]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: use PIO for non-16 byte aligned ATAPI commands
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
09d7f9b0
TH
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
0b8efb0a
TH
608 dev->class++;
609 }
610}
611
1da177e4 612/**
0d5ff566 613 * ata_devchk - PATA device presence detection
1da177e4
LT
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
0d5ff566 630static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
631{
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
0d5ff566
TH
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 639
0d5ff566
TH
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653}
654
1da177e4
LT
655/**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
057ace5e 671unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
672{
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692}
693
694/**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
b4dc7623 698 * @r_err: Value of error register on completion
1da177e4
LT
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
b4dc7623
TH
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
714 */
715
a619f981 716unsigned int
b4dc7623 717ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 718{
1da177e4
LT
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
1da177e4 727 ap->ops->tf_read(ap, &tf);
0169e284 728 err = tf.feature;
b4dc7623
TH
729 if (r_err)
730 *r_err = err;
1da177e4 731
93590859
AC
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
1da177e4
LT
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
b4dc7623 741 return ATA_DEV_NONE;
1da177e4 742
b4dc7623 743 /* determine if device is ATA or ATAPI */
1da177e4 744 class = ata_dev_classify(&tf);
b4dc7623 745
1da177e4 746 if (class == ATA_DEV_UNKNOWN)
b4dc7623 747 return ATA_DEV_NONE;
1da177e4 748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
749 return ATA_DEV_NONE;
750 return class;
1da177e4
LT
751}
752
753/**
6a62a04d 754 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
6a62a04d
TH
768void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
1da177e4
LT
770{
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785}
786
0e949ff3 787/**
6a62a04d 788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
6a62a04d 794 * This function is identical to ata_id_string except that it
0e949ff3
TH
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
6a62a04d
TH
801void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
0e949ff3
TH
803{
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
6a62a04d 808 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814}
0baab86b 815
1e999736
AC
816static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817{
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828}
829
830static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831{
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840}
841
842/**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851{
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867}
868
869/**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877static u64 ata_read_native_max_address(struct ata_device *dev)
878{
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894}
895
896/**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
6b38d1d1 899 * @new_sectors: new max sectors value to set for the device
1e999736
AC
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906{
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932}
933
934/**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
6b38d1d1 937 * @new_sectors: new max sectors value to set for the device
1e999736
AC
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944{
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966}
967
968/**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977static u64 ata_hpa_resize(struct ata_device *dev)
978{
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
a617c09f 981
1e999736
AC
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
1e999736
AC
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
bd1d5ec6 992 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
bd1d5ec6
AM
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1e999736
AC
1000
1001 if (hpa_sectors) {
bd1d5ec6
AM
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1e999736
AC
1005 return hpa_sectors;
1006 }
1007 }
37301a55
TH
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1e999736
AC
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
AC
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
a617c09f 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
a617c09f 1614
432729f0
AC
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
54936f8b 1657 int may_fallback = 1, tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
54936f8b
TH
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
49016aca
TH
1716 rc = -EIO;
1717 reason = "I/O error";
1da177e4
LT
1718 goto err_out;
1719 }
1720
54936f8b
TH
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
49016aca 1726 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1727
49016aca 1728 /* sanity check */
a4f5749b 1729 rc = -EINVAL;
6070068b 1730 reason = "device reports invalid type";
a4f5749b
TH
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
49016aca
TH
1738 }
1739
169439c2
ML
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
bff04647 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
bff04647 1786 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
fe635c7e 1792
49016aca
TH
1793 return 0;
1794
1795 err_out:
88574551 1796 if (ata_msg_warn(ap))
0dd4b21f 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1799 return rc;
1800}
1801
3373efd8 1802static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1803{
3373efd8 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1805}
1806
a6e6ce8e
TH
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
6919a0a6
AC
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
a6e6ce8e 1821 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
49016aca 1832/**
ffeae418 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
49016aca
TH
1838 *
1839 * LOCKING:
ffeae418
TH
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
49016aca 1844 */
efdaedc4 1845int ata_dev_configure(struct ata_device *dev)
49016aca 1846{
3373efd8 1847 struct ata_port *ap = dev->ap;
efdaedc4 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1849 const u16 *id = dev->id;
ff8854b2 1850 unsigned int xfer_mask;
b352e57d 1851 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1854 int rc;
49016aca 1855
0dd4b21f 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
ffeae418 1859 return 0;
49016aca
TH
1860 }
1861
0dd4b21f 1862 if (ata_msg_probe(ap))
44877b4e 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1864
08573a86 1865 /* set _SDD */
3a32a8e9 1866 rc = ata_acpi_push_id(dev);
08573a86
KCA
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
c39f5ebe 1875 /* print device capabilities */
0dd4b21f 1876 if (ata_msg_probe(ap))
88574551
TH
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1880 __FUNCTION__,
f15a1daf
TH
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
c39f5ebe 1883
208a9933 1884 /* initialize to-be-configured parameters */
ea1dd4e1 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1da177e4
LT
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
ff8854b2 1897 /* find max transfer mode; for printk only */
1148c3a7 1898 xfer_mask = ata_id_xfermask(id);
1da177e4 1899
0dd4b21f
BP
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1da177e4 1902
ef143d57
AL
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1da177e4
LT
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
b352e57d
AC
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1148c3a7 1922 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1923
3f64f565
EM
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1148c3a7 1927 if (ata_id_has_lba(id)) {
4c2d721a 1928 const char *lba_desc;
a6e6ce8e 1929 char ncq_desc[20];
8bf62ece 1930
4c2d721a
TH
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1933 if (ata_id_has_lba48(id)) {
8bf62ece 1934 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1935 lba_desc = "LBA48";
6fc49adb
TH
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1940 }
8bf62ece 1941
1e999736
AC
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
a6e6ce8e
TH
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
8bf62ece 1948 /* print device info to dmesg */
3f64f565
EM
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1956 (unsigned long long)dev->n_sectors,
3f64f565
EM
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
ffeae418 1959 } else {
8bf62ece
AL
1960 /* CHS */
1961
1962 /* Default translation */
1148c3a7
TH
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
8bf62ece 1966
1148c3a7 1967 if (ata_id_current_chs_valid(id)) {
8bf62ece 1968 /* Current CHS translation is valid. */
1148c3a7
TH
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
8bf62ece
AL
1972 }
1973
1974 /* print device info to dmesg */
3f64f565 1975 if (ata_msg_drv(ap) && print_info) {
88574551 1976 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
a84471fe 1980 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
07f6f7d0
AL
1986 }
1987
6e7846e9 1988 dev->cdb_len = 16;
1da177e4
LT
1989 }
1990
1991 /* ATAPI-specific feature tests */
2c13b7ce 1992 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1993 char *cdb_intr_string = "";
1994
1148c3a7 1995 rc = atapi_cdb_len(id);
1da177e4 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1997 if (ata_msg_warn(ap))
88574551
TH
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
ffeae418 2000 rc = -EINVAL;
1da177e4
LT
2001 goto err_out_nosup;
2002 }
6e7846e9 2003 dev->cdb_len = (unsigned int) rc;
1da177e4 2004
08a556db 2005 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2006 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2007 cdb_intr_string = ", CDB intr";
2008 }
312f7da2 2009
1da177e4 2010 /* print device info to dmesg */
5afc8142 2011 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
12436c30
TH
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
1da177e4
LT
2017 }
2018
914ed354
TH
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
93590859
AC
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030"Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032"fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
4b2f3ede 2036 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2037 if (ata_dev_knobble(dev)) {
5afc8142 2038 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
5a529139 2041 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
18d6e9d5 2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
18d6e9d5 2048
6f23a31d
AL
2049 /* limit ATAPI DMA to R/W commands only */
2050 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2051 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2052
4b2f3ede 2053 if (ap->ops->dev_config)
cd0d3bbc 2054 ap->ops->dev_config(dev);
4b2f3ede 2055
0dd4b21f
BP
2056 if (ata_msg_probe(ap))
2057 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2058 __FUNCTION__, ata_chk_status(ap));
ffeae418 2059 return 0;
1da177e4
LT
2060
2061err_out_nosup:
0dd4b21f 2062 if (ata_msg_probe(ap))
88574551
TH
2063 ata_dev_printk(dev, KERN_DEBUG,
2064 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2065 return rc;
1da177e4
LT
2066}
2067
be0d18df 2068/**
2e41e8e6 2069 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2070 * @ap: port
2071 *
2e41e8e6 2072 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2073 * detection.
2074 */
2075
2076int ata_cable_40wire(struct ata_port *ap)
2077{
2078 return ATA_CBL_PATA40;
2079}
2080
2081/**
2e41e8e6 2082 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2083 * @ap: port
2084 *
2e41e8e6 2085 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2086 * detection.
2087 */
2088
2089int ata_cable_80wire(struct ata_port *ap)
2090{
2091 return ATA_CBL_PATA80;
2092}
2093
2094/**
2095 * ata_cable_unknown - return unknown PATA cable.
2096 * @ap: port
2097 *
2098 * Helper method for drivers which have no PATA cable detection.
2099 */
2100
2101int ata_cable_unknown(struct ata_port *ap)
2102{
2103 return ATA_CBL_PATA_UNK;
2104}
2105
2106/**
2107 * ata_cable_sata - return SATA cable type
2108 * @ap: port
2109 *
2110 * Helper method for drivers which have SATA cables
2111 */
2112
2113int ata_cable_sata(struct ata_port *ap)
2114{
2115 return ATA_CBL_SATA;
2116}
2117
1da177e4
LT
2118/**
2119 * ata_bus_probe - Reset and probe ATA bus
2120 * @ap: Bus to probe
2121 *
0cba632b
JG
2122 * Master ATA bus probing function. Initiates a hardware-dependent
2123 * bus reset, then attempts to identify any devices found on
2124 * the bus.
2125 *
1da177e4 2126 * LOCKING:
0cba632b 2127 * PCI/etc. bus probe sem.
1da177e4
LT
2128 *
2129 * RETURNS:
96072e69 2130 * Zero on success, negative errno otherwise.
1da177e4
LT
2131 */
2132
80289167 2133int ata_bus_probe(struct ata_port *ap)
1da177e4 2134{
28ca5c57 2135 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2136 int tries[ATA_MAX_DEVICES];
4ae72a1e 2137 int i, rc;
e82cbdb9 2138 struct ata_device *dev;
1da177e4 2139
28ca5c57 2140 ata_port_probe(ap);
c19ba8af 2141
14d2bac1
TH
2142 for (i = 0; i < ATA_MAX_DEVICES; i++)
2143 tries[i] = ATA_PROBE_MAX_TRIES;
2144
2145 retry:
2044470c 2146 /* reset and determine device classes */
52783c5d 2147 ap->ops->phy_reset(ap);
2061a47a 2148
52783c5d
TH
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 dev = &ap->device[i];
c19ba8af 2151
52783c5d
TH
2152 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2153 dev->class != ATA_DEV_UNKNOWN)
2154 classes[dev->devno] = dev->class;
2155 else
2156 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2157
52783c5d 2158 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2159 }
1da177e4 2160
52783c5d 2161 ata_port_probe(ap);
2044470c 2162
b6079ca4
AC
2163 /* after the reset the device state is PIO 0 and the controller
2164 state is undefined. Record the mode */
2165
2166 for (i = 0; i < ATA_MAX_DEVICES; i++)
2167 ap->device[i].pio_mode = XFER_PIO_0;
2168
f31f0cc2
JG
2169 /* read IDENTIFY page and configure devices. We have to do the identify
2170 specific sequence bass-ackwards so that PDIAG- is released by
2171 the slave device */
2172
2173 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2174 dev = &ap->device[i];
28ca5c57 2175
ec573755
TH
2176 if (tries[i])
2177 dev->class = classes[i];
ffeae418 2178
14d2bac1 2179 if (!ata_dev_enabled(dev))
ffeae418 2180 continue;
ffeae418 2181
bff04647
TH
2182 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2183 dev->id);
14d2bac1
TH
2184 if (rc)
2185 goto fail;
f31f0cc2
JG
2186 }
2187
be0d18df
AC
2188 /* Now ask for the cable type as PDIAG- should have been released */
2189 if (ap->ops->cable_detect)
2190 ap->cbl = ap->ops->cable_detect(ap);
2191
f31f0cc2
JG
2192 /* After the identify sequence we can now set up the devices. We do
2193 this in the normal order so that the user doesn't get confused */
2194
2195 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2196 dev = &ap->device[i];
2197 if (!ata_dev_enabled(dev))
2198 continue;
14d2bac1 2199
efdaedc4
TH
2200 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2201 rc = ata_dev_configure(dev);
2202 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2203 if (rc)
2204 goto fail;
1da177e4
LT
2205 }
2206
e82cbdb9 2207 /* configure transfer mode */
3adcebb2 2208 rc = ata_set_mode(ap, &dev);
4ae72a1e 2209 if (rc)
51713d35 2210 goto fail;
1da177e4 2211
e82cbdb9
TH
2212 for (i = 0; i < ATA_MAX_DEVICES; i++)
2213 if (ata_dev_enabled(&ap->device[i]))
2214 return 0;
1da177e4 2215
e82cbdb9
TH
2216 /* no device present, disable port */
2217 ata_port_disable(ap);
1da177e4 2218 ap->ops->port_disable(ap);
96072e69 2219 return -ENODEV;
14d2bac1
TH
2220
2221 fail:
4ae72a1e
TH
2222 tries[dev->devno]--;
2223
14d2bac1
TH
2224 switch (rc) {
2225 case -EINVAL:
4ae72a1e 2226 /* eeek, something went very wrong, give up */
14d2bac1
TH
2227 tries[dev->devno] = 0;
2228 break;
4ae72a1e
TH
2229
2230 case -ENODEV:
2231 /* give it just one more chance */
2232 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2233 case -EIO:
4ae72a1e
TH
2234 if (tries[dev->devno] == 1) {
2235 /* This is the last chance, better to slow
2236 * down than lose it.
2237 */
2238 sata_down_spd_limit(ap);
2239 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2240 }
14d2bac1
TH
2241 }
2242
4ae72a1e 2243 if (!tries[dev->devno])
3373efd8 2244 ata_dev_disable(dev);
ec573755 2245
14d2bac1 2246 goto retry;
1da177e4
LT
2247}
2248
2249/**
0cba632b
JG
2250 * ata_port_probe - Mark port as enabled
2251 * @ap: Port for which we indicate enablement
1da177e4 2252 *
0cba632b
JG
2253 * Modify @ap data structure such that the system
2254 * thinks that the entire port is enabled.
2255 *
cca3974e 2256 * LOCKING: host lock, or some other form of
0cba632b 2257 * serialization.
1da177e4
LT
2258 */
2259
2260void ata_port_probe(struct ata_port *ap)
2261{
198e0fed 2262 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2263}
2264
3be680b7
TH
2265/**
2266 * sata_print_link_status - Print SATA link status
2267 * @ap: SATA port to printk link status about
2268 *
2269 * This function prints link speed and status of a SATA link.
2270 *
2271 * LOCKING:
2272 * None.
2273 */
43727fbc 2274void sata_print_link_status(struct ata_port *ap)
3be680b7 2275{
6d5f9732 2276 u32 sstatus, scontrol, tmp;
3be680b7 2277
81952c54 2278 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2279 return;
81952c54 2280 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2281
81952c54 2282 if (ata_port_online(ap)) {
3be680b7 2283 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link up %s (SStatus %X SControl %X)\n",
2286 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2287 } else {
f15a1daf
TH
2288 ata_port_printk(ap, KERN_INFO,
2289 "SATA link down (SStatus %X SControl %X)\n",
2290 sstatus, scontrol);
3be680b7
TH
2291 }
2292}
2293
1da177e4 2294/**
780a87f7
JG
2295 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2296 * @ap: SATA port associated with target SATA PHY.
1da177e4 2297 *
780a87f7
JG
2298 * This function issues commands to standard SATA Sxxx
2299 * PHY registers, to wake up the phy (and device), and
2300 * clear any reset condition.
1da177e4
LT
2301 *
2302 * LOCKING:
0cba632b 2303 * PCI/etc. bus probe sem.
1da177e4
LT
2304 *
2305 */
2306void __sata_phy_reset(struct ata_port *ap)
2307{
2308 u32 sstatus;
2309 unsigned long timeout = jiffies + (HZ * 5);
2310
2311 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2312 /* issue phy wake/reset */
81952c54 2313 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2314 /* Couldn't find anything in SATA I/II specs, but
2315 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 mdelay(1);
1da177e4 2317 }
81952c54
TH
2318 /* phy wake/clear reset */
2319 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2320
2321 /* wait for phy to become ready, if necessary */
2322 do {
2323 msleep(200);
81952c54 2324 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2325 if ((sstatus & 0xf) != 1)
2326 break;
2327 } while (time_before(jiffies, timeout));
2328
3be680b7
TH
2329 /* print link status */
2330 sata_print_link_status(ap);
656563e3 2331
3be680b7 2332 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2333 if (!ata_port_offline(ap))
1da177e4 2334 ata_port_probe(ap);
3be680b7 2335 else
1da177e4 2336 ata_port_disable(ap);
1da177e4 2337
198e0fed 2338 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2339 return;
2340
2341 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2342 ata_port_disable(ap);
2343 return;
2344 }
2345
2346 ap->cbl = ATA_CBL_SATA;
2347}
2348
2349/**
780a87f7
JG
2350 * sata_phy_reset - Reset SATA bus.
2351 * @ap: SATA port associated with target SATA PHY.
1da177e4 2352 *
780a87f7
JG
2353 * This function resets the SATA bus, and then probes
2354 * the bus for devices.
1da177e4
LT
2355 *
2356 * LOCKING:
0cba632b 2357 * PCI/etc. bus probe sem.
1da177e4
LT
2358 *
2359 */
2360void sata_phy_reset(struct ata_port *ap)
2361{
2362 __sata_phy_reset(ap);
198e0fed 2363 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2364 return;
2365 ata_bus_reset(ap);
2366}
2367
ebdfca6e
AC
2368/**
2369 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2370 * @adev: device
2371 *
2372 * Obtain the other device on the same cable, or if none is
2373 * present NULL is returned
2374 */
2e9edbf8 2375
3373efd8 2376struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2377{
3373efd8 2378 struct ata_port *ap = adev->ap;
ebdfca6e 2379 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2380 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2381 return NULL;
2382 return pair;
2383}
2384
1da177e4 2385/**
780a87f7
JG
2386 * ata_port_disable - Disable port.
2387 * @ap: Port to be disabled.
1da177e4 2388 *
780a87f7
JG
2389 * Modify @ap data structure such that the system
2390 * thinks that the entire port is disabled, and should
2391 * never attempt to probe or communicate with devices
2392 * on this port.
2393 *
cca3974e 2394 * LOCKING: host lock, or some other form of
780a87f7 2395 * serialization.
1da177e4
LT
2396 */
2397
2398void ata_port_disable(struct ata_port *ap)
2399{
2400 ap->device[0].class = ATA_DEV_NONE;
2401 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2402 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2403}
2404
1c3fae4d 2405/**
3c567b7d 2406 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2407 * @ap: Port to adjust SATA spd limit for
2408 *
2409 * Adjust SATA spd limit of @ap downward. Note that this
2410 * function only adjusts the limit. The change must be applied
3c567b7d 2411 * using sata_set_spd().
1c3fae4d
TH
2412 *
2413 * LOCKING:
2414 * Inherited from caller.
