]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: use ata_exec_internal() for PMP register access
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
9f45cbd3 71static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
3373efd8 72static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 73static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
baf4fdfa
ML
88int atapi_passthru16 = 1;
89module_param(atapi_passthru16, int, 0444);
90MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
c3c013a2
JG
92int libata_fua = 0;
93module_param_named(fua, libata_fua, int, 0444);
94MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
1e999736
AC
96static int ata_ignore_hpa = 0;
97module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
b3a70601
AC
100static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
101module_param_named(dma, libata_dma_mask, int, 0444);
102MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
103
a8601e5f
AM
104static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
105module_param(ata_probe_timeout, int, 0444);
106MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
107
6ebe9d86 108int libata_noacpi = 0;
d7d0dad6 109module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 110MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 111
1da177e4
LT
112MODULE_AUTHOR("Jeff Garzik");
113MODULE_DESCRIPTION("Library module for ATA devices");
114MODULE_LICENSE("GPL");
115MODULE_VERSION(DRV_VERSION);
116
0baab86b 117
1da177e4
LT
118/**
119 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
120 * @tf: Taskfile to convert
1da177e4 121 * @pmp: Port multiplier port
9977126c
TH
122 * @is_cmd: This FIS is for command
123 * @fis: Buffer into which data will output
1da177e4
LT
124 *
125 * Converts a standard ATA taskfile to a Serial ATA
126 * FIS structure (Register - Host to Device).
127 *
128 * LOCKING:
129 * Inherited from caller.
130 */
9977126c 131void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 132{
9977126c
TH
133 fis[0] = 0x27; /* Register - Host to Device FIS */
134 fis[1] = pmp & 0xf; /* Port multiplier number*/
135 if (is_cmd)
136 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
137
1da177e4
LT
138 fis[2] = tf->command;
139 fis[3] = tf->feature;
140
141 fis[4] = tf->lbal;
142 fis[5] = tf->lbam;
143 fis[6] = tf->lbah;
144 fis[7] = tf->device;
145
146 fis[8] = tf->hob_lbal;
147 fis[9] = tf->hob_lbam;
148 fis[10] = tf->hob_lbah;
149 fis[11] = tf->hob_feature;
150
151 fis[12] = tf->nsect;
152 fis[13] = tf->hob_nsect;
153 fis[14] = 0;
154 fis[15] = tf->ctl;
155
156 fis[16] = 0;
157 fis[17] = 0;
158 fis[18] = 0;
159 fis[19] = 0;
160}
161
162/**
163 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
164 * @fis: Buffer from which data will be input
165 * @tf: Taskfile to output
166 *
e12a1be6 167 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
168 *
169 * LOCKING:
170 * Inherited from caller.
171 */
172
057ace5e 173void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
174{
175 tf->command = fis[2]; /* status */
176 tf->feature = fis[3]; /* error */
177
178 tf->lbal = fis[4];
179 tf->lbam = fis[5];
180 tf->lbah = fis[6];
181 tf->device = fis[7];
182
183 tf->hob_lbal = fis[8];
184 tf->hob_lbam = fis[9];
185 tf->hob_lbah = fis[10];
186
187 tf->nsect = fis[12];
188 tf->hob_nsect = fis[13];
189}
190
8cbd6df1
AL
191static const u8 ata_rw_cmds[] = {
192 /* pio multi */
193 ATA_CMD_READ_MULTI,
194 ATA_CMD_WRITE_MULTI,
195 ATA_CMD_READ_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
197 0,
198 0,
199 0,
200 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
201 /* pio */
202 ATA_CMD_PIO_READ,
203 ATA_CMD_PIO_WRITE,
204 ATA_CMD_PIO_READ_EXT,
205 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
206 0,
207 0,
208 0,
209 0,
8cbd6df1
AL
210 /* dma */
211 ATA_CMD_READ,
212 ATA_CMD_WRITE,
213 ATA_CMD_READ_EXT,
9a3dccc4
TH
214 ATA_CMD_WRITE_EXT,
215 0,
216 0,
217 0,
218 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 219};
1da177e4
LT
220
221/**
8cbd6df1 222 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
223 * @tf: command to examine and configure
224 * @dev: device tf belongs to
1da177e4 225 *
2e9edbf8 226 * Examine the device configuration and tf->flags to calculate
8cbd6df1 227 * the proper read/write commands and protocol to use.
1da177e4
LT
228 *
229 * LOCKING:
230 * caller.
231 */
bd056d7e 232static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 233{
9a3dccc4 234 u8 cmd;
1da177e4 235
9a3dccc4 236 int index, fua, lba48, write;
2e9edbf8 237
9a3dccc4 238 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
239 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
240 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 241
8cbd6df1
AL
242 if (dev->flags & ATA_DFLAG_PIO) {
243 tf->protocol = ATA_PROT_PIO;
9a3dccc4 244 index = dev->multi_count ? 0 : 8;
9af5c9c9 245 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
246 /* Unable to use DMA due to host limitation */
247 tf->protocol = ATA_PROT_PIO;
0565c26d 248 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
249 } else {
250 tf->protocol = ATA_PROT_DMA;
9a3dccc4 251 index = 16;
8cbd6df1 252 }
1da177e4 253
9a3dccc4
TH
254 cmd = ata_rw_cmds[index + fua + lba48 + write];
255 if (cmd) {
256 tf->command = cmd;
257 return 0;
258 }
259 return -1;
1da177e4
LT
260}
261
35b649fe
TH
262/**
263 * ata_tf_read_block - Read block address from ATA taskfile
264 * @tf: ATA taskfile of interest
265 * @dev: ATA device @tf belongs to
266 *
267 * LOCKING:
268 * None.
269 *
270 * Read block address from @tf. This function can handle all
271 * three address formats - LBA, LBA48 and CHS. tf->protocol and
272 * flags select the address format to use.
273 *
274 * RETURNS:
275 * Block address read from @tf.
276 */
277u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
278{
279 u64 block = 0;
280
281 if (tf->flags & ATA_TFLAG_LBA) {
282 if (tf->flags & ATA_TFLAG_LBA48) {
283 block |= (u64)tf->hob_lbah << 40;
284 block |= (u64)tf->hob_lbam << 32;
285 block |= tf->hob_lbal << 24;
286 } else
287 block |= (tf->device & 0xf) << 24;
288
289 block |= tf->lbah << 16;
290 block |= tf->lbam << 8;
291 block |= tf->lbal;
292 } else {
293 u32 cyl, head, sect;
294
295 cyl = tf->lbam | (tf->lbah << 8);
296 head = tf->device & 0xf;
297 sect = tf->lbal;
298
299 block = (cyl * dev->heads + head) * dev->sectors + sect;
300 }
301
302 return block;
303}
304
bd056d7e
TH
305/**
306 * ata_build_rw_tf - Build ATA taskfile for given read/write request
307 * @tf: Target ATA taskfile
308 * @dev: ATA device @tf belongs to
309 * @block: Block address
310 * @n_block: Number of blocks
311 * @tf_flags: RW/FUA etc...
312 * @tag: tag
313 *
314 * LOCKING:
315 * None.
316 *
317 * Build ATA taskfile @tf for read/write request described by
318 * @block, @n_block, @tf_flags and @tag on @dev.
319 *
320 * RETURNS:
321 *
322 * 0 on success, -ERANGE if the request is too large for @dev,
323 * -EINVAL if the request is invalid.
324 */
325int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
326 u64 block, u32 n_block, unsigned int tf_flags,
327 unsigned int tag)
328{
329 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
330 tf->flags |= tf_flags;
331
6d1245bf 332 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
333 /* yay, NCQ */
334 if (!lba_48_ok(block, n_block))
335 return -ERANGE;
336
337 tf->protocol = ATA_PROT_NCQ;
338 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
339
340 if (tf->flags & ATA_TFLAG_WRITE)
341 tf->command = ATA_CMD_FPDMA_WRITE;
342 else
343 tf->command = ATA_CMD_FPDMA_READ;
344
345 tf->nsect = tag << 3;
346 tf->hob_feature = (n_block >> 8) & 0xff;
347 tf->feature = n_block & 0xff;
348
349 tf->hob_lbah = (block >> 40) & 0xff;
350 tf->hob_lbam = (block >> 32) & 0xff;
351 tf->hob_lbal = (block >> 24) & 0xff;
352 tf->lbah = (block >> 16) & 0xff;
353 tf->lbam = (block >> 8) & 0xff;
354 tf->lbal = block & 0xff;
355
356 tf->device = 1 << 6;
357 if (tf->flags & ATA_TFLAG_FUA)
358 tf->device |= 1 << 7;
359 } else if (dev->flags & ATA_DFLAG_LBA) {
360 tf->flags |= ATA_TFLAG_LBA;
361
362 if (lba_28_ok(block, n_block)) {
363 /* use LBA28 */
364 tf->device |= (block >> 24) & 0xf;
365 } else if (lba_48_ok(block, n_block)) {
366 if (!(dev->flags & ATA_DFLAG_LBA48))
367 return -ERANGE;
368
369 /* use LBA48 */
370 tf->flags |= ATA_TFLAG_LBA48;
371
372 tf->hob_nsect = (n_block >> 8) & 0xff;
373
374 tf->hob_lbah = (block >> 40) & 0xff;
375 tf->hob_lbam = (block >> 32) & 0xff;
376 tf->hob_lbal = (block >> 24) & 0xff;
377 } else
378 /* request too large even for LBA48 */
379 return -ERANGE;
380
381 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
382 return -EINVAL;
383
384 tf->nsect = n_block & 0xff;
385
386 tf->lbah = (block >> 16) & 0xff;
387 tf->lbam = (block >> 8) & 0xff;
388 tf->lbal = block & 0xff;
389
390 tf->device |= ATA_LBA;
391 } else {
392 /* CHS */
393 u32 sect, head, cyl, track;
394
395 /* The request -may- be too large for CHS addressing. */
396 if (!lba_28_ok(block, n_block))
397 return -ERANGE;
398
399 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
400 return -EINVAL;
401
402 /* Convert LBA to CHS */
403 track = (u32)block / dev->sectors;
404 cyl = track / dev->heads;
405 head = track % dev->heads;
406 sect = (u32)block % dev->sectors + 1;
407
408 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
409 (u32)block, track, cyl, head, sect);
410
411 /* Check whether the converted CHS can fit.
412 Cylinder: 0-65535
413 Head: 0-15
414 Sector: 1-255*/
415 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
416 return -ERANGE;
417
418 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
419 tf->lbal = sect;
420 tf->lbam = cyl;
421 tf->lbah = cyl >> 8;
422 tf->device |= head;
423 }
424
425 return 0;
426}
427
cb95d562
TH
428/**
429 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
430 * @pio_mask: pio_mask
431 * @mwdma_mask: mwdma_mask
432 * @udma_mask: udma_mask
433 *
434 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
435 * unsigned int xfer_mask.
436 *
437 * LOCKING:
438 * None.
439 *
440 * RETURNS:
441 * Packed xfer_mask.
442 */
443static unsigned int ata_pack_xfermask(unsigned int pio_mask,
444 unsigned int mwdma_mask,
445 unsigned int udma_mask)
446{
447 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
448 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
449 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
450}
451
c0489e4e
TH
452/**
453 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
454 * @xfer_mask: xfer_mask to unpack
455 * @pio_mask: resulting pio_mask
456 * @mwdma_mask: resulting mwdma_mask
457 * @udma_mask: resulting udma_mask
458 *
459 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
460 * Any NULL distination masks will be ignored.
461 */
462static void ata_unpack_xfermask(unsigned int xfer_mask,
463 unsigned int *pio_mask,
464 unsigned int *mwdma_mask,
465 unsigned int *udma_mask)
466{
467 if (pio_mask)
468 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
469 if (mwdma_mask)
470 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
471 if (udma_mask)
472 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
473}
474
cb95d562 475static const struct ata_xfer_ent {
be9a50c8 476 int shift, bits;
cb95d562
TH
477 u8 base;
478} ata_xfer_tbl[] = {
479 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
480 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
481 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
482 { -1, },
483};
484
485/**
486 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
487 * @xfer_mask: xfer_mask of interest
488 *
489 * Return matching XFER_* value for @xfer_mask. Only the highest
490 * bit of @xfer_mask is considered.
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Matching XFER_* value, 0 if no match found.
497 */
498static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
499{
500 int highbit = fls(xfer_mask) - 1;
501 const struct ata_xfer_ent *ent;
502
503 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
504 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
505 return ent->base + highbit - ent->shift;
506 return 0;
507}
508
509/**
510 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
511 * @xfer_mode: XFER_* of interest
512 *
513 * Return matching xfer_mask for @xfer_mode.
514 *
515 * LOCKING:
516 * None.
517 *
518 * RETURNS:
519 * Matching xfer_mask, 0 if no match found.
520 */
521static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
522{
523 const struct ata_xfer_ent *ent;
524
525 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
526 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
527 return 1 << (ent->shift + xfer_mode - ent->base);
528 return 0;
529}
530
531/**
532 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
533 * @xfer_mode: XFER_* of interest
534 *
535 * Return matching xfer_shift for @xfer_mode.
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Matching xfer_shift, -1 if no match found.
542 */
543static int ata_xfer_mode2shift(unsigned int xfer_mode)
544{
545 const struct ata_xfer_ent *ent;
546
547 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
548 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
549 return ent->shift;
550 return -1;
551}
552
1da177e4 553/**
1da7b0d0
TH
554 * ata_mode_string - convert xfer_mask to string
555 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
556 *
557 * Determine string which represents the highest speed
1da7b0d0 558 * (highest bit in @modemask).
1da177e4
LT
559 *
560 * LOCKING:
561 * None.
562 *
563 * RETURNS:
564 * Constant C string representing highest speed listed in
1da7b0d0 565 * @mode_mask, or the constant C string "<n/a>".
1da177e4 566 */
1da7b0d0 567static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 568{
75f554bc
TH
569 static const char * const xfer_mode_str[] = {
570 "PIO0",
571 "PIO1",
572 "PIO2",
573 "PIO3",
574 "PIO4",
b352e57d
AC
575 "PIO5",
576 "PIO6",
75f554bc
TH
577 "MWDMA0",
578 "MWDMA1",
579 "MWDMA2",
b352e57d
AC
580 "MWDMA3",
581 "MWDMA4",
75f554bc
TH
582 "UDMA/16",
583 "UDMA/25",
584 "UDMA/33",
585 "UDMA/44",
586 "UDMA/66",
587 "UDMA/100",
588 "UDMA/133",
589 "UDMA7",
590 };
1da7b0d0 591 int highbit;
1da177e4 592
1da7b0d0
TH
593 highbit = fls(xfer_mask) - 1;
594 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
595 return xfer_mode_str[highbit];
1da177e4 596 return "<n/a>";
1da177e4
LT
597}
598
4c360c81
TH
599static const char *sata_spd_string(unsigned int spd)
600{
601 static const char * const spd_str[] = {
602 "1.5 Gbps",
603 "3.0 Gbps",
604 };
605
606 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
607 return "<unknown>";
608 return spd_str[spd - 1];
609}
610
3373efd8 611void ata_dev_disable(struct ata_device *dev)
0b8efb0a 612{
09d7f9b0 613 if (ata_dev_enabled(dev)) {
9af5c9c9 614 if (ata_msg_drv(dev->link->ap))
09d7f9b0 615 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
616 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
617 ATA_DNXFER_QUIET);
0b8efb0a
TH
618 dev->class++;
619 }
620}
621
1da177e4 622/**
0d5ff566 623 * ata_devchk - PATA device presence detection
1da177e4
LT
624 * @ap: ATA channel to examine
625 * @device: Device to examine (starting at zero)
626 *
627 * This technique was originally described in
628 * Hale Landis's ATADRVR (www.ata-atapi.com), and
629 * later found its way into the ATA/ATAPI spec.
630 *
631 * Write a pattern to the ATA shadow registers,
632 * and if a device is present, it will respond by
633 * correctly storing and echoing back the
634 * ATA shadow register contents.
635 *
636 * LOCKING:
637 * caller.
638 */
639
0d5ff566 640static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
641{
642 struct ata_ioports *ioaddr = &ap->ioaddr;
643 u8 nsect, lbal;
644
645 ap->ops->dev_select(ap, device);
646
0d5ff566
TH
647 iowrite8(0x55, ioaddr->nsect_addr);
648 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 649
0d5ff566
TH
650 iowrite8(0xaa, ioaddr->nsect_addr);
651 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 652
0d5ff566
TH
653 iowrite8(0x55, ioaddr->nsect_addr);
654 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 655
0d5ff566
TH
656 nsect = ioread8(ioaddr->nsect_addr);
657 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
658
659 if ((nsect == 0x55) && (lbal == 0xaa))
660 return 1; /* we found a device */
661
662 return 0; /* nothing found */
663}
664
1da177e4
LT
665/**
666 * ata_dev_classify - determine device type based on ATA-spec signature
667 * @tf: ATA taskfile register set for device to be identified
668 *
669 * Determine from taskfile register contents whether a device is
670 * ATA or ATAPI, as per "Signature and persistence" section
671 * of ATA/PI spec (volume 1, sect 5.14).
672 *
673 * LOCKING:
674 * None.
675 *
676 * RETURNS:
633273a3
TH
677 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
678 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 679 */
057ace5e 680unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
681{
682 /* Apple's open source Darwin code hints that some devices only
683 * put a proper signature into the LBA mid/high registers,
684 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
685 *
686 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
687 * signatures for ATA and ATAPI devices attached on SerialATA,
688 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
689 * spec has never mentioned about using different signatures
690 * for ATA/ATAPI devices. Then, Serial ATA II: Port
691 * Multiplier specification began to use 0x69/0x96 to identify
692 * port multpliers and 0x3c/0xc3 to identify SEMB device.
693 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
694 * 0x69/0x96 shortly and described them as reserved for
695 * SerialATA.
696 *
697 * We follow the current spec and consider that 0x69/0x96
698 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 699 */
633273a3 700 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
701 DPRINTK("found ATA device by sig\n");
702 return ATA_DEV_ATA;
703 }
704
633273a3 705 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
706 DPRINTK("found ATAPI device by sig\n");
707 return ATA_DEV_ATAPI;
708 }
709
633273a3
TH
710 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
711 DPRINTK("found PMP device by sig\n");
712 return ATA_DEV_PMP;
713 }
714
715 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
716 printk("ata: SEMB device ignored\n");
717 return ATA_DEV_SEMB_UNSUP; /* not yet */
718 }
719
1da177e4
LT
720 DPRINTK("unknown device\n");
721 return ATA_DEV_UNKNOWN;
722}
723
724/**
725 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
726 * @dev: ATA device to classify (starting at zero)
727 * @present: device seems present
b4dc7623 728 * @r_err: Value of error register on completion
1da177e4
LT
729 *
730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
731 * an ATA/ATAPI-defined set of values is placed in the ATA
732 * shadow registers, indicating the results of device detection
733 * and diagnostics.
734 *
735 * Select the ATA device, and read the values from the ATA shadow
736 * registers. Then parse according to the Error register value,
737 * and the spec-defined values examined by ata_dev_classify().
738 *
739 * LOCKING:
740 * caller.
b4dc7623
TH
741 *
742 * RETURNS:
743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 744 */
3f19859e
TH
745unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
746 u8 *r_err)
1da177e4 747{
3f19859e 748 struct ata_port *ap = dev->link->ap;
1da177e4
LT
749 struct ata_taskfile tf;
750 unsigned int class;
751 u8 err;
752
3f19859e 753 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
754
755 memset(&tf, 0, sizeof(tf));
756
1da177e4 757 ap->ops->tf_read(ap, &tf);
0169e284 758 err = tf.feature;
b4dc7623
TH
759 if (r_err)
760 *r_err = err;
1da177e4 761
93590859 762 /* see if device passed diags: if master then continue and warn later */
3f19859e 763 if (err == 0 && dev->devno == 0)
93590859 764 /* diagnostic fail : do nothing _YET_ */
3f19859e 765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 766 else if (err == 1)
1da177e4 767 /* do nothing */ ;
3f19859e 768 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
769 /* do nothing */ ;
770 else
b4dc7623 771 return ATA_DEV_NONE;
1da177e4 772
b4dc7623 773 /* determine if device is ATA or ATAPI */
1da177e4 774 class = ata_dev_classify(&tf);
b4dc7623 775
d7fbee05
TH
776 if (class == ATA_DEV_UNKNOWN) {
777 /* If the device failed diagnostic, it's likely to
778 * have reported incorrect device signature too.
779 * Assume ATA device if the device seems present but
780 * device signature is invalid with diagnostic
781 * failure.
782 */
783 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
784 class = ATA_DEV_ATA;
785 else
786 class = ATA_DEV_NONE;
787 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
788 class = ATA_DEV_NONE;
789
b4dc7623 790 return class;
1da177e4
LT
791}
792
793/**
6a62a04d 794 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
795 * @id: IDENTIFY DEVICE results we will examine
796 * @s: string into which data is output
797 * @ofs: offset into identify device page
798 * @len: length of string to return. must be an even number.
799 *
800 * The strings in the IDENTIFY DEVICE page are broken up into
801 * 16-bit chunks. Run through the string, and output each
802 * 8-bit chunk linearly, regardless of platform.
803 *
804 * LOCKING:
805 * caller.
806 */
807
6a62a04d
TH
808void ata_id_string(const u16 *id, unsigned char *s,
809 unsigned int ofs, unsigned int len)
1da177e4
LT
810{
811 unsigned int c;
812
813 while (len > 0) {
814 c = id[ofs] >> 8;
815 *s = c;
816 s++;
817
818 c = id[ofs] & 0xff;
819 *s = c;
820 s++;
821
822 ofs++;
823 len -= 2;
824 }
825}
826
0e949ff3 827/**
6a62a04d 828 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
829 * @id: IDENTIFY DEVICE results we will examine
830 * @s: string into which data is output
831 * @ofs: offset into identify device page
832 * @len: length of string to return. must be an odd number.
833 *
6a62a04d 834 * This function is identical to ata_id_string except that it
0e949ff3
TH
835 * trims trailing spaces and terminates the resulting string with
836 * null. @len must be actual maximum length (even number) + 1.
837 *
838 * LOCKING:
839 * caller.
840 */
6a62a04d
TH
841void ata_id_c_string(const u16 *id, unsigned char *s,
842 unsigned int ofs, unsigned int len)
0e949ff3
TH
843{
844 unsigned char *p;
845
846 WARN_ON(!(len & 1));
847
6a62a04d 848 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
849
850 p = s + strnlen(s, len - 1);
851 while (p > s && p[-1] == ' ')
852 p--;
853 *p = '\0';
854}
0baab86b 855
db6f8759
TH
856static u64 ata_id_n_sectors(const u16 *id)
857{
858 if (ata_id_has_lba(id)) {
859 if (ata_id_has_lba48(id))
860 return ata_id_u64(id, 100);
861 else
862 return ata_id_u32(id, 60);
863 } else {
864 if (ata_id_current_chs_valid(id))
865 return ata_id_u32(id, 57);
866 else
867 return id[1] * id[3] * id[6];
868 }
869}
870
1e999736
AC
871static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
872{
873 u64 sectors = 0;
874
875 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
876 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
877 sectors |= (tf->hob_lbal & 0xff) << 24;
878 sectors |= (tf->lbah & 0xff) << 16;
879 sectors |= (tf->lbam & 0xff) << 8;
880 sectors |= (tf->lbal & 0xff);
881
882 return ++sectors;
883}
884
885static u64 ata_tf_to_lba(struct ata_taskfile *tf)
886{
887 u64 sectors = 0;
888
889 sectors |= (tf->device & 0x0f) << 24;
890 sectors |= (tf->lbah & 0xff) << 16;
891 sectors |= (tf->lbam & 0xff) << 8;
892 sectors |= (tf->lbal & 0xff);
893
894 return ++sectors;
895}
896
897/**
c728a914
TH
898 * ata_read_native_max_address - Read native max address
899 * @dev: target device
900 * @max_sectors: out parameter for the result native max address
1e999736 901 *
c728a914
TH
902 * Perform an LBA48 or LBA28 native size query upon the device in
903 * question.
1e999736 904 *
c728a914
TH
905 * RETURNS:
906 * 0 on success, -EACCES if command is aborted by the drive.
907 * -EIO on other errors.
1e999736 908 */
c728a914 909static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 910{
c728a914 911 unsigned int err_mask;
1e999736 912 struct ata_taskfile tf;
c728a914 913 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
914
915 ata_tf_init(dev, &tf);
916
c728a914 917 /* always clear all address registers */
1e999736 918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 919
c728a914
TH
920 if (lba48) {
921 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
922 tf.flags |= ATA_TFLAG_LBA48;
923 } else
924 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 925
1e999736 926 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
927 tf.device |= ATA_LBA;
928
2b789108 929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
930 if (err_mask) {
931 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
932 "max address (err_mask=0x%x)\n", err_mask);
933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
934 return -EACCES;
935 return -EIO;
936 }
1e999736 937
c728a914
TH
938 if (lba48)
939 *max_sectors = ata_tf_to_lba48(&tf);
940 else
941 *max_sectors = ata_tf_to_lba(&tf);
93328e11
AC
942 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
943 (*max_sectors)--;
c728a914 944 return 0;
1e999736
AC
945}
946
947/**
c728a914
TH
948 * ata_set_max_sectors - Set max sectors
949 * @dev: target device
6b38d1d1 950 * @new_sectors: new max sectors value to set for the device
1e999736 951 *
c728a914
TH
952 * Set max sectors of @dev to @new_sectors.
953 *
954 * RETURNS:
955 * 0 on success, -EACCES if command is aborted or denied (due to
956 * previous non-volatile SET_MAX) by the drive. -EIO on other
957 * errors.
1e999736 958 */
05027adc 959static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 960{
c728a914 961 unsigned int err_mask;
1e999736 962 struct ata_taskfile tf;
c728a914 963 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
964
965 new_sectors--;
966
967 ata_tf_init(dev, &tf);
968
1e999736 969 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
970
971 if (lba48) {
972 tf.command = ATA_CMD_SET_MAX_EXT;
973 tf.flags |= ATA_TFLAG_LBA48;
974
975 tf.hob_lbal = (new_sectors >> 24) & 0xff;
976 tf.hob_lbam = (new_sectors >> 32) & 0xff;
977 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 978 } else {
c728a914
TH
979 tf.command = ATA_CMD_SET_MAX;
980
1e582ba4
TH
981 tf.device |= (new_sectors >> 24) & 0xf;
982 }
983
1e999736 984 tf.protocol |= ATA_PROT_NODATA;
c728a914 985 tf.device |= ATA_LBA;
1e999736
AC
986
987 tf.lbal = (new_sectors >> 0) & 0xff;
988 tf.lbam = (new_sectors >> 8) & 0xff;
989 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 990
2b789108 991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
992 if (err_mask) {
993 ata_dev_printk(dev, KERN_WARNING, "failed to set "
994 "max address (err_mask=0x%x)\n", err_mask);
995 if (err_mask == AC_ERR_DEV &&
996 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
997 return -EACCES;
998 return -EIO;
999 }
1000
c728a914 1001 return 0;
1e999736
AC
1002}
1003
1004/**
1005 * ata_hpa_resize - Resize a device with an HPA set
1006 * @dev: Device to resize
1007 *
1008 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1009 * it if required to the full size of the media. The caller must check
1010 * the drive has the HPA feature set enabled.
05027adc
TH
1011 *
1012 * RETURNS:
1013 * 0 on success, -errno on failure.
1e999736 1014 */
05027adc 1015static int ata_hpa_resize(struct ata_device *dev)
1e999736 1016{
05027adc
TH
1017 struct ata_eh_context *ehc = &dev->link->eh_context;
1018 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1019 u64 sectors = ata_id_n_sectors(dev->id);
1020 u64 native_sectors;
c728a914 1021 int rc;
a617c09f 1022
05027adc
TH
1023 /* do we need to do it? */
1024 if (dev->class != ATA_DEV_ATA ||
1025 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1026 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1027 return 0;
1e999736 1028
05027adc
TH
1029 /* read native max address */
1030 rc = ata_read_native_max_address(dev, &native_sectors);
1031 if (rc) {
1032 /* If HPA isn't going to be unlocked, skip HPA
1033 * resizing from the next try.
