]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: PATA driver for Celleb
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5
JG
62#define DRV_VERSION "2.10" /* must be exactly four chars */
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
74
75static unsigned int ata_unique_id = 1;
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
a8601e5f
AM
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
11ef697b
KCA
96int noacpi;
97module_param(noacpi, int, 0444);
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
1da177e4
LT
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
0baab86b 105
1da177e4
LT
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
057ace5e 119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
e12a1be6 153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
8cbd6df1
AL
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
192 0,
193 0,
194 0,
195 0,
8cbd6df1
AL
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
9a3dccc4
TH
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 205};
1da177e4
LT
206
207/**
8cbd6df1 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
1da177e4 211 *
2e9edbf8 212 * Examine the device configuration and tf->flags to calculate
8cbd6df1 213 * the proper read/write commands and protocol to use.
1da177e4
LT
214 *
215 * LOCKING:
216 * caller.
217 */
bd056d7e 218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 219{
9a3dccc4 220 u8 cmd;
1da177e4 221
9a3dccc4 222 int index, fua, lba48, write;
2e9edbf8 223
9a3dccc4 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 227
8cbd6df1
AL
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
9a3dccc4 230 index = dev->multi_count ? 0 : 8;
bd056d7e 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
0565c26d 234 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
235 } else {
236 tf->protocol = ATA_PROT_DMA;
9a3dccc4 237 index = 16;
8cbd6df1 238 }
1da177e4 239
9a3dccc4
TH
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
1da177e4
LT
246}
247
35b649fe
TH
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
bd056d7e
TH
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
319 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
320 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
321 /* yay, NCQ */
322 if (!lba_48_ok(block, n_block))
323 return -ERANGE;
324
325 tf->protocol = ATA_PROT_NCQ;
326 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
327
328 if (tf->flags & ATA_TFLAG_WRITE)
329 tf->command = ATA_CMD_FPDMA_WRITE;
330 else
331 tf->command = ATA_CMD_FPDMA_READ;
332
333 tf->nsect = tag << 3;
334 tf->hob_feature = (n_block >> 8) & 0xff;
335 tf->feature = n_block & 0xff;
336
337 tf->hob_lbah = (block >> 40) & 0xff;
338 tf->hob_lbam = (block >> 32) & 0xff;
339 tf->hob_lbal = (block >> 24) & 0xff;
340 tf->lbah = (block >> 16) & 0xff;
341 tf->lbam = (block >> 8) & 0xff;
342 tf->lbal = block & 0xff;
343
344 tf->device = 1 << 6;
345 if (tf->flags & ATA_TFLAG_FUA)
346 tf->device |= 1 << 7;
347 } else if (dev->flags & ATA_DFLAG_LBA) {
348 tf->flags |= ATA_TFLAG_LBA;
349
350 if (lba_28_ok(block, n_block)) {
351 /* use LBA28 */
352 tf->device |= (block >> 24) & 0xf;
353 } else if (lba_48_ok(block, n_block)) {
354 if (!(dev->flags & ATA_DFLAG_LBA48))
355 return -ERANGE;
356
357 /* use LBA48 */
358 tf->flags |= ATA_TFLAG_LBA48;
359
360 tf->hob_nsect = (n_block >> 8) & 0xff;
361
362 tf->hob_lbah = (block >> 40) & 0xff;
363 tf->hob_lbam = (block >> 32) & 0xff;
364 tf->hob_lbal = (block >> 24) & 0xff;
365 } else
366 /* request too large even for LBA48 */
367 return -ERANGE;
368
369 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 return -EINVAL;
371
372 tf->nsect = n_block & 0xff;
373
374 tf->lbah = (block >> 16) & 0xff;
375 tf->lbam = (block >> 8) & 0xff;
376 tf->lbal = block & 0xff;
377
378 tf->device |= ATA_LBA;
379 } else {
380 /* CHS */
381 u32 sect, head, cyl, track;
382
383 /* The request -may- be too large for CHS addressing. */
384 if (!lba_28_ok(block, n_block))
385 return -ERANGE;
386
387 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 return -EINVAL;
389
390 /* Convert LBA to CHS */
391 track = (u32)block / dev->sectors;
392 cyl = track / dev->heads;
393 head = track % dev->heads;
394 sect = (u32)block % dev->sectors + 1;
395
396 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
397 (u32)block, track, cyl, head, sect);
398
399 /* Check whether the converted CHS can fit.
400 Cylinder: 0-65535
401 Head: 0-15
402 Sector: 1-255*/
403 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 return -ERANGE;
405
406 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
407 tf->lbal = sect;
408 tf->lbam = cyl;
409 tf->lbah = cyl >> 8;
410 tf->device |= head;
411 }
412
413 return 0;
414}
415
cb95d562
TH
416/**
417 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
418 * @pio_mask: pio_mask
419 * @mwdma_mask: mwdma_mask
420 * @udma_mask: udma_mask
421 *
422 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
423 * unsigned int xfer_mask.
424 *
425 * LOCKING:
426 * None.
427 *
428 * RETURNS:
429 * Packed xfer_mask.
430 */
431static unsigned int ata_pack_xfermask(unsigned int pio_mask,
432 unsigned int mwdma_mask,
433 unsigned int udma_mask)
434{
435 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
436 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
437 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
438}
439
c0489e4e
TH
440/**
441 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
442 * @xfer_mask: xfer_mask to unpack
443 * @pio_mask: resulting pio_mask
444 * @mwdma_mask: resulting mwdma_mask
445 * @udma_mask: resulting udma_mask
446 *
447 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
448 * Any NULL distination masks will be ignored.
449 */
450static void ata_unpack_xfermask(unsigned int xfer_mask,
451 unsigned int *pio_mask,
452 unsigned int *mwdma_mask,
453 unsigned int *udma_mask)
454{
455 if (pio_mask)
456 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
457 if (mwdma_mask)
458 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
459 if (udma_mask)
460 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461}
462
cb95d562 463static const struct ata_xfer_ent {
be9a50c8 464 int shift, bits;
cb95d562
TH
465 u8 base;
466} ata_xfer_tbl[] = {
467 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
468 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
469 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
470 { -1, },
471};
472
473/**
474 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
475 * @xfer_mask: xfer_mask of interest
476 *
477 * Return matching XFER_* value for @xfer_mask. Only the highest
478 * bit of @xfer_mask is considered.
479 *
480 * LOCKING:
481 * None.
482 *
483 * RETURNS:
484 * Matching XFER_* value, 0 if no match found.
485 */
486static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
487{
488 int highbit = fls(xfer_mask) - 1;
489 const struct ata_xfer_ent *ent;
490
491 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
492 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
493 return ent->base + highbit - ent->shift;
494 return 0;
495}
496
497/**
498 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
499 * @xfer_mode: XFER_* of interest
500 *
501 * Return matching xfer_mask for @xfer_mode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * Matching xfer_mask, 0 if no match found.
508 */
509static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
510{
511 const struct ata_xfer_ent *ent;
512
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
515 return 1 << (ent->shift + xfer_mode - ent->base);
516 return 0;
517}
518
519/**
520 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
521 * @xfer_mode: XFER_* of interest
522 *
523 * Return matching xfer_shift for @xfer_mode.
524 *
525 * LOCKING:
526 * None.
527 *
528 * RETURNS:
529 * Matching xfer_shift, -1 if no match found.
530 */
531static int ata_xfer_mode2shift(unsigned int xfer_mode)
532{
533 const struct ata_xfer_ent *ent;
534
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return ent->shift;
538 return -1;
539}
540
1da177e4 541/**
1da7b0d0
TH
542 * ata_mode_string - convert xfer_mask to string
543 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
544 *
545 * Determine string which represents the highest speed
1da7b0d0 546 * (highest bit in @modemask).
1da177e4
LT
547 *
548 * LOCKING:
549 * None.
550 *
551 * RETURNS:
552 * Constant C string representing highest speed listed in
1da7b0d0 553 * @mode_mask, or the constant C string "<n/a>".
1da177e4 554 */
1da7b0d0 555static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 556{
75f554bc
TH
557 static const char * const xfer_mode_str[] = {
558 "PIO0",
559 "PIO1",
560 "PIO2",
561 "PIO3",
562 "PIO4",
b352e57d
AC
563 "PIO5",
564 "PIO6",
75f554bc
TH
565 "MWDMA0",
566 "MWDMA1",
567 "MWDMA2",
b352e57d
AC
568 "MWDMA3",
569 "MWDMA4",
75f554bc
TH
570 "UDMA/16",
571 "UDMA/25",
572 "UDMA/33",
573 "UDMA/44",
574 "UDMA/66",
575 "UDMA/100",
576 "UDMA/133",
577 "UDMA7",
578 };
1da7b0d0 579 int highbit;
1da177e4 580
1da7b0d0
TH
581 highbit = fls(xfer_mask) - 1;
582 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
583 return xfer_mode_str[highbit];
1da177e4 584 return "<n/a>";
1da177e4
LT
585}
586
4c360c81
TH
587static const char *sata_spd_string(unsigned int spd)
588{
589 static const char * const spd_str[] = {
590 "1.5 Gbps",
591 "3.0 Gbps",
592 };
593
594 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
595 return "<unknown>";
596 return spd_str[spd - 1];
597}
598
3373efd8 599void ata_dev_disable(struct ata_device *dev)
0b8efb0a 600{
0dd4b21f 601 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 602 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
603 dev->class++;
604 }
605}
606
1da177e4 607/**
0d5ff566 608 * ata_devchk - PATA device presence detection
1da177e4
LT
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
0d5ff566 625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
0d5ff566
TH
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 634
0d5ff566
TH
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
1da177e4
LT
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
057ace5e 666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
b4dc7623 693 * @r_err: Value of error register on completion
1da177e4
LT
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
b4dc7623
TH
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
709 */
710
a619f981 711unsigned int
b4dc7623 712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 713{
1da177e4
LT
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
1da177e4 722 ap->ops->tf_read(ap, &tf);
0169e284 723 err = tf.feature;
b4dc7623
TH
724 if (r_err)
725 *r_err = err;
1da177e4 726
93590859
AC
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
1da177e4
LT
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
b4dc7623 736 return ATA_DEV_NONE;
1da177e4 737
b4dc7623 738 /* determine if device is ATA or ATAPI */
1da177e4 739 class = ata_dev_classify(&tf);
b4dc7623 740
1da177e4 741 if (class == ATA_DEV_UNKNOWN)
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
744 return ATA_DEV_NONE;
745 return class;
1da177e4
LT
746}
747
748/**
6a62a04d 749 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
6a62a04d
TH
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
1da177e4
LT
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
0e949ff3 782/**
6a62a04d 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
6a62a04d 789 * This function is identical to ata_id_string except that it
0e949ff3
TH
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
6a62a04d
TH
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
0e949ff3
TH
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
6a62a04d 803 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
0baab86b 810
2940740b
TH
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
0baab86b
EF
826/**
827 * ata_noop_dev_select - Select device 0/1 on ATA bus
828 * @ap: ATA channel to manipulate
829 * @device: ATA device (numbered from zero) to select
830 *
831 * This function performs no actual function.
832 *
833 * May be used as the dev_select() entry in ata_port_operations.
834 *
835 * LOCKING:
836 * caller.
837 */
1da177e4
LT
838void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
839{
840}
841
0baab86b 842
1da177e4
LT
843/**
844 * ata_std_dev_select - Select device 0/1 on ATA bus
845 * @ap: ATA channel to manipulate
846 * @device: ATA device (numbered from zero) to select
847 *
848 * Use the method defined in the ATA specification to
849 * make either device 0, or device 1, active on the
0baab86b
EF
850 * ATA channel. Works with both PIO and MMIO.
851 *
852 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
853 *
854 * LOCKING:
855 * caller.
856 */
857
858void ata_std_dev_select (struct ata_port *ap, unsigned int device)
859{
860 u8 tmp;
861
862 if (device == 0)
863 tmp = ATA_DEVICE_OBS;
864 else
865 tmp = ATA_DEVICE_OBS | ATA_DEV1;
866
0d5ff566 867 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
868 ata_pause(ap); /* needed; also flushes, for mmio */
869}
870
871/**
872 * ata_dev_select - Select device 0/1 on ATA bus
873 * @ap: ATA channel to manipulate
874 * @device: ATA device (numbered from zero) to select
875 * @wait: non-zero to wait for Status register BSY bit to clear
876 * @can_sleep: non-zero if context allows sleeping
877 *
878 * Use the method defined in the ATA specification to
879 * make either device 0, or device 1, active on the
880 * ATA channel.
881 *
882 * This is a high-level version of ata_std_dev_select(),
883 * which additionally provides the services of inserting
884 * the proper pauses and status polling, where needed.
885 *
886 * LOCKING:
887 * caller.
888 */
889
890void ata_dev_select(struct ata_port *ap, unsigned int device,
891 unsigned int wait, unsigned int can_sleep)
892{
88574551 893 if (ata_msg_probe(ap))
0dd4b21f 894 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 895 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
896
897 if (wait)
898 ata_wait_idle(ap);
899
900 ap->ops->dev_select(ap, device);
901
902 if (wait) {
903 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
904 msleep(150);
905 ata_wait_idle(ap);
906 }
907}
908
909/**
910 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 911 * @id: IDENTIFY DEVICE page to dump
1da177e4 912 *
0bd3300a
TH
913 * Dump selected 16-bit words from the given IDENTIFY DEVICE
914 * page.
1da177e4
LT
915 *
916 * LOCKING:
917 * caller.
918 */
919
0bd3300a 920static inline void ata_dump_id(const u16 *id)
1da177e4
LT
921{
922 DPRINTK("49==0x%04x "
923 "53==0x%04x "
924 "63==0x%04x "
925 "64==0x%04x "
926 "75==0x%04x \n",
0bd3300a
TH
927 id[49],
928 id[53],
929 id[63],
930 id[64],
931 id[75]);
1da177e4
LT
932 DPRINTK("80==0x%04x "
933 "81==0x%04x "
934 "82==0x%04x "
935 "83==0x%04x "
936 "84==0x%04x \n",
0bd3300a
TH
937 id[80],
938 id[81],
939 id[82],
940 id[83],
941 id[84]);
1da177e4
LT
942 DPRINTK("88==0x%04x "
943 "93==0x%04x\n",
0bd3300a
TH
944 id[88],
945 id[93]);
1da177e4
LT
946}
947
cb95d562
TH
948/**
949 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
950 * @id: IDENTIFY data to compute xfer mask from
951 *
952 * Compute the xfermask for this device. This is not as trivial
953 * as it seems if we must consider early devices correctly.
954 *
955 * FIXME: pre IDE drive timing (do we care ?).
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Computed xfermask
962 */
963static unsigned int ata_id_xfermask(const u16 *id)
964{
965 unsigned int pio_mask, mwdma_mask, udma_mask;
966
967 /* Usual case. Word 53 indicates word 64 is valid */
968 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
969 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
970 pio_mask <<= 3;
971 pio_mask |= 0x7;
972 } else {
973 /* If word 64 isn't valid then Word 51 high byte holds
974 * the PIO timing number for the maximum. Turn it into
975 * a mask.
976 */
7a0f1c8a 977 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
978 if (mode < 5) /* Valid PIO range */
979 pio_mask = (2 << mode) - 1;
980 else
981 pio_mask = 1;
cb95d562
TH
982
983 /* But wait.. there's more. Design your standards by
984 * committee and you too can get a free iordy field to
985 * process. However its the speeds not the modes that
986 * are supported... Note drivers using the timing API
987 * will get this right anyway
988 */
989 }
990
991 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 992
b352e57d
AC
993 if (ata_id_is_cfa(id)) {
994 /*
995 * Process compact flash extended modes
996 */
997 int pio = id[163] & 0x7;
998 int dma = (id[163] >> 3) & 7;
999
1000 if (pio)
1001 pio_mask |= (1 << 5);
1002 if (pio > 1)
1003 pio_mask |= (1 << 6);
1004 if (dma)
1005 mwdma_mask |= (1 << 3);
1006 if (dma > 1)
1007 mwdma_mask |= (1 << 4);
1008 }
1009
fb21f0d0
TH
1010 udma_mask = 0;
1011 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1012 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1013
1014 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1015}
1016
86e45b6b
TH
1017/**
1018 * ata_port_queue_task - Queue port_task
1019 * @ap: The ata_port to queue port_task for
e2a7f77a 1020 * @fn: workqueue function to be scheduled
65f27f38 1021 * @data: data for @fn to use
e2a7f77a 1022 * @delay: delay time for workqueue function
86e45b6b
TH
1023 *
1024 * Schedule @fn(@data) for execution after @delay jiffies using
1025 * port_task. There is one port_task per port and it's the
1026 * user(low level driver)'s responsibility to make sure that only
1027 * one task is active at any given time.
1028 *
1029 * libata core layer takes care of synchronization between
1030 * port_task and EH. ata_port_queue_task() may be ignored for EH
1031 * synchronization.
1032 *
1033 * LOCKING:
1034 * Inherited from caller.
1035 */
65f27f38 1036void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1037 unsigned long delay)
1038{
1039 int rc;
1040
b51e9e5d 1041 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1042 return;
1043
65f27f38
DH
1044 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1045 ap->port_task_data = data;
86e45b6b 1046
52bad64d 1047 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1048
1049 /* rc == 0 means that another user is using port task */
1050 WARN_ON(rc == 0);
1051}
1052
1053/**
1054 * ata_port_flush_task - Flush port_task
1055 * @ap: The ata_port to flush port_task for
1056 *
1057 * After this function completes, port_task is guranteed not to
1058 * be running or scheduled.
1059 *
1060 * LOCKING:
1061 * Kernel thread context (may sleep)
1062 */
1063void ata_port_flush_task(struct ata_port *ap)
1064{
1065 unsigned long flags;
1066
1067 DPRINTK("ENTER\n");
1068
ba6a1308 1069 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1070 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1071 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1072
1073 DPRINTK("flush #1\n");
1074 flush_workqueue(ata_wq);
1075
1076 /*
1077 * At this point, if a task is running, it's guaranteed to see
1078 * the FLUSH flag; thus, it will never queue pio tasks again.
1079 * Cancel and flush.
1080 */
1081 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1082 if (ata_msg_ctl(ap))
88574551
TH
1083 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1084 __FUNCTION__);
86e45b6b
TH
1085 flush_workqueue(ata_wq);
1086 }
1087
ba6a1308 1088 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1089 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1090 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1091
0dd4b21f
BP
1092 if (ata_msg_ctl(ap))
1093 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1094}
1095
7102d230 1096static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1097{
77853bf2 1098 struct completion *waiting = qc->private_data;
a2a7a662 1099
a2a7a662 1100 complete(waiting);
a2a7a662
TH
1101}
1102
1103/**
2432697b 1104 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1105 * @dev: Device to which the command is sent
1106 * @tf: Taskfile registers for the command and the result
d69cf37d 1107 * @cdb: CDB for packet command
a2a7a662 1108 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1109 * @sg: sg list for the data buffer of the command
1110 * @n_elem: Number of sg entries
a2a7a662
TH
1111 *
1112 * Executes libata internal command with timeout. @tf contains
1113 * command on entry and result on return. Timeout and error
1114 * conditions are reported via return value. No recovery action
1115 * is taken after a command times out. It's caller's duty to
1116 * clean up after timeout.
1117 *
1118 * LOCKING:
1119 * None. Should be called with kernel context, might sleep.
551e8889
TH
1120 *
1121 * RETURNS:
1122 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1123 */
2432697b
TH
1124unsigned ata_exec_internal_sg(struct ata_device *dev,
1125 struct ata_taskfile *tf, const u8 *cdb,
1126 int dma_dir, struct scatterlist *sg,
1127 unsigned int n_elem)
a2a7a662 1128{
3373efd8 1129 struct ata_port *ap = dev->ap;
a2a7a662
TH
1130 u8 command = tf->command;
1131 struct ata_queued_cmd *qc;
2ab7db1f 1132 unsigned int tag, preempted_tag;
dedaf2b0 1133 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1134 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1135 unsigned long flags;
77853bf2 1136 unsigned int err_mask;
d95a717f 1137 int rc;
a2a7a662 1138
ba6a1308 1139 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1140
e3180499 1141 /* no internal command while frozen */
b51e9e5d 1142 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1143 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1144 return AC_ERR_SYSTEM;
1145 }
1146
2ab7db1f 1147 /* initialize internal qc */
a2a7a662 1148
2ab7db1f
TH
1149 /* XXX: Tag 0 is used for drivers with legacy EH as some
1150 * drivers choke if any other tag is given. This breaks
1151 * ata_tag_internal() test for those drivers. Don't use new
1152 * EH stuff without converting to it.
1153 */
1154 if (ap->ops->error_handler)
1155 tag = ATA_TAG_INTERNAL;
1156 else
1157 tag = 0;
1158
6cec4a39 1159 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1160 BUG();
f69499f4 1161 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1162
1163 qc->tag = tag;
1164 qc->scsicmd = NULL;
1165 qc->ap = ap;
1166 qc->dev = dev;
1167 ata_qc_reinit(qc);
1168
1169 preempted_tag = ap->active_tag;
dedaf2b0
TH
1170 preempted_sactive = ap->sactive;
1171 preempted_qc_active = ap->qc_active;
2ab7db1f 1172 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1173 ap->sactive = 0;
1174 ap->qc_active = 0;
2ab7db1f
TH
1175
1176 /* prepare & issue qc */
a2a7a662 1177 qc->tf = *tf;
d69cf37d
TH
1178 if (cdb)
1179 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1180 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1181 qc->dma_dir = dma_dir;
1182 if (dma_dir != DMA_NONE) {
2432697b
TH
1183 unsigned int i, buflen = 0;
1184
1185 for (i = 0; i < n_elem; i++)
1186 buflen += sg[i].length;
1187
1188 ata_sg_init(qc, sg, n_elem);
49c80429 1189 qc->nbytes = buflen;
a2a7a662
TH
1190 }
1191
77853bf2 1192 qc->private_data = &wait;
a2a7a662
TH
1193 qc->complete_fn = ata_qc_complete_internal;
1194
8e0e694a 1195 ata_qc_issue(qc);
a2a7a662 1196
ba6a1308 1197 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1198
a8601e5f 1199 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1200
1201 ata_port_flush_task(ap);
41ade50c 1202
d95a717f 1203 if (!rc) {
ba6a1308 1204 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1205
1206 /* We're racing with irq here. If we lose, the
1207 * following test prevents us from completing the qc
d95a717f
TH
1208 * twice. If we win, the port is frozen and will be
1209 * cleaned up by ->post_internal_cmd().
a2a7a662 1210 */
77853bf2 1211 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1212 qc->err_mask |= AC_ERR_TIMEOUT;
1213
1214 if (ap->ops->error_handler)
1215 ata_port_freeze(ap);
1216 else
1217 ata_qc_complete(qc);
f15a1daf 1218
0dd4b21f
BP
1219 if (ata_msg_warn(ap))
1220 ata_dev_printk(dev, KERN_WARNING,
88574551 1221 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1222 }
1223
ba6a1308 1224 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1225 }
1226
d95a717f
TH
1227 /* do post_internal_cmd */
1228 if (ap->ops->post_internal_cmd)
1229 ap->ops->post_internal_cmd(qc);
1230
18d90deb 1231 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
0dd4b21f 1232 if (ata_msg_warn(ap))
88574551 1233 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1234 "zero err_mask for failed "
88574551 1235 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1236 qc->err_mask |= AC_ERR_OTHER;
1237 }
1238
15869303 1239 /* finish up */
ba6a1308 1240 spin_lock_irqsave(ap->lock, flags);
15869303 1241
e61e0672 1242 *tf = qc->result_tf;
77853bf2
TH
1243 err_mask = qc->err_mask;
1244
1245 ata_qc_free(qc);
2ab7db1f 1246 ap->active_tag = preempted_tag;
dedaf2b0
TH
1247 ap->sactive = preempted_sactive;
1248 ap->qc_active = preempted_qc_active;
77853bf2 1249
1f7dd3e9
TH
1250 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1251 * Until those drivers are fixed, we detect the condition
1252 * here, fail the command with AC_ERR_SYSTEM and reenable the
1253 * port.
