]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata-sff: make BMDMA optional
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
71
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
3373efd8 96static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 98
f3187195 99unsigned int ata_print_id = 1;
1da177e4 100
453b07ac
TH
101struct workqueue_struct *ata_aux_wq;
102
33267325
TH
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
05944bdf 110 unsigned int lflags;
33267325
TH
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
2486fa56 127static int atapi_enabled = 1;
1623c81e 128module_param(atapi_enabled, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 130
c5c61bda 131static int atapi_dmadir = 0;
95de719a 132module_param(atapi_dmadir, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 134
baf4fdfa
ML
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 138
c3c013a2
JG
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 142
2dcb407e 143static int ata_ignore_hpa;
1e999736
AC
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
b3a70601
AC
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
87fbc5a0 151static int ata_probe_timeout;
a8601e5f
AM
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
6ebe9d86 155int libata_noacpi = 0;
d7d0dad6 156module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 158
ae8d4ee7
AC
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 162
1da177e4
LT
163MODULE_AUTHOR("Jeff Garzik");
164MODULE_DESCRIPTION("Library module for ATA devices");
165MODULE_LICENSE("GPL");
166MODULE_VERSION(DRV_VERSION);
167
0baab86b 168
9913ff8a
TH
169static bool ata_sstatus_online(u32 sstatus)
170{
171 return (sstatus & 0xf) == 0x3;
172}
173
1eca4365
TH
174/**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
aadffb68 182 *
1eca4365
TH
183 * RETURNS:
184 * Pointer to the next link.
aadffb68 185 */
1eca4365
TH
186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
aadffb68 188{
1eca4365
TH
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
aadffb68 192 /* NULL link indicates start of iteration */
1eca4365
TH
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
aadffb68 203
1eca4365
TH
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
b1c72916 213 return ap->slave_link;
1eca4365
TH
214 /* fall through */
215 case ATA_LITER_EDGE:
aadffb68 216 return NULL;
b1c72916 217 }
aadffb68 218
b1c72916
TH
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
1eca4365 223 /* we were over a PMP link */
aadffb68
TH
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
1eca4365
TH
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
aadffb68
TH
230 return NULL;
231}
232
1eca4365
TH
233/**
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
238 *
239 * LOCKING:
240 * Host lock or EH context.
241 *
242 * RETURNS:
243 * Pointer to the next device.
244 */
245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
247{
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
262 }
263
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
277 }
278
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
284}
285
b1c72916
TH
286/**
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
289 *
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
293 *
294 * LOCKING:
295 * Don't care.
296 *
297 * RETURNS:
298 * Pointer to the found physical link.
299 */
300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301{
302 struct ata_port *ap = dev->link->ap;
303
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
309}
310
33267325
TH
311/**
312 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 313 * @ap: ATA port of interest
33267325
TH
314 *
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
320 *
321 * LOCKING:
322 * EH context.
323 */
324void ata_force_cbl(struct ata_port *ap)
325{
326 int i;
327
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
333
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
336
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342}
343
344/**
05944bdf 345 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
346 * @link: ATA link of interest
347 *
05944bdf
TH
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
33267325
TH
356 *
357 * LOCKING:
358 * EH context.
359 */
05944bdf 360static void ata_force_link_limits(struct ata_link *link)
33267325 361{
05944bdf 362 bool did_spd = false;
b1c72916
TH
363 int linkno = link->pmp;
364 int i;
33267325
TH
365
366 if (ata_is_host_link(link))
b1c72916 367 linkno += 15;
33267325
TH
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
05944bdf
TH
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
385 }
33267325 386
05944bdf
TH
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
393 }
33267325
TH
394 }
395}
396
397/**
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
400 *
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
404 *
405 * LOCKING:
406 * EH context.
407 */
408static void ata_force_xfermask(struct ata_device *dev)
409{
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
413
b1c72916
TH
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
33267325
TH
417
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
421
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
424
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
428
429 if (!fe->param.xfer_mask)
430 continue;
431
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
443 }
444
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
448 }
449}
450
451/**
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
454 *
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
458 *
459 * LOCKING:
460 * EH context.
461 */
462static void ata_force_horkage(struct ata_device *dev)
463{
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
467
b1c72916
TH
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
33267325
TH
471
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
474
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
477
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
481
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
485
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
488
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
491 }
492}
493
436d34b3
TH
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
e52dcc48
TH
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
436d34b3
TH
527 default:
528 return ATAPI_MISC;
529 }
530}
531
1da177e4
LT
532/**
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
1da177e4 535 * @pmp: Port multiplier port
9977126c
TH
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
1da177e4
LT
538 *
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
541 *
542 * LOCKING:
543 * Inherited from caller.
544 */
9977126c 545void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 546{
9977126c
TH
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551
1da177e4
LT
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
554
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
559
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
564
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
569
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
574}
575
576/**
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
580 *
e12a1be6 581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
582 *
583 * LOCKING:
584 * Inherited from caller.
585 */
586
057ace5e 587void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
588{
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
591
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
596
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
600
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
603}
604
8cbd6df1
AL
605static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
611 0,
612 0,
613 0,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 0,
8cbd6df1
AL
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
9a3dccc4
TH
628 ATA_CMD_WRITE_EXT,
629 0,
630 0,
631 0,
632 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 633};
1da177e4
LT
634
635/**
8cbd6df1 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
1da177e4 639 *
2e9edbf8 640 * Examine the device configuration and tf->flags to calculate
8cbd6df1 641 * the proper read/write commands and protocol to use.
1da177e4
LT
642 *
643 * LOCKING:
644 * caller.
645 */
bd056d7e 646static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 647{
9a3dccc4 648 u8 cmd;
1da177e4 649
9a3dccc4 650 int index, fua, lba48, write;
2e9edbf8 651
9a3dccc4 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 655
8cbd6df1
AL
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
9a3dccc4 658 index = dev->multi_count ? 0 : 8;
9af5c9c9 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
0565c26d 662 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
663 } else {
664 tf->protocol = ATA_PROT_DMA;
9a3dccc4 665 index = 16;
8cbd6df1 666 }
1da177e4 667
9a3dccc4
TH
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
672 }
673 return -1;
1da177e4
LT
674}
675
35b649fe
TH
676/**
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
680 *
681 * LOCKING:
682 * None.
683 *
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
687 *
688 * RETURNS:
689 * Block address read from @tf.
690 */
691u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692{
693 u64 block = 0;
694
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
44901a96 699 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
700 } else
701 block |= (tf->device & 0xf) << 24;
702
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
708
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
712
ac8672ea
TH
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
717 }
718
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
720 }
721
722 return block;
723}
724
bd056d7e
TH
725/**
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
733 *
734 * LOCKING:
735 * None.
736 *
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
739 *
740 * RETURNS:
741 *
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
744 */
745int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
748{
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
751
6d1245bf 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
756
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
764
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
768
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
775
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
cb95d562
TH
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
7dc951ae
TH
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
cb95d562
TH
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
c0489e4e
TH
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
881 */
7dc951ae
TH
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
cb95d562 893static const struct ata_xfer_ent {
be9a50c8 894 int shift, bits;
cb95d562
TH
895 u8 base;
896} ata_xfer_tbl[] = {
70cd071e
TH
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
70cd071e 914 * Matching XFER_* value, 0xff if no match found.
cb95d562 915 */
7dc951ae 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
70cd071e 924 return 0xff;
cb95d562
TH
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
7dc951ae 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
cb95d562
TH
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
7dc951ae 962int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
1da177e4 972/**
1da7b0d0
TH
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
975 *
976 * Determine string which represents the highest speed
1da7b0d0 977 * (highest bit in @modemask).
1da177e4
LT
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
1da7b0d0 984 * @mode_mask, or the constant C string "<n/a>".
1da177e4 985 */
7dc951ae 986const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 987{
75f554bc
TH
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
b352e57d
AC
994 "PIO5",
995 "PIO6",
75f554bc
TH
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
b352e57d
AC
999 "MWDMA3",
1000 "MWDMA4",
75f554bc
TH
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1da7b0d0 1010 int highbit;
1da177e4 1011
1da7b0d0
TH
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1da177e4 1015 return "<n/a>";
1da177e4
LT
1016}
1017
4c360c81
TH
1018static const char *sata_spd_string(unsigned int spd)
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
8522ee25 1023 "6.0 Gbps",
4c360c81
TH
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
ca77329f
KCA
1031static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1032{
1033 struct ata_link *link = dev->link;
1034 struct ata_port *ap = link->ap;
1035 u32 scontrol;
1036 unsigned int err_mask;
1037 int rc;
1038
1039 /*
1040 * disallow DIPM for drivers which haven't set
1041 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1042 * phy ready will be set in the interrupt status on
1043 * state changes, which will cause some drivers to
1044 * think there are errors - additionally drivers will
1045 * need to disable hot plug.
1046 */
1047 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1048 ap->pm_policy = NOT_AVAILABLE;
1049 return -EINVAL;
1050 }
1051
1052 /*
1053 * For DIPM, we will only enable it for the
1054 * min_power setting.
1055 *
1056 * Why? Because Disks are too stupid to know that
1057 * If the host rejects a request to go to SLUMBER
1058 * they should retry at PARTIAL, and instead it
1059 * just would give up. So, for medium_power to
1060 * work at all, we need to only allow HIPM.
1061 */
1062 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1063 if (rc)
1064 return rc;
1065
1066 switch (policy) {
1067 case MIN_POWER:
1068 /* no restrictions on IPM transitions */
1069 scontrol &= ~(0x3 << 8);
1070 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1071 if (rc)
1072 return rc;
1073
1074 /* enable DIPM */
1075 if (dev->flags & ATA_DFLAG_DIPM)
1076 err_mask = ata_dev_set_feature(dev,
1077 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1078 break;
1079 case MEDIUM_POWER:
1080 /* allow IPM to PARTIAL */
1081 scontrol &= ~(0x1 << 8);
1082 scontrol |= (0x2 << 8);
1083 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1084 if (rc)
1085 return rc;
1086
f5456b63
KCA
1087 /*
1088 * we don't have to disable DIPM since IPM flags
1089 * disallow transitions to SLUMBER, which effectively
1090 * disable DIPM if it does not support PARTIAL
1091 */
ca77329f
KCA
1092 break;
1093 case NOT_AVAILABLE:
1094 case MAX_PERFORMANCE:
1095 /* disable all IPM transitions */
1096 scontrol |= (0x3 << 8);
1097 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1098 if (rc)
1099 return rc;
1100
f5456b63
KCA
1101 /*
1102 * we don't have to disable DIPM since IPM flags
1103 * disallow all transitions which effectively
1104 * disable DIPM anyway.
1105 */
ca77329f
KCA
1106 break;
1107 }
1108
1109 /* FIXME: handle SET FEATURES failure */
1110 (void) err_mask;
1111
1112 return 0;
1113}
1114
1115/**
1116 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1117 * @dev: device to enable power management
1118 * @policy: the link power management policy
ca77329f
KCA
1119 *
1120 * Enable SATA Interface power management. This will enable
1121 * Device Interface Power Management (DIPM) for min_power
1122 * policy, and then call driver specific callbacks for
1123 * enabling Host Initiated Power management.
1124 *
1125 * Locking: Caller.
1126 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 */
1128void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1129{
1130 int rc = 0;
1131 struct ata_port *ap = dev->link->ap;
1132
1133 /* set HIPM first, then DIPM */
1134 if (ap->ops->enable_pm)
1135 rc = ap->ops->enable_pm(ap, policy);
1136 if (rc)
1137 goto enable_pm_out;
1138 rc = ata_dev_set_dipm(dev, policy);
1139
1140enable_pm_out:
1141 if (rc)
1142 ap->pm_policy = MAX_PERFORMANCE;
1143 else
1144 ap->pm_policy = policy;
1145 return /* rc */; /* hopefully we can use 'rc' eventually */
1146}
1147
1992a5ed 1148#ifdef CONFIG_PM
ca77329f
KCA
1149/**
1150 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1151 * @dev: device to disable power management
ca77329f
KCA
1152 *
1153 * Disable SATA Interface power management. This will disable
1154 * Device Interface Power Management (DIPM) without changing
1155 * policy, call driver specific callbacks for disabling Host
1156 * Initiated Power management.
1157 *
1158 * Locking: Caller.
1159 * Returns: void
1160 */
1161static void ata_dev_disable_pm(struct ata_device *dev)
1162{
1163 struct ata_port *ap = dev->link->ap;
1164
1165 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1166 if (ap->ops->disable_pm)
1167 ap->ops->disable_pm(ap);
1168}
1992a5ed 1169#endif /* CONFIG_PM */
ca77329f
KCA
1170
1171void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1172{
1173 ap->pm_policy = policy;
3ec25ebd 1174 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1175 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1176 ata_port_schedule_eh(ap);
1177}
1178
1992a5ed 1179#ifdef CONFIG_PM
ca77329f
KCA
1180static void ata_lpm_enable(struct ata_host *host)
1181{
1182 struct ata_link *link;
1183 struct ata_port *ap;
1184 struct ata_device *dev;
1185 int i;
1186
1187 for (i = 0; i < host->n_ports; i++) {
1188 ap = host->ports[i];
1eca4365
TH
1189 ata_for_each_link(link, ap, EDGE) {
1190 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1191 ata_dev_disable_pm(dev);
1192 }
1193 }
1194}
1195
1196static void ata_lpm_disable(struct ata_host *host)
1197{
1198 int i;
1199
1200 for (i = 0; i < host->n_ports; i++) {
1201 struct ata_port *ap = host->ports[i];
1202 ata_lpm_schedule(ap, ap->pm_policy);
1203 }
1204}
1992a5ed 1205#endif /* CONFIG_PM */
ca77329f 1206
1da177e4
LT
1207/**
1208 * ata_dev_classify - determine device type based on ATA-spec signature
1209 * @tf: ATA taskfile register set for device to be identified
1210 *
1211 * Determine from taskfile register contents whether a device is
1212 * ATA or ATAPI, as per "Signature and persistence" section
1213 * of ATA/PI spec (volume 1, sect 5.14).
1214 *
1215 * LOCKING:
1216 * None.
1217 *
1218 * RETURNS:
633273a3
TH
1219 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1220 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1221 */
057ace5e 1222unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1223{
1224 /* Apple's open source Darwin code hints that some devices only
1225 * put a proper signature into the LBA mid/high registers,
1226 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1227 *
1228 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1229 * signatures for ATA and ATAPI devices attached on SerialATA,
1230 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1231 * spec has never mentioned about using different signatures
1232 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1233 * Multiplier specification began to use 0x69/0x96 to identify
1234 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1235 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1236 * 0x69/0x96 shortly and described them as reserved for
1237 * SerialATA.
1238 *
1239 * We follow the current spec and consider that 0x69/0x96
1240 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1241 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1242 * SEMB signature. This is worked around in
1243 * ata_dev_read_id().
1da177e4 1244 */
633273a3 1245 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1246 DPRINTK("found ATA device by sig\n");
1247 return ATA_DEV_ATA;
1248 }
1249
633273a3 1250 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1251 DPRINTK("found ATAPI device by sig\n");
1252 return ATA_DEV_ATAPI;
1253 }
1254
633273a3
TH
1255 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1256 DPRINTK("found PMP device by sig\n");
1257 return ATA_DEV_PMP;
1258 }
1259
1260 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1261 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1262 return ATA_DEV_SEMB;
633273a3
TH
1263 }
1264
1da177e4
LT
1265 DPRINTK("unknown device\n");
1266 return ATA_DEV_UNKNOWN;
1267}
1268
1da177e4 1269/**
6a62a04d 1270 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1271 * @id: IDENTIFY DEVICE results we will examine
1272 * @s: string into which data is output
1273 * @ofs: offset into identify device page
1274 * @len: length of string to return. must be an even number.
1275 *
1276 * The strings in the IDENTIFY DEVICE page are broken up into
1277 * 16-bit chunks. Run through the string, and output each
1278 * 8-bit chunk linearly, regardless of platform.
1279 *
1280 * LOCKING:
1281 * caller.
1282 */
1283
6a62a04d
TH
1284void ata_id_string(const u16 *id, unsigned char *s,
1285 unsigned int ofs, unsigned int len)
1da177e4
LT
1286{
1287 unsigned int c;
1288
963e4975
AC
1289 BUG_ON(len & 1);
1290
1da177e4
LT
1291 while (len > 0) {
1292 c = id[ofs] >> 8;
1293 *s = c;
1294 s++;
1295
1296 c = id[ofs] & 0xff;
1297 *s = c;
1298 s++;
1299
1300 ofs++;
1301 len -= 2;
1302 }
1303}
1304
0e949ff3 1305/**
6a62a04d 1306 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1307 * @id: IDENTIFY DEVICE results we will examine
1308 * @s: string into which data is output
1309 * @ofs: offset into identify device page
1310 * @len: length of string to return. must be an odd number.
1311 *
6a62a04d 1312 * This function is identical to ata_id_string except that it
0e949ff3
TH
1313 * trims trailing spaces and terminates the resulting string with
1314 * null. @len must be actual maximum length (even number) + 1.
1315 *
1316 * LOCKING:
1317 * caller.