2415 *
2416 * RETURNS:
2417 * 0 on success, negative errno on failure
2418 */
3c567b7d 2419int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2420{
81952c54
TH
2421 u32 sstatus, spd, mask;
2422 int rc, highbit;
1c3fae4d 2423
81952c54
TH
2424 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2425 if (rc)
2426 return rc;
1c3fae4d
TH
2427
2428 mask = ap->sata_spd_limit;
2429 if (mask <= 1)
2430 return -EINVAL;
2431 highbit = fls(mask) - 1;
2432 mask &= ~(1 << highbit);
2433
81952c54 2434 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2435 if (spd <= 1)
2436 return -EINVAL;
2437 spd--;
2438 mask &= (1 << spd) - 1;
2439 if (!mask)
2440 return -EINVAL;
2441
2442 ap->sata_spd_limit = mask;
2443
f15a1daf
TH
2444 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2445 sata_spd_string(fls(mask)));
1c3fae4d
TH
2446
2447 return 0;
2448}
2449
3c567b7d 2450static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2451{
2452 u32 spd, limit;
2453
2454 if (ap->sata_spd_limit == UINT_MAX)
2455 limit = 0;
2456 else
2457 limit = fls(ap->sata_spd_limit);
2458
2459 spd = (*scontrol >> 4) & 0xf;
2460 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2461
2462 return spd != limit;
2463}
2464
2465/**
3c567b7d 2466 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2467 * @ap: Port in question
2468 *
2469 * Test whether the spd limit in SControl matches
2470 * @ap->sata_spd_limit. This function is used to determine
2471 * whether hardreset is necessary to apply SATA spd
2472 * configuration.
2473 *
2474 * LOCKING:
2475 * Inherited from caller.
2476 *
2477 * RETURNS:
2478 * 1 if SATA spd configuration is needed, 0 otherwise.
2479 */
3c567b7d 2480int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2481{
2482 u32 scontrol;
2483
81952c54 2484 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2485 return 0;
2486
3c567b7d 2487 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2488}
2489
2490/**
3c567b7d 2491 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2492 * @ap: Port to set SATA spd for
2493 *
2494 * Set SATA spd of @ap according to sata_spd_limit.
2495 *
2496 * LOCKING:
2497 * Inherited from caller.
2498 *
2499 * RETURNS:
2500 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2501 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2502 */
3c567b7d 2503int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2504{
2505 u32 scontrol;
81952c54 2506 int rc;
1c3fae4d 2507
81952c54
TH
2508 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2509 return rc;
1c3fae4d 2510
3c567b7d 2511 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2512 return 0;
2513
81952c54
TH
2514 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2515 return rc;
2516
1c3fae4d
TH
2517 return 1;
2518}
2519
452503f9
AC
2520/*
2521 * This mode timing computation functionality is ported over from
2522 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 */
2524/*
b352e57d 2525 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2526 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2527 * for UDMA6, which is currently supported only by Maxtor drives.
2528 *
2529 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2530 */
2531
2532static const struct ata_timing ata_timing[] = {
2533
2534 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2535 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2536 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2537 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2538
b352e57d
AC
2539 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2540 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2541 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2542 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2543 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2544
2545/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2546
452503f9
AC
2547 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2548 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2549 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2550
452503f9
AC
2551 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2552 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2553 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2554
b352e57d
AC
2555 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2556 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2557 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2558 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2559
2560 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2561 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2562 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2563
2564/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2565
2566 { 0xFF }
2567};
2568
2569#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2570#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2571
2572static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2573{
2574 q->setup = EZ(t->setup * 1000, T);
2575 q->act8b = EZ(t->act8b * 1000, T);
2576 q->rec8b = EZ(t->rec8b * 1000, T);
2577 q->cyc8b = EZ(t->cyc8b * 1000, T);
2578 q->active = EZ(t->active * 1000, T);
2579 q->recover = EZ(t->recover * 1000, T);
2580 q->cycle = EZ(t->cycle * 1000, T);
2581 q->udma = EZ(t->udma * 1000, UT);
2582}
2583
2584void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2585 struct ata_timing *m, unsigned int what)
2586{
2587 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2588 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2589 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2590 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2591 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2592 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2593 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2594 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2595}
2596
2597static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2598{
2599 const struct ata_timing *t;
2600
2601 for (t = ata_timing; t->mode != speed; t++)
91190758 2602 if (t->mode == 0xFF)
452503f9 2603 return NULL;
2e9edbf8 2604 return t;
452503f9
AC
2605}
2606
2607int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2608 struct ata_timing *t, int T, int UT)
2609{
2610 const struct ata_timing *s;
2611 struct ata_timing p;
2612
2613 /*
2e9edbf8 2614 * Find the mode.
75b1f2f8 2615 */
452503f9
AC
2616
2617 if (!(s = ata_timing_find_mode(speed)))
2618 return -EINVAL;
2619
75b1f2f8
AL
2620 memcpy(t, s, sizeof(*s));
2621
452503f9
AC
2622 /*
2623 * If the drive is an EIDE drive, it can tell us it needs extended
2624 * PIO/MW_DMA cycle timing.
2625 */
2626
2627 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2628 memset(&p, 0, sizeof(p));
2629 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2630 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2631 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2632 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2633 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2634 }
2635 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2636 }
2637
2638 /*
2639 * Convert the timing to bus clock counts.
2640 */
2641
75b1f2f8 2642 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2643
2644 /*
c893a3ae
RD
2645 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2646 * S.M.A.R.T * and some other commands. We have to ensure that the
2647 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2648 */
2649
fd3367af 2650 if (speed > XFER_PIO_6) {
452503f9
AC
2651 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2652 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2653 }
2654
2655 /*
c893a3ae 2656 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2657 */
2658
2659 if (t->act8b + t->rec8b < t->cyc8b) {
2660 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2661 t->rec8b = t->cyc8b - t->act8b;
2662 }
2663
2664 if (t->active + t->recover < t->cycle) {
2665 t->active += (t->cycle - (t->active + t->recover)) / 2;
2666 t->recover = t->cycle - t->active;
2667 }
a617c09f 2668
4f701d1e
AC
2669 /* In a few cases quantisation may produce enough errors to
2670 leave t->cycle too low for the sum of active and recovery
2671 if so we must correct this */
2672 if (t->active + t->recover > t->cycle)
2673 t->cycle = t->active + t->recover;
452503f9
AC
2674
2675 return 0;
2676}
2677
cf176e1a
TH
2678/**
2679 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2680 * @dev: Device to adjust xfer masks
458337db 2681 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2682 *
2683 * Adjust xfer masks of @dev downward. Note that this function
2684 * does not apply the change. Invoking ata_set_mode() afterwards
2685 * will apply the limit.
2686 *
2687 * LOCKING:
2688 * Inherited from caller.
2689 *
2690 * RETURNS:
2691 * 0 on success, negative errno on failure
2692 */
458337db 2693int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2694{
458337db
TH
2695 char buf[32];
2696 unsigned int orig_mask, xfer_mask;
2697 unsigned int pio_mask, mwdma_mask, udma_mask;
2698 int quiet, highbit;
cf176e1a 2699
458337db
TH
2700 quiet = !!(sel & ATA_DNXFER_QUIET);
2701 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2702
458337db
TH
2703 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2704 dev->mwdma_mask,
2705 dev->udma_mask);
2706 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2707
458337db
TH
2708 switch (sel) {
2709 case ATA_DNXFER_PIO:
2710 highbit = fls(pio_mask) - 1;
2711 pio_mask &= ~(1 << highbit);
2712 break;
2713
2714 case ATA_DNXFER_DMA:
2715 if (udma_mask) {
2716 highbit = fls(udma_mask) - 1;
2717 udma_mask &= ~(1 << highbit);
2718 if (!udma_mask)
2719 return -ENOENT;
2720 } else if (mwdma_mask) {
2721 highbit = fls(mwdma_mask) - 1;
2722 mwdma_mask &= ~(1 << highbit);
2723 if (!mwdma_mask)
2724 return -ENOENT;
2725 }
2726 break;
2727
2728 case ATA_DNXFER_40C:
2729 udma_mask &= ATA_UDMA_MASK_40C;
2730 break;
2731
2732 case ATA_DNXFER_FORCE_PIO0:
2733 pio_mask &= 1;
2734 case ATA_DNXFER_FORCE_PIO:
2735 mwdma_mask = 0;
2736 udma_mask = 0;
2737 break;
2738
458337db
TH
2739 default:
2740 BUG();
2741 }
2742
2743 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2744
2745 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2746 return -ENOENT;
2747
2748 if (!quiet) {
2749 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2750 snprintf(buf, sizeof(buf), "%s:%s",
2751 ata_mode_string(xfer_mask),
2752 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2753 else
2754 snprintf(buf, sizeof(buf), "%s",
2755 ata_mode_string(xfer_mask));
2756
2757 ata_dev_printk(dev, KERN_WARNING,
2758 "limiting speed to %s\n", buf);
2759 }
cf176e1a
TH
2760
2761 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2762 &dev->udma_mask);
2763
cf176e1a 2764 return 0;
cf176e1a
TH
2765}
2766
3373efd8 2767static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2768{
baa1e78a 2769 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2770 unsigned int err_mask;
2771 int rc;
1da177e4 2772
e8384607 2773 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2774 if (dev->xfer_shift == ATA_SHIFT_PIO)
2775 dev->flags |= ATA_DFLAG_PIO;
2776
3373efd8 2777 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2778 /* Old CFA may refuse this command, which is just fine */
2779 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2780 err_mask &= ~AC_ERR_DEV;
2781
83206a29 2782 if (err_mask) {
f15a1daf
TH
2783 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2784 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2785 return -EIO;
2786 }
1da177e4 2787
baa1e78a 2788 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2789 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2790 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2791 if (rc)
83206a29 2792 return rc;
48a8a14f 2793
23e71c3d
TH
2794 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2795 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2796
f15a1daf
TH
2797 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2798 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2799 return 0;
1da177e4
LT
2800}
2801
1da177e4 2802/**
04351821 2803 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2804 * @ap: port on which timings will be programmed
e82cbdb9 2805 * @r_failed_dev: out paramter for failed device
1da177e4 2806 *
04351821
AC
2807 * Standard implementation of the function used to tune and set
2808 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2809 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2810 * returned in @r_failed_dev.
780a87f7 2811 *
1da177e4 2812 * LOCKING:
0cba632b 2813 * PCI/etc. bus probe sem.
e82cbdb9
TH
2814 *
2815 * RETURNS:
2816 * 0 on success, negative errno otherwise
1da177e4 2817 */
04351821
AC
2818
2819int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2820{
e8e0619f 2821 struct ata_device *dev;
e82cbdb9 2822 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2823
3adcebb2 2824
a6d5a51c
TH
2825 /* step 1: calculate xfer_mask */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2827 unsigned int pio_mask, dma_mask;
a6d5a51c 2828
e8e0619f
TH
2829 dev = &ap->device[i];
2830
e1211e3f 2831 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2832 continue;
2833
3373efd8 2834 ata_dev_xfermask(dev);
1da177e4 2835
acf356b1
TH
2836 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2837 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2838 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2839 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2840
4f65977d 2841 found = 1;
5444a6f4
AC
2842 if (dev->dma_mode)
2843 used_dma = 1;
a6d5a51c 2844 }
4f65977d 2845 if (!found)
e82cbdb9 2846 goto out;
a6d5a51c
TH
2847
2848 /* step 2: always set host PIO timings */
e8e0619f
TH
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851 if (!ata_dev_enabled(dev))
2852 continue;
2853
2854 if (!dev->pio_mode) {
f15a1daf 2855 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2856 rc = -EINVAL;
e82cbdb9 2857 goto out;
e8e0619f
TH
2858 }
2859
2860 dev->xfer_mode = dev->pio_mode;
2861 dev->xfer_shift = ATA_SHIFT_PIO;
2862 if (ap->ops->set_piomode)
2863 ap->ops->set_piomode(ap, dev);
2864 }
1da177e4 2865
a6d5a51c 2866 /* step 3: set host DMA timings */
e8e0619f
TH
2867 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2868 dev = &ap->device[i];
2869
2870 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2871 continue;
2872
2873 dev->xfer_mode = dev->dma_mode;
2874 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2875 if (ap->ops->set_dmamode)
2876 ap->ops->set_dmamode(ap, dev);
2877 }
1da177e4
LT
2878
2879 /* step 4: update devices' xfer mode */
83206a29 2880 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2881 dev = &ap->device[i];
1da177e4 2882
18d90deb 2883 /* don't update suspended devices' xfer mode */
9666f400 2884 if (!ata_dev_enabled(dev))
83206a29
TH
2885 continue;
2886
3373efd8 2887 rc = ata_dev_set_mode(dev);
5bbc53f4 2888 if (rc)
e82cbdb9 2889 goto out;
83206a29 2890 }
1da177e4 2891
e8e0619f
TH
2892 /* Record simplex status. If we selected DMA then the other
2893 * host channels are not permitted to do so.
5444a6f4 2894 */
cca3974e 2895 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2896 ap->host->simplex_claimed = ap;
5444a6f4 2897
e82cbdb9
TH
2898 out:
2899 if (rc)
2900 *r_failed_dev = dev;
2901 return rc;
1da177e4
LT
2902}
2903
04351821
AC
2904/**
2905 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2906 * @ap: port on which timings will be programmed
2907 * @r_failed_dev: out paramter for failed device
2908 *
2909 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2910 * ata_set_mode() fails, pointer to the failing device is
2911 * returned in @r_failed_dev.
2912 *
2913 * LOCKING:
2914 * PCI/etc. bus probe sem.
2915 *
2916 * RETURNS:
2917 * 0 on success, negative errno otherwise
2918 */
2919int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2920{
2921 /* has private set_mode? */
2922 if (ap->ops->set_mode)
2923 return ap->ops->set_mode(ap, r_failed_dev);
2924 return ata_do_set_mode(ap, r_failed_dev);
2925}
2926
1fdffbce
JG
2927/**
2928 * ata_tf_to_host - issue ATA taskfile to host controller
2929 * @ap: port to which command is being issued
2930 * @tf: ATA taskfile register set
2931 *
2932 * Issues ATA taskfile register set to ATA host controller,
2933 * with proper synchronization with interrupt handler and
2934 * other threads.
2935 *
2936 * LOCKING:
cca3974e 2937 * spin_lock_irqsave(host lock)
1fdffbce
JG
2938 */
2939
2940static inline void ata_tf_to_host(struct ata_port *ap,
2941 const struct ata_taskfile *tf)
2942{
2943 ap->ops->tf_load(ap, tf);
2944 ap->ops->exec_command(ap, tf);
2945}
2946
1da177e4
LT
2947/**
2948 * ata_busy_sleep - sleep until BSY clears, or timeout
2949 * @ap: port containing status register to be polled
2950 * @tmout_pat: impatience timeout
2951 * @tmout: overall timeout
2952 *
780a87f7
JG
2953 * Sleep until ATA Status register bit BSY clears,
2954 * or a timeout occurs.
2955 *
d1adc1bb
TH
2956 * LOCKING:
2957 * Kernel thread context (may sleep).
2958 *
2959 * RETURNS:
2960 * 0 on success, -errno otherwise.
1da177e4 2961 */
d1adc1bb
TH
2962int ata_busy_sleep(struct ata_port *ap,
2963 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2964{
2965 unsigned long timer_start, timeout;
2966 u8 status;
2967
2968 status = ata_busy_wait(ap, ATA_BUSY, 300);
2969 timer_start = jiffies;
2970 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2971 while (status != 0xff && (status & ATA_BUSY) &&
2972 time_before(jiffies, timeout)) {
1da177e4
LT
2973 msleep(50);
2974 status = ata_busy_wait(ap, ATA_BUSY, 3);
2975 }
2976
d1adc1bb 2977 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2978 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2979 "port is slow to respond, please be patient "
2980 "(Status 0x%x)\n", status);
1da177e4
LT
2981
2982 timeout = timer_start + tmout;
d1adc1bb
TH
2983 while (status != 0xff && (status & ATA_BUSY) &&
2984 time_before(jiffies, timeout)) {
1da177e4
LT
2985 msleep(50);
2986 status = ata_chk_status(ap);
2987 }
2988
d1adc1bb
TH
2989 if (status == 0xff)
2990 return -ENODEV;
2991
1da177e4 2992 if (status & ATA_BUSY) {
f15a1daf 2993 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2994 "(%lu secs, Status 0x%x)\n",
2995 tmout / HZ, status);
d1adc1bb 2996 return -EBUSY;
1da177e4
LT
2997 }
2998
2999 return 0;
3000}
3001
d4b2bab4
TH
3002/**
3003 * ata_wait_ready - sleep until BSY clears, or timeout
3004 * @ap: port containing status register to be polled
3005 * @deadline: deadline jiffies for the operation
3006 *
3007 * Sleep until ATA Status register bit BSY clears, or timeout
3008 * occurs.
3009 *
3010 * LOCKING:
3011 * Kernel thread context (may sleep).
3012 *
3013 * RETURNS:
3014 * 0 on success, -errno otherwise.
3015 */
3016int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3017{
3018 unsigned long start = jiffies;
3019 int warned = 0;
3020
3021 while (1) {
3022 u8 status = ata_chk_status(ap);
3023 unsigned long now = jiffies;
3024
3025 if (!(status & ATA_BUSY))
3026 return 0;
fd7fe701 3027 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3028 return -ENODEV;
3029 if (time_after(now, deadline))
3030 return -EBUSY;
3031
3032 if (!warned && time_after(now, start + 5 * HZ) &&
3033 (deadline - now > 3 * HZ)) {
3034 ata_port_printk(ap, KERN_WARNING,
3035 "port is slow to respond, please be patient "
3036 "(Status 0x%x)\n", status);
3037 warned = 1;
3038 }
3039
3040 msleep(50);
3041 }
3042}
3043
3044static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3045 unsigned long deadline)
1da177e4
LT
3046{
3047 struct ata_ioports *ioaddr = &ap->ioaddr;
3048 unsigned int dev0 = devmask & (1 << 0);
3049 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3050 int rc, ret = 0;
1da177e4
LT
3051
3052 /* if device 0 was found in ata_devchk, wait for its
3053 * BSY bit to clear
3054 */
d4b2bab4
TH
3055 if (dev0) {
3056 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3057 if (rc) {
3058 if (rc != -ENODEV)
3059 return rc;
3060 ret = rc;
3061 }
d4b2bab4 3062 }
1da177e4 3063
e141d999
TH
3064 /* if device 1 was found in ata_devchk, wait for register
3065 * access briefly, then wait for BSY to clear.
1da177e4 3066 */
e141d999
TH
3067 if (dev1) {
3068 int i;
1da177e4
LT
3069
3070 ap->ops->dev_select(ap, 1);
e141d999
TH
3071
3072 /* Wait for register access. Some ATAPI devices fail
3073 * to set nsect/lbal after reset, so don't waste too
3074 * much time on it. We're gonna wait for !BSY anyway.
3075 */
3076 for (i = 0; i < 2; i++) {
3077 u8 nsect, lbal;
3078
3079 nsect = ioread8(ioaddr->nsect_addr);
3080 lbal = ioread8(ioaddr->lbal_addr);
3081 if ((nsect == 1) && (lbal == 1))
3082 break;
3083 msleep(50); /* give drive a breather */
3084 }
3085
d4b2bab4 3086 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3087 if (rc) {
3088 if (rc != -ENODEV)
3089 return rc;
3090 ret = rc;
3091 }
d4b2bab4 3092 }
1da177e4
LT
3093
3094 /* is all this really necessary? */
3095 ap->ops->dev_select(ap, 0);
3096 if (dev1)
3097 ap->ops->dev_select(ap, 1);
3098 if (dev0)
3099 ap->ops->dev_select(ap, 0);
d4b2bab4 3100
9b89391c 3101 return ret;
1da177e4
LT
3102}
3103
d4b2bab4
TH
3104static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3105 unsigned long deadline)
1da177e4
LT
3106{
3107 struct ata_ioports *ioaddr = &ap->ioaddr;
3108
44877b4e 3109 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3110
3111 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3112 iowrite8(ap->ctl, ioaddr->ctl_addr);
3113 udelay(20); /* FIXME: flush */
3114 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3115 udelay(20); /* FIXME: flush */
3116 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3117
3118 /* spec mandates ">= 2ms" before checking status.