1034 */
1035 if (!ata_ignore_hpa) {
1036 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1037 "broken, will skip HPA handling\n");
1038 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1039
1040 /* we can continue if device aborted the command */
1041 if (rc == -EACCES)
1042 rc = 0;
1e999736 1043 }
37301a55 1044
05027adc
TH
1045 return rc;
1046 }
1047
1048 /* nothing to do? */
1049 if (native_sectors <= sectors || !ata_ignore_hpa) {
1050 if (!print_info || native_sectors == sectors)
1051 return 0;
1052
1053 if (native_sectors > sectors)
1054 ata_dev_printk(dev, KERN_INFO,
1055 "HPA detected: current %llu, native %llu\n",
1056 (unsigned long long)sectors,
1057 (unsigned long long)native_sectors);
1058 else if (native_sectors < sectors)
1059 ata_dev_printk(dev, KERN_WARNING,
1060 "native sectors (%llu) is smaller than "
1061 "sectors (%llu)\n",
1062 (unsigned long long)native_sectors,
1063 (unsigned long long)sectors);
1064 return 0;
1065 }
1066
1067 /* let's unlock HPA */
1068 rc = ata_set_max_sectors(dev, native_sectors);
1069 if (rc == -EACCES) {
1070 /* if device aborted the command, skip HPA resizing */
1071 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1072 "(%llu -> %llu), skipping HPA handling\n",
1073 (unsigned long long)sectors,
1074 (unsigned long long)native_sectors);
1075 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1076 return 0;
1077 } else if (rc)
1078 return rc;
1079
1080 /* re-read IDENTIFY data */
1081 rc = ata_dev_reread_id(dev, 0);
1082 if (rc) {
1083 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1084 "data after HPA resizing\n");
1085 return rc;
1086 }
1087
1088 if (print_info) {
1089 u64 new_sectors = ata_id_n_sectors(dev->id);
1090 ata_dev_printk(dev, KERN_INFO,
1091 "HPA unlocked: %llu -> %llu, native %llu\n",
1092 (unsigned long long)sectors,
1093 (unsigned long long)new_sectors,
1094 (unsigned long long)native_sectors);
1095 }
1096
1097 return 0;
1e999736
AC
1098}
1099
10305f0f
AC
1100/**
1101 * ata_id_to_dma_mode - Identify DMA mode from id block
1102 * @dev: device to identify
cc261267 1103 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1104 *
1105 * Set up the timing values for the device based upon the identify
1106 * reported values for the DMA mode. This function is used by drivers
1107 * which rely upon firmware configured modes, but wish to report the
1108 * mode correctly when possible.
1109 *
1110 * In addition we emit similarly formatted messages to the default
1111 * ata_dev_set_mode handler, in order to provide consistency of
1112 * presentation.
1113 */
1114
1115void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1116{
1117 unsigned int mask;
1118 u8 mode;
1119
1120 /* Pack the DMA modes */
1121 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1122 if (dev->id[53] & 0x04)
1123 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1124
1125 /* Select the mode in use */
1126 mode = ata_xfer_mask2mode(mask);
1127
1128 if (mode != 0) {
1129 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1130 ata_mode_string(mask));
1131 } else {
1132 /* SWDMA perhaps ? */
1133 mode = unknown;
1134 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1135 }
1136
1137 /* Configure the device reporting */
1138 dev->xfer_mode = mode;
1139 dev->xfer_shift = ata_xfer_mode2shift(mode);
1140}
1141
0baab86b
EF
1142/**
1143 * ata_noop_dev_select - Select device 0/1 on ATA bus
1144 * @ap: ATA channel to manipulate
1145 * @device: ATA device (numbered from zero) to select
1146 *
1147 * This function performs no actual function.
1148 *
1149 * May be used as the dev_select() entry in ata_port_operations.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
1da177e4
LT
1154void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1155{
1156}
1157
0baab86b 1158
1da177e4
LT
1159/**
1160 * ata_std_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 *
1164 * Use the method defined in the ATA specification to
1165 * make either device 0, or device 1, active on the
0baab86b
EF
1166 * ATA channel. Works with both PIO and MMIO.
1167 *
1168 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1169 *
1170 * LOCKING:
1171 * caller.
1172 */
1173
1174void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1175{
1176 u8 tmp;
1177
1178 if (device == 0)
1179 tmp = ATA_DEVICE_OBS;
1180 else
1181 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1182
0d5ff566 1183 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1184 ata_pause(ap); /* needed; also flushes, for mmio */
1185}
1186
1187/**
1188 * ata_dev_select - Select device 0/1 on ATA bus
1189 * @ap: ATA channel to manipulate
1190 * @device: ATA device (numbered from zero) to select
1191 * @wait: non-zero to wait for Status register BSY bit to clear
1192 * @can_sleep: non-zero if context allows sleeping
1193 *
1194 * Use the method defined in the ATA specification to
1195 * make either device 0, or device 1, active on the
1196 * ATA channel.
1197 *
1198 * This is a high-level version of ata_std_dev_select(),
1199 * which additionally provides the services of inserting
1200 * the proper pauses and status polling, where needed.
1201 *
1202 * LOCKING:
1203 * caller.
1204 */
1205
1206void ata_dev_select(struct ata_port *ap, unsigned int device,
1207 unsigned int wait, unsigned int can_sleep)
1208{
88574551 1209 if (ata_msg_probe(ap))
44877b4e
TH
1210 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1211 "device %u, wait %u\n", device, wait);
1da177e4
LT
1212
1213 if (wait)
1214 ata_wait_idle(ap);
1215
1216 ap->ops->dev_select(ap, device);
1217
1218 if (wait) {
9af5c9c9 1219 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1220 msleep(150);
1221 ata_wait_idle(ap);
1222 }
1223}
1224
1225/**
1226 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1227 * @id: IDENTIFY DEVICE page to dump
1da177e4 1228 *
0bd3300a
TH
1229 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1230 * page.
1da177e4
LT
1231 *
1232 * LOCKING:
1233 * caller.
1234 */
1235
0bd3300a 1236static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1237{
1238 DPRINTK("49==0x%04x "
1239 "53==0x%04x "
1240 "63==0x%04x "
1241 "64==0x%04x "
1242 "75==0x%04x \n",
0bd3300a
TH
1243 id[49],
1244 id[53],
1245 id[63],
1246 id[64],
1247 id[75]);
1da177e4
LT
1248 DPRINTK("80==0x%04x "
1249 "81==0x%04x "
1250 "82==0x%04x "
1251 "83==0x%04x "
1252 "84==0x%04x \n",
0bd3300a
TH
1253 id[80],
1254 id[81],
1255 id[82],
1256 id[83],
1257 id[84]);
1da177e4
LT
1258 DPRINTK("88==0x%04x "
1259 "93==0x%04x\n",
0bd3300a
TH
1260 id[88],
1261 id[93]);
1da177e4
LT
1262}
1263
cb95d562
TH
1264/**
1265 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1266 * @id: IDENTIFY data to compute xfer mask from
1267 *
1268 * Compute the xfermask for this device. This is not as trivial
1269 * as it seems if we must consider early devices correctly.
1270 *
1271 * FIXME: pre IDE drive timing (do we care ?).
1272 *
1273 * LOCKING:
1274 * None.
1275 *
1276 * RETURNS:
1277 * Computed xfermask
1278 */
1279static unsigned int ata_id_xfermask(const u16 *id)
1280{
1281 unsigned int pio_mask, mwdma_mask, udma_mask;
1282
1283 /* Usual case. Word 53 indicates word 64 is valid */
1284 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1285 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1286 pio_mask <<= 3;
1287 pio_mask |= 0x7;
1288 } else {
1289 /* If word 64 isn't valid then Word 51 high byte holds
1290 * the PIO timing number for the maximum. Turn it into
1291 * a mask.
1292 */
7a0f1c8a 1293 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1294 if (mode < 5) /* Valid PIO range */
1295 pio_mask = (2 << mode) - 1;
1296 else
1297 pio_mask = 1;
cb95d562
TH
1298
1299 /* But wait.. there's more. Design your standards by
1300 * committee and you too can get a free iordy field to
1301 * process. However its the speeds not the modes that
1302 * are supported... Note drivers using the timing API
1303 * will get this right anyway
1304 */
1305 }
1306
1307 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1308
b352e57d
AC
1309 if (ata_id_is_cfa(id)) {
1310 /*
1311 * Process compact flash extended modes
1312 */
1313 int pio = id[163] & 0x7;
1314 int dma = (id[163] >> 3) & 7;
1315
1316 if (pio)
1317 pio_mask |= (1 << 5);
1318 if (pio > 1)
1319 pio_mask |= (1 << 6);
1320 if (dma)
1321 mwdma_mask |= (1 << 3);
1322 if (dma > 1)
1323 mwdma_mask |= (1 << 4);
1324 }
1325
fb21f0d0
TH
1326 udma_mask = 0;
1327 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1328 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1329
1330 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1331}
1332
86e45b6b
TH
1333/**
1334 * ata_port_queue_task - Queue port_task
1335 * @ap: The ata_port to queue port_task for
e2a7f77a 1336 * @fn: workqueue function to be scheduled
65f27f38 1337 * @data: data for @fn to use
e2a7f77a 1338 * @delay: delay time for workqueue function
86e45b6b
TH
1339 *
1340 * Schedule @fn(@data) for execution after @delay jiffies using
1341 * port_task. There is one port_task per port and it's the
1342 * user(low level driver)'s responsibility to make sure that only
1343 * one task is active at any given time.
1344 *
1345 * libata core layer takes care of synchronization between
1346 * port_task and EH. ata_port_queue_task() may be ignored for EH
1347 * synchronization.
1348 *
1349 * LOCKING:
1350 * Inherited from caller.
1351 */
65f27f38 1352void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1353 unsigned long delay)
1354{
65f27f38
DH
1355 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1356 ap->port_task_data = data;
86e45b6b 1357
45a66c1c
ON
1358 /* may fail if ata_port_flush_task() in progress */
1359 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1360}
1361
1362/**
1363 * ata_port_flush_task - Flush port_task
1364 * @ap: The ata_port to flush port_task for
1365 *
1366 * After this function completes, port_task is guranteed not to
1367 * be running or scheduled.
1368 *
1369 * LOCKING:
1370 * Kernel thread context (may sleep)
1371 */
1372void ata_port_flush_task(struct ata_port *ap)
1373{
86e45b6b
TH
1374 DPRINTK("ENTER\n");
1375
45a66c1c 1376 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1377
0dd4b21f
BP
1378 if (ata_msg_ctl(ap))
1379 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1380}
1381
7102d230 1382static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1383{
77853bf2 1384 struct completion *waiting = qc->private_data;
a2a7a662 1385
a2a7a662 1386 complete(waiting);
a2a7a662
TH
1387}
1388
1389/**
2432697b 1390 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1391 * @dev: Device to which the command is sent
1392 * @tf: Taskfile registers for the command and the result
d69cf37d 1393 * @cdb: CDB for packet command
a2a7a662 1394 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1395 * @sg: sg list for the data buffer of the command
1396 * @n_elem: Number of sg entries
2b789108 1397 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1398 *
1399 * Executes libata internal command with timeout. @tf contains
1400 * command on entry and result on return. Timeout and error
1401 * conditions are reported via return value. No recovery action
1402 * is taken after a command times out. It's caller's duty to
1403 * clean up after timeout.
1404 *
1405 * LOCKING:
1406 * None. Should be called with kernel context, might sleep.
551e8889
TH
1407 *
1408 * RETURNS:
1409 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1410 */
2432697b
TH
1411unsigned ata_exec_internal_sg(struct ata_device *dev,
1412 struct ata_taskfile *tf, const u8 *cdb,
1413 int dma_dir, struct scatterlist *sg,
2b789108 1414 unsigned int n_elem, unsigned long timeout)
a2a7a662 1415{
9af5c9c9
TH
1416 struct ata_link *link = dev->link;
1417 struct ata_port *ap = link->ap;
a2a7a662
TH
1418 u8 command = tf->command;
1419 struct ata_queued_cmd *qc;
2ab7db1f 1420 unsigned int tag, preempted_tag;
dedaf2b0 1421 u32 preempted_sactive, preempted_qc_active;
da917d69 1422 int preempted_nr_active_links;
60be6b9a 1423 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1424 unsigned long flags;
77853bf2 1425 unsigned int err_mask;
d95a717f 1426 int rc;
a2a7a662 1427
ba6a1308 1428 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1429
e3180499 1430 /* no internal command while frozen */
b51e9e5d 1431 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1432 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1433 return AC_ERR_SYSTEM;
1434 }
1435
2ab7db1f 1436 /* initialize internal qc */
a2a7a662 1437
2ab7db1f
TH
1438 /* XXX: Tag 0 is used for drivers with legacy EH as some
1439 * drivers choke if any other tag is given. This breaks
1440 * ata_tag_internal() test for those drivers. Don't use new
1441 * EH stuff without converting to it.
1442 */
1443 if (ap->ops->error_handler)
1444 tag = ATA_TAG_INTERNAL;
1445 else
1446 tag = 0;
1447
6cec4a39 1448 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1449 BUG();
f69499f4 1450 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1451
1452 qc->tag = tag;
1453 qc->scsicmd = NULL;
1454 qc->ap = ap;
1455 qc->dev = dev;
1456 ata_qc_reinit(qc);
1457
9af5c9c9
TH
1458 preempted_tag = link->active_tag;
1459 preempted_sactive = link->sactive;
dedaf2b0 1460 preempted_qc_active = ap->qc_active;
da917d69 1461 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1462 link->active_tag = ATA_TAG_POISON;
1463 link->sactive = 0;
dedaf2b0 1464 ap->qc_active = 0;
da917d69 1465 ap->nr_active_links = 0;
2ab7db1f
TH
1466
1467 /* prepare & issue qc */
a2a7a662 1468 qc->tf = *tf;
d69cf37d
TH
1469 if (cdb)
1470 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1471 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1472 qc->dma_dir = dma_dir;
1473 if (dma_dir != DMA_NONE) {
2432697b
TH
1474 unsigned int i, buflen = 0;
1475
1476 for (i = 0; i < n_elem; i++)
1477 buflen += sg[i].length;
1478
1479 ata_sg_init(qc, sg, n_elem);
49c80429 1480 qc->nbytes = buflen;
a2a7a662
TH
1481 }
1482
77853bf2 1483 qc->private_data = &wait;
a2a7a662
TH
1484 qc->complete_fn = ata_qc_complete_internal;
1485
8e0e694a 1486 ata_qc_issue(qc);
a2a7a662 1487
ba6a1308 1488 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1489
2b789108
TH
1490 if (!timeout)
1491 timeout = ata_probe_timeout * 1000 / HZ;
1492
1493 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1494
1495 ata_port_flush_task(ap);
41ade50c 1496
d95a717f 1497 if (!rc) {
ba6a1308 1498 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1499
1500 /* We're racing with irq here. If we lose, the
1501 * following test prevents us from completing the qc
d95a717f
TH
1502 * twice. If we win, the port is frozen and will be
1503 * cleaned up by ->post_internal_cmd().
a2a7a662 1504 */
77853bf2 1505 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1506 qc->err_mask |= AC_ERR_TIMEOUT;
1507
1508 if (ap->ops->error_handler)
1509 ata_port_freeze(ap);
1510 else
1511 ata_qc_complete(qc);
f15a1daf 1512
0dd4b21f
BP
1513 if (ata_msg_warn(ap))
1514 ata_dev_printk(dev, KERN_WARNING,
88574551 1515 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1516 }
1517
ba6a1308 1518 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1519 }
1520
d95a717f
TH
1521 /* do post_internal_cmd */
1522 if (ap->ops->post_internal_cmd)
1523 ap->ops->post_internal_cmd(qc);
1524
a51d644a
TH
1525 /* perform minimal error analysis */
1526 if (qc->flags & ATA_QCFLAG_FAILED) {
1527 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1528 qc->err_mask |= AC_ERR_DEV;
1529
1530 if (!qc->err_mask)
1531 qc->err_mask |= AC_ERR_OTHER;
1532
1533 if (qc->err_mask & ~AC_ERR_OTHER)
1534 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1535 }
1536
15869303 1537 /* finish up */
ba6a1308 1538 spin_lock_irqsave(ap->lock, flags);
15869303 1539
e61e0672 1540 *tf = qc->result_tf;
77853bf2
TH
1541 err_mask = qc->err_mask;
1542
1543 ata_qc_free(qc);
9af5c9c9
TH
1544 link->active_tag = preempted_tag;
1545 link->sactive = preempted_sactive;
dedaf2b0 1546 ap->qc_active = preempted_qc_active;
da917d69 1547 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1548
1f7dd3e9
TH
1549 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1550 * Until those drivers are fixed, we detect the condition
1551 * here, fail the command with AC_ERR_SYSTEM and reenable the
1552 * port.
1553 *
1554 * Note that this doesn't change any behavior as internal
1555 * command failure results in disabling the device in the
1556 * higher layer for LLDDs without new reset/EH callbacks.
1557 *
1558 * Kill the following code as soon as those drivers are fixed.
1559 */
198e0fed 1560 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1561 err_mask |= AC_ERR_SYSTEM;
1562 ata_port_probe(ap);
1563 }
1564
ba6a1308 1565 spin_unlock_irqrestore(ap->lock, flags);
15869303 1566
77853bf2 1567 return err_mask;
a2a7a662
TH
1568}
1569
2432697b 1570/**
33480a0e 1571 * ata_exec_internal - execute libata internal command
2432697b
TH
1572 * @dev: Device to which the command is sent
1573 * @tf: Taskfile registers for the command and the result
1574 * @cdb: CDB for packet command
1575 * @dma_dir: Data tranfer direction of the command
1576 * @buf: Data buffer of the command
1577 * @buflen: Length of data buffer
2b789108 1578 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1579 *
1580 * Wrapper around ata_exec_internal_sg() which takes simple
1581 * buffer instead of sg list.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
1588 */
1589unsigned ata_exec_internal(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1591 int dma_dir, void *buf, unsigned int buflen,
1592 unsigned long timeout)
2432697b 1593{
33480a0e
TH
1594 struct scatterlist *psg = NULL, sg;
1595 unsigned int n_elem = 0;
2432697b 1596
33480a0e
TH
1597 if (dma_dir != DMA_NONE) {
1598 WARN_ON(!buf);
1599 sg_init_one(&sg, buf, buflen);
1600 psg = &sg;
1601 n_elem++;
1602 }
2432697b 1603
2b789108
TH
1604 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1605 timeout);
2432697b
TH
1606}
1607
977e6b9f
TH
1608/**
1609 * ata_do_simple_cmd - execute simple internal command
1610 * @dev: Device to which the command is sent
1611 * @cmd: Opcode to execute
1612 *
1613 * Execute a 'simple' command, that only consists of the opcode
1614 * 'cmd' itself, without filling any other registers
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep).
1618 *
1619 * RETURNS:
1620 * Zero on success, AC_ERR_* mask on failure
e58eb583 1621 */
77b08fb5 1622unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1623{
1624 struct ata_taskfile tf;
e58eb583
TH
1625
1626 ata_tf_init(dev, &tf);
1627
1628 tf.command = cmd;
1629 tf.flags |= ATA_TFLAG_DEVICE;
1630 tf.protocol = ATA_PROT_NODATA;
1631
2b789108 1632 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1633}
1634
1bc4ccff
AC
1635/**
1636 * ata_pio_need_iordy - check if iordy needed
1637 * @adev: ATA device
1638 *
1639 * Check if the current speed of the device requires IORDY. Used
1640 * by various controllers for chip configuration.
1641 */
a617c09f 1642
1bc4ccff
AC
1643unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644{
432729f0
AC
1645 /* Controller doesn't support IORDY. Probably a pointless check
1646 as the caller should know this */
9af5c9c9 1647 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1648 return 0;
432729f0
AC
1649 /* PIO3 and higher it is mandatory */
1650 if (adev->pio_mode > XFER_PIO_2)
1651 return 1;
1652 /* We turn it on when possible */
1653 if (ata_id_has_iordy(adev->id))
1bc4ccff 1654 return 1;
432729f0
AC
1655 return 0;
1656}
2e9edbf8 1657
432729f0
AC
1658/**
1659 * ata_pio_mask_no_iordy - Return the non IORDY mask
1660 * @adev: ATA device
1661 *
1662 * Compute the highest mode possible if we are not using iordy. Return
1663 * -1 if no iordy mode is available.
1664 */
a617c09f 1665
432729f0
AC
1666static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1667{
1bc4ccff 1668 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1669 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1670 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1671 /* Is the speed faster than the drive allows non IORDY ? */
1672 if (pio) {
1673 /* This is cycle times not frequency - watch the logic! */
1674 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1675 return 3 << ATA_SHIFT_PIO;
1676 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1677 }
1678 }
432729f0 1679 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1680}
1681
1da177e4 1682/**
49016aca 1683 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1684 * @dev: target device
1685 * @p_class: pointer to class of the target device (may be changed)
bff04647 1686 * @flags: ATA_READID_* flags
fe635c7e 1687 * @id: buffer to read IDENTIFY data into
1da177e4 1688 *
49016aca
TH
1689 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1690 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1691 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1692 * for pre-ATA4 drives.
1da177e4 1693 *
50a99018
AC
1694 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1695 * now we abort if we hit that case.
1696 *
1da177e4 1697 * LOCKING:
49016aca
TH
1698 * Kernel thread context (may sleep)
1699 *
1700 * RETURNS:
1701 * 0 on success, -errno otherwise.
1da177e4 1702 */
a9beec95 1703int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1704 unsigned int flags, u16 *id)
1da177e4 1705{
9af5c9c9 1706 struct ata_port *ap = dev->link->ap;
49016aca 1707 unsigned int class = *p_class;
a0123703 1708 struct ata_taskfile tf;
49016aca
TH
1709 unsigned int err_mask = 0;
1710 const char *reason;
54936f8b 1711 int may_fallback = 1, tried_spinup = 0;
49016aca 1712 int rc;
1da177e4 1713
0dd4b21f 1714 if (ata_msg_ctl(ap))
44877b4e 1715 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1716
49016aca 1717 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1718 retry:
3373efd8 1719 ata_tf_init(dev, &tf);
a0123703 1720
49016aca
TH
1721 switch (class) {
1722 case ATA_DEV_ATA:
a0123703 1723 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1724 break;
1725 case ATA_DEV_ATAPI:
a0123703 1726 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1727 break;
1728 default:
1729 rc = -ENODEV;
1730 reason = "unsupported class";
1731 goto err_out;
1da177e4
LT
1732 }
1733
a0123703 1734 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1735
1736 /* Some devices choke if TF registers contain garbage. Make
1737 * sure those are properly initialized.
1738 */
1739 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1740
1741 /* Device presence detection is unreliable on some
1742 * controllers. Always poll IDENTIFY if available.
1743 */
1744 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1745
3373efd8 1746 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1747 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1748 if (err_mask) {
800b3996 1749 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1750 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1751 ap->print_id, dev->devno);
55a8e2c8
TH
1752 return -ENOENT;
1753 }
1754
54936f8b
TH
1755 /* Device or controller might have reported the wrong
1756 * device class. Give a shot at the other IDENTIFY if
1757 * the current one is aborted by the device.
1758 */
1759 if (may_fallback &&
1760 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1761 may_fallback = 0;
1762
1763 if (class == ATA_DEV_ATA)
1764 class = ATA_DEV_ATAPI;
1765 else
1766 class = ATA_DEV_ATA;
1767 goto retry;
1768 }
1769
49016aca
TH
1770 rc = -EIO;
1771 reason = "I/O error";
1da177e4
LT
1772 goto err_out;
1773 }
1774
54936f8b
TH
1775 /* Falling back doesn't make sense if ID data was read
1776 * successfully at least once.
1777 */
1778 may_fallback = 0;
1779
49016aca 1780 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1781
49016aca 1782 /* sanity check */
a4f5749b 1783 rc = -EINVAL;
6070068b 1784 reason = "device reports invalid type";
a4f5749b
TH
1785
1786 if (class == ATA_DEV_ATA) {
1787 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1788 goto err_out;
1789 } else {
1790 if (ata_id_is_ata(id))
1791 goto err_out;
49016aca
TH
1792 }
1793
169439c2
ML
1794 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1795 tried_spinup = 1;
1796 /*
1797 * Drive powered-up in standby mode, and requires a specific
1798 * SET_FEATURES spin-up subcommand before it will accept
1799 * anything other than the original IDENTIFY command.
1800 */
1801 ata_tf_init(dev, &tf);
1802 tf.command = ATA_CMD_SET_FEATURES;
1803 tf.feature = SETFEATURES_SPINUP;
1804 tf.protocol = ATA_PROT_NODATA;
1805 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2b789108
TH
1806 err_mask = ata_exec_internal(dev, &tf, NULL,
1807 DMA_NONE, NULL, 0, 0);
fb0582f9 1808 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1809 rc = -EIO;
1810 reason = "SPINUP failed";
1811 goto err_out;
1812 }
1813 /*
1814 * If the drive initially returned incomplete IDENTIFY info,
1815 * we now must reissue the IDENTIFY command.
1816 */
1817 if (id[2] == 0x37c8)
1818 goto retry;
1819 }
1820
bff04647 1821 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1822 /*
1823 * The exact sequence expected by certain pre-ATA4 drives is:
1824 * SRST RESET
50a99018
AC
1825 * IDENTIFY (optional in early ATA)
1826 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1827 * anything else..
1828 * Some drives were very specific about that exact sequence.
50a99018
AC
1829 *
1830 * Note that ATA4 says lba is mandatory so the second check
1831 * shoud never trigger.
49016aca
TH
1832 */
1833 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1834 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1835 if (err_mask) {
1836 rc = -EIO;
1837 reason = "INIT_DEV_PARAMS failed";
1838 goto err_out;
1839 }
1840
1841 /* current CHS translation info (id[53-58]) might be
1842 * changed. reread the identify device info.
1843 */
bff04647 1844 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1845 goto retry;
1846 }
1847 }
1848
1849 *p_class = class;
fe635c7e 1850
49016aca
TH
1851 return 0;
1852
1853 err_out:
88574551 1854 if (ata_msg_warn(ap))
0dd4b21f 1855 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1856 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1857 return rc;
1858}
1859
3373efd8 1860static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1861{
9af5c9c9
TH
1862 struct ata_port *ap = dev->link->ap;
1863 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1864}
1865
a6e6ce8e
TH
1866static void ata_dev_config_ncq(struct ata_device *dev,
1867 char *desc, size_t desc_sz)
1868{
9af5c9c9 1869 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1870 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1871
1872 if (!ata_id_has_ncq(dev->id)) {
1873 desc[0] = '\0';
1874 return;
1875 }
75683fe7 1876 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1877 snprintf(desc, desc_sz, "NCQ (not used)");
1878 return;
1879 }
a6e6ce8e 1880 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1881 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1882 dev->flags |= ATA_DFLAG_NCQ;
1883 }
1884
1885 if (hdepth >= ddepth)
1886 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1887 else
1888 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1889}
1890
49016aca 1891/**
ffeae418 1892 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1893 * @dev: Target device to configure
1894 *
1895 * Configure @dev according to @dev->id. Generic and low-level
1896 * driver specific fixups are also applied.