1318 */
6a62a04d
TH
1319void ata_id_c_string(const u16 *id, unsigned char *s,
1320 unsigned int ofs, unsigned int len)
0e949ff3
TH
1321{
1322 unsigned char *p;
1323
6a62a04d 1324 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1325
1326 p = s + strnlen(s, len - 1);
1327 while (p > s && p[-1] == ' ')
1328 p--;
1329 *p = '\0';
1330}
0baab86b 1331
db6f8759
TH
1332static u64 ata_id_n_sectors(const u16 *id)
1333{
1334 if (ata_id_has_lba(id)) {
1335 if (ata_id_has_lba48(id))
968e594a 1336 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1337 else
968e594a 1338 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1339 } else {
1340 if (ata_id_current_chs_valid(id))
968e594a
RH
1341 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1342 id[ATA_ID_CUR_SECTORS];
db6f8759 1343 else
968e594a
RH
1344 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1345 id[ATA_ID_SECTORS];
db6f8759
TH
1346 }
1347}
1348
a5987e0a 1349u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1350{
1351 u64 sectors = 0;
1352
1353 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1354 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1355 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1356 sectors |= (tf->lbah & 0xff) << 16;
1357 sectors |= (tf->lbam & 0xff) << 8;
1358 sectors |= (tf->lbal & 0xff);
1359
a5987e0a 1360 return sectors;
1e999736
AC
1361}
1362
a5987e0a 1363u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1364{
1365 u64 sectors = 0;
1366
1367 sectors |= (tf->device & 0x0f) << 24;
1368 sectors |= (tf->lbah & 0xff) << 16;
1369 sectors |= (tf->lbam & 0xff) << 8;
1370 sectors |= (tf->lbal & 0xff);
1371
a5987e0a 1372 return sectors;
1e999736
AC
1373}
1374
1375/**
c728a914
TH
1376 * ata_read_native_max_address - Read native max address
1377 * @dev: target device
1378 * @max_sectors: out parameter for the result native max address
1e999736 1379 *
c728a914
TH
1380 * Perform an LBA48 or LBA28 native size query upon the device in
1381 * question.
1e999736 1382 *
c728a914
TH
1383 * RETURNS:
1384 * 0 on success, -EACCES if command is aborted by the drive.
1385 * -EIO on other errors.
1e999736 1386 */
c728a914 1387static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1388{
c728a914 1389 unsigned int err_mask;
1e999736 1390 struct ata_taskfile tf;
c728a914 1391 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1392
1393 ata_tf_init(dev, &tf);
1394
c728a914 1395 /* always clear all address registers */
1e999736 1396 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1397
c728a914
TH
1398 if (lba48) {
1399 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1400 tf.flags |= ATA_TFLAG_LBA48;
1401 } else
1402 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1403
1e999736 1404 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1405 tf.device |= ATA_LBA;
1406
2b789108 1407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1408 if (err_mask) {
1409 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1410 "max address (err_mask=0x%x)\n", err_mask);
1411 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1412 return -EACCES;
1413 return -EIO;
1414 }
1e999736 1415
c728a914 1416 if (lba48)
a5987e0a 1417 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1418 else
a5987e0a 1419 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1420 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1421 (*max_sectors)--;
c728a914 1422 return 0;
1e999736
AC
1423}
1424
1425/**
c728a914
TH
1426 * ata_set_max_sectors - Set max sectors
1427 * @dev: target device
6b38d1d1 1428 * @new_sectors: new max sectors value to set for the device
1e999736 1429 *
c728a914
TH
1430 * Set max sectors of @dev to @new_sectors.
1431 *
1432 * RETURNS:
1433 * 0 on success, -EACCES if command is aborted or denied (due to
1434 * previous non-volatile SET_MAX) by the drive. -EIO on other
1435 * errors.
1e999736 1436 */
05027adc 1437static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1438{
c728a914 1439 unsigned int err_mask;
1e999736 1440 struct ata_taskfile tf;
c728a914 1441 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1442
1443 new_sectors--;
1444
1445 ata_tf_init(dev, &tf);
1446
1e999736 1447 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1448
1449 if (lba48) {
1450 tf.command = ATA_CMD_SET_MAX_EXT;
1451 tf.flags |= ATA_TFLAG_LBA48;
1452
1453 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1454 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1455 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1456 } else {
c728a914
TH
1457 tf.command = ATA_CMD_SET_MAX;
1458
1e582ba4
TH
1459 tf.device |= (new_sectors >> 24) & 0xf;
1460 }
1461
1e999736 1462 tf.protocol |= ATA_PROT_NODATA;
c728a914 1463 tf.device |= ATA_LBA;
1e999736
AC
1464
1465 tf.lbal = (new_sectors >> 0) & 0xff;
1466 tf.lbam = (new_sectors >> 8) & 0xff;
1467 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1468
2b789108 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1470 if (err_mask) {
1471 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1472 "max address (err_mask=0x%x)\n", err_mask);
1473 if (err_mask == AC_ERR_DEV &&
1474 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1475 return -EACCES;
1476 return -EIO;
1477 }
1478
c728a914 1479 return 0;
1e999736
AC
1480}
1481
1482/**
1483 * ata_hpa_resize - Resize a device with an HPA set
1484 * @dev: Device to resize
1485 *
1486 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1487 * it if required to the full size of the media. The caller must check
1488 * the drive has the HPA feature set enabled.
05027adc
TH
1489 *
1490 * RETURNS:
1491 * 0 on success, -errno on failure.
1e999736 1492 */
05027adc 1493static int ata_hpa_resize(struct ata_device *dev)
1e999736 1494{
05027adc
TH
1495 struct ata_eh_context *ehc = &dev->link->eh_context;
1496 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1497 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1498 u64 sectors = ata_id_n_sectors(dev->id);
1499 u64 native_sectors;
c728a914 1500 int rc;
a617c09f 1501
05027adc
TH
1502 /* do we need to do it? */
1503 if (dev->class != ATA_DEV_ATA ||
1504 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1505 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1506 return 0;
1e999736 1507
05027adc
TH
1508 /* read native max address */
1509 rc = ata_read_native_max_address(dev, &native_sectors);
1510 if (rc) {
dda7aba1
TH
1511 /* If device aborted the command or HPA isn't going to
1512 * be unlocked, skip HPA resizing.
05027adc 1513 */
445d211b 1514 if (rc == -EACCES || !unlock_hpa) {
05027adc 1515 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1516 "broken, skipping HPA handling\n");
05027adc
TH
1517 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1518
1519 /* we can continue if device aborted the command */
1520 if (rc == -EACCES)
1521 rc = 0;
1e999736 1522 }
37301a55 1523
05027adc
TH
1524 return rc;
1525 }
5920dadf 1526 dev->n_native_sectors = native_sectors;
05027adc
TH
1527
1528 /* nothing to do? */
445d211b 1529 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1530 if (!print_info || native_sectors == sectors)
1531 return 0;
1532
1533 if (native_sectors > sectors)
1534 ata_dev_printk(dev, KERN_INFO,
1535 "HPA detected: current %llu, native %llu\n",
1536 (unsigned long long)sectors,
1537 (unsigned long long)native_sectors);
1538 else if (native_sectors < sectors)
1539 ata_dev_printk(dev, KERN_WARNING,
1540 "native sectors (%llu) is smaller than "
1541 "sectors (%llu)\n",
1542 (unsigned long long)native_sectors,
1543 (unsigned long long)sectors);
1544 return 0;
1545 }
1546
1547 /* let's unlock HPA */
1548 rc = ata_set_max_sectors(dev, native_sectors);
1549 if (rc == -EACCES) {
1550 /* if device aborted the command, skip HPA resizing */
1551 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1552 "(%llu -> %llu), skipping HPA handling\n",
1553 (unsigned long long)sectors,
1554 (unsigned long long)native_sectors);
1555 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1556 return 0;
1557 } else if (rc)
1558 return rc;
1559
1560 /* re-read IDENTIFY data */
1561 rc = ata_dev_reread_id(dev, 0);
1562 if (rc) {
1563 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1564 "data after HPA resizing\n");
1565 return rc;
1566 }
1567
1568 if (print_info) {
1569 u64 new_sectors = ata_id_n_sectors(dev->id);
1570 ata_dev_printk(dev, KERN_INFO,
1571 "HPA unlocked: %llu -> %llu, native %llu\n",
1572 (unsigned long long)sectors,
1573 (unsigned long long)new_sectors,
1574 (unsigned long long)native_sectors);
1575 }
1576
1577 return 0;
1e999736
AC
1578}
1579
1da177e4
LT
1580/**
1581 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1582 * @id: IDENTIFY DEVICE page to dump
1da177e4 1583 *
0bd3300a
TH
1584 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1585 * page.
1da177e4
LT
1586 *
1587 * LOCKING:
1588 * caller.
1589 */
1590
0bd3300a 1591static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1592{
1593 DPRINTK("49==0x%04x "
1594 "53==0x%04x "
1595 "63==0x%04x "
1596 "64==0x%04x "
1597 "75==0x%04x \n",
0bd3300a
TH
1598 id[49],
1599 id[53],
1600 id[63],
1601 id[64],
1602 id[75]);
1da177e4
LT
1603 DPRINTK("80==0x%04x "
1604 "81==0x%04x "
1605 "82==0x%04x "
1606 "83==0x%04x "
1607 "84==0x%04x \n",
0bd3300a
TH
1608 id[80],
1609 id[81],
1610 id[82],
1611 id[83],
1612 id[84]);
1da177e4
LT
1613 DPRINTK("88==0x%04x "
1614 "93==0x%04x\n",
0bd3300a
TH
1615 id[88],
1616 id[93]);
1da177e4
LT
1617}
1618
cb95d562
TH
1619/**
1620 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1621 * @id: IDENTIFY data to compute xfer mask from
1622 *
1623 * Compute the xfermask for this device. This is not as trivial
1624 * as it seems if we must consider early devices correctly.
1625 *
1626 * FIXME: pre IDE drive timing (do we care ?).
1627 *
1628 * LOCKING:
1629 * None.
1630 *
1631 * RETURNS:
1632 * Computed xfermask
1633 */
7dc951ae 1634unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1635{
7dc951ae 1636 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1637
1638 /* Usual case. Word 53 indicates word 64 is valid */
1639 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1640 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1641 pio_mask <<= 3;
1642 pio_mask |= 0x7;
1643 } else {
1644 /* If word 64 isn't valid then Word 51 high byte holds
1645 * the PIO timing number for the maximum. Turn it into
1646 * a mask.
1647 */
7a0f1c8a 1648 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1649 if (mode < 5) /* Valid PIO range */
2dcb407e 1650 pio_mask = (2 << mode) - 1;
46767aeb
AC
1651 else
1652 pio_mask = 1;
cb95d562
TH
1653
1654 /* But wait.. there's more. Design your standards by
1655 * committee and you too can get a free iordy field to
1656 * process. However its the speeds not the modes that
1657 * are supported... Note drivers using the timing API
1658 * will get this right anyway
1659 */
1660 }
1661
1662 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1663
b352e57d
AC
1664 if (ata_id_is_cfa(id)) {
1665 /*
1666 * Process compact flash extended modes
1667 */
62afe5d7
SS
1668 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1669 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1670
1671 if (pio)
1672 pio_mask |= (1 << 5);
1673 if (pio > 1)
1674 pio_mask |= (1 << 6);
1675 if (dma)
1676 mwdma_mask |= (1 << 3);
1677 if (dma > 1)
1678 mwdma_mask |= (1 << 4);
1679 }
1680
fb21f0d0
TH
1681 udma_mask = 0;
1682 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1683 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1684
1685 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1686}
1687
7102d230 1688static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1689{
77853bf2 1690 struct completion *waiting = qc->private_data;
a2a7a662 1691
a2a7a662 1692 complete(waiting);
a2a7a662
TH
1693}
1694
1695/**
2432697b 1696 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1697 * @dev: Device to which the command is sent
1698 * @tf: Taskfile registers for the command and the result
d69cf37d 1699 * @cdb: CDB for packet command
a2a7a662 1700 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1701 * @sgl: sg list for the data buffer of the command
2432697b 1702 * @n_elem: Number of sg entries
2b789108 1703 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1704 *
1705 * Executes libata internal command with timeout. @tf contains
1706 * command on entry and result on return. Timeout and error
1707 * conditions are reported via return value. No recovery action
1708 * is taken after a command times out. It's caller's duty to
1709 * clean up after timeout.
1710 *
1711 * LOCKING:
1712 * None. Should be called with kernel context, might sleep.
551e8889
TH
1713 *
1714 * RETURNS:
1715 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1716 */
2432697b
TH
1717unsigned ata_exec_internal_sg(struct ata_device *dev,
1718 struct ata_taskfile *tf, const u8 *cdb,
87260216 1719 int dma_dir, struct scatterlist *sgl,
2b789108 1720 unsigned int n_elem, unsigned long timeout)
a2a7a662 1721{
9af5c9c9
TH
1722 struct ata_link *link = dev->link;
1723 struct ata_port *ap = link->ap;
a2a7a662 1724 u8 command = tf->command;
87fbc5a0 1725 int auto_timeout = 0;
a2a7a662 1726 struct ata_queued_cmd *qc;
2ab7db1f 1727 unsigned int tag, preempted_tag;
dedaf2b0 1728 u32 preempted_sactive, preempted_qc_active;
da917d69 1729 int preempted_nr_active_links;
60be6b9a 1730 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1731 unsigned long flags;
77853bf2 1732 unsigned int err_mask;
d95a717f 1733 int rc;
a2a7a662 1734
ba6a1308 1735 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1736
e3180499 1737 /* no internal command while frozen */
b51e9e5d 1738 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1739 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1740 return AC_ERR_SYSTEM;
1741 }
1742
2ab7db1f 1743 /* initialize internal qc */
a2a7a662 1744
2ab7db1f
TH
1745 /* XXX: Tag 0 is used for drivers with legacy EH as some
1746 * drivers choke if any other tag is given. This breaks
1747 * ata_tag_internal() test for those drivers. Don't use new
1748 * EH stuff without converting to it.
1749 */
1750 if (ap->ops->error_handler)
1751 tag = ATA_TAG_INTERNAL;
1752 else
1753 tag = 0;
1754
8a8bc223
TH
1755 if (test_and_set_bit(tag, &ap->qc_allocated))
1756 BUG();
f69499f4 1757 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1758
1759 qc->tag = tag;
1760 qc->scsicmd = NULL;
1761 qc->ap = ap;
1762 qc->dev = dev;
1763 ata_qc_reinit(qc);
1764
9af5c9c9
TH
1765 preempted_tag = link->active_tag;
1766 preempted_sactive = link->sactive;
dedaf2b0 1767 preempted_qc_active = ap->qc_active;
da917d69 1768 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1769 link->active_tag = ATA_TAG_POISON;
1770 link->sactive = 0;
dedaf2b0 1771 ap->qc_active = 0;
da917d69 1772 ap->nr_active_links = 0;
2ab7db1f
TH
1773
1774 /* prepare & issue qc */
a2a7a662 1775 qc->tf = *tf;
d69cf37d
TH
1776 if (cdb)
1777 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1778 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1779 qc->dma_dir = dma_dir;
1780 if (dma_dir != DMA_NONE) {
2432697b 1781 unsigned int i, buflen = 0;
87260216 1782 struct scatterlist *sg;
2432697b 1783
87260216
JA
1784 for_each_sg(sgl, sg, n_elem, i)
1785 buflen += sg->length;
2432697b 1786
87260216 1787 ata_sg_init(qc, sgl, n_elem);
49c80429 1788 qc->nbytes = buflen;
a2a7a662
TH
1789 }
1790
77853bf2 1791 qc->private_data = &wait;
a2a7a662
TH
1792 qc->complete_fn = ata_qc_complete_internal;
1793
8e0e694a 1794 ata_qc_issue(qc);
a2a7a662 1795
ba6a1308 1796 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1797
87fbc5a0
TH
1798 if (!timeout) {
1799 if (ata_probe_timeout)
1800 timeout = ata_probe_timeout * 1000;
1801 else {
1802 timeout = ata_internal_cmd_timeout(dev, command);
1803 auto_timeout = 1;
1804 }
1805 }
2b789108
TH
1806
1807 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1808
c429137a 1809 ata_sff_flush_pio_task(ap);
41ade50c 1810
d95a717f 1811 if (!rc) {
ba6a1308 1812 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1813
1814 /* We're racing with irq here. If we lose, the
1815 * following test prevents us from completing the qc
d95a717f
TH
1816 * twice. If we win, the port is frozen and will be
1817 * cleaned up by ->post_internal_cmd().
a2a7a662 1818 */
77853bf2 1819 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1820 qc->err_mask |= AC_ERR_TIMEOUT;
1821
1822 if (ap->ops->error_handler)
1823 ata_port_freeze(ap);
1824 else
1825 ata_qc_complete(qc);
f15a1daf 1826
0dd4b21f
BP
1827 if (ata_msg_warn(ap))
1828 ata_dev_printk(dev, KERN_WARNING,
88574551 1829 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1830 }
1831
ba6a1308 1832 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1833 }
1834
d95a717f
TH
1835 /* do post_internal_cmd */
1836 if (ap->ops->post_internal_cmd)
1837 ap->ops->post_internal_cmd(qc);
1838
a51d644a
TH
1839 /* perform minimal error analysis */
1840 if (qc->flags & ATA_QCFLAG_FAILED) {
1841 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1842 qc->err_mask |= AC_ERR_DEV;
1843
1844 if (!qc->err_mask)
1845 qc->err_mask |= AC_ERR_OTHER;
1846
1847 if (qc->err_mask & ~AC_ERR_OTHER)
1848 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1849 }
1850
15869303 1851 /* finish up */
ba6a1308 1852 spin_lock_irqsave(ap->lock, flags);
15869303 1853
e61e0672 1854 *tf = qc->result_tf;
77853bf2
TH
1855 err_mask = qc->err_mask;
1856
1857 ata_qc_free(qc);
9af5c9c9
TH
1858 link->active_tag = preempted_tag;
1859 link->sactive = preempted_sactive;
dedaf2b0 1860 ap->qc_active = preempted_qc_active;
da917d69 1861 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1862
ba6a1308 1863 spin_unlock_irqrestore(ap->lock, flags);
15869303 1864
87fbc5a0
TH
1865 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1866 ata_internal_cmd_timed_out(dev, command);
1867
77853bf2 1868 return err_mask;
a2a7a662
TH
1869}
1870
2432697b 1871/**
33480a0e 1872 * ata_exec_internal - execute libata internal command
2432697b
TH
1873 * @dev: Device to which the command is sent
1874 * @tf: Taskfile registers for the command and the result
1875 * @cdb: CDB for packet command
1876 * @dma_dir: Data tranfer direction of the command
1877 * @buf: Data buffer of the command
1878 * @buflen: Length of data buffer
2b789108 1879 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1880 *
1881 * Wrapper around ata_exec_internal_sg() which takes simple
1882 * buffer instead of sg list.