3119 * We wait 150ms, because that was the magic delay used for
3120 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3121 * between when the ATA command register is written, and then
3122 * status is checked. Because waiting for "a while" before
3123 * checking status is fine, post SRST, we perform this magic
3124 * delay here as well.
09c7ad79
AC
3125 *
3126 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3127 */
3128 msleep(150);
3129
2e9edbf8 3130 /* Before we perform post reset processing we want to see if
298a41ca
TH
3131 * the bus shows 0xFF because the odd clown forgets the D7
3132 * pulldown resistor.
3133 */
d1adc1bb 3134 if (ata_check_status(ap) == 0xFF)
9b89391c 3135 return -ENODEV;
09c7ad79 3136
d4b2bab4 3137 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3138}
3139
3140/**
3141 * ata_bus_reset - reset host port and associated ATA channel
3142 * @ap: port to reset
3143 *
3144 * This is typically the first time we actually start issuing
3145 * commands to the ATA channel. We wait for BSY to clear, then
3146 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3147 * result. Determine what devices, if any, are on the channel
3148 * by looking at the device 0/1 error register. Look at the signature
3149 * stored in each device's taskfile registers, to determine if
3150 * the device is ATA or ATAPI.
3151 *
3152 * LOCKING:
0cba632b 3153 * PCI/etc. bus probe sem.
cca3974e 3154 * Obtains host lock.
1da177e4
LT
3155 *
3156 * SIDE EFFECTS:
198e0fed 3157 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3158 */
3159
3160void ata_bus_reset(struct ata_port *ap)
3161{
3162 struct ata_ioports *ioaddr = &ap->ioaddr;
3163 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3164 u8 err;
aec5c3c1 3165 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3166 int rc;
1da177e4 3167
44877b4e 3168 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3169
3170 /* determine if device 0/1 are present */
3171 if (ap->flags & ATA_FLAG_SATA_RESET)
3172 dev0 = 1;
3173 else {
3174 dev0 = ata_devchk(ap, 0);
3175 if (slave_possible)
3176 dev1 = ata_devchk(ap, 1);
3177 }
3178
3179 if (dev0)
3180 devmask |= (1 << 0);
3181 if (dev1)
3182 devmask |= (1 << 1);
3183
3184 /* select device 0 again */
3185 ap->ops->dev_select(ap, 0);
3186
3187 /* issue bus reset */
9b89391c
TH
3188 if (ap->flags & ATA_FLAG_SRST) {
3189 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3190 if (rc && rc != -ENODEV)
aec5c3c1 3191 goto err_out;
9b89391c 3192 }
1da177e4
LT
3193
3194 /*
3195 * determine by signature whether we have ATA or ATAPI devices
3196 */
b4dc7623 3197 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3198 if ((slave_possible) && (err != 0x81))
b4dc7623 3199 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3200
3201 /* re-enable interrupts */
83625006 3202 ap->ops->irq_on(ap);
1da177e4
LT
3203
3204 /* is double-select really necessary? */
3205 if (ap->device[1].class != ATA_DEV_NONE)
3206 ap->ops->dev_select(ap, 1);
3207 if (ap->device[0].class != ATA_DEV_NONE)
3208 ap->ops->dev_select(ap, 0);
3209
3210 /* if no devices were detected, disable this port */
3211 if ((ap->device[0].class == ATA_DEV_NONE) &&
3212 (ap->device[1].class == ATA_DEV_NONE))
3213 goto err_out;
3214
3215 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3216 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3217 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3218 }
3219
3220 DPRINTK("EXIT\n");
3221 return;
3222
3223err_out:
f15a1daf 3224 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3225 ap->ops->port_disable(ap);
3226
3227 DPRINTK("EXIT\n");
3228}
3229
d7bb4cc7
TH
3230/**
3231 * sata_phy_debounce - debounce SATA phy status
3232 * @ap: ATA port to debounce SATA phy status for
3233 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3234 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3235 *
3236 * Make sure SStatus of @ap reaches stable state, determined by
3237 * holding the same value where DET is not 1 for @duration polled
3238 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3239 * beginning of the stable state. Because DET gets stuck at 1 on
3240 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3241 * until timeout then returns 0 if DET is stable at 1.
3242 *
d4b2bab4
TH
3243 * @timeout is further limited by @deadline. The sooner of the
3244 * two is used.
3245 *
d7bb4cc7
TH
3246 * LOCKING:
3247 * Kernel thread context (may sleep)
3248 *
3249 * RETURNS:
3250 * 0 on success, -errno on failure.
3251 */
d4b2bab4
TH
3252int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3253 unsigned long deadline)
7a7921e8 3254{
d7bb4cc7 3255 unsigned long interval_msec = params[0];
d4b2bab4
TH
3256 unsigned long duration = msecs_to_jiffies(params[1]);
3257 unsigned long last_jiffies, t;
d7bb4cc7
TH
3258 u32 last, cur;
3259 int rc;
3260
d4b2bab4
TH
3261 t = jiffies + msecs_to_jiffies(params[2]);
3262 if (time_before(t, deadline))
3263 deadline = t;
3264
d7bb4cc7
TH
3265 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3266 return rc;
3267 cur &= 0xf;
3268
3269 last = cur;
3270 last_jiffies = jiffies;
3271
3272 while (1) {
3273 msleep(interval_msec);
3274 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3275 return rc;
3276 cur &= 0xf;
3277
3278 /* DET stable? */
3279 if (cur == last) {
d4b2bab4 3280 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3281 continue;
3282 if (time_after(jiffies, last_jiffies + duration))
3283 return 0;
3284 continue;
3285 }
3286
3287 /* unstable, start over */
3288 last = cur;
3289 last_jiffies = jiffies;
3290
d4b2bab4
TH
3291 /* check deadline */
3292 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3293 return -EBUSY;
3294 }
3295}
3296
3297/**
3298 * sata_phy_resume - resume SATA phy
3299 * @ap: ATA port to resume SATA phy for
3300 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3301 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3302 *
3303 * Resume SATA phy of @ap and debounce it.
3304 *
3305 * LOCKING:
3306 * Kernel thread context (may sleep)
3307 *
3308 * RETURNS:
3309 * 0 on success, -errno on failure.
3310 */
d4b2bab4
TH
3311int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3312 unsigned long deadline)
d7bb4cc7
TH
3313{
3314 u32 scontrol;
81952c54
TH
3315 int rc;
3316
3317 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3318 return rc;
7a7921e8 3319
852ee16a 3320 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3321
3322 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3323 return rc;
7a7921e8 3324
d7bb4cc7
TH
3325 /* Some PHYs react badly if SStatus is pounded immediately
3326 * after resuming. Delay 200ms before debouncing.
3327 */
3328 msleep(200);
7a7921e8 3329
d4b2bab4 3330 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3331}
3332
f5914a46
TH
3333/**
3334 * ata_std_prereset - prepare for reset
3335 * @ap: ATA port to be reset
d4b2bab4 3336 * @deadline: deadline jiffies for the operation
f5914a46 3337 *
b8cffc6a
TH
3338 * @ap is about to be reset. Initialize it. Failure from
3339 * prereset makes libata abort whole reset sequence and give up
3340 * that port, so prereset should be best-effort. It does its
3341 * best to prepare for reset sequence but if things go wrong, it
3342 * should just whine, not fail.
f5914a46
TH
3343 *
3344 * LOCKING:
3345 * Kernel thread context (may sleep)
3346 *
3347 * RETURNS:
3348 * 0 on success, -errno otherwise.
3349 */
d4b2bab4 3350int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3351{
3352 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3353 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3354 int rc;
3355
31daabda 3356 /* handle link resume */
28324304
TH
3357 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3358 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3359 ehc->i.action |= ATA_EH_HARDRESET;
3360
f5914a46
TH
3361 /* if we're about to do hardreset, nothing more to do */
3362 if (ehc->i.action & ATA_EH_HARDRESET)
3363 return 0;
3364
3365 /* if SATA, resume phy */
3366 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3367 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3368 /* whine about phy resume failure but proceed */
3369 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3370 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3371 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3372 }
3373
3374 /* Wait for !BSY if the controller can wait for the first D2H
3375 * Reg FIS and we don't know that no device is attached.
3376 */
b8cffc6a
TH
3377 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3378 rc = ata_wait_ready(ap, deadline);
6dffaf61 3379 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3380 ata_port_printk(ap, KERN_WARNING, "device not ready "
3381 "(errno=%d), forcing hardreset\n", rc);
3382 ehc->i.action |= ATA_EH_HARDRESET;
3383 }
3384 }
f5914a46
TH
3385
3386 return 0;
3387}
3388
c2bd5804
TH
3389/**
3390 * ata_std_softreset - reset host port via ATA SRST
3391 * @ap: port to reset
c2bd5804 3392 * @classes: resulting classes of attached devices
d4b2bab4 3393 * @deadline: deadline jiffies for the operation
c2bd5804 3394 *
52783c5d 3395 * Reset host port using ATA SRST.
c2bd5804
TH
3396 *
3397 * LOCKING:
3398 * Kernel thread context (may sleep)
3399 *
3400 * RETURNS:
3401 * 0 on success, -errno otherwise.
3402 */
d4b2bab4
TH
3403int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3404 unsigned long deadline)
c2bd5804
TH
3405{
3406 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3407 unsigned int devmask = 0;
3408 int rc;
c2bd5804
TH
3409 u8 err;
3410
3411 DPRINTK("ENTER\n");
3412
81952c54 3413 if (ata_port_offline(ap)) {
3a39746a
TH
3414 classes[0] = ATA_DEV_NONE;
3415 goto out;
3416 }
3417
c2bd5804
TH
3418 /* determine if device 0/1 are present */
3419 if (ata_devchk(ap, 0))
3420 devmask |= (1 << 0);
3421 if (slave_possible && ata_devchk(ap, 1))
3422 devmask |= (1 << 1);
3423
c2bd5804
TH
3424 /* select device 0 again */
3425 ap->ops->dev_select(ap, 0);
3426
3427 /* issue bus reset */
3428 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3429 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3430 /* if link is occupied, -ENODEV too is an error */
3431 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3432 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3433 return rc;
c2bd5804
TH
3434 }
3435
3436 /* determine by signature whether we have ATA or ATAPI devices */
3437 classes[0] = ata_dev_try_classify(ap, 0, &err);
3438 if (slave_possible && err != 0x81)
3439 classes[1] = ata_dev_try_classify(ap, 1, &err);
3440
3a39746a 3441 out:
c2bd5804
TH
3442 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3443 return 0;
3444}
3445
3446/**
b6103f6d 3447 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3448 * @ap: port to reset
b6103f6d 3449 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3450 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3451 *
3452 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3453 *
3454 * LOCKING:
3455 * Kernel thread context (may sleep)
3456 *
3457 * RETURNS:
3458 * 0 on success, -errno otherwise.
3459 */
d4b2bab4
TH
3460int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3461 unsigned long deadline)
c2bd5804 3462{
852ee16a 3463 u32 scontrol;
81952c54 3464 int rc;
852ee16a 3465
c2bd5804
TH
3466 DPRINTK("ENTER\n");
3467
3c567b7d 3468 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3469 /* SATA spec says nothing about how to reconfigure
3470 * spd. To be on the safe side, turn off phy during
3471 * reconfiguration. This works for at least ICH7 AHCI
3472 * and Sil3124.
3473 */
81952c54 3474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3475 goto out;
81952c54 3476
a34b6fc0 3477 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3478
3479 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3480 goto out;
1c3fae4d 3481
3c567b7d 3482 sata_set_spd(ap);
1c3fae4d
TH
3483 }
3484
3485 /* issue phy wake/reset */
81952c54 3486 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3487 goto out;
81952c54 3488
852ee16a 3489 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3490
3491 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3492 goto out;
c2bd5804 3493
1c3fae4d 3494 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3495 * 10.4.2 says at least 1 ms.
3496 */
3497 msleep(1);
3498
1c3fae4d 3499 /* bring phy back */
d4b2bab4 3500 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3501 out:
3502 DPRINTK("EXIT, rc=%d\n", rc);
3503 return rc;
3504}
3505
3506/**
3507 * sata_std_hardreset - reset host port via SATA phy reset
3508 * @ap: port to reset
3509 * @class: resulting class of attached device
d4b2bab4 3510 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3511 *
3512 * SATA phy-reset host port using DET bits of SControl register,
3513 * wait for !BSY and classify the attached device.
3514 *
3515 * LOCKING:
3516 * Kernel thread context (may sleep)
3517 *
3518 * RETURNS:
3519 * 0 on success, -errno otherwise.
3520 */
d4b2bab4
TH
3521int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3522 unsigned long deadline)
b6103f6d
TH
3523{
3524 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3525 int rc;
3526
3527 DPRINTK("ENTER\n");
3528
3529 /* do hardreset */
d4b2bab4 3530 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3531 if (rc) {
3532 ata_port_printk(ap, KERN_ERR,
3533 "COMRESET failed (errno=%d)\n", rc);
3534 return rc;
3535 }
c2bd5804 3536
c2bd5804 3537 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3538 if (ata_port_offline(ap)) {
c2bd5804
TH
3539 *class = ATA_DEV_NONE;
3540 DPRINTK("EXIT, link offline\n");
3541 return 0;
3542 }
3543
34fee227
TH
3544 /* wait a while before checking status, see SRST for more info */
3545 msleep(150);
3546
d4b2bab4 3547 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3548 /* link occupied, -ENODEV too is an error */
3549 if (rc) {
f15a1daf 3550 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3551 "COMRESET failed (errno=%d)\n", rc);
3552 return rc;
c2bd5804
TH
3553 }
3554
3a39746a
TH
3555 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3556
c2bd5804
TH
3557 *class = ata_dev_try_classify(ap, 0, NULL);
3558
3559 DPRINTK("EXIT, class=%u\n", *class);
3560 return 0;
3561}
3562
3563/**
3564 * ata_std_postreset - standard postreset callback
3565 * @ap: the target ata_port
3566 * @classes: classes of attached devices
3567 *
3568 * This function is invoked after a successful reset. Note that
3569 * the device might have been reset more than once using
3570 * different reset methods before postreset is invoked.
c2bd5804 3571 *
c2bd5804
TH
3572 * LOCKING:
3573 * Kernel thread context (may sleep)
3574 */
3575void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3576{
dc2b3515
TH
3577 u32 serror;
3578
c2bd5804
TH
3579 DPRINTK("ENTER\n");
3580
c2bd5804 3581 /* print link status */
81952c54 3582 sata_print_link_status(ap);
c2bd5804 3583
dc2b3515
TH
3584 /* clear SError */
3585 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3586 sata_scr_write(ap, SCR_ERROR, serror);
3587
3a39746a 3588 /* re-enable interrupts */
83625006
AI
3589 if (!ap->ops->error_handler)
3590 ap->ops->irq_on(ap);
c2bd5804
TH
3591
3592 /* is double-select really necessary? */
3593 if (classes[0] != ATA_DEV_NONE)
3594 ap->ops->dev_select(ap, 1);
3595 if (classes[1] != ATA_DEV_NONE)
3596 ap->ops->dev_select(ap, 0);
3597
3a39746a
TH
3598 /* bail out if no device is present */
3599 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3600 DPRINTK("EXIT, no device\n");
3601 return;
3602 }
3603
3604 /* set up device control */
0d5ff566
TH
3605 if (ap->ioaddr.ctl_addr)
3606 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3607
3608 DPRINTK("EXIT\n");
3609}
3610
623a3128
TH
3611/**
3612 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3613 * @dev: device to compare against
3614 * @new_class: class of the new device
3615 * @new_id: IDENTIFY page of the new device
3616 *
3617 * Compare @new_class and @new_id against @dev and determine
3618 * whether @dev is the device indicated by @new_class and
3619 * @new_id.
3620 *
3621 * LOCKING:
3622 * None.
3623 *
3624 * RETURNS:
3625 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3626 */
3373efd8
TH
3627static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3628 const u16 *new_id)
623a3128
TH
3629{
3630 const u16 *old_id = dev->id;
a0cf733b
TH
3631 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3632 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3633
3634 if (dev->class != new_class) {
f15a1daf
TH
3635 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3636 dev->class, new_class);
623a3128
TH
3637 return 0;
3638 }
3639
a0cf733b
TH
3640 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3641 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3642 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3643 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3644
3645 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3646 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3647 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3648 return 0;
3649 }
3650
3651 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3652 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3653 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3654 return 0;
3655 }
3656
623a3128
TH
3657 return 1;
3658}
3659
3660/**
fe30911b 3661 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3662 * @dev: target ATA device
bff04647 3663 * @readid_flags: read ID flags
623a3128
TH
3664 *
3665 * Re-read IDENTIFY page and make sure @dev is still attached to
3666 * the port.
3667 *
3668 * LOCKING:
3669 * Kernel thread context (may sleep)
3670 *
3671 * RETURNS:
3672 * 0 on success, negative errno otherwise
3673 */
fe30911b 3674int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3675{
5eb45c02 3676 unsigned int class = dev->class;
f15a1daf 3677 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3678 int rc;
3679
fe635c7e 3680 /* read ID data */
bff04647 3681 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3682 if (rc)
fe30911b 3683 return rc;
623a3128
TH
3684
3685 /* is the device still there? */
fe30911b
TH
3686 if (!ata_dev_same_device(dev, class, id))
3687 return -ENODEV;
623a3128 3688
fe635c7e 3689 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3690 return 0;
3691}
3692
3693/**
3694 * ata_dev_revalidate - Revalidate ATA device
3695 * @dev: device to revalidate
3696 * @readid_flags: read ID flags
3697 *
3698 * Re-read IDENTIFY page, make sure @dev is still attached to the
3699 * port and reconfigure it according to the new IDENTIFY page.
