]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
[PATCH] ahci: update ahci-vt8251 reset sequence
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1
AL
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
1da177e4 203 *
2e9edbf8 204 * Examine the device configuration and tf->flags to calculate
8cbd6df1 205 * the proper read/write commands and protocol to use.
1da177e4
LT
206 *
207 * LOCKING:
208 * caller.
209 */
9a3dccc4 210int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 211{
8cbd6df1
AL
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
9a3dccc4 214 u8 cmd;
1da177e4 215
9a3dccc4 216 int index, fua, lba48, write;
2e9edbf8 217
9a3dccc4 218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 221
8cbd6df1
AL
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
9a3dccc4 224 index = dev->multi_count ? 0 : 8;
8d238e01
AC
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
0565c26d 228 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
229 } else {
230 tf->protocol = ATA_PROT_DMA;
9a3dccc4 231 index = 16;
8cbd6df1 232 }
1da177e4 233
9a3dccc4
TH
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
1da177e4
LT
240}
241
cb95d562
TH
242/**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260{
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264}
265
c0489e4e
TH
266/**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280{
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287}
288
cb95d562 289static const struct ata_xfer_ent {
be9a50c8 290 int shift, bits;
cb95d562
TH
291 u8 base;
292} ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297};
298
299/**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313{
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321}
322
323/**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336{
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343}
344
345/**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357static int ata_xfer_mode2shift(unsigned int xfer_mode)
358{
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365}
366
1da177e4 367/**
1da7b0d0
TH
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
370 *
371 * Determine string which represents the highest speed
1da7b0d0 372 * (highest bit in @modemask).
1da177e4
LT
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
1da7b0d0 379 * @mode_mask, or the constant C string "<n/a>".
1da177e4 380 */
1da7b0d0 381static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 382{
75f554bc
TH
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
b352e57d
AC
389 "PIO5",
390 "PIO6",
75f554bc
TH
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
b352e57d
AC
394 "MWDMA3",
395 "MWDMA4",
75f554bc
TH
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
1da7b0d0 405 int highbit;
1da177e4 406
1da7b0d0
TH
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
1da177e4 410 return "<n/a>";
1da177e4
LT
411}
412
4c360c81
TH
413static const char *sata_spd_string(unsigned int spd)
414{
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423}
424
3373efd8 425void ata_dev_disable(struct ata_device *dev)
0b8efb0a 426{
0dd4b21f 427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
429 dev->class++;
430 }
431}
432
1da177e4
LT
433/**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453{
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475}
476
477/**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497{
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519}
520
521/**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536{
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540}
541
542/**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
057ace5e 558unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
559{
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579}
580
581/**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
b4dc7623 585 * @r_err: Value of error register on completion
1da177e4
LT
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
b4dc7623
TH
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
601 */
602
b4dc7623
TH
603static unsigned int
604ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 605{
1da177e4
LT
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
1da177e4 614 ap->ops->tf_read(ap, &tf);
0169e284 615 err = tf.feature;
b4dc7623
TH
616 if (r_err)
617 *r_err = err;
1da177e4 618
93590859
AC
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
1da177e4
LT
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629
b4dc7623 630 /* determine if device is ATA or ATAPI */
1da177e4 631 class = ata_dev_classify(&tf);
b4dc7623 632
1da177e4 633 if (class == ATA_DEV_UNKNOWN)
b4dc7623 634 return ATA_DEV_NONE;
1da177e4 635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
636 return ATA_DEV_NONE;
637 return class;
1da177e4
LT
638}
639
640/**
6a62a04d 641 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
6a62a04d
TH
655void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
1da177e4
LT
657{
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672}
673
0e949ff3 674/**
6a62a04d 675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
6a62a04d 681 * This function is identical to ata_id_string except that it
0e949ff3
TH
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
6a62a04d
TH
688void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
0e949ff3
TH
690{
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
6a62a04d 695 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701}
0baab86b 702
2940740b
TH
703static u64 ata_id_n_sectors(const u16 *id)
704{
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716}
717
0baab86b
EF
718/**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
1da177e4
LT
730void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731{
732}
733
0baab86b 734
1da177e4
LT
735/**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
0baab86b
EF
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
745 *
746 * LOCKING:
747 * caller.
748 */
749
750void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751{
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765}
766
767/**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788{
88574551 789 if (ata_msg_probe(ap))
0dd4b21f 790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 791 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803}
804
805/**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 807 * @id: IDENTIFY DEVICE page to dump
1da177e4 808 *
0bd3300a
TH
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
1da177e4
LT
811 *
812 * LOCKING:
813 * caller.
814 */
815
0bd3300a 816static inline void ata_dump_id(const u16 *id)
1da177e4
LT
817{
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
0bd3300a
TH
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
1da177e4
LT
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
0bd3300a
TH
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
1da177e4
LT
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
0bd3300a
TH
840 id[88],
841 id[93]);
1da177e4
LT
842}
843
cb95d562
TH
844/**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859static unsigned int ata_id_xfermask(const u16 *id)
860{
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
46767aeb
AC
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
cb95d562
TH
878
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
884 */
885 }
886
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 888
b352e57d
AC
889 if (ata_id_is_cfa(id)) {
890 /*
891 * Process compact flash extended modes
892 */
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
895
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
904 }
905
fb21f0d0
TH
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
909
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
911}
912
86e45b6b
TH
913/**
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
86e45b6b
TH
919 *
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
924 *
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
928 *
929 * LOCKING:
930 * Inherited from caller.
931 */
932void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
934{
935 int rc;
936
b51e9e5d 937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
938 return;
939
940 PREPARE_WORK(&ap->port_task, fn, data);
941
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
946
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
949}
950
951/**
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
954 *
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
957 *
958 * LOCKING:
959 * Kernel thread context (may sleep)
960 */
961void ata_port_flush_task(struct ata_port *ap)
962{
963 unsigned long flags;
964
965 DPRINTK("ENTER\n");
966
ba6a1308 967 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 969 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
970
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
973
974 /*
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
978 */
979 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 980 if (ata_msg_ctl(ap))
88574551
TH
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
86e45b6b
TH
983 flush_workqueue(ata_wq);
984 }
985
ba6a1308 986 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 988 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 989
0dd4b21f
BP
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
992}
993
77853bf2 994void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 995{
77853bf2 996 struct completion *waiting = qc->private_data;
a2a7a662 997
a2a7a662 998 complete(waiting);
a2a7a662
TH
999}
1000
1001/**
1002 * ata_exec_internal - execute libata internal command
a2a7a662
TH
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
d69cf37d 1005 * @cdb: CDB for packet command
a2a7a662
TH
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1009 *
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1015 *
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
551e8889
TH
1018 *
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1021 */
3373efd8 1022unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1025{
3373efd8 1026 struct ata_port *ap = dev->ap;
a2a7a662
TH
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
2ab7db1f 1029 unsigned int tag, preempted_tag;
dedaf2b0 1030 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1031 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1032 unsigned long flags;
77853bf2 1033 unsigned int err_mask;
d95a717f 1034 int rc;
a2a7a662 1035
ba6a1308 1036 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1037
e3180499 1038 /* no internal command while frozen */
b51e9e5d 1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1040 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1041 return AC_ERR_SYSTEM;
1042 }
1043
2ab7db1f 1044 /* initialize internal qc */
a2a7a662 1045
2ab7db1f
TH
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1050 */
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1055
6cec4a39 1056 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1057 BUG();
f69499f4 1058 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1059
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1065
1066 preempted_tag = ap->active_tag;
dedaf2b0
TH
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
2ab7db1f 1069 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
2ab7db1f
TH
1072
1073 /* prepare & issue qc */
a2a7a662 1074 qc->tf = *tf;
d69cf37d
TH
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1082 }
1083
77853bf2 1084 qc->private_data = &wait;
a2a7a662
TH
1085 qc->complete_fn = ata_qc_complete_internal;
1086
8e0e694a 1087 ata_qc_issue(qc);
a2a7a662 1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1090
a8601e5f 1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1092
1093 ata_port_flush_task(ap);
41ade50c 1094
d95a717f 1095 if (!rc) {
ba6a1308 1096 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1097
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
d95a717f
TH
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
a2a7a662 1102 */
77853bf2 1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1105
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
f15a1daf 1110
0dd4b21f
BP
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
88574551 1113 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1114 }
1115
ba6a1308 1116 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1117 }
1118
d95a717f
TH
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1122
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1124 if (ata_msg_warn(ap))
88574551 1125 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1126 "zero err_mask for failed "
88574551 1127 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1128 qc->err_mask |= AC_ERR_OTHER;
1129 }
1130
15869303 1131 /* finish up */
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
15869303 1133
e61e0672 1134 *tf = qc->result_tf;
77853bf2
TH
1135 err_mask = qc->err_mask;
1136
1137 ata_qc_free(qc);
2ab7db1f 1138 ap->active_tag = preempted_tag;
dedaf2b0
TH
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
77853bf2 1141
1f7dd3e9
TH
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1146 *
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1150 *
1151 * Kill the following code as soon as those drivers are fixed.
1152 */
198e0fed 1153 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1156 }
1157
ba6a1308 1158 spin_unlock_irqrestore(ap->lock, flags);
15869303 1159
77853bf2 1160 return err_mask;
a2a7a662
TH
1161}
1162
977e6b9f
TH
1163/**
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1167 *
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1170 *
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1173 *
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
e58eb583 1176 */
77b08fb5 1177unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1178{
1179 struct ata_taskfile tf;
e58eb583
TH
1180
1181 ata_tf_init(dev, &tf);
1182
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1186
977e6b9f 1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1188}
1189
1bc4ccff
AC
1190/**
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1193 *
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1196 */
1197
1198unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1199{
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1202
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
2e9edbf8 1207
1bc4ccff
AC
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1209
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1218 }
1219 }
1220 return 0;
1221}
1222
1da177e4 1223/**
49016aca 1224 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
fe635c7e 1228 * @id: buffer to read IDENTIFY data into
1da177e4 1229 *
49016aca
TH
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1da177e4
LT
1234 *
1235 * LOCKING:
49016aca
TH
1236 * Kernel thread context (may sleep)
1237 *
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1da177e4 1240 */
a9beec95
TH
1241int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1da177e4 1243{
3373efd8 1244 struct ata_port *ap = dev->ap;
49016aca 1245 unsigned int class = *p_class;
a0123703 1246 struct ata_taskfile tf;
49016aca
TH
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1da177e4 1250
0dd4b21f 1251 if (ata_msg_ctl(ap))
88574551
TH
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1da177e4 1254
49016aca 1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1256
49016aca 1257 retry:
3373efd8 1258 ata_tf_init(dev, &tf);
a0123703 1259
49016aca
TH
1260 switch (class) {
1261 case ATA_DEV_ATA:
a0123703 1262 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1263 break;
1264 case ATA_DEV_ATAPI:
a0123703 1265 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1da177e4
LT
1271 }
1272
a0123703 1273 tf.protocol = ATA_PROT_PIO;
1da177e4 1274
3373efd8 1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1276 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1277 if (err_mask) {
49016aca
TH
1278 rc = -EIO;
1279 reason = "I/O error";
1da177e4
LT
1280 goto err_out;
1281 }
1282
49016aca 1283 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1284
49016aca 1285 /* sanity check */
a4f5749b
TH
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1288
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
49016aca
TH
1295 }
1296
1297 if (post_reset && class == ATA_DEV_ATA) {
1298 /*
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1305 */
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1312 }
1313
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1316 */
1317 post_reset = 0;
1318 goto retry;
1319 }
1320 }
1321
1322 *p_class = class;
fe635c7e 1323
49016aca
TH
1324 return 0;
1325
1326 err_out:
88574551 1327 if (ata_msg_warn(ap))
0dd4b21f 1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1330 return rc;
1331}
1332
3373efd8 1333static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1334{
3373efd8 1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1336}
1337
a6e6ce8e
TH
1338static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1340{
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1343
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1347 }
6919a0a6
AC
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1350 return;
1351 }
a6e6ce8e 1352 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1354 dev->flags |= ATA_DFLAG_NCQ;
1355 }
1356
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1359 else
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1361}
1362
e6d902a3
BK
1363static void ata_set_port_max_cmd_len(struct ata_port *ap)
1364{
1365 int i;
1366
cca3974e
JG
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1369
e6d902a3 1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1371 len = max(len, ap->device[i].cdb_len);
1372
1373 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1374 }
1375}
1376
49016aca 1377/**
ffeae418 1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1379 * @dev: Target device to configure
4c2d721a 1380 * @print_info: Enable device info printout
ffeae418
TH
1381 *
1382 * Configure @dev according to @dev->id. Generic and low-level
1383 * driver specific fixups are also applied.
49016aca
TH
1384 *
1385 * LOCKING:
ffeae418
TH
1386 * Kernel thread context (may sleep)
1387 *
1388 * RETURNS:
1389 * 0 on success, -errno otherwise
49016aca 1390 */
a9beec95 1391int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1392{
3373efd8 1393 struct ata_port *ap = dev->ap;
1148c3a7 1394 const u16 *id = dev->id;
ff8854b2 1395 unsigned int xfer_mask;
b352e57d 1396 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1397 int rc;
49016aca 1398
0dd4b21f 1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
ffeae418 1403 return 0;
49016aca
TH
1404 }
1405
0dd4b21f 1406 if (ata_msg_probe(ap))
88574551
TH
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1da177e4 1409
c39f5ebe 1410 /* print device capabilities */
0dd4b21f 1411 if (ata_msg_probe(ap))
88574551
TH
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1415 __FUNCTION__,
f15a1daf
TH
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
c39f5ebe 1418
208a9933 1419 /* initialize to-be-configured parameters */
ea1dd4e1 1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1421 dev->max_sectors = 0;
1422 dev->cdb_len = 0;
1423 dev->n_sectors = 0;
1424 dev->cylinders = 0;
1425 dev->heads = 0;
1426 dev->sectors = 0;
1427
1da177e4
LT
1428 /*
1429 * common ATA, ATAPI feature tests
1430 */
1431
ff8854b2 1432 /* find max transfer mode; for printk only */
1148c3a7 1433 xfer_mask = ata_id_xfermask(id);
1da177e4 1434
0dd4b21f
BP
1435 if (ata_msg_probe(ap))
1436 ata_dump_id(id);
1da177e4
LT
1437
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1445 }
1446 else
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1448
1148c3a7 1449 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1450
1148c3a7 1451 if (ata_id_has_lba(id)) {
4c2d721a 1452 const char *lba_desc;
a6e6ce8e 1453 char ncq_desc[20];
8bf62ece 1454
4c2d721a
TH
1455 lba_desc = "LBA";
1456 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1457 if (ata_id_has_lba48(id)) {
8bf62ece 1458 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1459 lba_desc = "LBA48";
1460 }
8bf62ece 1461
a6e6ce8e
TH
1462 /* config NCQ */
1463 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1464
8bf62ece 1465 /* print device info to dmesg */
5afc8142 1466 if (ata_msg_drv(ap) && print_info)
b352e57d 1467 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1468 "max %s, %Lu sectors: %s %s\n",
b352e57d 1469 revbuf,
f15a1daf
TH
1470 ata_mode_string(xfer_mask),
1471 (unsigned long long)dev->n_sectors,
a6e6ce8e 1472 lba_desc, ncq_desc);
ffeae418 1473 } else {
8bf62ece
AL
1474 /* CHS */
1475
1476 /* Default translation */
1148c3a7
TH
1477 dev->cylinders = id[1];
1478 dev->heads = id[3];
1479 dev->sectors = id[6];
8bf62ece 1480
1148c3a7 1481 if (ata_id_current_chs_valid(id)) {
8bf62ece 1482 /* Current CHS translation is valid. */
1148c3a7
TH
1483 dev->cylinders = id[54];
1484 dev->heads = id[55];
1485 dev->sectors = id[56];
8bf62ece
AL
1486 }
1487
1488 /* print device info to dmesg */
5afc8142 1489 if (ata_msg_drv(ap) && print_info)
b352e57d 1490 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1491 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1492 revbuf,
f15a1daf
TH
1493 ata_mode_string(xfer_mask),
1494 (unsigned long long)dev->n_sectors,
88574551
TH
1495 dev->cylinders, dev->heads,
1496 dev->sectors);
1da177e4
LT
1497 }
1498
07f6f7d0
AL
1499 if (dev->id[59] & 0x100) {
1500 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1501 if (ata_msg_drv(ap) && print_info)
88574551
TH
1502 ata_dev_printk(dev, KERN_INFO,
1503 "ata%u: dev %u multi count %u\n",
1504 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1505 }
1506
6e7846e9 1507 dev->cdb_len = 16;
1da177e4
LT
1508 }
1509
1510 /* ATAPI-specific feature tests */
2c13b7ce 1511 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1512 char *cdb_intr_string = "";
1513
1148c3a7 1514 rc = atapi_cdb_len(id);
1da177e4 1515 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1516 if (ata_msg_warn(ap))
88574551
TH
1517 ata_dev_printk(dev, KERN_WARNING,
1518 "unsupported CDB len\n");
ffeae418 1519 rc = -EINVAL;
1da177e4
LT
1520 goto err_out_nosup;
1521 }
6e7846e9 1522 dev->cdb_len = (unsigned int) rc;
1da177e4 1523
08a556db 1524 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1525 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1526 cdb_intr_string = ", CDB intr";
1527 }
312f7da2 1528
1da177e4 1529 /* print device info to dmesg */
5afc8142 1530 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1531 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1532 ata_mode_string(xfer_mask),
1533 cdb_intr_string);
1da177e4
LT
1534 }
1535
93590859
AC
1536 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1537 /* Let the user know. We don't want to disallow opens for
1538 rescue purposes, or in case the vendor is just a blithering
1539 idiot */
1540 if (print_info) {
1541 ata_dev_printk(dev, KERN_WARNING,
1542"Drive reports diagnostics failure. This may indicate a drive\n");
1543 ata_dev_printk(dev, KERN_WARNING,
1544"fault or invalid emulation. Contact drive vendor for information.\n");
1545 }
1546 }
1547
e6d902a3 1548 ata_set_port_max_cmd_len(ap);
6e7846e9 1549
4b2f3ede 1550 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1551 if (ata_dev_knobble(dev)) {
5afc8142 1552 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1553 ata_dev_printk(dev, KERN_INFO,
1554 "applying bridge limits\n");
5a529139 1555 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1556 dev->max_sectors = ATA_MAX_SECTORS;
1557 }
1558
1559 if (ap->ops->dev_config)
1560 ap->ops->dev_config(ap, dev);
1561
0dd4b21f
BP
1562 if (ata_msg_probe(ap))
1563 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1564 __FUNCTION__, ata_chk_status(ap));
ffeae418 1565 return 0;
1da177e4
LT
1566
1567err_out_nosup:
0dd4b21f 1568 if (ata_msg_probe(ap))
88574551
TH
1569 ata_dev_printk(dev, KERN_DEBUG,
1570 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1571 return rc;
1da177e4
LT
1572}
1573
1574/**
1575 * ata_bus_probe - Reset and probe ATA bus
1576 * @ap: Bus to probe
1577 *
0cba632b
JG
1578 * Master ATA bus probing function. Initiates a hardware-dependent
1579 * bus reset, then attempts to identify any devices found on
1580 * the bus.
1581 *
1da177e4 1582 * LOCKING:
0cba632b 1583 * PCI/etc. bus probe sem.
1da177e4
LT
1584 *
1585 * RETURNS:
96072e69 1586 * Zero on success, negative errno otherwise.