49016aca
TH
1897 *
1898 * LOCKING:
ffeae418
TH
1899 * Kernel thread context (may sleep)
1900 *
1901 * RETURNS:
1902 * 0 on success, -errno otherwise
49016aca 1903 */
efdaedc4 1904int ata_dev_configure(struct ata_device *dev)
49016aca 1905{
9af5c9c9
TH
1906 struct ata_port *ap = dev->link->ap;
1907 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1908 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1909 const u16 *id = dev->id;
ff8854b2 1910 unsigned int xfer_mask;
b352e57d 1911 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1912 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1913 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1914 int rc;
49016aca 1915
0dd4b21f 1916 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1917 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1918 __FUNCTION__);
ffeae418 1919 return 0;
49016aca
TH
1920 }
1921
0dd4b21f 1922 if (ata_msg_probe(ap))
44877b4e 1923 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1924
75683fe7
TH
1925 /* set horkage */
1926 dev->horkage |= ata_dev_blacklisted(dev);
1927
6746544c
TH
1928 /* let ACPI work its magic */
1929 rc = ata_acpi_on_devcfg(dev);
1930 if (rc)
1931 return rc;
08573a86 1932
05027adc
TH
1933 /* massage HPA, do it early as it might change IDENTIFY data */
1934 rc = ata_hpa_resize(dev);
1935 if (rc)
1936 return rc;
1937
c39f5ebe 1938 /* print device capabilities */
0dd4b21f 1939 if (ata_msg_probe(ap))
88574551
TH
1940 ata_dev_printk(dev, KERN_DEBUG,
1941 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1942 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1943 __FUNCTION__,
f15a1daf
TH
1944 id[49], id[82], id[83], id[84],
1945 id[85], id[86], id[87], id[88]);
c39f5ebe 1946
208a9933 1947 /* initialize to-be-configured parameters */
ea1dd4e1 1948 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1949 dev->max_sectors = 0;
1950 dev->cdb_len = 0;
1951 dev->n_sectors = 0;
1952 dev->cylinders = 0;
1953 dev->heads = 0;
1954 dev->sectors = 0;
1955
1da177e4
LT
1956 /*
1957 * common ATA, ATAPI feature tests
1958 */
1959
ff8854b2 1960 /* find max transfer mode; for printk only */
1148c3a7 1961 xfer_mask = ata_id_xfermask(id);
1da177e4 1962
0dd4b21f
BP
1963 if (ata_msg_probe(ap))
1964 ata_dump_id(id);
1da177e4 1965
ef143d57
AL
1966 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1967 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1968 sizeof(fwrevbuf));
1969
1970 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1971 sizeof(modelbuf));
1972
1da177e4
LT
1973 /* ATA-specific feature tests */
1974 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1975 if (ata_id_is_cfa(id)) {
1976 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "supports DRM functions and may "
1979 "not be fully accessable.\n");
b352e57d
AC
1980 snprintf(revbuf, 7, "CFA");
1981 }
1982 else
1983 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1984
1148c3a7 1985 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1986
3f64f565
EM
1987 if (dev->id[59] & 0x100)
1988 dev->multi_count = dev->id[59] & 0xff;
1989
1148c3a7 1990 if (ata_id_has_lba(id)) {
4c2d721a 1991 const char *lba_desc;
a6e6ce8e 1992 char ncq_desc[20];
8bf62ece 1993
4c2d721a
TH
1994 lba_desc = "LBA";
1995 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1996 if (ata_id_has_lba48(id)) {
8bf62ece 1997 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1998 lba_desc = "LBA48";
6fc49adb
TH
1999
2000 if (dev->n_sectors >= (1UL << 28) &&
2001 ata_id_has_flush_ext(id))
2002 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2003 }
8bf62ece 2004
a6e6ce8e
TH
2005 /* config NCQ */
2006 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2007
8bf62ece 2008 /* print device info to dmesg */
3f64f565
EM
2009 if (ata_msg_drv(ap) && print_info) {
2010 ata_dev_printk(dev, KERN_INFO,
2011 "%s: %s, %s, max %s\n",
2012 revbuf, modelbuf, fwrevbuf,
2013 ata_mode_string(xfer_mask));
2014 ata_dev_printk(dev, KERN_INFO,
2015 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2016 (unsigned long long)dev->n_sectors,
3f64f565
EM
2017 dev->multi_count, lba_desc, ncq_desc);
2018 }
ffeae418 2019 } else {
8bf62ece
AL
2020 /* CHS */
2021
2022 /* Default translation */
1148c3a7
TH
2023 dev->cylinders = id[1];
2024 dev->heads = id[3];
2025 dev->sectors = id[6];
8bf62ece 2026
1148c3a7 2027 if (ata_id_current_chs_valid(id)) {
8bf62ece 2028 /* Current CHS translation is valid. */
1148c3a7
TH
2029 dev->cylinders = id[54];
2030 dev->heads = id[55];
2031 dev->sectors = id[56];
8bf62ece
AL
2032 }
2033
2034 /* print device info to dmesg */
3f64f565 2035 if (ata_msg_drv(ap) && print_info) {
88574551 2036 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2037 "%s: %s, %s, max %s\n",
2038 revbuf, modelbuf, fwrevbuf,
2039 ata_mode_string(xfer_mask));
a84471fe 2040 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2041 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2042 (unsigned long long)dev->n_sectors,
2043 dev->multi_count, dev->cylinders,
2044 dev->heads, dev->sectors);
2045 }
07f6f7d0
AL
2046 }
2047
6e7846e9 2048 dev->cdb_len = 16;
1da177e4
LT
2049 }
2050
2051 /* ATAPI-specific feature tests */
2c13b7ce 2052 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2053 const char *cdb_intr_string = "";
2054 const char *atapi_an_string = "";
7d77b247 2055 u32 sntf;
08a556db 2056
1148c3a7 2057 rc = atapi_cdb_len(id);
1da177e4 2058 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2059 if (ata_msg_warn(ap))
88574551
TH
2060 ata_dev_printk(dev, KERN_WARNING,
2061 "unsupported CDB len\n");
ffeae418 2062 rc = -EINVAL;
1da177e4
LT
2063 goto err_out_nosup;
2064 }
6e7846e9 2065 dev->cdb_len = (unsigned int) rc;
1da177e4 2066
7d77b247
TH
2067 /* Enable ATAPI AN if both the host and device have
2068 * the support. If PMP is attached, SNTF is required
2069 * to enable ATAPI AN to discern between PHY status
2070 * changed notifications and ATAPI ANs.
9f45cbd3 2071 */
7d77b247
TH
2072 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2073 (!ap->nr_pmp_links ||
2074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2075 unsigned int err_mask;
2076
9f45cbd3 2077 /* issue SET feature command to turn this on */
854c73a2
TH
2078 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2079 if (err_mask)
9f45cbd3 2080 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2081 "failed to enable ATAPI AN "
2082 "(err_mask=0x%x)\n", err_mask);
2083 else {
9f45cbd3 2084 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2085 atapi_an_string = ", ATAPI AN";
2086 }
9f45cbd3
KCA
2087 }
2088
08a556db 2089 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2090 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2091 cdb_intr_string = ", CDB intr";
2092 }
312f7da2 2093
1da177e4 2094 /* print device info to dmesg */
5afc8142 2095 if (ata_msg_drv(ap) && print_info)
ef143d57 2096 ata_dev_printk(dev, KERN_INFO,
854c73a2 2097 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2098 modelbuf, fwrevbuf,
12436c30 2099 ata_mode_string(xfer_mask),
854c73a2 2100 cdb_intr_string, atapi_an_string);
1da177e4
LT
2101 }
2102
914ed354
TH
2103 /* determine max_sectors */
2104 dev->max_sectors = ATA_MAX_SECTORS;
2105 if (dev->flags & ATA_DFLAG_LBA48)
2106 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2107
93590859
AC
2108 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2109 /* Let the user know. We don't want to disallow opens for
2110 rescue purposes, or in case the vendor is just a blithering
2111 idiot */
2112 if (print_info) {
2113 ata_dev_printk(dev, KERN_WARNING,
2114"Drive reports diagnostics failure. This may indicate a drive\n");
2115 ata_dev_printk(dev, KERN_WARNING,
2116"fault or invalid emulation. Contact drive vendor for information.\n");
2117 }
2118 }
2119
4b2f3ede 2120 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2121 if (ata_dev_knobble(dev)) {
5afc8142 2122 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2123 ata_dev_printk(dev, KERN_INFO,
2124 "applying bridge limits\n");
5a529139 2125 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2126 dev->max_sectors = ATA_MAX_SECTORS;
2127 }
2128
75683fe7 2129 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2130 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2131 dev->max_sectors);
18d6e9d5 2132
4b2f3ede 2133 if (ap->ops->dev_config)
cd0d3bbc 2134 ap->ops->dev_config(dev);
4b2f3ede 2135
0dd4b21f
BP
2136 if (ata_msg_probe(ap))
2137 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2138 __FUNCTION__, ata_chk_status(ap));
ffeae418 2139 return 0;
1da177e4
LT
2140
2141err_out_nosup:
0dd4b21f 2142 if (ata_msg_probe(ap))
88574551
TH
2143 ata_dev_printk(dev, KERN_DEBUG,
2144 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2145 return rc;
1da177e4
LT
2146}
2147
be0d18df 2148/**
2e41e8e6 2149 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2150 * @ap: port
2151 *
2e41e8e6 2152 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2153 * detection.
2154 */
2155
2156int ata_cable_40wire(struct ata_port *ap)
2157{
2158 return ATA_CBL_PATA40;
2159}
2160
2161/**
2e41e8e6 2162 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2163 * @ap: port
2164 *
2e41e8e6 2165 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2166 * detection.
2167 */
2168
2169int ata_cable_80wire(struct ata_port *ap)
2170{
2171 return ATA_CBL_PATA80;
2172}
2173
2174/**
2175 * ata_cable_unknown - return unknown PATA cable.
2176 * @ap: port
2177 *
2178 * Helper method for drivers which have no PATA cable detection.
2179 */
2180
2181int ata_cable_unknown(struct ata_port *ap)
2182{
2183 return ATA_CBL_PATA_UNK;
2184}
2185
2186/**
2187 * ata_cable_sata - return SATA cable type
2188 * @ap: port
2189 *
2190 * Helper method for drivers which have SATA cables
2191 */
2192
2193int ata_cable_sata(struct ata_port *ap)
2194{
2195 return ATA_CBL_SATA;
2196}
2197
1da177e4
LT
2198/**
2199 * ata_bus_probe - Reset and probe ATA bus
2200 * @ap: Bus to probe
2201 *
0cba632b
JG
2202 * Master ATA bus probing function. Initiates a hardware-dependent
2203 * bus reset, then attempts to identify any devices found on
2204 * the bus.
2205 *
1da177e4 2206 * LOCKING:
0cba632b 2207 * PCI/etc. bus probe sem.
1da177e4
LT
2208 *
2209 * RETURNS:
96072e69 2210 * Zero on success, negative errno otherwise.
1da177e4
LT
2211 */
2212
80289167 2213int ata_bus_probe(struct ata_port *ap)
1da177e4 2214{
28ca5c57 2215 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2216 int tries[ATA_MAX_DEVICES];
f58229f8 2217 int rc;
e82cbdb9 2218 struct ata_device *dev;
1da177e4 2219
28ca5c57 2220 ata_port_probe(ap);
c19ba8af 2221
f58229f8
TH
2222 ata_link_for_each_dev(dev, &ap->link)
2223 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2224
2225 retry:
2044470c 2226 /* reset and determine device classes */
52783c5d 2227 ap->ops->phy_reset(ap);
2061a47a 2228
f58229f8 2229 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2230 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2231 dev->class != ATA_DEV_UNKNOWN)
2232 classes[dev->devno] = dev->class;
2233 else
2234 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2235
52783c5d 2236 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2237 }
1da177e4 2238
52783c5d 2239 ata_port_probe(ap);
2044470c 2240
b6079ca4
AC
2241 /* after the reset the device state is PIO 0 and the controller
2242 state is undefined. Record the mode */
2243
f58229f8
TH
2244 ata_link_for_each_dev(dev, &ap->link)
2245 dev->pio_mode = XFER_PIO_0;
b6079ca4 2246
f31f0cc2
JG
2247 /* read IDENTIFY page and configure devices. We have to do the identify
2248 specific sequence bass-ackwards so that PDIAG- is released by
2249 the slave device */
2250
f58229f8
TH
2251 ata_link_for_each_dev(dev, &ap->link) {
2252 if (tries[dev->devno])
2253 dev->class = classes[dev->devno];
ffeae418 2254
14d2bac1 2255 if (!ata_dev_enabled(dev))
ffeae418 2256 continue;
ffeae418 2257
bff04647
TH
2258 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2259 dev->id);
14d2bac1
TH
2260 if (rc)
2261 goto fail;
f31f0cc2
JG
2262 }
2263
be0d18df
AC
2264 /* Now ask for the cable type as PDIAG- should have been released */
2265 if (ap->ops->cable_detect)
2266 ap->cbl = ap->ops->cable_detect(ap);
2267
614fe29b
AC
2268 /* We may have SATA bridge glue hiding here irrespective of the
2269 reported cable types and sensed types */
2270 ata_link_for_each_dev(dev, &ap->link) {
2271 if (!ata_dev_enabled(dev))
2272 continue;
2273 /* SATA drives indicate we have a bridge. We don't know which
2274 end of the link the bridge is which is a problem */
2275 if (ata_id_is_sata(dev->id))
2276 ap->cbl = ATA_CBL_SATA;
2277 }
2278
f31f0cc2
JG
2279 /* After the identify sequence we can now set up the devices. We do
2280 this in the normal order so that the user doesn't get confused */
2281
f58229f8 2282 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2283 if (!ata_dev_enabled(dev))
2284 continue;
14d2bac1 2285
9af5c9c9 2286 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2287 rc = ata_dev_configure(dev);
9af5c9c9 2288 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2289 if (rc)
2290 goto fail;
1da177e4
LT
2291 }
2292
e82cbdb9 2293 /* configure transfer mode */
0260731f 2294 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2295 if (rc)
51713d35 2296 goto fail;
1da177e4 2297
f58229f8
TH
2298 ata_link_for_each_dev(dev, &ap->link)
2299 if (ata_dev_enabled(dev))
e82cbdb9 2300 return 0;
1da177e4 2301
e82cbdb9
TH
2302 /* no device present, disable port */
2303 ata_port_disable(ap);
96072e69 2304 return -ENODEV;
14d2bac1
TH
2305
2306 fail:
4ae72a1e
TH
2307 tries[dev->devno]--;
2308
14d2bac1
TH
2309 switch (rc) {
2310 case -EINVAL:
4ae72a1e 2311 /* eeek, something went very wrong, give up */
14d2bac1
TH
2312 tries[dev->devno] = 0;
2313 break;
4ae72a1e
TH
2314
2315 case -ENODEV:
2316 /* give it just one more chance */
2317 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2318 case -EIO:
4ae72a1e
TH
2319 if (tries[dev->devno] == 1) {
2320 /* This is the last chance, better to slow
2321 * down than lose it.
2322 */
936fd732 2323 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2324 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2325 }
14d2bac1
TH
2326 }
2327
4ae72a1e 2328 if (!tries[dev->devno])
3373efd8 2329 ata_dev_disable(dev);
ec573755 2330
14d2bac1 2331 goto retry;
1da177e4
LT
2332}
2333
2334/**
0cba632b
JG
2335 * ata_port_probe - Mark port as enabled
2336 * @ap: Port for which we indicate enablement
1da177e4 2337 *
0cba632b
JG
2338 * Modify @ap data structure such that the system
2339 * thinks that the entire port is enabled.
2340 *
cca3974e 2341 * LOCKING: host lock, or some other form of
0cba632b 2342 * serialization.
1da177e4
LT
2343 */
2344
2345void ata_port_probe(struct ata_port *ap)
2346{
198e0fed 2347 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2348}
2349
3be680b7
TH
2350/**
2351 * sata_print_link_status - Print SATA link status
936fd732 2352 * @link: SATA link to printk link status about
3be680b7
TH
2353 *
2354 * This function prints link speed and status of a SATA link.
2355 *
2356 * LOCKING:
2357 * None.
2358 */
936fd732 2359void sata_print_link_status(struct ata_link *link)
3be680b7 2360{
6d5f9732 2361 u32 sstatus, scontrol, tmp;
3be680b7 2362
936fd732 2363 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2364 return;
936fd732 2365 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2366
936fd732 2367 if (ata_link_online(link)) {
3be680b7 2368 tmp = (sstatus >> 4) & 0xf;
936fd732 2369 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2370 "SATA link up %s (SStatus %X SControl %X)\n",
2371 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2372 } else {
936fd732 2373 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2374 "SATA link down (SStatus %X SControl %X)\n",
2375 sstatus, scontrol);
3be680b7
TH
2376 }
2377}
2378
1da177e4 2379/**
780a87f7
JG
2380 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2381 * @ap: SATA port associated with target SATA PHY.
1da177e4 2382 *
780a87f7
JG
2383 * This function issues commands to standard SATA Sxxx
2384 * PHY registers, to wake up the phy (and device), and
2385 * clear any reset condition.
1da177e4
LT
2386 *
2387 * LOCKING:
0cba632b 2388 * PCI/etc. bus probe sem.
1da177e4
LT
2389 *
2390 */
2391void __sata_phy_reset(struct ata_port *ap)
2392{
936fd732 2393 struct ata_link *link = &ap->link;
1da177e4 2394 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2395 u32 sstatus;
1da177e4
LT
2396
2397 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2398 /* issue phy wake/reset */
936fd732 2399 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2400 /* Couldn't find anything in SATA I/II specs, but
2401 * AHCI-1.1 10.4.2 says at least 1 ms. */
2402 mdelay(1);
1da177e4 2403 }
81952c54 2404 /* phy wake/clear reset */
936fd732 2405 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2406
2407 /* wait for phy to become ready, if necessary */
2408 do {
2409 msleep(200);
936fd732 2410 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2411 if ((sstatus & 0xf) != 1)
2412 break;
2413 } while (time_before(jiffies, timeout));
2414
3be680b7 2415 /* print link status */
936fd732 2416 sata_print_link_status(link);
656563e3 2417
3be680b7 2418 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2419 if (!ata_link_offline(link))
1da177e4 2420 ata_port_probe(ap);
3be680b7 2421 else
1da177e4 2422 ata_port_disable(ap);
1da177e4 2423
198e0fed 2424 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2425 return;
2426
2427 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2428 ata_port_disable(ap);
2429 return;
2430 }
2431
2432 ap->cbl = ATA_CBL_SATA;
2433}
2434
2435/**
780a87f7
JG
2436 * sata_phy_reset - Reset SATA bus.
2437 * @ap: SATA port associated with target SATA PHY.
1da177e4 2438 *
780a87f7
JG
2439 * This function resets the SATA bus, and then probes
2440 * the bus for devices.
1da177e4
LT
2441 *
2442 * LOCKING:
0cba632b 2443 * PCI/etc. bus probe sem.
1da177e4
LT
2444 *
2445 */
2446void sata_phy_reset(struct ata_port *ap)
2447{
2448 __sata_phy_reset(ap);
198e0fed 2449 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2450 return;
2451 ata_bus_reset(ap);
2452}
2453
ebdfca6e
AC
2454/**
2455 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2456 * @adev: device
2457 *
2458 * Obtain the other device on the same cable, or if none is
2459 * present NULL is returned
2460 */
2e9edbf8 2461
3373efd8 2462struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2463{
9af5c9c9
TH
2464 struct ata_link *link = adev->link;
2465 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2466 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2467 return NULL;
2468 return pair;
2469}
2470
1da177e4 2471/**
780a87f7
JG
2472 * ata_port_disable - Disable port.
2473 * @ap: Port to be disabled.
1da177e4 2474 *
780a87f7
JG
2475 * Modify @ap data structure such that the system
2476 * thinks that the entire port is disabled, and should
2477 * never attempt to probe or communicate with devices
2478 * on this port.
2479 *
cca3974e 2480 * LOCKING: host lock, or some other form of
780a87f7 2481 * serialization.
1da177e4
LT
2482 */
2483
2484void ata_port_disable(struct ata_port *ap)
2485{
9af5c9c9
TH
2486 ap->link.device[0].class = ATA_DEV_NONE;
2487 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2488 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2489}
2490
1c3fae4d 2491/**
3c567b7d 2492 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2493 * @link: Link to adjust SATA spd limit for
1c3fae4d 2494 *
936fd732 2495 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2496 * function only adjusts the limit. The change must be applied
3c567b7d 2497 * using sata_set_spd().
1c3fae4d
TH
2498 *
2499 * LOCKING:
2500 * Inherited from caller.
2501 *
2502 * RETURNS:
2503 * 0 on success, negative errno on failure
2504 */
936fd732 2505int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2506{
81952c54
TH
2507 u32 sstatus, spd, mask;
2508 int rc, highbit;
1c3fae4d 2509
936fd732 2510 if (!sata_scr_valid(link))
008a7896
TH
2511 return -EOPNOTSUPP;
2512
2513 /* If SCR can be read, use it to determine the current SPD.
936fd732 2514 * If not, use cached value in link->sata_spd.
008a7896 2515 */
936fd732 2516 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2517 if (rc == 0)
2518 spd = (sstatus >> 4) & 0xf;
2519 else
936fd732 2520 spd = link->sata_spd;
1c3fae4d 2521
936fd732 2522 mask = link->sata_spd_limit;
1c3fae4d
TH
2523 if (mask <= 1)
2524 return -EINVAL;
008a7896
TH
2525
2526 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2527 highbit = fls(mask) - 1;
2528 mask &= ~(1 << highbit);
2529
008a7896
TH
2530 /* Mask off all speeds higher than or equal to the current
2531 * one. Force 1.5Gbps if current SPD is not available.
2532 */
2533 if (spd > 1)
2534 mask &= (1 << (spd - 1)) - 1;
2535 else
2536 mask &= 1;
2537
2538 /* were we already at the bottom? */
1c3fae4d
TH
2539 if (!mask)
2540 return -EINVAL;
2541
936fd732 2542 link->sata_spd_limit = mask;
1c3fae4d 2543
936fd732 2544 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2545 sata_spd_string(fls(mask)));
1c3fae4d
TH
2546
2547 return 0;
2548}
2549
936fd732 2550static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2551{
2552 u32 spd, limit;
2553
936fd732 2554 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2555 limit = 0;
2556 else
936fd732 2557 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2558
2559 spd = (*scontrol >> 4) & 0xf;
2560 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2561
2562 return spd != limit;
2563}
2564
2565/**
3c567b7d 2566 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2567 * @link: Link in question
1c3fae4d
TH
2568 *
2569 * Test whether the spd limit in SControl matches
936fd732 2570 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2571 * whether hardreset is necessary to apply SATA spd
2572 * configuration.
2573 *
2574 * LOCKING:
2575 * Inherited from caller.
2576 *
2577 * RETURNS:
2578 * 1 if SATA spd configuration is needed, 0 otherwise.
2579 */
936fd732 2580int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2581{
2582 u32 scontrol;
2583
936fd732 2584 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2585 return 0;
2586
936fd732 2587 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2588}
2589
2590/**
3c567b7d 2591 * sata_set_spd - set SATA spd according to spd limit
936fd732 2592 * @link: Link to set SATA spd for
1c3fae4d 2593 *
936fd732 2594 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2595 *
2596 * LOCKING:
2597 * Inherited from caller.
2598 *
2599 * RETURNS:
2600 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2601 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2602 */
936fd732 2603int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2604{
2605 u32 scontrol;
81952c54 2606 int rc;
1c3fae4d 2607
936fd732 2608 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2609 return rc;
1c3fae4d 2610
936fd732 2611 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2612 return 0;
2613
936fd732 2614 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2615 return rc;
2616
1c3fae4d
TH
2617 return 1;
2618}
2619
452503f9
AC
2620/*
2621 * This mode timing computation functionality is ported over from
2622 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2623 */
2624/*
b352e57d 2625 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2626 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2627 * for UDMA6, which is currently supported only by Maxtor drives.
2628 *
2629 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2630 */
2631
2632static const struct ata_timing ata_timing[] = {
2633
2634 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2635 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2636 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2637 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2638
b352e57d
AC
2639 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2640 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2641 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2642 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2643 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2644
2645/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2646
452503f9
AC
2647 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2648 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2649 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2650
452503f9
AC
2651 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2652 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2653 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2654
b352e57d
AC
2655 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2656 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2657 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2658 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2659
2660 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2661 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2662 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2663
2664/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2665
2666 { 0xFF }
2667};
2668
2669#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2670#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2671
2672static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2673{
2674 q->setup = EZ(t->setup * 1000, T);
2675 q->act8b = EZ(t->act8b * 1000, T);
2676 q->rec8b = EZ(t->rec8b * 1000, T);
2677 q->cyc8b = EZ(t->cyc8b * 1000, T);
2678 q->active = EZ(t->active * 1000, T);
2679 q->recover = EZ(t->recover * 1000, T);
2680 q->cycle = EZ(t->cycle * 1000, T);
2681 q->udma = EZ(t->udma * 1000, UT);
2682}
2683
2684void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2685 struct ata_timing *m, unsigned int what)
2686{
2687 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2688 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2689 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2690 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2691 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2692 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2693 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2694 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2695}
2696
2697static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2698{
2699 const struct ata_timing *t;
2700
2701 for (t = ata_timing; t->mode != speed; t++)
91190758 2702 if (t->mode == 0xFF)
452503f9 2703 return NULL;
2e9edbf8 2704 return t;
452503f9
AC
2705}
2706
2707int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2708 struct ata_timing *t, int T, int UT)
2709{
2710 const struct ata_timing *s;
2711 struct ata_timing p;
2712
2713 /*
2e9edbf8 2714 * Find the mode.
75b1f2f8 2715 */
452503f9
AC
2716
2717 if (!(s = ata_timing_find_mode(speed)))
2718 return -EINVAL;
2719
75b1f2f8
AL
2720 memcpy(t, s, sizeof(*s));
2721
452503f9
AC
2722 /*
2723 * If the drive is an EIDE drive, it can tell us it needs extended
2724 * PIO/MW_DMA cycle timing.
2725 */
2726
2727 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2728 memset(&p, 0, sizeof(p));
2729 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2730 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2731 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2732 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2733 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2734 }
2735 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2736 }
2737
2738 /*
2739 * Convert the timing to bus clock counts.
2740 */
2741
75b1f2f8 2742 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2743
2744 /*
c893a3ae
RD
2745 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2746 * S.M.A.R.T * and some other commands. We have to ensure that the
2747 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2748 */
2749
fd3367af 2750 if (speed > XFER_PIO_6) {
452503f9
AC
2751 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2752 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2753 }
2754
2755 /*
c893a3ae 2756 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2757 */
2758
2759 if (t->act8b + t->rec8b < t->cyc8b) {
2760 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2761 t->rec8b = t->cyc8b - t->act8b;
2762 }
2763
2764 if (t->active + t->recover < t->cycle) {
2765 t->active += (t->cycle - (t->active + t->recover)) / 2;
2766 t->recover = t->cycle - t->active;
2767 }
a617c09f 2768
4f701d1e
AC
2769 /* In a few cases quantisation may produce enough errors to
2770 leave t->cycle too low for the sum of active and recovery
2771 if so we must correct this */
2772 if (t->active + t->recover > t->cycle)
2773 t->cycle = t->active + t->recover;
452503f9
AC
2774
2775 return 0;
2776}
2777
cf176e1a
TH
2778/**
2779 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2780 * @dev: Device to adjust xfer masks
458337db 2781 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2782 *
2783 * Adjust xfer masks of @dev downward. Note that this function
2784 * does not apply the change. Invoking ata_set_mode() afterwards
2785 * will apply the limit.
2786 *
2787 * LOCKING:
2788 * Inherited from caller.