3700 *
3701 * LOCKING:
3702 * Kernel thread context (may sleep)
3703 *
3704 * RETURNS:
3705 * 0 on success, negative errno otherwise
3706 */
3707int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3708{
6ddcd3b0 3709 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3710 int rc;
3711
3712 if (!ata_dev_enabled(dev))
3713 return -ENODEV;
3714
3715 /* re-read ID */
3716 rc = ata_dev_reread_id(dev, readid_flags);
3717 if (rc)
3718 goto fail;
623a3128
TH
3719
3720 /* configure device according to the new ID */
efdaedc4 3721 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3722 if (rc)
3723 goto fail;
3724
3725 /* verify n_sectors hasn't changed */
3726 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3727 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3728 "%llu != %llu\n",
3729 (unsigned long long)n_sectors,
3730 (unsigned long long)dev->n_sectors);
3731 rc = -ENODEV;
3732 goto fail;
3733 }
3734
3735 return 0;
623a3128
TH
3736
3737 fail:
f15a1daf 3738 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3739 return rc;
3740}
3741
6919a0a6
AC
3742struct ata_blacklist_entry {
3743 const char *model_num;
3744 const char *model_rev;
3745 unsigned long horkage;
3746};
3747
3748static const struct ata_blacklist_entry ata_device_blacklist [] = {
3749 /* Devices with DMA related problems under Linux */
3750 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3751 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3752 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3753 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3754 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3755 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3756 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3757 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3758 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3759 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3760 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3761 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3762 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3763 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3764 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3765 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3766 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3767 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3768 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3769 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3770 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3771 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3772 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3773 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3774 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3775 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3776 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3777 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3778 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3779 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3780 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
6919a0a6 3781
18d6e9d5 3782 /* Weird ATAPI devices */
6f23a31d
AL
3783 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3784 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3785
6919a0a6
AC
3786 /* Devices we expect to fail diagnostics */
3787
3788 /* Devices where NCQ should be avoided */
3789 /* NCQ is slow */
3790 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3791 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3792 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3793 /* NCQ is broken */
3794 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3795 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3796 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3797 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3798 /* Blacklist entries taken from Silicon Image 3124/3132
3799 Windows driver .inf file - also several Linux problem reports */
3800 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3801 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3802 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3803 /* Drives which do spurious command completion */
3804 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb
TH
3805 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3806 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3807
3808 /* Devices with NCQ limits */
3809
3810 /* End Marker */
3811 { }
1da177e4 3812};
2e9edbf8 3813
6919a0a6 3814unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3815{
8bfa79fc
TH
3816 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3817 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3818 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3819
8bfa79fc
TH
3820 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3821 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3822
6919a0a6 3823 while (ad->model_num) {
8bfa79fc 3824 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3825 if (ad->model_rev == NULL)
3826 return ad->horkage;
8bfa79fc 3827 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3828 return ad->horkage;
f4b15fef 3829 }
6919a0a6 3830 ad++;
f4b15fef 3831 }
1da177e4
LT
3832 return 0;
3833}
3834
6919a0a6
AC
3835static int ata_dma_blacklisted(const struct ata_device *dev)
3836{
3837 /* We don't support polling DMA.
3838 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3839 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3840 */
3841 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3842 (dev->flags & ATA_DFLAG_CDB_INTR))
3843 return 1;
3844 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3845}
3846
a6d5a51c
TH
3847/**
3848 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3849 * @dev: Device to compute xfermask for
3850 *
acf356b1
TH
3851 * Compute supported xfermask of @dev and store it in
3852 * dev->*_mask. This function is responsible for applying all
3853 * known limits including host controller limits, device
3854 * blacklist, etc...
a6d5a51c
TH
3855 *
3856 * LOCKING:
3857 * None.
a6d5a51c 3858 */
3373efd8 3859static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3860{
3373efd8 3861 struct ata_port *ap = dev->ap;
cca3974e 3862 struct ata_host *host = ap->host;
a6d5a51c 3863 unsigned long xfer_mask;
1da177e4 3864
37deecb5 3865 /* controller modes available */
565083e1
TH
3866 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3867 ap->mwdma_mask, ap->udma_mask);
3868
8343f889 3869 /* drive modes available */
37deecb5
TH
3870 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3871 dev->mwdma_mask, dev->udma_mask);
3872 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3873
b352e57d
AC
3874 /*
3875 * CFA Advanced TrueIDE timings are not allowed on a shared
3876 * cable
3877 */
3878 if (ata_dev_pair(dev)) {
3879 /* No PIO5 or PIO6 */
3880 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3881 /* No MWDMA3 or MWDMA 4 */
3882 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3883 }
3884
37deecb5
TH
3885 if (ata_dma_blacklisted(dev)) {
3886 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3887 ata_dev_printk(dev, KERN_WARNING,
3888 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3889 }
a6d5a51c 3890
14d66ab7
PV
3891 if ((host->flags & ATA_HOST_SIMPLEX) &&
3892 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3893 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3894 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3895 "other device, disabling DMA\n");
5444a6f4 3896 }
565083e1 3897
e424675f
JG
3898 if (ap->flags & ATA_FLAG_NO_IORDY)
3899 xfer_mask &= ata_pio_mask_no_iordy(dev);
3900
5444a6f4 3901 if (ap->ops->mode_filter)
a76b62ca 3902 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3903
8343f889
RH
3904 /* Apply cable rule here. Don't apply it early because when
3905 * we handle hot plug the cable type can itself change.
3906 * Check this last so that we know if the transfer rate was
3907 * solely limited by the cable.
3908 * Unknown or 80 wire cables reported host side are checked
3909 * drive side as well. Cases where we know a 40wire cable
3910 * is used safely for 80 are not checked here.
3911 */
3912 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3913 /* UDMA/44 or higher would be available */
3914 if((ap->cbl == ATA_CBL_PATA40) ||
3915 (ata_drive_40wire(dev->id) &&
3916 (ap->cbl == ATA_CBL_PATA_UNK ||
3917 ap->cbl == ATA_CBL_PATA80))) {
3918 ata_dev_printk(dev, KERN_WARNING,
3919 "limited to UDMA/33 due to 40-wire cable\n");
3920 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3921 }
3922
565083e1
TH
3923 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3924 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3925}
3926
1da177e4
LT
3927/**
3928 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3929 * @dev: Device to which command will be sent
3930 *
780a87f7
JG
3931 * Issue SET FEATURES - XFER MODE command to device @dev
3932 * on port @ap.
3933 *
1da177e4 3934 * LOCKING:
0cba632b 3935 * PCI/etc. bus probe sem.
83206a29
TH
3936 *
3937 * RETURNS:
3938 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3939 */
3940
3373efd8 3941static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3942{
a0123703 3943 struct ata_taskfile tf;
83206a29 3944 unsigned int err_mask;
1da177e4
LT
3945
3946 /* set up set-features taskfile */
3947 DPRINTK("set features - xfer mode\n");
3948
464cf177
TH
3949 /* Some controllers and ATAPI devices show flaky interrupt
3950 * behavior after setting xfer mode. Use polling instead.
3951 */
3373efd8 3952 ata_tf_init(dev, &tf);
a0123703
TH
3953 tf.command = ATA_CMD_SET_FEATURES;
3954 tf.feature = SETFEATURES_XFER;
464cf177 3955 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3956 tf.protocol = ATA_PROT_NODATA;
3957 tf.nsect = dev->xfer_mode;
1da177e4 3958
3373efd8 3959 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3960
83206a29
TH
3961 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3962 return err_mask;
1da177e4
LT
3963}
3964
8bf62ece
AL
3965/**
3966 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3967 * @dev: Device to which command will be sent
e2a7f77a
RD
3968 * @heads: Number of heads (taskfile parameter)
3969 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3970 *
3971 * LOCKING:
6aff8f1f
TH
3972 * Kernel thread context (may sleep)
3973 *
3974 * RETURNS:
3975 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3976 */
3373efd8
TH
3977static unsigned int ata_dev_init_params(struct ata_device *dev,
3978 u16 heads, u16 sectors)
8bf62ece 3979{
a0123703 3980 struct ata_taskfile tf;
6aff8f1f 3981 unsigned int err_mask;
8bf62ece
AL
3982
3983 /* Number of sectors per track 1-255. Number of heads 1-16 */
3984 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3985 return AC_ERR_INVALID;
8bf62ece
AL
3986
3987 /* set up init dev params taskfile */
3988 DPRINTK("init dev params \n");
3989
3373efd8 3990 ata_tf_init(dev, &tf);
a0123703
TH
3991 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3992 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3993 tf.protocol = ATA_PROT_NODATA;
3994 tf.nsect = sectors;
3995 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3996
3373efd8 3997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3998
6aff8f1f
TH
3999 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4000 return err_mask;
8bf62ece
AL
4001}
4002
1da177e4 4003/**
0cba632b
JG
4004 * ata_sg_clean - Unmap DMA memory associated with command
4005 * @qc: Command containing DMA memory to be released
4006 *
4007 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4008 *
4009 * LOCKING:
cca3974e 4010 * spin_lock_irqsave(host lock)
1da177e4 4011 */
70e6ad0c 4012void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4013{
4014 struct ata_port *ap = qc->ap;
cedc9a47 4015 struct scatterlist *sg = qc->__sg;
1da177e4 4016 int dir = qc->dma_dir;
cedc9a47 4017 void *pad_buf = NULL;
1da177e4 4018
a4631474
TH
4019 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4020 WARN_ON(sg == NULL);
1da177e4
LT
4021
4022 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4023 WARN_ON(qc->n_elem > 1);
1da177e4 4024
2c13b7ce 4025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4026
cedc9a47
JG
4027 /* if we padded the buffer out to 32-bit bound, and data
4028 * xfer direction is from-device, we must copy from the
4029 * pad buffer back into the supplied buffer
4030 */
4031 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4032 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4033
4034 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4035 if (qc->n_elem)
2f1f610b 4036 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4037 /* restore last sg */
4038 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4039 if (pad_buf) {
4040 struct scatterlist *psg = &qc->pad_sgent;
4041 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4042 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4043 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4044 }
4045 } else {
2e242fa9 4046 if (qc->n_elem)
2f1f610b 4047 dma_unmap_single(ap->dev,
e1410f2d
JG
4048 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4049 dir);
cedc9a47
JG
4050 /* restore sg */
4051 sg->length += qc->pad_len;
4052 if (pad_buf)
4053 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4054 pad_buf, qc->pad_len);
4055 }
1da177e4
LT
4056
4057 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4058 qc->__sg = NULL;
1da177e4
LT
4059}
4060
4061/**
4062 * ata_fill_sg - Fill PCI IDE PRD table
4063 * @qc: Metadata associated with taskfile to be transferred
4064 *
780a87f7
JG
4065 * Fill PCI IDE PRD (scatter-gather) table with segments
4066 * associated with the current disk command.
4067 *
1da177e4 4068 * LOCKING:
cca3974e 4069 * spin_lock_irqsave(host lock)
1da177e4
LT
4070 *
4071 */
4072static void ata_fill_sg(struct ata_queued_cmd *qc)
4073{
1da177e4 4074 struct ata_port *ap = qc->ap;
cedc9a47
JG
4075 struct scatterlist *sg;
4076 unsigned int idx;
1da177e4 4077
a4631474 4078 WARN_ON(qc->__sg == NULL);
f131883e 4079 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4080
4081 idx = 0;
cedc9a47 4082 ata_for_each_sg(sg, qc) {
1da177e4
LT
4083 u32 addr, offset;
4084 u32 sg_len, len;
4085
4086 /* determine if physical DMA addr spans 64K boundary.
4087 * Note h/w doesn't support 64-bit, so we unconditionally
4088 * truncate dma_addr_t to u32.
4089 */
4090 addr = (u32) sg_dma_address(sg);
4091 sg_len = sg_dma_len(sg);
4092
4093 while (sg_len) {
4094 offset = addr & 0xffff;
4095 len = sg_len;
4096 if ((offset + sg_len) > 0x10000)
4097 len = 0x10000 - offset;
4098
4099 ap->prd[idx].addr = cpu_to_le32(addr);
4100 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4101 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4102
4103 idx++;
4104 sg_len -= len;
4105 addr += len;
4106 }
4107 }
4108
4109 if (idx)
4110 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4111}
b9a4197e 4112
1da177e4
LT
4113/**
4114 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4115 * @qc: Metadata associated with taskfile to check
4116 *
780a87f7
JG
4117 * Allow low-level driver to filter ATA PACKET commands, returning
4118 * a status indicating whether or not it is OK to use DMA for the
4119 * supplied PACKET command.
4120 *
1da177e4 4121 * LOCKING:
cca3974e 4122 * spin_lock_irqsave(host lock)
0cba632b 4123 *
1da177e4
LT
4124 * RETURNS: 0 when ATAPI DMA can be used
4125 * nonzero otherwise
4126 */
4127int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4128{
4129 struct ata_port *ap = qc->ap;
b9a4197e
TH
4130
4131 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4132 * few ATAPI devices choke on such DMA requests.
4133 */
4134 if (unlikely(qc->nbytes & 15))
4135 return 1;
6f23a31d 4136
1da177e4 4137 if (ap->ops->check_atapi_dma)
b9a4197e 4138 return ap->ops->check_atapi_dma(qc);
1da177e4 4139
b9a4197e 4140 return 0;
1da177e4 4141}
b9a4197e 4142
1da177e4
LT
4143/**
4144 * ata_qc_prep - Prepare taskfile for submission
4145 * @qc: Metadata associated with taskfile to be prepared
4146 *
780a87f7
JG
4147 * Prepare ATA taskfile for submission.
4148 *
1da177e4 4149 * LOCKING:
cca3974e 4150 * spin_lock_irqsave(host lock)
1da177e4
LT
4151 */
4152void ata_qc_prep(struct ata_queued_cmd *qc)
4153{
4154 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4155 return;
4156
4157 ata_fill_sg(qc);
4158}
4159
e46834cd
BK
4160void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4161
0cba632b
JG
4162/**
4163 * ata_sg_init_one - Associate command with memory buffer
4164 * @qc: Command to be associated
4165 * @buf: Memory buffer
4166 * @buflen: Length of memory buffer, in bytes.
4167 *
4168 * Initialize the data-related elements of queued_cmd @qc
4169 * to point to a single memory buffer, @buf of byte length @buflen.
4170 *
4171 * LOCKING:
cca3974e 4172 * spin_lock_irqsave(host lock)
0cba632b
JG
4173 */
4174
1da177e4
LT
4175void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4176{
1da177e4
LT
4177 qc->flags |= ATA_QCFLAG_SINGLE;
4178
cedc9a47 4179 qc->__sg = &qc->sgent;
1da177e4 4180 qc->n_elem = 1;
cedc9a47 4181 qc->orig_n_elem = 1;
1da177e4 4182 qc->buf_virt = buf;
233277ca 4183 qc->nbytes = buflen;
1da177e4 4184
61c0596c 4185 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4186}
4187
0cba632b
JG
4188/**
4189 * ata_sg_init - Associate command with scatter-gather table.
4190 * @qc: Command to be associated
4191 * @sg: Scatter-gather table.
4192 * @n_elem: Number of elements in s/g table.
4193 *
4194 * Initialize the data-related elements of queued_cmd @qc
4195 * to point to a scatter-gather table @sg, containing @n_elem
4196 * elements.
4197 *
4198 * LOCKING:
cca3974e 4199 * spin_lock_irqsave(host lock)
0cba632b
JG
4200 */
4201
1da177e4
LT
4202void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4203 unsigned int n_elem)
4204{
4205 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4206 qc->__sg = sg;
1da177e4 4207 qc->n_elem = n_elem;
cedc9a47 4208 qc->orig_n_elem = n_elem;
1da177e4
LT
4209}
4210
4211/**
0cba632b
JG
4212 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4213 * @qc: Command with memory buffer to be mapped.
4214 *
4215 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4216 *
4217 * LOCKING:
cca3974e 4218 * spin_lock_irqsave(host lock)
1da177e4
LT
4219 *
4220 * RETURNS:
0cba632b 4221 * Zero on success, negative on error.
1da177e4
LT
4222 */
4223
4224static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4225{
4226 struct ata_port *ap = qc->ap;
4227 int dir = qc->dma_dir;
cedc9a47 4228 struct scatterlist *sg = qc->__sg;
1da177e4 4229 dma_addr_t dma_address;
2e242fa9 4230 int trim_sg = 0;
1da177e4 4231
cedc9a47
JG
4232 /* we must lengthen transfers to end on a 32-bit boundary */
4233 qc->pad_len = sg->length & 3;
4234 if (qc->pad_len) {
4235 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4236 struct scatterlist *psg = &qc->pad_sgent;
4237
a4631474 4238 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4239
4240 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4241
4242 if (qc->tf.flags & ATA_TFLAG_WRITE)
4243 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4244 qc->pad_len);
4245
4246 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4247 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4248 /* trim sg */
4249 sg->length -= qc->pad_len;
2e242fa9
TH
4250 if (sg->length == 0)
4251 trim_sg = 1;
cedc9a47
JG
4252
4253 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4254 sg->length, qc->pad_len);
4255 }
4256
2e242fa9
TH
4257 if (trim_sg) {
4258 qc->n_elem--;
e1410f2d
JG
4259 goto skip_map;
4260 }
4261
2f1f610b 4262 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4263 sg->length, dir);
537a95d9
TH
4264 if (dma_mapping_error(dma_address)) {
4265 /* restore sg */
4266 sg->length += qc->pad_len;
1da177e4 4267 return -1;
537a95d9 4268 }
1da177e4
LT
4269
4270 sg_dma_address(sg) = dma_address;
32529e01 4271 sg_dma_len(sg) = sg->length;
1da177e4 4272
2e242fa9 4273skip_map:
1da177e4
LT
4274 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4275 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4276
4277 return 0;
4278}
4279
4280/**
0cba632b
JG
4281 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4282 * @qc: Command with scatter-gather table to be mapped.
4283 *
4284 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4285 *
4286 * LOCKING:
cca3974e 4287 * spin_lock_irqsave(host lock)
1da177e4
LT
4288 *
4289 * RETURNS:
0cba632b 4290 * Zero on success, negative on error.
1da177e4
LT
4291 *
4292 */
4293
4294static int ata_sg_setup(struct ata_queued_cmd *qc)
4295{
4296 struct ata_port *ap = qc->ap;
cedc9a47
JG
4297 struct scatterlist *sg = qc->__sg;
4298 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4299 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4300
44877b4e 4301 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4302 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4303
cedc9a47
JG
4304 /* we must lengthen transfers to end on a 32-bit boundary */
4305 qc->pad_len = lsg->length & 3;
4306 if (qc->pad_len) {
4307 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4308 struct scatterlist *psg = &qc->pad_sgent;
4309 unsigned int offset;
4310
a4631474 4311 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4312
4313 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4314
4315 /*
4316 * psg->page/offset are used to copy to-be-written
4317 * data in this function or read data in ata_sg_clean.
4318 */
4319 offset = lsg->offset + lsg->length - qc->pad_len;
4320 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4321 psg->offset = offset_in_page(offset);
4322
4323 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4324 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4325 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4326 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4327 }
4328
4329 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4330 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4331 /* trim last sg */
4332 lsg->length -= qc->pad_len;
e1410f2d
JG
4333 if (lsg->length == 0)
4334 trim_sg = 1;
cedc9a47
JG
4335
4336 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4337 qc->n_elem - 1, lsg->length, qc->pad_len);
4338 }
4339
e1410f2d
JG
4340 pre_n_elem = qc->n_elem;
4341 if (trim_sg && pre_n_elem)
4342 pre_n_elem--;
4343
4344 if (!pre_n_elem) {
4345 n_elem = 0;
4346 goto skip_map;
4347 }
4348
1da177e4 4349 dir = qc->dma_dir;
2f1f610b 4350 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4351 if (n_elem < 1) {
4352 /* restore last sg */
4353 lsg->length += qc->pad_len;
1da177e4 4354 return -1;
537a95d9 4355 }
1da177e4
LT
4356
4357 DPRINTK("%d sg elements mapped\n", n_elem);
4358
e1410f2d 4359skip_map:
1da177e4
LT
4360 qc->n_elem = n_elem;
4361
4362 return 0;
4363}
4364
0baab86b 4365/**
c893a3ae 4366 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4367 * @buf: Buffer to swap
4368 * @buf_words: Number of 16-bit words in buffer.
4369 *
4370 * Swap halves of 16-bit words if needed to convert from
4371 * little-endian byte order to native cpu byte order, or
4372 * vice-versa.
4373 *
4374 * LOCKING:
6f0ef4fa 4375 * Inherited from caller.