1254 *
1255 * Note that this doesn't change any behavior as internal
1256 * command failure results in disabling the device in the
1257 * higher layer for LLDDs without new reset/EH callbacks.
1258 *
1259 * Kill the following code as soon as those drivers are fixed.
1260 */
198e0fed 1261 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1262 err_mask |= AC_ERR_SYSTEM;
1263 ata_port_probe(ap);
1264 }
1265
ba6a1308 1266 spin_unlock_irqrestore(ap->lock, flags);
15869303 1267
77853bf2 1268 return err_mask;
a2a7a662
TH
1269}
1270
2432697b 1271/**
33480a0e 1272 * ata_exec_internal - execute libata internal command
2432697b
TH
1273 * @dev: Device to which the command is sent
1274 * @tf: Taskfile registers for the command and the result
1275 * @cdb: CDB for packet command
1276 * @dma_dir: Data tranfer direction of the command
1277 * @buf: Data buffer of the command
1278 * @buflen: Length of data buffer
1279 *
1280 * Wrapper around ata_exec_internal_sg() which takes simple
1281 * buffer instead of sg list.
1282 *
1283 * LOCKING:
1284 * None. Should be called with kernel context, might sleep.
1285 *
1286 * RETURNS:
1287 * Zero on success, AC_ERR_* mask on failure
1288 */
1289unsigned ata_exec_internal(struct ata_device *dev,
1290 struct ata_taskfile *tf, const u8 *cdb,
1291 int dma_dir, void *buf, unsigned int buflen)
1292{
33480a0e
TH
1293 struct scatterlist *psg = NULL, sg;
1294 unsigned int n_elem = 0;
2432697b 1295
33480a0e
TH
1296 if (dma_dir != DMA_NONE) {
1297 WARN_ON(!buf);
1298 sg_init_one(&sg, buf, buflen);
1299 psg = &sg;
1300 n_elem++;
1301 }
2432697b 1302
33480a0e 1303 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1304}
1305
977e6b9f
TH
1306/**
1307 * ata_do_simple_cmd - execute simple internal command
1308 * @dev: Device to which the command is sent
1309 * @cmd: Opcode to execute
1310 *
1311 * Execute a 'simple' command, that only consists of the opcode
1312 * 'cmd' itself, without filling any other registers
1313 *
1314 * LOCKING:
1315 * Kernel thread context (may sleep).
1316 *
1317 * RETURNS:
1318 * Zero on success, AC_ERR_* mask on failure
e58eb583 1319 */
77b08fb5 1320unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1321{
1322 struct ata_taskfile tf;
e58eb583
TH
1323
1324 ata_tf_init(dev, &tf);
1325
1326 tf.command = cmd;
1327 tf.flags |= ATA_TFLAG_DEVICE;
1328 tf.protocol = ATA_PROT_NODATA;
1329
977e6b9f 1330 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1331}
1332
1bc4ccff
AC
1333/**
1334 * ata_pio_need_iordy - check if iordy needed
1335 * @adev: ATA device
1336 *
1337 * Check if the current speed of the device requires IORDY. Used
1338 * by various controllers for chip configuration.
1339 */
1340
1341unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1342{
1343 int pio;
1344 int speed = adev->pio_mode - XFER_PIO_0;
1345
1346 if (speed < 2)
1347 return 0;
1348 if (speed > 2)
1349 return 1;
2e9edbf8 1350
1bc4ccff
AC
1351 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1352
1353 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1354 pio = adev->id[ATA_ID_EIDE_PIO];
1355 /* Is the speed faster than the drive allows non IORDY ? */
1356 if (pio) {
1357 /* This is cycle times not frequency - watch the logic! */
1358 if (pio > 240) /* PIO2 is 240nS per cycle */
1359 return 1;
1360 return 0;
1361 }
1362 }
1363 return 0;
1364}
1365
1da177e4 1366/**
49016aca 1367 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1368 * @dev: target device
1369 * @p_class: pointer to class of the target device (may be changed)
bff04647 1370 * @flags: ATA_READID_* flags
fe635c7e 1371 * @id: buffer to read IDENTIFY data into
1da177e4 1372 *
49016aca
TH
1373 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1374 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1375 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1376 * for pre-ATA4 drives.
1da177e4
LT
1377 *
1378 * LOCKING:
49016aca
TH
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise.
1da177e4 1383 */
a9beec95 1384int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1385 unsigned int flags, u16 *id)
1da177e4 1386{
3373efd8 1387 struct ata_port *ap = dev->ap;
49016aca 1388 unsigned int class = *p_class;
a0123703 1389 struct ata_taskfile tf;
49016aca
TH
1390 unsigned int err_mask = 0;
1391 const char *reason;
1392 int rc;
1da177e4 1393
0dd4b21f 1394 if (ata_msg_ctl(ap))
88574551
TH
1395 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1396 __FUNCTION__, ap->id, dev->devno);
1da177e4 1397
49016aca 1398 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1399
49016aca 1400 retry:
3373efd8 1401 ata_tf_init(dev, &tf);
a0123703 1402
49016aca
TH
1403 switch (class) {
1404 case ATA_DEV_ATA:
a0123703 1405 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1406 break;
1407 case ATA_DEV_ATAPI:
a0123703 1408 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1409 break;
1410 default:
1411 rc = -ENODEV;
1412 reason = "unsupported class";
1413 goto err_out;
1da177e4
LT
1414 }
1415
a0123703 1416 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1417
1418 /* Some devices choke if TF registers contain garbage. Make
1419 * sure those are properly initialized.
1420 */
1421 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1422
1423 /* Device presence detection is unreliable on some
1424 * controllers. Always poll IDENTIFY if available.
1425 */
1426 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1427
3373efd8 1428 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1429 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1430 if (err_mask) {
800b3996 1431 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8
TH
1432 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1433 ap->id, dev->devno);
1434 return -ENOENT;
1435 }
1436
49016aca
TH
1437 rc = -EIO;
1438 reason = "I/O error";
1da177e4
LT
1439 goto err_out;
1440 }
1441
49016aca 1442 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1443
49016aca 1444 /* sanity check */
a4f5749b
TH
1445 rc = -EINVAL;
1446 reason = "device reports illegal type";
1447
1448 if (class == ATA_DEV_ATA) {
1449 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1450 goto err_out;
1451 } else {
1452 if (ata_id_is_ata(id))
1453 goto err_out;
49016aca
TH
1454 }
1455
bff04647 1456 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1457 /*
1458 * The exact sequence expected by certain pre-ATA4 drives is:
1459 * SRST RESET
1460 * IDENTIFY
1461 * INITIALIZE DEVICE PARAMETERS
1462 * anything else..
1463 * Some drives were very specific about that exact sequence.
1464 */
1465 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1466 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1467 if (err_mask) {
1468 rc = -EIO;
1469 reason = "INIT_DEV_PARAMS failed";
1470 goto err_out;
1471 }
1472
1473 /* current CHS translation info (id[53-58]) might be
1474 * changed. reread the identify device info.
1475 */
bff04647 1476 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1477 goto retry;
1478 }
1479 }
1480
1481 *p_class = class;
fe635c7e 1482
49016aca
TH
1483 return 0;
1484
1485 err_out:
88574551 1486 if (ata_msg_warn(ap))
0dd4b21f 1487 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1488 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1489 return rc;
1490}
1491
3373efd8 1492static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1493{
3373efd8 1494 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1495}
1496
a6e6ce8e
TH
1497static void ata_dev_config_ncq(struct ata_device *dev,
1498 char *desc, size_t desc_sz)
1499{
1500 struct ata_port *ap = dev->ap;
1501 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1502
1503 if (!ata_id_has_ncq(dev->id)) {
1504 desc[0] = '\0';
1505 return;
1506 }
6919a0a6
AC
1507 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1508 snprintf(desc, desc_sz, "NCQ (not used)");
1509 return;
1510 }
a6e6ce8e 1511 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1512 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1513 dev->flags |= ATA_DFLAG_NCQ;
1514 }
1515
1516 if (hdepth >= ddepth)
1517 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1518 else
1519 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1520}
1521
e6d902a3
BK
1522static void ata_set_port_max_cmd_len(struct ata_port *ap)
1523{
1524 int i;
1525
cca3974e
JG
1526 if (ap->scsi_host) {
1527 unsigned int len = 0;
1528
e6d902a3 1529 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1530 len = max(len, ap->device[i].cdb_len);
1531
1532 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1533 }
1534}
1535
49016aca 1536/**
ffeae418 1537 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1538 * @dev: Target device to configure
1539 *
1540 * Configure @dev according to @dev->id. Generic and low-level
1541 * driver specific fixups are also applied.
49016aca
TH
1542 *
1543 * LOCKING:
ffeae418
TH
1544 * Kernel thread context (may sleep)
1545 *
1546 * RETURNS:
1547 * 0 on success, -errno otherwise
49016aca 1548 */
efdaedc4 1549int ata_dev_configure(struct ata_device *dev)
49016aca 1550{
3373efd8 1551 struct ata_port *ap = dev->ap;
efdaedc4 1552 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1553 const u16 *id = dev->id;
ff8854b2 1554 unsigned int xfer_mask;
b352e57d 1555 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1556 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1557 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1558 int rc;
49016aca 1559
0dd4b21f 1560 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1561 ata_dev_printk(dev, KERN_INFO,
1562 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1563 __FUNCTION__, ap->id, dev->devno);
ffeae418 1564 return 0;
49016aca
TH
1565 }
1566
0dd4b21f 1567 if (ata_msg_probe(ap))
88574551
TH
1568 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1569 __FUNCTION__, ap->id, dev->devno);
1da177e4 1570
08573a86
KCA
1571 /* set _SDD */
1572 rc = ata_acpi_push_id(ap, dev->devno);
1573 if (rc) {
1574 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1575 rc);
1576 }
1577
1578 /* retrieve and execute the ATA task file of _GTF */
1579 ata_acpi_exec_tfs(ap);
1580
c39f5ebe 1581 /* print device capabilities */
0dd4b21f 1582 if (ata_msg_probe(ap))
88574551
TH
1583 ata_dev_printk(dev, KERN_DEBUG,
1584 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1585 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1586 __FUNCTION__,
f15a1daf
TH
1587 id[49], id[82], id[83], id[84],
1588 id[85], id[86], id[87], id[88]);
c39f5ebe 1589
208a9933 1590 /* initialize to-be-configured parameters */
ea1dd4e1 1591 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1592 dev->max_sectors = 0;
1593 dev->cdb_len = 0;
1594 dev->n_sectors = 0;
1595 dev->cylinders = 0;
1596 dev->heads = 0;
1597 dev->sectors = 0;
1598
1da177e4
LT
1599 /*
1600 * common ATA, ATAPI feature tests
1601 */
1602
ff8854b2 1603 /* find max transfer mode; for printk only */
1148c3a7 1604 xfer_mask = ata_id_xfermask(id);
1da177e4 1605
0dd4b21f
BP
1606 if (ata_msg_probe(ap))
1607 ata_dump_id(id);
1da177e4
LT
1608
1609 /* ATA-specific feature tests */
1610 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1611 if (ata_id_is_cfa(id)) {
1612 if (id[162] & 1) /* CPRM may make this media unusable */
1613 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1614 ap->id, dev->devno);
1615 snprintf(revbuf, 7, "CFA");
1616 }
1617 else
1618 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1619
1148c3a7 1620 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1621
3f64f565 1622 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1623 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1624 sizeof(fwrevbuf));
1625
591a6e8e 1626 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1627 sizeof(modelbuf));
1628
1629 if (dev->id[59] & 0x100)
1630 dev->multi_count = dev->id[59] & 0xff;
1631
1148c3a7 1632 if (ata_id_has_lba(id)) {
4c2d721a 1633 const char *lba_desc;
a6e6ce8e 1634 char ncq_desc[20];
8bf62ece 1635
4c2d721a
TH
1636 lba_desc = "LBA";
1637 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1638 if (ata_id_has_lba48(id)) {
8bf62ece 1639 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1640 lba_desc = "LBA48";
6fc49adb
TH
1641
1642 if (dev->n_sectors >= (1UL << 28) &&
1643 ata_id_has_flush_ext(id))
1644 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1645 }
8bf62ece 1646
a6e6ce8e
TH
1647 /* config NCQ */
1648 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1649
8bf62ece 1650 /* print device info to dmesg */
3f64f565
EM
1651 if (ata_msg_drv(ap) && print_info) {
1652 ata_dev_printk(dev, KERN_INFO,
1653 "%s: %s, %s, max %s\n",
1654 revbuf, modelbuf, fwrevbuf,
1655 ata_mode_string(xfer_mask));
1656 ata_dev_printk(dev, KERN_INFO,
1657 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1658 (unsigned long long)dev->n_sectors,
3f64f565
EM
1659 dev->multi_count, lba_desc, ncq_desc);
1660 }
ffeae418 1661 } else {
8bf62ece
AL
1662 /* CHS */
1663
1664 /* Default translation */
1148c3a7
TH
1665 dev->cylinders = id[1];
1666 dev->heads = id[3];
1667 dev->sectors = id[6];
8bf62ece 1668
1148c3a7 1669 if (ata_id_current_chs_valid(id)) {
8bf62ece 1670 /* Current CHS translation is valid. */
1148c3a7
TH
1671 dev->cylinders = id[54];
1672 dev->heads = id[55];
1673 dev->sectors = id[56];
8bf62ece
AL
1674 }
1675
1676 /* print device info to dmesg */
3f64f565 1677 if (ata_msg_drv(ap) && print_info) {
88574551 1678 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1679 "%s: %s, %s, max %s\n",
1680 revbuf, modelbuf, fwrevbuf,
1681 ata_mode_string(xfer_mask));
1682 ata_dev_printk(dev, KERN_INFO,
1683 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1684 (unsigned long long)dev->n_sectors,
1685 dev->multi_count, dev->cylinders,
1686 dev->heads, dev->sectors);
1687 }
07f6f7d0
AL
1688 }
1689
6e7846e9 1690 dev->cdb_len = 16;
1da177e4
LT
1691 }
1692
1693 /* ATAPI-specific feature tests */
2c13b7ce 1694 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1695 char *cdb_intr_string = "";
1696
1148c3a7 1697 rc = atapi_cdb_len(id);
1da177e4 1698 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1699 if (ata_msg_warn(ap))
88574551
TH
1700 ata_dev_printk(dev, KERN_WARNING,
1701 "unsupported CDB len\n");
ffeae418 1702 rc = -EINVAL;
1da177e4
LT
1703 goto err_out_nosup;
1704 }
6e7846e9 1705 dev->cdb_len = (unsigned int) rc;
1da177e4 1706
08a556db 1707 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1708 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1709 cdb_intr_string = ", CDB intr";
1710 }
312f7da2 1711
1da177e4 1712 /* print device info to dmesg */
5afc8142 1713 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1714 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1715 ata_mode_string(xfer_mask),
1716 cdb_intr_string);
1da177e4
LT
1717 }
1718
914ed354
TH
1719 /* determine max_sectors */
1720 dev->max_sectors = ATA_MAX_SECTORS;
1721 if (dev->flags & ATA_DFLAG_LBA48)
1722 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1723
93590859
AC
1724 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1725 /* Let the user know. We don't want to disallow opens for
1726 rescue purposes, or in case the vendor is just a blithering
1727 idiot */
1728 if (print_info) {
1729 ata_dev_printk(dev, KERN_WARNING,
1730"Drive reports diagnostics failure. This may indicate a drive\n");
1731 ata_dev_printk(dev, KERN_WARNING,
1732"fault or invalid emulation. Contact drive vendor for information.\n");
1733 }
1734 }
1735
e6d902a3 1736 ata_set_port_max_cmd_len(ap);
6e7846e9 1737
4b2f3ede 1738 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1739 if (ata_dev_knobble(dev)) {
5afc8142 1740 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1741 ata_dev_printk(dev, KERN_INFO,
1742 "applying bridge limits\n");
5a529139 1743 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1744 dev->max_sectors = ATA_MAX_SECTORS;
1745 }
1746
1747 if (ap->ops->dev_config)
1748 ap->ops->dev_config(ap, dev);
1749
0dd4b21f
BP
1750 if (ata_msg_probe(ap))
1751 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1752 __FUNCTION__, ata_chk_status(ap));
ffeae418 1753 return 0;
1da177e4
LT
1754
1755err_out_nosup:
0dd4b21f 1756 if (ata_msg_probe(ap))
88574551
TH
1757 ata_dev_printk(dev, KERN_DEBUG,
1758 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1759 return rc;
1da177e4
LT
1760}
1761
1762/**
1763 * ata_bus_probe - Reset and probe ATA bus
1764 * @ap: Bus to probe
1765 *
0cba632b
JG
1766 * Master ATA bus probing function. Initiates a hardware-dependent
1767 * bus reset, then attempts to identify any devices found on
1768 * the bus.
1769 *
1da177e4 1770 * LOCKING:
0cba632b 1771 * PCI/etc. bus probe sem.
1da177e4
LT
1772 *
1773 * RETURNS:
96072e69 1774 * Zero on success, negative errno otherwise.
1da177e4
LT
1775 */
1776
80289167 1777int ata_bus_probe(struct ata_port *ap)
1da177e4 1778{
28ca5c57 1779 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1780 int tries[ATA_MAX_DEVICES];
1781 int i, rc, down_xfermask;
e82cbdb9 1782 struct ata_device *dev;
1da177e4 1783
28ca5c57 1784 ata_port_probe(ap);
c19ba8af 1785
14d2bac1
TH
1786 for (i = 0; i < ATA_MAX_DEVICES; i++)
1787 tries[i] = ATA_PROBE_MAX_TRIES;
1788
1789 retry:
1790 down_xfermask = 0;
1791
2044470c 1792 /* reset and determine device classes */
52783c5d 1793 ap->ops->phy_reset(ap);
2061a47a 1794
52783c5d
TH
1795 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1796 dev = &ap->device[i];
c19ba8af 1797
52783c5d
TH
1798 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1799 dev->class != ATA_DEV_UNKNOWN)
1800 classes[dev->devno] = dev->class;
1801 else
1802 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1803
52783c5d 1804 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1805 }
1da177e4 1806
52783c5d 1807 ata_port_probe(ap);
2044470c 1808
b6079ca4
AC
1809 /* after the reset the device state is PIO 0 and the controller
1810 state is undefined. Record the mode */
1811
1812 for (i = 0; i < ATA_MAX_DEVICES; i++)
1813 ap->device[i].pio_mode = XFER_PIO_0;
1814
28ca5c57 1815 /* read IDENTIFY page and configure devices */
1da177e4 1816 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1817 dev = &ap->device[i];
28ca5c57 1818
ec573755
TH
1819 if (tries[i])
1820 dev->class = classes[i];
ffeae418 1821
14d2bac1 1822 if (!ata_dev_enabled(dev))
ffeae418 1823 continue;
ffeae418 1824
bff04647
TH
1825 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1826 dev->id);
14d2bac1
TH
1827 if (rc)
1828 goto fail;
1829
efdaedc4
TH
1830 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1831 rc = ata_dev_configure(dev);
1832 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1833 if (rc)
1834 goto fail;
1da177e4
LT
1835 }
1836
e82cbdb9 1837 /* configure transfer mode */
3adcebb2 1838 rc = ata_set_mode(ap, &dev);
51713d35
TH
1839 if (rc) {
1840 down_xfermask = 1;
1841 goto fail;
e82cbdb9 1842 }
1da177e4 1843
e82cbdb9
TH
1844 for (i = 0; i < ATA_MAX_DEVICES; i++)
1845 if (ata_dev_enabled(&ap->device[i]))
1846 return 0;
1da177e4 1847
e82cbdb9
TH
1848 /* no device present, disable port */
1849 ata_port_disable(ap);
1da177e4 1850 ap->ops->port_disable(ap);
96072e69 1851 return -ENODEV;
14d2bac1
TH
1852
1853 fail:
1854 switch (rc) {
1855 case -EINVAL:
1856 case -ENODEV:
1857 tries[dev->devno] = 0;
1858 break;
1859 case -EIO:
3c567b7d 1860 sata_down_spd_limit(ap);
14d2bac1
TH
1861 /* fall through */
1862 default:
1863 tries[dev->devno]--;
1864 if (down_xfermask &&
3373efd8 1865 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1866 tries[dev->devno] = 0;
1867 }
1868
ec573755 1869 if (!tries[dev->devno]) {
3373efd8
TH
1870 ata_down_xfermask_limit(dev, 1);
1871 ata_dev_disable(dev);
ec573755
TH
1872 }
1873
14d2bac1 1874 goto retry;
1da177e4
LT
1875}
1876
1877/**
0cba632b
JG
1878 * ata_port_probe - Mark port as enabled
1879 * @ap: Port for which we indicate enablement
1da177e4 1880 *
0cba632b
JG
1881 * Modify @ap data structure such that the system
1882 * thinks that the entire port is enabled.
1883 *
cca3974e 1884 * LOCKING: host lock, or some other form of
0cba632b 1885 * serialization.
