc - allocate and init basic ATA host resources
6004 * @dev: generic device this host is associated with
6005 * @max_ports: maximum number of ATA ports associated with this host
6006 *
6007 * Allocate and initialize basic ATA host resources. LLD calls
6008 * this function to allocate a host, initializes it fully and
6009 * attaches it using ata_host_register().
6010 *
6011 * @max_ports ports are allocated and host->n_ports is
6012 * initialized to @max_ports. The caller is allowed to decrease
6013 * host->n_ports before calling ata_host_register(). The unused
6014 * ports will be automatically freed on registration.
6015 *
6016 * RETURNS:
6017 * Allocate ATA host on success, NULL on failure.
6018 *
6019 * LOCKING:
6020 * Inherited from calling layer (may sleep).
6021 */
6022struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6023{
6024 struct ata_host *host;
6025 size_t sz;
6026 int i;
6027
6028 DPRINTK("ENTER\n");
6029
6030 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6031 return NULL;
6032
6033 /* alloc a container for our list of ATA ports (buses) */
6034 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6035 /* alloc a container for our list of ATA ports (buses) */
6036 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6037 if (!host)
6038 goto err_out;
6039
6040 devres_add(dev, host);
6041 dev_set_drvdata(dev, host);
6042
6043 spin_lock_init(&host->lock);
6044 host->dev = dev;
6045 host->n_ports = max_ports;
6046
6047 /* allocate ports bound to this host */
6048 for (i = 0; i < max_ports; i++) {
6049 struct ata_port *ap;
6050
6051 ap = ata_port_alloc(host);
6052 if (!ap)
6053 goto err_out;
6054
6055 ap->port_no = i;
6056 host->ports[i] = ap;
6057 }
6058
6059 devres_remove_group(dev, NULL);
6060 return host;
6061
6062 err_out:
6063 devres_release_group(dev, NULL);
6064 return NULL;
6065}
6066
f5cda257
TH
6067/**
6068 * ata_host_alloc_pinfo - alloc host and init with port_info array
6069 * @dev: generic device this host is associated with
6070 * @ppi: array of ATA port_info to initialize host with
6071 * @n_ports: number of ATA ports attached to this host
6072 *
6073 * Allocate ATA host and initialize with info from @ppi. If NULL
6074 * terminated, @ppi may contain fewer entries than @n_ports. The
6075 * last entry will be used for the remaining ports.
6076 *
6077 * RETURNS:
6078 * Allocate ATA host on success, NULL on failure.
6079 *
6080 * LOCKING:
6081 * Inherited from calling layer (may sleep).
6082 */
6083struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6084 const struct ata_port_info * const * ppi,
6085 int n_ports)
6086{
6087 const struct ata_port_info *pi;
6088 struct ata_host *host;
6089 int i, j;
6090
6091 host = ata_host_alloc(dev, n_ports);
6092 if (!host)
6093 return NULL;
6094
6095 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
6097
6098 if (ppi[j])
6099 pi = ppi[j++];
6100
6101 ap->pio_mask = pi->pio_mask;
6102 ap->mwdma_mask = pi->mwdma_mask;
6103 ap->udma_mask = pi->udma_mask;
6104 ap->flags |= pi->flags;
6105 ap->ops = pi->port_ops;
6106
6107 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6108 host->ops = pi->port_ops;
6109 if (!host->private_data && pi->private_data)
6110 host->private_data = pi->private_data;
6111 }
6112
6113 return host;
6114}
6115
ecef7253
TH
6116/**
6117 * ata_host_start - start and freeze ports of an ATA host
6118 * @host: ATA host to start ports for
6119 *
6120 * Start and then freeze ports of @host. Started status is
6121 * recorded in host->flags, so this function can be called
6122 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6123 * once. If host->ops isn't initialized yet, its set to the
6124 * first non-dummy port ops.
ecef7253
TH
6125 *
6126 * LOCKING:
6127 * Inherited from calling layer (may sleep).
6128 *
6129 * RETURNS:
6130 * 0 if all ports are started successfully, -errno otherwise.