1883 *
1884 * LOCKING:
1885 * None. Should be called with kernel context, might sleep.
1886 *
1887 * RETURNS:
1888 * Zero on success, AC_ERR_* mask on failure
1889 */
1890unsigned ata_exec_internal(struct ata_device *dev,
1891 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1892 int dma_dir, void *buf, unsigned int buflen,
1893 unsigned long timeout)
2432697b 1894{
33480a0e
TH
1895 struct scatterlist *psg = NULL, sg;
1896 unsigned int n_elem = 0;
2432697b 1897
33480a0e
TH
1898 if (dma_dir != DMA_NONE) {
1899 WARN_ON(!buf);
1900 sg_init_one(&sg, buf, buflen);
1901 psg = &sg;
1902 n_elem++;
1903 }
2432697b 1904
2b789108
TH
1905 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1906 timeout);
2432697b
TH
1907}
1908
977e6b9f
TH
1909/**
1910 * ata_do_simple_cmd - execute simple internal command
1911 * @dev: Device to which the command is sent
1912 * @cmd: Opcode to execute
1913 *
1914 * Execute a 'simple' command, that only consists of the opcode
1915 * 'cmd' itself, without filling any other registers
1916 *
1917 * LOCKING:
1918 * Kernel thread context (may sleep).
1919 *
1920 * RETURNS:
1921 * Zero on success, AC_ERR_* mask on failure
e58eb583 1922 */
77b08fb5 1923unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1924{
1925 struct ata_taskfile tf;
e58eb583
TH
1926
1927 ata_tf_init(dev, &tf);
1928
1929 tf.command = cmd;
1930 tf.flags |= ATA_TFLAG_DEVICE;
1931 tf.protocol = ATA_PROT_NODATA;
1932
2b789108 1933 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1934}
1935
1bc4ccff
AC
1936/**
1937 * ata_pio_need_iordy - check if iordy needed
1938 * @adev: ATA device
1939 *
1940 * Check if the current speed of the device requires IORDY. Used
1941 * by various controllers for chip configuration.
1942 */
1bc4ccff
AC
1943unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1944{
0d9e6659
TH
1945 /* Don't set IORDY if we're preparing for reset. IORDY may
1946 * lead to controller lock up on certain controllers if the
1947 * port is not occupied. See bko#11703 for details.
1948 */
1949 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1950 return 0;
1951 /* Controller doesn't support IORDY. Probably a pointless
1952 * check as the caller should know this.
1953 */
9af5c9c9 1954 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1955 return 0;
5c18c4d2
DD
1956 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1957 if (ata_id_is_cfa(adev->id)
1958 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1959 return 0;
432729f0
AC
1960 /* PIO3 and higher it is mandatory */
1961 if (adev->pio_mode > XFER_PIO_2)
1962 return 1;
1963 /* We turn it on when possible */
1964 if (ata_id_has_iordy(adev->id))
1bc4ccff 1965 return 1;
432729f0
AC
1966 return 0;
1967}
2e9edbf8 1968
432729f0
AC
1969/**
1970 * ata_pio_mask_no_iordy - Return the non IORDY mask
1971 * @adev: ATA device
1972 *
1973 * Compute the highest mode possible if we are not using iordy. Return
1974 * -1 if no iordy mode is available.
1975 */
432729f0
AC
1976static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1977{
1bc4ccff 1978 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1979 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1980 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1981 /* Is the speed faster than the drive allows non IORDY ? */
1982 if (pio) {
1983 /* This is cycle times not frequency - watch the logic! */
1984 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1985 return 3 << ATA_SHIFT_PIO;
1986 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1987 }
1988 }
432729f0 1989 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1990}
1991
963e4975
AC
1992/**
1993 * ata_do_dev_read_id - default ID read method
1994 * @dev: device
1995 * @tf: proposed taskfile
1996 * @id: data buffer
1997 *
1998 * Issue the identify taskfile and hand back the buffer containing
1999 * identify data. For some RAID controllers and for pre ATA devices
2000 * this function is wrapped or replaced by the driver
2001 */
2002unsigned int ata_do_dev_read_id(struct ata_device *dev,
2003 struct ata_taskfile *tf, u16 *id)
2004{
2005 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2006 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2007}
2008
1da177e4 2009/**
49016aca 2010 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2011 * @dev: target device
2012 * @p_class: pointer to class of the target device (may be changed)
bff04647 2013 * @flags: ATA_READID_* flags
fe635c7e 2014 * @id: buffer to read IDENTIFY data into
1da177e4 2015 *
49016aca
TH
2016 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2017 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2018 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2019 * for pre-ATA4 drives.
1da177e4 2020 *
50a99018 2021 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2022 * now we abort if we hit that case.
50a99018 2023 *
1da177e4 2024 * LOCKING:
49016aca
TH
2025 * Kernel thread context (may sleep)
2026 *
2027 * RETURNS:
2028 * 0 on success, -errno otherwise.
1da177e4 2029 */
a9beec95 2030int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2031 unsigned int flags, u16 *id)
1da177e4 2032{
9af5c9c9 2033 struct ata_port *ap = dev->link->ap;
49016aca 2034 unsigned int class = *p_class;
a0123703 2035 struct ata_taskfile tf;
49016aca
TH
2036 unsigned int err_mask = 0;
2037 const char *reason;
79b42bab 2038 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2039 int may_fallback = 1, tried_spinup = 0;
49016aca 2040 int rc;
1da177e4 2041
0dd4b21f 2042 if (ata_msg_ctl(ap))
7f5e4e8d 2043 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2044
963e4975 2045retry:
3373efd8 2046 ata_tf_init(dev, &tf);
a0123703 2047
49016aca 2048 switch (class) {
79b42bab
TH
2049 case ATA_DEV_SEMB:
2050 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2051 case ATA_DEV_ATA:
a0123703 2052 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2053 break;
2054 case ATA_DEV_ATAPI:
a0123703 2055 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2056 break;
2057 default:
2058 rc = -ENODEV;
2059 reason = "unsupported class";
2060 goto err_out;
1da177e4
LT
2061 }
2062
a0123703 2063 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2064
2065 /* Some devices choke if TF registers contain garbage. Make
2066 * sure those are properly initialized.
2067 */
2068 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2069
2070 /* Device presence detection is unreliable on some
2071 * controllers. Always poll IDENTIFY if available.
2072 */
2073 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2074
963e4975
AC
2075 if (ap->ops->read_id)
2076 err_mask = ap->ops->read_id(dev, &tf, id);
2077 else
2078 err_mask = ata_do_dev_read_id(dev, &tf, id);
2079
a0123703 2080 if (err_mask) {
800b3996 2081 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2082 ata_dev_printk(dev, KERN_DEBUG,
2083 "NODEV after polling detection\n");
55a8e2c8
TH
2084 return -ENOENT;
2085 }
2086
79b42bab
TH
2087 if (is_semb) {
2088 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2089 "device w/ SEMB sig, disabled\n");
2090 /* SEMB is not supported yet */
2091 *p_class = ATA_DEV_SEMB_UNSUP;
2092 return 0;
2093 }
2094
1ffc151f
TH
2095 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2096 /* Device or controller might have reported
2097 * the wrong device class. Give a shot at the
2098 * other IDENTIFY if the current one is
2099 * aborted by the device.
2100 */
2101 if (may_fallback) {
2102 may_fallback = 0;
2103
2104 if (class == ATA_DEV_ATA)
2105 class = ATA_DEV_ATAPI;
2106 else
2107 class = ATA_DEV_ATA;
2108 goto retry;
2109 }
2110
2111 /* Control reaches here iff the device aborted
2112 * both flavors of IDENTIFYs which happens
2113 * sometimes with phantom devices.
2114 */
2115 ata_dev_printk(dev, KERN_DEBUG,
2116 "both IDENTIFYs aborted, assuming NODEV\n");
2117 return -ENOENT;
54936f8b
TH
2118 }
2119
49016aca
TH
2120 rc = -EIO;
2121 reason = "I/O error";
1da177e4
LT
2122 goto err_out;
2123 }
2124
54936f8b
TH
2125 /* Falling back doesn't make sense if ID data was read
2126 * successfully at least once.
2127 */
2128 may_fallback = 0;
2129
49016aca 2130 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2131
49016aca 2132 /* sanity check */
a4f5749b 2133 rc = -EINVAL;
6070068b 2134 reason = "device reports invalid type";
a4f5749b
TH
2135
2136 if (class == ATA_DEV_ATA) {
2137 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2138 goto err_out;
2139 } else {
2140 if (ata_id_is_ata(id))
2141 goto err_out;
49016aca
TH
2142 }
2143
169439c2
ML
2144 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2145 tried_spinup = 1;
2146 /*
2147 * Drive powered-up in standby mode, and requires a specific
2148 * SET_FEATURES spin-up subcommand before it will accept
2149 * anything other than the original IDENTIFY command.
2150 */
218f3d30 2151 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2152 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2153 rc = -EIO;
2154 reason = "SPINUP failed";
2155 goto err_out;
2156 }
2157 /*
2158 * If the drive initially returned incomplete IDENTIFY info,
2159 * we now must reissue the IDENTIFY command.
2160 */
2161 if (id[2] == 0x37c8)
2162 goto retry;
2163 }
2164
bff04647 2165 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2166 /*
2167 * The exact sequence expected by certain pre-ATA4 drives is:
2168 * SRST RESET
50a99018
AC
2169 * IDENTIFY (optional in early ATA)
2170 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2171 * anything else..
2172 * Some drives were very specific about that exact sequence.
50a99018
AC
2173 *
2174 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2175 * should never trigger.
49016aca
TH
2176 */
2177 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2178 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2179 if (err_mask) {
2180 rc = -EIO;
2181 reason = "INIT_DEV_PARAMS failed";
2182 goto err_out;
2183 }
2184
2185 /* current CHS translation info (id[53-58]) might be
2186 * changed. reread the identify device info.
2187 */
bff04647 2188 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2189 goto retry;
2190 }
2191 }
2192
2193 *p_class = class;
fe635c7e 2194
49016aca
TH
2195 return 0;
2196
2197 err_out:
88574551 2198 if (ata_msg_warn(ap))
0dd4b21f 2199 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2200 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2201 return rc;
2202}
2203
9062712f
TH
2204static int ata_do_link_spd_horkage(struct ata_device *dev)
2205{
2206 struct ata_link *plink = ata_dev_phys_link(dev);
2207 u32 target, target_limit;
2208
2209 if (!sata_scr_valid(plink))
2210 return 0;
2211
2212 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2213 target = 1;
2214 else
2215 return 0;
2216
2217 target_limit = (1 << target) - 1;
2218
2219 /* if already on stricter limit, no need to push further */
2220 if (plink->sata_spd_limit <= target_limit)
2221 return 0;
2222
2223 plink->sata_spd_limit = target_limit;
2224
2225 /* Request another EH round by returning -EAGAIN if link is
2226 * going faster than the target speed. Forward progress is
2227 * guaranteed by setting sata_spd_limit to target_limit above.
2228 */
2229 if (plink->sata_spd > target) {
2230 ata_dev_printk(dev, KERN_INFO,
2231 "applying link speed limit horkage to %s\n",
2232 sata_spd_string(target));
2233 return -EAGAIN;
2234 }
2235 return 0;
2236}
2237
3373efd8 2238static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2239{
9af5c9c9 2240 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2241
2242 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2243 return 0;
2244
9af5c9c9 2245 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2246}
2247
388539f3 2248static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2249 char *desc, size_t desc_sz)
2250{
9af5c9c9 2251 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2252 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2253 unsigned int err_mask;
2254 char *aa_desc = "";
a6e6ce8e
TH
2255
2256 if (!ata_id_has_ncq(dev->id)) {
2257 desc[0] = '\0';
388539f3 2258 return 0;
a6e6ce8e 2259 }
75683fe7 2260 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2261 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2262 return 0;
6919a0a6 2263 }
a6e6ce8e 2264 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2265 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2266 dev->flags |= ATA_DFLAG_NCQ;
2267 }
2268
388539f3
SL
2269 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2270 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2271 ata_id_has_fpdma_aa(dev->id)) {
2272 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2273 SATA_FPDMA_AA);
2274 if (err_mask) {
2275 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2276 "(error_mask=0x%x)\n", err_mask);
2277 if (err_mask != AC_ERR_DEV) {
2278 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2279 return -EIO;
2280 }
2281 } else
2282 aa_desc = ", AA";
2283 }
2284
a6e6ce8e 2285 if (hdepth >= ddepth)
388539f3 2286 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2287 else
388539f3
SL
2288 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2289 ddepth, aa_desc);
2290 return 0;
a6e6ce8e
TH
2291}
2292
49016aca 2293/**
ffeae418 2294 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2295 * @dev: Target device to configure
2296 *
2297 * Configure @dev according to @dev->id. Generic and low-level
2298 * driver specific fixups are also applied.
49016aca
TH
2299 *
2300 * LOCKING:
ffeae418
TH
2301 * Kernel thread context (may sleep)
2302 *
2303 * RETURNS:
2304 * 0 on success, -errno otherwise
49016aca 2305 */
efdaedc4 2306int ata_dev_configure(struct ata_device *dev)
49016aca 2307{
9af5c9c9
TH
2308 struct ata_port *ap = dev->link->ap;
2309 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2310 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2311 const u16 *id = dev->id;
7dc951ae 2312 unsigned long xfer_mask;
b352e57d 2313 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2314 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2315 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2316 int rc;
49016aca 2317
0dd4b21f 2318 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2319 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2320 __func__);
ffeae418 2321 return 0;
49016aca
TH
2322 }
2323
0dd4b21f 2324 if (ata_msg_probe(ap))
7f5e4e8d 2325 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2326
75683fe7
TH
2327 /* set horkage */
2328 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2329 ata_force_horkage(dev);
75683fe7 2330
50af2fa1
TH
2331 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2332 ata_dev_printk(dev, KERN_INFO,
2333 "unsupported device, disabling\n");
2334 ata_dev_disable(dev);
2335 return 0;
2336 }
2337
2486fa56
TH
2338 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2339 dev->class == ATA_DEV_ATAPI) {
2340 ata_dev_printk(dev, KERN_WARNING,
2341 "WARNING: ATAPI is %s, device ignored.\n",
2342 atapi_enabled ? "not supported with this driver"
2343 : "disabled");
2344 ata_dev_disable(dev);
2345 return 0;
2346 }
2347
9062712f
TH
2348 rc = ata_do_link_spd_horkage(dev);
2349 if (rc)
2350 return rc;
2351
6746544c
TH
2352 /* let ACPI work its magic */
2353 rc = ata_acpi_on_devcfg(dev);
2354 if (rc)
2355 return rc;
08573a86 2356
05027adc
TH
2357 /* massage HPA, do it early as it might change IDENTIFY data */
2358 rc = ata_hpa_resize(dev);
2359 if (rc)
2360 return rc;
2361
c39f5ebe 2362 /* print device capabilities */
0dd4b21f 2363 if (ata_msg_probe(ap))
88574551
TH
2364 ata_dev_printk(dev, KERN_DEBUG,
2365 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2366 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2367 __func__,
f15a1daf
TH
2368 id[49], id[82], id[83], id[84],
2369 id[85], id[86], id[87], id[88]);
c39f5ebe 2370
208a9933 2371 /* initialize to-be-configured parameters */
ea1dd4e1 2372 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2373 dev->max_sectors = 0;
2374 dev->cdb_len = 0;
2375 dev->n_sectors = 0;
2376 dev->cylinders = 0;
2377 dev->heads = 0;
2378 dev->sectors = 0;
e18086d6 2379 dev->multi_count = 0;
208a9933 2380
1da177e4
LT
2381 /*
2382 * common ATA, ATAPI feature tests
2383 */
2384
ff8854b2 2385 /* find max transfer mode; for printk only */
1148c3a7 2386 xfer_mask = ata_id_xfermask(id);
1da177e4 2387
0dd4b21f
BP
2388 if (ata_msg_probe(ap))
2389 ata_dump_id(id);
1da177e4 2390
ef143d57
AL
2391 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2392 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2393 sizeof(fwrevbuf));
2394
2395 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2396 sizeof(modelbuf));
2397
1da177e4
LT
2398 /* ATA-specific feature tests */
2399 if (dev->class == ATA_DEV_ATA) {
b352e57d 2400 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2401 /* CPRM may make this media unusable */
2402 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2403 ata_dev_printk(dev, KERN_WARNING,
2404 "supports DRM functions and may "
2405 "not be fully accessable.\n");
b352e57d 2406 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2407 } else {
2dcb407e 2408 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2409 /* Warn the user if the device has TPM extensions */
2410 if (ata_id_has_tpm(id))
2411 ata_dev_printk(dev, KERN_WARNING,
2412 "supports DRM functions and may "
2413 "not be fully accessable.\n");
2414 }
b352e57d 2415
1148c3a7 2416 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2417
e18086d6
ML
2418 /* get current R/W Multiple count setting */
2419 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2420 unsigned int max = dev->id[47] & 0xff;
2421 unsigned int cnt = dev->id[59] & 0xff;
2422 /* only recognize/allow powers of two here */
2423 if (is_power_of_2(max) && is_power_of_2(cnt))
2424 if (cnt <= max)
2425 dev->multi_count = cnt;
2426 }
3f64f565 2427
1148c3a7 2428 if (ata_id_has_lba(id)) {
4c2d721a 2429 const char *lba_desc;
388539f3 2430 char ncq_desc[24];
8bf62ece 2431
4c2d721a
TH
2432 lba_desc = "LBA";
2433 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2434 if (ata_id_has_lba48(id)) {
8bf62ece 2435 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2436 lba_desc = "LBA48";
6fc49adb
TH
2437
2438 if (dev->n_sectors >= (1UL << 28) &&
2439 ata_id_has_flush_ext(id))
2440 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2441 }
8bf62ece 2442
a6e6ce8e 2443 /* config NCQ */
388539f3
SL
2444 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2445 if (rc)
2446 return rc;
a6e6ce8e 2447
8bf62ece 2448 /* print device info to dmesg */
3f64f565
EM
2449 if (ata_msg_drv(ap) && print_info) {
2450 ata_dev_printk(dev, KERN_INFO,
2451 "%s: %s, %s, max %s\n",
2452 revbuf, modelbuf, fwrevbuf,
2453 ata_mode_string(xfer_mask));
2454 ata_dev_printk(dev, KERN_INFO,
2455 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2456 (unsigned long long)dev->n_sectors,
3f64f565
EM
2457 dev->multi_count, lba_desc, ncq_desc);
2458 }
ffeae418 2459 } else {
8bf62ece
AL
2460 /* CHS */
2461
2462 /* Default translation */
1148c3a7
TH
2463 dev->cylinders = id[1];
2464 dev->heads = id[3];
2465 dev->sectors = id[6];
8bf62ece 2466
1148c3a7 2467 if (ata_id_current_chs_valid(id)) {
8bf62ece 2468 /* Current CHS translation is valid. */
1148c3a7
TH
2469 dev->cylinders = id[54];
2470 dev->heads = id[55];
2471 dev->sectors = id[56];
8bf62ece
AL
2472 }
2473
2474 /* print device info to dmesg */
3f64f565 2475 if (ata_msg_drv(ap) && print_info) {
88574551 2476 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
a84471fe 2480 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2481 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 (unsigned long long)dev->n_sectors,
2483 dev->multi_count, dev->cylinders,
2484 dev->heads, dev->sectors);
2485 }
07f6f7d0
AL
2486 }
2487
6e7846e9 2488 dev->cdb_len = 16;
1da177e4
LT
2489 }
2490
2491 /* ATAPI-specific feature tests */
2c13b7ce 2492 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2493 const char *cdb_intr_string = "";
2494 const char *atapi_an_string = "";
91163006 2495 const char *dma_dir_string = "";
7d77b247 2496 u32 sntf;
08a556db 2497
1148c3a7 2498 rc = atapi_cdb_len(id);
1da177e4 2499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2500 if (ata_msg_warn(ap))
88574551
TH
2501 ata_dev_printk(dev, KERN_WARNING,
2502 "unsupported CDB len\n");
ffeae418 2503 rc = -EINVAL;
1da177e4
LT
2504 goto err_out_nosup;
2505 }
6e7846e9 2506 dev->cdb_len = (unsigned int) rc;
1da177e4 2507
7d77b247
TH
2508 /* Enable ATAPI AN if both the host and device have
2509 * the support. If PMP is attached, SNTF is required
2510 * to enable ATAPI AN to discern between PHY status
2511 * changed notifications and ATAPI ANs.