1da177e4
LT
1587 */
1588
80289167 1589int ata_bus_probe(struct ata_port *ap)
1da177e4 1590{
28ca5c57 1591 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1592 int tries[ATA_MAX_DEVICES];
1593 int i, rc, down_xfermask;
e82cbdb9 1594 struct ata_device *dev;
1da177e4 1595
28ca5c57 1596 ata_port_probe(ap);
c19ba8af 1597
14d2bac1
TH
1598 for (i = 0; i < ATA_MAX_DEVICES; i++)
1599 tries[i] = ATA_PROBE_MAX_TRIES;
1600
1601 retry:
1602 down_xfermask = 0;
1603
2044470c 1604 /* reset and determine device classes */
52783c5d 1605 ap->ops->phy_reset(ap);
2061a47a 1606
52783c5d
TH
1607 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1608 dev = &ap->device[i];
c19ba8af 1609
52783c5d
TH
1610 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1611 dev->class != ATA_DEV_UNKNOWN)
1612 classes[dev->devno] = dev->class;
1613 else
1614 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1615
52783c5d 1616 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1617 }
1da177e4 1618
52783c5d 1619 ata_port_probe(ap);
2044470c 1620
b6079ca4
AC
1621 /* after the reset the device state is PIO 0 and the controller
1622 state is undefined. Record the mode */
1623
1624 for (i = 0; i < ATA_MAX_DEVICES; i++)
1625 ap->device[i].pio_mode = XFER_PIO_0;
1626
28ca5c57 1627 /* read IDENTIFY page and configure devices */
1da177e4 1628 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1629 dev = &ap->device[i];
28ca5c57 1630
ec573755
TH
1631 if (tries[i])
1632 dev->class = classes[i];
ffeae418 1633
14d2bac1 1634 if (!ata_dev_enabled(dev))
ffeae418 1635 continue;
ffeae418 1636
3373efd8 1637 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1638 if (rc)
1639 goto fail;
1640
3373efd8 1641 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1642 if (rc)
1643 goto fail;
1da177e4
LT
1644 }
1645
e82cbdb9 1646 /* configure transfer mode */
3adcebb2 1647 rc = ata_set_mode(ap, &dev);
51713d35
TH
1648 if (rc) {
1649 down_xfermask = 1;
1650 goto fail;
e82cbdb9 1651 }
1da177e4 1652
e82cbdb9
TH
1653 for (i = 0; i < ATA_MAX_DEVICES; i++)
1654 if (ata_dev_enabled(&ap->device[i]))
1655 return 0;
1da177e4 1656
e82cbdb9
TH
1657 /* no device present, disable port */
1658 ata_port_disable(ap);
1da177e4 1659 ap->ops->port_disable(ap);
96072e69 1660 return -ENODEV;
14d2bac1
TH
1661
1662 fail:
1663 switch (rc) {
1664 case -EINVAL:
1665 case -ENODEV:
1666 tries[dev->devno] = 0;
1667 break;
1668 case -EIO:
3c567b7d 1669 sata_down_spd_limit(ap);
14d2bac1
TH
1670 /* fall through */
1671 default:
1672 tries[dev->devno]--;
1673 if (down_xfermask &&
3373efd8 1674 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1675 tries[dev->devno] = 0;
1676 }
1677
ec573755 1678 if (!tries[dev->devno]) {
3373efd8
TH
1679 ata_down_xfermask_limit(dev, 1);
1680 ata_dev_disable(dev);
ec573755
TH
1681 }
1682
14d2bac1 1683 goto retry;
1da177e4
LT
1684}
1685
1686/**
0cba632b
JG
1687 * ata_port_probe - Mark port as enabled
1688 * @ap: Port for which we indicate enablement
1da177e4 1689 *
0cba632b
JG
1690 * Modify @ap data structure such that the system
1691 * thinks that the entire port is enabled.
1692 *
cca3974e 1693 * LOCKING: host lock, or some other form of
0cba632b 1694 * serialization.
1da177e4
LT
1695 */
1696
1697void ata_port_probe(struct ata_port *ap)
1698{
198e0fed 1699 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1700}
1701
3be680b7
TH
1702/**
1703 * sata_print_link_status - Print SATA link status
1704 * @ap: SATA port to printk link status about
1705 *
1706 * This function prints link speed and status of a SATA link.
1707 *
1708 * LOCKING:
1709 * None.
1710 */
1711static void sata_print_link_status(struct ata_port *ap)
1712{
6d5f9732 1713 u32 sstatus, scontrol, tmp;
3be680b7 1714
81952c54 1715 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1716 return;
81952c54 1717 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1718
81952c54 1719 if (ata_port_online(ap)) {
3be680b7 1720 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1721 ata_port_printk(ap, KERN_INFO,
1722 "SATA link up %s (SStatus %X SControl %X)\n",
1723 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1724 } else {
f15a1daf
TH
1725 ata_port_printk(ap, KERN_INFO,
1726 "SATA link down (SStatus %X SControl %X)\n",
1727 sstatus, scontrol);
3be680b7
TH
1728 }
1729}
1730
1da177e4 1731/**
780a87f7
JG
1732 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1733 * @ap: SATA port associated with target SATA PHY.
1da177e4 1734 *
780a87f7
JG
1735 * This function issues commands to standard SATA Sxxx
1736 * PHY registers, to wake up the phy (and device), and
1737 * clear any reset condition.
1da177e4
LT
1738 *
1739 * LOCKING:
0cba632b 1740 * PCI/etc. bus probe sem.
1da177e4
LT
1741 *
1742 */
1743void __sata_phy_reset(struct ata_port *ap)
1744{
1745 u32 sstatus;
1746 unsigned long timeout = jiffies + (HZ * 5);
1747
1748 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1749 /* issue phy wake/reset */
81952c54 1750 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1751 /* Couldn't find anything in SATA I/II specs, but
1752 * AHCI-1.1 10.4.2 says at least 1 ms. */
1753 mdelay(1);
1da177e4 1754 }
81952c54
TH
1755 /* phy wake/clear reset */
1756 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1757
1758 /* wait for phy to become ready, if necessary */
1759 do {
1760 msleep(200);
81952c54 1761 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1762 if ((sstatus & 0xf) != 1)
1763 break;
1764 } while (time_before(jiffies, timeout));
1765
3be680b7
TH
1766 /* print link status */
1767 sata_print_link_status(ap);
656563e3 1768
3be680b7 1769 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1770 if (!ata_port_offline(ap))
1da177e4 1771 ata_port_probe(ap);
3be680b7 1772 else
1da177e4 1773 ata_port_disable(ap);
1da177e4 1774
198e0fed 1775 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1776 return;
1777
1778 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1779 ata_port_disable(ap);
1780 return;
1781 }
1782
1783 ap->cbl = ATA_CBL_SATA;
1784}
1785
1786/**
780a87f7
JG
1787 * sata_phy_reset - Reset SATA bus.
1788 * @ap: SATA port associated with target SATA PHY.
1da177e4 1789 *
780a87f7
JG
1790 * This function resets the SATA bus, and then probes
1791 * the bus for devices.
1da177e4
LT
1792 *
1793 * LOCKING:
0cba632b 1794 * PCI/etc. bus probe sem.
1da177e4
LT
1795 *
1796 */
1797void sata_phy_reset(struct ata_port *ap)
1798{
1799 __sata_phy_reset(ap);
198e0fed 1800 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1801 return;
1802 ata_bus_reset(ap);
1803}
1804
ebdfca6e
AC
1805/**
1806 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1807 * @adev: device
1808 *
1809 * Obtain the other device on the same cable, or if none is
1810 * present NULL is returned
1811 */
2e9edbf8 1812
3373efd8 1813struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1814{
3373efd8 1815 struct ata_port *ap = adev->ap;
ebdfca6e 1816 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1817 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1818 return NULL;
1819 return pair;
1820}
1821
1da177e4 1822/**
780a87f7
JG
1823 * ata_port_disable - Disable port.
1824 * @ap: Port to be disabled.
1da177e4 1825 *
780a87f7
JG
1826 * Modify @ap data structure such that the system
1827 * thinks that the entire port is disabled, and should
1828 * never attempt to probe or communicate with devices
1829 * on this port.
1830 *
cca3974e 1831 * LOCKING: host lock, or some other form of
780a87f7 1832 * serialization.
1da177e4
LT
1833 */
1834
1835void ata_port_disable(struct ata_port *ap)
1836{
1837 ap->device[0].class = ATA_DEV_NONE;
1838 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1839 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1840}
1841
1c3fae4d 1842/**
3c567b7d 1843 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1844 * @ap: Port to adjust SATA spd limit for
1845 *
1846 * Adjust SATA spd limit of @ap downward. Note that this
1847 * function only adjusts the limit. The change must be applied
3c567b7d 1848 * using sata_set_spd().
1c3fae4d
TH
1849 *
1850 * LOCKING:
1851 * Inherited from caller.
1852 *
1853 * RETURNS:
1854 * 0 on success, negative errno on failure
1855 */
3c567b7d 1856int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1857{
81952c54
TH
1858 u32 sstatus, spd, mask;
1859 int rc, highbit;
1c3fae4d 1860
81952c54
TH
1861 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1862 if (rc)
1863 return rc;
1c3fae4d
TH
1864
1865 mask = ap->sata_spd_limit;
1866 if (mask <= 1)
1867 return -EINVAL;
1868 highbit = fls(mask) - 1;
1869 mask &= ~(1 << highbit);
1870
81952c54 1871 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1872 if (spd <= 1)
1873 return -EINVAL;
1874 spd--;
1875 mask &= (1 << spd) - 1;
1876 if (!mask)
1877 return -EINVAL;
1878
1879 ap->sata_spd_limit = mask;
1880
f15a1daf
TH
1881 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1882 sata_spd_string(fls(mask)));
1c3fae4d
TH
1883
1884 return 0;
1885}
1886
3c567b7d 1887static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1888{
1889 u32 spd, limit;
1890
1891 if (ap->sata_spd_limit == UINT_MAX)
1892 limit = 0;
1893 else
1894 limit = fls(ap->sata_spd_limit);
1895
1896 spd = (*scontrol >> 4) & 0xf;
1897 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1898
1899 return spd != limit;
1900}
1901
1902/**
3c567b7d 1903 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1904 * @ap: Port in question
1905 *
1906 * Test whether the spd limit in SControl matches
1907 * @ap->sata_spd_limit. This function is used to determine
1908 * whether hardreset is necessary to apply SATA spd
1909 * configuration.
1910 *
1911 * LOCKING:
1912 * Inherited from caller.
1913 *
1914 * RETURNS:
1915 * 1 if SATA spd configuration is needed, 0 otherwise.
1916 */
3c567b7d 1917int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1918{
1919 u32 scontrol;
1920
81952c54 1921 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1922 return 0;
1923
3c567b7d 1924 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1925}
1926
1927/**
3c567b7d 1928 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1929 * @ap: Port to set SATA spd for
1930 *
1931 * Set SATA spd of @ap according to sata_spd_limit.
1932 *
1933 * LOCKING:
1934 * Inherited from caller.
1935 *
1936 * RETURNS:
1937 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1938 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1939 */
3c567b7d 1940int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1941{
1942 u32 scontrol;
81952c54 1943 int rc;
1c3fae4d 1944
81952c54
TH
1945 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1946 return rc;
1c3fae4d 1947
3c567b7d 1948 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1949 return 0;
1950
81952c54
TH
1951 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1952 return rc;
1953
1c3fae4d
TH
1954 return 1;
1955}
1956
452503f9
AC
1957/*
1958 * This mode timing computation functionality is ported over from
1959 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1960 */
1961/*
b352e57d 1962 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 1963 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
1964 * for UDMA6, which is currently supported only by Maxtor drives.
1965 *
1966 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
1967 */
1968
1969static const struct ata_timing ata_timing[] = {
1970
1971 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1972 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1973 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1974 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1975
b352e57d
AC
1976 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1977 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
1978 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1979 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1980 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1981
1982/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1983
452503f9
AC
1984 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1985 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1986 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1987
452503f9
AC
1988 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1989 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1990 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1991
b352e57d
AC
1992 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1993 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
1994 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1995 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1996
1997 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1998 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1999 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2000
2001/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2002
2003 { 0xFF }
2004};
2005
2006#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2007#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2008
2009static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2010{
2011 q->setup = EZ(t->setup * 1000, T);
2012 q->act8b = EZ(t->act8b * 1000, T);
2013 q->rec8b = EZ(t->rec8b * 1000, T);
2014 q->cyc8b = EZ(t->cyc8b * 1000, T);
2015 q->active = EZ(t->active * 1000, T);
2016 q->recover = EZ(t->recover * 1000, T);
2017 q->cycle = EZ(t->cycle * 1000, T);
2018 q->udma = EZ(t->udma * 1000, UT);
2019}
2020
2021void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2022 struct ata_timing *m, unsigned int what)
2023{
2024 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2025 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2026 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2027 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2028 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2029 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2030 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2031 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2032}
2033
2034static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2035{
2036 const struct ata_timing *t;
2037
2038 for (t = ata_timing; t->mode != speed; t++)
91190758 2039 if (t->mode == 0xFF)
452503f9 2040 return NULL;
2e9edbf8 2041 return t;
452503f9
AC
2042}
2043
2044int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2045 struct ata_timing *t, int T, int UT)
2046{
2047 const struct ata_timing *s;
2048 struct ata_timing p;
2049
2050 /*
2e9edbf8 2051 * Find the mode.
75b1f2f8 2052 */
452503f9
AC
2053
2054 if (!(s = ata_timing_find_mode(speed)))
2055 return -EINVAL;
2056
75b1f2f8
AL
2057 memcpy(t, s, sizeof(*s));
2058
452503f9
AC
2059 /*
2060 * If the drive is an EIDE drive, it can tell us it needs extended
2061 * PIO/MW_DMA cycle timing.
2062 */
2063
2064 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2065 memset(&p, 0, sizeof(p));
2066 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2067 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2068 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2069 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2070 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2071 }
2072 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2073 }
2074
2075 /*
2076 * Convert the timing to bus clock counts.
2077 */
2078
75b1f2f8 2079 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2080
2081 /*
c893a3ae
RD
2082 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2083 * S.M.A.R.T * and some other commands. We have to ensure that the
2084 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2085 */
2086
2087 if (speed > XFER_PIO_4) {
2088 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2089 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2090 }
2091
2092 /*
c893a3ae 2093 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2094 */
2095
2096 if (t->act8b + t->rec8b < t->cyc8b) {
2097 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2098 t->rec8b = t->cyc8b - t->act8b;
2099 }
2100
2101 if (t->active + t->recover < t->cycle) {
2102 t->active += (t->cycle - (t->active + t->recover)) / 2;
2103 t->recover = t->cycle - t->active;
2104 }
2105
2106 return 0;
2107}
2108
cf176e1a
TH
2109/**
2110 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2111 * @dev: Device to adjust xfer masks
2112 * @force_pio0: Force PIO0
2113 *
2114 * Adjust xfer masks of @dev downward. Note that this function
2115 * does not apply the change. Invoking ata_set_mode() afterwards
2116 * will apply the limit.
2117 *
2118 * LOCKING:
2119 * Inherited from caller.
2120 *
2121 * RETURNS:
2122 * 0 on success, negative errno on failure
2123 */
3373efd8 2124int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2125{
2126 unsigned long xfer_mask;
2127 int highbit;
2128
2129 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2130 dev->udma_mask);
2131
2132 if (!xfer_mask)
2133 goto fail;
2134 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2135 if (xfer_mask & ATA_MASK_UDMA)
2136 xfer_mask &= ~ATA_MASK_MWDMA;
2137
2138 highbit = fls(xfer_mask) - 1;
2139 xfer_mask &= ~(1 << highbit);
2140 if (force_pio0)
2141 xfer_mask &= 1 << ATA_SHIFT_PIO;
2142 if (!xfer_mask)
2143 goto fail;
2144
2145 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2146 &dev->udma_mask);
2147
f15a1daf
TH
2148 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2149 ata_mode_string(xfer_mask));
cf176e1a
TH
2150
2151 return 0;
2152
2153 fail:
2154 return -EINVAL;
2155}
2156
3373efd8 2157static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2158{
83206a29
TH
2159 unsigned int err_mask;
2160 int rc;
1da177e4 2161
e8384607 2162 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2163 if (dev->xfer_shift == ATA_SHIFT_PIO)
2164 dev->flags |= ATA_DFLAG_PIO;
2165
3373efd8 2166 err_mask = ata_dev_set_xfermode(dev);
83206a29 2167 if (err_mask) {
f15a1daf
TH
2168 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2169 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2170 return -EIO;
2171 }
1da177e4 2172
3373efd8 2173 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2174 if (rc)
83206a29 2175 return rc;
48a8a14f 2176
23e71c3d
TH
2177 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2178 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2179
f15a1daf
TH
2180 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2181 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2182 return 0;
1da177e4
LT
2183}
2184
1da177e4
LT
2185/**
2186 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2187 * @ap: port on which timings will be programmed
e82cbdb9 2188 * @r_failed_dev: out paramter for failed device
1da177e4 2189 *
e82cbdb9
TH
2190 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2191 * ata_set_mode() fails, pointer to the failing device is
2192 * returned in @r_failed_dev.
780a87f7 2193 *
1da177e4 2194 * LOCKING:
0cba632b 2195 * PCI/etc. bus probe sem.
e82cbdb9
TH
2196 *
2197 * RETURNS:
2198 * 0 on success, negative errno otherwise
1da177e4 2199 */
1ad8e7f9 2200int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2201{
e8e0619f 2202 struct ata_device *dev;
e82cbdb9 2203 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2204
3adcebb2
TH
2205 /* has private set_mode? */
2206 if (ap->ops->set_mode) {
2207 /* FIXME: make ->set_mode handle no device case and
2208 * return error code and failing device on failure.
2209 */
2210 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2211 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2212 ap->ops->set_mode(ap);
2213 break;
2214 }
2215 }
2216 return 0;
2217 }
2218
a6d5a51c
TH
2219 /* step 1: calculate xfer_mask */
2220 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2221 unsigned int pio_mask, dma_mask;
a6d5a51c 2222
e8e0619f
TH
2223 dev = &ap->device[i];
2224
e1211e3f 2225 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2226 continue;
2227
3373efd8 2228 ata_dev_xfermask(dev);
1da177e4 2229
acf356b1
TH
2230 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2231 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2232 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2233 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2234
4f65977d 2235 found = 1;
5444a6f4
AC
2236 if (dev->dma_mode)
2237 used_dma = 1;
a6d5a51c 2238 }
4f65977d 2239 if (!found)
e82cbdb9 2240 goto out;
a6d5a51c
TH
2241
2242 /* step 2: always set host PIO timings */
e8e0619f
TH
2243 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2244 dev = &ap->device[i];
2245 if (!ata_dev_enabled(dev))
2246 continue;
2247
2248 if (!dev->pio_mode) {
f15a1daf 2249 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2250 rc = -EINVAL;
e82cbdb9 2251 goto out;
e8e0619f
TH
2252 }
2253
2254 dev->xfer_mode = dev->pio_mode;
2255 dev->xfer_shift = ATA_SHIFT_PIO;
2256 if (ap->ops->set_piomode)
2257 ap->ops->set_piomode(ap, dev);
2258 }
1da177e4 2259
a6d5a51c 2260 /* step 3: set host DMA timings */
e8e0619f
TH
2261 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2262 dev = &ap->device[i];
2263
2264 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2265 continue;
2266
2267 dev->xfer_mode = dev->dma_mode;
2268 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2269 if (ap->ops->set_dmamode)
2270 ap->ops->set_dmamode(ap, dev);
2271 }
1da177e4
LT
2272
2273 /* step 4: update devices' xfer mode */
83206a29 2274 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2275 dev = &ap->device[i];
1da177e4 2276
02670bf3
TH
2277 /* don't udpate suspended devices' xfer mode */
2278 if (!ata_dev_ready(dev))
83206a29
TH
2279 continue;
2280
3373efd8 2281 rc = ata_dev_set_mode(dev);
5bbc53f4 2282 if (rc)
e82cbdb9 2283 goto out;
83206a29 2284 }
1da177e4 2285
e8e0619f
TH
2286 /* Record simplex status. If we selected DMA then the other
2287 * host channels are not permitted to do so.
5444a6f4 2288 */
cca3974e
JG
2289 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2290 ap->host->simplex_claimed = 1;
5444a6f4 2291
e8e0619f 2292 /* step5: chip specific finalisation */
1da177e4
LT
2293 if (ap->ops->post_set_mode)
2294 ap->ops->post_set_mode(ap);
2295
e82cbdb9
TH
2296 out:
2297 if (rc)
2298 *r_failed_dev = dev;
2299 return rc;
1da177e4
LT
2300}
2301
1fdffbce
JG
2302/**
2303 * ata_tf_to_host - issue ATA taskfile to host controller
2304 * @ap: port to which command is being issued
2305 * @tf: ATA taskfile register set
2306 *
2307 * Issues ATA taskfile register set to ATA host controller,
2308 * with proper synchronization with interrupt handler and
2309 * other threads.