1da177e4
LT
1886 */
1887
1888void ata_port_probe(struct ata_port *ap)
1889{
198e0fed 1890 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1891}
1892
3be680b7
TH
1893/**
1894 * sata_print_link_status - Print SATA link status
1895 * @ap: SATA port to printk link status about
1896 *
1897 * This function prints link speed and status of a SATA link.
1898 *
1899 * LOCKING:
1900 * None.
1901 */
1902static void sata_print_link_status(struct ata_port *ap)
1903{
6d5f9732 1904 u32 sstatus, scontrol, tmp;
3be680b7 1905
81952c54 1906 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1907 return;
81952c54 1908 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1909
81952c54 1910 if (ata_port_online(ap)) {
3be680b7 1911 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1912 ata_port_printk(ap, KERN_INFO,
1913 "SATA link up %s (SStatus %X SControl %X)\n",
1914 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1915 } else {
f15a1daf
TH
1916 ata_port_printk(ap, KERN_INFO,
1917 "SATA link down (SStatus %X SControl %X)\n",
1918 sstatus, scontrol);
3be680b7
TH
1919 }
1920}
1921
1da177e4 1922/**
780a87f7
JG
1923 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1924 * @ap: SATA port associated with target SATA PHY.
1da177e4 1925 *
780a87f7
JG
1926 * This function issues commands to standard SATA Sxxx
1927 * PHY registers, to wake up the phy (and device), and
1928 * clear any reset condition.
1da177e4
LT
1929 *
1930 * LOCKING:
0cba632b 1931 * PCI/etc. bus probe sem.
1da177e4
LT
1932 *
1933 */
1934void __sata_phy_reset(struct ata_port *ap)
1935{
1936 u32 sstatus;
1937 unsigned long timeout = jiffies + (HZ * 5);
1938
1939 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1940 /* issue phy wake/reset */
81952c54 1941 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1942 /* Couldn't find anything in SATA I/II specs, but
1943 * AHCI-1.1 10.4.2 says at least 1 ms. */
1944 mdelay(1);
1da177e4 1945 }
81952c54
TH
1946 /* phy wake/clear reset */
1947 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1948
1949 /* wait for phy to become ready, if necessary */
1950 do {
1951 msleep(200);
81952c54 1952 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1953 if ((sstatus & 0xf) != 1)
1954 break;
1955 } while (time_before(jiffies, timeout));
1956
3be680b7
TH
1957 /* print link status */
1958 sata_print_link_status(ap);
656563e3 1959
3be680b7 1960 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1961 if (!ata_port_offline(ap))
1da177e4 1962 ata_port_probe(ap);
3be680b7 1963 else
1da177e4 1964 ata_port_disable(ap);
1da177e4 1965
198e0fed 1966 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1967 return;
1968
1969 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1970 ata_port_disable(ap);
1971 return;
1972 }
1973
1974 ap->cbl = ATA_CBL_SATA;
1975}
1976
1977/**
780a87f7
JG
1978 * sata_phy_reset - Reset SATA bus.
1979 * @ap: SATA port associated with target SATA PHY.
1da177e4 1980 *
780a87f7
JG
1981 * This function resets the SATA bus, and then probes
1982 * the bus for devices.
1da177e4
LT
1983 *
1984 * LOCKING:
0cba632b 1985 * PCI/etc. bus probe sem.
1da177e4
LT
1986 *
1987 */
1988void sata_phy_reset(struct ata_port *ap)
1989{
1990 __sata_phy_reset(ap);
198e0fed 1991 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1992 return;
1993 ata_bus_reset(ap);
1994}
1995
ebdfca6e
AC
1996/**
1997 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1998 * @adev: device
1999 *
2000 * Obtain the other device on the same cable, or if none is
2001 * present NULL is returned
2002 */
2e9edbf8 2003
3373efd8 2004struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2005{
3373efd8 2006 struct ata_port *ap = adev->ap;
ebdfca6e 2007 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2008 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2009 return NULL;
2010 return pair;
2011}
2012
1da177e4 2013/**
780a87f7
JG
2014 * ata_port_disable - Disable port.
2015 * @ap: Port to be disabled.
1da177e4 2016 *
780a87f7
JG
2017 * Modify @ap data structure such that the system
2018 * thinks that the entire port is disabled, and should
2019 * never attempt to probe or communicate with devices
2020 * on this port.
2021 *
cca3974e 2022 * LOCKING: host lock, or some other form of
780a87f7 2023 * serialization.
1da177e4
LT
2024 */
2025
2026void ata_port_disable(struct ata_port *ap)
2027{
2028 ap->device[0].class = ATA_DEV_NONE;
2029 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2030 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2031}
2032
1c3fae4d 2033/**
3c567b7d 2034 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2035 * @ap: Port to adjust SATA spd limit for
2036 *
2037 * Adjust SATA spd limit of @ap downward. Note that this
2038 * function only adjusts the limit. The change must be applied
3c567b7d 2039 * using sata_set_spd().
1c3fae4d
TH
2040 *
2041 * LOCKING:
2042 * Inherited from caller.
2043 *
2044 * RETURNS:
2045 * 0 on success, negative errno on failure
2046 */
3c567b7d 2047int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2048{
81952c54
TH
2049 u32 sstatus, spd, mask;
2050 int rc, highbit;
1c3fae4d 2051
81952c54
TH
2052 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2053 if (rc)
2054 return rc;
1c3fae4d
TH
2055
2056 mask = ap->sata_spd_limit;
2057 if (mask <= 1)
2058 return -EINVAL;
2059 highbit = fls(mask) - 1;
2060 mask &= ~(1 << highbit);
2061
81952c54 2062 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2063 if (spd <= 1)
2064 return -EINVAL;
2065 spd--;
2066 mask &= (1 << spd) - 1;
2067 if (!mask)
2068 return -EINVAL;
2069
2070 ap->sata_spd_limit = mask;
2071
f15a1daf
TH
2072 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2073 sata_spd_string(fls(mask)));
1c3fae4d
TH
2074
2075 return 0;
2076}
2077
3c567b7d 2078static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2079{
2080 u32 spd, limit;
2081
2082 if (ap->sata_spd_limit == UINT_MAX)
2083 limit = 0;
2084 else
2085 limit = fls(ap->sata_spd_limit);
2086
2087 spd = (*scontrol >> 4) & 0xf;
2088 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2089
2090 return spd != limit;
2091}
2092
2093/**
3c567b7d 2094 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2095 * @ap: Port in question
2096 *
2097 * Test whether the spd limit in SControl matches
2098 * @ap->sata_spd_limit. This function is used to determine
2099 * whether hardreset is necessary to apply SATA spd
2100 * configuration.
2101 *
2102 * LOCKING:
2103 * Inherited from caller.
2104 *
2105 * RETURNS:
2106 * 1 if SATA spd configuration is needed, 0 otherwise.
2107 */
3c567b7d 2108int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2109{
2110 u32 scontrol;
2111
81952c54 2112 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2113 return 0;
2114
3c567b7d 2115 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2116}
2117
2118/**
3c567b7d 2119 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2120 * @ap: Port to set SATA spd for
2121 *
2122 * Set SATA spd of @ap according to sata_spd_limit.
2123 *
2124 * LOCKING:
2125 * Inherited from caller.
2126 *
2127 * RETURNS:
2128 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2129 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2130 */
3c567b7d 2131int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2132{
2133 u32 scontrol;
81952c54 2134 int rc;
1c3fae4d 2135
81952c54
TH
2136 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2137 return rc;
1c3fae4d 2138
3c567b7d 2139 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2140 return 0;
2141
81952c54
TH
2142 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2143 return rc;
2144
1c3fae4d
TH
2145 return 1;
2146}
2147
452503f9
AC
2148/*
2149 * This mode timing computation functionality is ported over from
2150 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2151 */
2152/*
b352e57d 2153 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2154 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2155 * for UDMA6, which is currently supported only by Maxtor drives.
2156 *
2157 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2158 */
2159
2160static const struct ata_timing ata_timing[] = {
2161
2162 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2163 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2164 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2165 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2166
b352e57d
AC
2167 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2168 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2169 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2170 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2171 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2172
2173/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2174
452503f9
AC
2175 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2176 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2177 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2178
452503f9
AC
2179 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2180 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2181 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2182
b352e57d
AC
2183 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2184 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2185 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2186 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2187
2188 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2189 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2190 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2191
2192/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2193
2194 { 0xFF }
2195};
2196
2197#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2198#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2199
2200static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2201{
2202 q->setup = EZ(t->setup * 1000, T);
2203 q->act8b = EZ(t->act8b * 1000, T);
2204 q->rec8b = EZ(t->rec8b * 1000, T);
2205 q->cyc8b = EZ(t->cyc8b * 1000, T);
2206 q->active = EZ(t->active * 1000, T);
2207 q->recover = EZ(t->recover * 1000, T);
2208 q->cycle = EZ(t->cycle * 1000, T);
2209 q->udma = EZ(t->udma * 1000, UT);
2210}
2211
2212void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2213 struct ata_timing *m, unsigned int what)
2214{
2215 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2216 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2217 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2218 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2219 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2220 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2221 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2222 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2223}
2224
2225static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2226{
2227 const struct ata_timing *t;
2228
2229 for (t = ata_timing; t->mode != speed; t++)
91190758 2230 if (t->mode == 0xFF)
452503f9 2231 return NULL;
2e9edbf8 2232 return t;
452503f9
AC
2233}
2234
2235int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2236 struct ata_timing *t, int T, int UT)
2237{
2238 const struct ata_timing *s;
2239 struct ata_timing p;
2240
2241 /*
2e9edbf8 2242 * Find the mode.
75b1f2f8 2243 */
452503f9
AC
2244
2245 if (!(s = ata_timing_find_mode(speed)))
2246 return -EINVAL;
2247
75b1f2f8
AL
2248 memcpy(t, s, sizeof(*s));
2249
452503f9
AC
2250 /*
2251 * If the drive is an EIDE drive, it can tell us it needs extended
2252 * PIO/MW_DMA cycle timing.
2253 */
2254
2255 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2256 memset(&p, 0, sizeof(p));
2257 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2258 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2259 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2260 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2261 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2262 }
2263 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2264 }
2265
2266 /*
2267 * Convert the timing to bus clock counts.
2268 */
2269
75b1f2f8 2270 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2271
2272 /*
c893a3ae
RD
2273 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2274 * S.M.A.R.T * and some other commands. We have to ensure that the
2275 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2276 */
2277
fd3367af 2278 if (speed > XFER_PIO_6) {
452503f9
AC
2279 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2280 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2281 }
2282
2283 /*
c893a3ae 2284 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2285 */
2286
2287 if (t->act8b + t->rec8b < t->cyc8b) {
2288 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2289 t->rec8b = t->cyc8b - t->act8b;
2290 }
2291
2292 if (t->active + t->recover < t->cycle) {
2293 t->active += (t->cycle - (t->active + t->recover)) / 2;
2294 t->recover = t->cycle - t->active;
2295 }
2296
2297 return 0;
2298}
2299
cf176e1a
TH
2300/**
2301 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2302 * @dev: Device to adjust xfer masks
2303 * @force_pio0: Force PIO0
2304 *
2305 * Adjust xfer masks of @dev downward. Note that this function
2306 * does not apply the change. Invoking ata_set_mode() afterwards
2307 * will apply the limit.
2308 *
2309 * LOCKING:
2310 * Inherited from caller.
2311 *
2312 * RETURNS:
2313 * 0 on success, negative errno on failure
2314 */
3373efd8 2315int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2316{
2317 unsigned long xfer_mask;
2318 int highbit;
2319
2320 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2321 dev->udma_mask);
2322
2323 if (!xfer_mask)
2324 goto fail;
2325 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2326 if (xfer_mask & ATA_MASK_UDMA)
2327 xfer_mask &= ~ATA_MASK_MWDMA;
2328
2329 highbit = fls(xfer_mask) - 1;
2330 xfer_mask &= ~(1 << highbit);
2331 if (force_pio0)
2332 xfer_mask &= 1 << ATA_SHIFT_PIO;
2333 if (!xfer_mask)
2334 goto fail;
2335
2336 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2337 &dev->udma_mask);
2338
f15a1daf
TH
2339 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2340 ata_mode_string(xfer_mask));
cf176e1a
TH
2341
2342 return 0;
2343
2344 fail:
2345 return -EINVAL;
2346}
2347
3373efd8 2348static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2349{
baa1e78a 2350 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2351 unsigned int err_mask;
2352 int rc;
1da177e4 2353
e8384607 2354 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2355 if (dev->xfer_shift == ATA_SHIFT_PIO)
2356 dev->flags |= ATA_DFLAG_PIO;
2357
3373efd8 2358 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2359 /* Old CFA may refuse this command, which is just fine */
2360 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2361 err_mask &= ~AC_ERR_DEV;
2362
83206a29 2363 if (err_mask) {
f15a1daf
TH
2364 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2365 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2366 return -EIO;
2367 }
1da177e4 2368
baa1e78a 2369 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2370 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2371 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2372 if (rc)
83206a29 2373 return rc;
48a8a14f 2374
23e71c3d
TH
2375 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2376 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2377
f15a1daf
TH
2378 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2379 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2380 return 0;
1da177e4
LT
2381}
2382
1da177e4
LT
2383/**
2384 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2385 * @ap: port on which timings will be programmed
e82cbdb9 2386 * @r_failed_dev: out paramter for failed device
1da177e4 2387 *
e82cbdb9
TH
2388 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2389 * ata_set_mode() fails, pointer to the failing device is
2390 * returned in @r_failed_dev.
780a87f7 2391 *
1da177e4 2392 * LOCKING:
0cba632b 2393 * PCI/etc. bus probe sem.
e82cbdb9
TH
2394 *
2395 * RETURNS:
2396 * 0 on success, negative errno otherwise
1da177e4 2397 */
1ad8e7f9 2398int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2399{
e8e0619f 2400 struct ata_device *dev;
e82cbdb9 2401 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2402
3adcebb2 2403 /* has private set_mode? */
b229a7b0
AC
2404 if (ap->ops->set_mode)
2405 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2406
a6d5a51c
TH
2407 /* step 1: calculate xfer_mask */
2408 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2409 unsigned int pio_mask, dma_mask;
a6d5a51c 2410
e8e0619f
TH
2411 dev = &ap->device[i];
2412
e1211e3f 2413 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2414 continue;
2415
3373efd8 2416 ata_dev_xfermask(dev);
1da177e4 2417
acf356b1
TH
2418 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2419 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2420 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2421 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2422
4f65977d 2423 found = 1;
5444a6f4
AC
2424 if (dev->dma_mode)
2425 used_dma = 1;
a6d5a51c 2426 }
4f65977d 2427 if (!found)
e82cbdb9 2428 goto out;
a6d5a51c
TH
2429
2430 /* step 2: always set host PIO timings */
e8e0619f
TH
2431 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2432 dev = &ap->device[i];
2433 if (!ata_dev_enabled(dev))
2434 continue;
2435
2436 if (!dev->pio_mode) {
f15a1daf 2437 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2438 rc = -EINVAL;
e82cbdb9 2439 goto out;
e8e0619f
TH
2440 }
2441
2442 dev->xfer_mode = dev->pio_mode;
2443 dev->xfer_shift = ATA_SHIFT_PIO;
2444 if (ap->ops->set_piomode)
2445 ap->ops->set_piomode(ap, dev);
2446 }
1da177e4 2447
a6d5a51c 2448 /* step 3: set host DMA timings */
e8e0619f
TH
2449 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2450 dev = &ap->device[i];
2451
2452 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2453 continue;
2454
2455 dev->xfer_mode = dev->dma_mode;
2456 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2457 if (ap->ops->set_dmamode)
2458 ap->ops->set_dmamode(ap, dev);
2459 }
1da177e4
LT
2460
2461 /* step 4: update devices' xfer mode */
83206a29 2462 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2463 dev = &ap->device[i];
1da177e4 2464
18d90deb 2465 /* don't update suspended devices' xfer mode */
02670bf3 2466 if (!ata_dev_ready(dev))
83206a29
TH
2467 continue;
2468
3373efd8 2469 rc = ata_dev_set_mode(dev);
5bbc53f4 2470 if (rc)
e82cbdb9 2471 goto out;
83206a29 2472 }
1da177e4 2473
e8e0619f
TH
2474 /* Record simplex status. If we selected DMA then the other
2475 * host channels are not permitted to do so.
5444a6f4 2476 */
cca3974e
JG
2477 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2478 ap->host->simplex_claimed = 1;
5444a6f4 2479
e8e0619f 2480 /* step5: chip specific finalisation */
1da177e4
LT
2481 if (ap->ops->post_set_mode)
2482 ap->ops->post_set_mode(ap);
2483
e82cbdb9
TH
2484 out:
2485 if (rc)
2486 *r_failed_dev = dev;
2487 return rc;
1da177e4
LT
2488}
2489
1fdffbce
JG
2490/**
2491 * ata_tf_to_host - issue ATA taskfile to host controller
2492 * @ap: port to which command is being issued
2493 * @tf: ATA taskfile register set
2494 *
2495 * Issues ATA taskfile register set to ATA host controller,
2496 * with proper synchronization with interrupt handler and
2497 * other threads.
2498 *
2499 * LOCKING:
cca3974e 2500 * spin_lock_irqsave(host lock)
1fdffbce
JG
2501 */
2502
2503static inline void ata_tf_to_host(struct ata_port *ap,
2504 const struct ata_taskfile *tf)
2505{
2506 ap->ops->tf_load(ap, tf);
2507 ap->ops->exec_command(ap, tf);
2508}
2509
1da177e4
LT
2510/**
2511 * ata_busy_sleep - sleep until BSY clears, or timeout
2512 * @ap: port containing status register to be polled
2513 * @tmout_pat: impatience timeout
2514 * @tmout: overall timeout
2515 *
780a87f7
JG
2516 * Sleep until ATA Status register bit BSY clears,
2517 * or a timeout occurs.
2518 *
d1adc1bb
TH
2519 * LOCKING:
2520 * Kernel thread context (may sleep).
2521 *
2522 * RETURNS:
2523 * 0 on success, -errno otherwise.
1da177e4 2524 */
d1adc1bb
TH
2525int ata_busy_sleep(struct ata_port *ap,
2526 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2527{
2528 unsigned long timer_start, timeout;
2529 u8 status;
2530
2531 status = ata_busy_wait(ap, ATA_BUSY, 300);
2532 timer_start = jiffies;
2533 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2534 while (status != 0xff && (status & ATA_BUSY) &&
2535 time_before(jiffies, timeout)) {
1da177e4
LT
2536 msleep(50);
2537 status = ata_busy_wait(ap, ATA_BUSY, 3);
2538 }
2539
d1adc1bb 2540 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2541 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2542 "port is slow to respond, please be patient "
2543 "(Status 0x%x)\n", status);
1da177e4
LT
2544
2545 timeout = timer_start + tmout;
d1adc1bb
TH
2546 while (status != 0xff && (status & ATA_BUSY) &&
2547 time_before(jiffies, timeout)) {
1da177e4
LT
2548 msleep(50);
2549 status = ata_chk_status(ap);
2550 }
2551
d1adc1bb
TH
2552 if (status == 0xff)
2553 return -ENODEV;
2554
1da177e4 2555 if (status & ATA_BUSY) {
f15a1daf 2556 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2557 "(%lu secs, Status 0x%x)\n",
2558 tmout / HZ, status);
d1adc1bb 2559 return -EBUSY;
1da177e4
LT
2560 }
2561
2562 return 0;
2563}
2564
2565static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2566{
2567 struct ata_ioports *ioaddr = &ap->ioaddr;
2568 unsigned int dev0 = devmask & (1 << 0);
2569 unsigned int dev1 = devmask & (1 << 1);
2570 unsigned long timeout;
2571
2572 /* if device 0 was found in ata_devchk, wait for its
2573 * BSY bit to clear
2574 */
2575 if (dev0)
2576 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2577
2578 /* if device 1 was found in ata_devchk, wait for
2579 * register access, then wait for BSY to clear
2580 */
2581 timeout = jiffies + ATA_TMOUT_BOOT;
2582 while (dev1) {
2583 u8 nsect, lbal;
2584
2585 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2586 nsect = ioread8(ioaddr->nsect_addr);
2587 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2588 if ((nsect == 1) && (lbal == 1))
2589 break;
2590 if (time_after(jiffies, timeout)) {
2591 dev1 = 0;
2592 break;
2593 }
2594 msleep(50); /* give drive a breather */
2595 }
2596 if (dev1)
2597 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2598
2599 /* is all this really necessary? */
2600 ap->ops->dev_select(ap, 0);
2601 if (dev1)
2602 ap->ops->dev_select(ap, 1);
2603 if (dev0)
2604 ap->ops->dev_select(ap, 0);
2605}
2606
1da177e4
LT
2607static unsigned int ata_bus_softreset(struct ata_port *ap,
2608 unsigned int devmask)
2609{
2610 struct ata_ioports *ioaddr = &ap->ioaddr;
2611
2612 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2613
2614 /* software reset. causes dev0 to be selected */
0d5ff566
TH
2615 iowrite8(ap->ctl, ioaddr->ctl_addr);
2616 udelay(20); /* FIXME: flush */
2617 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2618 udelay(20); /* FIXME: flush */
2619 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2620
2621 /* spec mandates ">= 2ms" before checking status.
2622 * We wait 150ms, because that was the magic delay used for
2623 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2624 * between when the ATA command register is written, and then
2625 * status is checked. Because waiting for "a while" before
2626 * checking status is fine, post SRST, we perform this magic
2627 * delay here as well.
09c7ad79
AC
2628 *
2629 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2630 */
2631 msleep(150);
2632
2e9edbf8 2633 /* Before we perform post reset processing we want to see if
298a41ca
TH
2634 * the bus shows 0xFF because the odd clown forgets the D7
2635 * pulldown resistor.
2636 */
d1adc1bb
TH
2637 if (ata_check_status(ap) == 0xFF)
2638 return 0;
09c7ad79 2639
1da177e4
LT
2640 ata_bus_post_reset(ap, devmask);
2641
2642 return 0;
2643}
2644
2645/**
2646 * ata_bus_reset - reset host port and associated ATA channel
2647 * @ap: port to reset
2648 *
2649 * This is typically the first time we actually start issuing
2650 * commands to the ATA channel. We wait for BSY to clear, then
2651 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2652 * result. Determine what devices, if any, are on the channel
2653 * by looking at the device 0/1 error register. Look at the signature
2654 * stored in each device's taskfile registers, to determine if
2655 * the device is ATA or ATAPI.
2656 *
2657 * LOCKING:
0cba632b 2658 * PCI/etc. bus probe sem.
cca3974e 2659 * Obtains host lock.