9f45cbd3 2512 */
7d77b247 2513 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2514 (!sata_pmp_attached(ap) ||
7d77b247 2515 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2516 unsigned int err_mask;
2517
9f45cbd3 2518 /* issue SET feature command to turn this on */
218f3d30
JG
2519 err_mask = ata_dev_set_feature(dev,
2520 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2521 if (err_mask)
9f45cbd3 2522 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2523 "failed to enable ATAPI AN "
2524 "(err_mask=0x%x)\n", err_mask);
2525 else {
9f45cbd3 2526 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2527 atapi_an_string = ", ATAPI AN";
2528 }
9f45cbd3
KCA
2529 }
2530
08a556db 2531 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2532 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2533 cdb_intr_string = ", CDB intr";
2534 }
312f7da2 2535
91163006
TH
2536 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 dev->flags |= ATA_DFLAG_DMADIR;
2538 dma_dir_string = ", DMADIR";
2539 }
2540
1da177e4 2541 /* print device info to dmesg */
5afc8142 2542 if (ata_msg_drv(ap) && print_info)
ef143d57 2543 ata_dev_printk(dev, KERN_INFO,
91163006 2544 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2545 modelbuf, fwrevbuf,
12436c30 2546 ata_mode_string(xfer_mask),
91163006
TH
2547 cdb_intr_string, atapi_an_string,
2548 dma_dir_string);
1da177e4
LT
2549 }
2550
914ed354
TH
2551 /* determine max_sectors */
2552 dev->max_sectors = ATA_MAX_SECTORS;
2553 if (dev->flags & ATA_DFLAG_LBA48)
2554 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2555
ca77329f
KCA
2556 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 if (ata_id_has_hipm(dev->id))
2558 dev->flags |= ATA_DFLAG_HIPM;
2559 if (ata_id_has_dipm(dev->id))
2560 dev->flags |= ATA_DFLAG_DIPM;
2561 }
2562
c5038fc0
AC
2563 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2564 200 sectors */
3373efd8 2565 if (ata_dev_knobble(dev)) {
5afc8142 2566 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2567 ata_dev_printk(dev, KERN_INFO,
2568 "applying bridge limits\n");
5a529139 2569 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2570 dev->max_sectors = ATA_MAX_SECTORS;
2571 }
2572
f8d8e579 2573 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2574 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2575 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2576 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2577 }
f8d8e579 2578
75683fe7 2579 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2580 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2581 dev->max_sectors);
18d6e9d5 2582
ca77329f
KCA
2583 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 dev->horkage |= ATA_HORKAGE_IPM;
2585
2586 /* reset link pm_policy for this port to no pm */
2587 ap->pm_policy = MAX_PERFORMANCE;
2588 }
2589
4b2f3ede 2590 if (ap->ops->dev_config)
cd0d3bbc 2591 ap->ops->dev_config(dev);
4b2f3ede 2592
c5038fc0
AC
2593 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 /* Let the user know. We don't want to disallow opens for
2595 rescue purposes, or in case the vendor is just a blithering
2596 idiot. Do this after the dev_config call as some controllers
2597 with buggy firmware may want to avoid reporting false device
2598 bugs */
2599
2600 if (print_info) {
2601 ata_dev_printk(dev, KERN_WARNING,
2602"Drive reports diagnostics failure. This may indicate a drive\n");
2603 ata_dev_printk(dev, KERN_WARNING,
2604"fault or invalid emulation. Contact drive vendor for information.\n");
2605 }
2606 }
2607
ac70a964
TH
2608 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 "firmware update to be fully functional.\n");
2611 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2612 "or visit http://ata.wiki.kernel.org.\n");
2613 }
2614
ffeae418 2615 return 0;
1da177e4
LT
2616
2617err_out_nosup:
0dd4b21f 2618 if (ata_msg_probe(ap))
88574551 2619 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2620 "%s: EXIT, err\n", __func__);
ffeae418 2621 return rc;
1da177e4
LT
2622}
2623
be0d18df 2624/**
2e41e8e6 2625 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2626 * @ap: port
2627 *
2e41e8e6 2628 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2629 * detection.
2630 */
2631
2632int ata_cable_40wire(struct ata_port *ap)
2633{
2634 return ATA_CBL_PATA40;
2635}
2636
2637/**
2e41e8e6 2638 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2639 * @ap: port
2640 *
2e41e8e6 2641 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2642 * detection.
2643 */
2644
2645int ata_cable_80wire(struct ata_port *ap)
2646{
2647 return ATA_CBL_PATA80;
2648}
2649
2650/**
2651 * ata_cable_unknown - return unknown PATA cable.
2652 * @ap: port
2653 *
2654 * Helper method for drivers which have no PATA cable detection.
2655 */
2656
2657int ata_cable_unknown(struct ata_port *ap)
2658{
2659 return ATA_CBL_PATA_UNK;
2660}
2661
c88f90c3
TH
2662/**
2663 * ata_cable_ignore - return ignored PATA cable.
2664 * @ap: port
2665 *
2666 * Helper method for drivers which don't use cable type to limit
2667 * transfer mode.
2668 */
2669int ata_cable_ignore(struct ata_port *ap)
2670{
2671 return ATA_CBL_PATA_IGN;
2672}
2673
be0d18df
AC
2674/**
2675 * ata_cable_sata - return SATA cable type
2676 * @ap: port
2677 *
2678 * Helper method for drivers which have SATA cables
2679 */
2680
2681int ata_cable_sata(struct ata_port *ap)
2682{
2683 return ATA_CBL_SATA;
2684}
2685
1da177e4
LT
2686/**
2687 * ata_bus_probe - Reset and probe ATA bus
2688 * @ap: Bus to probe
2689 *
0cba632b
JG
2690 * Master ATA bus probing function. Initiates a hardware-dependent
2691 * bus reset, then attempts to identify any devices found on
2692 * the bus.
2693 *
1da177e4 2694 * LOCKING:
0cba632b 2695 * PCI/etc. bus probe sem.
1da177e4
LT
2696 *
2697 * RETURNS:
96072e69 2698 * Zero on success, negative errno otherwise.
1da177e4
LT
2699 */
2700
80289167 2701int ata_bus_probe(struct ata_port *ap)
1da177e4 2702{
28ca5c57 2703 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2704 int tries[ATA_MAX_DEVICES];
f58229f8 2705 int rc;
e82cbdb9 2706 struct ata_device *dev;
1da177e4 2707
1eca4365 2708 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2709 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2710
2711 retry:
1eca4365 2712 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2713 /* If we issue an SRST then an ATA drive (not ATAPI)
2714 * may change configuration and be in PIO0 timing. If
2715 * we do a hard reset (or are coming from power on)
2716 * this is true for ATA or ATAPI. Until we've set a
2717 * suitable controller mode we should not touch the
2718 * bus as we may be talking too fast.
2719 */
2720 dev->pio_mode = XFER_PIO_0;
2721
2722 /* If the controller has a pio mode setup function
2723 * then use it to set the chipset to rights. Don't
2724 * touch the DMA setup as that will be dealt with when
2725 * configuring devices.
2726 */
2727 if (ap->ops->set_piomode)
2728 ap->ops->set_piomode(ap, dev);
2729 }
2730
2044470c 2731 /* reset and determine device classes */
52783c5d 2732 ap->ops->phy_reset(ap);
2061a47a 2733
1eca4365 2734 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2735 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2736 classes[dev->devno] = dev->class;
2737 else
2738 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2739
52783c5d 2740 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2741 }
1da177e4 2742
f31f0cc2
JG
2743 /* read IDENTIFY page and configure devices. We have to do the identify
2744 specific sequence bass-ackwards so that PDIAG- is released by
2745 the slave device */
2746
1eca4365 2747 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2748 if (tries[dev->devno])
2749 dev->class = classes[dev->devno];
ffeae418 2750
14d2bac1 2751 if (!ata_dev_enabled(dev))
ffeae418 2752 continue;
ffeae418 2753
bff04647
TH
2754 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2755 dev->id);
14d2bac1
TH
2756 if (rc)
2757 goto fail;
f31f0cc2
JG
2758 }
2759
be0d18df
AC
2760 /* Now ask for the cable type as PDIAG- should have been released */
2761 if (ap->ops->cable_detect)
2762 ap->cbl = ap->ops->cable_detect(ap);
2763
1eca4365
TH
2764 /* We may have SATA bridge glue hiding here irrespective of
2765 * the reported cable types and sensed types. When SATA
2766 * drives indicate we have a bridge, we don't know which end
2767 * of the link the bridge is which is a problem.
2768 */
2769 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2770 if (ata_id_is_sata(dev->id))
2771 ap->cbl = ATA_CBL_SATA;
614fe29b 2772
f31f0cc2
JG
2773 /* After the identify sequence we can now set up the devices. We do
2774 this in the normal order so that the user doesn't get confused */
2775
1eca4365 2776 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2777 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2778 rc = ata_dev_configure(dev);
9af5c9c9 2779 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2780 if (rc)
2781 goto fail;
1da177e4
LT
2782 }
2783
e82cbdb9 2784 /* configure transfer mode */
0260731f 2785 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2786 if (rc)
51713d35 2787 goto fail;
1da177e4 2788
1eca4365
TH
2789 ata_for_each_dev(dev, &ap->link, ENABLED)
2790 return 0;
1da177e4 2791
96072e69 2792 return -ENODEV;
14d2bac1
TH
2793
2794 fail:
4ae72a1e
TH
2795 tries[dev->devno]--;
2796
14d2bac1
TH
2797 switch (rc) {
2798 case -EINVAL:
4ae72a1e 2799 /* eeek, something went very wrong, give up */
14d2bac1
TH
2800 tries[dev->devno] = 0;
2801 break;
4ae72a1e
TH
2802
2803 case -ENODEV:
2804 /* give it just one more chance */
2805 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2806 case -EIO:
4ae72a1e
TH
2807 if (tries[dev->devno] == 1) {
2808 /* This is the last chance, better to slow
2809 * down than lose it.
2810 */
a07d499b 2811 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2812 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2813 }
14d2bac1
TH
2814 }
2815
4ae72a1e 2816 if (!tries[dev->devno])
3373efd8 2817 ata_dev_disable(dev);
ec573755 2818
14d2bac1 2819 goto retry;
1da177e4
LT
2820}
2821
3be680b7
TH
2822/**
2823 * sata_print_link_status - Print SATA link status
936fd732 2824 * @link: SATA link to printk link status about
3be680b7
TH
2825 *
2826 * This function prints link speed and status of a SATA link.
2827 *
2828 * LOCKING:
2829 * None.
2830 */
6bdb4fc9 2831static void sata_print_link_status(struct ata_link *link)
3be680b7 2832{
6d5f9732 2833 u32 sstatus, scontrol, tmp;
3be680b7 2834
936fd732 2835 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2836 return;
936fd732 2837 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2838
b1c72916 2839 if (ata_phys_link_online(link)) {
3be680b7 2840 tmp = (sstatus >> 4) & 0xf;
936fd732 2841 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2842 "SATA link up %s (SStatus %X SControl %X)\n",
2843 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2844 } else {
936fd732 2845 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2846 "SATA link down (SStatus %X SControl %X)\n",
2847 sstatus, scontrol);
3be680b7
TH
2848 }
2849}
2850
ebdfca6e
AC
2851/**
2852 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2853 * @adev: device
2854 *
2855 * Obtain the other device on the same cable, or if none is
2856 * present NULL is returned
2857 */
2e9edbf8 2858
3373efd8 2859struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2860{
9af5c9c9
TH
2861 struct ata_link *link = adev->link;
2862 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2863 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2864 return NULL;
2865 return pair;
2866}
2867
1c3fae4d 2868/**
3c567b7d 2869 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2870 * @link: Link to adjust SATA spd limit for
a07d499b 2871 * @spd_limit: Additional limit
1c3fae4d 2872 *
936fd732 2873 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2874 * function only adjusts the limit. The change must be applied
3c567b7d 2875 * using sata_set_spd().
1c3fae4d 2876 *
a07d499b
TH
2877 * If @spd_limit is non-zero, the speed is limited to equal to or
2878 * lower than @spd_limit if such speed is supported. If
2879 * @spd_limit is slower than any supported speed, only the lowest
2880 * supported speed is allowed.
2881 *
1c3fae4d
TH
2882 * LOCKING:
2883 * Inherited from caller.
2884 *
2885 * RETURNS:
2886 * 0 on success, negative errno on failure
2887 */
a07d499b 2888int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2889{
81952c54 2890 u32 sstatus, spd, mask;
a07d499b 2891 int rc, bit;
1c3fae4d 2892
936fd732 2893 if (!sata_scr_valid(link))
008a7896
TH
2894 return -EOPNOTSUPP;
2895
2896 /* If SCR can be read, use it to determine the current SPD.
936fd732 2897 * If not, use cached value in link->sata_spd.
008a7896 2898 */
936fd732 2899 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2900 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2901 spd = (sstatus >> 4) & 0xf;
2902 else
936fd732 2903 spd = link->sata_spd;
1c3fae4d 2904
936fd732 2905 mask = link->sata_spd_limit;
1c3fae4d
TH
2906 if (mask <= 1)
2907 return -EINVAL;
008a7896
TH
2908
2909 /* unconditionally mask off the highest bit */
a07d499b
TH
2910 bit = fls(mask) - 1;
2911 mask &= ~(1 << bit);
1c3fae4d 2912
008a7896
TH
2913 /* Mask off all speeds higher than or equal to the current
2914 * one. Force 1.5Gbps if current SPD is not available.
2915 */
2916 if (spd > 1)
2917 mask &= (1 << (spd - 1)) - 1;
2918 else
2919 mask &= 1;
2920
2921 /* were we already at the bottom? */
1c3fae4d
TH
2922 if (!mask)
2923 return -EINVAL;
2924
a07d499b
TH
2925 if (spd_limit) {
2926 if (mask & ((1 << spd_limit) - 1))
2927 mask &= (1 << spd_limit) - 1;
2928 else {
2929 bit = ffs(mask) - 1;
2930 mask = 1 << bit;
2931 }
2932 }
2933
936fd732 2934 link->sata_spd_limit = mask;
1c3fae4d 2935
936fd732 2936 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2937 sata_spd_string(fls(mask)));
1c3fae4d
TH
2938
2939 return 0;
2940}
2941
936fd732 2942static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2943{
5270222f
TH
2944 struct ata_link *host_link = &link->ap->link;
2945 u32 limit, target, spd;
1c3fae4d 2946
5270222f
TH
2947 limit = link->sata_spd_limit;
2948
2949 /* Don't configure downstream link faster than upstream link.
2950 * It doesn't speed up anything and some PMPs choke on such
2951 * configuration.
2952 */
2953 if (!ata_is_host_link(link) && host_link->sata_spd)
2954 limit &= (1 << host_link->sata_spd) - 1;
2955
2956 if (limit == UINT_MAX)
2957 target = 0;
1c3fae4d 2958 else
5270222f 2959 target = fls(limit);
1c3fae4d
TH
2960
2961 spd = (*scontrol >> 4) & 0xf;
5270222f 2962 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2963
5270222f 2964 return spd != target;
1c3fae4d
TH
2965}
2966
2967/**
3c567b7d 2968 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2969 * @link: Link in question
1c3fae4d
TH
2970 *
2971 * Test whether the spd limit in SControl matches
936fd732 2972 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2973 * whether hardreset is necessary to apply SATA spd
2974 * configuration.
2975 *
2976 * LOCKING:
2977 * Inherited from caller.
2978 *
2979 * RETURNS:
2980 * 1 if SATA spd configuration is needed, 0 otherwise.