2310 *
2311 * LOCKING:
cca3974e 2312 * spin_lock_irqsave(host lock)
1fdffbce
JG
2313 */
2314
2315static inline void ata_tf_to_host(struct ata_port *ap,
2316 const struct ata_taskfile *tf)
2317{
2318 ap->ops->tf_load(ap, tf);
2319 ap->ops->exec_command(ap, tf);
2320}
2321
1da177e4
LT
2322/**
2323 * ata_busy_sleep - sleep until BSY clears, or timeout
2324 * @ap: port containing status register to be polled
2325 * @tmout_pat: impatience timeout
2326 * @tmout: overall timeout
2327 *
780a87f7
JG
2328 * Sleep until ATA Status register bit BSY clears,
2329 * or a timeout occurs.
2330 *
d1adc1bb
TH
2331 * LOCKING:
2332 * Kernel thread context (may sleep).
2333 *
2334 * RETURNS:
2335 * 0 on success, -errno otherwise.
1da177e4 2336 */
d1adc1bb
TH
2337int ata_busy_sleep(struct ata_port *ap,
2338 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2339{
2340 unsigned long timer_start, timeout;
2341 u8 status;
2342
2343 status = ata_busy_wait(ap, ATA_BUSY, 300);
2344 timer_start = jiffies;
2345 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2346 while (status != 0xff && (status & ATA_BUSY) &&
2347 time_before(jiffies, timeout)) {
1da177e4
LT
2348 msleep(50);
2349 status = ata_busy_wait(ap, ATA_BUSY, 3);
2350 }
2351
d1adc1bb 2352 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2353 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2354 "port is slow to respond, please be patient "
2355 "(Status 0x%x)\n", status);
1da177e4
LT
2356
2357 timeout = timer_start + tmout;
d1adc1bb
TH
2358 while (status != 0xff && (status & ATA_BUSY) &&
2359 time_before(jiffies, timeout)) {
1da177e4
LT
2360 msleep(50);
2361 status = ata_chk_status(ap);
2362 }
2363
d1adc1bb
TH
2364 if (status == 0xff)
2365 return -ENODEV;
2366
1da177e4 2367 if (status & ATA_BUSY) {
f15a1daf 2368 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2369 "(%lu secs, Status 0x%x)\n",
2370 tmout / HZ, status);
d1adc1bb 2371 return -EBUSY;
1da177e4
LT
2372 }
2373
2374 return 0;
2375}
2376
2377static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2378{
2379 struct ata_ioports *ioaddr = &ap->ioaddr;
2380 unsigned int dev0 = devmask & (1 << 0);
2381 unsigned int dev1 = devmask & (1 << 1);
2382 unsigned long timeout;
2383
2384 /* if device 0 was found in ata_devchk, wait for its
2385 * BSY bit to clear
2386 */
2387 if (dev0)
2388 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2389
2390 /* if device 1 was found in ata_devchk, wait for
2391 * register access, then wait for BSY to clear
2392 */
2393 timeout = jiffies + ATA_TMOUT_BOOT;
2394 while (dev1) {
2395 u8 nsect, lbal;
2396
2397 ap->ops->dev_select(ap, 1);
2398 if (ap->flags & ATA_FLAG_MMIO) {
2399 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2400 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2401 } else {
2402 nsect = inb(ioaddr->nsect_addr);
2403 lbal = inb(ioaddr->lbal_addr);
2404 }
2405 if ((nsect == 1) && (lbal == 1))
2406 break;
2407 if (time_after(jiffies, timeout)) {
2408 dev1 = 0;
2409 break;
2410 }
2411 msleep(50); /* give drive a breather */
2412 }
2413 if (dev1)
2414 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2415
2416 /* is all this really necessary? */
2417 ap->ops->dev_select(ap, 0);
2418 if (dev1)
2419 ap->ops->dev_select(ap, 1);
2420 if (dev0)
2421 ap->ops->dev_select(ap, 0);
2422}
2423
1da177e4
LT
2424static unsigned int ata_bus_softreset(struct ata_port *ap,
2425 unsigned int devmask)
2426{
2427 struct ata_ioports *ioaddr = &ap->ioaddr;
2428
2429 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2430
2431 /* software reset. causes dev0 to be selected */
2432 if (ap->flags & ATA_FLAG_MMIO) {
2433 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2434 udelay(20); /* FIXME: flush */
2435 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2436 udelay(20); /* FIXME: flush */
2437 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2438 } else {
2439 outb(ap->ctl, ioaddr->ctl_addr);
2440 udelay(10);
2441 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2442 udelay(10);
2443 outb(ap->ctl, ioaddr->ctl_addr);
2444 }
2445
2446 /* spec mandates ">= 2ms" before checking status.
2447 * We wait 150ms, because that was the magic delay used for
2448 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2449 * between when the ATA command register is written, and then
2450 * status is checked. Because waiting for "a while" before
2451 * checking status is fine, post SRST, we perform this magic
2452 * delay here as well.
09c7ad79
AC
2453 *
2454 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2455 */
2456 msleep(150);
2457
2e9edbf8 2458 /* Before we perform post reset processing we want to see if
298a41ca
TH
2459 * the bus shows 0xFF because the odd clown forgets the D7
2460 * pulldown resistor.
2461 */
d1adc1bb
TH
2462 if (ata_check_status(ap) == 0xFF)
2463 return 0;
09c7ad79 2464
1da177e4
LT
2465 ata_bus_post_reset(ap, devmask);
2466
2467 return 0;
2468}
2469
2470/**
2471 * ata_bus_reset - reset host port and associated ATA channel
2472 * @ap: port to reset
2473 *
2474 * This is typically the first time we actually start issuing
2475 * commands to the ATA channel. We wait for BSY to clear, then
2476 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2477 * result. Determine what devices, if any, are on the channel
2478 * by looking at the device 0/1 error register. Look at the signature
2479 * stored in each device's taskfile registers, to determine if
2480 * the device is ATA or ATAPI.
2481 *
2482 * LOCKING:
0cba632b 2483 * PCI/etc. bus probe sem.
cca3974e 2484 * Obtains host lock.
1da177e4
LT
2485 *
2486 * SIDE EFFECTS:
198e0fed 2487 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2488 */
2489
2490void ata_bus_reset(struct ata_port *ap)
2491{
2492 struct ata_ioports *ioaddr = &ap->ioaddr;
2493 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2494 u8 err;
aec5c3c1 2495 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2496
2497 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2498
2499 /* determine if device 0/1 are present */
2500 if (ap->flags & ATA_FLAG_SATA_RESET)
2501 dev0 = 1;
2502 else {
2503 dev0 = ata_devchk(ap, 0);
2504 if (slave_possible)
2505 dev1 = ata_devchk(ap, 1);
2506 }
2507
2508 if (dev0)
2509 devmask |= (1 << 0);
2510 if (dev1)
2511 devmask |= (1 << 1);
2512
2513 /* select device 0 again */
2514 ap->ops->dev_select(ap, 0);
2515
2516 /* issue bus reset */
2517 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2518 if (ata_bus_softreset(ap, devmask))
2519 goto err_out;
1da177e4
LT
2520
2521 /*
2522 * determine by signature whether we have ATA or ATAPI devices
2523 */
b4dc7623 2524 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2525 if ((slave_possible) && (err != 0x81))
b4dc7623 2526 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2527
2528 /* re-enable interrupts */
2529 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2530 ata_irq_on(ap);
2531
2532 /* is double-select really necessary? */
2533 if (ap->device[1].class != ATA_DEV_NONE)
2534 ap->ops->dev_select(ap, 1);
2535 if (ap->device[0].class != ATA_DEV_NONE)
2536 ap->ops->dev_select(ap, 0);
2537
2538 /* if no devices were detected, disable this port */
2539 if ((ap->device[0].class == ATA_DEV_NONE) &&
2540 (ap->device[1].class == ATA_DEV_NONE))
2541 goto err_out;
2542
2543 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2544 /* set up device control for ATA_FLAG_SATA_RESET */
2545 if (ap->flags & ATA_FLAG_MMIO)
2546 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2547 else
2548 outb(ap->ctl, ioaddr->ctl_addr);
2549 }
2550
2551 DPRINTK("EXIT\n");
2552 return;
2553
2554err_out:
f15a1daf 2555 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2556 ap->ops->port_disable(ap);
2557
2558 DPRINTK("EXIT\n");
2559}
2560
d7bb4cc7
TH
2561/**
2562 * sata_phy_debounce - debounce SATA phy status
2563 * @ap: ATA port to debounce SATA phy status for
2564 * @params: timing parameters { interval, duratinon, timeout } in msec
2565 *
2566 * Make sure SStatus of @ap reaches stable state, determined by
2567 * holding the same value where DET is not 1 for @duration polled
2568 * every @interval, before @timeout. Timeout constraints the
2569 * beginning of the stable state. Because, after hot unplugging,
2570 * DET gets stuck at 1 on some controllers, this functions waits
2571 * until timeout then returns 0 if DET is stable at 1.
2572 *
2573 * LOCKING:
2574 * Kernel thread context (may sleep)
2575 *
2576 * RETURNS:
2577 * 0 on success, -errno on failure.
2578 */
2579int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2580{
d7bb4cc7
TH
2581 unsigned long interval_msec = params[0];
2582 unsigned long duration = params[1] * HZ / 1000;
2583 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2584 unsigned long last_jiffies;
2585 u32 last, cur;
2586 int rc;
2587
2588 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2589 return rc;
2590 cur &= 0xf;
2591
2592 last = cur;
2593 last_jiffies = jiffies;
2594
2595 while (1) {
2596 msleep(interval_msec);
2597 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2598 return rc;
2599 cur &= 0xf;
2600
2601 /* DET stable? */
2602 if (cur == last) {
2603 if (cur == 1 && time_before(jiffies, timeout))
2604 continue;
2605 if (time_after(jiffies, last_jiffies + duration))
2606 return 0;
2607 continue;
2608 }
2609
2610 /* unstable, start over */
2611 last = cur;
2612 last_jiffies = jiffies;
2613
2614 /* check timeout */
2615 if (time_after(jiffies, timeout))
2616 return -EBUSY;
2617 }
2618}
2619
2620/**
2621 * sata_phy_resume - resume SATA phy
2622 * @ap: ATA port to resume SATA phy for
2623 * @params: timing parameters { interval, duratinon, timeout } in msec
2624 *
2625 * Resume SATA phy of @ap and debounce it.
2626 *
2627 * LOCKING:
2628 * Kernel thread context (may sleep)
2629 *
2630 * RETURNS:
2631 * 0 on success, -errno on failure.
2632 */
2633int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2634{
2635 u32 scontrol;
81952c54
TH
2636 int rc;
2637
2638 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2639 return rc;
7a7921e8 2640
852ee16a 2641 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2642
2643 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2644 return rc;
7a7921e8 2645
d7bb4cc7
TH
2646 /* Some PHYs react badly if SStatus is pounded immediately
2647 * after resuming. Delay 200ms before debouncing.
2648 */
2649 msleep(200);
7a7921e8 2650
d7bb4cc7 2651 return sata_phy_debounce(ap, params);
7a7921e8
TH
2652}
2653
f5914a46
TH
2654static void ata_wait_spinup(struct ata_port *ap)
2655{
2656 struct ata_eh_context *ehc = &ap->eh_context;
2657 unsigned long end, secs;
2658 int rc;
2659
2660 /* first, debounce phy if SATA */
2661 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2662 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2663
2664 /* if debounced successfully and offline, no need to wait */
2665 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2666 return;
2667 }
2668
2669 /* okay, let's give the drive time to spin up */
2670 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2671 secs = ((end - jiffies) + HZ - 1) / HZ;
2672
2673 if (time_after(jiffies, end))
2674 return;
2675
2676 if (secs > 5)
2677 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2678 "(%lu secs)\n", secs);
2679
2680 schedule_timeout_uninterruptible(end - jiffies);
2681}
2682
2683/**
2684 * ata_std_prereset - prepare for reset
2685 * @ap: ATA port to be reset
2686 *
2687 * @ap is about to be reset. Initialize it.
2688 *
2689 * LOCKING:
2690 * Kernel thread context (may sleep)
2691 *
2692 * RETURNS:
2693 * 0 on success, -errno otherwise.
2694 */
2695int ata_std_prereset(struct ata_port *ap)
2696{
2697 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2698 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2699 int rc;
2700
28324304
TH
2701 /* handle link resume & hotplug spinup */
2702 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2703 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2704 ehc->i.action |= ATA_EH_HARDRESET;
2705
2706 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2707 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2708 ata_wait_spinup(ap);
f5914a46
TH
2709
2710 /* if we're about to do hardreset, nothing more to do */
2711 if (ehc->i.action & ATA_EH_HARDRESET)
2712 return 0;
2713
2714 /* if SATA, resume phy */
2715 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2716 rc = sata_phy_resume(ap, timing);
2717 if (rc && rc != -EOPNOTSUPP) {
2718 /* phy resume failed */
2719 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2720 "link for reset (errno=%d)\n", rc);
2721 return rc;
2722 }
2723 }
2724
2725 /* Wait for !BSY if the controller can wait for the first D2H
2726 * Reg FIS and we don't know that no device is attached.
2727 */
2728 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2729 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2730
2731 return 0;
2732}
2733
c2bd5804
TH
2734/**
2735 * ata_std_softreset - reset host port via ATA SRST
2736 * @ap: port to reset
c2bd5804
TH
2737 * @classes: resulting classes of attached devices
2738 *
52783c5d 2739 * Reset host port using ATA SRST.
c2bd5804
TH
2740 *
2741 * LOCKING:
2742 * Kernel thread context (may sleep)
2743 *
2744 * RETURNS:
2745 * 0 on success, -errno otherwise.
2746 */
2bf2cb26 2747int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2748{
2749 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2750 unsigned int devmask = 0, err_mask;
2751 u8 err;
2752
2753 DPRINTK("ENTER\n");
2754
81952c54 2755 if (ata_port_offline(ap)) {
3a39746a
TH
2756 classes[0] = ATA_DEV_NONE;
2757 goto out;
2758 }
2759
c2bd5804
TH
2760 /* determine if device 0/1 are present */
2761 if (ata_devchk(ap, 0))
2762 devmask |= (1 << 0);
2763 if (slave_possible && ata_devchk(ap, 1))
2764 devmask |= (1 << 1);
2765
c2bd5804
TH
2766 /* select device 0 again */
2767 ap->ops->dev_select(ap, 0);
2768
2769 /* issue bus reset */
2770 DPRINTK("about to softreset, devmask=%x\n", devmask);
2771 err_mask = ata_bus_softreset(ap, devmask);
2772 if (err_mask) {
f15a1daf
TH
2773 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2774 err_mask);
c2bd5804
TH
2775 return -EIO;
2776 }
2777
2778 /* determine by signature whether we have ATA or ATAPI devices */
2779 classes[0] = ata_dev_try_classify(ap, 0, &err);
2780 if (slave_possible && err != 0x81)
2781 classes[1] = ata_dev_try_classify(ap, 1, &err);
2782
3a39746a 2783 out:
c2bd5804
TH
2784 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2785 return 0;
2786}
2787
2788/**
b6103f6d 2789 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 2790 * @ap: port to reset
b6103f6d 2791 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
2792 *
2793 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2794 *
2795 * LOCKING:
2796 * Kernel thread context (may sleep)
2797 *
2798 * RETURNS:
2799 * 0 on success, -errno otherwise.
2800 */
b6103f6d 2801int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 2802{
852ee16a 2803 u32 scontrol;
81952c54 2804 int rc;
852ee16a 2805
c2bd5804
TH
2806 DPRINTK("ENTER\n");
2807
3c567b7d 2808 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2809 /* SATA spec says nothing about how to reconfigure
2810 * spd. To be on the safe side, turn off phy during
2811 * reconfiguration. This works for at least ICH7 AHCI
2812 * and Sil3124.
2813 */
81952c54 2814 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2815 goto out;
81952c54 2816
a34b6fc0 2817 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2818
2819 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 2820 goto out;
1c3fae4d 2821
3c567b7d 2822 sata_set_spd(ap);
1c3fae4d
TH
2823 }
2824
2825 /* issue phy wake/reset */
81952c54 2826 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2827 goto out;
81952c54 2828
852ee16a 2829 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2830
2831 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 2832 goto out;
c2bd5804 2833
1c3fae4d 2834 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2835 * 10.4.2 says at least 1 ms.
2836 */
2837 msleep(1);
2838
1c3fae4d 2839 /* bring phy back */
b6103f6d
TH
2840 rc = sata_phy_resume(ap, timing);
2841 out:
2842 DPRINTK("EXIT, rc=%d\n", rc);
2843 return rc;
2844}
2845
2846/**
2847 * sata_std_hardreset - reset host port via SATA phy reset
2848 * @ap: port to reset
2849 * @class: resulting class of attached device
2850 *
2851 * SATA phy-reset host port using DET bits of SControl register,
2852 * wait for !BSY and classify the attached device.
2853 *
2854 * LOCKING:
2855 * Kernel thread context (may sleep)
2856 *
2857 * RETURNS:
2858 * 0 on success, -errno otherwise.
2859 */
2860int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2861{
2862 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2863 int rc;
2864
2865 DPRINTK("ENTER\n");
2866
2867 /* do hardreset */
2868 rc = sata_port_hardreset(ap, timing);
2869 if (rc) {
2870 ata_port_printk(ap, KERN_ERR,
2871 "COMRESET failed (errno=%d)\n", rc);
2872 return rc;
2873 }
c2bd5804 2874
c2bd5804 2875 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2876 if (ata_port_offline(ap)) {
c2bd5804
TH
2877 *class = ATA_DEV_NONE;
2878 DPRINTK("EXIT, link offline\n");
2879 return 0;
2880 }
2881
2882 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2883 ata_port_printk(ap, KERN_ERR,
2884 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2885 return -EIO;
2886 }
2887
3a39746a
TH
2888 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2889
c2bd5804
TH
2890 *class = ata_dev_try_classify(ap, 0, NULL);
2891
2892 DPRINTK("EXIT, class=%u\n", *class);
2893 return 0;
2894}
2895
2896/**
2897 * ata_std_postreset - standard postreset callback
2898 * @ap: the target ata_port
2899 * @classes: classes of attached devices
2900 *
2901 * This function is invoked after a successful reset. Note that
2902 * the device might have been reset more than once using
2903 * different reset methods before postreset is invoked.
c2bd5804 2904 *
c2bd5804
TH
2905 * LOCKING:
2906 * Kernel thread context (may sleep)
2907 */
2908void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2909{
dc2b3515
TH
2910 u32 serror;
2911
c2bd5804
TH
2912 DPRINTK("ENTER\n");
2913
c2bd5804 2914 /* print link status */
81952c54 2915 sata_print_link_status(ap);
c2bd5804 2916
dc2b3515
TH
2917 /* clear SError */
2918 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2919 sata_scr_write(ap, SCR_ERROR, serror);
2920
3a39746a 2921 /* re-enable interrupts */
e3180499
TH
2922 if (!ap->ops->error_handler) {
2923 /* FIXME: hack. create a hook instead */
2924 if (ap->ioaddr.ctl_addr)
2925 ata_irq_on(ap);
2926 }
c2bd5804
TH
2927
2928 /* is double-select really necessary? */
2929 if (classes[0] != ATA_DEV_NONE)
2930 ap->ops->dev_select(ap, 1);
2931 if (classes[1] != ATA_DEV_NONE)
2932 ap->ops->dev_select(ap, 0);
2933
3a39746a
TH
2934 /* bail out if no device is present */
2935 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2936 DPRINTK("EXIT, no device\n");
2937 return;
2938 }
2939
2940 /* set up device control */
2941 if (ap->ioaddr.ctl_addr) {
2942 if (ap->flags & ATA_FLAG_MMIO)
2943 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2944 else
2945 outb(ap->ctl, ap->ioaddr.ctl_addr);
2946 }
c2bd5804
TH
2947
2948 DPRINTK("EXIT\n");
2949}
2950
623a3128
TH
2951/**
2952 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2953 * @dev: device to compare against
2954 * @new_class: class of the new device
2955 * @new_id: IDENTIFY page of the new device
2956 *
2957 * Compare @new_class and @new_id against @dev and determine
2958 * whether @dev is the device indicated by @new_class and
2959 * @new_id.
2960 *
2961 * LOCKING:
2962 * None.