6131 */
6132int ata_host_start(struct ata_host *host)
6133{
6134 int i, rc;
6135
6136 if (host->flags & ATA_HOST_STARTED)
6137 return 0;
6138
6139 for (i = 0; i < host->n_ports; i++) {
6140 struct ata_port *ap = host->ports[i];
6141
f3187195
TH
6142 if (!host->ops && !ata_port_is_dummy(ap))
6143 host->ops = ap->ops;
6144
ecef7253
TH
6145 if (ap->ops->port_start) {
6146 rc = ap->ops->port_start(ap);
6147 if (rc) {
6148 ata_port_printk(ap, KERN_ERR, "failed to "
6149 "start port (errno=%d)\n", rc);
6150 goto err_out;
6151 }
6152 }
6153
6154 ata_eh_freeze_port(ap);
6155 }
6156
6157 host->flags |= ATA_HOST_STARTED;
6158 return 0;
6159
6160 err_out:
6161 while (--i >= 0) {
6162 struct ata_port *ap = host->ports[i];
6163
6164 if (ap->ops->port_stop)
6165 ap->ops->port_stop(ap);
6166 }
6167 return rc;
6168}
6169
b03732f0 6170/**
cca3974e
JG
6171 * ata_sas_host_init - Initialize a host struct
6172 * @host: host to initialize
6173 * @dev: device host is attached to
6174 * @flags: host flags
6175 * @ops: port_ops
b03732f0
BK
6176 *
6177 * LOCKING:
6178 * PCI/etc. bus probe sem.
6179 *
6180 */
f3187195 6181/* KILLME - the only user left is ipr */
cca3974e
JG
6182void ata_host_init(struct ata_host *host, struct device *dev,
6183 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6184{
cca3974e
JG
6185 spin_lock_init(&host->lock);
6186 host->dev = dev;
6187 host->flags = flags;
6188 host->ops = ops;
b03732f0
BK
6189}
6190
f3187195
TH
6191/**
6192 * ata_host_register - register initialized ATA host
6193 * @host: ATA host to register
6194 * @sht: template for SCSI host
6195 *
6196 * Register initialized ATA host. @host is allocated using
6197 * ata_host_alloc() and fully initialized by LLD. This function
6198 * starts ports, registers @host with ATA and SCSI layers and
6199 * probe registered devices.
6200 *
6201 * LOCKING:
6202 * Inherited from calling layer (may sleep).
6203 *
6204 * RETURNS:
6205 * 0 on success, -errno otherwise.
6206 */
6207int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6208{
6209 int i, rc;
6210
6211 /* host must have been started */
6212 if (!(host->flags & ATA_HOST_STARTED)) {
6213 dev_printk(KERN_ERR, host->dev,
6214 "BUG: trying to register unstarted host\n");
6215 WARN_ON(1);
6216 return -EINVAL;
6217 }
6218
6219 /* Blow away unused ports. This happens when LLD can't
6220 * determine the exact number of ports to allocate at
6221 * allocation time.
6222 */
6223 for (i = host->n_ports; host->ports[i]; i++)
6224 kfree(host->ports[i]);
6225
6226 /* give ports names and add SCSI hosts */
6227 for (i = 0; i < host->n_ports; i++)
6228 host->ports[i]->print_id = ata_print_id++;
6229
6230 rc = ata_scsi_add_hosts(host, sht);
6231 if (rc)
6232 return rc;
6233
6234 /* set cable, sata_spd_limit and report */
6235 for (i = 0; i < host->n_ports; i++) {
6236 struct ata_port *ap = host->ports[i];
6237 int irq_line;
6238 u32 scontrol;
6239 unsigned long xfer_mask;
6240
6241 /* set SATA cable type if still unset */
6242 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6243 ap->cbl = ATA_CBL_SATA;
6244
6245 /* init sata_spd_limit to the current value */
6246 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6247 int spd = (scontrol >> 4) & 0xf;
6248 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6249 }
6250 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6251
6252 /* report the secondary IRQ for second channel legacy */
6253 irq_line = host->irq;
6254 if (i == 1 && host->irq2)
6255 irq_line = host->irq2;
6256
6257 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6258 ap->udma_mask);
6259
6260 /* print per-port info to dmesg */
6261 if (!ata_port_is_dummy(ap))
6262 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6263 "ctl 0x%p bmdma 0x%p irq %d\n",
6264 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6265 ata_mode_string(xfer_mask),
6266 ap->ioaddr.cmd_addr,
6267 ap->ioaddr.ctl_addr,
6268 ap->ioaddr.bmdma_addr,
6269 irq_line);
6270 else
6271 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6272 }
6273
6274 /* perform each probe synchronously */
6275 DPRINTK("probe begin\n");
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap = host->ports[i];
6278 int rc;
6279
6280 /* probe */
6281 if (ap->ops->error_handler) {
6282 struct ata_eh_info *ehi = &ap->eh_info;
6283 unsigned long flags;
6284
6285 ata_port_probe(ap);
6286
6287 /* kick EH for boot probing */
6288 spin_lock_irqsave(ap->lock, flags);
6289
6290 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6291 ehi->action |= ATA_EH_SOFTRESET;
6292 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6293
6294 ap->pflags |= ATA_PFLAG_LOADING;
6295 ata_port_schedule_eh(ap);
6296
6297 spin_unlock_irqrestore(ap->lock, flags);
6298
6299 /* wait for EH to finish */
6300 ata_port_wait_eh(ap);
6301 } else {
6302 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6303 rc = ata_bus_probe(ap);
6304 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6305
6306 if (rc) {
6307 /* FIXME: do something useful here?