2789 *
2790 * RETURNS:
2791 * 0 on success, negative errno on failure
2792 */
458337db 2793int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2794{
458337db
TH
2795 char buf[32];
2796 unsigned int orig_mask, xfer_mask;
2797 unsigned int pio_mask, mwdma_mask, udma_mask;
2798 int quiet, highbit;
cf176e1a 2799
458337db
TH
2800 quiet = !!(sel & ATA_DNXFER_QUIET);
2801 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2802
458337db
TH
2803 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2804 dev->mwdma_mask,
2805 dev->udma_mask);
2806 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2807
458337db
TH
2808 switch (sel) {
2809 case ATA_DNXFER_PIO:
2810 highbit = fls(pio_mask) - 1;
2811 pio_mask &= ~(1 << highbit);
2812 break;
2813
2814 case ATA_DNXFER_DMA:
2815 if (udma_mask) {
2816 highbit = fls(udma_mask) - 1;
2817 udma_mask &= ~(1 << highbit);
2818 if (!udma_mask)
2819 return -ENOENT;
2820 } else if (mwdma_mask) {
2821 highbit = fls(mwdma_mask) - 1;
2822 mwdma_mask &= ~(1 << highbit);
2823 if (!mwdma_mask)
2824 return -ENOENT;
2825 }
2826 break;
2827
2828 case ATA_DNXFER_40C:
2829 udma_mask &= ATA_UDMA_MASK_40C;
2830 break;
2831
2832 case ATA_DNXFER_FORCE_PIO0:
2833 pio_mask &= 1;
2834 case ATA_DNXFER_FORCE_PIO:
2835 mwdma_mask = 0;
2836 udma_mask = 0;
2837 break;
2838
458337db
TH
2839 default:
2840 BUG();
2841 }
2842
2843 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2844
2845 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2846 return -ENOENT;
2847
2848 if (!quiet) {
2849 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2850 snprintf(buf, sizeof(buf), "%s:%s",
2851 ata_mode_string(xfer_mask),
2852 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2853 else
2854 snprintf(buf, sizeof(buf), "%s",
2855 ata_mode_string(xfer_mask));
2856
2857 ata_dev_printk(dev, KERN_WARNING,
2858 "limiting speed to %s\n", buf);
2859 }
cf176e1a
TH
2860
2861 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2862 &dev->udma_mask);
2863
cf176e1a 2864 return 0;
cf176e1a
TH
2865}
2866
3373efd8 2867static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2868{
9af5c9c9 2869 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2870 unsigned int err_mask;
2871 int rc;
1da177e4 2872
e8384607 2873 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2874 if (dev->xfer_shift == ATA_SHIFT_PIO)
2875 dev->flags |= ATA_DFLAG_PIO;
2876
3373efd8 2877 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2878 /* Old CFA may refuse this command, which is just fine */
2879 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2880 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2881 /* Some very old devices and some bad newer ones fail any kind of
2882 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2883 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2884 dev->pio_mode <= XFER_PIO_2)
2885 err_mask &= ~AC_ERR_DEV;
83206a29 2886 if (err_mask) {
f15a1daf
TH
2887 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2888 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2889 return -EIO;
2890 }
1da177e4 2891
baa1e78a 2892 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2893 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2894 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2895 if (rc)
83206a29 2896 return rc;
48a8a14f 2897
23e71c3d
TH
2898 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2899 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2900
f15a1daf
TH
2901 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2902 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2903 return 0;
1da177e4
LT
2904}
2905
1da177e4 2906/**
04351821 2907 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2908 * @link: link on which timings will be programmed
e82cbdb9 2909 * @r_failed_dev: out paramter for failed device
1da177e4 2910 *
04351821
AC
2911 * Standard implementation of the function used to tune and set
2912 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2913 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2914 * returned in @r_failed_dev.
780a87f7 2915 *
1da177e4 2916 * LOCKING:
0cba632b 2917 * PCI/etc. bus probe sem.
e82cbdb9
TH
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
1da177e4 2921 */
04351821 2922
0260731f 2923int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2924{
0260731f 2925 struct ata_port *ap = link->ap;
e8e0619f 2926 struct ata_device *dev;
f58229f8 2927 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2928
a6d5a51c 2929 /* step 1: calculate xfer_mask */
f58229f8 2930 ata_link_for_each_dev(dev, link) {
acf356b1 2931 unsigned int pio_mask, dma_mask;
b3a70601 2932 unsigned int mode_mask;
a6d5a51c 2933
e1211e3f 2934 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2935 continue;
2936
b3a70601
AC
2937 mode_mask = ATA_DMA_MASK_ATA;
2938 if (dev->class == ATA_DEV_ATAPI)
2939 mode_mask = ATA_DMA_MASK_ATAPI;
2940 else if (ata_id_is_cfa(dev->id))
2941 mode_mask = ATA_DMA_MASK_CFA;
2942
3373efd8 2943 ata_dev_xfermask(dev);
1da177e4 2944
acf356b1
TH
2945 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2946 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2947
2948 if (libata_dma_mask & mode_mask)
2949 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2950 else
2951 dma_mask = 0;
2952
acf356b1
TH
2953 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2954 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2955
4f65977d 2956 found = 1;
5444a6f4
AC
2957 if (dev->dma_mode)
2958 used_dma = 1;
a6d5a51c 2959 }
4f65977d 2960 if (!found)
e82cbdb9 2961 goto out;
a6d5a51c
TH
2962
2963 /* step 2: always set host PIO timings */
f58229f8 2964 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2965 if (!ata_dev_enabled(dev))
2966 continue;
2967
2968 if (!dev->pio_mode) {
f15a1daf 2969 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2970 rc = -EINVAL;
e82cbdb9 2971 goto out;
e8e0619f
TH
2972 }
2973
2974 dev->xfer_mode = dev->pio_mode;
2975 dev->xfer_shift = ATA_SHIFT_PIO;
2976 if (ap->ops->set_piomode)
2977 ap->ops->set_piomode(ap, dev);
2978 }
1da177e4 2979
a6d5a51c 2980 /* step 3: set host DMA timings */
f58229f8 2981 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2982 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2983 continue;
2984
2985 dev->xfer_mode = dev->dma_mode;
2986 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2987 if (ap->ops->set_dmamode)
2988 ap->ops->set_dmamode(ap, dev);
2989 }
1da177e4
LT
2990
2991 /* step 4: update devices' xfer mode */
f58229f8 2992 ata_link_for_each_dev(dev, link) {
18d90deb 2993 /* don't update suspended devices' xfer mode */
9666f400 2994 if (!ata_dev_enabled(dev))
83206a29
TH
2995 continue;
2996
3373efd8 2997 rc = ata_dev_set_mode(dev);
5bbc53f4 2998 if (rc)
e82cbdb9 2999 goto out;
83206a29 3000 }
1da177e4 3001
e8e0619f
TH
3002 /* Record simplex status. If we selected DMA then the other
3003 * host channels are not permitted to do so.
5444a6f4 3004 */
cca3974e 3005 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3006 ap->host->simplex_claimed = ap;
5444a6f4 3007
e82cbdb9
TH
3008 out:
3009 if (rc)
3010 *r_failed_dev = dev;
3011 return rc;
1da177e4
LT
3012}
3013
04351821
AC
3014/**
3015 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3016 * @link: link on which timings will be programmed
04351821
AC
3017 * @r_failed_dev: out paramter for failed device
3018 *
3019 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3020 * ata_set_mode() fails, pointer to the failing device is
3021 * returned in @r_failed_dev.
3022 *
3023 * LOCKING:
3024 * PCI/etc. bus probe sem.
3025 *
3026 * RETURNS:
3027 * 0 on success, negative errno otherwise
3028 */
0260731f 3029int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3030{
0260731f
TH
3031 struct ata_port *ap = link->ap;
3032
04351821
AC
3033 /* has private set_mode? */
3034 if (ap->ops->set_mode)
0260731f
TH
3035 return ap->ops->set_mode(link, r_failed_dev);
3036 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3037}
3038
1fdffbce
JG
3039/**
3040 * ata_tf_to_host - issue ATA taskfile to host controller
3041 * @ap: port to which command is being issued
3042 * @tf: ATA taskfile register set
3043 *
3044 * Issues ATA taskfile register set to ATA host controller,
3045 * with proper synchronization with interrupt handler and
3046 * other threads.
3047 *
3048 * LOCKING:
cca3974e 3049 * spin_lock_irqsave(host lock)
1fdffbce
JG
3050 */
3051
3052static inline void ata_tf_to_host(struct ata_port *ap,
3053 const struct ata_taskfile *tf)
3054{
3055 ap->ops->tf_load(ap, tf);
3056 ap->ops->exec_command(ap, tf);
3057}
3058
1da177e4
LT
3059/**
3060 * ata_busy_sleep - sleep until BSY clears, or timeout
3061 * @ap: port containing status register to be polled
3062 * @tmout_pat: impatience timeout
3063 * @tmout: overall timeout
3064 *
780a87f7
JG
3065 * Sleep until ATA Status register bit BSY clears,
3066 * or a timeout occurs.
3067 *
d1adc1bb
TH
3068 * LOCKING:
3069 * Kernel thread context (may sleep).
3070 *
3071 * RETURNS:
3072 * 0 on success, -errno otherwise.
1da177e4 3073 */
d1adc1bb
TH
3074int ata_busy_sleep(struct ata_port *ap,
3075 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3076{
3077 unsigned long timer_start, timeout;
3078 u8 status;
3079
3080 status = ata_busy_wait(ap, ATA_BUSY, 300);
3081 timer_start = jiffies;
3082 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3083 while (status != 0xff && (status & ATA_BUSY) &&
3084 time_before(jiffies, timeout)) {
1da177e4
LT
3085 msleep(50);
3086 status = ata_busy_wait(ap, ATA_BUSY, 3);
3087 }
3088
d1adc1bb 3089 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3090 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3091 "port is slow to respond, please be patient "
3092 "(Status 0x%x)\n", status);
1da177e4
LT
3093
3094 timeout = timer_start + tmout;
d1adc1bb
TH
3095 while (status != 0xff && (status & ATA_BUSY) &&
3096 time_before(jiffies, timeout)) {
1da177e4
LT
3097 msleep(50);
3098 status = ata_chk_status(ap);
3099 }
3100
d1adc1bb
TH
3101 if (status == 0xff)
3102 return -ENODEV;
3103
1da177e4 3104 if (status & ATA_BUSY) {
f15a1daf 3105 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3106 "(%lu secs, Status 0x%x)\n",
3107 tmout / HZ, status);
d1adc1bb 3108 return -EBUSY;
1da177e4
LT
3109 }
3110
3111 return 0;
3112}
3113
d4b2bab4
TH
3114/**
3115 * ata_wait_ready - sleep until BSY clears, or timeout
3116 * @ap: port containing status register to be polled
3117 * @deadline: deadline jiffies for the operation
3118 *
3119 * Sleep until ATA Status register bit BSY clears, or timeout
3120 * occurs.
3121 *
3122 * LOCKING:
3123 * Kernel thread context (may sleep).
3124 *
3125 * RETURNS:
3126 * 0 on success, -errno otherwise.
3127 */
3128int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3129{
3130 unsigned long start = jiffies;
3131 int warned = 0;
3132
3133 while (1) {
3134 u8 status = ata_chk_status(ap);
3135 unsigned long now = jiffies;
3136
3137 if (!(status & ATA_BUSY))
3138 return 0;
936fd732 3139 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3140 return -ENODEV;
3141 if (time_after(now, deadline))
3142 return -EBUSY;
3143
3144 if (!warned && time_after(now, start + 5 * HZ) &&
3145 (deadline - now > 3 * HZ)) {
3146 ata_port_printk(ap, KERN_WARNING,
3147 "port is slow to respond, please be patient "
3148 "(Status 0x%x)\n", status);
3149 warned = 1;
3150 }
3151
3152 msleep(50);
3153 }
3154}
3155
3156static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3157 unsigned long deadline)
1da177e4
LT
3158{
3159 struct ata_ioports *ioaddr = &ap->ioaddr;
3160 unsigned int dev0 = devmask & (1 << 0);
3161 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3162 int rc, ret = 0;
1da177e4
LT
3163
3164 /* if device 0 was found in ata_devchk, wait for its
3165 * BSY bit to clear
3166 */
d4b2bab4
TH
3167 if (dev0) {
3168 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3169 if (rc) {
3170 if (rc != -ENODEV)
3171 return rc;
3172 ret = rc;
3173 }
d4b2bab4 3174 }
1da177e4 3175
e141d999
TH
3176 /* if device 1 was found in ata_devchk, wait for register
3177 * access briefly, then wait for BSY to clear.
1da177e4 3178 */
e141d999
TH
3179 if (dev1) {
3180 int i;
1da177e4
LT
3181
3182 ap->ops->dev_select(ap, 1);
e141d999
TH
3183
3184 /* Wait for register access. Some ATAPI devices fail
3185 * to set nsect/lbal after reset, so don't waste too
3186 * much time on it. We're gonna wait for !BSY anyway.
3187 */
3188 for (i = 0; i < 2; i++) {
3189 u8 nsect, lbal;
3190
3191 nsect = ioread8(ioaddr->nsect_addr);
3192 lbal = ioread8(ioaddr->lbal_addr);
3193 if ((nsect == 1) && (lbal == 1))
3194 break;
3195 msleep(50); /* give drive a breather */
3196 }
3197
d4b2bab4 3198 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3199 if (rc) {
3200 if (rc != -ENODEV)
3201 return rc;
3202 ret = rc;
3203 }
d4b2bab4 3204 }
1da177e4
LT
3205
3206 /* is all this really necessary? */
3207 ap->ops->dev_select(ap, 0);
3208 if (dev1)
3209 ap->ops->dev_select(ap, 1);
3210 if (dev0)
3211 ap->ops->dev_select(ap, 0);
d4b2bab4 3212
9b89391c 3213 return ret;
1da177e4
LT
3214}
3215
d4b2bab4
TH
3216static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3217 unsigned long deadline)
1da177e4
LT
3218{
3219 struct ata_ioports *ioaddr = &ap->ioaddr;
681c80b5
AC
3220 struct ata_device *dev;
3221 int i = 0;
1da177e4 3222
44877b4e 3223 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3224
3225 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3226 iowrite8(ap->ctl, ioaddr->ctl_addr);
3227 udelay(20); /* FIXME: flush */
3228 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3229 udelay(20); /* FIXME: flush */
3230 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3231
681c80b5
AC
3232 /* If we issued an SRST then an ATA drive (not ATAPI)
3233 * may have changed configuration and be in PIO0 timing. If
3234 * we did a hard reset (or are coming from power on) this is
3235 * true for ATA or ATAPI. Until we've set a suitable controller
3236 * mode we should not touch the bus as we may be talking too fast.
3237 */
3238
3239 ata_link_for_each_dev(dev, &ap->link)
3240 dev->pio_mode = XFER_PIO_0;
3241
3242 /* If the controller has a pio mode setup function then use
3243 it to set the chipset to rights. Don't touch the DMA setup
3244 as that will be dealt with when revalidating */
3245 if (ap->ops->set_piomode) {
3246 ata_link_for_each_dev(dev, &ap->link)
3247 if (devmask & (1 << i++))
3248 ap->ops->set_piomode(ap, dev);
3249 }
3250
1da177e4
LT
3251 /* spec mandates ">= 2ms" before checking status.
3252 * We wait 150ms, because that was the magic delay used for
3253 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3254 * between when the ATA command register is written, and then
3255 * status is checked. Because waiting for "a while" before
3256 * checking status is fine, post SRST, we perform this magic
3257 * delay here as well.
09c7ad79
AC
3258 *
3259 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3260 */
3261 msleep(150);
3262
2e9edbf8 3263 /* Before we perform post reset processing we want to see if
298a41ca
TH
3264 * the bus shows 0xFF because the odd clown forgets the D7
3265 * pulldown resistor.
3266 */
d1adc1bb 3267 if (ata_check_status(ap) == 0xFF)
9b89391c 3268 return -ENODEV;
09c7ad79 3269
d4b2bab4 3270 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3271}
3272
3273/**
3274 * ata_bus_reset - reset host port and associated ATA channel
3275 * @ap: port to reset
3276 *
3277 * This is typically the first time we actually start issuing
3278 * commands to the ATA channel. We wait for BSY to clear, then
3279 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3280 * result. Determine what devices, if any, are on the channel
3281 * by looking at the device 0/1 error register. Look at the signature
3282 * stored in each device's taskfile registers, to determine if
3283 * the device is ATA or ATAPI.
3284 *
3285 * LOCKING:
0cba632b 3286 * PCI/etc. bus probe sem.
cca3974e 3287 * Obtains host lock.
1da177e4
LT
3288 *
3289 * SIDE EFFECTS:
198e0fed 3290 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3291 */
3292
3293void ata_bus_reset(struct ata_port *ap)
3294{
9af5c9c9 3295 struct ata_device *device = ap->link.device;
1da177e4
LT
3296 struct ata_ioports *ioaddr = &ap->ioaddr;
3297 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3298 u8 err;
aec5c3c1 3299 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3300 int rc;
1da177e4 3301
44877b4e 3302 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3303
3304 /* determine if device 0/1 are present */
3305 if (ap->flags & ATA_FLAG_SATA_RESET)
3306 dev0 = 1;
3307 else {
3308 dev0 = ata_devchk(ap, 0);
3309 if (slave_possible)
3310 dev1 = ata_devchk(ap, 1);
3311 }
3312
3313 if (dev0)
3314 devmask |= (1 << 0);
3315 if (dev1)
3316 devmask |= (1 << 1);
3317
3318 /* select device 0 again */
3319 ap->ops->dev_select(ap, 0);
3320
3321 /* issue bus reset */
9b89391c
TH
3322 if (ap->flags & ATA_FLAG_SRST) {
3323 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3324 if (rc && rc != -ENODEV)
aec5c3c1 3325 goto err_out;
9b89391c 3326 }
1da177e4
LT
3327
3328 /*
3329 * determine by signature whether we have ATA or ATAPI devices
3330 */
3f19859e 3331 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3332 if ((slave_possible) && (err != 0x81))
3f19859e 3333 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3334
1da177e4 3335 /* is double-select really necessary? */
9af5c9c9 3336 if (device[1].class != ATA_DEV_NONE)
1da177e4 3337 ap->ops->dev_select(ap, 1);
9af5c9c9 3338 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3339 ap->ops->dev_select(ap, 0);
3340
3341 /* if no devices were detected, disable this port */
9af5c9c9
TH
3342 if ((device[0].class == ATA_DEV_NONE) &&
3343 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3344 goto err_out;
3345
3346 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3347 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3348 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3349 }
3350
3351 DPRINTK("EXIT\n");
3352 return;
3353
3354err_out:
f15a1daf 3355 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3356 ata_port_disable(ap);
1da177e4
LT
3357
3358 DPRINTK("EXIT\n");
3359}
3360
d7bb4cc7 3361/**
936fd732
TH
3362 * sata_link_debounce - debounce SATA phy status
3363 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3364 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3365 * @deadline: deadline jiffies for the operation
d7bb4cc7 3366 *
936fd732 3367* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3368 * holding the same value where DET is not 1 for @duration polled
3369 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3370 * beginning of the stable state. Because DET gets stuck at 1 on
3371 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3372 * until timeout then returns 0 if DET is stable at 1.
3373 *
d4b2bab4
TH
3374 * @timeout is further limited by @deadline. The sooner of the
3375 * two is used.
3376 *
d7bb4cc7
TH
3377 * LOCKING:
3378 * Kernel thread context (may sleep)
3379 *
3380 * RETURNS:
3381 * 0 on success, -errno on failure.
3382 */
936fd732
TH
3383int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3384 unsigned long deadline)
7a7921e8 3385{
d7bb4cc7 3386 unsigned long interval_msec = params[0];
d4b2bab4
TH
3387 unsigned long duration = msecs_to_jiffies(params[1]);
3388 unsigned long last_jiffies, t;
d7bb4cc7
TH
3389 u32 last, cur;
3390 int rc;
3391
d4b2bab4
TH
3392 t = jiffies + msecs_to_jiffies(params[2]);
3393 if (time_before(t, deadline))
3394 deadline = t;
3395
936fd732 3396 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3397 return rc;
3398 cur &= 0xf;
3399
3400 last = cur;
3401 last_jiffies = jiffies;
3402
3403 while (1) {
3404 msleep(interval_msec);
936fd732 3405 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3406 return rc;
3407 cur &= 0xf;
3408
3409 /* DET stable? */
3410 if (cur == last) {
d4b2bab4 3411 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3412 continue;
3413 if (time_after(jiffies, last_jiffies + duration))
3414 return 0;
3415 continue;
3416 }
3417
3418 /* unstable, start over */
3419 last = cur;
3420 last_jiffies = jiffies;
3421
f1545154
TH
3422 /* Check deadline. If debouncing failed, return
3423 * -EPIPE to tell upper layer to lower link speed.
3424 */
d4b2bab4 3425 if (time_after(jiffies, deadline))
f1545154 3426 return -EPIPE;
d7bb4cc7
TH
3427 }
3428}
3429
3430/**
936fd732
TH
3431 * sata_link_resume - resume SATA link
3432 * @link: ATA link to resume SATA
d7bb4cc7 3433 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3434 * @deadline: deadline jiffies for the operation
d7bb4cc7 3435 *
936fd732 3436 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3437 *
3438 * LOCKING:
3439 * Kernel thread context (may sleep)
3440 *
3441 * RETURNS:
3442 * 0 on success, -errno on failure.
3443 */
936fd732
TH
3444int sata_link_resume(struct ata_link *link, const unsigned long *params,
3445 unsigned long deadline)
d7bb4cc7
TH
3446{
3447 u32 scontrol;
81952c54
TH
3448 int rc;
3449
936fd732 3450 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3451 return rc;
7a7921e8 3452
852ee16a 3453 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3454
936fd732 3455 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3456 return rc;
7a7921e8 3457
d7bb4cc7
TH
3458 /* Some PHYs react badly if SStatus is pounded immediately
3459 * after resuming. Delay 200ms before debouncing.
3460 */
3461 msleep(200);
7a7921e8 3462
936fd732 3463 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3464}
3465
f5914a46
TH
3466/**
3467 * ata_std_prereset - prepare for reset
cc0680a5 3468 * @link: ATA link to be reset
d4b2bab4 3469 * @deadline: deadline jiffies for the operation
f5914a46 3470 *
cc0680a5 3471 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3472 * prereset makes libata abort whole reset sequence and give up
3473 * that port, so prereset should be best-effort. It does its
3474 * best to prepare for reset sequence but if things go wrong, it
3475 * should just whine, not fail.
f5914a46
TH
3476 *
3477 * LOCKING:
3478 * Kernel thread context (may sleep)
3479 *
3480 * RETURNS:
3481 * 0 on success, -errno otherwise.
3482 */
cc0680a5 3483int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3484{
cc0680a5 3485 struct ata_port *ap = link->ap;
936fd732 3486 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3487 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3488 int rc;
3489
31daabda 3490 /* handle link resume */
28324304 3491 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3492 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3493 ehc->i.action |= ATA_EH_HARDRESET;
3494
633273a3
TH
3495 /* Some PMPs don't work with only SRST, force hardreset if PMP
3496 * is supported.
3497 */
3498 if (ap->flags & ATA_FLAG_PMP)
3499 ehc->i.action |= ATA_EH_HARDRESET;
3500
f5914a46
TH
3501 /* if we're about to do hardreset, nothing more to do */
3502 if (ehc->i.action & ATA_EH_HARDRESET)
3503 return 0;
3504
936fd732 3505 /* if SATA, resume link */
a16abc0b 3506 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3507 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3508 /* whine about phy resume failure but proceed */
3509 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3510 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3511 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3512 }
3513
3514 /* Wait for !BSY if the controller can wait for the first D2H
3515 * Reg FIS and we don't know that no device is attached.
3516 */
0c88758b 3517 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3518 rc = ata_wait_ready(ap, deadline);
6dffaf61 3519 if (rc && rc != -ENODEV) {
cc0680a5 3520 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3521 "(errno=%d), forcing hardreset\n", rc);
3522 ehc->i.action |= ATA_EH_HARDRESET;
3523 }
3524 }
f5914a46
TH
3525
3526 return 0;
3527}
3528
c2bd5804
TH
3529/**
3530 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3531 * @link: ATA link to reset
c2bd5804 3532 * @classes: resulting classes of attached devices
d4b2bab4 3533 * @deadline: deadline jiffies for the operation
c2bd5804 3534 *
52783c5d 3535 * Reset host port using ATA SRST.
c2bd5804
TH
3536 *
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 *
3540 * RETURNS:
3541 * 0 on success, -errno otherwise.
3542 */
cc0680a5 3543int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3544 unsigned long deadline)
c2bd5804 3545{
cc0680a5 3546 struct ata_port *ap = link->ap;
c2bd5804 3547 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3548 unsigned int devmask = 0;
3549 int rc;
c2bd5804
TH
3550 u8 err;
3551
3552 DPRINTK("ENTER\n");
3553
936fd732 3554 if (ata_link_offline(link)) {
3a39746a
TH
3555 classes[0] = ATA_DEV_NONE;
3556 goto out;
3557 }
3558
c2bd5804
TH
3559 /* determine if device 0/1 are present */
3560 if (ata_devchk(ap, 0))
3561 devmask |= (1 << 0);
3562 if (slave_possible && ata_devchk(ap, 1))
3563 devmask |= (1 << 1);
3564
c2bd5804
TH
3565 /* select device 0 again */
3566 ap->ops->dev_select(ap, 0);
3567
3568 /* issue bus reset */
3569 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3570 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3571 /* if link is occupied, -ENODEV too is an error */
936fd732 3572 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3573 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3574 return rc;
c2bd5804
TH
3575 }
3576
3577 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3578 classes[0] = ata_dev_try_classify(&link->device[0],
3579 devmask & (1 << 0), &err);
c2bd5804 3580 if (slave_possible && err != 0x81)
3f19859e
TH
3581 classes[1] = ata_dev_try_classify(&link->device[1],
3582 devmask & (1 << 1), &err);
c2bd5804 3583
3a39746a 3584 out:
c2bd5804
TH
3585 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3586 return 0;
3587}
3588
3589/**
cc0680a5
TH
3590 * sata_link_hardreset - reset link via SATA phy reset
3591 * @link: link to reset
b6103f6d 3592 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3593 * @deadline: deadline jiffies for the operation
c2bd5804 3594 *
cc0680a5 3595 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3596 *
3597 * LOCKING:
3598 * Kernel thread context (may sleep)
3599 *
3600 * RETURNS:
3601 * 0 on success, -errno otherwise.
3602 */
cc0680a5 3603int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3604 unsigned long deadline)
c2bd5804 3605{
852ee16a 3606 u32 scontrol;
81952c54 3607 int rc;
852ee16a 3608
c2bd5804
TH
3609 DPRINTK("ENTER\n");
3610
936fd732 3611 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3612 /* SATA spec says nothing about how to reconfigure
3613 * spd. To be on the safe side, turn off phy during
3614 * reconfiguration. This works for at least ICH7 AHCI
3615 * and Sil3124.
3616 */
936fd732 3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3618 goto out;
81952c54 3619
a34b6fc0 3620 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3621
936fd732 3622 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3623 goto out;
1c3fae4d 3624
936fd732 3625 sata_set_spd(link);
1c3fae4d
TH
3626 }
3627
3628 /* issue phy wake/reset */
936fd732 3629 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3630 goto out;
81952c54 3631
852ee16a 3632 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3633
936fd732 3634 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3635 goto out;
c2bd5804 3636
1c3fae4d 3637 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3638 * 10.4.2 says at least 1 ms.
3639 */
3640 msleep(1);
3641
936fd732
TH
3642 /* bring link back */
3643 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3644 out:
3645 DPRINTK("EXIT, rc=%d\n", rc);
3646 return rc;
3647}
3648
3649/**
3650 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3651 * @link: link to reset
b6103f6d 3652 * @class: resulting class of attached device
d4b2bab4 3653 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3654 *
3655 * SATA phy-reset host port using DET bits of SControl register,
3656 * wait for !BSY and classify the attached device.
3657 *
3658 * LOCKING:
3659 * Kernel thread context (may sleep)
3660 *
3661 * RETURNS:
3662 * 0 on success, -errno otherwise.
3663 */
cc0680a5 3664int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3665 unsigned long deadline)
b6103f6d 3666{
cc0680a5 3667 struct ata_port *ap = link->ap;
936fd732 3668 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3669 int rc;
3670
3671 DPRINTK("ENTER\n");
3672
3673 /* do hardreset */
cc0680a5 3674 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3675 if (rc) {
cc0680a5 3676 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3677 "COMRESET failed (errno=%d)\n", rc);
3678 return rc;
3679 }
c2bd5804 3680
c2bd5804 3681 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3682 if (ata_link_offline(link)) {
c2bd5804
TH
3683 *class = ATA_DEV_NONE;
3684 DPRINTK("EXIT, link offline\n");
3685 return 0;
3686 }
3687
34fee227
TH
3688 /* wait a while before checking status, see SRST for more info */
3689 msleep(150);
3690
633273a3
TH
3691 /* If PMP is supported, we have to do follow-up SRST. Note
3692 * that some PMPs don't send D2H Reg FIS after hardreset at
3693 * all if the first port is empty. Wait for it just for a
3694 * second and request follow-up SRST.