2963 *
2964 * RETURNS:
2965 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2966 */
3373efd8
TH
2967static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2968 const u16 *new_id)
623a3128
TH
2969{
2970 const u16 *old_id = dev->id;
2971 unsigned char model[2][41], serial[2][21];
2972 u64 new_n_sectors;
2973
2974 if (dev->class != new_class) {
f15a1daf
TH
2975 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2976 dev->class, new_class);
623a3128
TH
2977 return 0;
2978 }
2979
2980 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2981 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2982 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2983 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2984 new_n_sectors = ata_id_n_sectors(new_id);
2985
2986 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2987 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2988 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2989 return 0;
2990 }
2991
2992 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2993 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2994 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2995 return 0;
2996 }
2997
2998 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2999 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3000 "%llu != %llu\n",
3001 (unsigned long long)dev->n_sectors,
3002 (unsigned long long)new_n_sectors);
623a3128
TH
3003 return 0;
3004 }
3005
3006 return 1;
3007}
3008
3009/**
3010 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
3011 * @dev: device to revalidate
3012 * @post_reset: is this revalidation after reset?
3013 *
3014 * Re-read IDENTIFY page and make sure @dev is still attached to
3015 * the port.
3016 *
3017 * LOCKING:
3018 * Kernel thread context (may sleep)
3019 *
3020 * RETURNS:
3021 * 0 on success, negative errno otherwise
3022 */
3373efd8 3023int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 3024{
5eb45c02 3025 unsigned int class = dev->class;
f15a1daf 3026 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3027 int rc;
3028
5eb45c02
TH
3029 if (!ata_dev_enabled(dev)) {
3030 rc = -ENODEV;
3031 goto fail;
3032 }
623a3128 3033
fe635c7e 3034 /* read ID data */
3373efd8 3035 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
3036 if (rc)
3037 goto fail;
3038
3039 /* is the device still there? */
3373efd8 3040 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3041 rc = -ENODEV;
3042 goto fail;
3043 }
3044
fe635c7e 3045 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3046
3047 /* configure device according to the new ID */
3373efd8 3048 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
3049 if (rc == 0)
3050 return 0;
623a3128
TH
3051
3052 fail:
f15a1daf 3053 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3054 return rc;
3055}
3056
6919a0a6
AC
3057struct ata_blacklist_entry {
3058 const char *model_num;
3059 const char *model_rev;
3060 unsigned long horkage;
3061};
3062
3063static const struct ata_blacklist_entry ata_device_blacklist [] = {
3064 /* Devices with DMA related problems under Linux */
3065 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3066 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3067 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3068 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3069 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3070 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3071 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3072 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3073 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3074 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3075 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3076 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3077 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3078 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3079 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3080 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3081 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3082 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3083 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3084 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3085 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3086 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3087 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3088 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3089 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3090 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3091 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3092 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3093 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3094 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3095
3096 /* Devices we expect to fail diagnostics */
3097
3098 /* Devices where NCQ should be avoided */
3099 /* NCQ is slow */
3100 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3101
3102 /* Devices with NCQ limits */
3103
3104 /* End Marker */
3105 { }
1da177e4 3106};
2e9edbf8 3107
f4b15fef
AC
3108static int ata_strim(char *s, size_t len)
3109{
3110 len = strnlen(s, len);
3111
3112 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3113 while ((len > 0) && (s[len - 1] == ' ')) {
3114 len--;
3115 s[len] = 0;
3116 }
3117 return len;
3118}
1da177e4 3119
6919a0a6 3120unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3121{
f4b15fef
AC
3122 unsigned char model_num[40];
3123 unsigned char model_rev[16];
3124 unsigned int nlen, rlen;
6919a0a6 3125 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3126
f4b15fef
AC
3127 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3128 sizeof(model_num));
3129 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3130 sizeof(model_rev));
3131 nlen = ata_strim(model_num, sizeof(model_num));
3132 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3133
6919a0a6
AC
3134 while (ad->model_num) {
3135 if (!strncmp(ad->model_num, model_num, nlen)) {
3136 if (ad->model_rev == NULL)
3137 return ad->horkage;
3138 if (!strncmp(ad->model_rev, model_rev, rlen))
3139 return ad->horkage;
f4b15fef 3140 }
6919a0a6 3141 ad++;
f4b15fef 3142 }
1da177e4
LT
3143 return 0;
3144}
3145
6919a0a6
AC
3146static int ata_dma_blacklisted(const struct ata_device *dev)
3147{
3148 /* We don't support polling DMA.
3149 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3150 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3151 */
3152 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3153 (dev->flags & ATA_DFLAG_CDB_INTR))
3154 return 1;
3155 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3156}
3157
a6d5a51c
TH
3158/**
3159 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3160 * @dev: Device to compute xfermask for
3161 *
acf356b1
TH
3162 * Compute supported xfermask of @dev and store it in
3163 * dev->*_mask. This function is responsible for applying all
3164 * known limits including host controller limits, device
3165 * blacklist, etc...
a6d5a51c
TH
3166 *
3167 * LOCKING:
3168 * None.
a6d5a51c 3169 */
3373efd8 3170static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3171{
3373efd8 3172 struct ata_port *ap = dev->ap;
cca3974e 3173 struct ata_host *host = ap->host;
a6d5a51c 3174 unsigned long xfer_mask;
1da177e4 3175
37deecb5 3176 /* controller modes available */
565083e1
TH
3177 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3178 ap->mwdma_mask, ap->udma_mask);
3179
3180 /* Apply cable rule here. Don't apply it early because when
3181 * we handle hot plug the cable type can itself change.
3182 */
3183 if (ap->cbl == ATA_CBL_PATA40)
3184 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3185 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3186 * host side are checked drive side as well. Cases where we know a
3187 * 40wire cable is used safely for 80 are not checked here.
3188 */
3189 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3190 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3191
1da177e4 3192
37deecb5
TH
3193 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3194 dev->mwdma_mask, dev->udma_mask);
3195 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3196
b352e57d
AC
3197 /*
3198 * CFA Advanced TrueIDE timings are not allowed on a shared
3199 * cable
3200 */
3201 if (ata_dev_pair(dev)) {
3202 /* No PIO5 or PIO6 */
3203 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3204 /* No MWDMA3 or MWDMA 4 */
3205 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3206 }
3207
37deecb5
TH
3208 if (ata_dma_blacklisted(dev)) {
3209 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3210 ata_dev_printk(dev, KERN_WARNING,
3211 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3212 }
a6d5a51c 3213
cca3974e 3214 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3215 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3216 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3217 "other device, disabling DMA\n");
5444a6f4 3218 }
565083e1 3219
5444a6f4
AC
3220 if (ap->ops->mode_filter)
3221 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3222
565083e1
TH
3223 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3224 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3225}
3226
1da177e4
LT
3227/**
3228 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3229 * @dev: Device to which command will be sent
3230 *
780a87f7
JG
3231 * Issue SET FEATURES - XFER MODE command to device @dev
3232 * on port @ap.
3233 *
1da177e4 3234 * LOCKING:
0cba632b 3235 * PCI/etc. bus probe sem.
83206a29
TH
3236 *
3237 * RETURNS:
3238 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3239 */
3240
3373efd8 3241static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3242{
a0123703 3243 struct ata_taskfile tf;
83206a29 3244 unsigned int err_mask;
1da177e4
LT
3245
3246 /* set up set-features taskfile */
3247 DPRINTK("set features - xfer mode\n");
3248
3373efd8 3249 ata_tf_init(dev, &tf);
a0123703
TH
3250 tf.command = ATA_CMD_SET_FEATURES;
3251 tf.feature = SETFEATURES_XFER;
3252 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3253 tf.protocol = ATA_PROT_NODATA;
3254 tf.nsect = dev->xfer_mode;
1da177e4 3255
3373efd8 3256 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3257
83206a29
TH
3258 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3259 return err_mask;
1da177e4
LT
3260}
3261
8bf62ece
AL
3262/**
3263 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3264 * @dev: Device to which command will be sent
e2a7f77a
RD
3265 * @heads: Number of heads (taskfile parameter)
3266 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3267 *
3268 * LOCKING:
6aff8f1f
TH
3269 * Kernel thread context (may sleep)
3270 *
3271 * RETURNS:
3272 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3273 */
3373efd8
TH
3274static unsigned int ata_dev_init_params(struct ata_device *dev,
3275 u16 heads, u16 sectors)
8bf62ece 3276{
a0123703 3277 struct ata_taskfile tf;
6aff8f1f 3278 unsigned int err_mask;
8bf62ece
AL
3279
3280 /* Number of sectors per track 1-255. Number of heads 1-16 */
3281 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3282 return AC_ERR_INVALID;
8bf62ece
AL
3283
3284 /* set up init dev params taskfile */
3285 DPRINTK("init dev params \n");
3286
3373efd8 3287 ata_tf_init(dev, &tf);
a0123703
TH
3288 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3289 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3290 tf.protocol = ATA_PROT_NODATA;
3291 tf.nsect = sectors;
3292 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3293
3373efd8 3294 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3295
6aff8f1f
TH
3296 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3297 return err_mask;
8bf62ece
AL
3298}
3299
1da177e4 3300/**
0cba632b
JG
3301 * ata_sg_clean - Unmap DMA memory associated with command
3302 * @qc: Command containing DMA memory to be released
3303 *
3304 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3305 *
3306 * LOCKING:
cca3974e 3307 * spin_lock_irqsave(host lock)
1da177e4
LT
3308 */
3309
3310static void ata_sg_clean(struct ata_queued_cmd *qc)
3311{
3312 struct ata_port *ap = qc->ap;
cedc9a47 3313 struct scatterlist *sg = qc->__sg;
1da177e4 3314 int dir = qc->dma_dir;
cedc9a47 3315 void *pad_buf = NULL;
1da177e4 3316
a4631474
TH
3317 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3318 WARN_ON(sg == NULL);
1da177e4
LT
3319
3320 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3321 WARN_ON(qc->n_elem > 1);
1da177e4 3322
2c13b7ce 3323 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3324
cedc9a47
JG
3325 /* if we padded the buffer out to 32-bit bound, and data
3326 * xfer direction is from-device, we must copy from the
3327 * pad buffer back into the supplied buffer
3328 */
3329 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3330 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3331
3332 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3333 if (qc->n_elem)
2f1f610b 3334 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3335 /* restore last sg */
3336 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3337 if (pad_buf) {
3338 struct scatterlist *psg = &qc->pad_sgent;
3339 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3340 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3341 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3342 }
3343 } else {
2e242fa9 3344 if (qc->n_elem)
2f1f610b 3345 dma_unmap_single(ap->dev,
e1410f2d
JG
3346 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3347 dir);
cedc9a47
JG
3348 /* restore sg */
3349 sg->length += qc->pad_len;
3350 if (pad_buf)
3351 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3352 pad_buf, qc->pad_len);
3353 }
1da177e4
LT
3354
3355 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3356 qc->__sg = NULL;
1da177e4
LT
3357}
3358
3359/**
3360 * ata_fill_sg - Fill PCI IDE PRD table
3361 * @qc: Metadata associated with taskfile to be transferred
3362 *
780a87f7
JG
3363 * Fill PCI IDE PRD (scatter-gather) table with segments
3364 * associated with the current disk command.
3365 *
1da177e4 3366 * LOCKING:
cca3974e 3367 * spin_lock_irqsave(host lock)
1da177e4
LT
3368 *
3369 */
3370static void ata_fill_sg(struct ata_queued_cmd *qc)
3371{
1da177e4 3372 struct ata_port *ap = qc->ap;
cedc9a47
JG
3373 struct scatterlist *sg;
3374 unsigned int idx;
1da177e4 3375
a4631474 3376 WARN_ON(qc->__sg == NULL);
f131883e 3377 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3378
3379 idx = 0;
cedc9a47 3380 ata_for_each_sg(sg, qc) {
1da177e4
LT
3381 u32 addr, offset;
3382 u32 sg_len, len;
3383
3384 /* determine if physical DMA addr spans 64K boundary.
3385 * Note h/w doesn't support 64-bit, so we unconditionally
3386 * truncate dma_addr_t to u32.
3387 */
3388 addr = (u32) sg_dma_address(sg);
3389 sg_len = sg_dma_len(sg);
3390
3391 while (sg_len) {
3392 offset = addr & 0xffff;
3393 len = sg_len;
3394 if ((offset + sg_len) > 0x10000)
3395 len = 0x10000 - offset;
3396
3397 ap->prd[idx].addr = cpu_to_le32(addr);
3398 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3399 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3400
3401 idx++;
3402 sg_len -= len;
3403 addr += len;
3404 }
3405 }
3406
3407 if (idx)
3408 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3409}
3410/**
3411 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3412 * @qc: Metadata associated with taskfile to check
3413 *
780a87f7
JG
3414 * Allow low-level driver to filter ATA PACKET commands, returning
3415 * a status indicating whether or not it is OK to use DMA for the
3416 * supplied PACKET command.
3417 *
1da177e4 3418 * LOCKING:
cca3974e 3419 * spin_lock_irqsave(host lock)
0cba632b 3420 *
1da177e4
LT
3421 * RETURNS: 0 when ATAPI DMA can be used
3422 * nonzero otherwise
3423 */
3424int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3425{
3426 struct ata_port *ap = qc->ap;
3427 int rc = 0; /* Assume ATAPI DMA is OK by default */
3428
3429 if (ap->ops->check_atapi_dma)
3430 rc = ap->ops->check_atapi_dma(qc);
3431
3432 return rc;
3433}
3434/**
3435 * ata_qc_prep - Prepare taskfile for submission
3436 * @qc: Metadata associated with taskfile to be prepared
3437 *
780a87f7
JG
3438 * Prepare ATA taskfile for submission.
3439 *
1da177e4 3440 * LOCKING:
cca3974e 3441 * spin_lock_irqsave(host lock)
1da177e4
LT
3442 */
3443void ata_qc_prep(struct ata_queued_cmd *qc)
3444{
3445 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3446 return;
3447
3448 ata_fill_sg(qc);
3449}
3450
e46834cd
BK
3451void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3452
0cba632b
JG
3453/**
3454 * ata_sg_init_one - Associate command with memory buffer
3455 * @qc: Command to be associated
3456 * @buf: Memory buffer
3457 * @buflen: Length of memory buffer, in bytes.
3458 *
3459 * Initialize the data-related elements of queued_cmd @qc
3460 * to point to a single memory buffer, @buf of byte length @buflen.
3461 *
3462 * LOCKING:
cca3974e 3463 * spin_lock_irqsave(host lock)
0cba632b
JG
3464 */
3465
1da177e4
LT
3466void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3467{
3468 struct scatterlist *sg;
3469
3470 qc->flags |= ATA_QCFLAG_SINGLE;
3471
3472 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3473 qc->__sg = &qc->sgent;
1da177e4 3474 qc->n_elem = 1;
cedc9a47 3475 qc->orig_n_elem = 1;
1da177e4 3476 qc->buf_virt = buf;
233277ca 3477 qc->nbytes = buflen;
1da177e4 3478
cedc9a47 3479 sg = qc->__sg;
f0612bbc 3480 sg_init_one(sg, buf, buflen);
1da177e4
LT
3481}
3482
0cba632b
JG
3483/**
3484 * ata_sg_init - Associate command with scatter-gather table.
3485 * @qc: Command to be associated
3486 * @sg: Scatter-gather table.
3487 * @n_elem: Number of elements in s/g table.
3488 *
3489 * Initialize the data-related elements of queued_cmd @qc
3490 * to point to a scatter-gather table @sg, containing @n_elem
3491 * elements.
3492 *
3493 * LOCKING:
cca3974e 3494 * spin_lock_irqsave(host lock)
0cba632b
JG
3495 */
3496
1da177e4
LT
3497void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3498 unsigned int n_elem)
3499{
3500 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3501 qc->__sg = sg;
1da177e4 3502 qc->n_elem = n_elem;
cedc9a47 3503 qc->orig_n_elem = n_elem;
1da177e4
LT
3504}
3505
3506/**
0cba632b
JG
3507 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3508 * @qc: Command with memory buffer to be mapped.
3509 *
3510 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3511 *
3512 * LOCKING:
cca3974e 3513 * spin_lock_irqsave(host lock)
1da177e4
LT
3514 *
3515 * RETURNS:
0cba632b 3516 * Zero on success, negative on error.
1da177e4
LT
3517 */
3518
3519static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3520{
3521 struct ata_port *ap = qc->ap;
3522 int dir = qc->dma_dir;
cedc9a47 3523 struct scatterlist *sg = qc->__sg;
1da177e4 3524 dma_addr_t dma_address;
2e242fa9 3525 int trim_sg = 0;
1da177e4 3526
cedc9a47
JG
3527 /* we must lengthen transfers to end on a 32-bit boundary */
3528 qc->pad_len = sg->length & 3;
3529 if (qc->pad_len) {
3530 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3531 struct scatterlist *psg = &qc->pad_sgent;
3532
a4631474 3533 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3534
3535 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3536
3537 if (qc->tf.flags & ATA_TFLAG_WRITE)
3538 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3539 qc->pad_len);
3540
3541 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3542 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3543 /* trim sg */
3544 sg->length -= qc->pad_len;
2e242fa9
TH
3545 if (sg->length == 0)
3546 trim_sg = 1;
cedc9a47
JG
3547
3548 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3549 sg->length, qc->pad_len);
3550 }
3551
2e242fa9
TH
3552 if (trim_sg) {
3553 qc->n_elem--;
e1410f2d
JG
3554 goto skip_map;
3555 }
3556
2f1f610b 3557 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3558 sg->length, dir);
537a95d9
TH
3559 if (dma_mapping_error(dma_address)) {
3560 /* restore sg */
3561 sg->length += qc->pad_len;
1da177e4 3562 return -1;
537a95d9 3563 }
1da177e4
LT
3564
3565 sg_dma_address(sg) = dma_address;
32529e01 3566 sg_dma_len(sg) = sg->length;
1da177e4 3567
2e242fa9 3568skip_map:
1da177e4
LT
3569 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3570 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3571
3572 return 0;
3573}
3574
3575/**
0cba632b
JG
3576 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3577 * @qc: Command with scatter-gather table to be mapped.
3578 *
3579 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3580 *
3581 * LOCKING:
cca3974e 3582 * spin_lock_irqsave(host lock)
1da177e4
LT
3583 *
3584 * RETURNS:
0cba632b 3585 * Zero on success, negative on error.
1da177e4
LT
3586 *
3587 */
3588
3589static int ata_sg_setup(struct ata_queued_cmd *qc)
3590{
3591 struct ata_port *ap = qc->ap;
cedc9a47
JG
3592 struct scatterlist *sg = qc->__sg;
3593 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3594 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3595
3596 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3597 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3598
cedc9a47
JG
3599 /* we must lengthen transfers to end on a 32-bit boundary */
3600 qc->pad_len = lsg->length & 3;
3601 if (qc->pad_len) {
3602 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3603 struct scatterlist *psg = &qc->pad_sgent;
3604 unsigned int offset;
3605
a4631474 3606 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3607
3608 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3609
3610 /*
3611 * psg->page/offset are used to copy to-be-written
3612 * data in this function or read data in ata_sg_clean.
3613 */
3614 offset = lsg->offset + lsg->length - qc->pad_len;
3615 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3616 psg->offset = offset_in_page(offset);
3617
3618 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3619 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3620 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3621 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3622 }
3623
3624 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3625 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3626 /* trim last sg */
3627 lsg->length -= qc->pad_len;
e1410f2d
JG
3628 if (lsg->length == 0)
3629 trim_sg = 1;
cedc9a47
JG
3630
3631 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3632 qc->n_elem - 1, lsg->length, qc->pad_len);
3633 }
3634
e1410f2d
JG
3635 pre_n_elem = qc->n_elem;
3636 if (trim_sg && pre_n_elem)
3637 pre_n_elem--;
3638
3639 if (!pre_n_elem) {
3640 n_elem = 0;
3641 goto skip_map;
3642 }
3643
1da177e4 3644 dir = qc->dma_dir;
2f1f610b 3645 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3646 if (n_elem < 1) {
3647 /* restore last sg */
3648 lsg->length += qc->pad_len;
1da177e4 3649 return -1;
537a95d9 3650 }
1da177e4
LT
3651
3652 DPRINTK("%d sg elements mapped\n", n_elem);
3653
e1410f2d 3654skip_map:
1da177e4
LT
3655 qc->n_elem = n_elem;
3656
3657 return 0;
3658}
3659
0baab86b 3660/**
c893a3ae 3661 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3662 * @buf: Buffer to swap
3663 * @buf_words: Number of 16-bit words in buffer.
3664 *
3665 * Swap halves of 16-bit words if needed to convert from
3666 * little-endian byte order to native cpu byte order, or
3667 * vice-versa.