0baab86b 4376 */
1da177e4
LT
4377void swap_buf_le16(u16 *buf, unsigned int buf_words)
4378{
4379#ifdef __BIG_ENDIAN
4380 unsigned int i;
4381
4382 for (i = 0; i < buf_words; i++)
4383 buf[i] = le16_to_cpu(buf[i]);
4384#endif /* __BIG_ENDIAN */
4385}
4386
6ae4cfb5 4387/**
0d5ff566 4388 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4389 * @adev: device to target
6ae4cfb5
AL
4390 * @buf: data buffer
4391 * @buflen: buffer length
344babaa 4392 * @write_data: read/write
6ae4cfb5
AL
4393 *
4394 * Transfer data from/to the device data register by PIO.
4395 *
4396 * LOCKING:
4397 * Inherited from caller.
6ae4cfb5 4398 */
0d5ff566
TH
4399void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4400 unsigned int buflen, int write_data)
1da177e4 4401{
a6b2c5d4 4402 struct ata_port *ap = adev->ap;
6ae4cfb5 4403 unsigned int words = buflen >> 1;
1da177e4 4404
6ae4cfb5 4405 /* Transfer multiple of 2 bytes */
1da177e4 4406 if (write_data)
0d5ff566 4407 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4408 else
0d5ff566 4409 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4410
4411 /* Transfer trailing 1 byte, if any. */
4412 if (unlikely(buflen & 0x01)) {
4413 u16 align_buf[1] = { 0 };
4414 unsigned char *trailing_buf = buf + buflen - 1;
4415
4416 if (write_data) {
4417 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4418 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4419 } else {
0d5ff566 4420 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4421 memcpy(trailing_buf, align_buf, 1);
4422 }
4423 }
1da177e4
LT
4424}
4425
75e99585 4426/**
0d5ff566 4427 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4428 * @adev: device to target
4429 * @buf: data buffer
4430 * @buflen: buffer length
4431 * @write_data: read/write
4432 *
88574551 4433 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4434 * transfer with interrupts disabled.
4435 *
4436 * LOCKING:
4437 * Inherited from caller.
4438 */
0d5ff566
TH
4439void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4440 unsigned int buflen, int write_data)
75e99585
AC
4441{
4442 unsigned long flags;
4443 local_irq_save(flags);
0d5ff566 4444 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4445 local_irq_restore(flags);
4446}
4447
4448
6ae4cfb5 4449/**
5a5dbd18 4450 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4451 * @qc: Command on going
4452 *
5a5dbd18 4453 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4454 *
4455 * LOCKING:
4456 * Inherited from caller.
4457 */
4458
1da177e4
LT
4459static void ata_pio_sector(struct ata_queued_cmd *qc)
4460{
4461 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4462 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4463 struct ata_port *ap = qc->ap;
4464 struct page *page;
4465 unsigned int offset;
4466 unsigned char *buf;
4467
5a5dbd18 4468 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4469 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4470
4471 page = sg[qc->cursg].page;
726f0785 4472 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4473
4474 /* get the current page and offset */
4475 page = nth_page(page, (offset >> PAGE_SHIFT));
4476 offset %= PAGE_SIZE;
4477
1da177e4
LT
4478 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4479
91b8b313
AL
4480 if (PageHighMem(page)) {
4481 unsigned long flags;
4482
a6b2c5d4 4483 /* FIXME: use a bounce buffer */
91b8b313
AL
4484 local_irq_save(flags);
4485 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4486
91b8b313 4487 /* do the actual data transfer */
5a5dbd18 4488 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4489
91b8b313
AL
4490 kunmap_atomic(buf, KM_IRQ0);
4491 local_irq_restore(flags);
4492 } else {
4493 buf = page_address(page);
5a5dbd18 4494 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4495 }
1da177e4 4496
5a5dbd18
ML
4497 qc->curbytes += qc->sect_size;
4498 qc->cursg_ofs += qc->sect_size;
1da177e4 4499
726f0785 4500 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4501 qc->cursg++;
4502 qc->cursg_ofs = 0;
4503 }
1da177e4 4504}
1da177e4 4505
07f6f7d0 4506/**
5a5dbd18 4507 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4508 * @qc: Command on going
4509 *
5a5dbd18 4510 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4511 * ATA device for the DRQ request.
4512 *
4513 * LOCKING:
4514 * Inherited from caller.
4515 */
1da177e4 4516
07f6f7d0
AL
4517static void ata_pio_sectors(struct ata_queued_cmd *qc)
4518{
4519 if (is_multi_taskfile(&qc->tf)) {
4520 /* READ/WRITE MULTIPLE */
4521 unsigned int nsect;
4522
587005de 4523 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4524
5a5dbd18 4525 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4526 qc->dev->multi_count);
07f6f7d0
AL
4527 while (nsect--)
4528 ata_pio_sector(qc);
4529 } else
4530 ata_pio_sector(qc);
4531}
4532
c71c1857
AL
4533/**
4534 * atapi_send_cdb - Write CDB bytes to hardware
4535 * @ap: Port to which ATAPI device is attached.
4536 * @qc: Taskfile currently active
4537 *
4538 * When device has indicated its readiness to accept
4539 * a CDB, this function is called. Send the CDB.
4540 *
4541 * LOCKING:
4542 * caller.
4543 */
4544
4545static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4546{
4547 /* send SCSI cdb */
4548 DPRINTK("send cdb\n");
db024d53 4549 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4550
a6b2c5d4 4551 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4552 ata_altstatus(ap); /* flush */
4553
4554 switch (qc->tf.protocol) {
4555 case ATA_PROT_ATAPI:
4556 ap->hsm_task_state = HSM_ST;
4557 break;
4558 case ATA_PROT_ATAPI_NODATA:
4559 ap->hsm_task_state = HSM_ST_LAST;
4560 break;
4561 case ATA_PROT_ATAPI_DMA:
4562 ap->hsm_task_state = HSM_ST_LAST;
4563 /* initiate bmdma */
4564 ap->ops->bmdma_start(qc);
4565 break;
4566 }
1da177e4
LT
4567}
4568
6ae4cfb5
AL
4569/**
4570 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4571 * @qc: Command on going
4572 * @bytes: number of bytes
4573 *
4574 * Transfer Transfer data from/to the ATAPI device.
4575 *
4576 * LOCKING:
4577 * Inherited from caller.
4578 *
4579 */
4580
1da177e4
LT
4581static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4582{
4583 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4584 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4585 struct ata_port *ap = qc->ap;
4586 struct page *page;
4587 unsigned char *buf;
4588 unsigned int offset, count;
4589
563a6e1f 4590 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4591 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4592
4593next_sg:
563a6e1f 4594 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4595 /*
563a6e1f
AL
4596 * The end of qc->sg is reached and the device expects
4597 * more data to transfer. In order not to overrun qc->sg
4598 * and fulfill length specified in the byte count register,
4599 * - for read case, discard trailing data from the device
4600 * - for write case, padding zero data to the device
4601 */
4602 u16 pad_buf[1] = { 0 };
4603 unsigned int words = bytes >> 1;
4604 unsigned int i;
4605
4606 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4607 ata_dev_printk(qc->dev, KERN_WARNING,
4608 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4609
4610 for (i = 0; i < words; i++)
a6b2c5d4 4611 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4612
14be71f4 4613 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4614 return;
4615 }
4616
cedc9a47 4617 sg = &qc->__sg[qc->cursg];
1da177e4 4618
1da177e4
LT
4619 page = sg->page;
4620 offset = sg->offset + qc->cursg_ofs;
4621
4622 /* get the current page and offset */
4623 page = nth_page(page, (offset >> PAGE_SHIFT));
4624 offset %= PAGE_SIZE;
4625
6952df03 4626 /* don't overrun current sg */
32529e01 4627 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4628
4629 /* don't cross page boundaries */
4630 count = min(count, (unsigned int)PAGE_SIZE - offset);
4631
7282aa4b
AL
4632 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4633
91b8b313
AL
4634 if (PageHighMem(page)) {
4635 unsigned long flags;
4636
a6b2c5d4 4637 /* FIXME: use bounce buffer */
91b8b313
AL
4638 local_irq_save(flags);
4639 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4640
91b8b313 4641 /* do the actual data transfer */
a6b2c5d4 4642 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4643
91b8b313
AL
4644 kunmap_atomic(buf, KM_IRQ0);
4645 local_irq_restore(flags);
4646 } else {
4647 buf = page_address(page);
a6b2c5d4 4648 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4649 }
1da177e4
LT
4650
4651 bytes -= count;
4652 qc->curbytes += count;
4653 qc->cursg_ofs += count;
4654
32529e01 4655 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4656 qc->cursg++;
4657 qc->cursg_ofs = 0;
4658 }
4659
563a6e1f 4660 if (bytes)
1da177e4 4661 goto next_sg;
1da177e4
LT
4662}
4663
6ae4cfb5
AL
4664/**
4665 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4666 * @qc: Command on going
4667 *
4668 * Transfer Transfer data from/to the ATAPI device.
4669 *
4670 * LOCKING:
4671 * Inherited from caller.
6ae4cfb5
AL
4672 */
4673
1da177e4
LT
4674static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4675{
4676 struct ata_port *ap = qc->ap;
4677 struct ata_device *dev = qc->dev;
4678 unsigned int ireason, bc_lo, bc_hi, bytes;
4679 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4680
eec4c3f3
AL
4681 /* Abuse qc->result_tf for temp storage of intermediate TF
4682 * here to save some kernel stack usage.
4683 * For normal completion, qc->result_tf is not relevant. For
4684 * error, qc->result_tf is later overwritten by ata_qc_complete().
4685 * So, the correctness of qc->result_tf is not affected.
4686 */
4687 ap->ops->tf_read(ap, &qc->result_tf);
4688 ireason = qc->result_tf.nsect;
4689 bc_lo = qc->result_tf.lbam;
4690 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4691 bytes = (bc_hi << 8) | bc_lo;
4692
4693 /* shall be cleared to zero, indicating xfer of data */
4694 if (ireason & (1 << 0))
4695 goto err_out;
4696
4697 /* make sure transfer direction matches expected */
4698 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4699 if (do_write != i_write)
4700 goto err_out;
4701
44877b4e 4702 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4703
1da177e4
LT
4704 __atapi_pio_bytes(qc, bytes);
4705
4706 return;
4707
4708err_out:
f15a1daf 4709 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4710 qc->err_mask |= AC_ERR_HSM;
14be71f4 4711 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4712}
4713
4714/**
c234fb00
AL
4715 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4716 * @ap: the target ata_port
4717 * @qc: qc on going
1da177e4 4718 *
c234fb00
AL
4719 * RETURNS:
4720 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4721 */
c234fb00
AL
4722
4723static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4724{
c234fb00
AL
4725 if (qc->tf.flags & ATA_TFLAG_POLLING)
4726 return 1;
1da177e4 4727
c234fb00
AL
4728 if (ap->hsm_task_state == HSM_ST_FIRST) {
4729 if (qc->tf.protocol == ATA_PROT_PIO &&
4730 (qc->tf.flags & ATA_TFLAG_WRITE))
4731 return 1;
1da177e4 4732
c234fb00
AL
4733 if (is_atapi_taskfile(&qc->tf) &&
4734 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4735 return 1;
fe79e683
AL
4736 }
4737
c234fb00
AL
4738 return 0;
4739}
1da177e4 4740
c17ea20d
TH
4741/**
4742 * ata_hsm_qc_complete - finish a qc running on standard HSM
4743 * @qc: Command to complete
4744 * @in_wq: 1 if called from workqueue, 0 otherwise
4745 *
4746 * Finish @qc which is running on standard HSM.
4747 *
4748 * LOCKING:
cca3974e 4749 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4750 * Otherwise, none on entry and grabs host lock.
4751 */
4752static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4753{
4754 struct ata_port *ap = qc->ap;
4755 unsigned long flags;
4756
4757 if (ap->ops->error_handler) {
4758 if (in_wq) {
ba6a1308 4759 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4760
cca3974e
JG
4761 /* EH might have kicked in while host lock is
4762 * released.
c17ea20d
TH
4763 */
4764 qc = ata_qc_from_tag(ap, qc->tag);
4765 if (qc) {
4766 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4767 ap->ops->irq_on(ap);
c17ea20d
TH
4768 ata_qc_complete(qc);
4769 } else
4770 ata_port_freeze(ap);
4771 }
4772
ba6a1308 4773 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4774 } else {
4775 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4776 ata_qc_complete(qc);
4777 else
4778 ata_port_freeze(ap);
4779 }
4780 } else {
4781 if (in_wq) {
ba6a1308 4782 spin_lock_irqsave(ap->lock, flags);
83625006 4783 ap->ops->irq_on(ap);
c17ea20d 4784 ata_qc_complete(qc);
ba6a1308 4785 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4786 } else
4787 ata_qc_complete(qc);
4788 }
1da177e4 4789
c81e29b4 4790 ata_altstatus(ap); /* flush */
c17ea20d
TH
4791}
4792
bb5cb290
AL
4793/**
4794 * ata_hsm_move - move the HSM to the next state.
4795 * @ap: the target ata_port
4796 * @qc: qc on going
4797 * @status: current device status
4798 * @in_wq: 1 if called from workqueue, 0 otherwise
4799 *
4800 * RETURNS:
4801 * 1 when poll next status needed, 0 otherwise.
4802 */
9a1004d0
TH
4803int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4804 u8 status, int in_wq)
e2cec771 4805{
bb5cb290
AL
4806 unsigned long flags = 0;
4807 int poll_next;
4808
6912ccd5
AL
4809 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4810
bb5cb290
AL
4811 /* Make sure ata_qc_issue_prot() does not throw things
4812 * like DMA polling into the workqueue. Notice that
4813 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4814 */
c234fb00 4815 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4816
e2cec771 4817fsm_start:
999bb6f4 4818 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4819 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4820
e2cec771
AL
4821 switch (ap->hsm_task_state) {
4822 case HSM_ST_FIRST:
bb5cb290
AL
4823 /* Send first data block or PACKET CDB */
4824
4825 /* If polling, we will stay in the work queue after
4826 * sending the data. Otherwise, interrupt handler
4827 * takes over after sending the data.
4828 */
4829 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4830
e2cec771 4831 /* check device status */
3655d1d3
AL
4832 if (unlikely((status & ATA_DRQ) == 0)) {
4833 /* handle BSY=0, DRQ=0 as error */
4834 if (likely(status & (ATA_ERR | ATA_DF)))
4835 /* device stops HSM for abort/error */
4836 qc->err_mask |= AC_ERR_DEV;
4837 else
4838 /* HSM violation. Let EH handle this */
4839 qc->err_mask |= AC_ERR_HSM;
4840
14be71f4 4841 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4842 goto fsm_start;
1da177e4
LT
4843 }
4844
71601958
AL
4845 /* Device should not ask for data transfer (DRQ=1)
4846 * when it finds something wrong.
eee6c32f
AL
4847 * We ignore DRQ here and stop the HSM by
4848 * changing hsm_task_state to HSM_ST_ERR and
4849 * let the EH abort the command or reset the device.
71601958
AL
4850 */
4851 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4852 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4853 "error, dev_stat 0x%X\n", status);
3655d1d3 4854 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4855 ap->hsm_task_state = HSM_ST_ERR;
4856 goto fsm_start;
71601958 4857 }
1da177e4 4858
bb5cb290
AL
4859 /* Send the CDB (atapi) or the first data block (ata pio out).
4860 * During the state transition, interrupt handler shouldn't
4861 * be invoked before the data transfer is complete and
4862 * hsm_task_state is changed. Hence, the following locking.
4863 */
4864 if (in_wq)
ba6a1308 4865 spin_lock_irqsave(ap->lock, flags);
1da177e4 4866
bb5cb290
AL
4867 if (qc->tf.protocol == ATA_PROT_PIO) {
4868 /* PIO data out protocol.
4869 * send first data block.
4870 */
0565c26d 4871
bb5cb290
AL
4872 /* ata_pio_sectors() might change the state
4873 * to HSM_ST_LAST. so, the state is changed here
4874 * before ata_pio_sectors().
4875 */
4876 ap->hsm_task_state = HSM_ST;
4877 ata_pio_sectors(qc);
4878 ata_altstatus(ap); /* flush */
4879 } else
4880 /* send CDB */
4881 atapi_send_cdb(ap, qc);
4882
4883 if (in_wq)
ba6a1308 4884 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4885
4886 /* if polling, ata_pio_task() handles the rest.
4887 * otherwise, interrupt handler takes over from here.
4888 */
e2cec771 4889 break;
1c848984 4890
e2cec771
AL
4891 case HSM_ST:
4892 /* complete command or read/write the data register */
4893 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4894 /* ATAPI PIO protocol */
4895 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4896 /* No more data to transfer or device error.
4897 * Device error will be tagged in HSM_ST_LAST.
4898 */
e2cec771
AL
4899 ap->hsm_task_state = HSM_ST_LAST;
4900 goto fsm_start;
4901 }
1da177e4 4902
71601958
AL
4903 /* Device should not ask for data transfer (DRQ=1)
4904 * when it finds something wrong.
eee6c32f
AL
4905 * We ignore DRQ here and stop the HSM by
4906 * changing hsm_task_state to HSM_ST_ERR and
4907 * let the EH abort the command or reset the device.
71601958
AL
4908 */
4909 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4910 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4911 "device error, dev_stat 0x%X\n",
4912 status);
3655d1d3 4913 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4914 ap->hsm_task_state = HSM_ST_ERR;
4915 goto fsm_start;
71601958 4916 }
1da177e4 4917
e2cec771 4918 atapi_pio_bytes(qc);
7fb6ec28 4919
e2cec771
AL
4920 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4921 /* bad ireason reported by device */
4922 goto fsm_start;
1da177e4 4923
e2cec771
AL
4924 } else {
4925 /* ATA PIO protocol */
4926 if (unlikely((status & ATA_DRQ) == 0)) {
4927 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4928 if (likely(status & (ATA_ERR | ATA_DF)))
4929 /* device stops HSM for abort/error */
4930 qc->err_mask |= AC_ERR_DEV;
4931 else
55a8e2c8
TH
4932 /* HSM violation. Let EH handle this.
4933 * Phantom devices also trigger this
4934 * condition. Mark hint.
4935 */
4936 qc->err_mask |= AC_ERR_HSM |
4937 AC_ERR_NODEV_HINT;
3655d1d3 4938
e2cec771
AL
4939 ap->hsm_task_state = HSM_ST_ERR;
4940 goto fsm_start;
4941 }
1da177e4 4942
eee6c32f
AL
4943 /* For PIO reads, some devices may ask for
4944 * data transfer (DRQ=1) alone with ERR=1.
4945 * We respect DRQ here and transfer one
4946 * block of junk data before changing the
4947 * hsm_task_state to HSM_ST_ERR.
4948 *
4949 * For PIO writes, ERR=1 DRQ=1 doesn't make
4950 * sense since the data block has been
4951 * transferred to the device.
71601958
AL
4952 */
4953 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4954 /* data might be corrputed */
4955 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4956
4957 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4958 ata_pio_sectors(qc);
4959 ata_altstatus(ap);
4960 status = ata_wait_idle(ap);
4961 }
4962
3655d1d3
AL
4963 if (status & (ATA_BUSY | ATA_DRQ))
4964 qc->err_mask |= AC_ERR_HSM;
4965
eee6c32f
AL
4966 /* ata_pio_sectors() might change the
4967 * state to HSM_ST_LAST. so, the state
4968 * is changed after ata_pio_sectors().