3695 */
3696 if (ap->flags & ATA_FLAG_PMP) {
3697 ata_wait_ready(ap, jiffies + HZ);
3698 return -EAGAIN;
3699 }
3700
d4b2bab4 3701 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3702 /* link occupied, -ENODEV too is an error */
3703 if (rc) {
cc0680a5 3704 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3705 "COMRESET failed (errno=%d)\n", rc);
3706 return rc;
c2bd5804
TH
3707 }
3708
3a39746a
TH
3709 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3710
3f19859e 3711 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3712
3713 DPRINTK("EXIT, class=%u\n", *class);
3714 return 0;
3715}
3716
3717/**
3718 * ata_std_postreset - standard postreset callback
cc0680a5 3719 * @link: the target ata_link
c2bd5804
TH
3720 * @classes: classes of attached devices
3721 *
3722 * This function is invoked after a successful reset. Note that
3723 * the device might have been reset more than once using
3724 * different reset methods before postreset is invoked.
c2bd5804 3725 *
c2bd5804
TH
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 */
cc0680a5 3729void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3730{
cc0680a5 3731 struct ata_port *ap = link->ap;
dc2b3515
TH
3732 u32 serror;
3733
c2bd5804
TH
3734 DPRINTK("ENTER\n");
3735
c2bd5804 3736 /* print link status */
936fd732 3737 sata_print_link_status(link);
c2bd5804 3738
dc2b3515 3739 /* clear SError */
936fd732
TH
3740 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3741 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3742
c2bd5804
TH
3743 /* is double-select really necessary? */
3744 if (classes[0] != ATA_DEV_NONE)
3745 ap->ops->dev_select(ap, 1);
3746 if (classes[1] != ATA_DEV_NONE)
3747 ap->ops->dev_select(ap, 0);
3748
3a39746a
TH
3749 /* bail out if no device is present */
3750 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3751 DPRINTK("EXIT, no device\n");
3752 return;
3753 }
3754
3755 /* set up device control */
0d5ff566
TH
3756 if (ap->ioaddr.ctl_addr)
3757 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3758
3759 DPRINTK("EXIT\n");
3760}
3761
623a3128
TH
3762/**
3763 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3764 * @dev: device to compare against
3765 * @new_class: class of the new device
3766 * @new_id: IDENTIFY page of the new device
3767 *
3768 * Compare @new_class and @new_id against @dev and determine
3769 * whether @dev is the device indicated by @new_class and
3770 * @new_id.
3771 *
3772 * LOCKING:
3773 * None.
3774 *
3775 * RETURNS:
3776 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3777 */
3373efd8
TH
3778static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3779 const u16 *new_id)
623a3128
TH
3780{
3781 const u16 *old_id = dev->id;
a0cf733b
TH
3782 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3783 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3784
3785 if (dev->class != new_class) {
f15a1daf
TH
3786 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3787 dev->class, new_class);
623a3128
TH
3788 return 0;
3789 }
3790
a0cf733b
TH
3791 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3792 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3793 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3794 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3795
3796 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3797 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3798 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3799 return 0;
3800 }
3801
3802 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3803 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3804 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3805 return 0;
3806 }
3807
623a3128
TH
3808 return 1;
3809}
3810
3811/**
fe30911b 3812 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3813 * @dev: target ATA device
bff04647 3814 * @readid_flags: read ID flags
623a3128
TH
3815 *
3816 * Re-read IDENTIFY page and make sure @dev is still attached to
3817 * the port.
3818 *
3819 * LOCKING:
3820 * Kernel thread context (may sleep)
3821 *
3822 * RETURNS:
3823 * 0 on success, negative errno otherwise
3824 */
fe30911b 3825int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3826{
5eb45c02 3827 unsigned int class = dev->class;
9af5c9c9 3828 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3829 int rc;
3830
fe635c7e 3831 /* read ID data */
bff04647 3832 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3833 if (rc)
fe30911b 3834 return rc;
623a3128
TH
3835
3836 /* is the device still there? */
fe30911b
TH
3837 if (!ata_dev_same_device(dev, class, id))
3838 return -ENODEV;
623a3128 3839
fe635c7e 3840 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3841 return 0;
3842}
3843
3844/**
3845 * ata_dev_revalidate - Revalidate ATA device
3846 * @dev: device to revalidate
422c9daa 3847 * @new_class: new class code
fe30911b
TH
3848 * @readid_flags: read ID flags
3849 *
3850 * Re-read IDENTIFY page, make sure @dev is still attached to the
3851 * port and reconfigure it according to the new IDENTIFY page.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, negative errno otherwise
3858 */
422c9daa
TH
3859int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3860 unsigned int readid_flags)
fe30911b 3861{
6ddcd3b0 3862 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3863 int rc;
3864
3865 if (!ata_dev_enabled(dev))
3866 return -ENODEV;
3867
422c9daa
TH
3868 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3869 if (ata_class_enabled(new_class) &&
3870 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3871 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3872 dev->class, new_class);
3873 rc = -ENODEV;
3874 goto fail;
3875 }
3876
fe30911b
TH
3877 /* re-read ID */
3878 rc = ata_dev_reread_id(dev, readid_flags);
3879 if (rc)
3880 goto fail;
623a3128
TH
3881
3882 /* configure device according to the new ID */
efdaedc4 3883 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3884 if (rc)
3885 goto fail;
3886
3887 /* verify n_sectors hasn't changed */
b54eebd6
TH
3888 if (dev->class == ATA_DEV_ATA && n_sectors &&
3889 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3890 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3891 "%llu != %llu\n",
3892 (unsigned long long)n_sectors,
3893 (unsigned long long)dev->n_sectors);
8270bec4
TH
3894
3895 /* restore original n_sectors */
3896 dev->n_sectors = n_sectors;
3897
6ddcd3b0
TH
3898 rc = -ENODEV;
3899 goto fail;
3900 }
3901
3902 return 0;
623a3128
TH
3903
3904 fail:
f15a1daf 3905 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3906 return rc;
3907}
3908
6919a0a6
AC
3909struct ata_blacklist_entry {
3910 const char *model_num;
3911 const char *model_rev;
3912 unsigned long horkage;
3913};
3914
3915static const struct ata_blacklist_entry ata_device_blacklist [] = {
3916 /* Devices with DMA related problems under Linux */
3917 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3918 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3919 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3920 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3921 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3922 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3923 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3924 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3925 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3926 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3927 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3928 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3929 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3930 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3931 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3932 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3933 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3934 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3935 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3936 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3937 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3938 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3939 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3940 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3941 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3942 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3943 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3944 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3945 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3946 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3947 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3948 { "IOMEGA ZIP 250 ATAPI Floppy",
3949 NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3950 /* Odd clown on sil3726/4726 PMPs */
3951 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3952 ATA_HORKAGE_SKIP_PM },
6919a0a6 3953
18d6e9d5 3954 /* Weird ATAPI devices */
40a1d531 3955 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3956
6919a0a6
AC
3957 /* Devices we expect to fail diagnostics */
3958
3959 /* Devices where NCQ should be avoided */
3960 /* NCQ is slow */
3961 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3962 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3963 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3964 /* NCQ is broken */
539cc7c7 3965 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3966 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
3967 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3968 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 3969 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 3970
36e337d0
RH
3971 /* Blacklist entries taken from Silicon Image 3124/3132
3972 Windows driver .inf file - also several Linux problem reports */
3973 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3974 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3975 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3976 /* Drives which do spurious command completion */
3977 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3978 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 3979 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 3980 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3981 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 3982 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 3983 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 3984 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 3985 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 3986 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
7f567620
TH
3987 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3988 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 3989 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3990
16c55b03
TH
3991 /* devices which puke on READ_NATIVE_MAX */
3992 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3993 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3994 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3995 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 3996
93328e11
AC
3997 /* Devices which report 1 sector over size HPA */
3998 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3999 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4000
6919a0a6
AC
4001 /* End Marker */
4002 { }
1da177e4 4003};
2e9edbf8 4004
539cc7c7
JG
4005int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4006{
4007 const char *p;
4008 int len;
4009
4010 /*
4011 * check for trailing wildcard: *\0
4012 */
4013 p = strchr(patt, wildchar);
4014 if (p && ((*(p + 1)) == 0))
4015 len = p - patt;
4016 else
4017 len = strlen(name);
4018
4019 return strncmp(patt, name, len);
4020}
4021
75683fe7 4022static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4023{
8bfa79fc
TH
4024 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4025 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4026 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4027
8bfa79fc
TH
4028 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4029 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4030
6919a0a6 4031 while (ad->model_num) {
539cc7c7 4032 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4033 if (ad->model_rev == NULL)
4034 return ad->horkage;
539cc7c7 4035 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4036 return ad->horkage;
f4b15fef 4037 }
6919a0a6 4038 ad++;
f4b15fef 4039 }
1da177e4
LT
4040 return 0;
4041}
4042
6919a0a6
AC
4043static int ata_dma_blacklisted(const struct ata_device *dev)
4044{
4045 /* We don't support polling DMA.
4046 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4047 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4048 */
9af5c9c9 4049 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4050 (dev->flags & ATA_DFLAG_CDB_INTR))
4051 return 1;
75683fe7 4052 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4053}
4054
a6d5a51c
TH
4055/**
4056 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4057 * @dev: Device to compute xfermask for
4058 *
acf356b1
TH
4059 * Compute supported xfermask of @dev and store it in
4060 * dev->*_mask. This function is responsible for applying all
4061 * known limits including host controller limits, device
4062 * blacklist, etc...
a6d5a51c
TH
4063 *
4064 * LOCKING:
4065 * None.
a6d5a51c 4066 */
3373efd8 4067static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4068{
9af5c9c9
TH
4069 struct ata_link *link = dev->link;
4070 struct ata_port *ap = link->ap;
cca3974e 4071 struct ata_host *host = ap->host;
a6d5a51c 4072 unsigned long xfer_mask;
1da177e4 4073
37deecb5 4074 /* controller modes available */
565083e1
TH
4075 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4076 ap->mwdma_mask, ap->udma_mask);
4077
8343f889 4078 /* drive modes available */
37deecb5
TH
4079 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4080 dev->mwdma_mask, dev->udma_mask);
4081 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4082
b352e57d
AC
4083 /*
4084 * CFA Advanced TrueIDE timings are not allowed on a shared
4085 * cable
4086 */
4087 if (ata_dev_pair(dev)) {
4088 /* No PIO5 or PIO6 */
4089 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4090 /* No MWDMA3 or MWDMA 4 */
4091 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4092 }
4093
37deecb5
TH
4094 if (ata_dma_blacklisted(dev)) {
4095 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4096 ata_dev_printk(dev, KERN_WARNING,
4097 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4098 }
a6d5a51c 4099
14d66ab7
PV
4100 if ((host->flags & ATA_HOST_SIMPLEX) &&
4101 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4102 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4103 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4104 "other device, disabling DMA\n");
5444a6f4 4105 }
565083e1 4106
e424675f
JG
4107 if (ap->flags & ATA_FLAG_NO_IORDY)
4108 xfer_mask &= ata_pio_mask_no_iordy(dev);
4109
5444a6f4 4110 if (ap->ops->mode_filter)
a76b62ca 4111 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4112
8343f889
RH
4113 /* Apply cable rule here. Don't apply it early because when
4114 * we handle hot plug the cable type can itself change.
4115 * Check this last so that we know if the transfer rate was
4116 * solely limited by the cable.
4117 * Unknown or 80 wire cables reported host side are checked
4118 * drive side as well. Cases where we know a 40wire cable
4119 * is used safely for 80 are not checked here.
4120 */
4121 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4122 /* UDMA/44 or higher would be available */
4123 if((ap->cbl == ATA_CBL_PATA40) ||
4124 (ata_drive_40wire(dev->id) &&
4125 (ap->cbl == ATA_CBL_PATA_UNK ||
4126 ap->cbl == ATA_CBL_PATA80))) {
4127 ata_dev_printk(dev, KERN_WARNING,
4128 "limited to UDMA/33 due to 40-wire cable\n");
4129 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4130 }
4131
565083e1
TH
4132 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4133 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4134}
4135
1da177e4
LT
4136/**
4137 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4138 * @dev: Device to which command will be sent
4139 *
780a87f7
JG
4140 * Issue SET FEATURES - XFER MODE command to device @dev
4141 * on port @ap.
4142 *
1da177e4 4143 * LOCKING:
0cba632b 4144 * PCI/etc. bus probe sem.
83206a29
TH
4145 *
4146 * RETURNS:
4147 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4148 */
4149
3373efd8 4150static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4151{
a0123703 4152 struct ata_taskfile tf;
83206a29 4153 unsigned int err_mask;
1da177e4
LT
4154
4155 /* set up set-features taskfile */
4156 DPRINTK("set features - xfer mode\n");
4157
464cf177
TH
4158 /* Some controllers and ATAPI devices show flaky interrupt
4159 * behavior after setting xfer mode. Use polling instead.
4160 */
3373efd8 4161 ata_tf_init(dev, &tf);
a0123703
TH
4162 tf.command = ATA_CMD_SET_FEATURES;
4163 tf.feature = SETFEATURES_XFER;
464cf177 4164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4165 tf.protocol = ATA_PROT_NODATA;
4166 tf.nsect = dev->xfer_mode;
1da177e4 4167
2b789108 4168 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4169
4170 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4171 return err_mask;
4172}
4173
4174/**
4175 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4176 * @dev: Device to which command will be sent
4177 * @enable: Whether to enable or disable the feature
4178 *
4179 * Issue SET FEATURES - SATA FEATURES command to device @dev
4180 * on port @ap with sector count set to indicate Asynchronous
4181 * Notification feature
4182 *
4183 * LOCKING:
4184 * PCI/etc. bus probe sem.
4185 *
4186 * RETURNS:
4187 * 0 on success, AC_ERR_* mask otherwise.
4188 */
4189static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4190{
4191 struct ata_taskfile tf;
4192 unsigned int err_mask;
4193
4194 /* set up set-features taskfile */
4195 DPRINTK("set features - SATA features\n");
4196
4197 ata_tf_init(dev, &tf);
4198 tf.command = ATA_CMD_SET_FEATURES;
4199 tf.feature = enable;
4200 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4201 tf.protocol = ATA_PROT_NODATA;
4202 tf.nsect = SATA_AN;
4203
2b789108 4204 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4205
83206a29
TH
4206 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4207 return err_mask;
1da177e4
LT
4208}
4209
8bf62ece
AL
4210/**
4211 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4212 * @dev: Device to which command will be sent
e2a7f77a
RD
4213 * @heads: Number of heads (taskfile parameter)
4214 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4215 *
4216 * LOCKING:
6aff8f1f
TH
4217 * Kernel thread context (may sleep)
4218 *
4219 * RETURNS:
4220 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4221 */
3373efd8
TH
4222static unsigned int ata_dev_init_params(struct ata_device *dev,
4223 u16 heads, u16 sectors)
8bf62ece 4224{
a0123703 4225 struct ata_taskfile tf;
6aff8f1f 4226 unsigned int err_mask;
8bf62ece
AL
4227
4228 /* Number of sectors per track 1-255. Number of heads 1-16 */
4229 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4230 return AC_ERR_INVALID;
8bf62ece
AL
4231
4232 /* set up init dev params taskfile */
4233 DPRINTK("init dev params \n");
4234
3373efd8 4235 ata_tf_init(dev, &tf);
a0123703
TH
4236 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4237 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4238 tf.protocol = ATA_PROT_NODATA;
4239 tf.nsect = sectors;
4240 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4241
2b789108 4242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4243 /* A clean abort indicates an original or just out of spec drive
4244 and we should continue as we issue the setup based on the
4245 drive reported working geometry */
4246 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4247 err_mask = 0;
8bf62ece 4248
6aff8f1f
TH
4249 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4250 return err_mask;
8bf62ece
AL
4251}
4252
1da177e4 4253/**
0cba632b
JG
4254 * ata_sg_clean - Unmap DMA memory associated with command
4255 * @qc: Command containing DMA memory to be released
4256 *
4257 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4258 *
4259 * LOCKING:
cca3974e 4260 * spin_lock_irqsave(host lock)
1da177e4 4261 */
70e6ad0c 4262void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4263{
4264 struct ata_port *ap = qc->ap;
cedc9a47 4265 struct scatterlist *sg = qc->__sg;
1da177e4 4266 int dir = qc->dma_dir;
cedc9a47 4267 void *pad_buf = NULL;
1da177e4 4268
a4631474
TH
4269 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4270 WARN_ON(sg == NULL);
1da177e4
LT
4271
4272 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4273 WARN_ON(qc->n_elem > 1);
1da177e4 4274
2c13b7ce 4275 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4276
cedc9a47
JG
4277 /* if we padded the buffer out to 32-bit bound, and data
4278 * xfer direction is from-device, we must copy from the
4279 * pad buffer back into the supplied buffer
4280 */
4281 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4282 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4283
4284 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4285 if (qc->n_elem)
2f1f610b 4286 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4287 /* restore last sg */
4288 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4289 if (pad_buf) {
4290 struct scatterlist *psg = &qc->pad_sgent;
4291 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4292 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4293 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4294 }
4295 } else {
2e242fa9 4296 if (qc->n_elem)
2f1f610b 4297 dma_unmap_single(ap->dev,
e1410f2d
JG
4298 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4299 dir);
cedc9a47
JG
4300 /* restore sg */
4301 sg->length += qc->pad_len;
4302 if (pad_buf)
4303 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4304 pad_buf, qc->pad_len);
4305 }
1da177e4
LT
4306
4307 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4308 qc->__sg = NULL;
1da177e4
LT
4309}
4310
4311/**
4312 * ata_fill_sg - Fill PCI IDE PRD table
4313 * @qc: Metadata associated with taskfile to be transferred
4314 *
780a87f7
JG
4315 * Fill PCI IDE PRD (scatter-gather) table with segments
4316 * associated with the current disk command.
4317 *
1da177e4 4318 * LOCKING:
cca3974e 4319 * spin_lock_irqsave(host lock)
1da177e4
LT
4320 *
4321 */
4322static void ata_fill_sg(struct ata_queued_cmd *qc)
4323{
1da177e4 4324 struct ata_port *ap = qc->ap;
cedc9a47
JG
4325 struct scatterlist *sg;
4326 unsigned int idx;
1da177e4 4327
a4631474 4328 WARN_ON(qc->__sg == NULL);
f131883e 4329 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4330
4331 idx = 0;
cedc9a47 4332 ata_for_each_sg(sg, qc) {
1da177e4
LT
4333 u32 addr, offset;
4334 u32 sg_len, len;
4335
4336 /* determine if physical DMA addr spans 64K boundary.
4337 * Note h/w doesn't support 64-bit, so we unconditionally
4338 * truncate dma_addr_t to u32.
4339 */
4340 addr = (u32) sg_dma_address(sg);
4341 sg_len = sg_dma_len(sg);
4342
4343 while (sg_len) {
4344 offset = addr & 0xffff;
4345 len = sg_len;
4346 if ((offset + sg_len) > 0x10000)
4347 len = 0x10000 - offset;
4348
4349 ap->prd[idx].addr = cpu_to_le32(addr);
4350 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4351 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4352
4353 idx++;
4354 sg_len -= len;
4355 addr += len;
4356 }
4357 }
4358
4359 if (idx)
4360 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4361}
b9a4197e 4362
d26fc955
AC
4363/**
4364 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4365 * @qc: Metadata associated with taskfile to be transferred
4366 *
4367 * Fill PCI IDE PRD (scatter-gather) table with segments
4368 * associated with the current disk command. Perform the fill
4369 * so that we avoid writing any length 64K records for
4370 * controllers that don't follow the spec.
4371 *
4372 * LOCKING:
4373 * spin_lock_irqsave(host lock)
4374 *
4375 */
4376static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4377{
4378 struct ata_port *ap = qc->ap;
4379 struct scatterlist *sg;
4380 unsigned int idx;
4381
4382 WARN_ON(qc->__sg == NULL);
4383 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4384
4385 idx = 0;
4386 ata_for_each_sg(sg, qc) {
4387 u32 addr, offset;
4388 u32 sg_len, len, blen;
4389
4390 /* determine if physical DMA addr spans 64K boundary.
4391 * Note h/w doesn't support 64-bit, so we unconditionally
4392 * truncate dma_addr_t to u32.
4393 */
4394 addr = (u32) sg_dma_address(sg);
4395 sg_len = sg_dma_len(sg);
4396
4397 while (sg_len) {
4398 offset = addr & 0xffff;
4399 len = sg_len;
4400 if ((offset + sg_len) > 0x10000)
4401 len = 0x10000 - offset;
4402
4403 blen = len & 0xffff;
4404 ap->prd[idx].addr = cpu_to_le32(addr);
4405 if (blen == 0) {
4406 /* Some PATA chipsets like the CS5530 can't
4407 cope with 0x0000 meaning 64K as the spec says */
4408 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4409 blen = 0x8000;
4410 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4411 }
4412 ap->prd[idx].flags_len = cpu_to_le32(blen);
4413 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4414
4415 idx++;
4416 sg_len -= len;
4417 addr += len;
4418 }
4419 }
4420
4421 if (idx)
4422 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4423}
4424
1da177e4
LT
4425/**
4426 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4427 * @qc: Metadata associated with taskfile to check
4428 *
780a87f7
JG
4429 * Allow low-level driver to filter ATA PACKET commands, returning
4430 * a status indicating whether or not it is OK to use DMA for the
4431 * supplied PACKET command.
4432 *
1da177e4 4433 * LOCKING:
cca3974e 4434 * spin_lock_irqsave(host lock)
0cba632b 4435 *
1da177e4
LT
4436 * RETURNS: 0 when ATAPI DMA can be used
4437 * nonzero otherwise
4438 */
4439int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4440{
4441 struct ata_port *ap = qc->ap;
b9a4197e
TH
4442
4443 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4444 * few ATAPI devices choke on such DMA requests.
4445 */
4446 if (unlikely(qc->nbytes & 15))
4447 return 1;
6f23a31d 4448
1da177e4 4449 if (ap->ops->check_atapi_dma)
b9a4197e 4450 return ap->ops->check_atapi_dma(qc);
1da177e4 4451
b9a4197e 4452 return 0;
1da177e4 4453}
b9a4197e 4454
31cc23b3
TH
4455/**
4456 * ata_std_qc_defer - Check whether a qc needs to be deferred
4457 * @qc: ATA command in question
4458 *
4459 * Non-NCQ commands cannot run with any other command, NCQ or
4460 * not. As upper layer only knows the queue depth, we are
4461 * responsible for maintaining exclusion. This function checks
4462 * whether a new command @qc can be issued.
4463 *
4464 * LOCKING:
4465 * spin_lock_irqsave(host lock)
4466 *
4467 * RETURNS:
4468 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4469 */
4470int ata_std_qc_defer(struct ata_queued_cmd *qc)
4471{
4472 struct ata_link *link = qc->dev->link;
4473
4474 if (qc->tf.protocol == ATA_PROT_NCQ) {
4475 if (!ata_tag_valid(link->active_tag))
4476 return 0;
4477 } else {
4478 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4479 return 0;
4480 }
4481
4482 return ATA_DEFER_LINK;
4483}
4484
1da177e4
LT
4485/**
4486 * ata_qc_prep - Prepare taskfile for submission
4487 * @qc: Metadata associated with taskfile to be prepared
4488 *
780a87f7
JG
4489 * Prepare ATA taskfile for submission.
4490 *
1da177e4 4491 * LOCKING:
cca3974e 4492 * spin_lock_irqsave(host lock)
1da177e4
LT
4493 */
4494void ata_qc_prep(struct ata_queued_cmd *qc)
4495{
4496 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4497 return;
4498
4499 ata_fill_sg(qc);
4500}
4501
d26fc955
AC
4502/**
4503 * ata_dumb_qc_prep - Prepare taskfile for submission
4504 * @qc: Metadata associated with taskfile to be prepared
4505 *
4506 * Prepare ATA taskfile for submission.
4507 *
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4510 */
4511void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4512{
4513 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4514 return;
4515
4516 ata_fill_sg_dumb(qc);
4517}
4518
e46834cd
BK
4519void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4520
0cba632b
JG
4521/**
4522 * ata_sg_init_one - Associate command with memory buffer
4523 * @qc: Command to be associated
4524 * @buf: Memory buffer
4525 * @buflen: Length of memory buffer, in bytes.
4526 *
4527 * Initialize the data-related elements of queued_cmd @qc
4528 * to point to a single memory buffer, @buf of byte length @buflen.
4529 *
4530 * LOCKING:
cca3974e 4531 * spin_lock_irqsave(host lock)
0cba632b
JG
4532 */
4533
1da177e4
LT
4534void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4535{
1da177e4
LT
4536 qc->flags |= ATA_QCFLAG_SINGLE;
4537
cedc9a47 4538 qc->__sg = &qc->sgent;
1da177e4 4539 qc->n_elem = 1;
cedc9a47 4540 qc->orig_n_elem = 1;
1da177e4 4541 qc->buf_virt = buf;
233277ca 4542 qc->nbytes = buflen;
1da177e4 4543
61c0596c 4544 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4545}
4546
0cba632b
JG
4547/**
4548 * ata_sg_init - Associate command with scatter-gather table.
4549 * @qc: Command to be associated
4550 * @sg: Scatter-gather table.
4551 * @n_elem: Number of elements in s/g table.
4552 *
4553 * Initialize the data-related elements of queued_cmd @qc
4554 * to point to a scatter-gather table @sg, containing @n_elem
4555 * elements.
4556 *
4557 * LOCKING:
cca3974e 4558 * spin_lock_irqsave(host lock)
0cba632b
JG
4559 */
4560
1da177e4
LT
4561void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4562 unsigned int n_elem)
4563{
4564 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4565 qc->__sg = sg;
1da177e4 4566 qc->n_elem = n_elem;
cedc9a47 4567 qc->orig_n_elem = n_elem;
1da177e4
LT
4568}
4569
4570/**
0cba632b
JG
4571 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4572 * @qc: Command with memory buffer to be mapped.
4573 *
4574 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4575 *
4576 * LOCKING:
cca3974e 4577 * spin_lock_irqsave(host lock)
1da177e4
LT
4578 *
4579 * RETURNS:
0cba632b 4580 * Zero on success, negative on error.
1da177e4
LT
4581 */
4582
4583static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4584{
4585 struct ata_port *ap = qc->ap;
4586 int dir = qc->dma_dir;
cedc9a47 4587 struct scatterlist *sg = qc->__sg;
1da177e4 4588 dma_addr_t dma_address;
2e242fa9 4589 int trim_sg = 0;
1da177e4 4590
cedc9a47
JG
4591 /* we must lengthen transfers to end on a 32-bit boundary */
4592 qc->pad_len = sg->length & 3;
4593 if (qc->pad_len) {
4594 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4595 struct scatterlist *psg = &qc->pad_sgent;
4596
a4631474 4597 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4598
4599 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4600
4601 if (qc->tf.flags & ATA_TFLAG_WRITE)
4602 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4603 qc->pad_len);
4604
4605 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4606 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4607 /* trim sg */
4608 sg->length -= qc->pad_len;
2e242fa9
TH
4609 if (sg->length == 0)
4610 trim_sg = 1;
cedc9a47
JG
4611
4612 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4613 sg->length, qc->pad_len);
4614 }
4615
2e242fa9
TH
4616 if (trim_sg) {
4617 qc->n_elem--;
e1410f2d
JG
4618 goto skip_map;
4619 }
4620
2f1f610b 4621 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4622 sg->length, dir);
537a95d9
TH
4623 if (dma_mapping_error(dma_address)) {
4624 /* restore sg */
4625 sg->length += qc->pad_len;
1da177e4 4626 return -1;
537a95d9 4627 }
1da177e4
LT
4628
4629 sg_dma_address(sg) = dma_address;
32529e01 4630 sg_dma_len(sg) = sg->length;
1da177e4 4631
2e242fa9 4632skip_map:
1da177e4
LT
4633 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4634 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4635
4636 return 0;
4637}
4638
4639/**
0cba632b
JG
4640 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4641 * @qc: Command with scatter-gather table to be mapped.
4642 *
4643 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4644 *
4645 * LOCKING:
cca3974e 4646 * spin_lock_irqsave(host lock)
1da177e4
LT
4647 *
4648 * RETURNS:
0cba632b 4649 * Zero on success, negative on error.