2981 */
1dc55e87 2982static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2983{
2984 u32 scontrol;
2985
936fd732 2986 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2987 return 1;
1c3fae4d 2988
936fd732 2989 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2990}
2991
2992/**
3c567b7d 2993 * sata_set_spd - set SATA spd according to spd limit
936fd732 2994 * @link: Link to set SATA spd for
1c3fae4d 2995 *
936fd732 2996 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2997 *
2998 * LOCKING:
2999 * Inherited from caller.
3000 *
3001 * RETURNS:
3002 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3003 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3004 */
936fd732 3005int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3006{
3007 u32 scontrol;
81952c54 3008 int rc;
1c3fae4d 3009
936fd732 3010 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3011 return rc;
1c3fae4d 3012
936fd732 3013 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3014 return 0;
3015
936fd732 3016 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3017 return rc;
3018
1c3fae4d
TH
3019 return 1;
3020}
3021
452503f9
AC
3022/*
3023 * This mode timing computation functionality is ported over from
3024 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3025 */
3026/*
b352e57d 3027 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3028 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3029 * for UDMA6, which is currently supported only by Maxtor drives.
3030 *
3031 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3032 */
3033
3034static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3035/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3036 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3037 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3038 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3039 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3040 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3041 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3042 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3043
3044 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3045 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3046 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3047
3048 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3049 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3050 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3051 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3052 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3053
3054/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3055 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3056 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3057 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3058 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3059 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3060 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3061 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3062
3063 { 0xFF }
3064};
3065
2dcb407e
JG
3066#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3067#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3068
3069static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3070{
3ada9c12
DD
3071 q->setup = EZ(t->setup * 1000, T);
3072 q->act8b = EZ(t->act8b * 1000, T);
3073 q->rec8b = EZ(t->rec8b * 1000, T);
3074 q->cyc8b = EZ(t->cyc8b * 1000, T);
3075 q->active = EZ(t->active * 1000, T);
3076 q->recover = EZ(t->recover * 1000, T);
3077 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3078 q->cycle = EZ(t->cycle * 1000, T);
3079 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3080}
3081
3082void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3083 struct ata_timing *m, unsigned int what)
3084{
3085 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3086 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3087 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3088 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3089 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3090 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3091 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3092 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3093 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3094}
3095
6357357c 3096const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3097{
70cd071e
TH
3098 const struct ata_timing *t = ata_timing;
3099
3100 while (xfer_mode > t->mode)
3101 t++;
452503f9 3102
70cd071e
TH
3103 if (xfer_mode == t->mode)
3104 return t;
3105 return NULL;
452503f9
AC
3106}
3107
3108int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3109 struct ata_timing *t, int T, int UT)
3110{
9e8808a9 3111 const u16 *id = adev->id;
452503f9
AC
3112 const struct ata_timing *s;
3113 struct ata_timing p;
3114
3115 /*
2e9edbf8 3116 * Find the mode.
75b1f2f8 3117 */
452503f9
AC
3118
3119 if (!(s = ata_timing_find_mode(speed)))
3120 return -EINVAL;
3121
75b1f2f8
AL
3122 memcpy(t, s, sizeof(*s));
3123
452503f9
AC
3124 /*
3125 * If the drive is an EIDE drive, it can tell us it needs extended
3126 * PIO/MW_DMA cycle timing.
3127 */
3128
9e8808a9 3129 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3130 memset(&p, 0, sizeof(p));
9e8808a9 3131
2dcb407e 3132 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3133 if (speed <= XFER_PIO_2)
3134 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3135 else if ((speed <= XFER_PIO_4) ||
3136 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3137 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3138 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3139 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3140
452503f9
AC
3141 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3142 }
3143
3144 /*
3145 * Convert the timing to bus clock counts.
3146 */
3147
75b1f2f8 3148 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3149
3150 /*
c893a3ae
RD
3151 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3152 * S.M.A.R.T * and some other commands. We have to ensure that the
3153 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3154 */
3155
fd3367af 3156 if (speed > XFER_PIO_6) {
452503f9
AC
3157 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3158 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3159 }
3160
3161 /*
c893a3ae 3162 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3163 */
3164
3165 if (t->act8b + t->rec8b < t->cyc8b) {
3166 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3167 t->rec8b = t->cyc8b - t->act8b;
3168 }
3169
3170 if (t->active + t->recover < t->cycle) {
3171 t->active += (t->cycle - (t->active + t->recover)) / 2;
3172 t->recover = t->cycle - t->active;
3173 }
a617c09f 3174
4f701d1e
AC
3175 /* In a few cases quantisation may produce enough errors to
3176 leave t->cycle too low for the sum of active and recovery
3177 if so we must correct this */
3178 if (t->active + t->recover > t->cycle)
3179 t->cycle = t->active + t->recover;
452503f9
AC
3180
3181 return 0;
3182}
3183
a0f79b92
TH
3184/**
3185 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3186 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3187 * @cycle: cycle duration in ns
3188 *
3189 * Return matching xfer mode for @cycle. The returned mode is of
3190 * the transfer type specified by @xfer_shift. If @cycle is too
3191 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3192 * than the fastest known mode, the fasted mode is returned.
3193 *
3194 * LOCKING:
3195 * None.
3196 *
3197 * RETURNS:
3198 * Matching xfer_mode, 0xff if no match found.
3199 */
3200u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3201{
3202 u8 base_mode = 0xff, last_mode = 0xff;
3203 const struct ata_xfer_ent *ent;
3204 const struct ata_timing *t;
3205
3206 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3207 if (ent->shift == xfer_shift)
3208 base_mode = ent->base;
3209
3210 for (t = ata_timing_find_mode(base_mode);
3211 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3212 unsigned short this_cycle;
3213
3214 switch (xfer_shift) {
3215 case ATA_SHIFT_PIO:
3216 case ATA_SHIFT_MWDMA:
3217 this_cycle = t->cycle;
3218 break;
3219 case ATA_SHIFT_UDMA:
3220 this_cycle = t->udma;
3221 break;
3222 default:
3223 return 0xff;
3224 }
3225
3226 if (cycle > this_cycle)
3227 break;
3228
3229 last_mode = t->mode;
3230 }
3231
3232 return last_mode;
3233}
3234
cf176e1a
TH
3235/**
3236 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3237 * @dev: Device to adjust xfer masks
458337db 3238 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3239 *
3240 * Adjust xfer masks of @dev downward. Note that this function
3241 * does not apply the change. Invoking ata_set_mode() afterwards
3242 * will apply the limit.
3243 *
3244 * LOCKING:
3245 * Inherited from caller.
3246 *
3247 * RETURNS:
3248 * 0 on success, negative errno on failure
3249 */
458337db 3250int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3251{
458337db 3252 char buf[32];
7dc951ae
TH
3253 unsigned long orig_mask, xfer_mask;
3254 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3255 int quiet, highbit;
cf176e1a 3256
458337db
TH
3257 quiet = !!(sel & ATA_DNXFER_QUIET);
3258 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3259
458337db
TH
3260 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3261 dev->mwdma_mask,
3262 dev->udma_mask);
3263 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3264
458337db
TH
3265 switch (sel) {
3266 case ATA_DNXFER_PIO:
3267 highbit = fls(pio_mask) - 1;
3268 pio_mask &= ~(1 << highbit);
3269 break;
3270
3271 case ATA_DNXFER_DMA:
3272 if (udma_mask) {
3273 highbit = fls(udma_mask) - 1;
3274 udma_mask &= ~(1 << highbit);
3275 if (!udma_mask)
3276 return -ENOENT;
3277 } else if (mwdma_mask) {
3278 highbit = fls(mwdma_mask) - 1;
3279 mwdma_mask &= ~(1 << highbit);
3280 if (!mwdma_mask)
3281 return -ENOENT;
3282 }
3283 break;
3284
3285 case ATA_DNXFER_40C:
3286 udma_mask &= ATA_UDMA_MASK_40C;
3287 break;
3288
3289 case ATA_DNXFER_FORCE_PIO0:
3290 pio_mask &= 1;
3291 case ATA_DNXFER_FORCE_PIO:
3292 mwdma_mask = 0;
3293 udma_mask = 0;
3294 break;
3295
458337db
TH
3296 default:
3297 BUG();
3298 }
3299
3300 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3301
3302 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3303 return -ENOENT;
3304
3305 if (!quiet) {
3306 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3307 snprintf(buf, sizeof(buf), "%s:%s",
3308 ata_mode_string(xfer_mask),
3309 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3310 else
3311 snprintf(buf, sizeof(buf), "%s",
3312 ata_mode_string(xfer_mask));
3313
3314 ata_dev_printk(dev, KERN_WARNING,
3315 "limiting speed to %s\n", buf);
3316 }
cf176e1a
TH
3317
3318 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3319 &dev->udma_mask);
3320
cf176e1a 3321 return 0;
cf176e1a
TH
3322}
3323
3373efd8 3324static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3325{
d0cb43b3 3326 struct ata_port *ap = dev->link->ap;
9af5c9c9 3327 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3328 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3329 const char *dev_err_whine = "";
3330 int ign_dev_err = 0;
d0cb43b3 3331 unsigned int err_mask = 0;
83206a29 3332 int rc;
1da177e4 3333
e8384607 3334 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3335 if (dev->xfer_shift == ATA_SHIFT_PIO)
3336 dev->flags |= ATA_DFLAG_PIO;
3337
d0cb43b3
TH
3338 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3339 dev_err_whine = " (SET_XFERMODE skipped)";
3340 else {
3341 if (nosetxfer)
3342 ata_dev_printk(dev, KERN_WARNING,
3343 "NOSETXFER but PATA detected - can't "
3344 "skip SETXFER, might malfunction\n");
3345 err_mask = ata_dev_set_xfermode(dev);
3346 }
2dcb407e 3347
4055dee7
TH
3348 if (err_mask & ~AC_ERR_DEV)
3349 goto fail;
3350
3351 /* revalidate */
3352 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3353 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3354 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3355 if (rc)
3356 return rc;
3357
b93fda12
AC
3358 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3359 /* Old CFA may refuse this command, which is just fine */
3360 if (ata_id_is_cfa(dev->id))
3361 ign_dev_err = 1;
3362 /* Catch several broken garbage emulations plus some pre
3363 ATA devices */
3364 if (ata_id_major_version(dev->id) == 0 &&
3365 dev->pio_mode <= XFER_PIO_2)
3366 ign_dev_err = 1;
3367 /* Some very old devices and some bad newer ones fail
3368 any kind of SET_XFERMODE request but support PIO0-2
3369 timings and no IORDY */
3370 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3371 ign_dev_err = 1;
3372 }
3acaf94b
AC
3373 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3374 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3375 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3376 dev->dma_mode == XFER_MW_DMA_0 &&
3377 (dev->id[63] >> 8) & 1)
4055dee7 3378 ign_dev_err = 1;
3acaf94b 3379
4055dee7
TH
3380 /* if the device is actually configured correctly, ignore dev err */
3381 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3382 ign_dev_err = 1;
1da177e4 3383
4055dee7
TH
3384 if (err_mask & AC_ERR_DEV) {
3385 if (!ign_dev_err)
3386 goto fail;
3387 else
3388 dev_err_whine = " (device error ignored)";
3389 }
48a8a14f 3390
23e71c3d
TH
3391 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3392 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3393
4055dee7
TH
3394 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3395 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3396 dev_err_whine);
3397
83206a29 3398 return 0;
4055dee7
TH
3399
3400 fail:
3401 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3402 "(err_mask=0x%x)\n", err_mask);
3403 return -EIO;
1da177e4
LT
3404}
3405
1da177e4 3406/**
04351821 3407 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3408 * @link: link on which timings will be programmed
1967b7ff 3409 * @r_failed_dev: out parameter for failed device
1da177e4 3410 *
04351821
AC
3411 * Standard implementation of the function used to tune and set
3412 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3413 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3414 * returned in @r_failed_dev.
780a87f7 3415 *
1da177e4 3416 * LOCKING:
0cba632b 3417 * PCI/etc. bus probe sem.
e82cbdb9
TH
3418 *
3419 * RETURNS:
3420 * 0 on success, negative errno otherwise
1da177e4 3421 */
04351821 3422
0260731f 3423int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3424{
0260731f 3425 struct ata_port *ap = link->ap;
e8e0619f 3426 struct ata_device *dev;
f58229f8 3427 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3428
a6d5a51c 3429 /* step 1: calculate xfer_mask */
1eca4365 3430 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3431 unsigned long pio_mask, dma_mask;
b3a70601 3432 unsigned int mode_mask;
a6d5a51c 3433
b3a70601
AC
3434 mode_mask = ATA_DMA_MASK_ATA;
3435 if (dev->class == ATA_DEV_ATAPI)
3436 mode_mask = ATA_DMA_MASK_ATAPI;
3437 else if (ata_id_is_cfa(dev->id))
3438 mode_mask = ATA_DMA_MASK_CFA;
3439
3373efd8 3440 ata_dev_xfermask(dev);
33267325 3441 ata_force_xfermask(dev);
1da177e4 3442
acf356b1
TH
3443 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3444 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3445
3446 if (libata_dma_mask & mode_mask)
3447 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3448 else
3449 dma_mask = 0;
3450
acf356b1
TH
3451 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3452 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3453
4f65977d 3454 found = 1;
b15b3eba 3455 if (ata_dma_enabled(dev))
5444a6f4 3456 used_dma = 1;
a6d5a51c 3457 }
4f65977d 3458 if (!found)
e82cbdb9 3459 goto out;
a6d5a51c
TH
3460
3461 /* step 2: always set host PIO timings */
1eca4365 3462 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3463 if (dev->pio_mode == 0xff) {
f15a1daf 3464 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3465 rc = -EINVAL;
e82cbdb9 3466 goto out;
e8e0619f
TH
3467 }
3468
3469 dev->xfer_mode = dev->pio_mode;
3470 dev->xfer_shift = ATA_SHIFT_PIO;
3471 if (ap->ops->set_piomode)
3472 ap->ops->set_piomode(ap, dev);
3473 }
1da177e4 3474
a6d5a51c 3475 /* step 3: set host DMA timings */
1eca4365
TH
3476 ata_for_each_dev(dev, link, ENABLED) {
3477 if (!ata_dma_enabled(dev))
e8e0619f
TH
3478 continue;
3479
3480 dev->xfer_mode = dev->dma_mode;
3481 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3482 if (ap->ops->set_dmamode)
3483 ap->ops->set_dmamode(ap, dev);
3484 }
1da177e4
LT
3485
3486 /* step 4: update devices' xfer mode */
1eca4365 3487 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3488 rc = ata_dev_set_mode(dev);
5bbc53f4 3489 if (rc)
e82cbdb9 3490 goto out;
83206a29 3491 }
1da177e4 3492
e8e0619f
TH
3493 /* Record simplex status. If we selected DMA then the other
3494 * host channels are not permitted to do so.
5444a6f4 3495 */
cca3974e 3496 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3497 ap->host->simplex_claimed = ap;
5444a6f4 3498
e82cbdb9
TH
3499 out:
3500 if (rc)
3501 *r_failed_dev = dev;
3502 return rc;
1da177e4
LT
3503}
3504
aa2731ad
TH
3505/**
3506 * ata_wait_ready - wait for link to become ready
3507 * @link: link to be waited on
3508 * @deadline: deadline jiffies for the operation
3509 * @check_ready: callback to check link readiness
3510 *
3511 * Wait for @link to become ready. @check_ready should return
3512 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3513 * link doesn't seem to be occupied, other errno for other error
3514 * conditions.
3515 *
3516 * Transient -ENODEV conditions are allowed for
3517 * ATA_TMOUT_FF_WAIT.
3518 *
3519 * LOCKING:
3520 * EH context.
3521 *
3522 * RETURNS:
3523 * 0 if @linke is ready before @deadline; otherwise, -errno.
3524 */
3525int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3526 int (*check_ready)(struct ata_link *link))
3527{
3528 unsigned long start = jiffies;
b48d58f5 3529 unsigned long nodev_deadline;
aa2731ad
TH
3530 int warned = 0;
3531
b48d58f5
TH
3532 /* choose which 0xff timeout to use, read comment in libata.h */
3533 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3534 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3535 else
3536 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3537
b1c72916
TH
3538 /* Slave readiness can't be tested separately from master. On
3539 * M/S emulation configuration, this function should be called
3540 * only on the master and it will handle both master and slave.
3541 */
3542 WARN_ON(link == link->ap->slave_link);
3543
aa2731ad
TH
3544 if (time_after(nodev_deadline, deadline))
3545 nodev_deadline = deadline;
3546
3547 while (1) {
3548 unsigned long now = jiffies;
3549 int ready, tmp;
3550
3551 ready = tmp = check_ready(link);
3552 if (ready > 0)
3553 return 0;
3554
b48d58f5
TH
3555 /*
3556 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3557 * is online. Also, some SATA devices take a long
b48d58f5
TH
3558 * time to clear 0xff after reset. Wait for
3559 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3560 * offline.
aa2731ad
TH
3561 *
3562 * Note that some PATA controllers (pata_ali) explode
3563 * if status register is read more than once when
3564 * there's no device attached.
3565 */
3566 if (ready == -ENODEV) {
3567 if (ata_link_online(link))
3568 ready = 0;
3569 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3570 !ata_link_offline(link) &&
3571 time_before(now, nodev_deadline))
3572 ready = 0;
3573 }
3574
3575 if (ready)
3576 return ready;
3577 if (time_after(now, deadline))
3578 return -EBUSY;
3579
3580 if (!warned && time_after(now, start + 5 * HZ) &&
3581 (deadline - now > 3 * HZ)) {
3582 ata_link_printk(link, KERN_WARNING,
3583 "link is slow to respond, please be patient "
3584 "(ready=%d)\n", tmp);
3585 warned = 1;
3586 }
3587
3588 msleep(50);
3589 }
3590}
3591
3592/**
3593 * ata_wait_after_reset - wait for link to become ready after reset
3594 * @link: link to be waited on
3595 * @deadline: deadline jiffies for the operation
3596 * @check_ready: callback to check link readiness
3597 *
3598 * Wait for @link to become ready after reset.