4969 */
4970 ap->hsm_task_state = HSM_ST_ERR;
4971 goto fsm_start;
71601958
AL
4972 }
4973
e2cec771
AL
4974 ata_pio_sectors(qc);
4975
4976 if (ap->hsm_task_state == HSM_ST_LAST &&
4977 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4978 /* all data read */
4979 ata_altstatus(ap);
52a32205 4980 status = ata_wait_idle(ap);
e2cec771
AL
4981 goto fsm_start;
4982 }
4983 }
4984
4985 ata_altstatus(ap); /* flush */
bb5cb290 4986 poll_next = 1;
1da177e4
LT
4987 break;
4988
14be71f4 4989 case HSM_ST_LAST:
6912ccd5
AL
4990 if (unlikely(!ata_ok(status))) {
4991 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4992 ap->hsm_task_state = HSM_ST_ERR;
4993 goto fsm_start;
4994 }
4995
4996 /* no more data to transfer */
4332a771 4997 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4998 ap->print_id, qc->dev->devno, status);
e2cec771 4999
6912ccd5
AL
5000 WARN_ON(qc->err_mask);
5001
e2cec771 5002 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5003
e2cec771 5004 /* complete taskfile transaction */
c17ea20d 5005 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5006
5007 poll_next = 0;
1da177e4
LT
5008 break;
5009
14be71f4 5010 case HSM_ST_ERR:
e2cec771
AL
5011 /* make sure qc->err_mask is available to
5012 * know what's wrong and recover
5013 */
5014 WARN_ON(qc->err_mask == 0);
5015
5016 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5017
999bb6f4 5018 /* complete taskfile transaction */
c17ea20d 5019 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5020
5021 poll_next = 0;
e2cec771
AL
5022 break;
5023 default:
bb5cb290 5024 poll_next = 0;
6912ccd5 5025 BUG();
1da177e4
LT
5026 }
5027
bb5cb290 5028 return poll_next;
1da177e4
LT
5029}
5030
65f27f38 5031static void ata_pio_task(struct work_struct *work)
8061f5f0 5032{
65f27f38
DH
5033 struct ata_port *ap =
5034 container_of(work, struct ata_port, port_task.work);
5035 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5036 u8 status;
a1af3734 5037 int poll_next;
8061f5f0 5038
7fb6ec28 5039fsm_start:
a1af3734 5040 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5041
a1af3734
AL
5042 /*
5043 * This is purely heuristic. This is a fast path.
5044 * Sometimes when we enter, BSY will be cleared in
5045 * a chk-status or two. If not, the drive is probably seeking
5046 * or something. Snooze for a couple msecs, then
5047 * chk-status again. If still busy, queue delayed work.
5048 */
5049 status = ata_busy_wait(ap, ATA_BUSY, 5);
5050 if (status & ATA_BUSY) {
5051 msleep(2);
5052 status = ata_busy_wait(ap, ATA_BUSY, 10);
5053 if (status & ATA_BUSY) {
31ce6dae 5054 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5055 return;
5056 }
8061f5f0
TH
5057 }
5058
a1af3734
AL
5059 /* move the HSM */
5060 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5061
a1af3734
AL
5062 /* another command or interrupt handler
5063 * may be running at this point.
5064 */
5065 if (poll_next)
7fb6ec28 5066 goto fsm_start;
8061f5f0
TH
5067}
5068
1da177e4
LT
5069/**
5070 * ata_qc_new - Request an available ATA command, for queueing
5071 * @ap: Port associated with device @dev
5072 * @dev: Device from whom we request an available command structure
5073 *
5074 * LOCKING:
0cba632b 5075 * None.
1da177e4
LT
5076 */
5077
5078static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5079{
5080 struct ata_queued_cmd *qc = NULL;
5081 unsigned int i;
5082
e3180499 5083 /* no command while frozen */
b51e9e5d 5084 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5085 return NULL;
5086
2ab7db1f
TH
5087 /* the last tag is reserved for internal command. */
5088 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5089 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5090 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5091 break;
5092 }
5093
5094 if (qc)
5095 qc->tag = i;
5096
5097 return qc;
5098}
5099
5100/**
5101 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5102 * @dev: Device from whom we request an available command structure
5103 *
5104 * LOCKING:
0cba632b 5105 * None.
1da177e4
LT
5106 */
5107
3373efd8 5108struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5109{
3373efd8 5110 struct ata_port *ap = dev->ap;
1da177e4
LT
5111 struct ata_queued_cmd *qc;
5112
5113 qc = ata_qc_new(ap);
5114 if (qc) {
1da177e4
LT
5115 qc->scsicmd = NULL;
5116 qc->ap = ap;
5117 qc->dev = dev;
1da177e4 5118
2c13b7ce 5119 ata_qc_reinit(qc);
1da177e4
LT
5120 }
5121
5122 return qc;
5123}
5124
1da177e4
LT
5125/**
5126 * ata_qc_free - free unused ata_queued_cmd
5127 * @qc: Command to complete
5128 *
5129 * Designed to free unused ata_queued_cmd object
5130 * in case something prevents using it.
5131 *
5132 * LOCKING:
cca3974e 5133 * spin_lock_irqsave(host lock)
1da177e4
LT
5134 */
5135void ata_qc_free(struct ata_queued_cmd *qc)
5136{
4ba946e9
TH
5137 struct ata_port *ap = qc->ap;
5138 unsigned int tag;
5139
a4631474 5140 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5141
4ba946e9
TH
5142 qc->flags = 0;
5143 tag = qc->tag;
5144 if (likely(ata_tag_valid(tag))) {
4ba946e9 5145 qc->tag = ATA_TAG_POISON;
6cec4a39 5146 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5147 }
1da177e4
LT
5148}
5149
76014427 5150void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5151{
dedaf2b0
TH
5152 struct ata_port *ap = qc->ap;
5153
a4631474
TH
5154 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5155 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5156
5157 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5158 ata_sg_clean(qc);
5159
7401abf2 5160 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5161 if (qc->tf.protocol == ATA_PROT_NCQ)
5162 ap->sactive &= ~(1 << qc->tag);
5163 else
5164 ap->active_tag = ATA_TAG_POISON;
7401abf2 5165
3f3791d3
AL
5166 /* atapi: mark qc as inactive to prevent the interrupt handler
5167 * from completing the command twice later, before the error handler
5168 * is called. (when rc != 0 and atapi request sense is needed)
5169 */
5170 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5171 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5172
1da177e4 5173 /* call completion callback */
77853bf2 5174 qc->complete_fn(qc);
1da177e4
LT
5175}
5176
39599a53
TH
5177static void fill_result_tf(struct ata_queued_cmd *qc)
5178{
5179 struct ata_port *ap = qc->ap;
5180
39599a53 5181 qc->result_tf.flags = qc->tf.flags;
4742d54f 5182 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5183}
5184
f686bcb8
TH
5185/**
5186 * ata_qc_complete - Complete an active ATA command
5187 * @qc: Command to complete
5188 * @err_mask: ATA Status register contents
5189 *
5190 * Indicate to the mid and upper layers that an ATA
5191 * command has completed, with either an ok or not-ok status.
5192 *
5193 * LOCKING:
cca3974e 5194 * spin_lock_irqsave(host lock)
f686bcb8
TH
5195 */
5196void ata_qc_complete(struct ata_queued_cmd *qc)
5197{
5198 struct ata_port *ap = qc->ap;
5199
5200 /* XXX: New EH and old EH use different mechanisms to
5201 * synchronize EH with regular execution path.
5202 *
5203 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5204 * Normal execution path is responsible for not accessing a
5205 * failed qc. libata core enforces the rule by returning NULL
5206 * from ata_qc_from_tag() for failed qcs.
5207 *
5208 * Old EH depends on ata_qc_complete() nullifying completion
5209 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5210 * not synchronize with interrupt handler. Only PIO task is
5211 * taken care of.
5212 */
5213 if (ap->ops->error_handler) {
b51e9e5d 5214 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5215
5216 if (unlikely(qc->err_mask))
5217 qc->flags |= ATA_QCFLAG_FAILED;
5218
5219 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5220 if (!ata_tag_internal(qc->tag)) {
5221 /* always fill result TF for failed qc */
39599a53 5222 fill_result_tf(qc);
f686bcb8
TH
5223 ata_qc_schedule_eh(qc);
5224 return;
5225 }
5226 }
5227
5228 /* read result TF if requested */
5229 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5230 fill_result_tf(qc);
f686bcb8
TH
5231
5232 __ata_qc_complete(qc);
5233 } else {
5234 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5235 return;
5236
5237 /* read result TF if failed or requested */
5238 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5239 fill_result_tf(qc);
f686bcb8
TH
5240
5241 __ata_qc_complete(qc);
5242 }
5243}
5244
dedaf2b0
TH
5245/**
5246 * ata_qc_complete_multiple - Complete multiple qcs successfully
5247 * @ap: port in question
5248 * @qc_active: new qc_active mask
5249 * @finish_qc: LLDD callback invoked before completing a qc
5250 *
5251 * Complete in-flight commands. This functions is meant to be
5252 * called from low-level driver's interrupt routine to complete
5253 * requests normally. ap->qc_active and @qc_active is compared
5254 * and commands are completed accordingly.
5255 *
5256 * LOCKING:
cca3974e 5257 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5258 *
5259 * RETURNS:
5260 * Number of completed commands on success, -errno otherwise.
5261 */
5262int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5263 void (*finish_qc)(struct ata_queued_cmd *))
5264{
5265 int nr_done = 0;
5266 u32 done_mask;
5267 int i;
5268
5269 done_mask = ap->qc_active ^ qc_active;
5270
5271 if (unlikely(done_mask & qc_active)) {
5272 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5273 "(%08x->%08x)\n", ap->qc_active, qc_active);
5274 return -EINVAL;
5275 }
5276
5277 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5278 struct ata_queued_cmd *qc;
5279
5280 if (!(done_mask & (1 << i)))
5281 continue;
5282
5283 if ((qc = ata_qc_from_tag(ap, i))) {
5284 if (finish_qc)
5285 finish_qc(qc);
5286 ata_qc_complete(qc);
5287 nr_done++;
5288 }
5289 }
5290
5291 return nr_done;
5292}
5293
1da177e4
LT
5294static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5295{
5296 struct ata_port *ap = qc->ap;
5297
5298 switch (qc->tf.protocol) {
3dc1d881 5299 case ATA_PROT_NCQ:
1da177e4
LT
5300 case ATA_PROT_DMA:
5301 case ATA_PROT_ATAPI_DMA:
5302 return 1;
5303
5304 case ATA_PROT_ATAPI:
5305 case ATA_PROT_PIO:
1da177e4
LT
5306 if (ap->flags & ATA_FLAG_PIO_DMA)
5307 return 1;
5308
5309 /* fall through */
5310
5311 default:
5312 return 0;
5313 }
5314
5315 /* never reached */
5316}
5317
5318/**
5319 * ata_qc_issue - issue taskfile to device
5320 * @qc: command to issue to device
5321 *
5322 * Prepare an ATA command to submission to device.
5323 * This includes mapping the data into a DMA-able
5324 * area, filling in the S/G table, and finally
5325 * writing the taskfile to hardware, starting the command.
5326 *
5327 * LOCKING:
cca3974e 5328 * spin_lock_irqsave(host lock)
1da177e4 5329 */
8e0e694a 5330void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5331{
5332 struct ata_port *ap = qc->ap;
5333
dedaf2b0
TH
5334 /* Make sure only one non-NCQ command is outstanding. The
5335 * check is skipped for old EH because it reuses active qc to
5336 * request ATAPI sense.
5337 */
5338 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5339
5340 if (qc->tf.protocol == ATA_PROT_NCQ) {
5341 WARN_ON(ap->sactive & (1 << qc->tag));
5342 ap->sactive |= 1 << qc->tag;
5343 } else {
5344 WARN_ON(ap->sactive);
5345 ap->active_tag = qc->tag;
5346 }
5347
e4a70e76 5348 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5349 ap->qc_active |= 1 << qc->tag;
e4a70e76 5350
1da177e4
LT
5351 if (ata_should_dma_map(qc)) {
5352 if (qc->flags & ATA_QCFLAG_SG) {
5353 if (ata_sg_setup(qc))
8e436af9 5354 goto sg_err;
1da177e4
LT
5355 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5356 if (ata_sg_setup_one(qc))
8e436af9 5357 goto sg_err;
1da177e4
LT
5358 }
5359 } else {
5360 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5361 }
5362
5363 ap->ops->qc_prep(qc);
5364
8e0e694a
TH
5365 qc->err_mask |= ap->ops->qc_issue(qc);
5366 if (unlikely(qc->err_mask))
5367 goto err;
5368 return;
1da177e4 5369
8e436af9
TH
5370sg_err:
5371 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5372 qc->err_mask |= AC_ERR_SYSTEM;
5373err:
5374 ata_qc_complete(qc);
1da177e4
LT
5375}
5376
5377/**
5378 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5379 * @qc: command to issue to device
5380 *
5381 * Using various libata functions and hooks, this function
5382 * starts an ATA command. ATA commands are grouped into
5383 * classes called "protocols", and issuing each type of protocol
5384 * is slightly different.
5385 *
0baab86b
EF
5386 * May be used as the qc_issue() entry in ata_port_operations.
5387 *
1da177e4 5388 * LOCKING:
cca3974e 5389 * spin_lock_irqsave(host lock)
1da177e4
LT
5390 *
5391 * RETURNS:
9a3d9eb0 5392 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5393 */
5394
9a3d9eb0 5395unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5396{
5397 struct ata_port *ap = qc->ap;
5398
e50362ec
AL
5399 /* Use polling pio if the LLD doesn't handle
5400 * interrupt driven pio and atapi CDB interrupt.
5401 */
5402 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5403 switch (qc->tf.protocol) {
5404 case ATA_PROT_PIO:
e3472cbe 5405 case ATA_PROT_NODATA:
e50362ec
AL
5406 case ATA_PROT_ATAPI:
5407 case ATA_PROT_ATAPI_NODATA:
5408 qc->tf.flags |= ATA_TFLAG_POLLING;
5409 break;
5410 case ATA_PROT_ATAPI_DMA:
5411 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5412 /* see ata_dma_blacklisted() */
e50362ec
AL
5413 BUG();
5414 break;
5415 default:
5416 break;
5417 }
5418 }
5419
312f7da2 5420 /* select the device */
1da177e4
LT
5421 ata_dev_select(ap, qc->dev->devno, 1, 0);
5422
312f7da2 5423 /* start the command */
1da177e4
LT
5424 switch (qc->tf.protocol) {
5425 case ATA_PROT_NODATA:
312f7da2
AL
5426 if (qc->tf.flags & ATA_TFLAG_POLLING)
5427 ata_qc_set_polling(qc);
5428
e5338254 5429 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5430 ap->hsm_task_state = HSM_ST_LAST;
5431
5432 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5433 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5434
1da177e4
LT
5435 break;
5436
5437 case ATA_PROT_DMA:
587005de 5438 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5439
1da177e4
LT
5440 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5441 ap->ops->bmdma_setup(qc); /* set up bmdma */
5442 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5443 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5444 break;
5445
312f7da2
AL
5446 case ATA_PROT_PIO:
5447 if (qc->tf.flags & ATA_TFLAG_POLLING)
5448 ata_qc_set_polling(qc);
1da177e4 5449
e5338254 5450 ata_tf_to_host(ap, &qc->tf);
312f7da2 5451
54f00389
AL
5452 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5453 /* PIO data out protocol */
5454 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5455 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5456
5457 /* always send first data block using
e27486db 5458 * the ata_pio_task() codepath.
54f00389 5459 */
312f7da2 5460 } else {
54f00389
AL
5461 /* PIO data in protocol */
5462 ap->hsm_task_state = HSM_ST;
5463
5464 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5465 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5466
5467 /* if polling, ata_pio_task() handles the rest.
5468 * otherwise, interrupt handler takes over from here.
5469 */
312f7da2
AL
5470 }
5471
1da177e4
LT
5472 break;
5473
1da177e4 5474 case ATA_PROT_ATAPI:
1da177e4 5475 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5476 if (qc->tf.flags & ATA_TFLAG_POLLING)
5477 ata_qc_set_polling(qc);
5478
e5338254 5479 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5480
312f7da2
AL
5481 ap->hsm_task_state = HSM_ST_FIRST;
5482
5483 /* send cdb by polling if no cdb interrupt */
5484 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5485 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5486 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5487 break;
5488
5489 case ATA_PROT_ATAPI_DMA:
587005de 5490 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5491
1da177e4
LT
5492 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5493 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5494 ap->hsm_task_state = HSM_ST_FIRST;
5495
5496 /* send cdb by polling if no cdb interrupt */
5497 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5498 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5499 break;
5500
5501 default:
5502 WARN_ON(1);
9a3d9eb0 5503 return AC_ERR_SYSTEM;
1da177e4
LT
5504 }
5505
5506 return 0;
5507}
5508
1da177e4
LT
5509/**
5510 * ata_host_intr - Handle host interrupt for given (port, task)
5511 * @ap: Port on which interrupt arrived (possibly...)
5512 * @qc: Taskfile currently active in engine
5513 *
5514 * Handle host interrupt for given queued command. Currently,
5515 * only DMA interrupts are handled. All other commands are
5516 * handled via polling with interrupts disabled (nIEN bit).
5517 *
5518 * LOCKING:
cca3974e 5519 * spin_lock_irqsave(host lock)
1da177e4
LT
5520 *
5521 * RETURNS:
5522 * One if interrupt was handled, zero if not (shared irq).
5523 */
5524
5525inline unsigned int ata_host_intr (struct ata_port *ap,
5526 struct ata_queued_cmd *qc)
5527{
ea54763f 5528 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5529 u8 status, host_stat = 0;
1da177e4 5530
312f7da2 5531 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5532 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5533
312f7da2
AL
5534 /* Check whether we are expecting interrupt in this state */
5535 switch (ap->hsm_task_state) {
5536 case HSM_ST_FIRST:
6912ccd5
AL
5537 /* Some pre-ATAPI-4 devices assert INTRQ
5538 * at this state when ready to receive CDB.
5539 */
1da177e4 5540
312f7da2
AL
5541 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5542 * The flag was turned on only for atapi devices.
5543 * No need to check is_atapi_taskfile(&qc->tf) again.
5544 */
5545 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5546 goto idle_irq;
1da177e4 5547 break;
312f7da2
AL
5548 case HSM_ST_LAST:
5549 if (qc->tf.protocol == ATA_PROT_DMA ||
5550 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5551 /* check status of DMA engine */
5552 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5553 VPRINTK("ata%u: host_stat 0x%X\n",
5554 ap->print_id, host_stat);
312f7da2
AL
5555
5556 /* if it's not our irq... */
5557 if (!(host_stat & ATA_DMA_INTR))
5558 goto idle_irq;
5559
5560 /* before we do anything else, clear DMA-Start bit */
5561 ap->ops->bmdma_stop(qc);
a4f16610
AL
5562
5563 if (unlikely(host_stat & ATA_DMA_ERR)) {
5564 /* error when transfering data to/from memory */
5565 qc->err_mask |= AC_ERR_HOST_BUS;
5566 ap->hsm_task_state = HSM_ST_ERR;
5567 }
312f7da2
AL
5568 }
5569 break;
5570 case HSM_ST:
5571 break;
1da177e4
LT
5572 default:
5573 goto idle_irq;
5574 }
5575
312f7da2
AL
5576 /* check altstatus */
5577 status = ata_altstatus(ap);
5578 if (status & ATA_BUSY)
5579 goto idle_irq;
1da177e4 5580
312f7da2
AL
5581 /* check main status, clearing INTRQ */
5582 status = ata_chk_status(ap);
5583 if (unlikely(status & ATA_BUSY))
5584 goto idle_irq;
1da177e4 5585
312f7da2
AL
5586 /* ack bmdma irq events */
5587 ap->ops->irq_clear(ap);
1da177e4 5588
bb5cb290 5589 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5590
5591 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5592 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5593 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5594
1da177e4
LT
5595 return 1; /* irq handled */
5596
5597idle_irq:
5598 ap->stats.idle_irq++;
5599
5600#ifdef ATA_IRQ_TRAP
5601 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5602 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5603 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5604 return 1;
1da177e4
LT
5605 }
5606#endif
5607 return 0; /* irq not handled */
5608}
5609
5610/**
5611 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5612 * @irq: irq line (unused)
cca3974e 5613 * @dev_instance: pointer to our ata_host information structure
1da177e4 5614 *
0cba632b
JG
5615 * Default interrupt handler for PCI IDE devices. Calls
5616 * ata_host_intr() for each port that is not disabled.