1da177e4
LT
2660 *
2661 * SIDE EFFECTS:
198e0fed 2662 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2663 */
2664
2665void ata_bus_reset(struct ata_port *ap)
2666{
2667 struct ata_ioports *ioaddr = &ap->ioaddr;
2668 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2669 u8 err;
aec5c3c1 2670 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2671
2672 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2673
2674 /* determine if device 0/1 are present */
2675 if (ap->flags & ATA_FLAG_SATA_RESET)
2676 dev0 = 1;
2677 else {
2678 dev0 = ata_devchk(ap, 0);
2679 if (slave_possible)
2680 dev1 = ata_devchk(ap, 1);
2681 }
2682
2683 if (dev0)
2684 devmask |= (1 << 0);
2685 if (dev1)
2686 devmask |= (1 << 1);
2687
2688 /* select device 0 again */
2689 ap->ops->dev_select(ap, 0);
2690
2691 /* issue bus reset */
2692 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2693 if (ata_bus_softreset(ap, devmask))
2694 goto err_out;
1da177e4
LT
2695
2696 /*
2697 * determine by signature whether we have ATA or ATAPI devices
2698 */
b4dc7623 2699 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2700 if ((slave_possible) && (err != 0x81))
b4dc7623 2701 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2702
2703 /* re-enable interrupts */
83625006 2704 ap->ops->irq_on(ap);
1da177e4
LT
2705
2706 /* is double-select really necessary? */
2707 if (ap->device[1].class != ATA_DEV_NONE)
2708 ap->ops->dev_select(ap, 1);
2709 if (ap->device[0].class != ATA_DEV_NONE)
2710 ap->ops->dev_select(ap, 0);
2711
2712 /* if no devices were detected, disable this port */
2713 if ((ap->device[0].class == ATA_DEV_NONE) &&
2714 (ap->device[1].class == ATA_DEV_NONE))
2715 goto err_out;
2716
2717 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2718 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 2719 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2720 }
2721
2722 DPRINTK("EXIT\n");
2723 return;
2724
2725err_out:
f15a1daf 2726 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2727 ap->ops->port_disable(ap);
2728
2729 DPRINTK("EXIT\n");
2730}
2731
d7bb4cc7
TH
2732/**
2733 * sata_phy_debounce - debounce SATA phy status
2734 * @ap: ATA port to debounce SATA phy status for
2735 * @params: timing parameters { interval, duratinon, timeout } in msec
2736 *
2737 * Make sure SStatus of @ap reaches stable state, determined by
2738 * holding the same value where DET is not 1 for @duration polled
2739 * every @interval, before @timeout. Timeout constraints the
2740 * beginning of the stable state. Because, after hot unplugging,
2741 * DET gets stuck at 1 on some controllers, this functions waits
2742 * until timeout then returns 0 if DET is stable at 1.
2743 *
2744 * LOCKING:
2745 * Kernel thread context (may sleep)
2746 *
2747 * RETURNS:
2748 * 0 on success, -errno on failure.
2749 */
2750int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2751{
d7bb4cc7
TH
2752 unsigned long interval_msec = params[0];
2753 unsigned long duration = params[1] * HZ / 1000;
2754 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2755 unsigned long last_jiffies;
2756 u32 last, cur;
2757 int rc;
2758
2759 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2760 return rc;
2761 cur &= 0xf;
2762
2763 last = cur;
2764 last_jiffies = jiffies;
2765
2766 while (1) {
2767 msleep(interval_msec);
2768 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2769 return rc;
2770 cur &= 0xf;
2771
2772 /* DET stable? */
2773 if (cur == last) {
2774 if (cur == 1 && time_before(jiffies, timeout))
2775 continue;
2776 if (time_after(jiffies, last_jiffies + duration))
2777 return 0;
2778 continue;
2779 }
2780
2781 /* unstable, start over */
2782 last = cur;
2783 last_jiffies = jiffies;
2784
2785 /* check timeout */
2786 if (time_after(jiffies, timeout))
2787 return -EBUSY;
2788 }
2789}
2790
2791/**
2792 * sata_phy_resume - resume SATA phy
2793 * @ap: ATA port to resume SATA phy for
2794 * @params: timing parameters { interval, duratinon, timeout } in msec
2795 *
2796 * Resume SATA phy of @ap and debounce it.
2797 *
2798 * LOCKING:
2799 * Kernel thread context (may sleep)
2800 *
2801 * RETURNS:
2802 * 0 on success, -errno on failure.
2803 */
2804int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2805{
2806 u32 scontrol;
81952c54
TH
2807 int rc;
2808
2809 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2810 return rc;
7a7921e8 2811
852ee16a 2812 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2813
2814 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2815 return rc;
7a7921e8 2816
d7bb4cc7
TH
2817 /* Some PHYs react badly if SStatus is pounded immediately
2818 * after resuming. Delay 200ms before debouncing.
2819 */
2820 msleep(200);
7a7921e8 2821
d7bb4cc7 2822 return sata_phy_debounce(ap, params);
7a7921e8
TH
2823}
2824
f5914a46
TH
2825static void ata_wait_spinup(struct ata_port *ap)
2826{
2827 struct ata_eh_context *ehc = &ap->eh_context;
2828 unsigned long end, secs;
2829 int rc;
2830
2831 /* first, debounce phy if SATA */
2832 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2833 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2834
2835 /* if debounced successfully and offline, no need to wait */
2836 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2837 return;
2838 }
2839
2840 /* okay, let's give the drive time to spin up */
2841 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2842 secs = ((end - jiffies) + HZ - 1) / HZ;
2843
2844 if (time_after(jiffies, end))
2845 return;
2846
2847 if (secs > 5)
2848 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2849 "(%lu secs)\n", secs);
2850
2851 schedule_timeout_uninterruptible(end - jiffies);
2852}
2853
2854/**
2855 * ata_std_prereset - prepare for reset
2856 * @ap: ATA port to be reset
2857 *
2858 * @ap is about to be reset. Initialize it.
2859 *
2860 * LOCKING:
2861 * Kernel thread context (may sleep)
2862 *
2863 * RETURNS:
2864 * 0 on success, -errno otherwise.
2865 */
2866int ata_std_prereset(struct ata_port *ap)
2867{
2868 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2869 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2870 int rc;
2871
28324304
TH
2872 /* handle link resume & hotplug spinup */
2873 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2874 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2875 ehc->i.action |= ATA_EH_HARDRESET;
2876
2877 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2878 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2879 ata_wait_spinup(ap);
f5914a46
TH
2880
2881 /* if we're about to do hardreset, nothing more to do */
2882 if (ehc->i.action & ATA_EH_HARDRESET)
2883 return 0;
2884
2885 /* if SATA, resume phy */
2886 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2887 rc = sata_phy_resume(ap, timing);
2888 if (rc && rc != -EOPNOTSUPP) {
2889 /* phy resume failed */
2890 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2891 "link for reset (errno=%d)\n", rc);
2892 return rc;
2893 }
2894 }
2895
2896 /* Wait for !BSY if the controller can wait for the first D2H
2897 * Reg FIS and we don't know that no device is attached.
2898 */
2899 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2900 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2901
2902 return 0;
2903}
2904
c2bd5804
TH
2905/**
2906 * ata_std_softreset - reset host port via ATA SRST
2907 * @ap: port to reset
c2bd5804
TH
2908 * @classes: resulting classes of attached devices
2909 *
52783c5d 2910 * Reset host port using ATA SRST.
c2bd5804
TH
2911 *
2912 * LOCKING:
2913 * Kernel thread context (may sleep)
2914 *
2915 * RETURNS:
2916 * 0 on success, -errno otherwise.
2917 */
2bf2cb26 2918int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2919{
2920 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2921 unsigned int devmask = 0, err_mask;
2922 u8 err;
2923
2924 DPRINTK("ENTER\n");
2925
81952c54 2926 if (ata_port_offline(ap)) {
3a39746a
TH
2927 classes[0] = ATA_DEV_NONE;
2928 goto out;
2929 }
2930
c2bd5804
TH
2931 /* determine if device 0/1 are present */
2932 if (ata_devchk(ap, 0))
2933 devmask |= (1 << 0);
2934 if (slave_possible && ata_devchk(ap, 1))
2935 devmask |= (1 << 1);
2936
c2bd5804
TH
2937 /* select device 0 again */
2938 ap->ops->dev_select(ap, 0);
2939
2940 /* issue bus reset */
2941 DPRINTK("about to softreset, devmask=%x\n", devmask);
2942 err_mask = ata_bus_softreset(ap, devmask);
2943 if (err_mask) {
f15a1daf
TH
2944 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2945 err_mask);
c2bd5804
TH
2946 return -EIO;
2947 }
2948
2949 /* determine by signature whether we have ATA or ATAPI devices */
2950 classes[0] = ata_dev_try_classify(ap, 0, &err);
2951 if (slave_possible && err != 0x81)
2952 classes[1] = ata_dev_try_classify(ap, 1, &err);
2953
3a39746a 2954 out:
c2bd5804
TH
2955 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2956 return 0;
2957}
2958
2959/**
b6103f6d 2960 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 2961 * @ap: port to reset
b6103f6d 2962 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
2963 *
2964 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2965 *
2966 * LOCKING:
2967 * Kernel thread context (may sleep)
2968 *
2969 * RETURNS:
2970 * 0 on success, -errno otherwise.
2971 */
b6103f6d 2972int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 2973{
852ee16a 2974 u32 scontrol;
81952c54 2975 int rc;
852ee16a 2976
c2bd5804
TH
2977 DPRINTK("ENTER\n");
2978
3c567b7d 2979 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2980 /* SATA spec says nothing about how to reconfigure
2981 * spd. To be on the safe side, turn off phy during
2982 * reconfiguration. This works for at least ICH7 AHCI
2983 * and Sil3124.
2984 */
81952c54 2985 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2986 goto out;
81952c54 2987
a34b6fc0 2988 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2989
2990 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 2991 goto out;
1c3fae4d 2992
3c567b7d 2993 sata_set_spd(ap);
1c3fae4d
TH
2994 }
2995
2996 /* issue phy wake/reset */
81952c54 2997 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2998 goto out;
81952c54 2999
852ee16a 3000 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3001
3002 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3003 goto out;
c2bd5804 3004
1c3fae4d 3005 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3006 * 10.4.2 says at least 1 ms.
3007 */
3008 msleep(1);
3009
1c3fae4d 3010 /* bring phy back */
b6103f6d
TH
3011 rc = sata_phy_resume(ap, timing);
3012 out:
3013 DPRINTK("EXIT, rc=%d\n", rc);
3014 return rc;
3015}
3016
3017/**
3018 * sata_std_hardreset - reset host port via SATA phy reset
3019 * @ap: port to reset
3020 * @class: resulting class of attached device
3021 *
3022 * SATA phy-reset host port using DET bits of SControl register,
3023 * wait for !BSY and classify the attached device.
3024 *
3025 * LOCKING:
3026 * Kernel thread context (may sleep)
3027 *
3028 * RETURNS:
3029 * 0 on success, -errno otherwise.
3030 */
3031int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3032{
3033 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3034 int rc;
3035
3036 DPRINTK("ENTER\n");
3037
3038 /* do hardreset */
3039 rc = sata_port_hardreset(ap, timing);
3040 if (rc) {
3041 ata_port_printk(ap, KERN_ERR,
3042 "COMRESET failed (errno=%d)\n", rc);
3043 return rc;
3044 }
c2bd5804 3045
c2bd5804 3046 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3047 if (ata_port_offline(ap)) {
c2bd5804
TH
3048 *class = ATA_DEV_NONE;
3049 DPRINTK("EXIT, link offline\n");
3050 return 0;
3051 }
3052
34fee227
TH
3053 /* wait a while before checking status, see SRST for more info */
3054 msleep(150);
3055
c2bd5804 3056 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3057 ata_port_printk(ap, KERN_ERR,
3058 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3059 return -EIO;
3060 }
3061
3a39746a
TH
3062 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3063
c2bd5804
TH
3064 *class = ata_dev_try_classify(ap, 0, NULL);
3065
3066 DPRINTK("EXIT, class=%u\n", *class);
3067 return 0;
3068}
3069
3070/**
3071 * ata_std_postreset - standard postreset callback
3072 * @ap: the target ata_port
3073 * @classes: classes of attached devices
3074 *
3075 * This function is invoked after a successful reset. Note that
3076 * the device might have been reset more than once using
3077 * different reset methods before postreset is invoked.
c2bd5804 3078 *
c2bd5804
TH
3079 * LOCKING:
3080 * Kernel thread context (may sleep)
3081 */
3082void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3083{
dc2b3515
TH
3084 u32 serror;
3085
c2bd5804
TH
3086 DPRINTK("ENTER\n");
3087
c2bd5804 3088 /* print link status */
81952c54 3089 sata_print_link_status(ap);
c2bd5804 3090
dc2b3515
TH
3091 /* clear SError */
3092 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3093 sata_scr_write(ap, SCR_ERROR, serror);
3094
3a39746a 3095 /* re-enable interrupts */
83625006
AI
3096 if (!ap->ops->error_handler)
3097 ap->ops->irq_on(ap);
c2bd5804
TH
3098
3099 /* is double-select really necessary? */
3100 if (classes[0] != ATA_DEV_NONE)
3101 ap->ops->dev_select(ap, 1);
3102 if (classes[1] != ATA_DEV_NONE)
3103 ap->ops->dev_select(ap, 0);
3104
3a39746a
TH
3105 /* bail out if no device is present */
3106 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3107 DPRINTK("EXIT, no device\n");
3108 return;
3109 }
3110
3111 /* set up device control */
0d5ff566
TH
3112 if (ap->ioaddr.ctl_addr)
3113 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3114
3115 DPRINTK("EXIT\n");
3116}
3117
623a3128
TH
3118/**
3119 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3120 * @dev: device to compare against
3121 * @new_class: class of the new device
3122 * @new_id: IDENTIFY page of the new device
3123 *
3124 * Compare @new_class and @new_id against @dev and determine
3125 * whether @dev is the device indicated by @new_class and
3126 * @new_id.
3127 *
3128 * LOCKING:
3129 * None.
3130 *
3131 * RETURNS:
3132 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3133 */
3373efd8
TH
3134static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3135 const u16 *new_id)
623a3128
TH
3136{
3137 const u16 *old_id = dev->id;
a0cf733b
TH
3138 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3139 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3140 u64 new_n_sectors;
3141
3142 if (dev->class != new_class) {
f15a1daf
TH
3143 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3144 dev->class, new_class);
623a3128
TH
3145 return 0;
3146 }
3147
a0cf733b
TH
3148 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3149 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3150 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3151 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3152 new_n_sectors = ata_id_n_sectors(new_id);
3153
3154 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3155 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3156 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3157 return 0;
3158 }
3159
3160 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3161 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3162 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3163 return 0;
3164 }
3165
3166 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3167 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3168 "%llu != %llu\n",
3169 (unsigned long long)dev->n_sectors,
3170 (unsigned long long)new_n_sectors);
623a3128
TH
3171 return 0;
3172 }
3173
3174 return 1;
3175}
3176
3177/**
3178 * ata_dev_revalidate - Revalidate ATA device
623a3128 3179 * @dev: device to revalidate
bff04647 3180 * @readid_flags: read ID flags
623a3128
TH
3181 *
3182 * Re-read IDENTIFY page and make sure @dev is still attached to
3183 * the port.
3184 *
3185 * LOCKING:
3186 * Kernel thread context (may sleep)
3187 *
3188 * RETURNS:
3189 * 0 on success, negative errno otherwise
3190 */
bff04647 3191int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3192{
5eb45c02 3193 unsigned int class = dev->class;
f15a1daf 3194 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3195 int rc;
3196
5eb45c02
TH
3197 if (!ata_dev_enabled(dev)) {
3198 rc = -ENODEV;
3199 goto fail;
3200 }
623a3128 3201
fe635c7e 3202 /* read ID data */
bff04647 3203 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3204 if (rc)
3205 goto fail;
3206
3207 /* is the device still there? */
3373efd8 3208 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3209 rc = -ENODEV;
3210 goto fail;
3211 }
3212
fe635c7e 3213 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3214
3215 /* configure device according to the new ID */
efdaedc4 3216 rc = ata_dev_configure(dev);
5eb45c02
TH
3217 if (rc == 0)
3218 return 0;
623a3128
TH
3219
3220 fail:
f15a1daf 3221 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3222 return rc;
3223}
3224
6919a0a6
AC
3225struct ata_blacklist_entry {
3226 const char *model_num;
3227 const char *model_rev;
3228 unsigned long horkage;
3229};
3230
3231static const struct ata_blacklist_entry ata_device_blacklist [] = {
3232 /* Devices with DMA related problems under Linux */
3233 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3234 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3235 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3236 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3237 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3238 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3239 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3240 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3241 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3242 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3243 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3244 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3245 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3246 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3247 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3248 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3249 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3250 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3251 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3252 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3253 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3254 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3255 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3256 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3257 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3258 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3259 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3260 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3261 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3262 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3263
3264 /* Devices we expect to fail diagnostics */
3265
3266 /* Devices where NCQ should be avoided */
3267 /* NCQ is slow */
3268 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3269
3270 /* Devices with NCQ limits */
3271
3272 /* End Marker */
3273 { }
1da177e4 3274};
2e9edbf8 3275
6919a0a6 3276unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3277{
8bfa79fc
TH
3278 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3279 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3280 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3281
8bfa79fc
TH
3282 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3283 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3284
6919a0a6 3285 while (ad->model_num) {
8bfa79fc 3286 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3287 if (ad->model_rev == NULL)
3288 return ad->horkage;
8bfa79fc 3289 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3290 return ad->horkage;
f4b15fef 3291 }
6919a0a6 3292 ad++;
f4b15fef 3293 }
1da177e4
LT
3294 return 0;
3295}
3296
6919a0a6
AC
3297static int ata_dma_blacklisted(const struct ata_device *dev)
3298{
3299 /* We don't support polling DMA.
3300 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3301 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3302 */
3303 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3304 (dev->flags & ATA_DFLAG_CDB_INTR))
3305 return 1;
3306 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3307}
3308
a6d5a51c
TH
3309/**
3310 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3311 * @dev: Device to compute xfermask for
3312 *
acf356b1
TH
3313 * Compute supported xfermask of @dev and store it in
3314 * dev->*_mask. This function is responsible for applying all
3315 * known limits including host controller limits, device
3316 * blacklist, etc...
a6d5a51c
TH
3317 *
3318 * LOCKING:
3319 * None.
a6d5a51c 3320 */
3373efd8 3321static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3322{
3373efd8 3323 struct ata_port *ap = dev->ap;
cca3974e 3324 struct ata_host *host = ap->host;
a6d5a51c 3325 unsigned long xfer_mask;
1da177e4 3326
37deecb5 3327 /* controller modes available */
565083e1
TH
3328 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3329 ap->mwdma_mask, ap->udma_mask);
3330
3331 /* Apply cable rule here. Don't apply it early because when
3332 * we handle hot plug the cable type can itself change.
3333 */
3334 if (ap->cbl == ATA_CBL_PATA40)
3335 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3336 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3337 * host side are checked drive side as well. Cases where we know a
3338 * 40wire cable is used safely for 80 are not checked here.
3339 */
3340 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3341 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3342
1da177e4 3343
37deecb5
TH
3344 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3345 dev->mwdma_mask, dev->udma_mask);
3346 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3347
b352e57d
AC
3348 /*
3349 * CFA Advanced TrueIDE timings are not allowed on a shared
3350 * cable
3351 */
3352 if (ata_dev_pair(dev)) {
3353 /* No PIO5 or PIO6 */
3354 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3355 /* No MWDMA3 or MWDMA 4 */
3356 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3357 }
3358
37deecb5
TH
3359 if (ata_dma_blacklisted(dev)) {
3360 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3361 ata_dev_printk(dev, KERN_WARNING,
3362 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3363 }
a6d5a51c 3364
cca3974e 3365 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3366 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3367 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3368 "other device, disabling DMA\n");
5444a6f4 3369 }
565083e1 3370
5444a6f4
AC
3371 if (ap->ops->mode_filter)
3372 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3373
565083e1
TH
3374 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3375 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3376}
3377
1da177e4
LT
3378/**
3379 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3380 * @dev: Device to which command will be sent
3381 *
780a87f7
JG
3382 * Issue SET FEATURES - XFER MODE command to device @dev
3383 * on port @ap.
3384 *
1da177e4 3385 * LOCKING:
0cba632b 3386 * PCI/etc. bus probe sem.
83206a29
TH
3387 *
3388 * RETURNS:
3389 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3390 */
3391
3373efd8 3392static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3393{
a0123703 3394 struct ata_taskfile tf;
83206a29 3395 unsigned int err_mask;
1da177e4
LT
3396
3397 /* set up set-features taskfile */
3398 DPRINTK("set features - xfer mode\n");
3399
3373efd8 3400 ata_tf_init(dev, &tf);
a0123703
TH
3401 tf.command = ATA_CMD_SET_FEATURES;
3402 tf.feature = SETFEATURES_XFER;
3403 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3404 tf.protocol = ATA_PROT_NODATA;
3405 tf.nsect = dev->xfer_mode;
1da177e4 3406
3373efd8 3407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3408
83206a29
TH
3409 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3410 return err_mask;
1da177e4
LT
3411}
3412
8bf62ece
AL
3413/**
3414 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3415 * @dev: Device to which command will be sent
e2a7f77a
RD
3416 * @heads: Number of heads (taskfile parameter)
3417 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3418 *
3419 * LOCKING:
6aff8f1f
TH
3420 * Kernel thread context (may sleep)
3421 *
3422 * RETURNS:
3423 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3424 */
3373efd8
TH
3425static unsigned int ata_dev_init_params(struct ata_device *dev,
3426 u16 heads, u16 sectors)
8bf62ece 3427{
a0123703 3428 struct ata_taskfile tf;
6aff8f1f 3429 unsigned int err_mask;
8bf62ece
AL
3430
3431 /* Number of sectors per track 1-255. Number of heads 1-16 */
3432 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3433 return AC_ERR_INVALID;
8bf62ece
AL
3434
3435 /* set up init dev params taskfile */
3436 DPRINTK("init dev params \n");
3437
3373efd8 3438 ata_tf_init(dev, &tf);
a0123703
TH
3439 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3440 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3441 tf.protocol = ATA_PROT_NODATA;
3442 tf.nsect = sectors;
3443 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3444
3373efd8 3445 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3446
6aff8f1f
TH
3447 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3448 return err_mask;
8bf62ece
AL
3449}
3450
1da177e4 3451/**
0cba632b
JG
3452 * ata_sg_clean - Unmap DMA memory associated with command
3453 * @qc: Command containing DMA memory to be released
3454 *
3455 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3456 *
3457 * LOCKING:
cca3974e 3458 * spin_lock_irqsave(host lock)
1da177e4 3459 */
70e6ad0c 3460void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3461{
3462 struct ata_port *ap = qc->ap;
cedc9a47 3463 struct scatterlist *sg = qc->__sg;
1da177e4 3464 int dir = qc->dma_dir;
cedc9a47 3465 void *pad_buf = NULL;
1da177e4 3466
a4631474
TH
3467 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3468 WARN_ON(sg == NULL);
1da177e4
LT
3469
3470 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3471 WARN_ON(qc->n_elem > 1);
1da177e4 3472
2c13b7ce 3473 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3474
cedc9a47
JG
3475 /* if we padded the buffer out to 32-bit bound, and data
3476 * xfer direction is from-device, we must copy from the
3477 * pad buffer back into the supplied buffer
3478 */
3479 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3480 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3481
3482 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3483 if (qc->n_elem)
2f1f610b 3484 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3485 /* restore last sg */
3486 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3487 if (pad_buf) {
3488 struct scatterlist *psg = &qc->pad_sgent;
3489 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3490 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3491 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3492 }
3493 } else {
2e242fa9 3494 if (qc->n_elem)
2f1f610b 3495 dma_unmap_single(ap->dev,
e1410f2d
JG
3496 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3497 dir);
cedc9a47
JG
3498 /* restore sg */
3499 sg->length += qc->pad_len;
3500 if (pad_buf)
3501 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3502 pad_buf, qc->pad_len);
3503 }
1da177e4
LT
3504
3505 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3506 qc->__sg = NULL;
1da177e4
LT
3507}
3508
3509/**
3510 * ata_fill_sg - Fill PCI IDE PRD table
3511 * @qc: Metadata associated with taskfile to be transferred
3512 *
780a87f7
JG
3513 * Fill PCI IDE PRD (scatter-gather) table with segments
3514 * associated with the current disk command.