3599 *
3600 * LOCKING:
3601 * EH context.
3602 *
3603 * RETURNS:
3604 * 0 if @linke is ready before @deadline; otherwise, -errno.
3605 */
2b4221bb 3606int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3607 int (*check_ready)(struct ata_link *link))
3608{
341c2c95 3609 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3610
3611 return ata_wait_ready(link, deadline, check_ready);
3612}
3613
d7bb4cc7 3614/**
936fd732
TH
3615 * sata_link_debounce - debounce SATA phy status
3616 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3617 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3618 * @deadline: deadline jiffies for the operation
d7bb4cc7 3619 *
936fd732 3620* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3621 * holding the same value where DET is not 1 for @duration polled
3622 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3623 * beginning of the stable state. Because DET gets stuck at 1 on
3624 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3625 * until timeout then returns 0 if DET is stable at 1.
3626 *
d4b2bab4
TH
3627 * @timeout is further limited by @deadline. The sooner of the
3628 * two is used.
3629 *
d7bb4cc7
TH
3630 * LOCKING:
3631 * Kernel thread context (may sleep)
3632 *
3633 * RETURNS:
3634 * 0 on success, -errno on failure.
3635 */
936fd732
TH
3636int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3637 unsigned long deadline)
7a7921e8 3638{
341c2c95
TH
3639 unsigned long interval = params[0];
3640 unsigned long duration = params[1];
d4b2bab4 3641 unsigned long last_jiffies, t;
d7bb4cc7
TH
3642 u32 last, cur;
3643 int rc;
3644
341c2c95 3645 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3646 if (time_before(t, deadline))
3647 deadline = t;
3648
936fd732 3649 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3650 return rc;
3651 cur &= 0xf;
3652
3653 last = cur;
3654 last_jiffies = jiffies;
3655
3656 while (1) {
341c2c95 3657 msleep(interval);
936fd732 3658 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3659 return rc;
3660 cur &= 0xf;
3661
3662 /* DET stable? */
3663 if (cur == last) {
d4b2bab4 3664 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3665 continue;
341c2c95
TH
3666 if (time_after(jiffies,
3667 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3668 return 0;
3669 continue;
3670 }
3671
3672 /* unstable, start over */
3673 last = cur;
3674 last_jiffies = jiffies;
3675
f1545154
TH
3676 /* Check deadline. If debouncing failed, return
3677 * -EPIPE to tell upper layer to lower link speed.
3678 */
d4b2bab4 3679 if (time_after(jiffies, deadline))
f1545154 3680 return -EPIPE;
d7bb4cc7
TH
3681 }
3682}
3683
3684/**
936fd732
TH
3685 * sata_link_resume - resume SATA link
3686 * @link: ATA link to resume SATA
d7bb4cc7 3687 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3688 * @deadline: deadline jiffies for the operation
d7bb4cc7 3689 *
936fd732 3690 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3691 *
3692 * LOCKING:
3693 * Kernel thread context (may sleep)
3694 *
3695 * RETURNS:
3696 * 0 on success, -errno on failure.
3697 */
936fd732
TH
3698int sata_link_resume(struct ata_link *link, const unsigned long *params,
3699 unsigned long deadline)
d7bb4cc7 3700{
5040ab67 3701 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3702 u32 scontrol, serror;
81952c54
TH
3703 int rc;
3704
936fd732 3705 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3706 return rc;
7a7921e8 3707
5040ab67
TH
3708 /*
3709 * Writes to SControl sometimes get ignored under certain
3710 * controllers (ata_piix SIDPR). Make sure DET actually is
3711 * cleared.
3712 */
3713 do {
3714 scontrol = (scontrol & 0x0f0) | 0x300;
3715 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3716 return rc;
3717 /*
3718 * Some PHYs react badly if SStatus is pounded
3719 * immediately after resuming. Delay 200ms before
3720 * debouncing.
3721 */
3722 msleep(200);
81952c54 3723
5040ab67
TH
3724 /* is SControl restored correctly? */
3725 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3726 return rc;
3727 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3728
5040ab67
TH
3729 if ((scontrol & 0xf0f) != 0x300) {
3730 ata_link_printk(link, KERN_ERR,
3731 "failed to resume link (SControl %X)\n",
3732 scontrol);
3733 return 0;
3734 }
3735
3736 if (tries < ATA_LINK_RESUME_TRIES)
3737 ata_link_printk(link, KERN_WARNING,
3738 "link resume succeeded after %d retries\n",
3739 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3740
ac371987
TH
3741 if ((rc = sata_link_debounce(link, params, deadline)))
3742 return rc;
3743
f046519f 3744 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3745 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3746 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3747
f046519f 3748 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3749}
3750
f5914a46 3751/**
0aa1113d 3752 * ata_std_prereset - prepare for reset
cc0680a5 3753 * @link: ATA link to be reset
d4b2bab4 3754 * @deadline: deadline jiffies for the operation
f5914a46 3755 *
cc0680a5 3756 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3757 * prereset makes libata abort whole reset sequence and give up
3758 * that port, so prereset should be best-effort. It does its
3759 * best to prepare for reset sequence but if things go wrong, it
3760 * should just whine, not fail.
f5914a46
TH
3761 *
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3764 *
3765 * RETURNS:
3766 * 0 on success, -errno otherwise.
3767 */
0aa1113d 3768int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3769{
cc0680a5 3770 struct ata_port *ap = link->ap;
936fd732 3771 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3772 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3773 int rc;
3774
f5914a46
TH
3775 /* if we're about to do hardreset, nothing more to do */
3776 if (ehc->i.action & ATA_EH_HARDRESET)
3777 return 0;
3778
936fd732 3779 /* if SATA, resume link */
a16abc0b 3780 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3781 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3782 /* whine about phy resume failure but proceed */
3783 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3784 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3785 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3786 }
3787
45db2f6c 3788 /* no point in trying softreset on offline link */
b1c72916 3789 if (ata_phys_link_offline(link))
45db2f6c
TH
3790 ehc->i.action &= ~ATA_EH_SOFTRESET;
3791
f5914a46
TH
3792 return 0;
3793}
3794
c2bd5804 3795/**
624d5c51
TH
3796 * sata_link_hardreset - reset link via SATA phy reset
3797 * @link: link to reset
3798 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3799 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3800 * @online: optional out parameter indicating link onlineness
3801 * @check_ready: optional callback to check link readiness
c2bd5804 3802 *
624d5c51 3803 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3804 * After hardreset, link readiness is waited upon using
3805 * ata_wait_ready() if @check_ready is specified. LLDs are
3806 * allowed to not specify @check_ready and wait itself after this
3807 * function returns. Device classification is LLD's
3808 * responsibility.
3809 *
3810 * *@online is set to one iff reset succeeded and @link is online
3811 * after reset.
c2bd5804
TH
3812 *
3813 * LOCKING:
3814 * Kernel thread context (may sleep)
3815 *
3816 * RETURNS:
3817 * 0 on success, -errno otherwise.
3818 */
624d5c51 3819int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3820 unsigned long deadline,
3821 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3822{
624d5c51 3823 u32 scontrol;
81952c54 3824 int rc;
852ee16a 3825
c2bd5804
TH
3826 DPRINTK("ENTER\n");
3827
9dadd45b
TH
3828 if (online)
3829 *online = false;
3830
936fd732 3831 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3832 /* SATA spec says nothing about how to reconfigure
3833 * spd. To be on the safe side, turn off phy during
3834 * reconfiguration. This works for at least ICH7 AHCI
3835 * and Sil3124.
3836 */
936fd732 3837 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3838 goto out;
81952c54 3839
a34b6fc0 3840 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3841
936fd732 3842 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3843 goto out;
1c3fae4d 3844
936fd732 3845 sata_set_spd(link);
1c3fae4d
TH
3846 }
3847
3848 /* issue phy wake/reset */
936fd732 3849 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3850 goto out;
81952c54 3851
852ee16a 3852 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3853
936fd732 3854 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3855 goto out;
c2bd5804 3856
1c3fae4d 3857 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3858 * 10.4.2 says at least 1 ms.
3859 */
3860 msleep(1);
3861
936fd732
TH
3862 /* bring link back */
3863 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3864 if (rc)
3865 goto out;
3866 /* if link is offline nothing more to do */
b1c72916 3867 if (ata_phys_link_offline(link))
9dadd45b
TH
3868 goto out;
3869
3870 /* Link is online. From this point, -ENODEV too is an error. */
3871 if (online)
3872 *online = true;
3873
071f44b1 3874 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3875 /* If PMP is supported, we have to do follow-up SRST.
3876 * Some PMPs don't send D2H Reg FIS after hardreset if
3877 * the first port is empty. Wait only for
3878 * ATA_TMOUT_PMP_SRST_WAIT.
3879 */
3880 if (check_ready) {
3881 unsigned long pmp_deadline;
3882
341c2c95
TH
3883 pmp_deadline = ata_deadline(jiffies,
3884 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3885 if (time_after(pmp_deadline, deadline))
3886 pmp_deadline = deadline;
3887 ata_wait_ready(link, pmp_deadline, check_ready);
3888 }
3889 rc = -EAGAIN;
3890 goto out;
3891 }
3892
3893 rc = 0;
3894 if (check_ready)
3895 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3896 out:
0cbf0711
TH
3897 if (rc && rc != -EAGAIN) {
3898 /* online is set iff link is online && reset succeeded */
3899 if (online)
3900 *online = false;
9dadd45b
TH
3901 ata_link_printk(link, KERN_ERR,
3902 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3903 }
b6103f6d
TH
3904 DPRINTK("EXIT, rc=%d\n", rc);
3905 return rc;
3906}
3907
57c9efdf
TH
3908/**
3909 * sata_std_hardreset - COMRESET w/o waiting or classification
3910 * @link: link to reset
3911 * @class: resulting class of attached device
3912 * @deadline: deadline jiffies for the operation
3913 *
3914 * Standard SATA COMRESET w/o waiting or classification.
3915 *
3916 * LOCKING:
3917 * Kernel thread context (may sleep)
3918 *
3919 * RETURNS:
3920 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3921 */
3922int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3923 unsigned long deadline)
3924{
3925 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3926 bool online;
3927 int rc;
3928
3929 /* do hardreset */
3930 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3931 return online ? -EAGAIN : rc;
3932}
3933
c2bd5804 3934/**
203c75b8 3935 * ata_std_postreset - standard postreset callback
cc0680a5 3936 * @link: the target ata_link
c2bd5804
TH
3937 * @classes: classes of attached devices
3938 *
3939 * This function is invoked after a successful reset. Note that
3940 * the device might have been reset more than once using
3941 * different reset methods before postreset is invoked.
c2bd5804 3942 *
c2bd5804
TH
3943 * LOCKING:
3944 * Kernel thread context (may sleep)
3945 */
203c75b8 3946void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3947{
f046519f
TH
3948 u32 serror;
3949
c2bd5804
TH
3950 DPRINTK("ENTER\n");
3951
f046519f
TH
3952 /* reset complete, clear SError */
3953 if (!sata_scr_read(link, SCR_ERROR, &serror))
3954 sata_scr_write(link, SCR_ERROR, serror);
3955
c2bd5804 3956 /* print link status */
936fd732 3957 sata_print_link_status(link);
c2bd5804 3958
c2bd5804
TH
3959 DPRINTK("EXIT\n");
3960}
3961
623a3128
TH
3962/**
3963 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3964 * @dev: device to compare against
3965 * @new_class: class of the new device
3966 * @new_id: IDENTIFY page of the new device
3967 *
3968 * Compare @new_class and @new_id against @dev and determine
3969 * whether @dev is the device indicated by @new_class and
3970 * @new_id.
3971 *
3972 * LOCKING:
3973 * None.
3974 *
3975 * RETURNS:
3976 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3977 */
3373efd8
TH
3978static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 const u16 *new_id)
623a3128
TH
3980{
3981 const u16 *old_id = dev->id;
a0cf733b
TH
3982 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3983 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3984
3985 if (dev->class != new_class) {
f15a1daf
TH
3986 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3987 dev->class, new_class);
623a3128
TH
3988 return 0;
3989 }
3990
a0cf733b
TH
3991 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3992 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3993 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3994 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3995
3996 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3997 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3998 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3999 return 0;
4000 }
4001
4002 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4003 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4004 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4005 return 0;
4006 }
4007
623a3128
TH
4008 return 1;
4009}
4010
4011/**
fe30911b 4012 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4013 * @dev: target ATA device
bff04647 4014 * @readid_flags: read ID flags
623a3128
TH
4015 *
4016 * Re-read IDENTIFY page and make sure @dev is still attached to
4017 * the port.
4018 *
4019 * LOCKING:
4020 * Kernel thread context (may sleep)
4021 *
4022 * RETURNS:
4023 * 0 on success, negative errno otherwise
4024 */
fe30911b 4025int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4026{
5eb45c02 4027 unsigned int class = dev->class;
9af5c9c9 4028 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4029 int rc;
4030
fe635c7e 4031 /* read ID data */
bff04647 4032 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4033 if (rc)
fe30911b 4034 return rc;
623a3128
TH
4035
4036 /* is the device still there? */
fe30911b
TH
4037 if (!ata_dev_same_device(dev, class, id))
4038 return -ENODEV;
623a3128 4039
fe635c7e 4040 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4041 return 0;
4042}
4043
4044/**
4045 * ata_dev_revalidate - Revalidate ATA device
4046 * @dev: device to revalidate
422c9daa 4047 * @new_class: new class code
fe30911b
TH
4048 * @readid_flags: read ID flags
4049 *
4050 * Re-read IDENTIFY page, make sure @dev is still attached to the
4051 * port and reconfigure it according to the new IDENTIFY page.
4052 *
4053 * LOCKING:
4054 * Kernel thread context (may sleep)
4055 *
4056 * RETURNS:
4057 * 0 on success, negative errno otherwise
4058 */
422c9daa
TH
4059int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4060 unsigned int readid_flags)
fe30911b 4061{
6ddcd3b0 4062 u64 n_sectors = dev->n_sectors;
5920dadf 4063 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4064 int rc;
4065
4066 if (!ata_dev_enabled(dev))
4067 return -ENODEV;
4068
422c9daa
TH
4069 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4070 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4071 new_class != ATA_DEV_ATA &&
4072 new_class != ATA_DEV_ATAPI &&
4073 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4074 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4075 dev->class, new_class);
4076 rc = -ENODEV;
4077 goto fail;
4078 }
4079
fe30911b
TH
4080 /* re-read ID */
4081 rc = ata_dev_reread_id(dev, readid_flags);
4082 if (rc)
4083 goto fail;
623a3128
TH
4084
4085 /* configure device according to the new ID */
efdaedc4 4086 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4087 if (rc)
4088 goto fail;
4089
4090 /* verify n_sectors hasn't changed */
445d211b
TH
4091 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4092 dev->n_sectors == n_sectors)
4093 return 0;
4094
4095 /* n_sectors has changed */
4096 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4097 (unsigned long long)n_sectors,
4098 (unsigned long long)dev->n_sectors);
4099
4100 /*
4101 * Something could have caused HPA to be unlocked
4102 * involuntarily. If n_native_sectors hasn't changed and the
4103 * new size matches it, keep the device.
4104 */
4105 if (dev->n_native_sectors == n_native_sectors &&
4106 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4107 ata_dev_printk(dev, KERN_WARNING,
4108 "new n_sectors matches native, probably "
4109 "late HPA unlock, continuing\n");
4110 /* keep using the old n_sectors */
4111 dev->n_sectors = n_sectors;
4112 return 0;
6ddcd3b0
TH
4113 }
4114
445d211b
TH
4115 /*
4116 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4117 * unlocking HPA in those cases.
4118 *
4119 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4120 */
4121 if (dev->n_native_sectors == n_native_sectors &&
4122 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4123 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4124 ata_dev_printk(dev, KERN_WARNING,
4125 "old n_sectors matches native, probably "
4126 "late HPA lock, will try to unlock HPA\n");
4127 /* try unlocking HPA */
4128 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4129 rc = -EIO;
4130 } else
4131 rc = -ENODEV;
623a3128 4132
445d211b
TH
4133 /* restore original n_[native_]sectors and fail */
4134 dev->n_native_sectors = n_native_sectors;
4135 dev->n_sectors = n_sectors;
623a3128 4136 fail:
f15a1daf 4137 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4138 return rc;
4139}
4140
6919a0a6
AC
4141struct ata_blacklist_entry {
4142 const char *model_num;
4143 const char *model_rev;
4144 unsigned long horkage;
4145};
4146
4147static const struct ata_blacklist_entry ata_device_blacklist [] = {
4148 /* Devices with DMA related problems under Linux */
4149 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4150 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4151 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4152 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4153 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4154 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4155 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4156 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4157 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4158 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4159 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4160 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4161 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4162 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4163 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4164 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4165 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4166 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4167 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4168 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4169 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4170 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4171 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4172 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4173 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4174 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4175 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4176 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4177 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4178 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4179 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4180 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4181
18d6e9d5 4182 /* Weird ATAPI devices */
40a1d531 4183 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4184 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4185
6919a0a6
AC
4186 /* Devices we expect to fail diagnostics */
4187
4188 /* Devices where NCQ should be avoided */
4189 /* NCQ is slow */
2dcb407e 4190 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4191 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4192 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4193 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4194 /* NCQ is broken */
539cc7c7 4195 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4196 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4197 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4198 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4199 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4200
ac70a964 4201 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4202 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4203 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4204 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4205 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4206 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4207 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4208 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4209 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4210 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4211 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4212
4213 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4216 ATA_HORKAGE_FIRMWARE_WARN },
4217 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4218 ATA_HORKAGE_FIRMWARE_WARN },
4219 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4220 ATA_HORKAGE_FIRMWARE_WARN },
4221 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4222 ATA_HORKAGE_FIRMWARE_WARN },
4223
4224 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4229 ATA_HORKAGE_FIRMWARE_WARN },
4230 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4231 ATA_HORKAGE_FIRMWARE_WARN },
4232 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4233 ATA_HORKAGE_FIRMWARE_WARN },
4234
4235 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4239 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4240 ATA_HORKAGE_FIRMWARE_WARN },
4241 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4242 ATA_HORKAGE_FIRMWARE_WARN },
4243 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4244 ATA_HORKAGE_FIRMWARE_WARN },
4245
4246 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4251 ATA_HORKAGE_FIRMWARE_WARN },
4252 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4253 ATA_HORKAGE_FIRMWARE_WARN },
4254 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4255 ATA_HORKAGE_FIRMWARE_WARN },
4256
4257 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4262 ATA_HORKAGE_FIRMWARE_WARN },
4263 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4264 ATA_HORKAGE_FIRMWARE_WARN },
4265 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4266 ATA_HORKAGE_FIRMWARE_WARN },
4267
36e337d0
RH
4268 /* Blacklist entries taken from Silicon Image 3124/3132
4269 Windows driver .inf file - also several Linux problem reports */
4270 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4271 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4272 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4273
68b0ddb2
TH
4274 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4275 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4276
16c55b03
TH
4277 /* devices which puke on READ_NATIVE_MAX */
4278 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4279 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4280 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4281 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4282
7831387b
TH
4283 /* this one allows HPA unlocking but fails IOs on the area */
4284 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4285
93328e11
AC
4286 /* Devices which report 1 sector over size HPA */
4287 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4288 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4289 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4290
6bbfd53d
AC
4291 /* Devices which get the IVB wrong */
4292 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4293 /* Maybe we should just blacklist TSSTcorp... */
4294 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4295 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4296 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4297 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4298 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4299 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4300
9ce8e307
JA
4301 /* Devices that do not need bridging limits applied */
4302 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4303
9062712f
TH
4304 /* Devices which aren't very happy with higher link speeds */
4305 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4306
d0cb43b3
TH
4307 /*
4308 * Devices which choke on SETXFER. Applies only if both the
4309 * device and controller are SATA.