5617 *
1da177e4 5618 * LOCKING:
cca3974e 5619 * Obtains host lock during operation.
1da177e4
LT
5620 *
5621 * RETURNS:
0cba632b 5622 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5623 */
5624
7d12e780 5625irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5626{
cca3974e 5627 struct ata_host *host = dev_instance;
1da177e4
LT
5628 unsigned int i;
5629 unsigned int handled = 0;
5630 unsigned long flags;
5631
5632 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5633 spin_lock_irqsave(&host->lock, flags);
1da177e4 5634
cca3974e 5635 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5636 struct ata_port *ap;
5637
cca3974e 5638 ap = host->ports[i];
c1389503 5639 if (ap &&
029f5468 5640 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5641 struct ata_queued_cmd *qc;
5642
5643 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5644 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5645 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5646 handled |= ata_host_intr(ap, qc);
5647 }
5648 }
5649
cca3974e 5650 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5651
5652 return IRQ_RETVAL(handled);
5653}
5654
34bf2170
TH
5655/**
5656 * sata_scr_valid - test whether SCRs are accessible
5657 * @ap: ATA port to test SCR accessibility for
5658 *
5659 * Test whether SCRs are accessible for @ap.
5660 *
5661 * LOCKING:
5662 * None.
5663 *
5664 * RETURNS:
5665 * 1 if SCRs are accessible, 0 otherwise.
5666 */
5667int sata_scr_valid(struct ata_port *ap)
5668{
5669 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5670}
5671
5672/**
5673 * sata_scr_read - read SCR register of the specified port
5674 * @ap: ATA port to read SCR for
5675 * @reg: SCR to read
5676 * @val: Place to store read value
5677 *
5678 * Read SCR register @reg of @ap into *@val. This function is
5679 * guaranteed to succeed if the cable type of the port is SATA
5680 * and the port implements ->scr_read.
5681 *
5682 * LOCKING:
5683 * None.
5684 *
5685 * RETURNS:
5686 * 0 on success, negative errno on failure.
5687 */
5688int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5689{
5690 if (sata_scr_valid(ap)) {
5691 *val = ap->ops->scr_read(ap, reg);
5692 return 0;
5693 }
5694 return -EOPNOTSUPP;
5695}
5696
5697/**
5698 * sata_scr_write - write SCR register of the specified port
5699 * @ap: ATA port to write SCR for
5700 * @reg: SCR to write
5701 * @val: value to write
5702 *
5703 * Write @val to SCR register @reg of @ap. This function is
5704 * guaranteed to succeed if the cable type of the port is SATA
5705 * and the port implements ->scr_read.
5706 *
5707 * LOCKING:
5708 * None.
5709 *
5710 * RETURNS:
5711 * 0 on success, negative errno on failure.
5712 */
5713int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5714{
5715 if (sata_scr_valid(ap)) {
5716 ap->ops->scr_write(ap, reg, val);
5717 return 0;
5718 }
5719 return -EOPNOTSUPP;
5720}
5721
5722/**
5723 * sata_scr_write_flush - write SCR register of the specified port and flush
5724 * @ap: ATA port to write SCR for
5725 * @reg: SCR to write
5726 * @val: value to write
5727 *
5728 * This function is identical to sata_scr_write() except that this
5729 * function performs flush after writing to the register.
5730 *
5731 * LOCKING:
5732 * None.
5733 *
5734 * RETURNS:
5735 * 0 on success, negative errno on failure.
5736 */
5737int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5738{
5739 if (sata_scr_valid(ap)) {
5740 ap->ops->scr_write(ap, reg, val);
5741 ap->ops->scr_read(ap, reg);
5742 return 0;
5743 }
5744 return -EOPNOTSUPP;
5745}
5746
5747/**
5748 * ata_port_online - test whether the given port is online
5749 * @ap: ATA port to test
5750 *
5751 * Test whether @ap is online. Note that this function returns 0
5752 * if online status of @ap cannot be obtained, so
5753 * ata_port_online(ap) != !ata_port_offline(ap).
5754 *
5755 * LOCKING:
5756 * None.
5757 *
5758 * RETURNS:
5759 * 1 if the port online status is available and online.
5760 */
5761int ata_port_online(struct ata_port *ap)
5762{
5763 u32 sstatus;
5764
5765 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5766 return 1;
5767 return 0;
5768}
5769
5770/**
5771 * ata_port_offline - test whether the given port is offline
5772 * @ap: ATA port to test
5773 *
5774 * Test whether @ap is offline. Note that this function returns
5775 * 0 if offline status of @ap cannot be obtained, so
5776 * ata_port_online(ap) != !ata_port_offline(ap).
5777 *
5778 * LOCKING:
5779 * None.
5780 *
5781 * RETURNS:
5782 * 1 if the port offline status is available and offline.
5783 */
5784int ata_port_offline(struct ata_port *ap)
5785{
5786 u32 sstatus;
5787
5788 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5789 return 1;
5790 return 0;
5791}
0baab86b 5792
77b08fb5 5793int ata_flush_cache(struct ata_device *dev)
9b847548 5794{
977e6b9f 5795 unsigned int err_mask;
9b847548
JA
5796 u8 cmd;
5797
5798 if (!ata_try_flush_cache(dev))
5799 return 0;
5800
6fc49adb 5801 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5802 cmd = ATA_CMD_FLUSH_EXT;
5803 else
5804 cmd = ATA_CMD_FLUSH;
5805
977e6b9f
TH
5806 err_mask = ata_do_simple_cmd(dev, cmd);
5807 if (err_mask) {
5808 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5809 return -EIO;
5810 }
5811
5812 return 0;
9b847548
JA
5813}
5814
6ffa01d8 5815#ifdef CONFIG_PM
cca3974e
JG
5816static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5817 unsigned int action, unsigned int ehi_flags,
5818 int wait)
500530f6
TH
5819{
5820 unsigned long flags;
5821 int i, rc;
5822
cca3974e
JG
5823 for (i = 0; i < host->n_ports; i++) {
5824 struct ata_port *ap = host->ports[i];
500530f6
TH
5825
5826 /* Previous resume operation might still be in
5827 * progress. Wait for PM_PENDING to clear.
5828 */
5829 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5830 ata_port_wait_eh(ap);
5831 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5832 }
5833
5834 /* request PM ops to EH */
5835 spin_lock_irqsave(ap->lock, flags);
5836
5837 ap->pm_mesg = mesg;
5838 if (wait) {
5839 rc = 0;
5840 ap->pm_result = &rc;
5841 }
5842
5843 ap->pflags |= ATA_PFLAG_PM_PENDING;
5844 ap->eh_info.action |= action;
5845 ap->eh_info.flags |= ehi_flags;
5846
5847 ata_port_schedule_eh(ap);
5848
5849 spin_unlock_irqrestore(ap->lock, flags);
5850
5851 /* wait and check result */
5852 if (wait) {
5853 ata_port_wait_eh(ap);
5854 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5855 if (rc)
5856 return rc;
5857 }
5858 }
5859
5860 return 0;
5861}
5862
5863/**
cca3974e
JG
5864 * ata_host_suspend - suspend host
5865 * @host: host to suspend
500530f6
TH
5866 * @mesg: PM message
5867 *
cca3974e 5868 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5869 * function requests EH to perform PM operations and waits for EH
5870 * to finish.
5871 *
5872 * LOCKING:
5873 * Kernel thread context (may sleep).
5874 *
5875 * RETURNS:
5876 * 0 on success, -errno on failure.
5877 */
cca3974e 5878int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5879{
9666f400 5880 int rc;
500530f6 5881
cca3974e 5882 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5883 if (rc == 0)
5884 host->dev->power.power_state = mesg;
500530f6
TH
5885 return rc;
5886}
5887
5888/**
cca3974e
JG
5889 * ata_host_resume - resume host
5890 * @host: host to resume
500530f6 5891 *
cca3974e 5892 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5893 * function requests EH to perform PM operations and returns.
5894 * Note that all resume operations are performed parallely.
5895 *
5896 * LOCKING:
5897 * Kernel thread context (may sleep).
5898 */
cca3974e 5899void ata_host_resume(struct ata_host *host)
500530f6 5900{
cca3974e
JG
5901 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5902 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5903 host->dev->power.power_state = PMSG_ON;
500530f6 5904}
6ffa01d8 5905#endif
500530f6 5906
c893a3ae
RD
5907/**
5908 * ata_port_start - Set port up for dma.
5909 * @ap: Port to initialize
5910 *
5911 * Called just after data structures for each port are
5912 * initialized. Allocates space for PRD table.
5913 *
5914 * May be used as the port_start() entry in ata_port_operations.
5915 *
5916 * LOCKING:
5917 * Inherited from caller.
5918 */
f0d36efd 5919int ata_port_start(struct ata_port *ap)
1da177e4 5920{
2f1f610b 5921 struct device *dev = ap->dev;
6037d6bb 5922 int rc;
1da177e4 5923
f0d36efd
TH
5924 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5925 GFP_KERNEL);
1da177e4
LT
5926 if (!ap->prd)
5927 return -ENOMEM;
5928
6037d6bb 5929 rc = ata_pad_alloc(ap, dev);
f0d36efd 5930 if (rc)
6037d6bb 5931 return rc;
1da177e4 5932
f0d36efd
TH
5933 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5934 (unsigned long long)ap->prd_dma);
1da177e4
LT
5935 return 0;
5936}
5937
3ef3b43d
TH
5938/**
5939 * ata_dev_init - Initialize an ata_device structure
5940 * @dev: Device structure to initialize
5941 *
5942 * Initialize @dev in preparation for probing.
5943 *
5944 * LOCKING:
5945 * Inherited from caller.
5946 */
5947void ata_dev_init(struct ata_device *dev)
5948{
5949 struct ata_port *ap = dev->ap;
72fa4b74
TH
5950 unsigned long flags;
5951
5a04bf4b
TH
5952 /* SATA spd limit is bound to the first device */
5953 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5954
72fa4b74
TH
5955 /* High bits of dev->flags are used to record warm plug
5956 * requests which occur asynchronously. Synchronize using
cca3974e 5957 * host lock.
72fa4b74 5958 */
ba6a1308 5959 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5960 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5961 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5962
72fa4b74
TH
5963 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5964 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5965 dev->pio_mask = UINT_MAX;
5966 dev->mwdma_mask = UINT_MAX;
5967 dev->udma_mask = UINT_MAX;
5968}
5969
1da177e4 5970/**
f3187195
TH
5971 * ata_port_alloc - allocate and initialize basic ATA port resources
5972 * @host: ATA host this allocated port belongs to
1da177e4 5973 *
f3187195
TH
5974 * Allocate and initialize basic ATA port resources.
5975 *
5976 * RETURNS:
5977 * Allocate ATA port on success, NULL on failure.
0cba632b 5978 *
1da177e4 5979 * LOCKING:
f3187195 5980 * Inherited from calling layer (may sleep).
1da177e4 5981 */
f3187195 5982struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5983{
f3187195 5984 struct ata_port *ap;
1da177e4
LT
5985 unsigned int i;
5986
f3187195
TH
5987 DPRINTK("ENTER\n");
5988
5989 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5990 if (!ap)
5991 return NULL;
5992
f4d6d004 5993 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5994 ap->lock = &host->lock;
198e0fed 5995 ap->flags = ATA_FLAG_DISABLED;
f3187195 5996 ap->print_id = -1;
1da177e4 5997 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5998 ap->host = host;
f3187195
TH
5999 ap->dev = host->dev;
6000
5a04bf4b 6001 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6002 ap->active_tag = ATA_TAG_POISON;
6003 ap->last_ctl = 0xFF;
bd5d825c
BP
6004
6005#if defined(ATA_VERBOSE_DEBUG)
6006 /* turn on all debugging levels */
6007 ap->msg_enable = 0x00FF;
6008#elif defined(ATA_DEBUG)
6009 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6010#else
0dd4b21f 6011 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6012#endif
1da177e4 6013
65f27f38
DH
6014 INIT_DELAYED_WORK(&ap->port_task, NULL);
6015 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6016 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6017 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6018 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6019
838df628 6020 ap->cbl = ATA_CBL_NONE;
838df628 6021
acf356b1
TH
6022 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6023 struct ata_device *dev = &ap->device[i];
38d87234 6024 dev->ap = ap;
72fa4b74 6025 dev->devno = i;
3ef3b43d 6026 ata_dev_init(dev);
acf356b1 6027 }
1da177e4
LT
6028
6029#ifdef ATA_IRQ_TRAP
6030 ap->stats.unhandled_irq = 1;
6031 ap->stats.idle_irq = 1;
6032#endif
1da177e4 6033 return ap;
1da177e4
LT
6034}
6035
f0d36efd
TH
6036static void ata_host_release(struct device *gendev, void *res)
6037{
6038 struct ata_host *host = dev_get_drvdata(gendev);
6039 int i;
6040
6041 for (i = 0; i < host->n_ports; i++) {
6042 struct ata_port *ap = host->ports[i];
6043
ecef7253
TH
6044 if (!ap)
6045 continue;
6046
6047 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6048 ap->ops->port_stop(ap);
f0d36efd
TH
6049 }
6050
ecef7253 6051 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6052 host->ops->host_stop(host);
1aa56cca 6053
1aa506e4
TH
6054 for (i = 0; i < host->n_ports; i++) {
6055 struct ata_port *ap = host->ports[i];
6056
4911487a
TH
6057 if (!ap)
6058 continue;
6059
6060 if (ap->scsi_host)
1aa506e4
TH
6061 scsi_host_put(ap->scsi_host);
6062
4911487a 6063 kfree(ap);
1aa506e4
TH
6064 host->ports[i] = NULL;
6065 }
6066
1aa56cca 6067 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6068}
6069
f3187195
TH
6070/**
6071 * ata_host_alloc - allocate and init basic ATA host resources
6072 * @dev: generic device this host is associated with
6073 * @max_ports: maximum number of ATA ports associated with this host
6074 *
6075 * Allocate and initialize basic ATA host resources. LLD calls
6076 * this function to allocate a host, initializes it fully and
6077 * attaches it using ata_host_register().
6078 *
6079 * @max_ports ports are allocated and host->n_ports is
6080 * initialized to @max_ports. The caller is allowed to decrease
6081 * host->n_ports before calling ata_host_register(). The unused
6082 * ports will be automatically freed on registration.
6083 *
6084 * RETURNS:
6085 * Allocate ATA host on success, NULL on failure.
6086 *
6087 * LOCKING:
6088 * Inherited from calling layer (may sleep).
6089 */
6090struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6091{
6092 struct ata_host *host;
6093 size_t sz;
6094 int i;
6095
6096 DPRINTK("ENTER\n");
6097
6098 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6099 return NULL;
6100
6101 /* alloc a container for our list of ATA ports (buses) */
6102 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6103 /* alloc a container for our list of ATA ports (buses) */
6104 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6105 if (!host)
6106 goto err_out;
6107
6108 devres_add(dev, host);
6109 dev_set_drvdata(dev, host);
6110
6111 spin_lock_init(&host->lock);
6112 host->dev = dev;
6113 host->n_ports = max_ports;
6114
6115 /* allocate ports bound to this host */
6116 for (i = 0; i < max_ports; i++) {
6117 struct ata_port *ap;
6118
6119 ap = ata_port_alloc(host);
6120 if (!ap)
6121 goto err_out;
6122
6123 ap->port_no = i;
6124 host->ports[i] = ap;
6125 }
6126
6127 devres_remove_group(dev, NULL);
6128 return host;
6129
6130 err_out:
6131 devres_release_group(dev, NULL);
6132 return NULL;
6133}
6134
f5cda257
TH
6135/**
6136 * ata_host_alloc_pinfo - alloc host and init with port_info array
6137 * @dev: generic device this host is associated with
6138 * @ppi: array of ATA port_info to initialize host with
6139 * @n_ports: number of ATA ports attached to this host
6140 *
6141 * Allocate ATA host and initialize with info from @ppi. If NULL
6142 * terminated, @ppi may contain fewer entries than @n_ports. The
6143 * last entry will be used for the remaining ports.
6144 *
6145 * RETURNS:
6146 * Allocate ATA host on success, NULL on failure.
6147 *
6148 * LOCKING:
6149 * Inherited from calling layer (may sleep).
6150 */
6151struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6152 const struct ata_port_info * const * ppi,
6153 int n_ports)
6154{
6155 const struct ata_port_info *pi;
6156 struct ata_host *host;
6157 int i, j;
6158
6159 host = ata_host_alloc(dev, n_ports);
6160 if (!host)
6161 return NULL;
6162
6163 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6164 struct ata_port *ap = host->ports[i];
6165
6166 if (ppi[j])
6167 pi = ppi[j++];
6168
6169 ap->pio_mask = pi->pio_mask;
6170 ap->mwdma_mask = pi->mwdma_mask;
6171 ap->udma_mask = pi->udma_mask;
6172 ap->flags |= pi->flags;
6173 ap->ops = pi->port_ops;
6174
6175 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6176 host->ops = pi->port_ops;
6177 if (!host->private_data && pi->private_data)
6178 host->private_data = pi->private_data;
6179 }
6180
6181 return host;
6182}
6183
ecef7253
TH
6184/**
6185 * ata_host_start - start and freeze ports of an ATA host
6186 * @host: ATA host to start ports for
6187 *
6188 * Start and then freeze ports of @host. Started status is
6189 * recorded in host->flags, so this function can be called
6190 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6191 * once. If host->ops isn't initialized yet, its set to the
6192 * first non-dummy port ops.
ecef7253
TH
6193 *
6194 * LOCKING:
6195 * Inherited from calling layer (may sleep).
6196 *
6197 * RETURNS:
6198 * 0 if all ports are started successfully, -errno otherwise.
6199 */
6200int ata_host_start(struct ata_host *host)
6201{
6202 int i, rc;
6203
6204 if (host->flags & ATA_HOST_STARTED)
6205 return 0;
6206
6207 for (i = 0; i < host->n_ports; i++) {
6208 struct ata_port *ap = host->ports[i];
6209
f3187195
TH
6210 if (!host->ops && !ata_port_is_dummy(ap))
6211 host->ops = ap->ops;
6212
ecef7253
TH
6213 if (ap->ops->port_start) {
6214 rc = ap->ops->port_start(ap);
6215 if (rc) {
6216 ata_port_printk(ap, KERN_ERR, "failed to "
6217 "start port (errno=%d)\n", rc);
6218 goto err_out;
6219 }
6220 }
6221
6222 ata_eh_freeze_port(ap);
6223 }
6224
6225 host->flags |= ATA_HOST_STARTED;
6226 return 0;
6227
6228 err_out:
6229 while (--i >= 0) {
6230 struct ata_port *ap = host->ports[i];
6231
6232 if (ap->ops->port_stop)
6233 ap->ops->port_stop(ap);
6234 }
6235 return rc;
6236}
6237
b03732f0 6238/**
cca3974e
JG
6239 * ata_sas_host_init - Initialize a host struct
6240 * @host: host to initialize
6241 * @dev: device host is attached to
6242 * @flags: host flags
6243 * @ops: port_ops
b03732f0
BK
6244 *
6245 * LOCKING:
6246 * PCI/etc. bus probe sem.