6308 * Current libata behavior will
6309 * tear down everything when
6310 * the module is removed
6311 * or the h/w is unplugged.
6312 */
6313 }
6314 }
6315 }
6316
6317 /* probes are done, now scan each port's disk(s) */
6318 DPRINTK("host probe begin\n");
6319 for (i = 0; i < host->n_ports; i++) {
6320 struct ata_port *ap = host->ports[i];
6321
6322 ata_scsi_scan_host(ap);
6323 }
6324
6325 return 0;
6326}
6327
f5cda257
TH
6328/**
6329 * ata_host_activate - start host, request IRQ and register it
6330 * @host: target ATA host
6331 * @irq: IRQ to request
6332 * @irq_handler: irq_handler used when requesting IRQ
6333 * @irq_flags: irq_flags used when requesting IRQ
6334 * @sht: scsi_host_template to use when registering the host
6335 *
6336 * After allocating an ATA host and initializing it, most libata
6337 * LLDs perform three steps to activate the host - start host,
6338 * request IRQ and register it. This helper takes necessasry
6339 * arguments and performs the three steps in one go.
6340 *
6341 * LOCKING:
6342 * Inherited from calling layer (may sleep).
6343 *
6344 * RETURNS:
6345 * 0 on success, -errno otherwise.
6346 */
6347int ata_host_activate(struct ata_host *host, int irq,
6348 irq_handler_t irq_handler, unsigned long irq_flags,
6349 struct scsi_host_template *sht)
6350{
6351 int rc;
6352
6353 rc = ata_host_start(host);
6354 if (rc)
6355 return rc;
6356
6357 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6358 dev_driver_string(host->dev), host);
6359 if (rc)
6360 return rc;
6361
6362 rc = ata_host_register(host, sht);
6363 /* if failed, just free the IRQ and leave ports alone */
6364 if (rc)
6365 devm_free_irq(host->dev, irq, host);
6366
6367 return rc;
6368}
6369
720ba126
TH
6370/**
6371 * ata_port_detach - Detach ATA port in prepration of device removal
6372 * @ap: ATA port to be detached
6373 *
6374 * Detach all ATA devices and the associated SCSI devices of @ap;
6375 * then, remove the associated SCSI host. @ap is guaranteed to
6376 * be quiescent on return from this function.
6377 *
6378 * LOCKING:
6379 * Kernel thread context (may sleep).
6380 */
6381void ata_port_detach(struct ata_port *ap)
6382{
6383 unsigned long flags;
6384 int i;
6385
6386 if (!ap->ops->error_handler)
c3cf30a9 6387 goto skip_eh;
720ba126
TH
6388
6389 /* tell EH we're leaving & flush EH */
ba6a1308 6390 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6391 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6392 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6393
6394 ata_port_wait_eh(ap);
6395
6396 /* EH is now guaranteed to see UNLOADING, so no new device
6397 * will be attached. Disable all existing devices.
6398 */
ba6a1308 6399 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6400
6401 for (i = 0; i < ATA_MAX_DEVICES; i++)
6402 ata_dev_disable(&ap->device[i]);
6403
ba6a1308 6404 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6405
6406 /* Final freeze & EH. All in-flight commands are aborted. EH
6407 * will be skipped and retrials will be terminated with bad
6408 * target.