3668 *
3669 * LOCKING:
6f0ef4fa 3670 * Inherited from caller.
0baab86b 3671 */
1da177e4
LT
3672void swap_buf_le16(u16 *buf, unsigned int buf_words)
3673{
3674#ifdef __BIG_ENDIAN
3675 unsigned int i;
3676
3677 for (i = 0; i < buf_words; i++)
3678 buf[i] = le16_to_cpu(buf[i]);
3679#endif /* __BIG_ENDIAN */
3680}
3681
6ae4cfb5
AL
3682/**
3683 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3684 * @adev: device for this I/O
6ae4cfb5
AL
3685 * @buf: data buffer
3686 * @buflen: buffer length
344babaa 3687 * @write_data: read/write
6ae4cfb5
AL
3688 *
3689 * Transfer data from/to the device data register by MMIO.
3690 *
3691 * LOCKING:
3692 * Inherited from caller.
6ae4cfb5
AL
3693 */
3694
88574551 3695void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3696 unsigned int buflen, int write_data)
1da177e4 3697{
a6b2c5d4 3698 struct ata_port *ap = adev->ap;
1da177e4
LT
3699 unsigned int i;
3700 unsigned int words = buflen >> 1;
3701 u16 *buf16 = (u16 *) buf;
3702 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3703
6ae4cfb5 3704 /* Transfer multiple of 2 bytes */
1da177e4
LT
3705 if (write_data) {
3706 for (i = 0; i < words; i++)
3707 writew(le16_to_cpu(buf16[i]), mmio);
3708 } else {
3709 for (i = 0; i < words; i++)
3710 buf16[i] = cpu_to_le16(readw(mmio));
3711 }
6ae4cfb5
AL
3712
3713 /* Transfer trailing 1 byte, if any. */
3714 if (unlikely(buflen & 0x01)) {
3715 u16 align_buf[1] = { 0 };
3716 unsigned char *trailing_buf = buf + buflen - 1;
3717
3718 if (write_data) {
3719 memcpy(align_buf, trailing_buf, 1);
3720 writew(le16_to_cpu(align_buf[0]), mmio);
3721 } else {
3722 align_buf[0] = cpu_to_le16(readw(mmio));
3723 memcpy(trailing_buf, align_buf, 1);
3724 }
3725 }
1da177e4
LT
3726}
3727
6ae4cfb5
AL
3728/**
3729 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3730 * @adev: device to target
6ae4cfb5
AL
3731 * @buf: data buffer
3732 * @buflen: buffer length
344babaa 3733 * @write_data: read/write
6ae4cfb5
AL
3734 *
3735 * Transfer data from/to the device data register by PIO.
3736 *
3737 * LOCKING:
3738 * Inherited from caller.
6ae4cfb5
AL
3739 */
3740
88574551 3741void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3742 unsigned int buflen, int write_data)
1da177e4 3743{
a6b2c5d4 3744 struct ata_port *ap = adev->ap;
6ae4cfb5 3745 unsigned int words = buflen >> 1;
1da177e4 3746
6ae4cfb5 3747 /* Transfer multiple of 2 bytes */
1da177e4 3748 if (write_data)
6ae4cfb5 3749 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3750 else
6ae4cfb5
AL
3751 insw(ap->ioaddr.data_addr, buf, words);
3752
3753 /* Transfer trailing 1 byte, if any. */
3754 if (unlikely(buflen & 0x01)) {
3755 u16 align_buf[1] = { 0 };
3756 unsigned char *trailing_buf = buf + buflen - 1;
3757
3758 if (write_data) {
3759 memcpy(align_buf, trailing_buf, 1);
3760 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3761 } else {
3762 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3763 memcpy(trailing_buf, align_buf, 1);
3764 }
3765 }
1da177e4
LT
3766}
3767
75e99585
AC
3768/**
3769 * ata_pio_data_xfer_noirq - Transfer data by PIO
3770 * @adev: device to target
3771 * @buf: data buffer
3772 * @buflen: buffer length
3773 * @write_data: read/write
3774 *
88574551 3775 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3776 * transfer with interrupts disabled.
3777 *
3778 * LOCKING:
3779 * Inherited from caller.
3780 */
3781
3782void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3783 unsigned int buflen, int write_data)
3784{
3785 unsigned long flags;
3786 local_irq_save(flags);
3787 ata_pio_data_xfer(adev, buf, buflen, write_data);
3788 local_irq_restore(flags);
3789}
3790
3791
6ae4cfb5
AL
3792/**
3793 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3794 * @qc: Command on going
3795 *
3796 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3797 *
3798 * LOCKING:
3799 * Inherited from caller.
3800 */
3801
1da177e4
LT
3802static void ata_pio_sector(struct ata_queued_cmd *qc)
3803{
3804 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3805 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3806 struct ata_port *ap = qc->ap;
3807 struct page *page;
3808 unsigned int offset;
3809 unsigned char *buf;
3810
3811 if (qc->cursect == (qc->nsect - 1))
14be71f4 3812 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3813
3814 page = sg[qc->cursg].page;
3815 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3816
3817 /* get the current page and offset */
3818 page = nth_page(page, (offset >> PAGE_SHIFT));
3819 offset %= PAGE_SIZE;
3820
1da177e4
LT
3821 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3822
91b8b313
AL
3823 if (PageHighMem(page)) {
3824 unsigned long flags;
3825
a6b2c5d4 3826 /* FIXME: use a bounce buffer */
91b8b313
AL
3827 local_irq_save(flags);
3828 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3829
91b8b313 3830 /* do the actual data transfer */
a6b2c5d4 3831 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3832
91b8b313
AL
3833 kunmap_atomic(buf, KM_IRQ0);
3834 local_irq_restore(flags);
3835 } else {
3836 buf = page_address(page);
a6b2c5d4 3837 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3838 }
1da177e4
LT
3839
3840 qc->cursect++;
3841 qc->cursg_ofs++;
3842
32529e01 3843 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3844 qc->cursg++;
3845 qc->cursg_ofs = 0;
3846 }
1da177e4 3847}
1da177e4 3848
07f6f7d0
AL
3849/**
3850 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3851 * @qc: Command on going
3852 *
c81e29b4 3853 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3854 * ATA device for the DRQ request.
3855 *
3856 * LOCKING:
3857 * Inherited from caller.
3858 */
1da177e4 3859
07f6f7d0
AL
3860static void ata_pio_sectors(struct ata_queued_cmd *qc)
3861{
3862 if (is_multi_taskfile(&qc->tf)) {
3863 /* READ/WRITE MULTIPLE */
3864 unsigned int nsect;
3865
587005de 3866 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3867
07f6f7d0
AL
3868 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3869 while (nsect--)
3870 ata_pio_sector(qc);
3871 } else
3872 ata_pio_sector(qc);
3873}
3874
c71c1857
AL
3875/**
3876 * atapi_send_cdb - Write CDB bytes to hardware
3877 * @ap: Port to which ATAPI device is attached.
3878 * @qc: Taskfile currently active
3879 *
3880 * When device has indicated its readiness to accept
3881 * a CDB, this function is called. Send the CDB.
3882 *
3883 * LOCKING:
3884 * caller.
3885 */
3886
3887static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3888{
3889 /* send SCSI cdb */
3890 DPRINTK("send cdb\n");
db024d53 3891 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3892
a6b2c5d4 3893 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3894 ata_altstatus(ap); /* flush */
3895
3896 switch (qc->tf.protocol) {
3897 case ATA_PROT_ATAPI:
3898 ap->hsm_task_state = HSM_ST;
3899 break;
3900 case ATA_PROT_ATAPI_NODATA:
3901 ap->hsm_task_state = HSM_ST_LAST;
3902 break;
3903 case ATA_PROT_ATAPI_DMA:
3904 ap->hsm_task_state = HSM_ST_LAST;
3905 /* initiate bmdma */
3906 ap->ops->bmdma_start(qc);
3907 break;
3908 }
1da177e4
LT
3909}
3910
6ae4cfb5
AL
3911/**
3912 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3913 * @qc: Command on going
3914 * @bytes: number of bytes
3915 *
3916 * Transfer Transfer data from/to the ATAPI device.
3917 *
3918 * LOCKING:
3919 * Inherited from caller.
3920 *
3921 */
3922
1da177e4
LT
3923static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3924{
3925 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3926 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3927 struct ata_port *ap = qc->ap;
3928 struct page *page;
3929 unsigned char *buf;
3930 unsigned int offset, count;
3931
563a6e1f 3932 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3933 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3934
3935next_sg:
563a6e1f 3936 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3937 /*
563a6e1f
AL
3938 * The end of qc->sg is reached and the device expects
3939 * more data to transfer. In order not to overrun qc->sg
3940 * and fulfill length specified in the byte count register,
3941 * - for read case, discard trailing data from the device
3942 * - for write case, padding zero data to the device
3943 */
3944 u16 pad_buf[1] = { 0 };
3945 unsigned int words = bytes >> 1;
3946 unsigned int i;
3947
3948 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3949 ata_dev_printk(qc->dev, KERN_WARNING,
3950 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3951
3952 for (i = 0; i < words; i++)
a6b2c5d4 3953 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3954
14be71f4 3955 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3956 return;
3957 }
3958
cedc9a47 3959 sg = &qc->__sg[qc->cursg];
1da177e4 3960
1da177e4
LT
3961 page = sg->page;
3962 offset = sg->offset + qc->cursg_ofs;
3963
3964 /* get the current page and offset */
3965 page = nth_page(page, (offset >> PAGE_SHIFT));
3966 offset %= PAGE_SIZE;
3967
6952df03 3968 /* don't overrun current sg */
32529e01 3969 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3970
3971 /* don't cross page boundaries */
3972 count = min(count, (unsigned int)PAGE_SIZE - offset);
3973
7282aa4b
AL
3974 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3975
91b8b313
AL
3976 if (PageHighMem(page)) {
3977 unsigned long flags;
3978
a6b2c5d4 3979 /* FIXME: use bounce buffer */
91b8b313
AL
3980 local_irq_save(flags);
3981 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3982
91b8b313 3983 /* do the actual data transfer */
a6b2c5d4 3984 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3985
91b8b313
AL
3986 kunmap_atomic(buf, KM_IRQ0);
3987 local_irq_restore(flags);
3988 } else {
3989 buf = page_address(page);
a6b2c5d4 3990 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3991 }
1da177e4
LT
3992
3993 bytes -= count;
3994 qc->curbytes += count;
3995 qc->cursg_ofs += count;
3996
32529e01 3997 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3998 qc->cursg++;
3999 qc->cursg_ofs = 0;
4000 }
4001
563a6e1f 4002 if (bytes)
1da177e4 4003 goto next_sg;
1da177e4
LT
4004}
4005
6ae4cfb5
AL
4006/**
4007 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4008 * @qc: Command on going
4009 *
4010 * Transfer Transfer data from/to the ATAPI device.
4011 *
4012 * LOCKING:
4013 * Inherited from caller.
6ae4cfb5
AL
4014 */
4015
1da177e4
LT
4016static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4017{
4018 struct ata_port *ap = qc->ap;
4019 struct ata_device *dev = qc->dev;
4020 unsigned int ireason, bc_lo, bc_hi, bytes;
4021 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4022
eec4c3f3
AL
4023 /* Abuse qc->result_tf for temp storage of intermediate TF
4024 * here to save some kernel stack usage.
4025 * For normal completion, qc->result_tf is not relevant. For
4026 * error, qc->result_tf is later overwritten by ata_qc_complete().
4027 * So, the correctness of qc->result_tf is not affected.
4028 */
4029 ap->ops->tf_read(ap, &qc->result_tf);
4030 ireason = qc->result_tf.nsect;
4031 bc_lo = qc->result_tf.lbam;
4032 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4033 bytes = (bc_hi << 8) | bc_lo;
4034
4035 /* shall be cleared to zero, indicating xfer of data */
4036 if (ireason & (1 << 0))
4037 goto err_out;
4038
4039 /* make sure transfer direction matches expected */
4040 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4041 if (do_write != i_write)
4042 goto err_out;
4043
312f7da2
AL
4044 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4045
1da177e4
LT
4046 __atapi_pio_bytes(qc, bytes);
4047
4048 return;
4049
4050err_out:
f15a1daf 4051 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4052 qc->err_mask |= AC_ERR_HSM;
14be71f4 4053 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4054}
4055
4056/**
c234fb00
AL
4057 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4058 * @ap: the target ata_port
4059 * @qc: qc on going
1da177e4 4060 *
c234fb00
AL
4061 * RETURNS:
4062 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4063 */
c234fb00
AL
4064
4065static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4066{
c234fb00
AL
4067 if (qc->tf.flags & ATA_TFLAG_POLLING)
4068 return 1;
1da177e4 4069
c234fb00
AL
4070 if (ap->hsm_task_state == HSM_ST_FIRST) {
4071 if (qc->tf.protocol == ATA_PROT_PIO &&
4072 (qc->tf.flags & ATA_TFLAG_WRITE))
4073 return 1;
1da177e4 4074
c234fb00
AL
4075 if (is_atapi_taskfile(&qc->tf) &&
4076 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4077 return 1;
fe79e683
AL
4078 }
4079
c234fb00
AL
4080 return 0;
4081}
1da177e4 4082
c17ea20d
TH
4083/**
4084 * ata_hsm_qc_complete - finish a qc running on standard HSM
4085 * @qc: Command to complete
4086 * @in_wq: 1 if called from workqueue, 0 otherwise
4087 *
4088 * Finish @qc which is running on standard HSM.
4089 *
4090 * LOCKING:
cca3974e 4091 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4092 * Otherwise, none on entry and grabs host lock.
4093 */
4094static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4095{
4096 struct ata_port *ap = qc->ap;
4097 unsigned long flags;
4098
4099 if (ap->ops->error_handler) {
4100 if (in_wq) {
ba6a1308 4101 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4102
cca3974e
JG
4103 /* EH might have kicked in while host lock is
4104 * released.
c17ea20d
TH
4105 */
4106 qc = ata_qc_from_tag(ap, qc->tag);
4107 if (qc) {
4108 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4109 ata_irq_on(ap);
4110 ata_qc_complete(qc);
4111 } else
4112 ata_port_freeze(ap);
4113 }
4114
ba6a1308 4115 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4116 } else {
4117 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4118 ata_qc_complete(qc);
4119 else
4120 ata_port_freeze(ap);
4121 }
4122 } else {
4123 if (in_wq) {
ba6a1308 4124 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4125 ata_irq_on(ap);
4126 ata_qc_complete(qc);
ba6a1308 4127 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4128 } else
4129 ata_qc_complete(qc);
4130 }
1da177e4 4131
c81e29b4 4132 ata_altstatus(ap); /* flush */
c17ea20d
TH
4133}
4134
bb5cb290
AL
4135/**
4136 * ata_hsm_move - move the HSM to the next state.
4137 * @ap: the target ata_port
4138 * @qc: qc on going
4139 * @status: current device status
4140 * @in_wq: 1 if called from workqueue, 0 otherwise
4141 *
4142 * RETURNS:
4143 * 1 when poll next status needed, 0 otherwise.
4144 */
9a1004d0
TH
4145int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4146 u8 status, int in_wq)
e2cec771 4147{
bb5cb290
AL
4148 unsigned long flags = 0;
4149 int poll_next;
4150
6912ccd5
AL
4151 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4152
bb5cb290
AL
4153 /* Make sure ata_qc_issue_prot() does not throw things
4154 * like DMA polling into the workqueue. Notice that
4155 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4156 */
c234fb00 4157 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4158
e2cec771 4159fsm_start:
999bb6f4
AL
4160 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4161 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4162
e2cec771
AL
4163 switch (ap->hsm_task_state) {
4164 case HSM_ST_FIRST:
bb5cb290
AL
4165 /* Send first data block or PACKET CDB */
4166
4167 /* If polling, we will stay in the work queue after
4168 * sending the data. Otherwise, interrupt handler
4169 * takes over after sending the data.
4170 */
4171 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4172
e2cec771 4173 /* check device status */
3655d1d3
AL
4174 if (unlikely((status & ATA_DRQ) == 0)) {
4175 /* handle BSY=0, DRQ=0 as error */
4176 if (likely(status & (ATA_ERR | ATA_DF)))
4177 /* device stops HSM for abort/error */
4178 qc->err_mask |= AC_ERR_DEV;
4179 else
4180 /* HSM violation. Let EH handle this */
4181 qc->err_mask |= AC_ERR_HSM;
4182
14be71f4 4183 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4184 goto fsm_start;
1da177e4
LT
4185 }
4186
71601958
AL
4187 /* Device should not ask for data transfer (DRQ=1)
4188 * when it finds something wrong.
eee6c32f
AL
4189 * We ignore DRQ here and stop the HSM by
4190 * changing hsm_task_state to HSM_ST_ERR and
4191 * let the EH abort the command or reset the device.
71601958
AL
4192 */
4193 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4194 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4195 ap->id, status);
3655d1d3 4196 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4197 ap->hsm_task_state = HSM_ST_ERR;
4198 goto fsm_start;
71601958 4199 }
1da177e4 4200
bb5cb290
AL
4201 /* Send the CDB (atapi) or the first data block (ata pio out).
4202 * During the state transition, interrupt handler shouldn't
4203 * be invoked before the data transfer is complete and
4204 * hsm_task_state is changed. Hence, the following locking.
4205 */
4206 if (in_wq)
ba6a1308 4207 spin_lock_irqsave(ap->lock, flags);
1da177e4 4208
bb5cb290
AL
4209 if (qc->tf.protocol == ATA_PROT_PIO) {
4210 /* PIO data out protocol.
4211 * send first data block.
4212 */
0565c26d 4213
bb5cb290
AL
4214 /* ata_pio_sectors() might change the state
4215 * to HSM_ST_LAST. so, the state is changed here
4216 * before ata_pio_sectors().
4217 */
4218 ap->hsm_task_state = HSM_ST;
4219 ata_pio_sectors(qc);
4220 ata_altstatus(ap); /* flush */
4221 } else
4222 /* send CDB */
4223 atapi_send_cdb(ap, qc);
4224
4225 if (in_wq)
ba6a1308 4226 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4227
4228 /* if polling, ata_pio_task() handles the rest.
4229 * otherwise, interrupt handler takes over from here.
4230 */
e2cec771 4231 break;
1c848984 4232
e2cec771
AL
4233 case HSM_ST:
4234 /* complete command or read/write the data register */
4235 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4236 /* ATAPI PIO protocol */
4237 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4238 /* No more data to transfer or device error.
4239 * Device error will be tagged in HSM_ST_LAST.
4240 */
e2cec771
AL
4241 ap->hsm_task_state = HSM_ST_LAST;
4242 goto fsm_start;
4243 }
1da177e4 4244
71601958
AL
4245 /* Device should not ask for data transfer (DRQ=1)
4246 * when it finds something wrong.
eee6c32f
AL
4247 * We ignore DRQ here and stop the HSM by
4248 * changing hsm_task_state to HSM_ST_ERR and
4249 * let the EH abort the command or reset the device.
71601958
AL
4250 */
4251 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4252 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4253 ap->id, status);
3655d1d3 4254 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4255 ap->hsm_task_state = HSM_ST_ERR;
4256 goto fsm_start;
71601958 4257 }
1da177e4 4258
e2cec771 4259 atapi_pio_bytes(qc);
7fb6ec28 4260
e2cec771
AL
4261 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4262 /* bad ireason reported by device */
4263 goto fsm_start;
1da177e4 4264
e2cec771
AL
4265 } else {
4266 /* ATA PIO protocol */
4267 if (unlikely((status & ATA_DRQ) == 0)) {
4268 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4269 if (likely(status & (ATA_ERR | ATA_DF)))
4270 /* device stops HSM for abort/error */
4271 qc->err_mask |= AC_ERR_DEV;
4272 else
4273 /* HSM violation. Let EH handle this */
4274 qc->err_mask |= AC_ERR_HSM;
4275
e2cec771
AL
4276 ap->hsm_task_state = HSM_ST_ERR;
4277 goto fsm_start;
4278 }
1da177e4 4279
eee6c32f
AL
4280 /* For PIO reads, some devices may ask for
4281 * data transfer (DRQ=1) alone with ERR=1.
4282 * We respect DRQ here and transfer one
4283 * block of junk data before changing the
4284 * hsm_task_state to HSM_ST_ERR.
4285 *
4286 * For PIO writes, ERR=1 DRQ=1 doesn't make
4287 * sense since the data block has been
4288 * transferred to the device.