3515 *
1da177e4 3516 * LOCKING:
cca3974e 3517 * spin_lock_irqsave(host lock)
1da177e4
LT
3518 *
3519 */
3520static void ata_fill_sg(struct ata_queued_cmd *qc)
3521{
1da177e4 3522 struct ata_port *ap = qc->ap;
cedc9a47
JG
3523 struct scatterlist *sg;
3524 unsigned int idx;
1da177e4 3525
a4631474 3526 WARN_ON(qc->__sg == NULL);
f131883e 3527 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3528
3529 idx = 0;
cedc9a47 3530 ata_for_each_sg(sg, qc) {
1da177e4
LT
3531 u32 addr, offset;
3532 u32 sg_len, len;
3533
3534 /* determine if physical DMA addr spans 64K boundary.
3535 * Note h/w doesn't support 64-bit, so we unconditionally
3536 * truncate dma_addr_t to u32.
3537 */
3538 addr = (u32) sg_dma_address(sg);
3539 sg_len = sg_dma_len(sg);
3540
3541 while (sg_len) {
3542 offset = addr & 0xffff;
3543 len = sg_len;
3544 if ((offset + sg_len) > 0x10000)
3545 len = 0x10000 - offset;
3546
3547 ap->prd[idx].addr = cpu_to_le32(addr);
3548 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3549 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3550
3551 idx++;
3552 sg_len -= len;
3553 addr += len;
3554 }
3555 }
3556
3557 if (idx)
3558 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3559}
3560/**
3561 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3562 * @qc: Metadata associated with taskfile to check
3563 *
780a87f7
JG
3564 * Allow low-level driver to filter ATA PACKET commands, returning
3565 * a status indicating whether or not it is OK to use DMA for the
3566 * supplied PACKET command.
3567 *
1da177e4 3568 * LOCKING:
cca3974e 3569 * spin_lock_irqsave(host lock)
0cba632b 3570 *
1da177e4
LT
3571 * RETURNS: 0 when ATAPI DMA can be used
3572 * nonzero otherwise
3573 */
3574int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3575{
3576 struct ata_port *ap = qc->ap;
3577 int rc = 0; /* Assume ATAPI DMA is OK by default */
3578
3579 if (ap->ops->check_atapi_dma)
3580 rc = ap->ops->check_atapi_dma(qc);
3581
3582 return rc;
3583}
3584/**
3585 * ata_qc_prep - Prepare taskfile for submission
3586 * @qc: Metadata associated with taskfile to be prepared
3587 *
780a87f7
JG
3588 * Prepare ATA taskfile for submission.
3589 *
1da177e4 3590 * LOCKING:
cca3974e 3591 * spin_lock_irqsave(host lock)
1da177e4
LT
3592 */
3593void ata_qc_prep(struct ata_queued_cmd *qc)
3594{
3595 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3596 return;
3597
3598 ata_fill_sg(qc);
3599}
3600
e46834cd
BK
3601void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3602
0cba632b
JG
3603/**
3604 * ata_sg_init_one - Associate command with memory buffer
3605 * @qc: Command to be associated
3606 * @buf: Memory buffer
3607 * @buflen: Length of memory buffer, in bytes.
3608 *
3609 * Initialize the data-related elements of queued_cmd @qc
3610 * to point to a single memory buffer, @buf of byte length @buflen.
3611 *
3612 * LOCKING:
cca3974e 3613 * spin_lock_irqsave(host lock)
0cba632b
JG
3614 */
3615
1da177e4
LT
3616void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3617{
1da177e4
LT
3618 qc->flags |= ATA_QCFLAG_SINGLE;
3619
cedc9a47 3620 qc->__sg = &qc->sgent;
1da177e4 3621 qc->n_elem = 1;
cedc9a47 3622 qc->orig_n_elem = 1;
1da177e4 3623 qc->buf_virt = buf;
233277ca 3624 qc->nbytes = buflen;
1da177e4 3625
61c0596c 3626 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3627}
3628
0cba632b
JG
3629/**
3630 * ata_sg_init - Associate command with scatter-gather table.
3631 * @qc: Command to be associated
3632 * @sg: Scatter-gather table.
3633 * @n_elem: Number of elements in s/g table.
3634 *
3635 * Initialize the data-related elements of queued_cmd @qc
3636 * to point to a scatter-gather table @sg, containing @n_elem
3637 * elements.
3638 *
3639 * LOCKING:
cca3974e 3640 * spin_lock_irqsave(host lock)
0cba632b
JG
3641 */
3642
1da177e4
LT
3643void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3644 unsigned int n_elem)
3645{
3646 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3647 qc->__sg = sg;
1da177e4 3648 qc->n_elem = n_elem;
cedc9a47 3649 qc->orig_n_elem = n_elem;
1da177e4
LT
3650}
3651
3652/**
0cba632b
JG
3653 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3654 * @qc: Command with memory buffer to be mapped.
3655 *
3656 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3657 *
3658 * LOCKING:
cca3974e 3659 * spin_lock_irqsave(host lock)
1da177e4
LT
3660 *
3661 * RETURNS:
0cba632b 3662 * Zero on success, negative on error.
1da177e4
LT
3663 */
3664
3665static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3666{
3667 struct ata_port *ap = qc->ap;
3668 int dir = qc->dma_dir;
cedc9a47 3669 struct scatterlist *sg = qc->__sg;
1da177e4 3670 dma_addr_t dma_address;
2e242fa9 3671 int trim_sg = 0;
1da177e4 3672
cedc9a47
JG
3673 /* we must lengthen transfers to end on a 32-bit boundary */
3674 qc->pad_len = sg->length & 3;
3675 if (qc->pad_len) {
3676 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3677 struct scatterlist *psg = &qc->pad_sgent;
3678
a4631474 3679 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3680
3681 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3682
3683 if (qc->tf.flags & ATA_TFLAG_WRITE)
3684 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3685 qc->pad_len);
3686
3687 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3688 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3689 /* trim sg */
3690 sg->length -= qc->pad_len;
2e242fa9
TH
3691 if (sg->length == 0)
3692 trim_sg = 1;
cedc9a47
JG
3693
3694 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3695 sg->length, qc->pad_len);
3696 }
3697
2e242fa9
TH
3698 if (trim_sg) {
3699 qc->n_elem--;
e1410f2d
JG
3700 goto skip_map;
3701 }
3702
2f1f610b 3703 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3704 sg->length, dir);
537a95d9
TH
3705 if (dma_mapping_error(dma_address)) {
3706 /* restore sg */
3707 sg->length += qc->pad_len;
1da177e4 3708 return -1;
537a95d9 3709 }
1da177e4
LT
3710
3711 sg_dma_address(sg) = dma_address;
32529e01 3712 sg_dma_len(sg) = sg->length;
1da177e4 3713
2e242fa9 3714skip_map:
1da177e4
LT
3715 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3716 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3717
3718 return 0;
3719}
3720
3721/**
0cba632b
JG
3722 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3723 * @qc: Command with scatter-gather table to be mapped.
3724 *
3725 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3726 *
3727 * LOCKING:
cca3974e 3728 * spin_lock_irqsave(host lock)
1da177e4
LT
3729 *
3730 * RETURNS:
0cba632b 3731 * Zero on success, negative on error.
1da177e4
LT
3732 *
3733 */
3734
3735static int ata_sg_setup(struct ata_queued_cmd *qc)
3736{
3737 struct ata_port *ap = qc->ap;
cedc9a47
JG
3738 struct scatterlist *sg = qc->__sg;
3739 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3740 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3741
3742 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3743 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3744
cedc9a47
JG
3745 /* we must lengthen transfers to end on a 32-bit boundary */
3746 qc->pad_len = lsg->length & 3;
3747 if (qc->pad_len) {
3748 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3749 struct scatterlist *psg = &qc->pad_sgent;
3750 unsigned int offset;
3751
a4631474 3752 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3753
3754 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3755
3756 /*
3757 * psg->page/offset are used to copy to-be-written
3758 * data in this function or read data in ata_sg_clean.
3759 */
3760 offset = lsg->offset + lsg->length - qc->pad_len;
3761 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3762 psg->offset = offset_in_page(offset);
3763
3764 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3765 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3766 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3767 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3768 }
3769
3770 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3771 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3772 /* trim last sg */
3773 lsg->length -= qc->pad_len;
e1410f2d
JG
3774 if (lsg->length == 0)
3775 trim_sg = 1;
cedc9a47
JG
3776
3777 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3778 qc->n_elem - 1, lsg->length, qc->pad_len);
3779 }
3780
e1410f2d
JG
3781 pre_n_elem = qc->n_elem;
3782 if (trim_sg && pre_n_elem)
3783 pre_n_elem--;
3784
3785 if (!pre_n_elem) {
3786 n_elem = 0;
3787 goto skip_map;
3788 }
3789
1da177e4 3790 dir = qc->dma_dir;
2f1f610b 3791 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3792 if (n_elem < 1) {
3793 /* restore last sg */
3794 lsg->length += qc->pad_len;
1da177e4 3795 return -1;
537a95d9 3796 }
1da177e4
LT
3797
3798 DPRINTK("%d sg elements mapped\n", n_elem);
3799
e1410f2d 3800skip_map:
1da177e4
LT
3801 qc->n_elem = n_elem;
3802
3803 return 0;
3804}
3805
0baab86b 3806/**
c893a3ae 3807 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3808 * @buf: Buffer to swap
3809 * @buf_words: Number of 16-bit words in buffer.
3810 *
3811 * Swap halves of 16-bit words if needed to convert from
3812 * little-endian byte order to native cpu byte order, or
3813 * vice-versa.
3814 *
3815 * LOCKING:
6f0ef4fa 3816 * Inherited from caller.
0baab86b 3817 */
1da177e4
LT
3818void swap_buf_le16(u16 *buf, unsigned int buf_words)
3819{
3820#ifdef __BIG_ENDIAN
3821 unsigned int i;
3822
3823 for (i = 0; i < buf_words; i++)
3824 buf[i] = le16_to_cpu(buf[i]);
3825#endif /* __BIG_ENDIAN */
3826}
3827
6ae4cfb5 3828/**
0d5ff566 3829 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 3830 * @adev: device to target
6ae4cfb5
AL
3831 * @buf: data buffer
3832 * @buflen: buffer length
344babaa 3833 * @write_data: read/write
6ae4cfb5
AL
3834 *
3835 * Transfer data from/to the device data register by PIO.
3836 *
3837 * LOCKING:
3838 * Inherited from caller.
6ae4cfb5 3839 */
0d5ff566
TH
3840void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3841 unsigned int buflen, int write_data)
1da177e4 3842{
a6b2c5d4 3843 struct ata_port *ap = adev->ap;
6ae4cfb5 3844 unsigned int words = buflen >> 1;
1da177e4 3845
6ae4cfb5 3846 /* Transfer multiple of 2 bytes */
1da177e4 3847 if (write_data)
0d5ff566 3848 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 3849 else
0d5ff566 3850 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
3851
3852 /* Transfer trailing 1 byte, if any. */
3853 if (unlikely(buflen & 0x01)) {
3854 u16 align_buf[1] = { 0 };
3855 unsigned char *trailing_buf = buf + buflen - 1;
3856
3857 if (write_data) {
3858 memcpy(align_buf, trailing_buf, 1);
0d5ff566 3859 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 3860 } else {
0d5ff566 3861 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
3862 memcpy(trailing_buf, align_buf, 1);
3863 }
3864 }
1da177e4
LT
3865}
3866
75e99585 3867/**
0d5ff566 3868 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
3869 * @adev: device to target
3870 * @buf: data buffer
3871 * @buflen: buffer length
3872 * @write_data: read/write
3873 *
88574551 3874 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3875 * transfer with interrupts disabled.
3876 *
3877 * LOCKING:
3878 * Inherited from caller.
3879 */
0d5ff566
TH
3880void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3881 unsigned int buflen, int write_data)
75e99585
AC
3882{
3883 unsigned long flags;
3884 local_irq_save(flags);
0d5ff566 3885 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
3886 local_irq_restore(flags);
3887}
3888
3889
6ae4cfb5
AL
3890/**
3891 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3892 * @qc: Command on going
3893 *
3894 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3895 *
3896 * LOCKING:
3897 * Inherited from caller.
3898 */
3899
1da177e4
LT
3900static void ata_pio_sector(struct ata_queued_cmd *qc)
3901{
3902 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3903 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3904 struct ata_port *ap = qc->ap;
3905 struct page *page;
3906 unsigned int offset;
3907 unsigned char *buf;
3908
726f0785 3909 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
14be71f4 3910 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3911
3912 page = sg[qc->cursg].page;
726f0785 3913 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
3914
3915 /* get the current page and offset */
3916 page = nth_page(page, (offset >> PAGE_SHIFT));
3917 offset %= PAGE_SIZE;
3918
1da177e4
LT
3919 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3920
91b8b313
AL
3921 if (PageHighMem(page)) {
3922 unsigned long flags;
3923
a6b2c5d4 3924 /* FIXME: use a bounce buffer */
91b8b313
AL
3925 local_irq_save(flags);
3926 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3927
91b8b313 3928 /* do the actual data transfer */
a6b2c5d4 3929 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3930
91b8b313
AL
3931 kunmap_atomic(buf, KM_IRQ0);
3932 local_irq_restore(flags);
3933 } else {
3934 buf = page_address(page);
a6b2c5d4 3935 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3936 }
1da177e4 3937
726f0785
TH
3938 qc->curbytes += ATA_SECT_SIZE;
3939 qc->cursg_ofs += ATA_SECT_SIZE;
1da177e4 3940
726f0785 3941 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
3942 qc->cursg++;
3943 qc->cursg_ofs = 0;
3944 }
1da177e4 3945}
1da177e4 3946
07f6f7d0
AL
3947/**
3948 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3949 * @qc: Command on going
3950 *
c81e29b4 3951 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3952 * ATA device for the DRQ request.
3953 *
3954 * LOCKING:
3955 * Inherited from caller.
3956 */
1da177e4 3957
07f6f7d0
AL
3958static void ata_pio_sectors(struct ata_queued_cmd *qc)
3959{
3960 if (is_multi_taskfile(&qc->tf)) {
3961 /* READ/WRITE MULTIPLE */
3962 unsigned int nsect;
3963
587005de 3964 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3965
726f0785
TH
3966 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
3967 qc->dev->multi_count);
07f6f7d0
AL
3968 while (nsect--)
3969 ata_pio_sector(qc);
3970 } else
3971 ata_pio_sector(qc);
3972}
3973
c71c1857
AL
3974/**
3975 * atapi_send_cdb - Write CDB bytes to hardware
3976 * @ap: Port to which ATAPI device is attached.
3977 * @qc: Taskfile currently active
3978 *
3979 * When device has indicated its readiness to accept
3980 * a CDB, this function is called. Send the CDB.
3981 *
3982 * LOCKING:
3983 * caller.
3984 */
3985
3986static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3987{
3988 /* send SCSI cdb */
3989 DPRINTK("send cdb\n");
db024d53 3990 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3991
a6b2c5d4 3992 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3993 ata_altstatus(ap); /* flush */
3994
3995 switch (qc->tf.protocol) {
3996 case ATA_PROT_ATAPI:
3997 ap->hsm_task_state = HSM_ST;
3998 break;
3999 case ATA_PROT_ATAPI_NODATA:
4000 ap->hsm_task_state = HSM_ST_LAST;
4001 break;
4002 case ATA_PROT_ATAPI_DMA:
4003 ap->hsm_task_state = HSM_ST_LAST;
4004 /* initiate bmdma */
4005 ap->ops->bmdma_start(qc);
4006 break;
4007 }
1da177e4
LT
4008}
4009
6ae4cfb5
AL
4010/**
4011 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4012 * @qc: Command on going
4013 * @bytes: number of bytes
4014 *
4015 * Transfer Transfer data from/to the ATAPI device.
4016 *
4017 * LOCKING:
4018 * Inherited from caller.
4019 *
4020 */
4021
1da177e4
LT
4022static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4023{
4024 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4025 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4026 struct ata_port *ap = qc->ap;
4027 struct page *page;
4028 unsigned char *buf;
4029 unsigned int offset, count;
4030
563a6e1f 4031 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4032 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4033
4034next_sg:
563a6e1f 4035 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4036 /*
563a6e1f
AL
4037 * The end of qc->sg is reached and the device expects
4038 * more data to transfer. In order not to overrun qc->sg
4039 * and fulfill length specified in the byte count register,
4040 * - for read case, discard trailing data from the device
4041 * - for write case, padding zero data to the device
4042 */
4043 u16 pad_buf[1] = { 0 };
4044 unsigned int words = bytes >> 1;
4045 unsigned int i;
4046
4047 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4048 ata_dev_printk(qc->dev, KERN_WARNING,
4049 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4050
4051 for (i = 0; i < words; i++)
a6b2c5d4 4052 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4053
14be71f4 4054 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4055 return;
4056 }
4057
cedc9a47 4058 sg = &qc->__sg[qc->cursg];
1da177e4 4059
1da177e4
LT
4060 page = sg->page;
4061 offset = sg->offset + qc->cursg_ofs;
4062
4063 /* get the current page and offset */
4064 page = nth_page(page, (offset >> PAGE_SHIFT));
4065 offset %= PAGE_SIZE;
4066
6952df03 4067 /* don't overrun current sg */
32529e01 4068 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4069
4070 /* don't cross page boundaries */
4071 count = min(count, (unsigned int)PAGE_SIZE - offset);
4072
7282aa4b
AL
4073 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4074
91b8b313
AL
4075 if (PageHighMem(page)) {
4076 unsigned long flags;
4077
a6b2c5d4 4078 /* FIXME: use bounce buffer */
91b8b313
AL
4079 local_irq_save(flags);
4080 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4081
91b8b313 4082 /* do the actual data transfer */
a6b2c5d4 4083 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4084
91b8b313
AL
4085 kunmap_atomic(buf, KM_IRQ0);
4086 local_irq_restore(flags);
4087 } else {
4088 buf = page_address(page);
a6b2c5d4 4089 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4090 }
1da177e4
LT
4091
4092 bytes -= count;
4093 qc->curbytes += count;
4094 qc->cursg_ofs += count;
4095
32529e01 4096 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4097 qc->cursg++;
4098 qc->cursg_ofs = 0;
4099 }
4100
563a6e1f 4101 if (bytes)
1da177e4 4102 goto next_sg;
1da177e4
LT
4103}
4104
6ae4cfb5
AL
4105/**
4106 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4107 * @qc: Command on going
4108 *
4109 * Transfer Transfer data from/to the ATAPI device.
4110 *
4111 * LOCKING:
4112 * Inherited from caller.
6ae4cfb5
AL
4113 */
4114
1da177e4
LT
4115static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4116{
4117 struct ata_port *ap = qc->ap;
4118 struct ata_device *dev = qc->dev;
4119 unsigned int ireason, bc_lo, bc_hi, bytes;
4120 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4121
eec4c3f3
AL
4122 /* Abuse qc->result_tf for temp storage of intermediate TF
4123 * here to save some kernel stack usage.
4124 * For normal completion, qc->result_tf is not relevant. For
4125 * error, qc->result_tf is later overwritten by ata_qc_complete().
4126 * So, the correctness of qc->result_tf is not affected.
4127 */
4128 ap->ops->tf_read(ap, &qc->result_tf);
4129 ireason = qc->result_tf.nsect;
4130 bc_lo = qc->result_tf.lbam;
4131 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4132 bytes = (bc_hi << 8) | bc_lo;
4133
4134 /* shall be cleared to zero, indicating xfer of data */
4135 if (ireason & (1 << 0))
4136 goto err_out;
4137
4138 /* make sure transfer direction matches expected */
4139 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4140 if (do_write != i_write)
4141 goto err_out;
4142
312f7da2
AL
4143 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4144
1da177e4
LT
4145 __atapi_pio_bytes(qc, bytes);
4146
4147 return;
4148
4149err_out:
f15a1daf 4150 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4151 qc->err_mask |= AC_ERR_HSM;
14be71f4 4152 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4153}
4154
4155/**
c234fb00
AL
4156 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4157 * @ap: the target ata_port
4158 * @qc: qc on going
1da177e4 4159 *
c234fb00
AL
4160 * RETURNS:
4161 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4162 */
c234fb00
AL
4163
4164static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4165{
c234fb00
AL
4166 if (qc->tf.flags & ATA_TFLAG_POLLING)
4167 return 1;
1da177e4 4168
c234fb00
AL
4169 if (ap->hsm_task_state == HSM_ST_FIRST) {
4170 if (qc->tf.protocol == ATA_PROT_PIO &&
4171 (qc->tf.flags & ATA_TFLAG_WRITE))
4172 return 1;
1da177e4 4173
c234fb00
AL
4174 if (is_atapi_taskfile(&qc->tf) &&
4175 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4176 return 1;
fe79e683
AL
4177 }
4178
c234fb00
AL
4179 return 0;
4180}
1da177e4 4181
c17ea20d
TH
4182/**
4183 * ata_hsm_qc_complete - finish a qc running on standard HSM
4184 * @qc: Command to complete
4185 * @in_wq: 1 if called from workqueue, 0 otherwise
4186 *
4187 * Finish @qc which is running on standard HSM.