4310 */
4311 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4312
6919a0a6
AC
4313 /* End Marker */
4314 { }
1da177e4 4315};
2e9edbf8 4316
741b7763 4317static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4318{
4319 const char *p;
4320 int len;
4321
4322 /*
4323 * check for trailing wildcard: *\0
4324 */
4325 p = strchr(patt, wildchar);
4326 if (p && ((*(p + 1)) == 0))
4327 len = p - patt;
317b50b8 4328 else {
539cc7c7 4329 len = strlen(name);
317b50b8
AP
4330 if (!len) {
4331 if (!*patt)
4332 return 0;
4333 return -1;
4334 }
4335 }
539cc7c7
JG
4336
4337 return strncmp(patt, name, len);
4338}
4339
75683fe7 4340static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4341{
8bfa79fc
TH
4342 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4343 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4344 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4345
8bfa79fc
TH
4346 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4347 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4348
6919a0a6 4349 while (ad->model_num) {
539cc7c7 4350 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4351 if (ad->model_rev == NULL)
4352 return ad->horkage;
539cc7c7 4353 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4354 return ad->horkage;
f4b15fef 4355 }
6919a0a6 4356 ad++;
f4b15fef 4357 }
1da177e4
LT
4358 return 0;
4359}
4360
6919a0a6
AC
4361static int ata_dma_blacklisted(const struct ata_device *dev)
4362{
4363 /* We don't support polling DMA.
4364 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4365 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4366 */
9af5c9c9 4367 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4368 (dev->flags & ATA_DFLAG_CDB_INTR))
4369 return 1;
75683fe7 4370 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4371}
4372
6bbfd53d
AC
4373/**
4374 * ata_is_40wire - check drive side detection
4375 * @dev: device
4376 *
4377 * Perform drive side detection decoding, allowing for device vendors
4378 * who can't follow the documentation.
4379 */
4380
4381static int ata_is_40wire(struct ata_device *dev)
4382{
4383 if (dev->horkage & ATA_HORKAGE_IVB)
4384 return ata_drive_40wire_relaxed(dev->id);
4385 return ata_drive_40wire(dev->id);
4386}
4387
15a5551c
AC
4388/**
4389 * cable_is_40wire - 40/80/SATA decider
4390 * @ap: port to consider
4391 *
4392 * This function encapsulates the policy for speed management
4393 * in one place. At the moment we don't cache the result but
4394 * there is a good case for setting ap->cbl to the result when
4395 * we are called with unknown cables (and figuring out if it
4396 * impacts hotplug at all).
4397 *
4398 * Return 1 if the cable appears to be 40 wire.
4399 */
4400
4401static int cable_is_40wire(struct ata_port *ap)
4402{
4403 struct ata_link *link;
4404 struct ata_device *dev;
4405
4a9c7b33 4406 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4407 if (ap->cbl == ATA_CBL_PATA40)
4408 return 1;
4a9c7b33
TH
4409
4410 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4411 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4412 return 0;
4a9c7b33
TH
4413
4414 /* If the system is known to be 40 wire short cable (eg
4415 * laptop), then we allow 80 wire modes even if the drive
4416 * isn't sure.
4417 */
f792068e
AC
4418 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4419 return 0;
4a9c7b33
TH
4420
4421 /* If the controller doesn't know, we scan.
4422 *
4423 * Note: We look for all 40 wire detects at this point. Any
4424 * 80 wire detect is taken to be 80 wire cable because
4425 * - in many setups only the one drive (slave if present) will
4426 * give a valid detect
4427 * - if you have a non detect capable drive you don't want it
4428 * to colour the choice
4429 */
1eca4365
TH
4430 ata_for_each_link(link, ap, EDGE) {
4431 ata_for_each_dev(dev, link, ENABLED) {
4432 if (!ata_is_40wire(dev))
15a5551c
AC
4433 return 0;
4434 }
4435 }
4436 return 1;
4437}
4438
a6d5a51c
TH
4439/**
4440 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4441 * @dev: Device to compute xfermask for
4442 *
acf356b1
TH
4443 * Compute supported xfermask of @dev and store it in
4444 * dev->*_mask. This function is responsible for applying all
4445 * known limits including host controller limits, device
4446 * blacklist, etc...
a6d5a51c
TH
4447 *
4448 * LOCKING:
4449 * None.
a6d5a51c 4450 */
3373efd8 4451static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4452{
9af5c9c9
TH
4453 struct ata_link *link = dev->link;
4454 struct ata_port *ap = link->ap;
cca3974e 4455 struct ata_host *host = ap->host;
a6d5a51c 4456 unsigned long xfer_mask;
1da177e4 4457
37deecb5 4458 /* controller modes available */
565083e1
TH
4459 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4460 ap->mwdma_mask, ap->udma_mask);
4461
8343f889 4462 /* drive modes available */
37deecb5
TH
4463 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4464 dev->mwdma_mask, dev->udma_mask);
4465 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4466
b352e57d
AC
4467 /*
4468 * CFA Advanced TrueIDE timings are not allowed on a shared
4469 * cable
4470 */
4471 if (ata_dev_pair(dev)) {
4472 /* No PIO5 or PIO6 */
4473 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4474 /* No MWDMA3 or MWDMA 4 */
4475 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4476 }
4477
37deecb5
TH
4478 if (ata_dma_blacklisted(dev)) {
4479 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4480 ata_dev_printk(dev, KERN_WARNING,
4481 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4482 }
a6d5a51c 4483
14d66ab7 4484 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4485 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4486 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4487 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4488 "other device, disabling DMA\n");
5444a6f4 4489 }
565083e1 4490
e424675f
JG
4491 if (ap->flags & ATA_FLAG_NO_IORDY)
4492 xfer_mask &= ata_pio_mask_no_iordy(dev);
4493
5444a6f4 4494 if (ap->ops->mode_filter)
a76b62ca 4495 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4496
8343f889
RH
4497 /* Apply cable rule here. Don't apply it early because when
4498 * we handle hot plug the cable type can itself change.
4499 * Check this last so that we know if the transfer rate was
4500 * solely limited by the cable.
4501 * Unknown or 80 wire cables reported host side are checked
4502 * drive side as well. Cases where we know a 40wire cable
4503 * is used safely for 80 are not checked here.
4504 */
4505 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4506 /* UDMA/44 or higher would be available */
15a5551c 4507 if (cable_is_40wire(ap)) {
2dcb407e 4508 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4509 "limited to UDMA/33 due to 40-wire cable\n");
4510 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4511 }
4512
565083e1
TH
4513 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4514 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4515}
4516
1da177e4
LT
4517/**
4518 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4519 * @dev: Device to which command will be sent
4520 *
780a87f7
JG
4521 * Issue SET FEATURES - XFER MODE command to device @dev
4522 * on port @ap.
4523 *
1da177e4 4524 * LOCKING:
0cba632b 4525 * PCI/etc. bus probe sem.
83206a29
TH
4526 *
4527 * RETURNS:
4528 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4529 */
4530
3373efd8 4531static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4532{
a0123703 4533 struct ata_taskfile tf;
83206a29 4534 unsigned int err_mask;
1da177e4
LT
4535
4536 /* set up set-features taskfile */
4537 DPRINTK("set features - xfer mode\n");
4538
464cf177
TH
4539 /* Some controllers and ATAPI devices show flaky interrupt
4540 * behavior after setting xfer mode. Use polling instead.
4541 */
3373efd8 4542 ata_tf_init(dev, &tf);
a0123703
TH
4543 tf.command = ATA_CMD_SET_FEATURES;
4544 tf.feature = SETFEATURES_XFER;
464cf177 4545 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4546 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4547 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4548 if (ata_pio_need_iordy(dev))
4549 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4550 /* If the device has IORDY and the controller does not - turn it off */
4551 else if (ata_id_has_iordy(dev->id))
11b7becc 4552 tf.nsect = 0x01;
b9f8ab2d
AC
4553 else /* In the ancient relic department - skip all of this */
4554 return 0;
1da177e4 4555
2b789108 4556 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4557
4558 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4559 return err_mask;
4560}
9f45cbd3 4561/**
218f3d30 4562 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4563 * @dev: Device to which command will be sent
4564 * @enable: Whether to enable or disable the feature
218f3d30 4565 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4566 *
4567 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4568 * on port @ap with sector count
9f45cbd3
KCA
4569 *
4570 * LOCKING:
4571 * PCI/etc. bus probe sem.
4572 *
4573 * RETURNS:
4574 * 0 on success, AC_ERR_* mask otherwise.
4575 */
218f3d30
JG
4576static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4577 u8 feature)
9f45cbd3
KCA
4578{
4579 struct ata_taskfile tf;
4580 unsigned int err_mask;
4581
4582 /* set up set-features taskfile */
4583 DPRINTK("set features - SATA features\n");
4584
4585 ata_tf_init(dev, &tf);
4586 tf.command = ATA_CMD_SET_FEATURES;
4587 tf.feature = enable;
4588 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4589 tf.protocol = ATA_PROT_NODATA;
218f3d30 4590 tf.nsect = feature;
9f45cbd3 4591
2b789108 4592 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4593
83206a29
TH
4594 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4595 return err_mask;
1da177e4
LT
4596}
4597
8bf62ece
AL
4598/**
4599 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4600 * @dev: Device to which command will be sent
e2a7f77a
RD
4601 * @heads: Number of heads (taskfile parameter)
4602 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4603 *
4604 * LOCKING:
6aff8f1f
TH
4605 * Kernel thread context (may sleep)
4606 *
4607 * RETURNS:
4608 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4609 */
3373efd8
TH
4610static unsigned int ata_dev_init_params(struct ata_device *dev,
4611 u16 heads, u16 sectors)
8bf62ece 4612{
a0123703 4613 struct ata_taskfile tf;
6aff8f1f 4614 unsigned int err_mask;
8bf62ece
AL
4615
4616 /* Number of sectors per track 1-255. Number of heads 1-16 */
4617 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4618 return AC_ERR_INVALID;
8bf62ece
AL
4619
4620 /* set up init dev params taskfile */
4621 DPRINTK("init dev params \n");
4622
3373efd8 4623 ata_tf_init(dev, &tf);
a0123703
TH
4624 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4625 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4626 tf.protocol = ATA_PROT_NODATA;
4627 tf.nsect = sectors;
4628 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4629
2b789108 4630 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4631 /* A clean abort indicates an original or just out of spec drive
4632 and we should continue as we issue the setup based on the
4633 drive reported working geometry */
4634 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4635 err_mask = 0;
8bf62ece 4636
6aff8f1f
TH
4637 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4638 return err_mask;
8bf62ece
AL
4639}
4640
1da177e4 4641/**
0cba632b
JG
4642 * ata_sg_clean - Unmap DMA memory associated with command
4643 * @qc: Command containing DMA memory to be released
4644 *
4645 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4646 *
4647 * LOCKING:
cca3974e 4648 * spin_lock_irqsave(host lock)
1da177e4 4649 */
70e6ad0c 4650void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4651{
4652 struct ata_port *ap = qc->ap;
ff2aeb1e 4653 struct scatterlist *sg = qc->sg;
1da177e4
LT
4654 int dir = qc->dma_dir;
4655
efcb3cf7 4656 WARN_ON_ONCE(sg == NULL);
1da177e4 4657
dde20207 4658 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4659
dde20207 4660 if (qc->n_elem)
5825627c 4661 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4662
4663 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4664 qc->sg = NULL;
1da177e4
LT
4665}
4666
1da177e4 4667/**
5895ef9a 4668 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4669 * @qc: Metadata associated with taskfile to check
4670 *
780a87f7
JG
4671 * Allow low-level driver to filter ATA PACKET commands, returning
4672 * a status indicating whether or not it is OK to use DMA for the
4673 * supplied PACKET command.
4674 *
1da177e4 4675 * LOCKING:
624d5c51
TH
4676 * spin_lock_irqsave(host lock)
4677 *
4678 * RETURNS: 0 when ATAPI DMA can be used
4679 * nonzero otherwise
4680 */
5895ef9a 4681int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4682{
4683 struct ata_port *ap = qc->ap;
71601958 4684
624d5c51
TH
4685 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4686 * few ATAPI devices choke on such DMA requests.
4687 */
6a87e42e
TH
4688 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4689 unlikely(qc->nbytes & 15))
624d5c51 4690 return 1;
e2cec771 4691
624d5c51
TH
4692 if (ap->ops->check_atapi_dma)
4693 return ap->ops->check_atapi_dma(qc);
e2cec771 4694
624d5c51
TH
4695 return 0;
4696}
1da177e4 4697
624d5c51
TH
4698/**
4699 * ata_std_qc_defer - Check whether a qc needs to be deferred
4700 * @qc: ATA command in question
4701 *
4702 * Non-NCQ commands cannot run with any other command, NCQ or
4703 * not. As upper layer only knows the queue depth, we are
4704 * responsible for maintaining exclusion. This function checks
4705 * whether a new command @qc can be issued.
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4709 *
4710 * RETURNS:
4711 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4712 */
4713int ata_std_qc_defer(struct ata_queued_cmd *qc)
4714{
4715 struct ata_link *link = qc->dev->link;
e2cec771 4716
624d5c51
TH
4717 if (qc->tf.protocol == ATA_PROT_NCQ) {
4718 if (!ata_tag_valid(link->active_tag))
4719 return 0;
4720 } else {
4721 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4722 return 0;
4723 }
e2cec771 4724
624d5c51
TH
4725 return ATA_DEFER_LINK;
4726}
6912ccd5 4727
624d5c51 4728void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4729
624d5c51
TH
4730/**
4731 * ata_sg_init - Associate command with scatter-gather table.
4732 * @qc: Command to be associated
4733 * @sg: Scatter-gather table.
4734 * @n_elem: Number of elements in s/g table.
4735 *
4736 * Initialize the data-related elements of queued_cmd @qc
4737 * to point to a scatter-gather table @sg, containing @n_elem
4738 * elements.
4739 *
4740 * LOCKING:
4741 * spin_lock_irqsave(host lock)
4742 */
4743void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4744 unsigned int n_elem)
4745{
4746 qc->sg = sg;
4747 qc->n_elem = n_elem;
4748 qc->cursg = qc->sg;
4749}
bb5cb290 4750
624d5c51
TH
4751/**
4752 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4753 * @qc: Command with scatter-gather table to be mapped.
4754 *
4755 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4756 *
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4759 *
4760 * RETURNS:
4761 * Zero on success, negative on error.
4762 *
4763 */
4764static int ata_sg_setup(struct ata_queued_cmd *qc)
4765{
4766 struct ata_port *ap = qc->ap;
4767 unsigned int n_elem;
1da177e4 4768
624d5c51 4769 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4770
624d5c51
TH
4771 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4772 if (n_elem < 1)
4773 return -1;
bb5cb290 4774
624d5c51 4775 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4776 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4777 qc->n_elem = n_elem;
4778 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4779
624d5c51 4780 return 0;
1da177e4
LT
4781}
4782
624d5c51
TH
4783/**
4784 * swap_buf_le16 - swap halves of 16-bit words in place
4785 * @buf: Buffer to swap
4786 * @buf_words: Number of 16-bit words in buffer.
4787 *
4788 * Swap halves of 16-bit words if needed to convert from
4789 * little-endian byte order to native cpu byte order, or
4790 * vice-versa.
4791 *
4792 * LOCKING:
4793 * Inherited from caller.
4794 */
4795void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4796{
624d5c51
TH
4797#ifdef __BIG_ENDIAN
4798 unsigned int i;
8061f5f0 4799
624d5c51
TH
4800 for (i = 0; i < buf_words; i++)
4801 buf[i] = le16_to_cpu(buf[i]);
4802#endif /* __BIG_ENDIAN */
8061f5f0
TH
4803}
4804
8a8bc223
TH
4805/**
4806 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4807 * @ap: target port
8a8bc223
TH
4808 *
4809 * LOCKING:
4810 * None.
4811 */
4812
4813static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4814{
4815 struct ata_queued_cmd *qc = NULL;
4816 unsigned int i;
4817
4818 /* no command while frozen */
4819 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4820 return NULL;
4821
4822 /* the last tag is reserved for internal command. */
4823 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4824 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4825 qc = __ata_qc_from_tag(ap, i);
4826 break;
4827 }
4828
4829 if (qc)
4830 qc->tag = i;
4831
4832 return qc;
4833}
4834
1da177e4
LT
4835/**
4836 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4837 * @dev: Device from whom we request an available command structure
4838 *
4839 * LOCKING:
0cba632b 4840 * None.