71601958
AL
4289 */
4290 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4291 /* data might be corrputed */
4292 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4293
4294 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4295 ata_pio_sectors(qc);
4296 ata_altstatus(ap);
4297 status = ata_wait_idle(ap);
4298 }
4299
3655d1d3
AL
4300 if (status & (ATA_BUSY | ATA_DRQ))
4301 qc->err_mask |= AC_ERR_HSM;
4302
eee6c32f
AL
4303 /* ata_pio_sectors() might change the
4304 * state to HSM_ST_LAST. so, the state
4305 * is changed after ata_pio_sectors().
4306 */
4307 ap->hsm_task_state = HSM_ST_ERR;
4308 goto fsm_start;
71601958
AL
4309 }
4310
e2cec771
AL
4311 ata_pio_sectors(qc);
4312
4313 if (ap->hsm_task_state == HSM_ST_LAST &&
4314 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4315 /* all data read */
4316 ata_altstatus(ap);
52a32205 4317 status = ata_wait_idle(ap);
e2cec771
AL
4318 goto fsm_start;
4319 }
4320 }
4321
4322 ata_altstatus(ap); /* flush */
bb5cb290 4323 poll_next = 1;
1da177e4
LT
4324 break;
4325
14be71f4 4326 case HSM_ST_LAST:
6912ccd5
AL
4327 if (unlikely(!ata_ok(status))) {
4328 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4329 ap->hsm_task_state = HSM_ST_ERR;
4330 goto fsm_start;
4331 }
4332
4333 /* no more data to transfer */
4332a771
AL
4334 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4335 ap->id, qc->dev->devno, status);
e2cec771 4336
6912ccd5
AL
4337 WARN_ON(qc->err_mask);
4338
e2cec771 4339 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4340
e2cec771 4341 /* complete taskfile transaction */
c17ea20d 4342 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4343
4344 poll_next = 0;
1da177e4
LT
4345 break;
4346
14be71f4 4347 case HSM_ST_ERR:
e2cec771
AL
4348 /* make sure qc->err_mask is available to
4349 * know what's wrong and recover
4350 */
4351 WARN_ON(qc->err_mask == 0);
4352
4353 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4354
999bb6f4 4355 /* complete taskfile transaction */
c17ea20d 4356 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4357
4358 poll_next = 0;
e2cec771
AL
4359 break;
4360 default:
bb5cb290 4361 poll_next = 0;
6912ccd5 4362 BUG();
1da177e4
LT
4363 }
4364
bb5cb290 4365 return poll_next;
1da177e4
LT
4366}
4367
1da177e4 4368static void ata_pio_task(void *_data)
8061f5f0 4369{
c91af2c8
TH
4370 struct ata_queued_cmd *qc = _data;
4371 struct ata_port *ap = qc->ap;
8061f5f0 4372 u8 status;
a1af3734 4373 int poll_next;
8061f5f0 4374
7fb6ec28 4375fsm_start:
a1af3734 4376 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4377
a1af3734
AL
4378 /*
4379 * This is purely heuristic. This is a fast path.
4380 * Sometimes when we enter, BSY will be cleared in
4381 * a chk-status or two. If not, the drive is probably seeking
4382 * or something. Snooze for a couple msecs, then
4383 * chk-status again. If still busy, queue delayed work.
4384 */
4385 status = ata_busy_wait(ap, ATA_BUSY, 5);
4386 if (status & ATA_BUSY) {
4387 msleep(2);
4388 status = ata_busy_wait(ap, ATA_BUSY, 10);
4389 if (status & ATA_BUSY) {
31ce6dae 4390 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4391 return;
4392 }
8061f5f0
TH
4393 }
4394
a1af3734
AL
4395 /* move the HSM */
4396 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4397
a1af3734
AL
4398 /* another command or interrupt handler
4399 * may be running at this point.
4400 */
4401 if (poll_next)
7fb6ec28 4402 goto fsm_start;
8061f5f0
TH
4403}
4404
1da177e4
LT
4405/**
4406 * ata_qc_new - Request an available ATA command, for queueing
4407 * @ap: Port associated with device @dev
4408 * @dev: Device from whom we request an available command structure
4409 *
4410 * LOCKING:
0cba632b 4411 * None.
1da177e4
LT
4412 */
4413
4414static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4415{
4416 struct ata_queued_cmd *qc = NULL;
4417 unsigned int i;
4418
e3180499 4419 /* no command while frozen */
b51e9e5d 4420 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4421 return NULL;
4422
2ab7db1f
TH
4423 /* the last tag is reserved for internal command. */
4424 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4425 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4426 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4427 break;
4428 }
4429
4430 if (qc)
4431 qc->tag = i;
4432
4433 return qc;
4434}
4435
4436/**
4437 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4438 * @dev: Device from whom we request an available command structure
4439 *
4440 * LOCKING:
0cba632b 4441 * None.
1da177e4
LT
4442 */
4443
3373efd8 4444struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4445{
3373efd8 4446 struct ata_port *ap = dev->ap;
1da177e4
LT
4447 struct ata_queued_cmd *qc;
4448
4449 qc = ata_qc_new(ap);
4450 if (qc) {
1da177e4
LT
4451 qc->scsicmd = NULL;
4452 qc->ap = ap;
4453 qc->dev = dev;
1da177e4 4454
2c13b7ce 4455 ata_qc_reinit(qc);
1da177e4
LT
4456 }
4457
4458 return qc;
4459}
4460
1da177e4
LT
4461/**
4462 * ata_qc_free - free unused ata_queued_cmd
4463 * @qc: Command to complete
4464 *
4465 * Designed to free unused ata_queued_cmd object
4466 * in case something prevents using it.
4467 *
4468 * LOCKING:
cca3974e 4469 * spin_lock_irqsave(host lock)
1da177e4
LT
4470 */
4471void ata_qc_free(struct ata_queued_cmd *qc)
4472{
4ba946e9
TH
4473 struct ata_port *ap = qc->ap;
4474 unsigned int tag;
4475
a4631474 4476 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4477
4ba946e9
TH
4478 qc->flags = 0;
4479 tag = qc->tag;
4480 if (likely(ata_tag_valid(tag))) {
4ba946e9 4481 qc->tag = ATA_TAG_POISON;
6cec4a39 4482 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4483 }
1da177e4
LT
4484}
4485
76014427 4486void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4487{
dedaf2b0
TH
4488 struct ata_port *ap = qc->ap;
4489
a4631474
TH
4490 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4491 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4492
4493 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4494 ata_sg_clean(qc);
4495
7401abf2 4496 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4497 if (qc->tf.protocol == ATA_PROT_NCQ)
4498 ap->sactive &= ~(1 << qc->tag);
4499 else
4500 ap->active_tag = ATA_TAG_POISON;
7401abf2 4501
3f3791d3
AL
4502 /* atapi: mark qc as inactive to prevent the interrupt handler
4503 * from completing the command twice later, before the error handler
4504 * is called. (when rc != 0 and atapi request sense is needed)
4505 */
4506 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4507 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4508
1da177e4 4509 /* call completion callback */
77853bf2 4510 qc->complete_fn(qc);
1da177e4
LT
4511}
4512
f686bcb8
TH
4513/**
4514 * ata_qc_complete - Complete an active ATA command
4515 * @qc: Command to complete
4516 * @err_mask: ATA Status register contents
4517 *
4518 * Indicate to the mid and upper layers that an ATA
4519 * command has completed, with either an ok or not-ok status.
4520 *
4521 * LOCKING:
cca3974e 4522 * spin_lock_irqsave(host lock)
f686bcb8
TH
4523 */
4524void ata_qc_complete(struct ata_queued_cmd *qc)
4525{
4526 struct ata_port *ap = qc->ap;
4527
4528 /* XXX: New EH and old EH use different mechanisms to
4529 * synchronize EH with regular execution path.
4530 *
4531 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4532 * Normal execution path is responsible for not accessing a
4533 * failed qc. libata core enforces the rule by returning NULL
4534 * from ata_qc_from_tag() for failed qcs.
4535 *
4536 * Old EH depends on ata_qc_complete() nullifying completion
4537 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4538 * not synchronize with interrupt handler. Only PIO task is
4539 * taken care of.
4540 */
4541 if (ap->ops->error_handler) {
b51e9e5d 4542 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4543
4544 if (unlikely(qc->err_mask))
4545 qc->flags |= ATA_QCFLAG_FAILED;
4546
4547 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4548 if (!ata_tag_internal(qc->tag)) {
4549 /* always fill result TF for failed qc */
4550 ap->ops->tf_read(ap, &qc->result_tf);
4551 ata_qc_schedule_eh(qc);
4552 return;
4553 }
4554 }
4555
4556 /* read result TF if requested */
4557 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4558 ap->ops->tf_read(ap, &qc->result_tf);
4559
4560 __ata_qc_complete(qc);
4561 } else {
4562 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4563 return;
4564
4565 /* read result TF if failed or requested */
4566 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4567 ap->ops->tf_read(ap, &qc->result_tf);
4568
4569 __ata_qc_complete(qc);
4570 }
4571}
4572
dedaf2b0
TH
4573/**
4574 * ata_qc_complete_multiple - Complete multiple qcs successfully
4575 * @ap: port in question
4576 * @qc_active: new qc_active mask
4577 * @finish_qc: LLDD callback invoked before completing a qc
4578 *
4579 * Complete in-flight commands. This functions is meant to be
4580 * called from low-level driver's interrupt routine to complete
4581 * requests normally. ap->qc_active and @qc_active is compared
4582 * and commands are completed accordingly.
4583 *
4584 * LOCKING:
cca3974e 4585 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4586 *
4587 * RETURNS:
4588 * Number of completed commands on success, -errno otherwise.
4589 */
4590int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4591 void (*finish_qc)(struct ata_queued_cmd *))
4592{
4593 int nr_done = 0;
4594 u32 done_mask;
4595 int i;
4596
4597 done_mask = ap->qc_active ^ qc_active;
4598
4599 if (unlikely(done_mask & qc_active)) {
4600 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4601 "(%08x->%08x)\n", ap->qc_active, qc_active);
4602 return -EINVAL;
4603 }
4604
4605 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4606 struct ata_queued_cmd *qc;
4607
4608 if (!(done_mask & (1 << i)))
4609 continue;
4610
4611 if ((qc = ata_qc_from_tag(ap, i))) {
4612 if (finish_qc)
4613 finish_qc(qc);
4614 ata_qc_complete(qc);
4615 nr_done++;
4616 }
4617 }
4618
4619 return nr_done;
4620}
4621
1da177e4
LT
4622static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4623{
4624 struct ata_port *ap = qc->ap;
4625
4626 switch (qc->tf.protocol) {
3dc1d881 4627 case ATA_PROT_NCQ:
1da177e4
LT
4628 case ATA_PROT_DMA:
4629 case ATA_PROT_ATAPI_DMA:
4630 return 1;
4631
4632 case ATA_PROT_ATAPI:
4633 case ATA_PROT_PIO:
1da177e4
LT
4634 if (ap->flags & ATA_FLAG_PIO_DMA)
4635 return 1;
4636
4637 /* fall through */
4638
4639 default:
4640 return 0;
4641 }
4642
4643 /* never reached */
4644}
4645
4646/**
4647 * ata_qc_issue - issue taskfile to device
4648 * @qc: command to issue to device
4649 *
4650 * Prepare an ATA command to submission to device.
4651 * This includes mapping the data into a DMA-able
4652 * area, filling in the S/G table, and finally
4653 * writing the taskfile to hardware, starting the command.
4654 *
4655 * LOCKING:
cca3974e 4656 * spin_lock_irqsave(host lock)
1da177e4 4657 */
8e0e694a 4658void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4659{
4660 struct ata_port *ap = qc->ap;
4661
dedaf2b0
TH
4662 /* Make sure only one non-NCQ command is outstanding. The
4663 * check is skipped for old EH because it reuses active qc to
4664 * request ATAPI sense.
4665 */
4666 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4667
4668 if (qc->tf.protocol == ATA_PROT_NCQ) {
4669 WARN_ON(ap->sactive & (1 << qc->tag));
4670 ap->sactive |= 1 << qc->tag;
4671 } else {
4672 WARN_ON(ap->sactive);
4673 ap->active_tag = qc->tag;
4674 }
4675
e4a70e76 4676 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4677 ap->qc_active |= 1 << qc->tag;
e4a70e76 4678
1da177e4
LT
4679 if (ata_should_dma_map(qc)) {
4680 if (qc->flags & ATA_QCFLAG_SG) {
4681 if (ata_sg_setup(qc))
8e436af9 4682 goto sg_err;
1da177e4
LT
4683 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4684 if (ata_sg_setup_one(qc))
8e436af9 4685 goto sg_err;
1da177e4
LT
4686 }
4687 } else {
4688 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4689 }
4690
4691 ap->ops->qc_prep(qc);
4692
8e0e694a
TH
4693 qc->err_mask |= ap->ops->qc_issue(qc);
4694 if (unlikely(qc->err_mask))
4695 goto err;
4696 return;
1da177e4 4697
8e436af9
TH
4698sg_err:
4699 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4700 qc->err_mask |= AC_ERR_SYSTEM;
4701err:
4702 ata_qc_complete(qc);
1da177e4
LT
4703}
4704
4705/**
4706 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4707 * @qc: command to issue to device
4708 *
4709 * Using various libata functions and hooks, this function
4710 * starts an ATA command. ATA commands are grouped into
4711 * classes called "protocols", and issuing each type of protocol
4712 * is slightly different.
4713 *
0baab86b
EF
4714 * May be used as the qc_issue() entry in ata_port_operations.
4715 *
1da177e4 4716 * LOCKING:
cca3974e 4717 * spin_lock_irqsave(host lock)
1da177e4
LT
4718 *
4719 * RETURNS:
9a3d9eb0 4720 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4721 */
4722
9a3d9eb0 4723unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4724{
4725 struct ata_port *ap = qc->ap;
4726
e50362ec
AL
4727 /* Use polling pio if the LLD doesn't handle
4728 * interrupt driven pio and atapi CDB interrupt.
4729 */
4730 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4731 switch (qc->tf.protocol) {
4732 case ATA_PROT_PIO:
4733 case ATA_PROT_ATAPI:
4734 case ATA_PROT_ATAPI_NODATA:
4735 qc->tf.flags |= ATA_TFLAG_POLLING;
4736 break;
4737 case ATA_PROT_ATAPI_DMA:
4738 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4739 /* see ata_dma_blacklisted() */
e50362ec
AL
4740 BUG();
4741 break;
4742 default:
4743 break;
4744 }
4745 }
4746
312f7da2 4747 /* select the device */
1da177e4
LT
4748 ata_dev_select(ap, qc->dev->devno, 1, 0);
4749
312f7da2 4750 /* start the command */
1da177e4
LT
4751 switch (qc->tf.protocol) {
4752 case ATA_PROT_NODATA:
312f7da2
AL
4753 if (qc->tf.flags & ATA_TFLAG_POLLING)
4754 ata_qc_set_polling(qc);
4755
e5338254 4756 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4757 ap->hsm_task_state = HSM_ST_LAST;
4758
4759 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4760 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4761
1da177e4
LT
4762 break;
4763
4764 case ATA_PROT_DMA:
587005de 4765 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4766
1da177e4
LT
4767 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4768 ap->ops->bmdma_setup(qc); /* set up bmdma */
4769 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4770 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4771 break;
4772
312f7da2
AL
4773 case ATA_PROT_PIO:
4774 if (qc->tf.flags & ATA_TFLAG_POLLING)
4775 ata_qc_set_polling(qc);
1da177e4 4776
e5338254 4777 ata_tf_to_host(ap, &qc->tf);
312f7da2 4778
54f00389
AL
4779 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4780 /* PIO data out protocol */
4781 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4782 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4783
4784 /* always send first data block using
e27486db 4785 * the ata_pio_task() codepath.
54f00389 4786 */
312f7da2 4787 } else {
54f00389
AL
4788 /* PIO data in protocol */
4789 ap->hsm_task_state = HSM_ST;
4790
4791 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4792 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4793
4794 /* if polling, ata_pio_task() handles the rest.
4795 * otherwise, interrupt handler takes over from here.
4796 */
312f7da2
AL
4797 }
4798
1da177e4
LT
4799 break;
4800
1da177e4 4801 case ATA_PROT_ATAPI:
1da177e4 4802 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4803 if (qc->tf.flags & ATA_TFLAG_POLLING)
4804 ata_qc_set_polling(qc);
4805
e5338254 4806 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4807
312f7da2
AL
4808 ap->hsm_task_state = HSM_ST_FIRST;
4809
4810 /* send cdb by polling if no cdb interrupt */
4811 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4812 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4813 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4814 break;
4815
4816 case ATA_PROT_ATAPI_DMA:
587005de 4817 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4818
1da177e4
LT
4819 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4820 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4821 ap->hsm_task_state = HSM_ST_FIRST;
4822
4823 /* send cdb by polling if no cdb interrupt */
4824 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4825 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4826 break;
4827
4828 default:
4829 WARN_ON(1);
9a3d9eb0 4830 return AC_ERR_SYSTEM;
1da177e4
LT
4831 }
4832
4833 return 0;
4834}
4835
1da177e4
LT
4836/**
4837 * ata_host_intr - Handle host interrupt for given (port, task)
4838 * @ap: Port on which interrupt arrived (possibly...)
4839 * @qc: Taskfile currently active in engine
4840 *
4841 * Handle host interrupt for given queued command. Currently,
4842 * only DMA interrupts are handled. All other commands are
4843 * handled via polling with interrupts disabled (nIEN bit).
4844 *
4845 * LOCKING:
cca3974e 4846 * spin_lock_irqsave(host lock)
1da177e4
LT
4847 *
4848 * RETURNS:
4849 * One if interrupt was handled, zero if not (shared irq).
4850 */
4851
4852inline unsigned int ata_host_intr (struct ata_port *ap,
4853 struct ata_queued_cmd *qc)
4854{
312f7da2 4855 u8 status, host_stat = 0;
1da177e4 4856
312f7da2
AL
4857 VPRINTK("ata%u: protocol %d task_state %d\n",
4858 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4859
312f7da2
AL
4860 /* Check whether we are expecting interrupt in this state */
4861 switch (ap->hsm_task_state) {
4862 case HSM_ST_FIRST:
6912ccd5
AL
4863 /* Some pre-ATAPI-4 devices assert INTRQ
4864 * at this state when ready to receive CDB.
4865 */
1da177e4 4866
312f7da2
AL
4867 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4868 * The flag was turned on only for atapi devices.
4869 * No need to check is_atapi_taskfile(&qc->tf) again.
4870 */
4871 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4872 goto idle_irq;
1da177e4 4873 break;
312f7da2
AL
4874 case HSM_ST_LAST:
4875 if (qc->tf.protocol == ATA_PROT_DMA ||
4876 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4877 /* check status of DMA engine */
4878 host_stat = ap->ops->bmdma_status(ap);
4879 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4880
4881 /* if it's not our irq... */
4882 if (!(host_stat & ATA_DMA_INTR))
4883 goto idle_irq;
4884
4885 /* before we do anything else, clear DMA-Start bit */
4886 ap->ops->bmdma_stop(qc);
a4f16610
AL
4887
4888 if (unlikely(host_stat & ATA_DMA_ERR)) {
4889 /* error when transfering data to/from memory */
4890 qc->err_mask |= AC_ERR_HOST_BUS;
4891 ap->hsm_task_state = HSM_ST_ERR;
4892 }
312f7da2
AL
4893 }
4894 break;
4895 case HSM_ST:
4896 break;
1da177e4
LT
4897 default:
4898 goto idle_irq;
4899 }
4900
312f7da2
AL
4901 /* check altstatus */
4902 status = ata_altstatus(ap);
4903 if (status & ATA_BUSY)
4904 goto idle_irq;
1da177e4 4905
312f7da2
AL
4906 /* check main status, clearing INTRQ */
4907 status = ata_chk_status(ap);
4908 if (unlikely(status & ATA_BUSY))
4909 goto idle_irq;
1da177e4 4910
312f7da2
AL
4911 /* ack bmdma irq events */
4912 ap->ops->irq_clear(ap);
1da177e4 4913
bb5cb290 4914 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4915 return 1; /* irq handled */
4916
4917idle_irq:
4918 ap->stats.idle_irq++;
4919
4920#ifdef ATA_IRQ_TRAP
4921 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4922 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4923 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4924 return 1;
1da177e4
LT
4925 }
4926#endif
4927 return 0; /* irq not handled */
4928}
4929
4930/**
4931 * ata_interrupt - Default ATA host interrupt handler
0cba632b 4932 * @irq: irq line (unused)
cca3974e 4933 * @dev_instance: pointer to our ata_host information structure
1da177e4 4934 *
0cba632b
JG
4935 * Default interrupt handler for PCI IDE devices. Calls
4936 * ata_host_intr() for each port that is not disabled.