1da177e4
LT
4650 *
4651 */
4652
4653static int ata_sg_setup(struct ata_queued_cmd *qc)
4654{
4655 struct ata_port *ap = qc->ap;
cedc9a47
JG
4656 struct scatterlist *sg = qc->__sg;
4657 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4658 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4659
44877b4e 4660 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4661 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4662
cedc9a47
JG
4663 /* we must lengthen transfers to end on a 32-bit boundary */
4664 qc->pad_len = lsg->length & 3;
4665 if (qc->pad_len) {
4666 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4667 struct scatterlist *psg = &qc->pad_sgent;
4668 unsigned int offset;
4669
a4631474 4670 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4671
4672 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4673
4674 /*
4675 * psg->page/offset are used to copy to-be-written
4676 * data in this function or read data in ata_sg_clean.
4677 */
4678 offset = lsg->offset + lsg->length - qc->pad_len;
4679 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4680 psg->offset = offset_in_page(offset);
4681
4682 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4683 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4684 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4685 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4686 }
4687
4688 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4689 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4690 /* trim last sg */
4691 lsg->length -= qc->pad_len;
e1410f2d
JG
4692 if (lsg->length == 0)
4693 trim_sg = 1;
cedc9a47
JG
4694
4695 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4696 qc->n_elem - 1, lsg->length, qc->pad_len);
4697 }
4698
e1410f2d
JG
4699 pre_n_elem = qc->n_elem;
4700 if (trim_sg && pre_n_elem)
4701 pre_n_elem--;
4702
4703 if (!pre_n_elem) {
4704 n_elem = 0;
4705 goto skip_map;
4706 }
4707
1da177e4 4708 dir = qc->dma_dir;
2f1f610b 4709 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4710 if (n_elem < 1) {
4711 /* restore last sg */
4712 lsg->length += qc->pad_len;
1da177e4 4713 return -1;
537a95d9 4714 }
1da177e4
LT
4715
4716 DPRINTK("%d sg elements mapped\n", n_elem);
4717
e1410f2d 4718skip_map:
1da177e4
LT
4719 qc->n_elem = n_elem;
4720
4721 return 0;
4722}
4723
0baab86b 4724/**
c893a3ae 4725 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4726 * @buf: Buffer to swap
4727 * @buf_words: Number of 16-bit words in buffer.
4728 *
4729 * Swap halves of 16-bit words if needed to convert from
4730 * little-endian byte order to native cpu byte order, or
4731 * vice-versa.
4732 *
4733 * LOCKING:
6f0ef4fa 4734 * Inherited from caller.
0baab86b 4735 */
1da177e4
LT
4736void swap_buf_le16(u16 *buf, unsigned int buf_words)
4737{
4738#ifdef __BIG_ENDIAN
4739 unsigned int i;
4740
4741 for (i = 0; i < buf_words; i++)
4742 buf[i] = le16_to_cpu(buf[i]);
4743#endif /* __BIG_ENDIAN */
4744}
4745
6ae4cfb5 4746/**
0d5ff566 4747 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4748 * @adev: device to target
6ae4cfb5
AL
4749 * @buf: data buffer
4750 * @buflen: buffer length
344babaa 4751 * @write_data: read/write
6ae4cfb5
AL
4752 *
4753 * Transfer data from/to the device data register by PIO.
4754 *
4755 * LOCKING:
4756 * Inherited from caller.
6ae4cfb5 4757 */
0d5ff566
TH
4758void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4759 unsigned int buflen, int write_data)
1da177e4 4760{
9af5c9c9 4761 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4762 unsigned int words = buflen >> 1;
1da177e4 4763
6ae4cfb5 4764 /* Transfer multiple of 2 bytes */
1da177e4 4765 if (write_data)
0d5ff566 4766 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4767 else
0d5ff566 4768 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4769
4770 /* Transfer trailing 1 byte, if any. */
4771 if (unlikely(buflen & 0x01)) {
4772 u16 align_buf[1] = { 0 };
4773 unsigned char *trailing_buf = buf + buflen - 1;
4774
4775 if (write_data) {
4776 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4777 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4778 } else {
0d5ff566 4779 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4780 memcpy(trailing_buf, align_buf, 1);
4781 }
4782 }
1da177e4
LT
4783}
4784
75e99585 4785/**
0d5ff566 4786 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4787 * @adev: device to target
4788 * @buf: data buffer
4789 * @buflen: buffer length
4790 * @write_data: read/write
4791 *
88574551 4792 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4793 * transfer with interrupts disabled.
4794 *
4795 * LOCKING:
4796 * Inherited from caller.
4797 */
0d5ff566
TH
4798void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4799 unsigned int buflen, int write_data)
75e99585
AC
4800{
4801 unsigned long flags;
4802 local_irq_save(flags);
0d5ff566 4803 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4804 local_irq_restore(flags);
4805}
4806
4807
6ae4cfb5 4808/**
5a5dbd18 4809 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4810 * @qc: Command on going
4811 *
5a5dbd18 4812 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4813 *
4814 * LOCKING:
4815 * Inherited from caller.
4816 */
4817
1da177e4
LT
4818static void ata_pio_sector(struct ata_queued_cmd *qc)
4819{
4820 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4821 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4822 struct ata_port *ap = qc->ap;
4823 struct page *page;
4824 unsigned int offset;
4825 unsigned char *buf;
4826
5a5dbd18 4827 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4828 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4829
4830 page = sg[qc->cursg].page;
726f0785 4831 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4832
4833 /* get the current page and offset */
4834 page = nth_page(page, (offset >> PAGE_SHIFT));
4835 offset %= PAGE_SIZE;
4836
1da177e4
LT
4837 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4838
91b8b313
AL
4839 if (PageHighMem(page)) {
4840 unsigned long flags;
4841
a6b2c5d4 4842 /* FIXME: use a bounce buffer */
91b8b313
AL
4843 local_irq_save(flags);
4844 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4845
91b8b313 4846 /* do the actual data transfer */
5a5dbd18 4847 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4848
91b8b313
AL
4849 kunmap_atomic(buf, KM_IRQ0);
4850 local_irq_restore(flags);
4851 } else {
4852 buf = page_address(page);
5a5dbd18 4853 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4854 }
1da177e4 4855
5a5dbd18
ML
4856 qc->curbytes += qc->sect_size;
4857 qc->cursg_ofs += qc->sect_size;
1da177e4 4858
726f0785 4859 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4860 qc->cursg++;
4861 qc->cursg_ofs = 0;
4862 }
1da177e4 4863}
1da177e4 4864
07f6f7d0 4865/**
5a5dbd18 4866 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4867 * @qc: Command on going
4868 *
5a5dbd18 4869 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4870 * ATA device for the DRQ request.
4871 *
4872 * LOCKING:
4873 * Inherited from caller.
4874 */
1da177e4 4875
07f6f7d0
AL
4876static void ata_pio_sectors(struct ata_queued_cmd *qc)
4877{
4878 if (is_multi_taskfile(&qc->tf)) {
4879 /* READ/WRITE MULTIPLE */
4880 unsigned int nsect;
4881
587005de 4882 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4883
5a5dbd18 4884 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4885 qc->dev->multi_count);
07f6f7d0
AL
4886 while (nsect--)
4887 ata_pio_sector(qc);
4888 } else
4889 ata_pio_sector(qc);
4cc980b3
AL
4890
4891 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4892}
4893
c71c1857
AL
4894/**
4895 * atapi_send_cdb - Write CDB bytes to hardware
4896 * @ap: Port to which ATAPI device is attached.
4897 * @qc: Taskfile currently active
4898 *
4899 * When device has indicated its readiness to accept
4900 * a CDB, this function is called. Send the CDB.
4901 *
4902 * LOCKING:
4903 * caller.
4904 */
4905
4906static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4907{
4908 /* send SCSI cdb */
4909 DPRINTK("send cdb\n");
db024d53 4910 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4911
a6b2c5d4 4912 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4913 ata_altstatus(ap); /* flush */
4914
4915 switch (qc->tf.protocol) {
4916 case ATA_PROT_ATAPI:
4917 ap->hsm_task_state = HSM_ST;
4918 break;
4919 case ATA_PROT_ATAPI_NODATA:
4920 ap->hsm_task_state = HSM_ST_LAST;
4921 break;
4922 case ATA_PROT_ATAPI_DMA:
4923 ap->hsm_task_state = HSM_ST_LAST;
4924 /* initiate bmdma */
4925 ap->ops->bmdma_start(qc);
4926 break;
4927 }
1da177e4
LT
4928}
4929
6ae4cfb5
AL
4930/**
4931 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4932 * @qc: Command on going
4933 * @bytes: number of bytes
4934 *
4935 * Transfer Transfer data from/to the ATAPI device.
4936 *
4937 * LOCKING:
4938 * Inherited from caller.
4939 *
4940 */
4941
1da177e4
LT
4942static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4943{
4944 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4945 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4946 struct ata_port *ap = qc->ap;
4947 struct page *page;
4948 unsigned char *buf;
4949 unsigned int offset, count;
4950
563a6e1f 4951 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4952 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4953
4954next_sg:
563a6e1f 4955 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4956 /*
563a6e1f
AL
4957 * The end of qc->sg is reached and the device expects
4958 * more data to transfer. In order not to overrun qc->sg
4959 * and fulfill length specified in the byte count register,
4960 * - for read case, discard trailing data from the device
4961 * - for write case, padding zero data to the device
4962 */
4963 u16 pad_buf[1] = { 0 };
4964 unsigned int words = bytes >> 1;
4965 unsigned int i;
4966
4967 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4968 ata_dev_printk(qc->dev, KERN_WARNING,
4969 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4970
4971 for (i = 0; i < words; i++)
a6b2c5d4 4972 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4973
14be71f4 4974 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4975 return;
4976 }
4977
cedc9a47 4978 sg = &qc->__sg[qc->cursg];
1da177e4 4979
1da177e4
LT
4980 page = sg->page;
4981 offset = sg->offset + qc->cursg_ofs;
4982
4983 /* get the current page and offset */
4984 page = nth_page(page, (offset >> PAGE_SHIFT));
4985 offset %= PAGE_SIZE;
4986
6952df03 4987 /* don't overrun current sg */
32529e01 4988 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4989
4990 /* don't cross page boundaries */
4991 count = min(count, (unsigned int)PAGE_SIZE - offset);
4992
7282aa4b
AL
4993 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4994
91b8b313
AL
4995 if (PageHighMem(page)) {
4996 unsigned long flags;
4997
a6b2c5d4 4998 /* FIXME: use bounce buffer */
91b8b313
AL
4999 local_irq_save(flags);
5000 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5001
91b8b313 5002 /* do the actual data transfer */
a6b2c5d4 5003 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5004
91b8b313
AL
5005 kunmap_atomic(buf, KM_IRQ0);
5006 local_irq_restore(flags);
5007 } else {
5008 buf = page_address(page);
a6b2c5d4 5009 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5010 }
1da177e4
LT
5011
5012 bytes -= count;
5013 qc->curbytes += count;
5014 qc->cursg_ofs += count;
5015
32529e01 5016 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
5017 qc->cursg++;
5018 qc->cursg_ofs = 0;
5019 }
5020
563a6e1f 5021 if (bytes)
1da177e4 5022 goto next_sg;
1da177e4
LT
5023}
5024
6ae4cfb5
AL
5025/**
5026 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5027 * @qc: Command on going
5028 *
5029 * Transfer Transfer data from/to the ATAPI device.
5030 *
5031 * LOCKING:
5032 * Inherited from caller.
6ae4cfb5
AL
5033 */
5034
1da177e4
LT
5035static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5036{
5037 struct ata_port *ap = qc->ap;
5038 struct ata_device *dev = qc->dev;
5039 unsigned int ireason, bc_lo, bc_hi, bytes;
5040 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5041
eec4c3f3
AL
5042 /* Abuse qc->result_tf for temp storage of intermediate TF
5043 * here to save some kernel stack usage.
5044 * For normal completion, qc->result_tf is not relevant. For
5045 * error, qc->result_tf is later overwritten by ata_qc_complete().
5046 * So, the correctness of qc->result_tf is not affected.
5047 */
5048 ap->ops->tf_read(ap, &qc->result_tf);
5049 ireason = qc->result_tf.nsect;
5050 bc_lo = qc->result_tf.lbam;
5051 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5052 bytes = (bc_hi << 8) | bc_lo;
5053
5054 /* shall be cleared to zero, indicating xfer of data */
5055 if (ireason & (1 << 0))
5056 goto err_out;
5057
5058 /* make sure transfer direction matches expected */
5059 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5060 if (do_write != i_write)
5061 goto err_out;
5062
44877b4e 5063 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5064
1da177e4 5065 __atapi_pio_bytes(qc, bytes);
4cc980b3 5066 ata_altstatus(ap); /* flush */
1da177e4
LT
5067
5068 return;
5069
5070err_out:
f15a1daf 5071 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5072 qc->err_mask |= AC_ERR_HSM;
14be71f4 5073 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5074}
5075
5076/**
c234fb00
AL
5077 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5078 * @ap: the target ata_port
5079 * @qc: qc on going
1da177e4 5080 *
c234fb00
AL
5081 * RETURNS:
5082 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5083 */
c234fb00
AL
5084
5085static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5086{
c234fb00
AL
5087 if (qc->tf.flags & ATA_TFLAG_POLLING)
5088 return 1;
1da177e4 5089
c234fb00
AL
5090 if (ap->hsm_task_state == HSM_ST_FIRST) {
5091 if (qc->tf.protocol == ATA_PROT_PIO &&
5092 (qc->tf.flags & ATA_TFLAG_WRITE))
5093 return 1;
1da177e4 5094
c234fb00
AL
5095 if (is_atapi_taskfile(&qc->tf) &&
5096 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5097 return 1;
fe79e683
AL
5098 }
5099
c234fb00
AL
5100 return 0;
5101}
1da177e4 5102
c17ea20d
TH
5103/**
5104 * ata_hsm_qc_complete - finish a qc running on standard HSM
5105 * @qc: Command to complete
5106 * @in_wq: 1 if called from workqueue, 0 otherwise
5107 *
5108 * Finish @qc which is running on standard HSM.
5109 *
5110 * LOCKING:
cca3974e 5111 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5112 * Otherwise, none on entry and grabs host lock.
5113 */
5114static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5115{
5116 struct ata_port *ap = qc->ap;
5117 unsigned long flags;
5118
5119 if (ap->ops->error_handler) {
5120 if (in_wq) {
ba6a1308 5121 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5122
cca3974e
JG
5123 /* EH might have kicked in while host lock is
5124 * released.
c17ea20d
TH
5125 */
5126 qc = ata_qc_from_tag(ap, qc->tag);
5127 if (qc) {
5128 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5129 ap->ops->irq_on(ap);
c17ea20d
TH
5130 ata_qc_complete(qc);
5131 } else
5132 ata_port_freeze(ap);
5133 }
5134
ba6a1308 5135 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5136 } else {
5137 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5138 ata_qc_complete(qc);
5139 else
5140 ata_port_freeze(ap);
5141 }
5142 } else {
5143 if (in_wq) {
ba6a1308 5144 spin_lock_irqsave(ap->lock, flags);
83625006 5145 ap->ops->irq_on(ap);
c17ea20d 5146 ata_qc_complete(qc);
ba6a1308 5147 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5148 } else
5149 ata_qc_complete(qc);
5150 }
5151}
5152
bb5cb290
AL
5153/**
5154 * ata_hsm_move - move the HSM to the next state.
5155 * @ap: the target ata_port
5156 * @qc: qc on going
5157 * @status: current device status
5158 * @in_wq: 1 if called from workqueue, 0 otherwise
5159 *
5160 * RETURNS:
5161 * 1 when poll next status needed, 0 otherwise.
5162 */
9a1004d0
TH
5163int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5164 u8 status, int in_wq)
e2cec771 5165{
bb5cb290
AL
5166 unsigned long flags = 0;
5167 int poll_next;
5168
6912ccd5
AL
5169 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5170
bb5cb290
AL
5171 /* Make sure ata_qc_issue_prot() does not throw things
5172 * like DMA polling into the workqueue. Notice that
5173 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5174 */
c234fb00 5175 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5176
e2cec771 5177fsm_start:
999bb6f4 5178 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5179 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5180
e2cec771
AL
5181 switch (ap->hsm_task_state) {
5182 case HSM_ST_FIRST:
bb5cb290
AL
5183 /* Send first data block or PACKET CDB */
5184
5185 /* If polling, we will stay in the work queue after
5186 * sending the data. Otherwise, interrupt handler
5187 * takes over after sending the data.
5188 */
5189 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5190
e2cec771 5191 /* check device status */
3655d1d3
AL
5192 if (unlikely((status & ATA_DRQ) == 0)) {
5193 /* handle BSY=0, DRQ=0 as error */
5194 if (likely(status & (ATA_ERR | ATA_DF)))
5195 /* device stops HSM for abort/error */
5196 qc->err_mask |= AC_ERR_DEV;
5197 else
5198 /* HSM violation. Let EH handle this */
5199 qc->err_mask |= AC_ERR_HSM;
5200
14be71f4 5201 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5202 goto fsm_start;
1da177e4
LT
5203 }
5204
71601958
AL
5205 /* Device should not ask for data transfer (DRQ=1)
5206 * when it finds something wrong.
eee6c32f
AL
5207 * We ignore DRQ here and stop the HSM by
5208 * changing hsm_task_state to HSM_ST_ERR and
5209 * let the EH abort the command or reset the device.
71601958
AL
5210 */
5211 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5212 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5213 "error, dev_stat 0x%X\n", status);
3655d1d3 5214 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5215 ap->hsm_task_state = HSM_ST_ERR;
5216 goto fsm_start;
71601958 5217 }
1da177e4 5218
bb5cb290
AL
5219 /* Send the CDB (atapi) or the first data block (ata pio out).
5220 * During the state transition, interrupt handler shouldn't
5221 * be invoked before the data transfer is complete and
5222 * hsm_task_state is changed. Hence, the following locking.
5223 */
5224 if (in_wq)
ba6a1308 5225 spin_lock_irqsave(ap->lock, flags);
1da177e4 5226
bb5cb290
AL
5227 if (qc->tf.protocol == ATA_PROT_PIO) {
5228 /* PIO data out protocol.
5229 * send first data block.
5230 */
0565c26d 5231
bb5cb290
AL
5232 /* ata_pio_sectors() might change the state
5233 * to HSM_ST_LAST. so, the state is changed here
5234 * before ata_pio_sectors().
5235 */
5236 ap->hsm_task_state = HSM_ST;
5237 ata_pio_sectors(qc);
bb5cb290
AL
5238 } else
5239 /* send CDB */
5240 atapi_send_cdb(ap, qc);
5241
5242 if (in_wq)
ba6a1308 5243 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5244
5245 /* if polling, ata_pio_task() handles the rest.
5246 * otherwise, interrupt handler takes over from here.
5247 */
e2cec771 5248 break;
1c848984 5249
e2cec771
AL
5250 case HSM_ST:
5251 /* complete command or read/write the data register */
5252 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5253 /* ATAPI PIO protocol */
5254 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5255 /* No more data to transfer or device error.
5256 * Device error will be tagged in HSM_ST_LAST.
5257 */
e2cec771
AL
5258 ap->hsm_task_state = HSM_ST_LAST;
5259 goto fsm_start;
5260 }
1da177e4 5261
71601958
AL
5262 /* Device should not ask for data transfer (DRQ=1)
5263 * when it finds something wrong.
eee6c32f
AL
5264 * We ignore DRQ here and stop the HSM by
5265 * changing hsm_task_state to HSM_ST_ERR and
5266 * let the EH abort the command or reset the device.
71601958
AL
5267 */
5268 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5269 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5270 "device error, dev_stat 0x%X\n",
5271 status);
3655d1d3 5272 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5273 ap->hsm_task_state = HSM_ST_ERR;
5274 goto fsm_start;
71601958 5275 }
1da177e4 5276
e2cec771 5277 atapi_pio_bytes(qc);
7fb6ec28 5278
e2cec771
AL
5279 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5280 /* bad ireason reported by device */
5281 goto fsm_start;
1da177e4 5282
e2cec771
AL
5283 } else {
5284 /* ATA PIO protocol */
5285 if (unlikely((status & ATA_DRQ) == 0)) {
5286 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5287 if (likely(status & (ATA_ERR | ATA_DF)))
5288 /* device stops HSM for abort/error */
5289 qc->err_mask |= AC_ERR_DEV;
5290 else
55a8e2c8
TH
5291 /* HSM violation. Let EH handle this.
5292 * Phantom devices also trigger this
5293 * condition. Mark hint.
5294 */
5295 qc->err_mask |= AC_ERR_HSM |
5296 AC_ERR_NODEV_HINT;
3655d1d3 5297
e2cec771
AL
5298 ap->hsm_task_state = HSM_ST_ERR;
5299 goto fsm_start;
5300 }
1da177e4 5301
eee6c32f
AL
5302 /* For PIO reads, some devices may ask for
5303 * data transfer (DRQ=1) alone with ERR=1.
5304 * We respect DRQ here and transfer one
5305 * block of junk data before changing the
5306 * hsm_task_state to HSM_ST_ERR.
5307 *
5308 * For PIO writes, ERR=1 DRQ=1 doesn't make
5309 * sense since the data block has been
5310 * transferred to the device.
71601958
AL
5311 */
5312 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5313 /* data might be corrputed */
5314 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5315
5316 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5317 ata_pio_sectors(qc);
eee6c32f
AL
5318 status = ata_wait_idle(ap);
5319 }
5320
3655d1d3
AL
5321 if (status & (ATA_BUSY | ATA_DRQ))
5322 qc->err_mask |= AC_ERR_HSM;
5323
eee6c32f
AL
5324 /* ata_pio_sectors() might change the
5325 * state to HSM_ST_LAST. so, the state
5326 * is changed after ata_pio_sectors().
5327 */
5328 ap->hsm_task_state = HSM_ST_ERR;
5329 goto fsm_start;
71601958
AL
5330 }
5331
e2cec771
AL
5332 ata_pio_sectors(qc);
5333
5334 if (ap->hsm_task_state == HSM_ST_LAST &&
5335 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5336 /* all data read */
52a32205 5337 status = ata_wait_idle(ap);
e2cec771
AL
5338 goto fsm_start;
5339 }
5340 }
5341
bb5cb290 5342 poll_next = 1;
1da177e4
LT
5343 break;
5344
14be71f4 5345 case HSM_ST_LAST:
6912ccd5
AL
5346 if (unlikely(!ata_ok(status))) {
5347 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5348 ap->hsm_task_state = HSM_ST_ERR;
5349 goto fsm_start;
5350 }
5351
5352 /* no more data to transfer */
4332a771 5353 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5354 ap->print_id, qc->dev->devno, status);
e2cec771 5355
6912ccd5
AL
5356 WARN_ON(qc->err_mask);
5357
e2cec771 5358 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5359
e2cec771 5360 /* complete taskfile transaction */
c17ea20d 5361 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5362
5363 poll_next = 0;
1da177e4
LT
5364 break;
5365
14be71f4 5366 case HSM_ST_ERR:
e2cec771
AL
5367 /* make sure qc->err_mask is available to
5368 * know what's wrong and recover
5369 */
5370 WARN_ON(qc->err_mask == 0);
5371
5372 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5373
999bb6f4 5374 /* complete taskfile transaction */
c17ea20d 5375 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5376
5377 poll_next = 0;
e2cec771
AL
5378 break;
5379 default:
bb5cb290 5380 poll_next = 0;
6912ccd5 5381 BUG();
1da177e4
LT
5382 }
5383
bb5cb290 5384 return poll_next;
1da177e4
LT
5385}
5386
65f27f38 5387static void ata_pio_task(struct work_struct *work)
8061f5f0 5388{
65f27f38
DH
5389 struct ata_port *ap =
5390 container_of(work, struct ata_port, port_task.work);
5391 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5392 u8 status;
a1af3734 5393 int poll_next;
8061f5f0 5394
7fb6ec28 5395fsm_start:
a1af3734 5396 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5397
a1af3734
AL
5398 /*
5399 * This is purely heuristic. This is a fast path.
5400 * Sometimes when we enter, BSY will be cleared in
5401 * a chk-status or two. If not, the drive is probably seeking
5402 * or something. Snooze for a couple msecs, then
5403 * chk-status again. If still busy, queue delayed work.
5404 */
5405 status = ata_busy_wait(ap, ATA_BUSY, 5);
5406 if (status & ATA_BUSY) {
5407 msleep(2);
5408 status = ata_busy_wait(ap, ATA_BUSY, 10);
5409 if (status & ATA_BUSY) {
31ce6dae 5410 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5411 return;
5412 }
8061f5f0
TH
5413 }
5414
a1af3734
AL
5415 /* move the HSM */
5416 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5417
a1af3734
AL
5418 /* another command or interrupt handler
5419 * may be running at this point.
5420 */
5421 if (poll_next)
7fb6ec28 5422 goto fsm_start;
8061f5f0
TH
5423}
5424
1da177e4
LT
5425/**
5426 * ata_qc_new - Request an available ATA command, for queueing
5427 * @ap: Port associated with device @dev
5428 * @dev: Device from whom we request an available command structure
5429 *
5430 * LOCKING:
0cba632b 5431 * None.
1da177e4
LT
5432 */
5433
5434static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5435{
5436 struct ata_queued_cmd *qc = NULL;
5437 unsigned int i;
5438
e3180499 5439 /* no command while frozen */
b51e9e5d 5440 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5441 return NULL;
5442
2ab7db1f
TH
5443 /* the last tag is reserved for internal command. */
5444 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5445 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5446 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5447 break;
5448 }
5449
5450 if (qc)
5451 qc->tag = i;
5452
5453 return qc;
5454}
5455
5456/**
5457 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5458 * @dev: Device from whom we request an available command structure
5459 *
5460 * LOCKING:
0cba632b 5461 * None.
1da177e4
LT
5462 */
5463
3373efd8 5464struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5465{
9af5c9c9 5466 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5467 struct ata_queued_cmd *qc;
5468
5469 qc = ata_qc_new(ap);
5470 if (qc) {
1da177e4
LT
5471 qc->scsicmd = NULL;
5472 qc->ap = ap;
5473 qc->dev = dev;
1da177e4 5474
2c13b7ce 5475 ata_qc_reinit(qc);
1da177e4
LT
5476 }
5477
5478 return qc;
5479}
5480
1da177e4
LT
5481/**
5482 * ata_qc_free - free unused ata_queued_cmd
5483 * @qc: Command to complete
5484 *
5485 * Designed to free unused ata_queued_cmd object
5486 * in case something prevents using it.
5487 *
5488 * LOCKING:
cca3974e 5489 * spin_lock_irqsave(host lock)
1da177e4
LT
5490 */
5491void ata_qc_free(struct ata_queued_cmd *qc)
5492{
4ba946e9
TH
5493 struct ata_port *ap = qc->ap;
5494 unsigned int tag;
5495
a4631474 5496 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5497
4ba946e9
TH
5498 qc->flags = 0;
5499 tag = qc->tag;
5500 if (likely(ata_tag_valid(tag))) {
4ba946e9 5501 qc->tag = ATA_TAG_POISON;
6cec4a39 5502 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5503 }
1da177e4
LT
5504}
5505
76014427 5506void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5507{
dedaf2b0 5508 struct ata_port *ap = qc->ap;
9af5c9c9 5509 struct ata_link *link = qc->dev->link;
dedaf2b0 5510
a4631474
TH
5511 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5512 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5513
5514 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5515 ata_sg_clean(qc);
5516
7401abf2 5517 /* command should be marked inactive atomically with qc completion */
da917d69 5518 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5519 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5520 if (!link->sactive)
5521 ap->nr_active_links--;
5522 } else {
9af5c9c9 5523 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5524 ap->nr_active_links--;
5525 }
5526
5527 /* clear exclusive status */
5528 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5529 ap->excl_link == link))
5530 ap->excl_link = NULL;
7401abf2 5531
3f3791d3
AL
5532 /* atapi: mark qc as inactive to prevent the interrupt handler
5533 * from completing the command twice later, before the error handler
5534 * is called. (when rc != 0 and atapi request sense is needed)
5535 */
5536 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5537 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5538
1da177e4 5539 /* call completion callback */
77853bf2 5540 qc->complete_fn(qc);
1da177e4
LT
5541}
5542
39599a53
TH
5543static void fill_result_tf(struct ata_queued_cmd *qc)
5544{
5545 struct ata_port *ap = qc->ap;
5546
39599a53 5547 qc->result_tf.flags = qc->tf.flags;
4742d54f 5548 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5549}
5550
f686bcb8
TH
5551/**
5552 * ata_qc_complete - Complete an active ATA command
5553 * @qc: Command to complete
5554 * @err_mask: ATA Status register contents
5555 *
5556 * Indicate to the mid and upper layers that an ATA
5557 * command has completed, with either an ok or not-ok status.