6409 */
ba6a1308 6410 spin_lock_irqsave(ap->lock, flags);
720ba126 6411 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6412 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6413
6414 ata_port_wait_eh(ap);
6415
6416 /* Flush hotplug task. The sequence is similar to
6417 * ata_port_flush_task().
6418 */
6419 flush_workqueue(ata_aux_wq);
6420 cancel_delayed_work(&ap->hotplug_task);
6421 flush_workqueue(ata_aux_wq);
6422
c3cf30a9 6423 skip_eh:
720ba126 6424 /* remove the associated SCSI host */
cca3974e 6425 scsi_remove_host(ap->scsi_host);
720ba126
TH
6426}
6427
0529c159
TH
6428/**
6429 * ata_host_detach - Detach all ports of an ATA host
6430 * @host: Host to detach
6431 *
6432 * Detach all ports of @host.
6433 *
6434 * LOCKING:
6435 * Kernel thread context (may sleep).
6436 */
6437void ata_host_detach(struct ata_host *host)
6438{
6439 int i;
6440
6441 for (i = 0; i < host->n_ports; i++)
6442 ata_port_detach(host->ports[i]);
6443}
6444
1da177e4
LT
6445/**
6446 * ata_std_ports - initialize ioaddr with standard port offsets.
6447 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6448 *
6449 * Utility function which initializes data_addr, error_addr,
6450 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6451 * device_addr, status_addr, and command_addr to standard offsets
6452 * relative to cmd_addr.
6453 *
6454 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6455 */
0baab86b 6456
1da177e4
LT
6457void ata_std_ports(struct ata_ioports *ioaddr)
6458{
6459 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6460 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6461 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6462 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6463 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6464 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6465 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6466 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6467 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6468 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6469}
6470
0baab86b 6471
374b1873
JG
6472#ifdef CONFIG_PCI
6473
1da177e4
LT
6474/**
6475 * ata_pci_remove_one - PCI layer callback for device removal
6476 * @pdev: PCI device that was removed
6477 *
b878ca5d
TH
6478 * PCI layer indicates to libata via this hook that hot-unplug or
6479 * module unload event has occurred. Detach all ports. Resource
6480 * release is handled via devres.
1da177e4
LT
6481 *
6482 * LOCKING:
6483 * Inherited from PCI layer (may sleep).
6484 */
f0d36efd 6485void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6486{
6487 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6488 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6489
b878ca5d 6490 ata_host_detach(host);
1da177e4
LT
6491}
6492
6493/* move to PCI subsystem */
057ace5e 6494int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6495{
6496 unsigned long tmp = 0;
6497
6498 switch (bits->width) {
6499 case 1: {
6500 u8 tmp8 = 0;
6501 pci_read_config_byte(pdev, bits->reg, &tmp8);
6502 tmp = tmp8;
6503 break;
6504 }
6505 case 2: {
6506 u16 tmp16 = 0;
6507 pci_read_config_word(pdev, bits->reg, &tmp16);
6508 tmp = tmp16;
6509 break;
6510 }
6511 case 4: {
6512 u32 tmp32 = 0;
6513 pci_read_config_dword(pdev, bits->reg, &tmp32);
6514 tmp = tmp32;
6515 break;
6516 }
6517
6518 default:
6519 return -EINVAL;
6520 }
6521
6522 tmp &= bits->mask;
6523
6524 return (tmp == bits->val) ? 1 : 0;
6525}
9b847548 6526
6ffa01d8 6527#ifdef CONFIG_PM
3c5100c1 6528void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6529{
6530 pci_save_state(pdev);
4c90d971 6531 pci_disable_device(pdev);
500530f6 6532
4c90d971 6533 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6534 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6535}
6536
553c4aa6 6537int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6538{
553c4aa6
TH
6539 int rc;
6540
9b847548
JA
6541 pci_set_power_state(pdev, PCI_D0);
6542 pci_restore_state(pdev);
553c4aa6 6543
b878ca5d 6544 rc = pcim_enable_device(pdev);
553c4aa6
TH
6545 if (rc) {
6546 dev_printk(KERN_ERR, &pdev->dev,
6547 "failed to enable device after resume (%d)\n", rc);
6548 return rc;
6549 }
6550
9b847548 6551 pci_set_master(pdev);
553c4aa6 6552 return 0;
500530f6
TH
6553}
6554
3c5100c1 6555int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6556{
cca3974e 6557 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6558 int rc = 0;
6559