4188 *
4189 * LOCKING:
cca3974e 4190 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4191 * Otherwise, none on entry and grabs host lock.
4192 */
4193static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4194{
4195 struct ata_port *ap = qc->ap;
4196 unsigned long flags;
4197
4198 if (ap->ops->error_handler) {
4199 if (in_wq) {
ba6a1308 4200 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4201
cca3974e
JG
4202 /* EH might have kicked in while host lock is
4203 * released.
c17ea20d
TH
4204 */
4205 qc = ata_qc_from_tag(ap, qc->tag);
4206 if (qc) {
4207 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4208 ap->ops->irq_on(ap);
c17ea20d
TH
4209 ata_qc_complete(qc);
4210 } else
4211 ata_port_freeze(ap);
4212 }
4213
ba6a1308 4214 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4215 } else {
4216 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4217 ata_qc_complete(qc);
4218 else
4219 ata_port_freeze(ap);
4220 }
4221 } else {
4222 if (in_wq) {
ba6a1308 4223 spin_lock_irqsave(ap->lock, flags);
83625006 4224 ap->ops->irq_on(ap);
c17ea20d 4225 ata_qc_complete(qc);
ba6a1308 4226 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4227 } else
4228 ata_qc_complete(qc);
4229 }
1da177e4 4230
c81e29b4 4231 ata_altstatus(ap); /* flush */
c17ea20d
TH
4232}
4233
bb5cb290
AL
4234/**
4235 * ata_hsm_move - move the HSM to the next state.
4236 * @ap: the target ata_port
4237 * @qc: qc on going
4238 * @status: current device status
4239 * @in_wq: 1 if called from workqueue, 0 otherwise
4240 *
4241 * RETURNS:
4242 * 1 when poll next status needed, 0 otherwise.
4243 */
9a1004d0
TH
4244int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4245 u8 status, int in_wq)
e2cec771 4246{
bb5cb290
AL
4247 unsigned long flags = 0;
4248 int poll_next;
4249
6912ccd5
AL
4250 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4251
bb5cb290
AL
4252 /* Make sure ata_qc_issue_prot() does not throw things
4253 * like DMA polling into the workqueue. Notice that
4254 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4255 */
c234fb00 4256 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4257
e2cec771 4258fsm_start:
999bb6f4
AL
4259 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4260 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4261
e2cec771
AL
4262 switch (ap->hsm_task_state) {
4263 case HSM_ST_FIRST:
bb5cb290
AL
4264 /* Send first data block or PACKET CDB */
4265
4266 /* If polling, we will stay in the work queue after
4267 * sending the data. Otherwise, interrupt handler
4268 * takes over after sending the data.
4269 */
4270 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4271
e2cec771 4272 /* check device status */
3655d1d3
AL
4273 if (unlikely((status & ATA_DRQ) == 0)) {
4274 /* handle BSY=0, DRQ=0 as error */
4275 if (likely(status & (ATA_ERR | ATA_DF)))
4276 /* device stops HSM for abort/error */
4277 qc->err_mask |= AC_ERR_DEV;
4278 else
4279 /* HSM violation. Let EH handle this */
4280 qc->err_mask |= AC_ERR_HSM;
4281
14be71f4 4282 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4283 goto fsm_start;
1da177e4
LT
4284 }
4285
71601958
AL
4286 /* Device should not ask for data transfer (DRQ=1)
4287 * when it finds something wrong.
eee6c32f
AL
4288 * We ignore DRQ here and stop the HSM by
4289 * changing hsm_task_state to HSM_ST_ERR and
4290 * let the EH abort the command or reset the device.
71601958
AL
4291 */
4292 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4293 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4294 ap->id, status);
3655d1d3 4295 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4296 ap->hsm_task_state = HSM_ST_ERR;
4297 goto fsm_start;
71601958 4298 }
1da177e4 4299
bb5cb290
AL
4300 /* Send the CDB (atapi) or the first data block (ata pio out).
4301 * During the state transition, interrupt handler shouldn't
4302 * be invoked before the data transfer is complete and
4303 * hsm_task_state is changed. Hence, the following locking.
4304 */
4305 if (in_wq)
ba6a1308 4306 spin_lock_irqsave(ap->lock, flags);
1da177e4 4307
bb5cb290
AL
4308 if (qc->tf.protocol == ATA_PROT_PIO) {
4309 /* PIO data out protocol.
4310 * send first data block.
4311 */
0565c26d 4312
bb5cb290
AL
4313 /* ata_pio_sectors() might change the state
4314 * to HSM_ST_LAST. so, the state is changed here
4315 * before ata_pio_sectors().
4316 */
4317 ap->hsm_task_state = HSM_ST;
4318 ata_pio_sectors(qc);
4319 ata_altstatus(ap); /* flush */
4320 } else
4321 /* send CDB */
4322 atapi_send_cdb(ap, qc);
4323
4324 if (in_wq)
ba6a1308 4325 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4326
4327 /* if polling, ata_pio_task() handles the rest.
4328 * otherwise, interrupt handler takes over from here.
4329 */
e2cec771 4330 break;
1c848984 4331
e2cec771
AL
4332 case HSM_ST:
4333 /* complete command or read/write the data register */
4334 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4335 /* ATAPI PIO protocol */
4336 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4337 /* No more data to transfer or device error.
4338 * Device error will be tagged in HSM_ST_LAST.
4339 */
e2cec771
AL
4340 ap->hsm_task_state = HSM_ST_LAST;
4341 goto fsm_start;
4342 }
1da177e4 4343
71601958
AL
4344 /* Device should not ask for data transfer (DRQ=1)
4345 * when it finds something wrong.
eee6c32f
AL
4346 * We ignore DRQ here and stop the HSM by
4347 * changing hsm_task_state to HSM_ST_ERR and
4348 * let the EH abort the command or reset the device.
71601958
AL
4349 */
4350 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4351 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4352 ap->id, status);
3655d1d3 4353 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4354 ap->hsm_task_state = HSM_ST_ERR;
4355 goto fsm_start;
71601958 4356 }
1da177e4 4357
e2cec771 4358 atapi_pio_bytes(qc);
7fb6ec28 4359
e2cec771
AL
4360 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4361 /* bad ireason reported by device */
4362 goto fsm_start;
1da177e4 4363
e2cec771
AL
4364 } else {
4365 /* ATA PIO protocol */
4366 if (unlikely((status & ATA_DRQ) == 0)) {
4367 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4368 if (likely(status & (ATA_ERR | ATA_DF)))
4369 /* device stops HSM for abort/error */
4370 qc->err_mask |= AC_ERR_DEV;
4371 else
55a8e2c8
TH
4372 /* HSM violation. Let EH handle this.
4373 * Phantom devices also trigger this
4374 * condition. Mark hint.
4375 */
4376 qc->err_mask |= AC_ERR_HSM |
4377 AC_ERR_NODEV_HINT;
3655d1d3 4378
e2cec771
AL
4379 ap->hsm_task_state = HSM_ST_ERR;
4380 goto fsm_start;
4381 }
1da177e4 4382
eee6c32f
AL
4383 /* For PIO reads, some devices may ask for
4384 * data transfer (DRQ=1) alone with ERR=1.
4385 * We respect DRQ here and transfer one
4386 * block of junk data before changing the
4387 * hsm_task_state to HSM_ST_ERR.
4388 *
4389 * For PIO writes, ERR=1 DRQ=1 doesn't make
4390 * sense since the data block has been
4391 * transferred to the device.
71601958
AL
4392 */
4393 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4394 /* data might be corrputed */
4395 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4396
4397 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4398 ata_pio_sectors(qc);
4399 ata_altstatus(ap);
4400 status = ata_wait_idle(ap);
4401 }
4402
3655d1d3
AL
4403 if (status & (ATA_BUSY | ATA_DRQ))
4404 qc->err_mask |= AC_ERR_HSM;
4405
eee6c32f
AL
4406 /* ata_pio_sectors() might change the
4407 * state to HSM_ST_LAST. so, the state
4408 * is changed after ata_pio_sectors().
4409 */
4410 ap->hsm_task_state = HSM_ST_ERR;
4411 goto fsm_start;
71601958
AL
4412 }
4413
e2cec771
AL
4414 ata_pio_sectors(qc);
4415
4416 if (ap->hsm_task_state == HSM_ST_LAST &&
4417 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4418 /* all data read */
4419 ata_altstatus(ap);
52a32205 4420 status = ata_wait_idle(ap);
e2cec771
AL
4421 goto fsm_start;
4422 }
4423 }
4424
4425 ata_altstatus(ap); /* flush */
bb5cb290 4426 poll_next = 1;
1da177e4
LT
4427 break;
4428
14be71f4 4429 case HSM_ST_LAST:
6912ccd5
AL
4430 if (unlikely(!ata_ok(status))) {
4431 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4432 ap->hsm_task_state = HSM_ST_ERR;
4433 goto fsm_start;
4434 }
4435
4436 /* no more data to transfer */
4332a771
AL
4437 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4438 ap->id, qc->dev->devno, status);
e2cec771 4439
6912ccd5
AL
4440 WARN_ON(qc->err_mask);
4441
e2cec771 4442 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4443
e2cec771 4444 /* complete taskfile transaction */
c17ea20d 4445 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4446
4447 poll_next = 0;
1da177e4
LT
4448 break;
4449
14be71f4 4450 case HSM_ST_ERR:
e2cec771
AL
4451 /* make sure qc->err_mask is available to
4452 * know what's wrong and recover
4453 */
4454 WARN_ON(qc->err_mask == 0);
4455
4456 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4457
999bb6f4 4458 /* complete taskfile transaction */
c17ea20d 4459 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4460
4461 poll_next = 0;
e2cec771
AL
4462 break;
4463 default:
bb5cb290 4464 poll_next = 0;
6912ccd5 4465 BUG();
1da177e4
LT
4466 }
4467
bb5cb290 4468 return poll_next;
1da177e4
LT
4469}
4470
65f27f38 4471static void ata_pio_task(struct work_struct *work)
8061f5f0 4472{
65f27f38
DH
4473 struct ata_port *ap =
4474 container_of(work, struct ata_port, port_task.work);
4475 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4476 u8 status;
a1af3734 4477 int poll_next;
8061f5f0 4478
7fb6ec28 4479fsm_start:
a1af3734 4480 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4481
a1af3734
AL
4482 /*
4483 * This is purely heuristic. This is a fast path.
4484 * Sometimes when we enter, BSY will be cleared in
4485 * a chk-status or two. If not, the drive is probably seeking
4486 * or something. Snooze for a couple msecs, then
4487 * chk-status again. If still busy, queue delayed work.
4488 */
4489 status = ata_busy_wait(ap, ATA_BUSY, 5);
4490 if (status & ATA_BUSY) {
4491 msleep(2);
4492 status = ata_busy_wait(ap, ATA_BUSY, 10);
4493 if (status & ATA_BUSY) {
31ce6dae 4494 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4495 return;
4496 }
8061f5f0
TH
4497 }
4498
a1af3734
AL
4499 /* move the HSM */
4500 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4501
a1af3734
AL
4502 /* another command or interrupt handler
4503 * may be running at this point.
4504 */
4505 if (poll_next)
7fb6ec28 4506 goto fsm_start;
8061f5f0
TH
4507}
4508
1da177e4
LT
4509/**
4510 * ata_qc_new - Request an available ATA command, for queueing
4511 * @ap: Port associated with device @dev
4512 * @dev: Device from whom we request an available command structure
4513 *
4514 * LOCKING:
0cba632b 4515 * None.
1da177e4
LT
4516 */
4517
4518static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4519{
4520 struct ata_queued_cmd *qc = NULL;
4521 unsigned int i;
4522
e3180499 4523 /* no command while frozen */
b51e9e5d 4524 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4525 return NULL;
4526
2ab7db1f
TH
4527 /* the last tag is reserved for internal command. */
4528 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4529 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4530 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4531 break;
4532 }
4533
4534 if (qc)
4535 qc->tag = i;
4536
4537 return qc;
4538}
4539
4540/**
4541 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4542 * @dev: Device from whom we request an available command structure
4543 *
4544 * LOCKING:
0cba632b 4545 * None.
1da177e4
LT
4546 */
4547
3373efd8 4548struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4549{
3373efd8 4550 struct ata_port *ap = dev->ap;
1da177e4
LT
4551 struct ata_queued_cmd *qc;
4552
4553 qc = ata_qc_new(ap);
4554 if (qc) {
1da177e4
LT
4555 qc->scsicmd = NULL;
4556 qc->ap = ap;
4557 qc->dev = dev;
1da177e4 4558
2c13b7ce 4559 ata_qc_reinit(qc);
1da177e4
LT
4560 }
4561
4562 return qc;
4563}
4564
1da177e4
LT
4565/**
4566 * ata_qc_free - free unused ata_queued_cmd
4567 * @qc: Command to complete
4568 *
4569 * Designed to free unused ata_queued_cmd object
4570 * in case something prevents using it.
4571 *
4572 * LOCKING:
cca3974e 4573 * spin_lock_irqsave(host lock)
1da177e4
LT
4574 */
4575void ata_qc_free(struct ata_queued_cmd *qc)
4576{
4ba946e9
TH
4577 struct ata_port *ap = qc->ap;
4578 unsigned int tag;
4579
a4631474 4580 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4581
4ba946e9
TH
4582 qc->flags = 0;
4583 tag = qc->tag;
4584 if (likely(ata_tag_valid(tag))) {
4ba946e9 4585 qc->tag = ATA_TAG_POISON;
6cec4a39 4586 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4587 }
1da177e4
LT
4588}
4589
76014427 4590void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4591{
dedaf2b0
TH
4592 struct ata_port *ap = qc->ap;
4593
a4631474
TH
4594 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4595 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4596
4597 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4598 ata_sg_clean(qc);
4599
7401abf2 4600 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4601 if (qc->tf.protocol == ATA_PROT_NCQ)
4602 ap->sactive &= ~(1 << qc->tag);
4603 else
4604 ap->active_tag = ATA_TAG_POISON;
7401abf2 4605
3f3791d3
AL
4606 /* atapi: mark qc as inactive to prevent the interrupt handler
4607 * from completing the command twice later, before the error handler
4608 * is called. (when rc != 0 and atapi request sense is needed)
4609 */
4610 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4611 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4612
1da177e4 4613 /* call completion callback */
77853bf2 4614 qc->complete_fn(qc);
1da177e4
LT
4615}
4616
39599a53
TH
4617static void fill_result_tf(struct ata_queued_cmd *qc)
4618{
4619 struct ata_port *ap = qc->ap;
4620
4621 ap->ops->tf_read(ap, &qc->result_tf);
4622 qc->result_tf.flags = qc->tf.flags;
4623}
4624
f686bcb8
TH
4625/**
4626 * ata_qc_complete - Complete an active ATA command
4627 * @qc: Command to complete
4628 * @err_mask: ATA Status register contents
4629 *
4630 * Indicate to the mid and upper layers that an ATA
4631 * command has completed, with either an ok or not-ok status.
4632 *
4633 * LOCKING:
cca3974e 4634 * spin_lock_irqsave(host lock)
f686bcb8
TH
4635 */
4636void ata_qc_complete(struct ata_queued_cmd *qc)
4637{
4638 struct ata_port *ap = qc->ap;
4639
4640 /* XXX: New EH and old EH use different mechanisms to
4641 * synchronize EH with regular execution path.
4642 *
4643 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4644 * Normal execution path is responsible for not accessing a
4645 * failed qc. libata core enforces the rule by returning NULL
4646 * from ata_qc_from_tag() for failed qcs.
4647 *
4648 * Old EH depends on ata_qc_complete() nullifying completion
4649 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4650 * not synchronize with interrupt handler. Only PIO task is
4651 * taken care of.
4652 */
4653 if (ap->ops->error_handler) {
b51e9e5d 4654 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4655
4656 if (unlikely(qc->err_mask))
4657 qc->flags |= ATA_QCFLAG_FAILED;
4658
4659 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4660 if (!ata_tag_internal(qc->tag)) {
4661 /* always fill result TF for failed qc */
39599a53 4662 fill_result_tf(qc);
f686bcb8
TH
4663 ata_qc_schedule_eh(qc);
4664 return;
4665 }
4666 }
4667
4668 /* read result TF if requested */
4669 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4670 fill_result_tf(qc);
f686bcb8
TH
4671
4672 __ata_qc_complete(qc);
4673 } else {
4674 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4675 return;
4676
4677 /* read result TF if failed or requested */
4678 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4679 fill_result_tf(qc);
f686bcb8
TH
4680
4681 __ata_qc_complete(qc);
4682 }
4683}
4684
dedaf2b0
TH
4685/**
4686 * ata_qc_complete_multiple - Complete multiple qcs successfully
4687 * @ap: port in question
4688 * @qc_active: new qc_active mask
4689 * @finish_qc: LLDD callback invoked before completing a qc
4690 *
4691 * Complete in-flight commands. This functions is meant to be
4692 * called from low-level driver's interrupt routine to complete
4693 * requests normally. ap->qc_active and @qc_active is compared
4694 * and commands are completed accordingly.
4695 *
4696 * LOCKING:
cca3974e 4697 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4698 *
4699 * RETURNS:
4700 * Number of completed commands on success, -errno otherwise.
4701 */
4702int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4703 void (*finish_qc)(struct ata_queued_cmd *))
4704{
4705 int nr_done = 0;
4706 u32 done_mask;
4707 int i;
4708
4709 done_mask = ap->qc_active ^ qc_active;
4710
4711 if (unlikely(done_mask & qc_active)) {
4712 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4713 "(%08x->%08x)\n", ap->qc_active, qc_active);
4714 return -EINVAL;
4715 }
4716
4717 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4718 struct ata_queued_cmd *qc;
4719
4720 if (!(done_mask & (1 << i)))
4721 continue;
4722
4723 if ((qc = ata_qc_from_tag(ap, i))) {
4724 if (finish_qc)
4725 finish_qc(qc);
4726 ata_qc_complete(qc);
4727 nr_done++;
4728 }
4729 }
4730
4731 return nr_done;
4732}
4733
1da177e4
LT
4734static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4735{
4736 struct ata_port *ap = qc->ap;
4737
4738 switch (qc->tf.protocol) {
3dc1d881 4739 case ATA_PROT_NCQ:
1da177e4
LT
4740 case ATA_PROT_DMA:
4741 case ATA_PROT_ATAPI_DMA:
4742 return 1;
4743
4744 case ATA_PROT_ATAPI:
4745 case ATA_PROT_PIO:
1da177e4
LT
4746 if (ap->flags & ATA_FLAG_PIO_DMA)
4747 return 1;
4748
4749 /* fall through */
4750
4751 default:
4752 return 0;
4753 }
4754
4755 /* never reached */
4756}
4757
4758/**
4759 * ata_qc_issue - issue taskfile to device
4760 * @qc: command to issue to device
4761 *
4762 * Prepare an ATA command to submission to device.
4763 * This includes mapping the data into a DMA-able
4764 * area, filling in the S/G table, and finally
4765 * writing the taskfile to hardware, starting the command.
4766 *
4767 * LOCKING:
cca3974e 4768 * spin_lock_irqsave(host lock)
1da177e4 4769 */
8e0e694a 4770void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4771{
4772 struct ata_port *ap = qc->ap;
4773
dedaf2b0
TH
4774 /* Make sure only one non-NCQ command is outstanding. The
4775 * check is skipped for old EH because it reuses active qc to
4776 * request ATAPI sense.
4777 */
4778 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4779
4780 if (qc->tf.protocol == ATA_PROT_NCQ) {
4781 WARN_ON(ap->sactive & (1 << qc->tag));
4782 ap->sactive |= 1 << qc->tag;
4783 } else {
4784 WARN_ON(ap->sactive);
4785 ap->active_tag = qc->tag;
4786 }
4787
e4a70e76 4788 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4789 ap->qc_active |= 1 << qc->tag;
e4a70e76 4790
1da177e4
LT
4791 if (ata_should_dma_map(qc)) {
4792 if (qc->flags & ATA_QCFLAG_SG) {
4793 if (ata_sg_setup(qc))
8e436af9 4794 goto sg_err;
1da177e4
LT
4795 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4796 if (ata_sg_setup_one(qc))
8e436af9 4797 goto sg_err;
1da177e4
LT
4798 }
4799 } else {
4800 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4801 }
4802
4803 ap->ops->qc_prep(qc);
4804
8e0e694a
TH
4805 qc->err_mask |= ap->ops->qc_issue(qc);
4806 if (unlikely(qc->err_mask))
4807 goto err;
4808 return;
1da177e4 4809
8e436af9
TH
4810sg_err:
4811 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4812 qc->err_mask |= AC_ERR_SYSTEM;
4813err:
4814 ata_qc_complete(qc);
1da177e4
LT
4815}
4816
4817/**
4818 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4819 * @qc: command to issue to device
4820 *
4821 * Using various libata functions and hooks, this function
4822 * starts an ATA command. ATA commands are grouped into
4823 * classes called "protocols", and issuing each type of protocol
4824 * is slightly different.
4825 *
0baab86b
EF
4826 * May be used as the qc_issue() entry in ata_port_operations.
4827 *
1da177e4 4828 * LOCKING:
cca3974e 4829 * spin_lock_irqsave(host lock)
1da177e4
LT
4830 *
4831 * RETURNS:
9a3d9eb0 4832 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4833 */
4834
9a3d9eb0 4835unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4836{
4837 struct ata_port *ap = qc->ap;
4838
e50362ec
AL
4839 /* Use polling pio if the LLD doesn't handle
4840 * interrupt driven pio and atapi CDB interrupt.
4841 */
4842 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4843 switch (qc->tf.protocol) {
4844 case ATA_PROT_PIO:
e3472cbe 4845 case ATA_PROT_NODATA:
e50362ec
AL
4846 case ATA_PROT_ATAPI:
4847 case ATA_PROT_ATAPI_NODATA:
4848 qc->tf.flags |= ATA_TFLAG_POLLING;
4849 break;
4850 case ATA_PROT_ATAPI_DMA:
4851 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4852 /* see ata_dma_blacklisted() */
e50362ec
AL
4853 BUG();
4854 break;
4855 default:
4856 break;
4857 }
4858 }
4859
3d3cca37
TH
4860 /* Some controllers show flaky interrupt behavior after
4861 * setting xfer mode. Use polling instead.