5558 *
5559 * LOCKING:
cca3974e 5560 * spin_lock_irqsave(host lock)
f686bcb8
TH
5561 */
5562void ata_qc_complete(struct ata_queued_cmd *qc)
5563{
5564 struct ata_port *ap = qc->ap;
5565
5566 /* XXX: New EH and old EH use different mechanisms to
5567 * synchronize EH with regular execution path.
5568 *
5569 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5570 * Normal execution path is responsible for not accessing a
5571 * failed qc. libata core enforces the rule by returning NULL
5572 * from ata_qc_from_tag() for failed qcs.
5573 *
5574 * Old EH depends on ata_qc_complete() nullifying completion
5575 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5576 * not synchronize with interrupt handler. Only PIO task is
5577 * taken care of.
5578 */
5579 if (ap->ops->error_handler) {
b51e9e5d 5580 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5581
5582 if (unlikely(qc->err_mask))
5583 qc->flags |= ATA_QCFLAG_FAILED;
5584
5585 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5586 if (!ata_tag_internal(qc->tag)) {
5587 /* always fill result TF for failed qc */
39599a53 5588 fill_result_tf(qc);
f686bcb8
TH
5589 ata_qc_schedule_eh(qc);
5590 return;
5591 }
5592 }
5593
5594 /* read result TF if requested */
5595 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5596 fill_result_tf(qc);
f686bcb8
TH
5597
5598 __ata_qc_complete(qc);
5599 } else {
5600 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5601 return;
5602
5603 /* read result TF if failed or requested */
5604 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5605 fill_result_tf(qc);
f686bcb8
TH
5606
5607 __ata_qc_complete(qc);
5608 }
5609}
5610
dedaf2b0
TH
5611/**
5612 * ata_qc_complete_multiple - Complete multiple qcs successfully
5613 * @ap: port in question
5614 * @qc_active: new qc_active mask
5615 * @finish_qc: LLDD callback invoked before completing a qc
5616 *
5617 * Complete in-flight commands. This functions is meant to be
5618 * called from low-level driver's interrupt routine to complete
5619 * requests normally. ap->qc_active and @qc_active is compared
5620 * and commands are completed accordingly.
5621 *
5622 * LOCKING:
cca3974e 5623 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5624 *
5625 * RETURNS:
5626 * Number of completed commands on success, -errno otherwise.
5627 */
5628int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5629 void (*finish_qc)(struct ata_queued_cmd *))
5630{
5631 int nr_done = 0;
5632 u32 done_mask;
5633 int i;
5634
5635 done_mask = ap->qc_active ^ qc_active;
5636
5637 if (unlikely(done_mask & qc_active)) {
5638 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5639 "(%08x->%08x)\n", ap->qc_active, qc_active);
5640 return -EINVAL;
5641 }
5642
5643 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5644 struct ata_queued_cmd *qc;
5645
5646 if (!(done_mask & (1 << i)))
5647 continue;
5648
5649 if ((qc = ata_qc_from_tag(ap, i))) {
5650 if (finish_qc)
5651 finish_qc(qc);
5652 ata_qc_complete(qc);
5653 nr_done++;
5654 }
5655 }
5656
5657 return nr_done;
5658}
5659
1da177e4
LT
5660static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5661{
5662 struct ata_port *ap = qc->ap;
5663
5664 switch (qc->tf.protocol) {
3dc1d881 5665 case ATA_PROT_NCQ:
1da177e4
LT
5666 case ATA_PROT_DMA:
5667 case ATA_PROT_ATAPI_DMA:
5668 return 1;
5669
5670 case ATA_PROT_ATAPI:
5671 case ATA_PROT_PIO:
1da177e4
LT
5672 if (ap->flags & ATA_FLAG_PIO_DMA)
5673 return 1;
5674
5675 /* fall through */
5676
5677 default:
5678 return 0;
5679 }
5680
5681 /* never reached */
5682}
5683
5684/**
5685 * ata_qc_issue - issue taskfile to device
5686 * @qc: command to issue to device
5687 *
5688 * Prepare an ATA command to submission to device.
5689 * This includes mapping the data into a DMA-able
5690 * area, filling in the S/G table, and finally
5691 * writing the taskfile to hardware, starting the command.
5692 *
5693 * LOCKING:
cca3974e 5694 * spin_lock_irqsave(host lock)
1da177e4 5695 */
8e0e694a 5696void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5697{
5698 struct ata_port *ap = qc->ap;
9af5c9c9 5699 struct ata_link *link = qc->dev->link;
1da177e4 5700
dedaf2b0
TH
5701 /* Make sure only one non-NCQ command is outstanding. The
5702 * check is skipped for old EH because it reuses active qc to
5703 * request ATAPI sense.
5704 */
9af5c9c9 5705 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5706
5707 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5708 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5709
5710 if (!link->sactive)
5711 ap->nr_active_links++;
9af5c9c9 5712 link->sactive |= 1 << qc->tag;
dedaf2b0 5713 } else {
9af5c9c9 5714 WARN_ON(link->sactive);
da917d69
TH
5715
5716 ap->nr_active_links++;
9af5c9c9 5717 link->active_tag = qc->tag;
dedaf2b0
TH
5718 }
5719
e4a70e76 5720 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5721 ap->qc_active |= 1 << qc->tag;
e4a70e76 5722
1da177e4
LT
5723 if (ata_should_dma_map(qc)) {
5724 if (qc->flags & ATA_QCFLAG_SG) {
5725 if (ata_sg_setup(qc))
8e436af9 5726 goto sg_err;
1da177e4
LT
5727 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5728 if (ata_sg_setup_one(qc))
8e436af9 5729 goto sg_err;
1da177e4
LT
5730 }
5731 } else {
5732 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5733 }
5734
5735 ap->ops->qc_prep(qc);
5736
8e0e694a
TH
5737 qc->err_mask |= ap->ops->qc_issue(qc);
5738 if (unlikely(qc->err_mask))
5739 goto err;
5740 return;
1da177e4 5741
8e436af9
TH
5742sg_err:
5743 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5744 qc->err_mask |= AC_ERR_SYSTEM;
5745err:
5746 ata_qc_complete(qc);
1da177e4
LT
5747}
5748
5749/**
5750 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5751 * @qc: command to issue to device
5752 *
5753 * Using various libata functions and hooks, this function
5754 * starts an ATA command. ATA commands are grouped into
5755 * classes called "protocols", and issuing each type of protocol
5756 * is slightly different.
5757 *
0baab86b
EF
5758 * May be used as the qc_issue() entry in ata_port_operations.
5759 *
1da177e4 5760 * LOCKING:
cca3974e 5761 * spin_lock_irqsave(host lock)
1da177e4
LT
5762 *
5763 * RETURNS:
9a3d9eb0 5764 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5765 */
5766
9a3d9eb0 5767unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5768{
5769 struct ata_port *ap = qc->ap;
5770
e50362ec
AL
5771 /* Use polling pio if the LLD doesn't handle
5772 * interrupt driven pio and atapi CDB interrupt.
5773 */
5774 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5775 switch (qc->tf.protocol) {
5776 case ATA_PROT_PIO:
e3472cbe 5777 case ATA_PROT_NODATA:
e50362ec
AL
5778 case ATA_PROT_ATAPI:
5779 case ATA_PROT_ATAPI_NODATA:
5780 qc->tf.flags |= ATA_TFLAG_POLLING;
5781 break;
5782 case ATA_PROT_ATAPI_DMA:
5783 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5784 /* see ata_dma_blacklisted() */
e50362ec
AL
5785 BUG();
5786 break;
5787 default:
5788 break;
5789 }
5790 }
5791
312f7da2 5792 /* select the device */
1da177e4
LT
5793 ata_dev_select(ap, qc->dev->devno, 1, 0);
5794
312f7da2 5795 /* start the command */
1da177e4
LT
5796 switch (qc->tf.protocol) {
5797 case ATA_PROT_NODATA:
312f7da2
AL
5798 if (qc->tf.flags & ATA_TFLAG_POLLING)
5799 ata_qc_set_polling(qc);
5800
e5338254 5801 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5802 ap->hsm_task_state = HSM_ST_LAST;
5803
5804 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5805 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5806
1da177e4
LT
5807 break;
5808
5809 case ATA_PROT_DMA:
587005de 5810 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5811
1da177e4
LT
5812 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5813 ap->ops->bmdma_setup(qc); /* set up bmdma */
5814 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5815 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5816 break;
5817
312f7da2
AL
5818 case ATA_PROT_PIO:
5819 if (qc->tf.flags & ATA_TFLAG_POLLING)
5820 ata_qc_set_polling(qc);
1da177e4 5821
e5338254 5822 ata_tf_to_host(ap, &qc->tf);
312f7da2 5823
54f00389
AL
5824 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5825 /* PIO data out protocol */
5826 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5827 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5828
5829 /* always send first data block using
e27486db 5830 * the ata_pio_task() codepath.
54f00389 5831 */
312f7da2 5832 } else {
54f00389
AL
5833 /* PIO data in protocol */
5834 ap->hsm_task_state = HSM_ST;
5835
5836 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5837 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5838
5839 /* if polling, ata_pio_task() handles the rest.
5840 * otherwise, interrupt handler takes over from here.
5841 */
312f7da2
AL
5842 }
5843
1da177e4
LT
5844 break;
5845
1da177e4 5846 case ATA_PROT_ATAPI:
1da177e4 5847 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5848 if (qc->tf.flags & ATA_TFLAG_POLLING)
5849 ata_qc_set_polling(qc);
5850
e5338254 5851 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5852
312f7da2
AL
5853 ap->hsm_task_state = HSM_ST_FIRST;
5854
5855 /* send cdb by polling if no cdb interrupt */
5856 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5857 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5858 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5859 break;
5860
5861 case ATA_PROT_ATAPI_DMA:
587005de 5862 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5863
1da177e4
LT
5864 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5865 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5866 ap->hsm_task_state = HSM_ST_FIRST;
5867
5868 /* send cdb by polling if no cdb interrupt */
5869 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5870 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5871 break;
5872
5873 default:
5874 WARN_ON(1);
9a3d9eb0 5875 return AC_ERR_SYSTEM;
1da177e4
LT
5876 }
5877
5878 return 0;
5879}
5880
1da177e4
LT
5881/**
5882 * ata_host_intr - Handle host interrupt for given (port, task)
5883 * @ap: Port on which interrupt arrived (possibly...)
5884 * @qc: Taskfile currently active in engine
5885 *
5886 * Handle host interrupt for given queued command. Currently,
5887 * only DMA interrupts are handled. All other commands are
5888 * handled via polling with interrupts disabled (nIEN bit).
5889 *
5890 * LOCKING:
cca3974e 5891 * spin_lock_irqsave(host lock)
1da177e4
LT
5892 *
5893 * RETURNS:
5894 * One if interrupt was handled, zero if not (shared irq).
5895 */
5896
5897inline unsigned int ata_host_intr (struct ata_port *ap,
5898 struct ata_queued_cmd *qc)
5899{
9af5c9c9 5900 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5901 u8 status, host_stat = 0;
1da177e4 5902
312f7da2 5903 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5904 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5905
312f7da2
AL
5906 /* Check whether we are expecting interrupt in this state */
5907 switch (ap->hsm_task_state) {
5908 case HSM_ST_FIRST:
6912ccd5
AL
5909 /* Some pre-ATAPI-4 devices assert INTRQ
5910 * at this state when ready to receive CDB.
5911 */
1da177e4 5912
312f7da2
AL
5913 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5914 * The flag was turned on only for atapi devices.
5915 * No need to check is_atapi_taskfile(&qc->tf) again.
5916 */
5917 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5918 goto idle_irq;
1da177e4 5919 break;
312f7da2
AL
5920 case HSM_ST_LAST:
5921 if (qc->tf.protocol == ATA_PROT_DMA ||
5922 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5923 /* check status of DMA engine */
5924 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5925 VPRINTK("ata%u: host_stat 0x%X\n",
5926 ap->print_id, host_stat);
312f7da2
AL
5927
5928 /* if it's not our irq... */
5929 if (!(host_stat & ATA_DMA_INTR))
5930 goto idle_irq;
5931
5932 /* before we do anything else, clear DMA-Start bit */
5933 ap->ops->bmdma_stop(qc);
a4f16610
AL
5934
5935 if (unlikely(host_stat & ATA_DMA_ERR)) {
5936 /* error when transfering data to/from memory */
5937 qc->err_mask |= AC_ERR_HOST_BUS;
5938 ap->hsm_task_state = HSM_ST_ERR;
5939 }
312f7da2
AL
5940 }
5941 break;
5942 case HSM_ST:
5943 break;
1da177e4
LT
5944 default:
5945 goto idle_irq;
5946 }
5947
312f7da2
AL
5948 /* check altstatus */
5949 status = ata_altstatus(ap);
5950 if (status & ATA_BUSY)
5951 goto idle_irq;
1da177e4 5952
312f7da2
AL
5953 /* check main status, clearing INTRQ */
5954 status = ata_chk_status(ap);
5955 if (unlikely(status & ATA_BUSY))
5956 goto idle_irq;
1da177e4 5957
312f7da2
AL
5958 /* ack bmdma irq events */
5959 ap->ops->irq_clear(ap);
1da177e4 5960
bb5cb290 5961 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5962
5963 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5964 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5965 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5966
1da177e4
LT
5967 return 1; /* irq handled */
5968
5969idle_irq:
5970 ap->stats.idle_irq++;
5971
5972#ifdef ATA_IRQ_TRAP
5973 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5974 ata_chk_status(ap);
5975 ap->ops->irq_clear(ap);
f15a1daf 5976 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5977 return 1;
1da177e4
LT
5978 }
5979#endif
5980 return 0; /* irq not handled */
5981}
5982
5983/**
5984 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5985 * @irq: irq line (unused)
cca3974e 5986 * @dev_instance: pointer to our ata_host information structure
1da177e4 5987 *
0cba632b
JG
5988 * Default interrupt handler for PCI IDE devices. Calls
5989 * ata_host_intr() for each port that is not disabled.
5990 *
1da177e4 5991 * LOCKING:
cca3974e 5992 * Obtains host lock during operation.
1da177e4
LT
5993 *
5994 * RETURNS:
0cba632b 5995 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5996 */
5997
7d12e780 5998irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5999{
cca3974e 6000 struct ata_host *host = dev_instance;
1da177e4
LT
6001 unsigned int i;
6002 unsigned int handled = 0;
6003 unsigned long flags;
6004
6005 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6006 spin_lock_irqsave(&host->lock, flags);
1da177e4 6007
cca3974e 6008 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6009 struct ata_port *ap;
6010
cca3974e 6011 ap = host->ports[i];
c1389503 6012 if (ap &&
029f5468 6013 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6014 struct ata_queued_cmd *qc;
6015
9af5c9c9 6016 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6017 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6018 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6019 handled |= ata_host_intr(ap, qc);
6020 }
6021 }
6022
cca3974e 6023 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6024
6025 return IRQ_RETVAL(handled);
6026}
6027
34bf2170
TH
6028/**
6029 * sata_scr_valid - test whether SCRs are accessible
936fd732 6030 * @link: ATA link to test SCR accessibility for
34bf2170 6031 *
936fd732 6032 * Test whether SCRs are accessible for @link.
34bf2170
TH
6033 *
6034 * LOCKING:
6035 * None.
6036 *
6037 * RETURNS:
6038 * 1 if SCRs are accessible, 0 otherwise.
6039 */
936fd732 6040int sata_scr_valid(struct ata_link *link)
34bf2170 6041{
936fd732
TH
6042 struct ata_port *ap = link->ap;
6043
a16abc0b 6044 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6045}
6046
6047/**
6048 * sata_scr_read - read SCR register of the specified port
936fd732 6049 * @link: ATA link to read SCR for
34bf2170
TH
6050 * @reg: SCR to read
6051 * @val: Place to store read value
6052 *
936fd732 6053 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6054 * guaranteed to succeed if @link is ap->link, the cable type of
6055 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6056 *
6057 * LOCKING:
633273a3 6058 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6059 *
6060 * RETURNS:
6061 * 0 on success, negative errno on failure.
6062 */
936fd732 6063int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6064{
633273a3
TH
6065 if (ata_is_host_link(link)) {
6066 struct ata_port *ap = link->ap;
936fd732 6067
633273a3
TH
6068 if (sata_scr_valid(link))
6069 return ap->ops->scr_read(ap, reg, val);
6070 return -EOPNOTSUPP;
6071 }
6072
6073 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6074}
6075
6076/**
6077 * sata_scr_write - write SCR register of the specified port
936fd732 6078 * @link: ATA link to write SCR for
34bf2170
TH
6079 * @reg: SCR to write
6080 * @val: value to write
6081 *
936fd732 6082 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6083 * guaranteed to succeed if @link is ap->link, the cable type of
6084 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6085 *
6086 * LOCKING:
633273a3 6087 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6088 *
6089 * RETURNS:
6090 * 0 on success, negative errno on failure.
6091 */
936fd732 6092int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6093{
633273a3
TH
6094 if (ata_is_host_link(link)) {
6095 struct ata_port *ap = link->ap;
6096
6097 if (sata_scr_valid(link))
6098 return ap->ops->scr_write(ap, reg, val);
6099 return -EOPNOTSUPP;
6100 }
936fd732 6101
633273a3 6102 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6103}
6104
6105/**
6106 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6107 * @link: ATA link to write SCR for
34bf2170
TH
6108 * @reg: SCR to write
6109 * @val: value to write
6110 *
6111 * This function is identical to sata_scr_write() except that this
6112 * function performs flush after writing to the register.
6113 *
6114 * LOCKING:
633273a3 6115 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6116 *
6117 * RETURNS:
6118 * 0 on success, negative errno on failure.
6119 */
936fd732 6120int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6121{
633273a3
TH
6122 if (ata_is_host_link(link)) {
6123 struct ata_port *ap = link->ap;
6124 int rc;
da3dbb17 6125
633273a3
TH
6126 if (sata_scr_valid(link)) {
6127 rc = ap->ops->scr_write(ap, reg, val);
6128 if (rc == 0)
6129 rc = ap->ops->scr_read(ap, reg, &val);
6130 return rc;
6131 }
6132 return -EOPNOTSUPP;
34bf2170 6133 }
633273a3
TH
6134
6135 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6136}
6137
6138/**
936fd732
TH
6139 * ata_link_online - test whether the given link is online
6140 * @link: ATA link to test
34bf2170 6141 *
936fd732
TH
6142 * Test whether @link is online. Note that this function returns
6143 * 0 if online status of @link cannot be obtained, so
6144 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6145 *
6146 * LOCKING:
6147 * None.
6148 *
6149 * RETURNS:
6150 * 1 if the port online status is available and online.
6151 */
936fd732 6152int ata_link_online(struct ata_link *link)
34bf2170
TH
6153{
6154 u32 sstatus;
6155
936fd732
TH
6156 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6157 (sstatus & 0xf) == 0x3)
34bf2170
TH
6158 return 1;
6159 return 0;
6160}
6161
6162/**
936fd732
TH
6163 * ata_link_offline - test whether the given link is offline
6164 * @link: ATA link to test
34bf2170 6165 *
936fd732
TH
6166 * Test whether @link is offline. Note that this function
6167 * returns 0 if offline status of @link cannot be obtained, so
6168 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6169 *
6170 * LOCKING:
6171 * None.
6172 *
6173 * RETURNS:
6174 * 1 if the port offline status is available and offline.
6175 */
936fd732 6176int ata_link_offline(struct ata_link *link)
34bf2170
TH
6177{
6178 u32 sstatus;
6179
936fd732
TH
6180 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6181 (sstatus & 0xf) != 0x3)
34bf2170
TH
6182 return 1;
6183 return 0;
6184}
0baab86b 6185
77b08fb5 6186int ata_flush_cache(struct ata_device *dev)
9b847548 6187{
977e6b9f 6188 unsigned int err_mask;
9b847548
JA
6189 u8 cmd;
6190
6191 if (!ata_try_flush_cache(dev))
6192 return 0;
6193
6fc49adb 6194 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6195 cmd = ATA_CMD_FLUSH_EXT;
6196 else
6197 cmd = ATA_CMD_FLUSH;
6198
4f34337b
AC
6199 /* This is wrong. On a failed flush we get back the LBA of the lost
6200 sector and we should (assuming it wasn't aborted as unknown) issue
6201 a further flush command to continue the writeback until it
6202 does not error */
977e6b9f
TH
6203 err_mask = ata_do_simple_cmd(dev, cmd);
6204 if (err_mask) {
6205 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6206 return -EIO;
6207 }
6208
6209 return 0;
9b847548
JA
6210}
6211
6ffa01d8 6212#ifdef CONFIG_PM
cca3974e
JG
6213static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6214 unsigned int action, unsigned int ehi_flags,
6215 int wait)
500530f6
TH
6216{
6217 unsigned long flags;
6218 int i, rc;
6219
cca3974e
JG
6220 for (i = 0; i < host->n_ports; i++) {
6221 struct ata_port *ap = host->ports[i];
e3667ebf 6222 struct ata_link *link;
500530f6
TH
6223
6224 /* Previous resume operation might still be in
6225 * progress. Wait for PM_PENDING to clear.
6226 */
6227 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6228 ata_port_wait_eh(ap);
6229 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6230 }
6231
6232 /* request PM ops to EH */
6233 spin_lock_irqsave(ap->lock, flags);
6234
6235 ap->pm_mesg = mesg;
6236 if (wait) {
6237 rc = 0;
6238 ap->pm_result = &rc;
6239 }
6240
6241 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6242 __ata_port_for_each_link(link, ap) {
6243 link->eh_info.action |= action;
6244 link->eh_info.flags |= ehi_flags;
6245 }
500530f6
TH
6246
6247 ata_port_schedule_eh(ap);
6248
6249 spin_unlock_irqrestore(ap->lock, flags);
6250
6251 /* wait and check result */
6252 if (wait) {
6253 ata_port_wait_eh(ap);
6254 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6255 if (rc)
6256 return rc;
6257 }
6258 }
6259
6260 return 0;
6261}
6262
6263/**
cca3974e
JG
6264 * ata_host_suspend - suspend host
6265 * @host: host to suspend
500530f6
TH
6266 * @mesg: PM message
6267 *
cca3974e 6268 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6269 * function requests EH to perform PM operations and waits for EH
6270 * to finish.
6271 *
6272 * LOCKING:
6273 * Kernel thread context (may sleep).
6274 *
6275 * RETURNS:
6276 * 0 on success, -errno on failure.
6277 */
cca3974e 6278int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6279{
9666f400 6280 int rc;
500530f6 6281
cca3974e 6282 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6283 if (rc == 0)
6284 host->dev->power.power_state = mesg;
500530f6
TH
6285 return rc;
6286}
6287
6288/**
cca3974e
JG
6289 * ata_host_resume - resume host
6290 * @host: host to resume
500530f6 6291 *
cca3974e 6292 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6293 * function requests EH to perform PM operations and returns.
6294 * Note that all resume operations are performed parallely.
6295 *
6296 * LOCKING:
6297 * Kernel thread context (may sleep).
6298 */
cca3974e 6299void ata_host_resume(struct ata_host *host)
500530f6 6300{
cca3974e
JG
6301 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6302 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6303 host->dev->power.power_state = PMSG_ON;
500530f6 6304}
6ffa01d8 6305#endif
500530f6 6306
c893a3ae
RD
6307/**
6308 * ata_port_start - Set port up for dma.
6309 * @ap: Port to initialize
6310 *
6311 * Called just after data structures for each port are
6312 * initialized. Allocates space for PRD table.
6313 *
6314 * May be used as the port_start() entry in ata_port_operations.
6315 *
6316 * LOCKING:
6317 * Inherited from caller.
6318 */
f0d36efd 6319int ata_port_start(struct ata_port *ap)
1da177e4 6320{
2f1f610b 6321 struct device *dev = ap->dev;
6037d6bb 6322 int rc;
1da177e4 6323
f0d36efd
TH
6324 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6325 GFP_KERNEL);
1da177e4
LT
6326 if (!ap->prd)
6327 return -ENOMEM;
6328
6037d6bb 6329 rc = ata_pad_alloc(ap, dev);
f0d36efd 6330 if (rc)
6037d6bb 6331 return rc;
1da177e4 6332
f0d36efd
TH
6333 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6334 (unsigned long long)ap->prd_dma);
1da177e4
LT
6335 return 0;
6336}
6337
3ef3b43d
TH
6338/**
6339 * ata_dev_init - Initialize an ata_device structure
6340 * @dev: Device structure to initialize
6341 *
6342 * Initialize @dev in preparation for probing.
6343 *
6344 * LOCKING:
6345 * Inherited from caller.
6346 */
6347void ata_dev_init(struct ata_device *dev)
6348{
9af5c9c9
TH
6349 struct ata_link *link = dev->link;
6350 struct ata_port *ap = link->ap;
72fa4b74
TH
6351 unsigned long flags;
6352
5a04bf4b 6353 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6354 link->sata_spd_limit = link->hw_sata_spd_limit;
6355 link->sata_spd = 0;
5a04bf4b 6356
72fa4b74
TH
6357 /* High bits of dev->flags are used to record warm plug
6358 * requests which occur asynchronously. Synchronize using
cca3974e 6359 * host lock.
72fa4b74 6360 */
ba6a1308 6361 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6362 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6363 dev->horkage = 0;
ba6a1308 6364 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6365
72fa4b74
TH
6366 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6367 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6368 dev->pio_mask = UINT_MAX;
6369 dev->mwdma_mask = UINT_MAX;
6370 dev->udma_mask = UINT_MAX;
6371}
6372
4fb37a25
TH
6373/**
6374 * ata_link_init - Initialize an ata_link structure
6375 * @ap: ATA port link is attached to
6376 * @link: Link structure to initialize
8989805d 6377 * @pmp: Port multiplier port number
4fb37a25
TH
6378 *
6379 * Initialize @link.
6380 *
6381 * LOCKING:
6382 * Kernel thread context (may sleep)
6383 */
fb7fd614 6384void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6385{
6386 int i;
6387
6388 /* clear everything except for devices */
6389 memset(link, 0, offsetof(struct ata_link, device[0]));
6390
6391 link->ap = ap;
8989805d 6392 link->pmp = pmp;
4fb37a25
TH
6393 link->active_tag = ATA_TAG_POISON;
6394 link->hw_sata_spd_limit = UINT_MAX;
6395
6396 /* can't use iterator, ap isn't initialized yet */
6397 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6398 struct ata_device *dev = &link->device[i];
6399
6400 dev->link = link;
6401 dev->devno = dev - link->device;
6402 ata_dev_init(dev);
6403 }
6404}
6405
6406/**
6407 * sata_link_init_spd - Initialize link->sata_spd_limit
6408 * @link: Link to configure sata_spd_limit for
6409 *
6410 * Initialize @link->[hw_]sata_spd_limit to the currently
6411 * configured value.
6412 *
6413 * LOCKING:
6414 * Kernel thread context (may sleep).
6415 *
6416 * RETURNS:
6417 * 0 on success, -errno on failure.
6418 */
fb7fd614 6419int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6420{
6421 u32 scontrol, spd;
6422 int rc;
6423
6424 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6425 if (rc)
6426 return rc;
6427
6428 spd = (scontrol >> 4) & 0xf;
6429 if (spd)
6430 link->hw_sata_spd_limit &= (1 << spd) - 1;
6431
6432 link->sata_spd_limit = link->hw_sata_spd_limit;
6433
6434 return 0;
6435}
6436
1da177e4 6437/**
f3187195
TH
6438 * ata_port_alloc - allocate and initialize basic ATA port resources
6439 * @host: ATA host this allocated port belongs to
1da177e4 6440 *
f3187195
TH
6441 * Allocate and initialize basic ATA port resources.
6442 *
6443 * RETURNS:
6444 * Allocate ATA port on success, NULL on failure.