4937 *
1da177e4 4938 * LOCKING:
cca3974e 4939 * Obtains host lock during operation.
1da177e4
LT
4940 *
4941 * RETURNS:
0cba632b 4942 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4943 */
4944
7d12e780 4945irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 4946{
cca3974e 4947 struct ata_host *host = dev_instance;
1da177e4
LT
4948 unsigned int i;
4949 unsigned int handled = 0;
4950 unsigned long flags;
4951
4952 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 4953 spin_lock_irqsave(&host->lock, flags);
1da177e4 4954
cca3974e 4955 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
4956 struct ata_port *ap;
4957
cca3974e 4958 ap = host->ports[i];
c1389503 4959 if (ap &&
029f5468 4960 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4961 struct ata_queued_cmd *qc;
4962
4963 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4964 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4965 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4966 handled |= ata_host_intr(ap, qc);
4967 }
4968 }
4969
cca3974e 4970 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
4971
4972 return IRQ_RETVAL(handled);
4973}
4974
34bf2170
TH
4975/**
4976 * sata_scr_valid - test whether SCRs are accessible
4977 * @ap: ATA port to test SCR accessibility for
4978 *
4979 * Test whether SCRs are accessible for @ap.
4980 *
4981 * LOCKING:
4982 * None.
4983 *
4984 * RETURNS:
4985 * 1 if SCRs are accessible, 0 otherwise.
4986 */
4987int sata_scr_valid(struct ata_port *ap)
4988{
4989 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4990}
4991
4992/**
4993 * sata_scr_read - read SCR register of the specified port
4994 * @ap: ATA port to read SCR for
4995 * @reg: SCR to read
4996 * @val: Place to store read value
4997 *
4998 * Read SCR register @reg of @ap into *@val. This function is
4999 * guaranteed to succeed if the cable type of the port is SATA
5000 * and the port implements ->scr_read.
5001 *
5002 * LOCKING:
5003 * None.
5004 *
5005 * RETURNS:
5006 * 0 on success, negative errno on failure.
5007 */
5008int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5009{
5010 if (sata_scr_valid(ap)) {
5011 *val = ap->ops->scr_read(ap, reg);
5012 return 0;
5013 }
5014 return -EOPNOTSUPP;
5015}
5016
5017/**
5018 * sata_scr_write - write SCR register of the specified port
5019 * @ap: ATA port to write SCR for
5020 * @reg: SCR to write
5021 * @val: value to write
5022 *
5023 * Write @val to SCR register @reg of @ap. This function is
5024 * guaranteed to succeed if the cable type of the port is SATA
5025 * and the port implements ->scr_read.
5026 *
5027 * LOCKING:
5028 * None.
5029 *
5030 * RETURNS:
5031 * 0 on success, negative errno on failure.
5032 */
5033int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5034{
5035 if (sata_scr_valid(ap)) {
5036 ap->ops->scr_write(ap, reg, val);
5037 return 0;
5038 }
5039 return -EOPNOTSUPP;
5040}
5041
5042/**
5043 * sata_scr_write_flush - write SCR register of the specified port and flush
5044 * @ap: ATA port to write SCR for
5045 * @reg: SCR to write
5046 * @val: value to write
5047 *
5048 * This function is identical to sata_scr_write() except that this
5049 * function performs flush after writing to the register.
5050 *
5051 * LOCKING:
5052 * None.
5053 *
5054 * RETURNS:
5055 * 0 on success, negative errno on failure.
5056 */
5057int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5058{
5059 if (sata_scr_valid(ap)) {
5060 ap->ops->scr_write(ap, reg, val);
5061 ap->ops->scr_read(ap, reg);
5062 return 0;
5063 }
5064 return -EOPNOTSUPP;
5065}
5066
5067/**
5068 * ata_port_online - test whether the given port is online
5069 * @ap: ATA port to test
5070 *
5071 * Test whether @ap is online. Note that this function returns 0
5072 * if online status of @ap cannot be obtained, so
5073 * ata_port_online(ap) != !ata_port_offline(ap).
5074 *
5075 * LOCKING:
5076 * None.
5077 *
5078 * RETURNS:
5079 * 1 if the port online status is available and online.
5080 */
5081int ata_port_online(struct ata_port *ap)
5082{
5083 u32 sstatus;
5084
5085 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5086 return 1;
5087 return 0;
5088}
5089
5090/**
5091 * ata_port_offline - test whether the given port is offline
5092 * @ap: ATA port to test
5093 *
5094 * Test whether @ap is offline. Note that this function returns
5095 * 0 if offline status of @ap cannot be obtained, so
5096 * ata_port_online(ap) != !ata_port_offline(ap).
5097 *
5098 * LOCKING:
5099 * None.
5100 *
5101 * RETURNS:
5102 * 1 if the port offline status is available and offline.
5103 */
5104int ata_port_offline(struct ata_port *ap)
5105{
5106 u32 sstatus;
5107
5108 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5109 return 1;
5110 return 0;
5111}
0baab86b 5112
77b08fb5 5113int ata_flush_cache(struct ata_device *dev)
9b847548 5114{
977e6b9f 5115 unsigned int err_mask;
9b847548
JA
5116 u8 cmd;
5117
5118 if (!ata_try_flush_cache(dev))
5119 return 0;
5120
5121 if (ata_id_has_flush_ext(dev->id))
5122 cmd = ATA_CMD_FLUSH_EXT;
5123 else
5124 cmd = ATA_CMD_FLUSH;
5125
977e6b9f
TH
5126 err_mask = ata_do_simple_cmd(dev, cmd);
5127 if (err_mask) {
5128 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5129 return -EIO;
5130 }
5131
5132 return 0;
9b847548
JA
5133}
5134
cca3974e
JG
5135static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5136 unsigned int action, unsigned int ehi_flags,
5137 int wait)
500530f6
TH
5138{
5139 unsigned long flags;
5140 int i, rc;
5141
cca3974e
JG
5142 for (i = 0; i < host->n_ports; i++) {
5143 struct ata_port *ap = host->ports[i];
500530f6
TH
5144
5145 /* Previous resume operation might still be in
5146 * progress. Wait for PM_PENDING to clear.
5147 */
5148 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5149 ata_port_wait_eh(ap);
5150 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5151 }
5152
5153 /* request PM ops to EH */
5154 spin_lock_irqsave(ap->lock, flags);
5155
5156 ap->pm_mesg = mesg;
5157 if (wait) {
5158 rc = 0;
5159 ap->pm_result = &rc;
5160 }
5161
5162 ap->pflags |= ATA_PFLAG_PM_PENDING;
5163 ap->eh_info.action |= action;
5164 ap->eh_info.flags |= ehi_flags;
5165
5166 ata_port_schedule_eh(ap);
5167
5168 spin_unlock_irqrestore(ap->lock, flags);
5169
5170 /* wait and check result */
5171 if (wait) {
5172 ata_port_wait_eh(ap);
5173 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5174 if (rc)
5175 return rc;
5176 }
5177 }
5178
5179 return 0;
5180}
5181
5182/**
cca3974e
JG
5183 * ata_host_suspend - suspend host
5184 * @host: host to suspend
500530f6
TH
5185 * @mesg: PM message
5186 *
cca3974e 5187 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5188 * function requests EH to perform PM operations and waits for EH
5189 * to finish.
5190 *
5191 * LOCKING:
5192 * Kernel thread context (may sleep).
5193 *
5194 * RETURNS:
5195 * 0 on success, -errno on failure.
5196 */
cca3974e 5197int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5198{
5199 int i, j, rc;
5200
cca3974e 5201 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5202 if (rc)
5203 goto fail;
5204
5205 /* EH is quiescent now. Fail if we have any ready device.
5206 * This happens if hotplug occurs between completion of device
5207 * suspension and here.
5208 */
cca3974e
JG
5209 for (i = 0; i < host->n_ports; i++) {
5210 struct ata_port *ap = host->ports[i];
500530f6
TH
5211
5212 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5213 struct ata_device *dev = &ap->device[j];
5214
5215 if (ata_dev_ready(dev)) {
5216 ata_port_printk(ap, KERN_WARNING,
5217 "suspend failed, device %d "
5218 "still active\n", dev->devno);
5219 rc = -EBUSY;
5220 goto fail;
5221 }
5222 }
5223 }
5224
cca3974e 5225 host->dev->power.power_state = mesg;
500530f6
TH
5226 return 0;
5227
5228 fail:
cca3974e 5229 ata_host_resume(host);
500530f6
TH
5230 return rc;
5231}
5232
5233/**
cca3974e
JG
5234 * ata_host_resume - resume host
5235 * @host: host to resume
500530f6 5236 *
cca3974e 5237 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5238 * function requests EH to perform PM operations and returns.
5239 * Note that all resume operations are performed parallely.
5240 *
5241 * LOCKING:
5242 * Kernel thread context (may sleep).
5243 */
cca3974e 5244void ata_host_resume(struct ata_host *host)
500530f6 5245{
cca3974e
JG
5246 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5247 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5248 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5249}
5250
c893a3ae
RD
5251/**
5252 * ata_port_start - Set port up for dma.
5253 * @ap: Port to initialize
5254 *
5255 * Called just after data structures for each port are
5256 * initialized. Allocates space for PRD table.
5257 *
5258 * May be used as the port_start() entry in ata_port_operations.
5259 *
5260 * LOCKING:
5261 * Inherited from caller.
5262 */
5263
1da177e4
LT
5264int ata_port_start (struct ata_port *ap)
5265{
2f1f610b 5266 struct device *dev = ap->dev;
6037d6bb 5267 int rc;
1da177e4
LT
5268
5269 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5270 if (!ap->prd)
5271 return -ENOMEM;
5272
6037d6bb
JG
5273 rc = ata_pad_alloc(ap, dev);
5274 if (rc) {
cedc9a47 5275 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5276 return rc;
cedc9a47
JG
5277 }
5278
1da177e4
LT
5279 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5280
5281 return 0;
5282}
5283
0baab86b
EF
5284
5285/**
5286 * ata_port_stop - Undo ata_port_start()
5287 * @ap: Port to shut down
5288 *
5289 * Frees the PRD table.
5290 *
5291 * May be used as the port_stop() entry in ata_port_operations.
5292 *
5293 * LOCKING:
6f0ef4fa 5294 * Inherited from caller.
0baab86b
EF
5295 */
5296
1da177e4
LT
5297void ata_port_stop (struct ata_port *ap)
5298{
2f1f610b 5299 struct device *dev = ap->dev;
1da177e4
LT
5300
5301 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5302 ata_pad_free(ap, dev);
1da177e4
LT
5303}
5304
cca3974e 5305void ata_host_stop (struct ata_host *host)
aa8f0dc6 5306{
cca3974e
JG
5307 if (host->mmio_base)
5308 iounmap(host->mmio_base);
aa8f0dc6
JG
5309}
5310
3ef3b43d
TH
5311/**
5312 * ata_dev_init - Initialize an ata_device structure
5313 * @dev: Device structure to initialize
5314 *
5315 * Initialize @dev in preparation for probing.
5316 *
5317 * LOCKING:
5318 * Inherited from caller.
5319 */
5320void ata_dev_init(struct ata_device *dev)
5321{
5322 struct ata_port *ap = dev->ap;
72fa4b74
TH
5323 unsigned long flags;
5324
5a04bf4b
TH
5325 /* SATA spd limit is bound to the first device */
5326 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5327
72fa4b74
TH
5328 /* High bits of dev->flags are used to record warm plug
5329 * requests which occur asynchronously. Synchronize using
cca3974e 5330 * host lock.
72fa4b74 5331 */
ba6a1308 5332 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5333 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5334 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5335
72fa4b74
TH
5336 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5337 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5338 dev->pio_mask = UINT_MAX;
5339 dev->mwdma_mask = UINT_MAX;
5340 dev->udma_mask = UINT_MAX;
5341}
5342
1da177e4 5343/**
155a8a9c 5344 * ata_port_init - Initialize an ata_port structure
1da177e4 5345 * @ap: Structure to initialize
cca3974e 5346 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5347 * @ent: Probe information provided by low-level driver
5348 * @port_no: Port number associated with this ata_port
5349 *
155a8a9c 5350 * Initialize a new ata_port structure.
0cba632b 5351 *
1da177e4 5352 * LOCKING:
0cba632b 5353 * Inherited from caller.
1da177e4 5354 */
cca3974e 5355void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5356 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5357{
5358 unsigned int i;
5359
cca3974e 5360 ap->lock = &host->lock;
198e0fed 5361 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5362 ap->id = ata_unique_id++;
1da177e4 5363 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5364 ap->host = host;
2f1f610b 5365 ap->dev = ent->dev;
1da177e4 5366 ap->port_no = port_no;
fea63e38
TH
5367 if (port_no == 1 && ent->pinfo2) {
5368 ap->pio_mask = ent->pinfo2->pio_mask;
5369 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5370 ap->udma_mask = ent->pinfo2->udma_mask;
5371 ap->flags |= ent->pinfo2->flags;
5372 ap->ops = ent->pinfo2->port_ops;
5373 } else {
5374 ap->pio_mask = ent->pio_mask;
5375 ap->mwdma_mask = ent->mwdma_mask;
5376 ap->udma_mask = ent->udma_mask;
5377 ap->flags |= ent->port_flags;
5378 ap->ops = ent->port_ops;
5379 }
5a04bf4b 5380 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5381 ap->active_tag = ATA_TAG_POISON;
5382 ap->last_ctl = 0xFF;
bd5d825c
BP
5383
5384#if defined(ATA_VERBOSE_DEBUG)
5385 /* turn on all debugging levels */
5386 ap->msg_enable = 0x00FF;
5387#elif defined(ATA_DEBUG)
5388 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5389#else
0dd4b21f 5390 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5391#endif
1da177e4 5392
86e45b6b 5393 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5394 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5395 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5396 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5397 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5398
838df628
TH
5399 /* set cable type */
5400 ap->cbl = ATA_CBL_NONE;
5401 if (ap->flags & ATA_FLAG_SATA)
5402 ap->cbl = ATA_CBL_SATA;
5403
acf356b1
TH
5404 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5405 struct ata_device *dev = &ap->device[i];
38d87234 5406 dev->ap = ap;
72fa4b74 5407 dev->devno = i;
3ef3b43d 5408 ata_dev_init(dev);
acf356b1 5409 }
1da177e4
LT
5410
5411#ifdef ATA_IRQ_TRAP
5412 ap->stats.unhandled_irq = 1;
5413 ap->stats.idle_irq = 1;
5414#endif
5415
5416 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5417}
5418
155a8a9c 5419/**
4608c160
TH
5420 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5421 * @ap: ATA port to initialize SCSI host for
5422 * @shost: SCSI host associated with @ap
155a8a9c 5423 *
4608c160 5424 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5425 *
5426 * LOCKING:
5427 * Inherited from caller.
5428 */
4608c160 5429static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5430{
cca3974e 5431 ap->scsi_host = shost;
155a8a9c 5432
4608c160
TH
5433 shost->unique_id = ap->id;
5434 shost->max_id = 16;
5435 shost->max_lun = 1;
5436 shost->max_channel = 1;
5437 shost->max_cmd_len = 12;
155a8a9c
BK
5438}
5439
1da177e4 5440/**
996139f1 5441 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5442 * @ent: Information provided by low-level driver
cca3974e 5443 * @host: Collections of ports to which we add
1da177e4
LT
5444 * @port_no: Port number associated with this host
5445 *
0cba632b
JG
5446 * Attach low-level ATA driver to system.
5447 *
1da177e4 5448 * LOCKING:
0cba632b 5449 * PCI/etc. bus probe sem.
1da177e4
LT
5450 *
5451 * RETURNS:
0cba632b 5452 * New ata_port on success, for NULL on error.
1da177e4 5453 */
996139f1 5454static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5455 struct ata_host *host,
1da177e4
LT
5456 unsigned int port_no)
5457{
996139f1 5458 struct Scsi_Host *shost;
1da177e4 5459 struct ata_port *ap;
1da177e4
LT
5460
5461 DPRINTK("ENTER\n");
aec5c3c1 5462
52783c5d 5463 if (!ent->port_ops->error_handler &&
cca3974e 5464 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5465 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5466 port_no);
5467 return NULL;
5468 }
5469
996139f1
JG
5470 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5471 if (!shost)
1da177e4
LT
5472 return NULL;
5473
996139f1 5474 shost->transportt = &ata_scsi_transport_template;
30afc84c 5475
996139f1 5476 ap = ata_shost_to_port(shost);
1da177e4 5477
cca3974e 5478 ata_port_init(ap, host, ent, port_no);
996139f1 5479 ata_port_init_shost(ap, shost);
1da177e4 5480
1da177e4 5481 return ap;
1da177e4
LT
5482}
5483
b03732f0 5484/**
cca3974e
JG
5485 * ata_sas_host_init - Initialize a host struct
5486 * @host: host to initialize
5487 * @dev: device host is attached to
5488 * @flags: host flags
5489 * @ops: port_ops
b03732f0
BK
5490 *
5491 * LOCKING:
5492 * PCI/etc. bus probe sem.
5493 *
5494 */
5495
cca3974e
JG
5496void ata_host_init(struct ata_host *host, struct device *dev,
5497 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5498{
cca3974e
JG
5499 spin_lock_init(&host->lock);
5500 host->dev = dev;
5501 host->flags = flags;
5502 host->ops = ops;
b03732f0
BK
5503}
5504
1da177e4 5505/**
0cba632b
JG
5506 * ata_device_add - Register hardware device with ATA and SCSI layers
5507 * @ent: Probe information describing hardware device to be registered
5508 *
5509 * This function processes the information provided in the probe
5510 * information struct @ent, allocates the necessary ATA and SCSI
5511 * host information structures, initializes them, and registers
5512 * everything with requisite kernel subsystems.
5513 *
5514 * This function requests irqs, probes the ATA bus, and probes
5515 * the SCSI bus.
1da177e4
LT
5516 *
5517 * LOCKING:
0cba632b 5518 * PCI/etc. bus probe sem.