4862 */
4863 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4864 qc->tf.feature == SETFEATURES_XFER) &&
4865 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4866 qc->tf.flags |= ATA_TFLAG_POLLING;
4867
312f7da2 4868 /* select the device */
1da177e4
LT
4869 ata_dev_select(ap, qc->dev->devno, 1, 0);
4870
312f7da2 4871 /* start the command */
1da177e4
LT
4872 switch (qc->tf.protocol) {
4873 case ATA_PROT_NODATA:
312f7da2
AL
4874 if (qc->tf.flags & ATA_TFLAG_POLLING)
4875 ata_qc_set_polling(qc);
4876
e5338254 4877 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4878 ap->hsm_task_state = HSM_ST_LAST;
4879
4880 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4881 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4882
1da177e4
LT
4883 break;
4884
4885 case ATA_PROT_DMA:
587005de 4886 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4887
1da177e4
LT
4888 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4889 ap->ops->bmdma_setup(qc); /* set up bmdma */
4890 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4891 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4892 break;
4893
312f7da2
AL
4894 case ATA_PROT_PIO:
4895 if (qc->tf.flags & ATA_TFLAG_POLLING)
4896 ata_qc_set_polling(qc);
1da177e4 4897
e5338254 4898 ata_tf_to_host(ap, &qc->tf);
312f7da2 4899
54f00389
AL
4900 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4901 /* PIO data out protocol */
4902 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4903 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4904
4905 /* always send first data block using
e27486db 4906 * the ata_pio_task() codepath.
54f00389 4907 */
312f7da2 4908 } else {
54f00389
AL
4909 /* PIO data in protocol */
4910 ap->hsm_task_state = HSM_ST;
4911
4912 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4913 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4914
4915 /* if polling, ata_pio_task() handles the rest.
4916 * otherwise, interrupt handler takes over from here.
4917 */
312f7da2
AL
4918 }
4919
1da177e4
LT
4920 break;
4921
1da177e4 4922 case ATA_PROT_ATAPI:
1da177e4 4923 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4924 if (qc->tf.flags & ATA_TFLAG_POLLING)
4925 ata_qc_set_polling(qc);
4926
e5338254 4927 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4928
312f7da2
AL
4929 ap->hsm_task_state = HSM_ST_FIRST;
4930
4931 /* send cdb by polling if no cdb interrupt */
4932 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4933 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4934 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4935 break;
4936
4937 case ATA_PROT_ATAPI_DMA:
587005de 4938 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4939
1da177e4
LT
4940 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4941 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4942 ap->hsm_task_state = HSM_ST_FIRST;
4943
4944 /* send cdb by polling if no cdb interrupt */
4945 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4946 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4947 break;
4948
4949 default:
4950 WARN_ON(1);
9a3d9eb0 4951 return AC_ERR_SYSTEM;
1da177e4
LT
4952 }
4953
4954 return 0;
4955}
4956
1da177e4
LT
4957/**
4958 * ata_host_intr - Handle host interrupt for given (port, task)
4959 * @ap: Port on which interrupt arrived (possibly...)
4960 * @qc: Taskfile currently active in engine
4961 *
4962 * Handle host interrupt for given queued command. Currently,
4963 * only DMA interrupts are handled. All other commands are
4964 * handled via polling with interrupts disabled (nIEN bit).
4965 *
4966 * LOCKING:
cca3974e 4967 * spin_lock_irqsave(host lock)
1da177e4
LT
4968 *
4969 * RETURNS:
4970 * One if interrupt was handled, zero if not (shared irq).
4971 */
4972
4973inline unsigned int ata_host_intr (struct ata_port *ap,
4974 struct ata_queued_cmd *qc)
4975{
ea54763f 4976 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 4977 u8 status, host_stat = 0;
1da177e4 4978
312f7da2
AL
4979 VPRINTK("ata%u: protocol %d task_state %d\n",
4980 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4981
312f7da2
AL
4982 /* Check whether we are expecting interrupt in this state */
4983 switch (ap->hsm_task_state) {
4984 case HSM_ST_FIRST:
6912ccd5
AL
4985 /* Some pre-ATAPI-4 devices assert INTRQ
4986 * at this state when ready to receive CDB.
4987 */
1da177e4 4988
312f7da2
AL
4989 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4990 * The flag was turned on only for atapi devices.
4991 * No need to check is_atapi_taskfile(&qc->tf) again.
4992 */
4993 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4994 goto idle_irq;
1da177e4 4995 break;
312f7da2
AL
4996 case HSM_ST_LAST:
4997 if (qc->tf.protocol == ATA_PROT_DMA ||
4998 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4999 /* check status of DMA engine */
5000 host_stat = ap->ops->bmdma_status(ap);
5001 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5002
5003 /* if it's not our irq... */
5004 if (!(host_stat & ATA_DMA_INTR))
5005 goto idle_irq;
5006
5007 /* before we do anything else, clear DMA-Start bit */
5008 ap->ops->bmdma_stop(qc);
a4f16610
AL
5009
5010 if (unlikely(host_stat & ATA_DMA_ERR)) {
5011 /* error when transfering data to/from memory */
5012 qc->err_mask |= AC_ERR_HOST_BUS;
5013 ap->hsm_task_state = HSM_ST_ERR;
5014 }
312f7da2
AL
5015 }
5016 break;
5017 case HSM_ST:
5018 break;
1da177e4
LT
5019 default:
5020 goto idle_irq;
5021 }
5022
312f7da2
AL
5023 /* check altstatus */
5024 status = ata_altstatus(ap);
5025 if (status & ATA_BUSY)
5026 goto idle_irq;
1da177e4 5027
312f7da2
AL
5028 /* check main status, clearing INTRQ */
5029 status = ata_chk_status(ap);
5030 if (unlikely(status & ATA_BUSY))
5031 goto idle_irq;
1da177e4 5032
312f7da2
AL
5033 /* ack bmdma irq events */
5034 ap->ops->irq_clear(ap);
1da177e4 5035
bb5cb290 5036 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5037
5038 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5039 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5040 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5041
1da177e4
LT
5042 return 1; /* irq handled */
5043
5044idle_irq:
5045 ap->stats.idle_irq++;
5046
5047#ifdef ATA_IRQ_TRAP
5048 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5049 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5050 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5051 return 1;
1da177e4
LT
5052 }
5053#endif
5054 return 0; /* irq not handled */
5055}
5056
5057/**
5058 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5059 * @irq: irq line (unused)
cca3974e 5060 * @dev_instance: pointer to our ata_host information structure
1da177e4 5061 *
0cba632b
JG
5062 * Default interrupt handler for PCI IDE devices. Calls
5063 * ata_host_intr() for each port that is not disabled.
5064 *
1da177e4 5065 * LOCKING:
cca3974e 5066 * Obtains host lock during operation.
1da177e4
LT
5067 *
5068 * RETURNS:
0cba632b 5069 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5070 */
5071
7d12e780 5072irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5073{
cca3974e 5074 struct ata_host *host = dev_instance;
1da177e4
LT
5075 unsigned int i;
5076 unsigned int handled = 0;
5077 unsigned long flags;
5078
5079 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5080 spin_lock_irqsave(&host->lock, flags);
1da177e4 5081
cca3974e 5082 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5083 struct ata_port *ap;
5084
cca3974e 5085 ap = host->ports[i];
c1389503 5086 if (ap &&
029f5468 5087 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5088 struct ata_queued_cmd *qc;
5089
5090 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5091 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5092 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5093 handled |= ata_host_intr(ap, qc);
5094 }
5095 }
5096
cca3974e 5097 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5098
5099 return IRQ_RETVAL(handled);
5100}
5101
34bf2170
TH
5102/**
5103 * sata_scr_valid - test whether SCRs are accessible
5104 * @ap: ATA port to test SCR accessibility for
5105 *
5106 * Test whether SCRs are accessible for @ap.
5107 *
5108 * LOCKING:
5109 * None.
5110 *
5111 * RETURNS:
5112 * 1 if SCRs are accessible, 0 otherwise.
5113 */
5114int sata_scr_valid(struct ata_port *ap)
5115{
5116 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5117}
5118
5119/**
5120 * sata_scr_read - read SCR register of the specified port
5121 * @ap: ATA port to read SCR for
5122 * @reg: SCR to read
5123 * @val: Place to store read value
5124 *
5125 * Read SCR register @reg of @ap into *@val. This function is
5126 * guaranteed to succeed if the cable type of the port is SATA
5127 * and the port implements ->scr_read.
5128 *
5129 * LOCKING:
5130 * None.
5131 *
5132 * RETURNS:
5133 * 0 on success, negative errno on failure.
5134 */
5135int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5136{
5137 if (sata_scr_valid(ap)) {
5138 *val = ap->ops->scr_read(ap, reg);
5139 return 0;
5140 }
5141 return -EOPNOTSUPP;
5142}
5143
5144/**
5145 * sata_scr_write - write SCR register of the specified port
5146 * @ap: ATA port to write SCR for
5147 * @reg: SCR to write
5148 * @val: value to write
5149 *
5150 * Write @val to SCR register @reg of @ap. This function is
5151 * guaranteed to succeed if the cable type of the port is SATA
5152 * and the port implements ->scr_read.
5153 *
5154 * LOCKING:
5155 * None.
5156 *
5157 * RETURNS:
5158 * 0 on success, negative errno on failure.
5159 */
5160int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5161{
5162 if (sata_scr_valid(ap)) {
5163 ap->ops->scr_write(ap, reg, val);
5164 return 0;
5165 }
5166 return -EOPNOTSUPP;
5167}
5168
5169/**
5170 * sata_scr_write_flush - write SCR register of the specified port and flush
5171 * @ap: ATA port to write SCR for
5172 * @reg: SCR to write
5173 * @val: value to write
5174 *
5175 * This function is identical to sata_scr_write() except that this
5176 * function performs flush after writing to the register.
5177 *
5178 * LOCKING:
5179 * None.
5180 *
5181 * RETURNS:
5182 * 0 on success, negative errno on failure.
5183 */
5184int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5185{
5186 if (sata_scr_valid(ap)) {
5187 ap->ops->scr_write(ap, reg, val);
5188 ap->ops->scr_read(ap, reg);
5189 return 0;
5190 }
5191 return -EOPNOTSUPP;
5192}
5193
5194/**
5195 * ata_port_online - test whether the given port is online
5196 * @ap: ATA port to test
5197 *
5198 * Test whether @ap is online. Note that this function returns 0
5199 * if online status of @ap cannot be obtained, so
5200 * ata_port_online(ap) != !ata_port_offline(ap).
5201 *
5202 * LOCKING:
5203 * None.
5204 *
5205 * RETURNS:
5206 * 1 if the port online status is available and online.
5207 */
5208int ata_port_online(struct ata_port *ap)
5209{
5210 u32 sstatus;
5211
5212 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5213 return 1;
5214 return 0;
5215}
5216
5217/**
5218 * ata_port_offline - test whether the given port is offline
5219 * @ap: ATA port to test
5220 *
5221 * Test whether @ap is offline. Note that this function returns
5222 * 0 if offline status of @ap cannot be obtained, so
5223 * ata_port_online(ap) != !ata_port_offline(ap).
5224 *
5225 * LOCKING:
5226 * None.
5227 *
5228 * RETURNS:
5229 * 1 if the port offline status is available and offline.
5230 */
5231int ata_port_offline(struct ata_port *ap)
5232{
5233 u32 sstatus;
5234
5235 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5236 return 1;
5237 return 0;
5238}
0baab86b 5239
77b08fb5 5240int ata_flush_cache(struct ata_device *dev)
9b847548 5241{
977e6b9f 5242 unsigned int err_mask;
9b847548
JA
5243 u8 cmd;
5244
5245 if (!ata_try_flush_cache(dev))
5246 return 0;
5247
6fc49adb 5248 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5249 cmd = ATA_CMD_FLUSH_EXT;
5250 else
5251 cmd = ATA_CMD_FLUSH;
5252
977e6b9f
TH
5253 err_mask = ata_do_simple_cmd(dev, cmd);
5254 if (err_mask) {
5255 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5256 return -EIO;
5257 }
5258
5259 return 0;
9b847548
JA
5260}
5261
cca3974e
JG
5262static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5263 unsigned int action, unsigned int ehi_flags,
5264 int wait)
500530f6
TH
5265{
5266 unsigned long flags;
5267 int i, rc;
5268
cca3974e
JG
5269 for (i = 0; i < host->n_ports; i++) {
5270 struct ata_port *ap = host->ports[i];
500530f6
TH
5271
5272 /* Previous resume operation might still be in
5273 * progress. Wait for PM_PENDING to clear.
5274 */
5275 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5276 ata_port_wait_eh(ap);
5277 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5278 }
5279
5280 /* request PM ops to EH */
5281 spin_lock_irqsave(ap->lock, flags);
5282
5283 ap->pm_mesg = mesg;
5284 if (wait) {
5285 rc = 0;
5286 ap->pm_result = &rc;
5287 }
5288
5289 ap->pflags |= ATA_PFLAG_PM_PENDING;
5290 ap->eh_info.action |= action;
5291 ap->eh_info.flags |= ehi_flags;
5292
5293 ata_port_schedule_eh(ap);
5294
5295 spin_unlock_irqrestore(ap->lock, flags);
5296
5297 /* wait and check result */
5298 if (wait) {
5299 ata_port_wait_eh(ap);
5300 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5301 if (rc)
5302 return rc;
5303 }
5304 }
5305
5306 return 0;
5307}
5308
5309/**
cca3974e
JG
5310 * ata_host_suspend - suspend host
5311 * @host: host to suspend
500530f6
TH
5312 * @mesg: PM message
5313 *
cca3974e 5314 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5315 * function requests EH to perform PM operations and waits for EH
5316 * to finish.
5317 *
5318 * LOCKING:
5319 * Kernel thread context (may sleep).
5320 *
5321 * RETURNS:
5322 * 0 on success, -errno on failure.
5323 */
cca3974e 5324int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5325{
5326 int i, j, rc;
5327
cca3974e 5328 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5329 if (rc)
5330 goto fail;
5331
5332 /* EH is quiescent now. Fail if we have any ready device.
5333 * This happens if hotplug occurs between completion of device
5334 * suspension and here.
5335 */
cca3974e
JG
5336 for (i = 0; i < host->n_ports; i++) {
5337 struct ata_port *ap = host->ports[i];
500530f6
TH
5338
5339 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5340 struct ata_device *dev = &ap->device[j];
5341
5342 if (ata_dev_ready(dev)) {
5343 ata_port_printk(ap, KERN_WARNING,
5344 "suspend failed, device %d "
5345 "still active\n", dev->devno);
5346 rc = -EBUSY;
5347 goto fail;
5348 }
5349 }
5350 }
5351
cca3974e 5352 host->dev->power.power_state = mesg;
500530f6
TH
5353 return 0;
5354
5355 fail:
cca3974e 5356 ata_host_resume(host);
500530f6
TH
5357 return rc;
5358}
5359
5360/**
cca3974e
JG
5361 * ata_host_resume - resume host
5362 * @host: host to resume
500530f6 5363 *
cca3974e 5364 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5365 * function requests EH to perform PM operations and returns.
5366 * Note that all resume operations are performed parallely.
5367 *
5368 * LOCKING:
5369 * Kernel thread context (may sleep).
5370 */
cca3974e 5371void ata_host_resume(struct ata_host *host)
500530f6 5372{
cca3974e
JG
5373 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5374 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5375 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5376}
5377
c893a3ae
RD
5378/**
5379 * ata_port_start - Set port up for dma.
5380 * @ap: Port to initialize
5381 *
5382 * Called just after data structures for each port are
5383 * initialized. Allocates space for PRD table.
5384 *
5385 * May be used as the port_start() entry in ata_port_operations.
5386 *
5387 * LOCKING:
5388 * Inherited from caller.
5389 */
f0d36efd 5390int ata_port_start(struct ata_port *ap)
1da177e4 5391{
2f1f610b 5392 struct device *dev = ap->dev;
6037d6bb 5393 int rc;
1da177e4 5394
f0d36efd
TH
5395 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5396 GFP_KERNEL);
1da177e4
LT
5397 if (!ap->prd)
5398 return -ENOMEM;
5399
6037d6bb 5400 rc = ata_pad_alloc(ap, dev);
f0d36efd 5401 if (rc)
6037d6bb 5402 return rc;
1da177e4 5403
f0d36efd
TH
5404 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5405 (unsigned long long)ap->prd_dma);
1da177e4
LT
5406 return 0;
5407}
5408
3ef3b43d
TH
5409/**
5410 * ata_dev_init - Initialize an ata_device structure
5411 * @dev: Device structure to initialize
5412 *
5413 * Initialize @dev in preparation for probing.
5414 *
5415 * LOCKING:
5416 * Inherited from caller.
5417 */
5418void ata_dev_init(struct ata_device *dev)
5419{
5420 struct ata_port *ap = dev->ap;
72fa4b74
TH
5421 unsigned long flags;
5422
5a04bf4b
TH
5423 /* SATA spd limit is bound to the first device */
5424 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5425
72fa4b74
TH
5426 /* High bits of dev->flags are used to record warm plug
5427 * requests which occur asynchronously. Synchronize using
cca3974e 5428 * host lock.
72fa4b74 5429 */
ba6a1308 5430 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5431 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5432 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5433
72fa4b74
TH
5434 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5435 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5436 dev->pio_mask = UINT_MAX;
5437 dev->mwdma_mask = UINT_MAX;
5438 dev->udma_mask = UINT_MAX;
5439}
5440
1da177e4 5441/**
155a8a9c 5442 * ata_port_init - Initialize an ata_port structure
1da177e4 5443 * @ap: Structure to initialize
cca3974e 5444 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5445 * @ent: Probe information provided by low-level driver
5446 * @port_no: Port number associated with this ata_port
5447 *
155a8a9c 5448 * Initialize a new ata_port structure.
0cba632b 5449 *
1da177e4 5450 * LOCKING:
0cba632b 5451 * Inherited from caller.
1da177e4 5452 */
cca3974e 5453void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5454 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5455{
5456 unsigned int i;
5457
cca3974e 5458 ap->lock = &host->lock;
198e0fed 5459 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5460 ap->id = ata_unique_id++;
1da177e4 5461 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5462 ap->host = host;
2f1f610b 5463 ap->dev = ent->dev;
1da177e4 5464 ap->port_no = port_no;
fea63e38
TH
5465 if (port_no == 1 && ent->pinfo2) {
5466 ap->pio_mask = ent->pinfo2->pio_mask;
5467 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5468 ap->udma_mask = ent->pinfo2->udma_mask;
5469 ap->flags |= ent->pinfo2->flags;
5470 ap->ops = ent->pinfo2->port_ops;
5471 } else {
5472 ap->pio_mask = ent->pio_mask;
5473 ap->mwdma_mask = ent->mwdma_mask;
5474 ap->udma_mask = ent->udma_mask;
5475 ap->flags |= ent->port_flags;
5476 ap->ops = ent->port_ops;
5477 }
5a04bf4b 5478 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5479 ap->active_tag = ATA_TAG_POISON;
5480 ap->last_ctl = 0xFF;
bd5d825c
BP
5481
5482#if defined(ATA_VERBOSE_DEBUG)
5483 /* turn on all debugging levels */
5484 ap->msg_enable = 0x00FF;
5485#elif defined(ATA_DEBUG)
5486 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5487#else
0dd4b21f 5488 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5489#endif
1da177e4 5490
65f27f38
DH
5491 INIT_DELAYED_WORK(&ap->port_task, NULL);
5492 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5493 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5494 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5495 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5496
838df628
TH
5497 /* set cable type */
5498 ap->cbl = ATA_CBL_NONE;
5499 if (ap->flags & ATA_FLAG_SATA)
5500 ap->cbl = ATA_CBL_SATA;
5501
acf356b1
TH
5502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5503 struct ata_device *dev = &ap->device[i];
38d87234 5504 dev->ap = ap;
72fa4b74 5505 dev->devno = i;
3ef3b43d 5506 ata_dev_init(dev);
acf356b1 5507 }
1da177e4
LT
5508
5509#ifdef ATA_IRQ_TRAP
5510 ap->stats.unhandled_irq = 1;
5511 ap->stats.idle_irq = 1;
5512#endif
5513
5514 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5515}
5516
155a8a9c 5517/**
4608c160
TH
5518 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5519 * @ap: ATA port to initialize SCSI host for
5520 * @shost: SCSI host associated with @ap
155a8a9c 5521 *
4608c160 5522 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5523 *
5524 * LOCKING:
5525 * Inherited from caller.
5526 */
4608c160 5527static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5528{
cca3974e 5529 ap->scsi_host = shost;
155a8a9c 5530
4608c160
TH
5531 shost->unique_id = ap->id;
5532 shost->max_id = 16;
5533 shost->max_lun = 1;
5534 shost->max_channel = 1;
5535 shost->max_cmd_len = 12;
155a8a9c
BK
5536}
5537
1da177e4 5538/**
996139f1 5539 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5540 * @ent: Information provided by low-level driver
cca3974e 5541 * @host: Collections of ports to which we add
1da177e4
LT
5542 * @port_no: Port number associated with this host
5543 *
0cba632b
JG
5544 * Attach low-level ATA driver to system.
5545 *
1da177e4 5546 * LOCKING:
0cba632b 5547 * PCI/etc. bus probe sem.
1da177e4
LT
5548 *
5549 * RETURNS:
0cba632b 5550 * New ata_port on success, for NULL on error.
1da177e4 5551 */
996139f1 5552static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5553 struct ata_host *host,
1da177e4
LT
5554 unsigned int port_no)
5555{
996139f1 5556 struct Scsi_Host *shost;
1da177e4 5557 struct ata_port *ap;
1da177e4
LT
5558
5559 DPRINTK("ENTER\n");
aec5c3c1 5560
52783c5d 5561 if (!ent->port_ops->error_handler &&
cca3974e 5562 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5563 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5564 port_no);
5565 return NULL;
5566 }
5567
996139f1
JG
5568 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5569 if (!shost)
1da177e4
LT
5570 return NULL;
5571
996139f1 5572 shost->transportt = &ata_scsi_transport_template;
30afc84c 5573
996139f1 5574 ap = ata_shost_to_port(shost);
1da177e4 5575
cca3974e 5576 ata_port_init(ap, host, ent, port_no);
996139f1 5577 ata_port_init_shost(ap, shost);
1da177e4 5578
1da177e4 5579 return ap;
1da177e4
LT
5580}
5581
f0d36efd
TH
5582static void ata_host_release(struct device *gendev, void *res)
5583{
5584 struct ata_host *host = dev_get_drvdata(gendev);
5585 int i;
5586
5587 for (i = 0; i < host->n_ports; i++) {
5588 struct ata_port *ap = host->ports[i];
5589
5590 if (!ap)
5591 continue;
5592
5593 if (ap->ops->port_stop)
5594 ap->ops->port_stop(ap);
5595
5596 scsi_host_put(ap->scsi_host);
5597 }
5598
5599 if (host->ops->host_stop)
5600 host->ops->host_stop(host);
5601}
5602
b03732f0 5603/**
cca3974e
JG
5604 * ata_sas_host_init - Initialize a host struct
5605 * @host: host to initialize
5606 * @dev: device host is attached to
5607 * @flags: host flags
5608 * @ops: port_ops
b03732f0
BK
5609 *
5610 * LOCKING:
5611 * PCI/etc. bus probe sem.