0cba632b 6445 *
1da177e4 6446 * LOCKING:
f3187195 6447 * Inherited from calling layer (may sleep).
1da177e4 6448 */
f3187195 6449struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6450{
f3187195 6451 struct ata_port *ap;
1da177e4 6452
f3187195
TH
6453 DPRINTK("ENTER\n");
6454
6455 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6456 if (!ap)
6457 return NULL;
6458
f4d6d004 6459 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6460 ap->lock = &host->lock;
198e0fed 6461 ap->flags = ATA_FLAG_DISABLED;
f3187195 6462 ap->print_id = -1;
1da177e4 6463 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6464 ap->host = host;
f3187195 6465 ap->dev = host->dev;
1da177e4 6466 ap->last_ctl = 0xFF;
bd5d825c
BP
6467
6468#if defined(ATA_VERBOSE_DEBUG)
6469 /* turn on all debugging levels */
6470 ap->msg_enable = 0x00FF;
6471#elif defined(ATA_DEBUG)
6472 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6473#else
0dd4b21f 6474 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6475#endif
1da177e4 6476
65f27f38
DH
6477 INIT_DELAYED_WORK(&ap->port_task, NULL);
6478 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6479 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6480 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6481 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6482 init_timer_deferrable(&ap->fastdrain_timer);
6483 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6484 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6485
838df628 6486 ap->cbl = ATA_CBL_NONE;
838df628 6487
8989805d 6488 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6489
6490#ifdef ATA_IRQ_TRAP
6491 ap->stats.unhandled_irq = 1;
6492 ap->stats.idle_irq = 1;
6493#endif
1da177e4 6494 return ap;
1da177e4
LT
6495}
6496
f0d36efd
TH
6497static void ata_host_release(struct device *gendev, void *res)
6498{
6499 struct ata_host *host = dev_get_drvdata(gendev);
6500 int i;
6501
6502 for (i = 0; i < host->n_ports; i++) {
6503 struct ata_port *ap = host->ports[i];
6504
ecef7253
TH
6505 if (!ap)
6506 continue;
6507
6508 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6509 ap->ops->port_stop(ap);
f0d36efd
TH
6510 }
6511
ecef7253 6512 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6513 host->ops->host_stop(host);
1aa56cca 6514
1aa506e4
TH
6515 for (i = 0; i < host->n_ports; i++) {
6516 struct ata_port *ap = host->ports[i];
6517
4911487a
TH
6518 if (!ap)
6519 continue;
6520
6521 if (ap->scsi_host)
1aa506e4
TH
6522 scsi_host_put(ap->scsi_host);
6523
633273a3 6524 kfree(ap->pmp_link);
4911487a 6525 kfree(ap);
1aa506e4
TH
6526 host->ports[i] = NULL;
6527 }
6528
1aa56cca 6529 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6530}
6531
f3187195
TH
6532/**
6533 * ata_host_alloc - allocate and init basic ATA host resources
6534 * @dev: generic device this host is associated with
6535 * @max_ports: maximum number of ATA ports associated with this host
6536 *
6537 * Allocate and initialize basic ATA host resources. LLD calls
6538 * this function to allocate a host, initializes it fully and
6539 * attaches it using ata_host_register().
6540 *
6541 * @max_ports ports are allocated and host->n_ports is
6542 * initialized to @max_ports. The caller is allowed to decrease
6543 * host->n_ports before calling ata_host_register(). The unused
6544 * ports will be automatically freed on registration.
6545 *
6546 * RETURNS:
6547 * Allocate ATA host on success, NULL on failure.
6548 *
6549 * LOCKING:
6550 * Inherited from calling layer (may sleep).
6551 */
6552struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6553{
6554 struct ata_host *host;
6555 size_t sz;
6556 int i;
6557
6558 DPRINTK("ENTER\n");
6559
6560 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6561 return NULL;
6562
6563 /* alloc a container for our list of ATA ports (buses) */
6564 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6565 /* alloc a container for our list of ATA ports (buses) */
6566 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6567 if (!host)
6568 goto err_out;
6569
6570 devres_add(dev, host);
6571 dev_set_drvdata(dev, host);
6572
6573 spin_lock_init(&host->lock);
6574 host->dev = dev;
6575 host->n_ports = max_ports;
6576
6577 /* allocate ports bound to this host */
6578 for (i = 0; i < max_ports; i++) {
6579 struct ata_port *ap;
6580
6581 ap = ata_port_alloc(host);
6582 if (!ap)
6583 goto err_out;
6584
6585 ap->port_no = i;
6586 host->ports[i] = ap;
6587 }
6588
6589 devres_remove_group(dev, NULL);
6590 return host;
6591
6592 err_out:
6593 devres_release_group(dev, NULL);
6594 return NULL;
6595}
6596
f5cda257
TH
6597/**
6598 * ata_host_alloc_pinfo - alloc host and init with port_info array
6599 * @dev: generic device this host is associated with
6600 * @ppi: array of ATA port_info to initialize host with
6601 * @n_ports: number of ATA ports attached to this host
6602 *
6603 * Allocate ATA host and initialize with info from @ppi. If NULL
6604 * terminated, @ppi may contain fewer entries than @n_ports. The
6605 * last entry will be used for the remaining ports.
6606 *
6607 * RETURNS:
6608 * Allocate ATA host on success, NULL on failure.
6609 *
6610 * LOCKING:
6611 * Inherited from calling layer (may sleep).
6612 */
6613struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6614 const struct ata_port_info * const * ppi,
6615 int n_ports)
6616{
6617 const struct ata_port_info *pi;
6618 struct ata_host *host;
6619 int i, j;
6620
6621 host = ata_host_alloc(dev, n_ports);
6622 if (!host)
6623 return NULL;
6624
6625 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6626 struct ata_port *ap = host->ports[i];
6627
6628 if (ppi[j])
6629 pi = ppi[j++];
6630
6631 ap->pio_mask = pi->pio_mask;
6632 ap->mwdma_mask = pi->mwdma_mask;
6633 ap->udma_mask = pi->udma_mask;
6634 ap->flags |= pi->flags;
0c88758b 6635 ap->link.flags |= pi->link_flags;
f5cda257
TH
6636 ap->ops = pi->port_ops;
6637
6638 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6639 host->ops = pi->port_ops;
6640 if (!host->private_data && pi->private_data)
6641 host->private_data = pi->private_data;
6642 }
6643
6644 return host;
6645}
6646
ecef7253
TH
6647/**
6648 * ata_host_start - start and freeze ports of an ATA host
6649 * @host: ATA host to start ports for
6650 *
6651 * Start and then freeze ports of @host. Started status is
6652 * recorded in host->flags, so this function can be called
6653 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6654 * once. If host->ops isn't initialized yet, its set to the
6655 * first non-dummy port ops.
ecef7253
TH
6656 *
6657 * LOCKING:
6658 * Inherited from calling layer (may sleep).
6659 *
6660 * RETURNS:
6661 * 0 if all ports are started successfully, -errno otherwise.
6662 */
6663int ata_host_start(struct ata_host *host)
6664{
6665 int i, rc;
6666
6667 if (host->flags & ATA_HOST_STARTED)
6668 return 0;
6669
6670 for (i = 0; i < host->n_ports; i++) {
6671 struct ata_port *ap = host->ports[i];
6672
f3187195
TH
6673 if (!host->ops && !ata_port_is_dummy(ap))
6674 host->ops = ap->ops;
6675
ecef7253
TH
6676 if (ap->ops->port_start) {
6677 rc = ap->ops->port_start(ap);
6678 if (rc) {
6679 ata_port_printk(ap, KERN_ERR, "failed to "
6680 "start port (errno=%d)\n", rc);
6681 goto err_out;
6682 }
6683 }
6684
6685 ata_eh_freeze_port(ap);
6686 }
6687
6688 host->flags |= ATA_HOST_STARTED;
6689 return 0;
6690
6691 err_out:
6692 while (--i >= 0) {
6693 struct ata_port *ap = host->ports[i];
6694
6695 if (ap->ops->port_stop)
6696 ap->ops->port_stop(ap);
6697 }
6698 return rc;
6699}
6700
b03732f0 6701/**
cca3974e
JG
6702 * ata_sas_host_init - Initialize a host struct
6703 * @host: host to initialize
6704 * @dev: device host is attached to
6705 * @flags: host flags
6706 * @ops: port_ops
b03732f0
BK
6707 *
6708 * LOCKING:
6709 * PCI/etc. bus probe sem.
6710 *
6711 */
f3187195 6712/* KILLME - the only user left is ipr */
cca3974e
JG
6713void ata_host_init(struct ata_host *host, struct device *dev,
6714 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6715{
cca3974e
JG
6716 spin_lock_init(&host->lock);
6717 host->dev = dev;
6718 host->flags = flags;
6719 host->ops = ops;
b03732f0
BK
6720}
6721
f3187195
TH
6722/**
6723 * ata_host_register - register initialized ATA host
6724 * @host: ATA host to register
6725 * @sht: template for SCSI host
6726 *
6727 * Register initialized ATA host. @host is allocated using
6728 * ata_host_alloc() and fully initialized by LLD. This function
6729 * starts ports, registers @host with ATA and SCSI layers and
6730 * probe registered devices.
6731 *
6732 * LOCKING:
6733 * Inherited from calling layer (may sleep).
6734 *
6735 * RETURNS:
6736 * 0 on success, -errno otherwise.
6737 */
6738int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6739{
6740 int i, rc;
6741
6742 /* host must have been started */
6743 if (!(host->flags & ATA_HOST_STARTED)) {
6744 dev_printk(KERN_ERR, host->dev,
6745 "BUG: trying to register unstarted host\n");
6746 WARN_ON(1);
6747 return -EINVAL;
6748 }
6749
6750 /* Blow away unused ports. This happens when LLD can't
6751 * determine the exact number of ports to allocate at
6752 * allocation time.
6753 */
6754 for (i = host->n_ports; host->ports[i]; i++)
6755 kfree(host->ports[i]);
6756
6757 /* give ports names and add SCSI hosts */
6758 for (i = 0; i < host->n_ports; i++)
6759 host->ports[i]->print_id = ata_print_id++;
6760
6761 rc = ata_scsi_add_hosts(host, sht);
6762 if (rc)
6763 return rc;
6764
fafbae87
TH
6765 /* associate with ACPI nodes */
6766 ata_acpi_associate(host);
6767
f3187195
TH
6768 /* set cable, sata_spd_limit and report */
6769 for (i = 0; i < host->n_ports; i++) {
6770 struct ata_port *ap = host->ports[i];
f3187195
TH
6771 unsigned long xfer_mask;
6772
6773 /* set SATA cable type if still unset */
6774 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6775 ap->cbl = ATA_CBL_SATA;
6776
6777 /* init sata_spd_limit to the current value */
4fb37a25 6778 sata_link_init_spd(&ap->link);
f3187195 6779
cbcdd875 6780 /* print per-port info to dmesg */
f3187195
TH
6781 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6782 ap->udma_mask);
6783
abf6e8ed 6784 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6785 ata_port_printk(ap, KERN_INFO,
6786 "%cATA max %s %s\n",
a16abc0b 6787 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6788 ata_mode_string(xfer_mask),
cbcdd875 6789 ap->link.eh_info.desc);
abf6e8ed
TH
6790 ata_ehi_clear_desc(&ap->link.eh_info);
6791 } else
f3187195
TH
6792 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6793 }
6794
6795 /* perform each probe synchronously */
6796 DPRINTK("probe begin\n");
6797 for (i = 0; i < host->n_ports; i++) {
6798 struct ata_port *ap = host->ports[i];
6799 int rc;
6800
6801 /* probe */
6802 if (ap->ops->error_handler) {
9af5c9c9 6803 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6804 unsigned long flags;
6805
6806 ata_port_probe(ap);
6807
6808 /* kick EH for boot probing */
6809 spin_lock_irqsave(ap->lock, flags);
6810
f58229f8
TH
6811 ehi->probe_mask =
6812 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6813 ehi->action |= ATA_EH_SOFTRESET;
6814 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6815
f4d6d004 6816 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6817 ap->pflags |= ATA_PFLAG_LOADING;
6818 ata_port_schedule_eh(ap);
6819
6820 spin_unlock_irqrestore(ap->lock, flags);
6821
6822 /* wait for EH to finish */
6823 ata_port_wait_eh(ap);
6824 } else {
6825 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6826 rc = ata_bus_probe(ap);
6827 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6828
6829 if (rc) {
6830 /* FIXME: do something useful here?
6831 * Current libata behavior will
6832 * tear down everything when
6833 * the module is removed
6834 * or the h/w is unplugged.
6835 */
6836 }
6837 }
6838 }
6839
6840 /* probes are done, now scan each port's disk(s) */
6841 DPRINTK("host probe begin\n");
6842 for (i = 0; i < host->n_ports; i++) {
6843 struct ata_port *ap = host->ports[i];
6844
1ae46317 6845 ata_scsi_scan_host(ap, 1);
f3187195
TH
6846 }
6847
6848 return 0;
6849}
6850
f5cda257
TH
6851/**
6852 * ata_host_activate - start host, request IRQ and register it
6853 * @host: target ATA host
6854 * @irq: IRQ to request
6855 * @irq_handler: irq_handler used when requesting IRQ
6856 * @irq_flags: irq_flags used when requesting IRQ
6857 * @sht: scsi_host_template to use when registering the host
6858 *
6859 * After allocating an ATA host and initializing it, most libata
6860 * LLDs perform three steps to activate the host - start host,
6861 * request IRQ and register it. This helper takes necessasry
6862 * arguments and performs the three steps in one go.
6863 *
6864 * LOCKING:
6865 * Inherited from calling layer (may sleep).
6866 *
6867 * RETURNS:
6868 * 0 on success, -errno otherwise.
6869 */
6870int ata_host_activate(struct ata_host *host, int irq,
6871 irq_handler_t irq_handler, unsigned long irq_flags,
6872 struct scsi_host_template *sht)
6873{
cbcdd875 6874 int i, rc;
f5cda257
TH
6875
6876 rc = ata_host_start(host);
6877 if (rc)
6878 return rc;
6879
6880 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6881 dev_driver_string(host->dev), host);
6882 if (rc)
6883 return rc;
6884
cbcdd875
TH
6885 for (i = 0; i < host->n_ports; i++)
6886 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6887
f5cda257
TH
6888 rc = ata_host_register(host, sht);
6889 /* if failed, just free the IRQ and leave ports alone */
6890 if (rc)
6891 devm_free_irq(host->dev, irq, host);
6892
6893 return rc;
6894}
6895
720ba126
TH
6896/**
6897 * ata_port_detach - Detach ATA port in prepration of device removal
6898 * @ap: ATA port to be detached
6899 *
6900 * Detach all ATA devices and the associated SCSI devices of @ap;
6901 * then, remove the associated SCSI host. @ap is guaranteed to
6902 * be quiescent on return from this function.
6903 *
6904 * LOCKING:
6905 * Kernel thread context (may sleep).
6906 */
6907void ata_port_detach(struct ata_port *ap)
6908{
6909 unsigned long flags;
41bda9c9 6910 struct ata_link *link;
f58229f8 6911 struct ata_device *dev;
720ba126
TH
6912
6913 if (!ap->ops->error_handler)
c3cf30a9 6914 goto skip_eh;
720ba126
TH
6915
6916 /* tell EH we're leaving & flush EH */
ba6a1308 6917 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6918 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6919 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6920
6921 ata_port_wait_eh(ap);
6922
6923 /* EH is now guaranteed to see UNLOADING, so no new device
6924 * will be attached. Disable all existing devices.
6925 */
ba6a1308 6926 spin_lock_irqsave(ap->lock, flags);
720ba126 6927
41bda9c9
TH
6928 ata_port_for_each_link(link, ap) {
6929 ata_link_for_each_dev(dev, link)
6930 ata_dev_disable(dev);
6931 }
720ba126 6932
ba6a1308 6933 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6934
6935 /* Final freeze & EH. All in-flight commands are aborted. EH
6936 * will be skipped and retrials will be terminated with bad
6937 * target.
6938 */
ba6a1308 6939 spin_lock_irqsave(ap->lock, flags);
720ba126 6940 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6941 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6942
6943 ata_port_wait_eh(ap);
45a66c1c 6944 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6945
c3cf30a9 6946 skip_eh:
720ba126 6947 /* remove the associated SCSI host */
cca3974e 6948 scsi_remove_host(ap->scsi_host);
720ba126
TH
6949}
6950
0529c159
TH
6951/**
6952 * ata_host_detach - Detach all ports of an ATA host
6953 * @host: Host to detach
6954 *
6955 * Detach all ports of @host.
6956 *
6957 * LOCKING:
6958 * Kernel thread context (may sleep).
6959 */
6960void ata_host_detach(struct ata_host *host)
6961{
6962 int i;
6963
6964 for (i = 0; i < host->n_ports; i++)
6965 ata_port_detach(host->ports[i]);
6966}
6967
1da177e4
LT
6968/**
6969 * ata_std_ports - initialize ioaddr with standard port offsets.
6970 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6971 *
6972 * Utility function which initializes data_addr, error_addr,
6973 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6974 * device_addr, status_addr, and command_addr to standard offsets
6975 * relative to cmd_addr.
6976 *
6977 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6978 */
0baab86b 6979
1da177e4
LT
6980void ata_std_ports(struct ata_ioports *ioaddr)
6981{
6982 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6983 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6984 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6985 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6986 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6987 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6988 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6989 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6990 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6991 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6992}
6993
0baab86b 6994
374b1873
JG
6995#ifdef CONFIG_PCI
6996
1da177e4
LT
6997/**
6998 * ata_pci_remove_one - PCI layer callback for device removal
6999 * @pdev: PCI device that was removed
7000 *
b878ca5d
TH
7001 * PCI layer indicates to libata via this hook that hot-unplug or
7002 * module unload event has occurred. Detach all ports. Resource
7003 * release is handled via devres.
1da177e4
LT
7004 *
7005 * LOCKING:
7006 * Inherited from PCI layer (may sleep).
7007 */
f0d36efd 7008void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
7009{
7010 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 7011 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7012
b878ca5d 7013 ata_host_detach(host);
1da177e4
LT
7014}
7015
7016/* move to PCI subsystem */
057ace5e 7017int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7018{
7019 unsigned long tmp = 0;
7020
7021 switch (bits->width) {
7022 case 1: {
7023 u8 tmp8 = 0;
7024 pci_read_config_byte(pdev, bits->reg, &tmp8);
7025 tmp = tmp8;
7026 break;
7027 }
7028 case 2: {
7029 u16 tmp16 = 0;
7030 pci_read_config_word(pdev, bits->reg, &tmp16);
7031 tmp = tmp16;
7032 break;
7033 }
7034 case 4: {
7035 u32 tmp32 = 0;
7036 pci_read_config_dword(pdev, bits->reg, &tmp32);
7037 tmp = tmp32;
7038 break;
7039 }
7040
7041 default:
7042 return -EINVAL;
7043 }
7044
7045 tmp &= bits->mask;
7046
7047 return (tmp == bits->val) ? 1 : 0;
7048}
9b847548 7049
6ffa01d8 7050#ifdef CONFIG_PM
3c5100c1 7051void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7052{
7053 pci_save_state(pdev);
4c90d971 7054 pci_disable_device(pdev);
500530f6 7055
4c90d971 7056 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7057 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7058}
7059
553c4aa6 7060int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7061{
553c4aa6
TH
7062 int rc;
7063
9b847548
JA
7064 pci_set_power_state(pdev, PCI_D0);
7065 pci_restore_state(pdev);
553c4aa6 7066
b878ca5d 7067 rc = pcim_enable_device(pdev);
553c4aa6
TH
7068 if (rc) {
7069 dev_printk(KERN_ERR, &pdev->dev,
7070 "failed to enable device after resume (%d)\n", rc);
7071 return rc;
7072 }
7073
9b847548 7074 pci_set_master(pdev);
553c4aa6 7075 return 0;
500530f6
TH
7076}
7077
3c5100c1 7078int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7079{
cca3974e 7080 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7081 int rc = 0;
7082
cca3974e 7083 rc = ata_host_suspend(host, mesg);
500530f6
TH
7084 if (rc)
7085 return rc;
7086
3c5100c1 7087 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7088
7089 return 0;
7090}
7091
7092int ata_pci_device_resume(struct pci_dev *pdev)
7093{
cca3974e 7094 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7095 int rc;
500530f6 7096
553c4aa6
TH
7097 rc = ata_pci_device_do_resume(pdev);
7098 if (rc == 0)
7099 ata_host_resume(host);
7100 return rc;
9b847548 7101}
6ffa01d8
TH
7102#endif /* CONFIG_PM */
7103
1da177e4
LT
7104#endif /* CONFIG_PCI */
7105
7106
1da177e4
LT
7107static int __init ata_init(void)
7108{
a8601e5f 7109 ata_probe_timeout *= HZ;
1da177e4
LT
7110 ata_wq = create_workqueue("ata");
7111 if (!ata_wq)
7112 return -ENOMEM;
7113
453b07ac
TH
7114 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7115 if (!ata_aux_wq) {
7116 destroy_workqueue(ata_wq);
7117 return -ENOMEM;
7118 }
7119
1da177e4
LT
7120 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7121 return 0;
7122}
7123
7124static void __exit ata_exit(void)
7125{
7126 destroy_workqueue(ata_wq);
453b07ac 7127 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7128}
7129
a4625085 7130subsys_initcall(ata_init);
1da177e4
LT
7131module_exit(ata_exit);
7132
67846b30 7133static unsigned long ratelimit_time;
34af946a 7134static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7135
7136int ata_ratelimit(void)
7137{
7138 int rc;
7139 unsigned long flags;
7140
7141 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7142
7143 if (time_after(jiffies, ratelimit_time)) {
7144 rc = 1;
7145 ratelimit_time = jiffies + (HZ/5);
7146 } else
7147 rc = 0;
7148
7149 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7150
7151 return rc;
7152}
7153
c22daff4
TH
7154/**
7155 * ata_wait_register - wait until register value changes
7156 * @reg: IO-mapped register
7157 * @mask: Mask to apply to read register value
7158 * @val: Wait condition
7159 * @interval_msec: polling interval in milliseconds
7160 * @timeout_msec: timeout in milliseconds
7161 *
7162 * Waiting for some bits of register to change is a common
7163 * operation for ATA controllers. This function reads 32bit LE
7164 * IO-mapped register @reg and tests for the following condition.
7165 *
7166 * (*@reg & mask) != val
7167 *
7168 * If the condition is met, it returns; otherwise, the process is
7169 * repeated after @interval_msec until timeout.
7170 *
7171 * LOCKING:
7172 * Kernel thread context (may sleep)
7173 *
7174 * RETURNS:
7175 * The final register value.
7176 */
7177u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7178 unsigned long interval_msec,
7179 unsigned long timeout_msec)
7180{
7181 unsigned long timeout;
7182 u32 tmp;
7183
7184 tmp = ioread32(reg);
7185
7186 /* Calculate timeout _after_ the first read to make sure
7187 * preceding writes reach the controller before starting to
7188 * eat away the timeout.
7189 */
7190 timeout = jiffies + (timeout_msec * HZ) / 1000;
7191
7192 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7193 msleep(interval_msec);
7194 tmp = ioread32(reg);
7195 }
7196
7197 return tmp;
7198}
7199
dd5b06c4
TH
7200/*
7201 * Dummy port_ops
7202 */
7203static void ata_dummy_noret(struct ata_port *ap) { }
7204static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7205static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7206
7207static u8 ata_dummy_check_status(struct ata_port *ap)
7208{
7209 return ATA_DRDY;
7210}
7211
7212static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7213{
7214 return AC_ERR_SYSTEM;
7215}
7216
7217const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7218 .check_status = ata_dummy_check_status,
7219 .check_altstatus = ata_dummy_check_status,
7220 .dev_select = ata_noop_dev_select,
7221 .qc_prep = ata_noop_qc_prep,
7222 .qc_issue = ata_dummy_qc_issue,
7223 .freeze = ata_dummy_noret,
7224 .thaw = ata_dummy_noret,
7225 .error_handler = ata_dummy_noret,
7226 .post_internal_cmd = ata_dummy_qc_noret,
7227 .irq_clear = ata_dummy_noret,
7228 .port_start = ata_dummy_ret0,
7229 .port_stop = ata_dummy_noret,
7230};
7231
21b0ad4f
TH
7232const struct ata_port_info ata_dummy_port_info = {
7233 .port_ops = &ata_dummy_port_ops,
7234};
7235
1da177e4
LT
7236/*
7237 * libata is essentially a library of internal helper functions for
7238 * low-level ATA host controller drivers. As such, the API/ABI is
7239 * likely to change as new drivers are added and updated.
7240 * Do not depend on ABI/API stability.
7241 */
7242
e9c83914
TH
7243EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7244EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7245EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7246EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7247EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7248EXPORT_SYMBOL_GPL(ata_std_bios_param);
7249EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7250EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7251EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7252EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7253EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7254EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7255EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7256EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7257EXPORT_SYMBOL_GPL(ata_sg_init);
7258EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7259EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7260EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7261EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7262EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7263EXPORT_SYMBOL_GPL(ata_tf_load);
7264EXPORT_SYMBOL_GPL(ata_tf_read);
7265EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7266EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7267EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7268EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7269EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7270EXPORT_SYMBOL_GPL(ata_check_status);
7271EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7272EXPORT_SYMBOL_GPL(ata_exec_command);
7273EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7274EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7275EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7276EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7277EXPORT_SYMBOL_GPL(ata_data_xfer);
7278EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7279EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7280EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7281EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7282EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7283EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7284EXPORT_SYMBOL_GPL(ata_bmdma_start);
7285EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7286EXPORT_SYMBOL_GPL(ata_bmdma_status);
7287EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7288EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7289EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7290EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7291EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7292EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7293EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7294EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7295EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7296EXPORT_SYMBOL_GPL(sata_link_debounce);
7297EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7298EXPORT_SYMBOL_GPL(sata_phy_reset);
7299EXPORT_SYMBOL_GPL(__sata_phy_reset);
7300EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7301EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7302EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7303EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7304EXPORT_SYMBOL_GPL(sata_std_hardreset);
7305EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7306EXPORT_SYMBOL_GPL(ata_dev_classify);
7307EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7308EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7309EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7310EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7311EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7312EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7313EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7314EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7315EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7316EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7317EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7318EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7319EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7320EXPORT_SYMBOL_GPL(sata_scr_valid);
7321EXPORT_SYMBOL_GPL(sata_scr_read);
7322EXPORT_SYMBOL_GPL(sata_scr_write);
7323EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7324EXPORT_SYMBOL_GPL(ata_link_online);
7325EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7326#ifdef CONFIG_PM
cca3974e
JG
7327EXPORT_SYMBOL_GPL(ata_host_suspend);
7328EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7329#endif /* CONFIG_PM */
6a62a04d
TH
7330EXPORT_SYMBOL_GPL(ata_id_string);
7331EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7332EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7333EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7334
1bc4ccff 7335EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7336EXPORT_SYMBOL_GPL(ata_timing_compute);
7337EXPORT_SYMBOL_GPL(ata_timing_merge);
7338
1da177e4
LT
7339#ifdef CONFIG_PCI
7340EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7341EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7342EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7343EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7344EXPORT_SYMBOL_GPL(ata_pci_init_one);
7345EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7346#ifdef CONFIG_PM
500530f6
TH
7347EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7348EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7349EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7350EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7351#endif /* CONFIG_PM */
67951ade
AC
7352EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7353EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7354#endif /* CONFIG_PCI */
9b847548 7355
31f88384 7356EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7357EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7358EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7359EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7360EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7361
b64bbc39
TH
7362EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7363EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7364EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7365EXPORT_SYMBOL_GPL(ata_port_desc);
7366#ifdef CONFIG_PCI
7367EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7368#endif /* CONFIG_PCI */
ece1d636 7369EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7370EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7371EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7372EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7373EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7374EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7375EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7376EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7377EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7378EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7379EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7380EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7381EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7382
7383EXPORT_SYMBOL_GPL(ata_cable_40wire);
7384EXPORT_SYMBOL_GPL(ata_cable_80wire);
7385EXPORT_SYMBOL_GPL(ata_cable_unknown);
7386EXPORT_SYMBOL_GPL(ata_cable_sata);