1da177e4
LT
5519 *
5520 * RETURNS:
0cba632b 5521 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5522 */
057ace5e 5523int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5524{
6d0500df 5525 unsigned int i;
1da177e4 5526 struct device *dev = ent->dev;
cca3974e 5527 struct ata_host *host;
39b07ce6 5528 int rc;
1da177e4
LT
5529
5530 DPRINTK("ENTER\n");
02f076aa
AC
5531
5532 if (ent->irq == 0) {
5533 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5534 return 0;
5535 }
1da177e4 5536 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5537 host = kzalloc(sizeof(struct ata_host) +
5538 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5539 if (!host)
1da177e4 5540 return 0;
1da177e4 5541
cca3974e
JG
5542 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5543 host->n_ports = ent->n_ports;
5544 host->irq = ent->irq;
5545 host->irq2 = ent->irq2;
5546 host->mmio_base = ent->mmio_base;
5547 host->private_data = ent->private_data;
1da177e4
LT
5548
5549 /* register each port bound to this device */
cca3974e 5550 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5551 struct ata_port *ap;
5552 unsigned long xfer_mode_mask;
2ec7df04 5553 int irq_line = ent->irq;
1da177e4 5554
cca3974e 5555 ap = ata_port_add(ent, host, i);
c38778c3 5556 host->ports[i] = ap;
1da177e4
LT
5557 if (!ap)
5558 goto err_out;
5559
dd5b06c4
TH
5560 /* dummy? */
5561 if (ent->dummy_port_mask & (1 << i)) {
5562 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5563 ap->ops = &ata_dummy_port_ops;
5564 continue;
5565 }
5566
5567 /* start port */
5568 rc = ap->ops->port_start(ap);
5569 if (rc) {
cca3974e
JG
5570 host->ports[i] = NULL;
5571 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5572 goto err_out;
5573 }
5574
2ec7df04
AC
5575 /* Report the secondary IRQ for second channel legacy */
5576 if (i == 1 && ent->irq2)
5577 irq_line = ent->irq2;
5578
1da177e4
LT
5579 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5580 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5581 (ap->pio_mask << ATA_SHIFT_PIO);
5582
5583 /* print per-port info to dmesg */
f15a1daf 5584 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5585 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5586 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5587 ata_mode_string(xfer_mode_mask),
5588 ap->ioaddr.cmd_addr,
5589 ap->ioaddr.ctl_addr,
5590 ap->ioaddr.bmdma_addr,
2ec7df04 5591 irq_line);
1da177e4
LT
5592
5593 ata_chk_status(ap);
cca3974e 5594 host->ops->irq_clear(ap);
e3180499 5595 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5596 }
5597
2ec7df04 5598 /* obtain irq, that may be shared between channels */
39b07ce6 5599 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5600 DRV_NAME, host);
39b07ce6
JG
5601 if (rc) {
5602 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5603 ent->irq, rc);
1da177e4 5604 goto err_out;
39b07ce6 5605 }
1da177e4 5606
2ec7df04
AC
5607 /* do we have a second IRQ for the other channel, eg legacy mode */
5608 if (ent->irq2) {
5609 /* We will get weird core code crashes later if this is true
5610 so trap it now */
5611 BUG_ON(ent->irq == ent->irq2);
5612
5613 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5614 DRV_NAME, host);
2ec7df04
AC
5615 if (rc) {
5616 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5617 ent->irq2, rc);
5618 goto err_out_free_irq;
5619 }
5620 }
5621
1da177e4
LT
5622 /* perform each probe synchronously */
5623 DPRINTK("probe begin\n");
cca3974e
JG
5624 for (i = 0; i < host->n_ports; i++) {
5625 struct ata_port *ap = host->ports[i];
5a04bf4b 5626 u32 scontrol;
1da177e4
LT
5627 int rc;
5628
5a04bf4b
TH
5629 /* init sata_spd_limit to the current value */
5630 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5631 int spd = (scontrol >> 4) & 0xf;
5632 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5633 }
5634 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5635
cca3974e 5636 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5637 if (rc) {
f15a1daf 5638 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5639 /* FIXME: do something useful here */
5640 /* FIXME: handle unconditional calls to
5641 * scsi_scan_host and ata_host_remove, below,
5642 * at the very least
5643 */
5644 }
3e706399 5645
52783c5d 5646 if (ap->ops->error_handler) {
1cdaf534 5647 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5648 unsigned long flags;
5649
5650 ata_port_probe(ap);
5651
5652 /* kick EH for boot probing */
ba6a1308 5653 spin_lock_irqsave(ap->lock, flags);
3e706399 5654
1cdaf534
TH
5655 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5656 ehi->action |= ATA_EH_SOFTRESET;
5657 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5658
b51e9e5d 5659 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5660 ata_port_schedule_eh(ap);
5661
ba6a1308 5662 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5663
5664 /* wait for EH to finish */
5665 ata_port_wait_eh(ap);
5666 } else {
5667 DPRINTK("ata%u: bus probe begin\n", ap->id);
5668 rc = ata_bus_probe(ap);
5669 DPRINTK("ata%u: bus probe end\n", ap->id);
5670
5671 if (rc) {
5672 /* FIXME: do something useful here?
5673 * Current libata behavior will
5674 * tear down everything when
5675 * the module is removed
5676 * or the h/w is unplugged.
5677 */
5678 }
5679 }
1da177e4
LT
5680 }
5681
5682 /* probes are done, now scan each port's disk(s) */
c893a3ae 5683 DPRINTK("host probe begin\n");
cca3974e
JG
5684 for (i = 0; i < host->n_ports; i++) {
5685 struct ata_port *ap = host->ports[i];
1da177e4 5686
644dd0cc 5687 ata_scsi_scan_host(ap);
1da177e4
LT
5688 }
5689
cca3974e 5690 dev_set_drvdata(dev, host);
1da177e4
LT
5691
5692 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5693 return ent->n_ports; /* success */
5694
2ec7df04 5695err_out_free_irq:
cca3974e 5696 free_irq(ent->irq, host);
1da177e4 5697err_out:
cca3974e
JG
5698 for (i = 0; i < host->n_ports; i++) {
5699 struct ata_port *ap = host->ports[i];
77f3f879
TH
5700 if (ap) {
5701 ap->ops->port_stop(ap);
cca3974e 5702 scsi_host_put(ap->scsi_host);
77f3f879 5703 }
1da177e4 5704 }
6d0500df 5705
cca3974e 5706 kfree(host);
1da177e4
LT
5707 VPRINTK("EXIT, returning 0\n");
5708 return 0;
5709}
5710
720ba126
TH
5711/**
5712 * ata_port_detach - Detach ATA port in prepration of device removal
5713 * @ap: ATA port to be detached
5714 *
5715 * Detach all ATA devices and the associated SCSI devices of @ap;
5716 * then, remove the associated SCSI host. @ap is guaranteed to
5717 * be quiescent on return from this function.
5718 *
5719 * LOCKING:
5720 * Kernel thread context (may sleep).
5721 */
5722void ata_port_detach(struct ata_port *ap)
5723{
5724 unsigned long flags;
5725 int i;
5726
5727 if (!ap->ops->error_handler)
c3cf30a9 5728 goto skip_eh;
720ba126
TH
5729
5730 /* tell EH we're leaving & flush EH */
ba6a1308 5731 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5732 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5733 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5734
5735 ata_port_wait_eh(ap);
5736
5737 /* EH is now guaranteed to see UNLOADING, so no new device
5738 * will be attached. Disable all existing devices.
5739 */
ba6a1308 5740 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5741
5742 for (i = 0; i < ATA_MAX_DEVICES; i++)
5743 ata_dev_disable(&ap->device[i]);
5744
ba6a1308 5745 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5746
5747 /* Final freeze & EH. All in-flight commands are aborted. EH
5748 * will be skipped and retrials will be terminated with bad
5749 * target.
5750 */
ba6a1308 5751 spin_lock_irqsave(ap->lock, flags);
720ba126 5752 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5753 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5754
5755 ata_port_wait_eh(ap);
5756
5757 /* Flush hotplug task. The sequence is similar to
5758 * ata_port_flush_task().
5759 */
5760 flush_workqueue(ata_aux_wq);
5761 cancel_delayed_work(&ap->hotplug_task);
5762 flush_workqueue(ata_aux_wq);
5763
c3cf30a9 5764 skip_eh:
720ba126 5765 /* remove the associated SCSI host */
cca3974e 5766 scsi_remove_host(ap->scsi_host);
720ba126
TH
5767}
5768
17b14451 5769/**
cca3974e
JG
5770 * ata_host_remove - PCI layer callback for device removal
5771 * @host: ATA host set that was removed
17b14451 5772 *
2e9edbf8 5773 * Unregister all objects associated with this host set. Free those
17b14451
AC
5774 * objects.
5775 *
5776 * LOCKING:
5777 * Inherited from calling layer (may sleep).
5778 */
5779
cca3974e 5780void ata_host_remove(struct ata_host *host)
17b14451 5781{
17b14451
AC
5782 unsigned int i;
5783
cca3974e
JG
5784 for (i = 0; i < host->n_ports; i++)
5785 ata_port_detach(host->ports[i]);
17b14451 5786
cca3974e
JG
5787 free_irq(host->irq, host);
5788 if (host->irq2)
5789 free_irq(host->irq2, host);
17b14451 5790
cca3974e
JG
5791 for (i = 0; i < host->n_ports; i++) {
5792 struct ata_port *ap = host->ports[i];
17b14451 5793
cca3974e 5794 ata_scsi_release(ap->scsi_host);
17b14451
AC
5795
5796 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5797 struct ata_ioports *ioaddr = &ap->ioaddr;
5798
2ec7df04
AC
5799 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5800 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5801 release_region(ATA_PRIMARY_CMD, 8);
5802 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5803 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5804 }
5805
cca3974e 5806 scsi_host_put(ap->scsi_host);
17b14451
AC
5807 }
5808
cca3974e
JG
5809 if (host->ops->host_stop)
5810 host->ops->host_stop(host);
17b14451 5811
cca3974e 5812 kfree(host);
17b14451
AC
5813}
5814
1da177e4
LT
5815/**
5816 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 5817 * @shost: libata host to be unloaded
1da177e4
LT
5818 *
5819 * Performs all duties necessary to shut down a libata port...
5820 * Kill port kthread, disable port, and release resources.
5821 *
5822 * LOCKING:
5823 * Inherited from SCSI layer.
5824 *
5825 * RETURNS:
5826 * One.
5827 */
5828
cca3974e 5829int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 5830{
cca3974e 5831 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
5832
5833 DPRINTK("ENTER\n");
5834
5835 ap->ops->port_disable(ap);
6543bc07 5836 ap->ops->port_stop(ap);
1da177e4
LT
5837
5838 DPRINTK("EXIT\n");
5839 return 1;
5840}
5841
f6d950e2
BK
5842struct ata_probe_ent *
5843ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5844{
5845 struct ata_probe_ent *probe_ent;
5846
5847 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5848 if (!probe_ent) {
5849 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5850 kobject_name(&(dev->kobj)));
5851 return NULL;
5852 }
5853
5854 INIT_LIST_HEAD(&probe_ent->node);
5855 probe_ent->dev = dev;
5856
5857 probe_ent->sht = port->sht;
cca3974e 5858 probe_ent->port_flags = port->flags;
f6d950e2
BK
5859 probe_ent->pio_mask = port->pio_mask;
5860 probe_ent->mwdma_mask = port->mwdma_mask;
5861 probe_ent->udma_mask = port->udma_mask;
5862 probe_ent->port_ops = port->port_ops;
d639ca94 5863 probe_ent->private_data = port->private_data;
f6d950e2
BK
5864
5865 return probe_ent;
5866}
5867
1da177e4
LT
5868/**
5869 * ata_std_ports - initialize ioaddr with standard port offsets.
5870 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5871 *
5872 * Utility function which initializes data_addr, error_addr,
5873 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5874 * device_addr, status_addr, and command_addr to standard offsets
5875 * relative to cmd_addr.
5876 *
5877 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5878 */
0baab86b 5879
1da177e4
LT
5880void ata_std_ports(struct ata_ioports *ioaddr)
5881{
5882 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5883 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5884 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5885 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5886 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5887 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5888 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5889 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5890 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5891 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5892}
5893
0baab86b 5894
374b1873
JG
5895#ifdef CONFIG_PCI
5896
cca3974e 5897void ata_pci_host_stop (struct ata_host *host)
374b1873 5898{
cca3974e 5899 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 5900
cca3974e 5901 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
5902}
5903
1da177e4
LT
5904/**
5905 * ata_pci_remove_one - PCI layer callback for device removal
5906 * @pdev: PCI device that was removed
5907 *
5908 * PCI layer indicates to libata via this hook that
6f0ef4fa 5909 * hot-unplug or module unload event has occurred.
1da177e4
LT
5910 * Handle this by unregistering all objects associated
5911 * with this PCI device. Free those objects. Then finally
5912 * release PCI resources and disable device.
5913 *
5914 * LOCKING:
5915 * Inherited from PCI layer (may sleep).
5916 */
5917
5918void ata_pci_remove_one (struct pci_dev *pdev)
5919{
5920 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 5921 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5922
cca3974e 5923 ata_host_remove(host);
f0eb62b8 5924
1da177e4
LT
5925 pci_release_regions(pdev);
5926 pci_disable_device(pdev);
5927 dev_set_drvdata(dev, NULL);
5928}
5929
5930/* move to PCI subsystem */
057ace5e 5931int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5932{
5933 unsigned long tmp = 0;
5934
5935 switch (bits->width) {
5936 case 1: {
5937 u8 tmp8 = 0;
5938 pci_read_config_byte(pdev, bits->reg, &tmp8);
5939 tmp = tmp8;
5940 break;
5941 }
5942 case 2: {
5943 u16 tmp16 = 0;
5944 pci_read_config_word(pdev, bits->reg, &tmp16);
5945 tmp = tmp16;
5946 break;
5947 }
5948 case 4: {
5949 u32 tmp32 = 0;
5950 pci_read_config_dword(pdev, bits->reg, &tmp32);
5951 tmp = tmp32;
5952 break;
5953 }
5954
5955 default:
5956 return -EINVAL;
5957 }
5958
5959 tmp &= bits->mask;
5960
5961 return (tmp == bits->val) ? 1 : 0;
5962}
9b847548 5963
3c5100c1 5964void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5965{
5966 pci_save_state(pdev);
500530f6 5967
3c5100c1 5968 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
5969 pci_disable_device(pdev);
5970 pci_set_power_state(pdev, PCI_D3hot);
5971 }
9b847548
JA
5972}
5973
500530f6 5974void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5975{
5976 pci_set_power_state(pdev, PCI_D0);
5977 pci_restore_state(pdev);
5978 pci_enable_device(pdev);
5979 pci_set_master(pdev);
500530f6
TH
5980}
5981
3c5100c1 5982int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 5983{
cca3974e 5984 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5985 int rc = 0;
5986
cca3974e 5987 rc = ata_host_suspend(host, mesg);
500530f6
TH
5988 if (rc)
5989 return rc;
5990
3c5100c1 5991 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5992
5993 return 0;
5994}
5995
5996int ata_pci_device_resume(struct pci_dev *pdev)
5997{
cca3974e 5998 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5999
6000 ata_pci_device_do_resume(pdev);
cca3974e 6001 ata_host_resume(host);
9b847548
JA
6002 return 0;
6003}
1da177e4
LT
6004#endif /* CONFIG_PCI */
6005
6006
1da177e4
LT
6007static int __init ata_init(void)
6008{
a8601e5f 6009 ata_probe_timeout *= HZ;
1da177e4
LT
6010 ata_wq = create_workqueue("ata");
6011 if (!ata_wq)
6012 return -ENOMEM;
6013
453b07ac
TH
6014 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6015 if (!ata_aux_wq) {
6016 destroy_workqueue(ata_wq);
6017 return -ENOMEM;
6018 }
6019
1da177e4
LT
6020 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6021 return 0;
6022}
6023
6024static void __exit ata_exit(void)
6025{
6026 destroy_workqueue(ata_wq);
453b07ac 6027 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6028}
6029
a4625085 6030subsys_initcall(ata_init);
1da177e4
LT
6031module_exit(ata_exit);
6032
67846b30 6033static unsigned long ratelimit_time;
34af946a 6034static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6035
6036int ata_ratelimit(void)
6037{
6038 int rc;
6039 unsigned long flags;
6040
6041 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6042
6043 if (time_after(jiffies, ratelimit_time)) {
6044 rc = 1;
6045 ratelimit_time = jiffies + (HZ/5);
6046 } else
6047 rc = 0;
6048
6049 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6050
6051 return rc;
6052}
6053
c22daff4
TH
6054/**
6055 * ata_wait_register - wait until register value changes
6056 * @reg: IO-mapped register
6057 * @mask: Mask to apply to read register value
6058 * @val: Wait condition
6059 * @interval_msec: polling interval in milliseconds
6060 * @timeout_msec: timeout in milliseconds
6061 *
6062 * Waiting for some bits of register to change is a common
6063 * operation for ATA controllers. This function reads 32bit LE
6064 * IO-mapped register @reg and tests for the following condition.
6065 *
6066 * (*@reg & mask) != val
6067 *
6068 * If the condition is met, it returns; otherwise, the process is
6069 * repeated after @interval_msec until timeout.
6070 *
6071 * LOCKING:
6072 * Kernel thread context (may sleep)
6073 *
6074 * RETURNS:
6075 * The final register value.
6076 */
6077u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6078 unsigned long interval_msec,
6079 unsigned long timeout_msec)
6080{
6081 unsigned long timeout;
6082 u32 tmp;
6083
6084 tmp = ioread32(reg);
6085
6086 /* Calculate timeout _after_ the first read to make sure
6087 * preceding writes reach the controller before starting to
6088 * eat away the timeout.
6089 */
6090 timeout = jiffies + (timeout_msec * HZ) / 1000;
6091
6092 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6093 msleep(interval_msec);
6094 tmp = ioread32(reg);
6095 }
6096
6097 return tmp;
6098}
6099
dd5b06c4
TH
6100/*
6101 * Dummy port_ops
6102 */
6103static void ata_dummy_noret(struct ata_port *ap) { }
6104static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6105static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6106
6107static u8 ata_dummy_check_status(struct ata_port *ap)
6108{
6109 return ATA_DRDY;
6110}
6111
6112static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6113{
6114 return AC_ERR_SYSTEM;
6115}
6116
6117const struct ata_port_operations ata_dummy_port_ops = {
6118 .port_disable = ata_port_disable,
6119 .check_status = ata_dummy_check_status,
6120 .check_altstatus = ata_dummy_check_status,
6121 .dev_select = ata_noop_dev_select,
6122 .qc_prep = ata_noop_qc_prep,
6123 .qc_issue = ata_dummy_qc_issue,
6124 .freeze = ata_dummy_noret,
6125 .thaw = ata_dummy_noret,
6126 .error_handler = ata_dummy_noret,
6127 .post_internal_cmd = ata_dummy_qc_noret,
6128 .irq_clear = ata_dummy_noret,
6129 .port_start = ata_dummy_ret0,
6130 .port_stop = ata_dummy_noret,
6131};
6132
1da177e4
LT
6133/*
6134 * libata is essentially a library of internal helper functions for
6135 * low-level ATA host controller drivers. As such, the API/ABI is
6136 * likely to change as new drivers are added and updated.
6137 * Do not depend on ABI/API stability.
6138 */
6139
e9c83914
TH
6140EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6141EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6142EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6143EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6144EXPORT_SYMBOL_GPL(ata_std_bios_param);
6145EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6146EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6147EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6148EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6149EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6150EXPORT_SYMBOL_GPL(ata_sg_init);
6151EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6152EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6153EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6154EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6155EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6156EXPORT_SYMBOL_GPL(ata_tf_load);
6157EXPORT_SYMBOL_GPL(ata_tf_read);
6158EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6159EXPORT_SYMBOL_GPL(ata_std_dev_select);
6160EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6161EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6162EXPORT_SYMBOL_GPL(ata_check_status);
6163EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6164EXPORT_SYMBOL_GPL(ata_exec_command);
6165EXPORT_SYMBOL_GPL(ata_port_start);
6166EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6167EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6168EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6169EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6170EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6171EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6172EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6173EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6174EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6175EXPORT_SYMBOL_GPL(ata_bmdma_start);
6176EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6177EXPORT_SYMBOL_GPL(ata_bmdma_status);
6178EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6179EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6180EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6181EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6182EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6183EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6184EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6185EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6186EXPORT_SYMBOL_GPL(sata_phy_debounce);
6187EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6188EXPORT_SYMBOL_GPL(sata_phy_reset);
6189EXPORT_SYMBOL_GPL(__sata_phy_reset);
6190EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6191EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6192EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6193EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6194EXPORT_SYMBOL_GPL(sata_std_hardreset);
6195EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6196EXPORT_SYMBOL_GPL(ata_dev_classify);
6197EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6198EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6199EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6200EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6201EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6202EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6203EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6204EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6205EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6206EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6207EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6208EXPORT_SYMBOL_GPL(ata_scsi_release);
6209EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6210EXPORT_SYMBOL_GPL(sata_scr_valid);
6211EXPORT_SYMBOL_GPL(sata_scr_read);
6212EXPORT_SYMBOL_GPL(sata_scr_write);
6213EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6214EXPORT_SYMBOL_GPL(ata_port_online);
6215EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6216EXPORT_SYMBOL_GPL(ata_host_suspend);
6217EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6218EXPORT_SYMBOL_GPL(ata_id_string);
6219EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6220EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6221EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6222
1bc4ccff 6223EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6224EXPORT_SYMBOL_GPL(ata_timing_compute);
6225EXPORT_SYMBOL_GPL(ata_timing_merge);
6226
1da177e4
LT
6227#ifdef CONFIG_PCI
6228EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6229EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6230EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6231EXPORT_SYMBOL_GPL(ata_pci_init_one);
6232EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6233EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6234EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6235EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6236EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6237EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6238EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6239#endif /* CONFIG_PCI */
9b847548 6240
9b847548
JA
6241EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6242EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6243
ece1d636 6244EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6245EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6246EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6247EXPORT_SYMBOL_GPL(ata_port_freeze);
6248EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6249EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6250EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6251EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6252EXPORT_SYMBOL_GPL(ata_do_eh);