cca3974e 6560 rc = ata_host_suspend(host, mesg);
500530f6
TH
6561 if (rc)
6562 return rc;
6563
3c5100c1 6564 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6565
6566 return 0;
6567}
6568
6569int ata_pci_device_resume(struct pci_dev *pdev)
6570{
cca3974e 6571 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6572 int rc;
500530f6 6573
553c4aa6
TH
6574 rc = ata_pci_device_do_resume(pdev);
6575 if (rc == 0)
6576 ata_host_resume(host);
6577 return rc;
9b847548 6578}
6ffa01d8
TH
6579#endif /* CONFIG_PM */
6580
1da177e4
LT
6581#endif /* CONFIG_PCI */
6582
6583
1da177e4
LT
6584static int __init ata_init(void)
6585{
a8601e5f 6586 ata_probe_timeout *= HZ;
1da177e4
LT
6587 ata_wq = create_workqueue("ata");
6588 if (!ata_wq)
6589 return -ENOMEM;
6590
453b07ac
TH
6591 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6592 if (!ata_aux_wq) {
6593 destroy_workqueue(ata_wq);
6594 return -ENOMEM;
6595 }
6596
1da177e4
LT
6597 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6598 return 0;
6599}
6600
6601static void __exit ata_exit(void)
6602{
6603 destroy_workqueue(ata_wq);
453b07ac 6604 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6605}
6606
a4625085 6607subsys_initcall(ata_init);
1da177e4
LT
6608module_exit(ata_exit);
6609
67846b30 6610static unsigned long ratelimit_time;
34af946a 6611static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6612
6613int ata_ratelimit(void)
6614{
6615 int rc;
6616 unsigned long flags;
6617
6618 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6619
6620 if (time_after(jiffies, ratelimit_time)) {
6621 rc = 1;
6622 ratelimit_time = jiffies + (HZ/5);
6623 } else
6624 rc = 0;
6625
6626 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6627
6628 return rc;
6629}
6630
c22daff4
TH
6631/**
6632 * ata_wait_register - wait until register value changes
6633 * @reg: IO-mapped register
6634 * @mask: Mask to apply to read register value
6635 * @val: Wait condition
6636 * @interval_msec: polling interval in milliseconds
6637 * @timeout_msec: timeout in milliseconds
6638 *
6639 * Waiting for some bits of register to change is a common
6640 * operation for ATA controllers. This function reads 32bit LE
6641 * IO-mapped register @reg and tests for the following condition.
6642 *
6643 * (*@reg & mask) != val
6644 *
6645 * If the condition is met, it returns; otherwise, the process is
6646 * repeated after @interval_msec until timeout.
6647 *
6648 * LOCKING:
6649 * Kernel thread context (may sleep)
6650 *
6651 * RETURNS:
6652 * The final register value.
6653 */
6654u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6655 unsigned long interval_msec,
6656 unsigned long timeout_msec)
6657{
6658 unsigned long timeout;
6659 u32 tmp;
6660
6661 tmp = ioread32(reg);
6662
6663 /* Calculate timeout _after_ the first read to make sure
6664 * preceding writes reach the controller before starting to
6665 * eat away the timeout.
6666 */
6667 timeout = jiffies + (timeout_msec * HZ) / 1000;
6668
6669 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6670 msleep(interval_msec);
6671 tmp = ioread32(reg);
6672 }
6673
6674 return tmp;
6675}
6676
dd5b06c4
TH
6677/*
6678 * Dummy port_ops
6679 */
6680static void ata_dummy_noret(struct ata_port *ap) { }
6681static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6682static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6683
6684static u8 ata_dummy_check_status(struct ata_port *ap)
6685{
6686 return ATA_DRDY;
6687}
6688
6689static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6690{
6691 return AC_ERR_SYSTEM;
6692}
6693
6694const struct ata_port_operations ata_dummy_port_ops = {
6695 .port_disable = ata_port_disable,
6696 .check_status = ata_dummy_check_status,
6697 .check_altstatus = ata_dummy_check_status,
6698 .dev_select = ata_noop_dev_select,
6699 .qc_prep = ata_noop_qc_prep,
6700 .qc_issue = ata_dummy_qc_issue,
6701 .freeze = ata_dummy_noret,
6702 .thaw = ata_dummy_noret,
6703 .error_handler = ata_dummy_noret,
6704 .post_internal_cmd = ata_dummy_qc_noret,
6705 .irq_clear = ata_dummy_noret,
6706 .port_start = ata_dummy_ret0,
6707 .port_stop = ata_dummy_noret,
6708};
6709
21b0ad4f
TH
6710const struct ata_port_info ata_dummy_port_info = {
6711 .port_ops = &ata_dummy_port_ops,
6712};
6713
1da177e4
LT
6714/*
6715 * libata is essentially a library of internal helper functions for
6716 * low-level ATA host controller drivers. As such, the API/ABI is
6717 * likely to change as new drivers are added and updated.