5612 *
5613 */
5614
cca3974e
JG
5615void ata_host_init(struct ata_host *host, struct device *dev,
5616 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5617{
cca3974e
JG
5618 spin_lock_init(&host->lock);
5619 host->dev = dev;
5620 host->flags = flags;
5621 host->ops = ops;
b03732f0
BK
5622}
5623
1da177e4 5624/**
0cba632b
JG
5625 * ata_device_add - Register hardware device with ATA and SCSI layers
5626 * @ent: Probe information describing hardware device to be registered
5627 *
5628 * This function processes the information provided in the probe
5629 * information struct @ent, allocates the necessary ATA and SCSI
5630 * host information structures, initializes them, and registers
5631 * everything with requisite kernel subsystems.
5632 *
5633 * This function requests irqs, probes the ATA bus, and probes
5634 * the SCSI bus.
1da177e4
LT
5635 *
5636 * LOCKING:
0cba632b 5637 * PCI/etc. bus probe sem.
1da177e4
LT
5638 *
5639 * RETURNS:
0cba632b 5640 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5641 */
057ace5e 5642int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5643{
6d0500df 5644 unsigned int i;
1da177e4 5645 struct device *dev = ent->dev;
cca3974e 5646 struct ata_host *host;
39b07ce6 5647 int rc;
1da177e4
LT
5648
5649 DPRINTK("ENTER\n");
f20b16ff 5650
02f076aa
AC
5651 if (ent->irq == 0) {
5652 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5653 return 0;
5654 }
f0d36efd
TH
5655
5656 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5657 return 0;
5658
1da177e4 5659 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5660 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5661 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5662 if (!host)
f0d36efd
TH
5663 goto err_out;
5664 devres_add(dev, host);
5665 dev_set_drvdata(dev, host);
1da177e4 5666
cca3974e
JG
5667 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5668 host->n_ports = ent->n_ports;
5669 host->irq = ent->irq;
5670 host->irq2 = ent->irq2;
0d5ff566 5671 host->iomap = ent->iomap;
cca3974e 5672 host->private_data = ent->private_data;
1da177e4
LT
5673
5674 /* register each port bound to this device */
cca3974e 5675 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5676 struct ata_port *ap;
5677 unsigned long xfer_mode_mask;
2ec7df04 5678 int irq_line = ent->irq;
1da177e4 5679
cca3974e 5680 ap = ata_port_add(ent, host, i);
c38778c3 5681 host->ports[i] = ap;
1da177e4
LT
5682 if (!ap)
5683 goto err_out;
5684
dd5b06c4
TH
5685 /* dummy? */
5686 if (ent->dummy_port_mask & (1 << i)) {
5687 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5688 ap->ops = &ata_dummy_port_ops;
5689 continue;
5690 }
5691
5692 /* start port */
5693 rc = ap->ops->port_start(ap);
5694 if (rc) {
cca3974e
JG
5695 host->ports[i] = NULL;
5696 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5697 goto err_out;
5698 }
5699
2ec7df04
AC
5700 /* Report the secondary IRQ for second channel legacy */
5701 if (i == 1 && ent->irq2)
5702 irq_line = ent->irq2;
5703
1da177e4
LT
5704 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5705 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5706 (ap->pio_mask << ATA_SHIFT_PIO);
5707
5708 /* print per-port info to dmesg */
0d5ff566
TH
5709 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5710 "ctl 0x%p bmdma 0x%p irq %d\n",
f15a1daf
TH
5711 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5712 ata_mode_string(xfer_mode_mask),
5713 ap->ioaddr.cmd_addr,
5714 ap->ioaddr.ctl_addr,
5715 ap->ioaddr.bmdma_addr,
2ec7df04 5716 irq_line);
1da177e4 5717
0f0a3ad3
TH
5718 /* freeze port before requesting IRQ */
5719 ata_eh_freeze_port(ap);
1da177e4
LT
5720 }
5721
2ec7df04 5722 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5723 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5724 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5725 if (rc) {
5726 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5727 ent->irq, rc);
1da177e4 5728 goto err_out;
39b07ce6 5729 }
1da177e4 5730
2ec7df04
AC
5731 /* do we have a second IRQ for the other channel, eg legacy mode */
5732 if (ent->irq2) {
5733 /* We will get weird core code crashes later if this is true
5734 so trap it now */
5735 BUG_ON(ent->irq == ent->irq2);
5736
f0d36efd
TH
5737 rc = devm_request_irq(dev, ent->irq2,
5738 ent->port_ops->irq_handler, ent->irq_flags,
5739 DRV_NAME, host);
2ec7df04
AC
5740 if (rc) {
5741 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5742 ent->irq2, rc);
f0d36efd 5743 goto err_out;
2ec7df04
AC
5744 }
5745 }
5746
f0d36efd 5747 /* resource acquisition complete */
b878ca5d 5748 devres_remove_group(dev, ata_device_add);
f0d36efd 5749
1da177e4
LT
5750 /* perform each probe synchronously */
5751 DPRINTK("probe begin\n");
cca3974e
JG
5752 for (i = 0; i < host->n_ports; i++) {
5753 struct ata_port *ap = host->ports[i];
5a04bf4b 5754 u32 scontrol;
1da177e4
LT
5755 int rc;
5756
5a04bf4b
TH
5757 /* init sata_spd_limit to the current value */
5758 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5759 int spd = (scontrol >> 4) & 0xf;
5760 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5761 }
5762 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5763
cca3974e 5764 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5765 if (rc) {
f15a1daf 5766 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5767 /* FIXME: do something useful here */
5768 /* FIXME: handle unconditional calls to
5769 * scsi_scan_host and ata_host_remove, below,
5770 * at the very least
5771 */
5772 }
3e706399 5773
52783c5d 5774 if (ap->ops->error_handler) {
1cdaf534 5775 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5776 unsigned long flags;
5777
5778 ata_port_probe(ap);
5779
5780 /* kick EH for boot probing */
ba6a1308 5781 spin_lock_irqsave(ap->lock, flags);
3e706399 5782
1cdaf534
TH
5783 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5784 ehi->action |= ATA_EH_SOFTRESET;
5785 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5786
b51e9e5d 5787 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5788 ata_port_schedule_eh(ap);
5789
ba6a1308 5790 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5791
5792 /* wait for EH to finish */
5793 ata_port_wait_eh(ap);
5794 } else {
5795 DPRINTK("ata%u: bus probe begin\n", ap->id);
5796 rc = ata_bus_probe(ap);
5797 DPRINTK("ata%u: bus probe end\n", ap->id);
5798
5799 if (rc) {
5800 /* FIXME: do something useful here?
5801 * Current libata behavior will
5802 * tear down everything when
5803 * the module is removed
5804 * or the h/w is unplugged.
5805 */
5806 }
5807 }
1da177e4
LT
5808 }
5809
5810 /* probes are done, now scan each port's disk(s) */
c893a3ae 5811 DPRINTK("host probe begin\n");
cca3974e
JG
5812 for (i = 0; i < host->n_ports; i++) {
5813 struct ata_port *ap = host->ports[i];
1da177e4 5814
644dd0cc 5815 ata_scsi_scan_host(ap);
1da177e4
LT
5816 }
5817
1da177e4
LT
5818 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5819 return ent->n_ports; /* success */
5820
f0d36efd
TH
5821 err_out:
5822 devres_release_group(dev, ata_device_add);
5823 dev_set_drvdata(dev, NULL);
5824 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
5825 return 0;
5826}
5827
720ba126
TH
5828/**
5829 * ata_port_detach - Detach ATA port in prepration of device removal
5830 * @ap: ATA port to be detached
5831 *
5832 * Detach all ATA devices and the associated SCSI devices of @ap;
5833 * then, remove the associated SCSI host. @ap is guaranteed to
5834 * be quiescent on return from this function.
5835 *
5836 * LOCKING:
5837 * Kernel thread context (may sleep).
5838 */
5839void ata_port_detach(struct ata_port *ap)
5840{
5841 unsigned long flags;
5842 int i;
5843
5844 if (!ap->ops->error_handler)
c3cf30a9 5845 goto skip_eh;
720ba126
TH
5846
5847 /* tell EH we're leaving & flush EH */
ba6a1308 5848 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5849 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5850 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5851
5852 ata_port_wait_eh(ap);
5853
5854 /* EH is now guaranteed to see UNLOADING, so no new device
5855 * will be attached. Disable all existing devices.
5856 */
ba6a1308 5857 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5858
5859 for (i = 0; i < ATA_MAX_DEVICES; i++)
5860 ata_dev_disable(&ap->device[i]);
5861
ba6a1308 5862 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5863
5864 /* Final freeze & EH. All in-flight commands are aborted. EH
5865 * will be skipped and retrials will be terminated with bad
5866 * target.
5867 */
ba6a1308 5868 spin_lock_irqsave(ap->lock, flags);
720ba126 5869 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5870 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5871
5872 ata_port_wait_eh(ap);
5873
5874 /* Flush hotplug task. The sequence is similar to
5875 * ata_port_flush_task().
5876 */
5877 flush_workqueue(ata_aux_wq);
5878 cancel_delayed_work(&ap->hotplug_task);
5879 flush_workqueue(ata_aux_wq);
5880
c3cf30a9 5881 skip_eh:
720ba126 5882 /* remove the associated SCSI host */
cca3974e 5883 scsi_remove_host(ap->scsi_host);
720ba126
TH
5884}
5885
0529c159
TH
5886/**
5887 * ata_host_detach - Detach all ports of an ATA host
5888 * @host: Host to detach
5889 *
5890 * Detach all ports of @host.
5891 *
5892 * LOCKING:
5893 * Kernel thread context (may sleep).
5894 */
5895void ata_host_detach(struct ata_host *host)
5896{
5897 int i;
5898
5899 for (i = 0; i < host->n_ports; i++)
5900 ata_port_detach(host->ports[i]);
5901}
5902
f6d950e2
BK
5903struct ata_probe_ent *
5904ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5905{
5906 struct ata_probe_ent *probe_ent;
5907
f0d36efd
TH
5908 /* XXX - the following if can go away once all LLDs are managed */
5909 if (!list_empty(&dev->devres_head))
5910 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5911 else
5912 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
5913 if (!probe_ent) {
5914 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5915 kobject_name(&(dev->kobj)));
5916 return NULL;
5917 }
5918
5919 INIT_LIST_HEAD(&probe_ent->node);
5920 probe_ent->dev = dev;
5921
5922 probe_ent->sht = port->sht;
cca3974e 5923 probe_ent->port_flags = port->flags;
f6d950e2
BK
5924 probe_ent->pio_mask = port->pio_mask;
5925 probe_ent->mwdma_mask = port->mwdma_mask;
5926 probe_ent->udma_mask = port->udma_mask;
5927 probe_ent->port_ops = port->port_ops;
d639ca94 5928 probe_ent->private_data = port->private_data;
f6d950e2
BK
5929
5930 return probe_ent;
5931}
5932
1da177e4
LT
5933/**
5934 * ata_std_ports - initialize ioaddr with standard port offsets.
5935 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5936 *
5937 * Utility function which initializes data_addr, error_addr,
5938 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5939 * device_addr, status_addr, and command_addr to standard offsets
5940 * relative to cmd_addr.
5941 *
5942 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5943 */
0baab86b 5944
1da177e4
LT
5945void ata_std_ports(struct ata_ioports *ioaddr)
5946{
5947 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5948 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5949 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5950 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5951 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5952 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5953 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5954 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5955 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5956 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5957}
5958
0baab86b 5959
374b1873
JG
5960#ifdef CONFIG_PCI
5961
1da177e4
LT
5962/**
5963 * ata_pci_remove_one - PCI layer callback for device removal
5964 * @pdev: PCI device that was removed
5965 *
b878ca5d
TH
5966 * PCI layer indicates to libata via this hook that hot-unplug or
5967 * module unload event has occurred. Detach all ports. Resource
5968 * release is handled via devres.
1da177e4
LT
5969 *
5970 * LOCKING:
5971 * Inherited from PCI layer (may sleep).
5972 */
f0d36efd 5973void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
5974{
5975 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 5976 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5977
b878ca5d 5978 ata_host_detach(host);
1da177e4
LT
5979}
5980
5981/* move to PCI subsystem */
057ace5e 5982int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5983{
5984 unsigned long tmp = 0;
5985
5986 switch (bits->width) {
5987 case 1: {
5988 u8 tmp8 = 0;
5989 pci_read_config_byte(pdev, bits->reg, &tmp8);
5990 tmp = tmp8;
5991 break;
5992 }
5993 case 2: {
5994 u16 tmp16 = 0;
5995 pci_read_config_word(pdev, bits->reg, &tmp16);
5996 tmp = tmp16;
5997 break;
5998 }
5999 case 4: {
6000 u32 tmp32 = 0;
6001 pci_read_config_dword(pdev, bits->reg, &tmp32);
6002 tmp = tmp32;
6003 break;
6004 }
6005
6006 default:
6007 return -EINVAL;
6008 }
6009
6010 tmp &= bits->mask;
6011
6012 return (tmp == bits->val) ? 1 : 0;
6013}
9b847548 6014
3c5100c1 6015void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6016{
6017 pci_save_state(pdev);
500530f6 6018
3c5100c1 6019 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6020 pci_disable_device(pdev);
6021 pci_set_power_state(pdev, PCI_D3hot);
6022 }
9b847548
JA
6023}
6024
553c4aa6 6025int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6026{
553c4aa6
TH
6027 int rc;
6028
9b847548
JA
6029 pci_set_power_state(pdev, PCI_D0);
6030 pci_restore_state(pdev);
553c4aa6 6031
b878ca5d 6032 rc = pcim_enable_device(pdev);
553c4aa6
TH
6033 if (rc) {
6034 dev_printk(KERN_ERR, &pdev->dev,
6035 "failed to enable device after resume (%d)\n", rc);
6036 return rc;
6037 }
6038
9b847548 6039 pci_set_master(pdev);
553c4aa6 6040 return 0;
500530f6
TH
6041}
6042
3c5100c1 6043int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6044{
cca3974e 6045 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6046 int rc = 0;
6047
cca3974e 6048 rc = ata_host_suspend(host, mesg);
500530f6
TH
6049 if (rc)
6050 return rc;
6051
3c5100c1 6052 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6053
6054 return 0;
6055}
6056
6057int ata_pci_device_resume(struct pci_dev *pdev)
6058{
cca3974e 6059 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6060 int rc;
500530f6 6061
553c4aa6
TH
6062 rc = ata_pci_device_do_resume(pdev);
6063 if (rc == 0)
6064 ata_host_resume(host);
6065 return rc;
9b847548 6066}
1da177e4
LT
6067#endif /* CONFIG_PCI */
6068
6069
1da177e4
LT
6070static int __init ata_init(void)
6071{
a8601e5f 6072 ata_probe_timeout *= HZ;
1da177e4
LT
6073 ata_wq = create_workqueue("ata");
6074 if (!ata_wq)
6075 return -ENOMEM;
6076
453b07ac
TH
6077 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6078 if (!ata_aux_wq) {
6079 destroy_workqueue(ata_wq);
6080 return -ENOMEM;
6081 }
6082
1da177e4
LT
6083 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6084 return 0;
6085}
6086
6087static void __exit ata_exit(void)
6088{
6089 destroy_workqueue(ata_wq);
453b07ac 6090 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6091}
6092
a4625085 6093subsys_initcall(ata_init);
1da177e4
LT
6094module_exit(ata_exit);
6095
67846b30 6096static unsigned long ratelimit_time;
34af946a 6097static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6098
6099int ata_ratelimit(void)
6100{
6101 int rc;
6102 unsigned long flags;
6103
6104 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6105
6106 if (time_after(jiffies, ratelimit_time)) {
6107 rc = 1;
6108 ratelimit_time = jiffies + (HZ/5);
6109 } else
6110 rc = 0;
6111
6112 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6113
6114 return rc;
6115}
6116
c22daff4
TH
6117/**
6118 * ata_wait_register - wait until register value changes
6119 * @reg: IO-mapped register
6120 * @mask: Mask to apply to read register value
6121 * @val: Wait condition
6122 * @interval_msec: polling interval in milliseconds
6123 * @timeout_msec: timeout in milliseconds
6124 *
6125 * Waiting for some bits of register to change is a common
6126 * operation for ATA controllers. This function reads 32bit LE
6127 * IO-mapped register @reg and tests for the following condition.
6128 *
6129 * (*@reg & mask) != val
6130 *
6131 * If the condition is met, it returns; otherwise, the process is
6132 * repeated after @interval_msec until timeout.
6133 *
6134 * LOCKING:
6135 * Kernel thread context (may sleep)
6136 *
6137 * RETURNS:
6138 * The final register value.
6139 */
6140u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6141 unsigned long interval_msec,
6142 unsigned long timeout_msec)
6143{
6144 unsigned long timeout;
6145 u32 tmp;
6146
6147 tmp = ioread32(reg);
6148
6149 /* Calculate timeout _after_ the first read to make sure
6150 * preceding writes reach the controller before starting to
6151 * eat away the timeout.
6152 */
6153 timeout = jiffies + (timeout_msec * HZ) / 1000;
6154
6155 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6156 msleep(interval_msec);
6157 tmp = ioread32(reg);
6158 }
6159
6160 return tmp;
6161}
6162
dd5b06c4
TH
6163/*
6164 * Dummy port_ops
6165 */
6166static void ata_dummy_noret(struct ata_port *ap) { }
6167static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6168static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6169
6170static u8 ata_dummy_check_status(struct ata_port *ap)
6171{
6172 return ATA_DRDY;
6173}
6174
6175static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6176{
6177 return AC_ERR_SYSTEM;
6178}
6179
6180const struct ata_port_operations ata_dummy_port_ops = {
6181 .port_disable = ata_port_disable,
6182 .check_status = ata_dummy_check_status,
6183 .check_altstatus = ata_dummy_check_status,
6184 .dev_select = ata_noop_dev_select,
6185 .qc_prep = ata_noop_qc_prep,
6186 .qc_issue = ata_dummy_qc_issue,
6187 .freeze = ata_dummy_noret,
6188 .thaw = ata_dummy_noret,
6189 .error_handler = ata_dummy_noret,
6190 .post_internal_cmd = ata_dummy_qc_noret,
6191 .irq_clear = ata_dummy_noret,
6192 .port_start = ata_dummy_ret0,
6193 .port_stop = ata_dummy_noret,
6194};
6195
1da177e4
LT
6196/*
6197 * libata is essentially a library of internal helper functions for
6198 * low-level ATA host controller drivers. As such, the API/ABI is
6199 * likely to change as new drivers are added and updated.
6200 * Do not depend on ABI/API stability.
6201 */
6202
e9c83914
TH
6203EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6204EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6205EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6206EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6207EXPORT_SYMBOL_GPL(ata_std_bios_param);
6208EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6209EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6210EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6211EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6212EXPORT_SYMBOL_GPL(ata_sg_init);
6213EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6214EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6215EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6216EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6217EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6218EXPORT_SYMBOL_GPL(ata_tf_load);
6219EXPORT_SYMBOL_GPL(ata_tf_read);
6220EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6221EXPORT_SYMBOL_GPL(ata_std_dev_select);
6222EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6223EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6224EXPORT_SYMBOL_GPL(ata_check_status);
6225EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6226EXPORT_SYMBOL_GPL(ata_exec_command);
6227EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6228EXPORT_SYMBOL_GPL(ata_interrupt);
0d5ff566
TH
6229EXPORT_SYMBOL_GPL(ata_data_xfer);
6230EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6231EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6232EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6233EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6234EXPORT_SYMBOL_GPL(ata_bmdma_start);
6235EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6236EXPORT_SYMBOL_GPL(ata_bmdma_status);
6237EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6238EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6239EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6240EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6241EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6242EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6243EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6244EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6245EXPORT_SYMBOL_GPL(sata_phy_debounce);
6246EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6247EXPORT_SYMBOL_GPL(sata_phy_reset);
6248EXPORT_SYMBOL_GPL(__sata_phy_reset);
6249EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6250EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6251EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6252EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6253EXPORT_SYMBOL_GPL(sata_std_hardreset);
6254EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6255EXPORT_SYMBOL_GPL(ata_dev_classify);
6256EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6257EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6258EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6259EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6260EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6261EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6262EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6263EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6264EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6265EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6266EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6267EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6268EXPORT_SYMBOL_GPL(sata_scr_valid);
6269EXPORT_SYMBOL_GPL(sata_scr_read);
6270EXPORT_SYMBOL_GPL(sata_scr_write);
6271EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6272EXPORT_SYMBOL_GPL(ata_port_online);
6273EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6274EXPORT_SYMBOL_GPL(ata_host_suspend);
6275EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6276EXPORT_SYMBOL_GPL(ata_id_string);
6277EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6278EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6279EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6280
1bc4ccff 6281EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6282EXPORT_SYMBOL_GPL(ata_timing_compute);
6283EXPORT_SYMBOL_GPL(ata_timing_merge);
6284
1da177e4
LT
6285#ifdef CONFIG_PCI
6286EXPORT_SYMBOL_GPL(pci_test_config_bits);
6287EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6288EXPORT_SYMBOL_GPL(ata_pci_init_one);
6289EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6290EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6291EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6292EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6293EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6294EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6295EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6296#endif /* CONFIG_PCI */
9b847548 6297
9b847548
JA
6298EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6299EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6300
ece1d636 6301EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6302EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6303EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6304EXPORT_SYMBOL_GPL(ata_port_freeze);
6305EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6306EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6307EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6308EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6309EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6310EXPORT_SYMBOL_GPL(ata_irq_on);
6311EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6312EXPORT_SYMBOL_GPL(ata_irq_ack);
6313EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6314EXPORT_SYMBOL_GPL(ata_dev_try_classify);