6247 *
6248 */
f3187195 6249/* KILLME - the only user left is ipr */
cca3974e
JG
6250void ata_host_init(struct ata_host *host, struct device *dev,
6251 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6252{
cca3974e
JG
6253 spin_lock_init(&host->lock);
6254 host->dev = dev;
6255 host->flags = flags;
6256 host->ops = ops;
b03732f0
BK
6257}
6258
f3187195
TH
6259/**
6260 * ata_host_register - register initialized ATA host
6261 * @host: ATA host to register
6262 * @sht: template for SCSI host
6263 *
6264 * Register initialized ATA host. @host is allocated using
6265 * ata_host_alloc() and fully initialized by LLD. This function
6266 * starts ports, registers @host with ATA and SCSI layers and
6267 * probe registered devices.
6268 *
6269 * LOCKING:
6270 * Inherited from calling layer (may sleep).
6271 *
6272 * RETURNS:
6273 * 0 on success, -errno otherwise.
6274 */
6275int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6276{
6277 int i, rc;
6278
6279 /* host must have been started */
6280 if (!(host->flags & ATA_HOST_STARTED)) {
6281 dev_printk(KERN_ERR, host->dev,
6282 "BUG: trying to register unstarted host\n");
6283 WARN_ON(1);
6284 return -EINVAL;
6285 }
6286
6287 /* Blow away unused ports. This happens when LLD can't
6288 * determine the exact number of ports to allocate at
6289 * allocation time.
6290 */
6291 for (i = host->n_ports; host->ports[i]; i++)
6292 kfree(host->ports[i]);
6293
6294 /* give ports names and add SCSI hosts */
6295 for (i = 0; i < host->n_ports; i++)
6296 host->ports[i]->print_id = ata_print_id++;
6297
6298 rc = ata_scsi_add_hosts(host, sht);
6299 if (rc)
6300 return rc;
6301
6302 /* set cable, sata_spd_limit and report */
6303 for (i = 0; i < host->n_ports; i++) {
6304 struct ata_port *ap = host->ports[i];
6305 int irq_line;
6306 u32 scontrol;
6307 unsigned long xfer_mask;
6308
6309 /* set SATA cable type if still unset */
6310 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6311 ap->cbl = ATA_CBL_SATA;
6312
6313 /* init sata_spd_limit to the current value */
6314 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6315 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6316 if (spd)
6317 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6318 }
6319 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6320
6321 /* report the secondary IRQ for second channel legacy */
6322 irq_line = host->irq;
6323 if (i == 1 && host->irq2)
6324 irq_line = host->irq2;
6325
6326 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6327 ap->udma_mask);
6328
6329 /* print per-port info to dmesg */
6330 if (!ata_port_is_dummy(ap))
6331 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6332 "ctl 0x%p bmdma 0x%p irq %d\n",
6333 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6334 ata_mode_string(xfer_mask),
6335 ap->ioaddr.cmd_addr,
6336 ap->ioaddr.ctl_addr,
6337 ap->ioaddr.bmdma_addr,
6338 irq_line);
6339 else
6340 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6341 }
6342
6343 /* perform each probe synchronously */
6344 DPRINTK("probe begin\n");
6345 for (i = 0; i < host->n_ports; i++) {
6346 struct ata_port *ap = host->ports[i];
6347 int rc;
6348
6349 /* probe */
6350 if (ap->ops->error_handler) {
6351 struct ata_eh_info *ehi = &ap->eh_info;
6352 unsigned long flags;
6353
6354 ata_port_probe(ap);
6355
6356 /* kick EH for boot probing */
6357 spin_lock_irqsave(ap->lock, flags);
6358
6359 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6360 ehi->action |= ATA_EH_SOFTRESET;
6361 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6362
f4d6d004 6363 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6364 ap->pflags |= ATA_PFLAG_LOADING;
6365 ata_port_schedule_eh(ap);
6366
6367 spin_unlock_irqrestore(ap->lock, flags);
6368
6369 /* wait for EH to finish */
6370 ata_port_wait_eh(ap);
6371 } else {
6372 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6373 rc = ata_bus_probe(ap);
6374 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6375
6376 if (rc) {
6377 /* FIXME: do something useful here?
6378 * Current libata behavior will
6379 * tear down everything when
6380 * the module is removed
6381 * or the h/w is unplugged.
6382 */
6383 }
6384 }
6385 }
6386
6387 /* probes are done, now scan each port's disk(s) */
6388 DPRINTK("host probe begin\n");
6389 for (i = 0; i < host->n_ports; i++) {
6390 struct ata_port *ap = host->ports[i];
6391
6392 ata_scsi_scan_host(ap);
6393 }
6394
6395 return 0;
6396}
6397
f5cda257
TH
6398/**
6399 * ata_host_activate - start host, request IRQ and register it
6400 * @host: target ATA host
6401 * @irq: IRQ to request
6402 * @irq_handler: irq_handler used when requesting IRQ
6403 * @irq_flags: irq_flags used when requesting IRQ
6404 * @sht: scsi_host_template to use when registering the host
6405 *
6406 * After allocating an ATA host and initializing it, most libata
6407 * LLDs perform three steps to activate the host - start host,
6408 * request IRQ and register it. This helper takes necessasry
6409 * arguments and performs the three steps in one go.
6410 *
6411 * LOCKING:
6412 * Inherited from calling layer (may sleep).
6413 *
6414 * RETURNS:
6415 * 0 on success, -errno otherwise.
6416 */
6417int ata_host_activate(struct ata_host *host, int irq,
6418 irq_handler_t irq_handler, unsigned long irq_flags,
6419 struct scsi_host_template *sht)
6420{
6421 int rc;
6422
6423 rc = ata_host_start(host);
6424 if (rc)
6425 return rc;
6426
6427 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6428 dev_driver_string(host->dev), host);
6429 if (rc)
6430 return rc;
6431
6432 rc = ata_host_register(host, sht);
6433 /* if failed, just free the IRQ and leave ports alone */
6434 if (rc)
6435 devm_free_irq(host->dev, irq, host);
6436
22888423
OJ
6437 /* Used to print device info at probe */
6438 host->irq = irq;
6439
f5cda257
TH
6440 return rc;
6441}
6442
720ba126
TH
6443/**
6444 * ata_port_detach - Detach ATA port in prepration of device removal
6445 * @ap: ATA port to be detached
6446 *
6447 * Detach all ATA devices and the associated SCSI devices of @ap;
6448 * then, remove the associated SCSI host. @ap is guaranteed to
6449 * be quiescent on return from this function.
6450 *
6451 * LOCKING:
6452 * Kernel thread context (may sleep).
6453 */
6454void ata_port_detach(struct ata_port *ap)
6455{
6456 unsigned long flags;
6457 int i;
6458
6459 if (!ap->ops->error_handler)
c3cf30a9 6460 goto skip_eh;
720ba126
TH
6461
6462 /* tell EH we're leaving & flush EH */
ba6a1308 6463 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6464 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6465 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6466
6467 ata_port_wait_eh(ap);
6468
6469 /* EH is now guaranteed to see UNLOADING, so no new device
6470 * will be attached. Disable all existing devices.
6471 */
ba6a1308 6472 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6473
6474 for (i = 0; i < ATA_MAX_DEVICES; i++)
6475 ata_dev_disable(&ap->device[i]);
6476
ba6a1308 6477 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6478
6479 /* Final freeze & EH. All in-flight commands are aborted. EH
6480 * will be skipped and retrials will be terminated with bad
6481 * target.
6482 */
ba6a1308 6483 spin_lock_irqsave(ap->lock, flags);
720ba126 6484 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6485 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6486
6487 ata_port_wait_eh(ap);
6488
6489 /* Flush hotplug task. The sequence is similar to
6490 * ata_port_flush_task().
6491 */
28e53bdd 6492 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6493 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6494 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6495
c3cf30a9 6496 skip_eh:
720ba126 6497 /* remove the associated SCSI host */
cca3974e 6498 scsi_remove_host(ap->scsi_host);
720ba126
TH
6499}
6500
0529c159
TH
6501/**
6502 * ata_host_detach - Detach all ports of an ATA host
6503 * @host: Host to detach
6504 *
6505 * Detach all ports of @host.
6506 *
6507 * LOCKING:
6508 * Kernel thread context (may sleep).
6509 */
6510void ata_host_detach(struct ata_host *host)
6511{
6512 int i;
6513
6514 for (i = 0; i < host->n_ports; i++)
6515 ata_port_detach(host->ports[i]);
6516}
6517
1da177e4
LT
6518/**
6519 * ata_std_ports - initialize ioaddr with standard port offsets.
6520 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6521 *
6522 * Utility function which initializes data_addr, error_addr,
6523 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6524 * device_addr, status_addr, and command_addr to standard offsets
6525 * relative to cmd_addr.
6526 *
6527 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6528 */
0baab86b 6529
1da177e4
LT
6530void ata_std_ports(struct ata_ioports *ioaddr)
6531{
6532 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6533 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6534 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6535 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6536 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6537 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6538 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6539 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6540 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6541 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6542}
6543
0baab86b 6544
374b1873
JG
6545#ifdef CONFIG_PCI
6546
1da177e4
LT
6547/**
6548 * ata_pci_remove_one - PCI layer callback for device removal
6549 * @pdev: PCI device that was removed
6550 *
b878ca5d
TH
6551 * PCI layer indicates to libata via this hook that hot-unplug or
6552 * module unload event has occurred. Detach all ports. Resource
6553 * release is handled via devres.
1da177e4
LT
6554 *
6555 * LOCKING:
6556 * Inherited from PCI layer (may sleep).
6557 */
f0d36efd 6558void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6559{
6560 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6561 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6562
b878ca5d 6563 ata_host_detach(host);
1da177e4
LT
6564}
6565
6566/* move to PCI subsystem */
057ace5e 6567int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6568{
6569 unsigned long tmp = 0;
6570
6571 switch (bits->width) {
6572 case 1: {
6573 u8 tmp8 = 0;
6574 pci_read_config_byte(pdev, bits->reg, &tmp8);
6575 tmp = tmp8;
6576 break;
6577 }
6578 case 2: {
6579 u16 tmp16 = 0;
6580 pci_read_config_word(pdev, bits->reg, &tmp16);
6581 tmp = tmp16;
6582 break;
6583 }
6584 case 4: {
6585 u32 tmp32 = 0;
6586 pci_read_config_dword(pdev, bits->reg, &tmp32);
6587 tmp = tmp32;
6588 break;
6589 }
6590
6591 default:
6592 return -EINVAL;
6593 }
6594
6595 tmp &= bits->mask;
6596
6597 return (tmp == bits->val) ? 1 : 0;
6598}
9b847548 6599
6ffa01d8 6600#ifdef CONFIG_PM
3c5100c1 6601void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6602{
6603 pci_save_state(pdev);
4c90d971 6604 pci_disable_device(pdev);
500530f6 6605
4c90d971 6606 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6607 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6608}
6609
553c4aa6 6610int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6611{
553c4aa6
TH
6612 int rc;
6613
9b847548
JA
6614 pci_set_power_state(pdev, PCI_D0);
6615 pci_restore_state(pdev);
553c4aa6 6616
b878ca5d 6617 rc = pcim_enable_device(pdev);
553c4aa6
TH
6618 if (rc) {
6619 dev_printk(KERN_ERR, &pdev->dev,
6620 "failed to enable device after resume (%d)\n", rc);
6621 return rc;
6622 }
6623
9b847548 6624 pci_set_master(pdev);
553c4aa6 6625 return 0;
500530f6
TH
6626}
6627
3c5100c1 6628int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6629{
cca3974e 6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6631 int rc = 0;
6632
cca3974e 6633 rc = ata_host_suspend(host, mesg);
500530f6
TH
6634 if (rc)
6635 return rc;
6636
3c5100c1 6637 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6638
6639 return 0;
6640}
6641
6642int ata_pci_device_resume(struct pci_dev *pdev)
6643{
cca3974e 6644 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6645 int rc;
500530f6 6646
553c4aa6
TH
6647 rc = ata_pci_device_do_resume(pdev);
6648 if (rc == 0)
6649 ata_host_resume(host);
6650 return rc;
9b847548 6651}
6ffa01d8
TH
6652#endif /* CONFIG_PM */
6653
1da177e4
LT
6654#endif /* CONFIG_PCI */
6655
6656
1da177e4
LT
6657static int __init ata_init(void)
6658{
a8601e5f 6659 ata_probe_timeout *= HZ;
1da177e4
LT
6660 ata_wq = create_workqueue("ata");
6661 if (!ata_wq)
6662 return -ENOMEM;
6663
453b07ac
TH
6664 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6665 if (!ata_aux_wq) {
6666 destroy_workqueue(ata_wq);
6667 return -ENOMEM;
6668 }
6669
1da177e4
LT
6670 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6671 return 0;
6672}
6673
6674static void __exit ata_exit(void)
6675{
6676 destroy_workqueue(ata_wq);
453b07ac 6677 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6678}
6679
a4625085 6680subsys_initcall(ata_init);
1da177e4
LT
6681module_exit(ata_exit);
6682
67846b30 6683static unsigned long ratelimit_time;
34af946a 6684static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6685
6686int ata_ratelimit(void)
6687{
6688 int rc;
6689 unsigned long flags;
6690
6691 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6692
6693 if (time_after(jiffies, ratelimit_time)) {
6694 rc = 1;
6695 ratelimit_time = jiffies + (HZ/5);
6696 } else
6697 rc = 0;
6698
6699 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6700
6701 return rc;
6702}
6703
c22daff4
TH
6704/**
6705 * ata_wait_register - wait until register value changes
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
6709 * @interval_msec: polling interval in milliseconds
6710 * @timeout_msec: timeout in milliseconds
6711 *
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6715 *
6716 * (*@reg & mask) != val
6717 *
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6720 *
6721 * LOCKING:
6722 * Kernel thread context (may sleep)
6723 *
6724 * RETURNS:
6725 * The final register value.
6726 */
6727u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6728 unsigned long interval_msec,
6729 unsigned long timeout_msec)
6730{
6731 unsigned long timeout;
6732 u32 tmp;
6733
6734 tmp = ioread32(reg);
6735
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6739 */
6740 timeout = jiffies + (timeout_msec * HZ) / 1000;
6741
6742 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6743 msleep(interval_msec);
6744 tmp = ioread32(reg);
6745 }
6746
6747 return tmp;
6748}
6749
dd5b06c4
TH
6750/*
6751 * Dummy port_ops
6752 */
6753static void ata_dummy_noret(struct ata_port *ap) { }
6754static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6755static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6756
6757static u8 ata_dummy_check_status(struct ata_port *ap)
6758{
6759 return ATA_DRDY;
6760}
6761
6762static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6763{
6764 return AC_ERR_SYSTEM;
6765}
6766
6767const struct ata_port_operations ata_dummy_port_ops = {
6768 .port_disable = ata_port_disable,
6769 .check_status = ata_dummy_check_status,
6770 .check_altstatus = ata_dummy_check_status,
6771 .dev_select = ata_noop_dev_select,
6772 .qc_prep = ata_noop_qc_prep,
6773 .qc_issue = ata_dummy_qc_issue,
6774 .freeze = ata_dummy_noret,
6775 .thaw = ata_dummy_noret,
6776 .error_handler = ata_dummy_noret,
6777 .post_internal_cmd = ata_dummy_qc_noret,
6778 .irq_clear = ata_dummy_noret,
6779 .port_start = ata_dummy_ret0,
6780 .port_stop = ata_dummy_noret,
6781};
6782
21b0ad4f
TH
6783const struct ata_port_info ata_dummy_port_info = {
6784 .port_ops = &ata_dummy_port_ops,
6785};
6786
1da177e4
LT
6787/*
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6792 */
6793
e9c83914
TH
6794EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6795EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6796EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6797EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6798EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6799EXPORT_SYMBOL_GPL(ata_std_bios_param);
6800EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6801EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6802EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6803EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6804EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6805EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6806EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6807EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6808EXPORT_SYMBOL_GPL(ata_sg_init);
6809EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6810EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6811EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6812EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6813EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6814EXPORT_SYMBOL_GPL(ata_tf_load);
6815EXPORT_SYMBOL_GPL(ata_tf_read);
6816EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6817EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6818EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6819EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6820EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6821EXPORT_SYMBOL_GPL(ata_check_status);
6822EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6823EXPORT_SYMBOL_GPL(ata_exec_command);
6824EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6825EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6826EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6827EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6828EXPORT_SYMBOL_GPL(ata_data_xfer);
6829EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6830EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6831EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6832EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6833EXPORT_SYMBOL_GPL(ata_bmdma_start);
6834EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6835EXPORT_SYMBOL_GPL(ata_bmdma_status);
6836EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6837EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6838EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6839EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6840EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6841EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6842EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6843EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6844EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6845EXPORT_SYMBOL_GPL(sata_phy_debounce);
6846EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6847EXPORT_SYMBOL_GPL(sata_phy_reset);
6848EXPORT_SYMBOL_GPL(__sata_phy_reset);
6849EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6850EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6851EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6852EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6853EXPORT_SYMBOL_GPL(sata_std_hardreset);
6854EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6855EXPORT_SYMBOL_GPL(ata_dev_classify);
6856EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6857EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6858EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6859EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6860EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6861EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6862EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6863EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6864EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6865EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6866EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6867EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6868EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6869EXPORT_SYMBOL_GPL(sata_scr_valid);
6870EXPORT_SYMBOL_GPL(sata_scr_read);
6871EXPORT_SYMBOL_GPL(sata_scr_write);
6872EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6873EXPORT_SYMBOL_GPL(ata_port_online);
6874EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6875#ifdef CONFIG_PM
cca3974e
JG
6876EXPORT_SYMBOL_GPL(ata_host_suspend);
6877EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6878#endif /* CONFIG_PM */
6a62a04d
TH
6879EXPORT_SYMBOL_GPL(ata_id_string);
6880EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6881EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6882EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6883EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6884
1bc4ccff 6885EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6886EXPORT_SYMBOL_GPL(ata_timing_compute);
6887EXPORT_SYMBOL_GPL(ata_timing_merge);
6888
1da177e4
LT
6889#ifdef CONFIG_PCI
6890EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6891EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
1626aeb8 6892EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
21b0ad4f 6893EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6894EXPORT_SYMBOL_GPL(ata_pci_init_one);
6895EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6896#ifdef CONFIG_PM
500530f6
TH
6897EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6898EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6899EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6900EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6901#endif /* CONFIG_PM */
67951ade
AC
6902EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6903EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6904#endif /* CONFIG_PCI */
9b847548 6905
ece1d636 6906EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6907EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6908EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6909EXPORT_SYMBOL_GPL(ata_port_freeze);
6910EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6911EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6912EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6913EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6914EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6915EXPORT_SYMBOL_GPL(ata_irq_on);
6916EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6917EXPORT_SYMBOL_GPL(ata_irq_ack);
6918EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6919EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6920
6921EXPORT_SYMBOL_GPL(ata_cable_40wire);
6922EXPORT_SYMBOL_GPL(ata_cable_80wire);
6923EXPORT_SYMBOL_GPL(ata_cable_unknown);
6924EXPORT_SYMBOL_GPL(ata_cable_sata);