6718 * Do not depend on ABI/API stability.
6719 */
6720
e9c83914
TH
6721EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6722EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6723EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6724EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6725EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6726EXPORT_SYMBOL_GPL(ata_std_bios_param);
6727EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6728EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6729EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6730EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6731EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6732EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6733EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6734EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6735EXPORT_SYMBOL_GPL(ata_sg_init);
6736EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6737EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6738EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6739EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6740EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6741EXPORT_SYMBOL_GPL(ata_tf_load);
6742EXPORT_SYMBOL_GPL(ata_tf_read);
6743EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6744EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6745EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6746EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6747EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6748EXPORT_SYMBOL_GPL(ata_check_status);
6749EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6750EXPORT_SYMBOL_GPL(ata_exec_command);
6751EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6752EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6753EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6754EXPORT_SYMBOL_GPL(ata_data_xfer);
6755EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6756EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6757EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6758EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6759EXPORT_SYMBOL_GPL(ata_bmdma_start);
6760EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6761EXPORT_SYMBOL_GPL(ata_bmdma_status);
6762EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6763EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6764EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6765EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6766EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6767EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6768EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6769EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6770EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6771EXPORT_SYMBOL_GPL(sata_phy_debounce);
6772EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6773EXPORT_SYMBOL_GPL(sata_phy_reset);
6774EXPORT_SYMBOL_GPL(__sata_phy_reset);
6775EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6776EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6777EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6778EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6779EXPORT_SYMBOL_GPL(sata_std_hardreset);
6780EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6781EXPORT_SYMBOL_GPL(ata_dev_classify);
6782EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6783EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6784EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6785EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6786EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6787EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6788EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6789EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6790EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6791EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6792EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6793EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6794EXPORT_SYMBOL_GPL(sata_scr_valid);
6795EXPORT_SYMBOL_GPL(sata_scr_read);
6796EXPORT_SYMBOL_GPL(sata_scr_write);
6797EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6798EXPORT_SYMBOL_GPL(ata_port_online);
6799EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6800#ifdef CONFIG_PM
cca3974e
JG
6801EXPORT_SYMBOL_GPL(ata_host_suspend);
6802EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6803#endif /* CONFIG_PM */
6a62a04d
TH
6804EXPORT_SYMBOL_GPL(ata_id_string);
6805EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6806EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6807EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6808EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6809
1bc4ccff 6810EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6811EXPORT_SYMBOL_GPL(ata_timing_compute);
6812EXPORT_SYMBOL_GPL(ata_timing_merge);
6813
1da177e4
LT
6814#ifdef CONFIG_PCI
6815EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6816EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
21b0ad4f 6817EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6818EXPORT_SYMBOL_GPL(ata_pci_init_one);
6819EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6820#ifdef CONFIG_PM
500530f6
TH
6821EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6822EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6823EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6824EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6825#endif /* CONFIG_PM */
67951ade
AC
6826EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6827EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6828#endif /* CONFIG_PCI */
9b847548 6829
6ffa01d8 6830#ifdef CONFIG_PM
9b847548
JA
6831EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6832EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6833#endif /* CONFIG_PM */
ece1d636 6834
ece1d636 6835EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6836EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6837EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6838EXPORT_SYMBOL_GPL(ata_port_freeze);
6839EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6840EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6841EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6842EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6843EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6844EXPORT_SYMBOL_GPL(ata_irq_on);
6845EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6846EXPORT_SYMBOL_GPL(ata_irq_ack);
6847EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6848EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6849
6850EXPORT_SYMBOL_GPL(ata_cable_40wire);
6851EXPORT_SYMBOL_GPL(ata_cable_80wire);
6852EXPORT_SYMBOL_GPL(ata_cable_unknown);
6853EXPORT_SYMBOL_GPL(ata_cable_sata);