1da177e4
LT
4841 */
4842
8a8bc223 4843struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4844{
9af5c9c9 4845 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4846 struct ata_queued_cmd *qc;
4847
8a8bc223 4848 qc = ata_qc_new(ap);
1da177e4 4849 if (qc) {
1da177e4
LT
4850 qc->scsicmd = NULL;
4851 qc->ap = ap;
4852 qc->dev = dev;
1da177e4 4853
2c13b7ce 4854 ata_qc_reinit(qc);
1da177e4
LT
4855 }
4856
4857 return qc;
4858}
4859
8a8bc223
TH
4860/**
4861 * ata_qc_free - free unused ata_queued_cmd
4862 * @qc: Command to complete
4863 *
4864 * Designed to free unused ata_queued_cmd object
4865 * in case something prevents using it.
4866 *
4867 * LOCKING:
4868 * spin_lock_irqsave(host lock)
4869 */
4870void ata_qc_free(struct ata_queued_cmd *qc)
4871{
a1104016 4872 struct ata_port *ap;
8a8bc223
TH
4873 unsigned int tag;
4874
efcb3cf7 4875 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4876 ap = qc->ap;
8a8bc223
TH
4877
4878 qc->flags = 0;
4879 tag = qc->tag;
4880 if (likely(ata_tag_valid(tag))) {
4881 qc->tag = ATA_TAG_POISON;
4882 clear_bit(tag, &ap->qc_allocated);
4883 }
4884}
4885
76014427 4886void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4887{
a1104016
JL
4888 struct ata_port *ap;
4889 struct ata_link *link;
dedaf2b0 4890
efcb3cf7
TH
4891 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4892 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4893 ap = qc->ap;
4894 link = qc->dev->link;
1da177e4
LT
4895
4896 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 ata_sg_clean(qc);
4898
7401abf2 4899 /* command should be marked inactive atomically with qc completion */
da917d69 4900 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4901 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4902 if (!link->sactive)
4903 ap->nr_active_links--;
4904 } else {
9af5c9c9 4905 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4906 ap->nr_active_links--;
4907 }
4908
4909 /* clear exclusive status */
4910 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 ap->excl_link == link))
4912 ap->excl_link = NULL;
7401abf2 4913
3f3791d3
AL
4914 /* atapi: mark qc as inactive to prevent the interrupt handler
4915 * from completing the command twice later, before the error handler
4916 * is called. (when rc != 0 and atapi request sense is needed)
4917 */
4918 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4919 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4920
1da177e4 4921 /* call completion callback */
77853bf2 4922 qc->complete_fn(qc);
1da177e4
LT
4923}
4924
39599a53
TH
4925static void fill_result_tf(struct ata_queued_cmd *qc)
4926{
4927 struct ata_port *ap = qc->ap;
4928
39599a53 4929 qc->result_tf.flags = qc->tf.flags;
22183bf5 4930 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4931}
4932
00115e0f
TH
4933static void ata_verify_xfer(struct ata_queued_cmd *qc)
4934{
4935 struct ata_device *dev = qc->dev;
4936
4937 if (ata_tag_internal(qc->tag))
4938 return;
4939
4940 if (ata_is_nodata(qc->tf.protocol))
4941 return;
4942
4943 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 return;
4945
4946 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4947}
4948
f686bcb8
TH
4949/**
4950 * ata_qc_complete - Complete an active ATA command
4951 * @qc: Command to complete
f686bcb8
TH
4952 *
4953 * Indicate to the mid and upper layers that an ATA
4954 * command has completed, with either an ok or not-ok status.
4955 *
4956 * LOCKING:
cca3974e 4957 * spin_lock_irqsave(host lock)
f686bcb8
TH
4958 */
4959void ata_qc_complete(struct ata_queued_cmd *qc)
4960{
4961 struct ata_port *ap = qc->ap;
4962
4963 /* XXX: New EH and old EH use different mechanisms to
4964 * synchronize EH with regular execution path.
4965 *
4966 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 * Normal execution path is responsible for not accessing a
4968 * failed qc. libata core enforces the rule by returning NULL
4969 * from ata_qc_from_tag() for failed qcs.
4970 *
4971 * Old EH depends on ata_qc_complete() nullifying completion
4972 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4973 * not synchronize with interrupt handler. Only PIO task is
4974 * taken care of.
4975 */
4976 if (ap->ops->error_handler) {
4dbfa39b
TH
4977 struct ata_device *dev = qc->dev;
4978 struct ata_eh_info *ehi = &dev->link->eh_info;
4979
f686bcb8
TH
4980 if (unlikely(qc->err_mask))
4981 qc->flags |= ATA_QCFLAG_FAILED;
4982
4983 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
4984 /* always fill result TF for failed qc */
4985 fill_result_tf(qc);
4986
4987 if (!ata_tag_internal(qc->tag))
f686bcb8 4988 ata_qc_schedule_eh(qc);
f4b31db9
TH
4989 else
4990 __ata_qc_complete(qc);
4991 return;
f686bcb8
TH
4992 }
4993
4dc738ed
TH
4994 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4995
f686bcb8
TH
4996 /* read result TF if requested */
4997 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4998 fill_result_tf(qc);
f686bcb8 4999
4dbfa39b
TH
5000 /* Some commands need post-processing after successful
5001 * completion.
5002 */
5003 switch (qc->tf.command) {
5004 case ATA_CMD_SET_FEATURES:
5005 if (qc->tf.feature != SETFEATURES_WC_ON &&
5006 qc->tf.feature != SETFEATURES_WC_OFF)
5007 break;
5008 /* fall through */
5009 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5010 case ATA_CMD_SET_MULTI: /* multi_count changed */
5011 /* revalidate device */
5012 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5013 ata_port_schedule_eh(ap);
5014 break;
054a5fba
TH
5015
5016 case ATA_CMD_SLEEP:
5017 dev->flags |= ATA_DFLAG_SLEEPING;
5018 break;
4dbfa39b
TH
5019 }
5020
00115e0f
TH
5021 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5022 ata_verify_xfer(qc);
5023
f686bcb8
TH
5024 __ata_qc_complete(qc);
5025 } else {
5026 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5027 return;
5028
5029 /* read result TF if failed or requested */
5030 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5031 fill_result_tf(qc);
f686bcb8
TH
5032
5033 __ata_qc_complete(qc);
5034 }
5035}
5036
dedaf2b0
TH
5037/**
5038 * ata_qc_complete_multiple - Complete multiple qcs successfully
5039 * @ap: port in question
5040 * @qc_active: new qc_active mask
dedaf2b0
TH
5041 *
5042 * Complete in-flight commands. This functions is meant to be
5043 * called from low-level driver's interrupt routine to complete
5044 * requests normally. ap->qc_active and @qc_active is compared
5045 * and commands are completed accordingly.
5046 *
5047 * LOCKING:
cca3974e 5048 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5049 *
5050 * RETURNS:
5051 * Number of completed commands on success, -errno otherwise.
5052 */
79f97dad 5053int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5054{
5055 int nr_done = 0;
5056 u32 done_mask;
dedaf2b0
TH
5057
5058 done_mask = ap->qc_active ^ qc_active;
5059
5060 if (unlikely(done_mask & qc_active)) {
5061 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5062 "(%08x->%08x)\n", ap->qc_active, qc_active);
5063 return -EINVAL;
5064 }
5065
43768180 5066 while (done_mask) {
dedaf2b0 5067 struct ata_queued_cmd *qc;
43768180 5068 unsigned int tag = __ffs(done_mask);
dedaf2b0 5069
43768180
JA
5070 qc = ata_qc_from_tag(ap, tag);
5071 if (qc) {
dedaf2b0
TH
5072 ata_qc_complete(qc);
5073 nr_done++;
5074 }
43768180 5075 done_mask &= ~(1 << tag);
dedaf2b0
TH
5076 }
5077
5078 return nr_done;
5079}
5080
1da177e4
LT
5081/**
5082 * ata_qc_issue - issue taskfile to device
5083 * @qc: command to issue to device
5084 *
5085 * Prepare an ATA command to submission to device.
5086 * This includes mapping the data into a DMA-able
5087 * area, filling in the S/G table, and finally
5088 * writing the taskfile to hardware, starting the command.
5089 *
5090 * LOCKING:
cca3974e 5091 * spin_lock_irqsave(host lock)
1da177e4 5092 */
8e0e694a 5093void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5094{
5095 struct ata_port *ap = qc->ap;
9af5c9c9 5096 struct ata_link *link = qc->dev->link;
405e66b3 5097 u8 prot = qc->tf.protocol;
1da177e4 5098
dedaf2b0
TH
5099 /* Make sure only one non-NCQ command is outstanding. The
5100 * check is skipped for old EH because it reuses active qc to
5101 * request ATAPI sense.
5102 */
efcb3cf7 5103 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5104
1973a023 5105 if (ata_is_ncq(prot)) {
efcb3cf7 5106 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5107
5108 if (!link->sactive)
5109 ap->nr_active_links++;
9af5c9c9 5110 link->sactive |= 1 << qc->tag;
dedaf2b0 5111 } else {
efcb3cf7 5112 WARN_ON_ONCE(link->sactive);
da917d69
TH
5113
5114 ap->nr_active_links++;
9af5c9c9 5115 link->active_tag = qc->tag;
dedaf2b0
TH
5116 }
5117
e4a70e76 5118 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5119 ap->qc_active |= 1 << qc->tag;
e4a70e76 5120
f92a2636
TH
5121 /* We guarantee to LLDs that they will have at least one
5122 * non-zero sg if the command is a data command.
5123 */
ff2aeb1e 5124 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5125
405e66b3 5126 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5127 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5128 if (ata_sg_setup(qc))
5129 goto sg_err;
1da177e4 5130
cf480626 5131 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5132 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5133 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5134 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5135 ata_link_abort(link);
5136 return;
5137 }
5138
1da177e4
LT
5139 ap->ops->qc_prep(qc);
5140
8e0e694a
TH
5141 qc->err_mask |= ap->ops->qc_issue(qc);
5142 if (unlikely(qc->err_mask))
5143 goto err;
5144 return;
1da177e4 5145
8e436af9 5146sg_err:
8e0e694a
TH
5147 qc->err_mask |= AC_ERR_SYSTEM;
5148err:
5149 ata_qc_complete(qc);
1da177e4
LT
5150}
5151
34bf2170
TH
5152/**
5153 * sata_scr_valid - test whether SCRs are accessible
936fd732 5154 * @link: ATA link to test SCR accessibility for
34bf2170 5155 *
936fd732 5156 * Test whether SCRs are accessible for @link.
34bf2170
TH
5157 *
5158 * LOCKING:
5159 * None.
5160 *
5161 * RETURNS:
5162 * 1 if SCRs are accessible, 0 otherwise.
5163 */
936fd732 5164int sata_scr_valid(struct ata_link *link)
34bf2170 5165{
936fd732
TH
5166 struct ata_port *ap = link->ap;
5167
a16abc0b 5168 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5169}
5170
5171/**
5172 * sata_scr_read - read SCR register of the specified port
936fd732 5173 * @link: ATA link to read SCR for
34bf2170
TH
5174 * @reg: SCR to read
5175 * @val: Place to store read value
5176 *
936fd732 5177 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5178 * guaranteed to succeed if @link is ap->link, the cable type of
5179 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5180 *
5181 * LOCKING:
633273a3 5182 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5183 *
5184 * RETURNS:
5185 * 0 on success, negative errno on failure.
5186 */
936fd732 5187int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5188{
633273a3 5189 if (ata_is_host_link(link)) {
633273a3 5190 if (sata_scr_valid(link))
82ef04fb 5191 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5192 return -EOPNOTSUPP;
5193 }
5194
5195 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5196}
5197
5198/**
5199 * sata_scr_write - write SCR register of the specified port
936fd732 5200 * @link: ATA link to write SCR for
34bf2170
TH
5201 * @reg: SCR to write
5202 * @val: value to write
5203 *
936fd732 5204 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5205 * guaranteed to succeed if @link is ap->link, the cable type of
5206 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5207 *
5208 * LOCKING:
633273a3 5209 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5210 *
5211 * RETURNS:
5212 * 0 on success, negative errno on failure.
5213 */
936fd732 5214int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5215{
633273a3 5216 if (ata_is_host_link(link)) {
633273a3 5217 if (sata_scr_valid(link))
82ef04fb 5218 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5219 return -EOPNOTSUPP;
5220 }
936fd732 5221
633273a3 5222 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5223}
5224
5225/**
5226 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5227 * @link: ATA link to write SCR for
34bf2170
TH
5228 * @reg: SCR to write
5229 * @val: value to write
5230 *
5231 * This function is identical to sata_scr_write() except that this
5232 * function performs flush after writing to the register.
5233 *
5234 * LOCKING:
633273a3 5235 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5236 *
5237 * RETURNS:
5238 * 0 on success, negative errno on failure.
5239 */
936fd732 5240int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5241{
633273a3 5242 if (ata_is_host_link(link)) {
633273a3 5243 int rc;
da3dbb17 5244
633273a3 5245 if (sata_scr_valid(link)) {
82ef04fb 5246 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5247 if (rc == 0)
82ef04fb 5248 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5249 return rc;
5250 }
5251 return -EOPNOTSUPP;
34bf2170 5252 }
633273a3
TH
5253
5254 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5255}
5256
5257/**
b1c72916 5258 * ata_phys_link_online - test whether the given link is online
936fd732 5259 * @link: ATA link to test
34bf2170 5260 *
936fd732
TH
5261 * Test whether @link is online. Note that this function returns
5262 * 0 if online status of @link cannot be obtained, so
5263 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5264 *
5265 * LOCKING:
5266 * None.
5267 *
5268 * RETURNS:
b5b3fa38 5269 * True if the port online status is available and online.
34bf2170 5270 */
b1c72916 5271bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5272{
5273 u32 sstatus;
5274
936fd732 5275 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5276 ata_sstatus_online(sstatus))
b5b3fa38
TH
5277 return true;
5278 return false;
34bf2170
TH
5279}
5280
5281/**
b1c72916 5282 * ata_phys_link_offline - test whether the given link is offline
936fd732 5283 * @link: ATA link to test
34bf2170 5284 *
936fd732
TH
5285 * Test whether @link is offline. Note that this function
5286 * returns 0 if offline status of @link cannot be obtained, so
5287 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5288 *
5289 * LOCKING:
5290 * None.
5291 *
5292 * RETURNS:
b5b3fa38 5293 * True if the port offline status is available and offline.
34bf2170 5294 */
b1c72916 5295bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5296{
5297 u32 sstatus;
5298
936fd732 5299 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5300 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5301 return true;
5302 return false;
34bf2170 5303}
0baab86b 5304
b1c72916
TH
5305/**
5306 * ata_link_online - test whether the given link is online
5307 * @link: ATA link to test
5308 *
5309 * Test whether @link is online. This is identical to
5310 * ata_phys_link_online() when there's no slave link. When
5311 * there's a slave link, this function should only be called on
5312 * the master link and will return true if any of M/S links is
5313 * online.
5314 *
5315 * LOCKING:
5316 * None.
5317 *
5318 * RETURNS:
5319 * True if the port online status is available and online.
5320 */
5321bool ata_link_online(struct ata_link *link)
5322{
5323 struct ata_link *slave = link->ap->slave_link;
5324
5325 WARN_ON(link == slave); /* shouldn't be called on slave link */
5326
5327 return ata_phys_link_online(link) ||
5328 (slave && ata_phys_link_online(slave));
5329}
5330
5331/**
5332 * ata_link_offline - test whether the given link is offline
5333 * @link: ATA link to test
5334 *
5335 * Test whether @link is offline. This is identical to
5336 * ata_phys_link_offline() when there's no slave link. When
5337 * there's a slave link, this function should only be called on
5338 * the master link and will return true if both M/S links are
5339 * offline.
5340 *
5341 * LOCKING:
5342 * None.
5343 *
5344 * RETURNS:
5345 * True if the port offline status is available and offline.
5346 */
5347bool ata_link_offline(struct ata_link *link)
5348{
5349 struct ata_link *slave = link->ap->slave_link;
5350
5351 WARN_ON(link == slave); /* shouldn't be called on slave link */
5352
5353 return ata_phys_link_offline(link) &&
5354 (!slave || ata_phys_link_offline(slave));
5355}
5356
6ffa01d8 5357#ifdef CONFIG_PM
cca3974e
JG
5358static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5359 unsigned int action, unsigned int ehi_flags,
5360 int wait)
500530f6
TH
5361{
5362 unsigned long flags;
5363 int i, rc;
5364
cca3974e
JG
5365 for (i = 0; i < host->n_ports; i++) {
5366 struct ata_port *ap = host->ports[i];
e3667ebf 5367 struct ata_link *link;
500530f6
TH
5368
5369 /* Previous resume operation might still be in
5370 * progress. Wait for PM_PENDING to clear.
5371 */
5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 ata_port_wait_eh(ap);
5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 }
5376
5377 /* request PM ops to EH */
5378 spin_lock_irqsave(ap->lock, flags);
5379
5380 ap->pm_mesg = mesg;
5381 if (wait) {
5382 rc = 0;
5383 ap->pm_result = &rc;
5384 }
5385
5386 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5387 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5388 link->eh_info.action |= action;
5389 link->eh_info.flags |= ehi_flags;
5390 }
500530f6
TH
5391
5392 ata_port_schedule_eh(ap);
5393
5394 spin_unlock_irqrestore(ap->lock, flags);
5395
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5402 }
5403 }
5404
5405 return 0;
5406}
5407
5408/**
cca3974e
JG
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
500530f6
TH
5411 * @mesg: PM message
5412 *
cca3974e 5413 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
cca3974e 5423int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5424{
9666f400 5425 int rc;
500530f6 5426
ca77329f
KCA
5427 /*
5428 * disable link pm on all ports before requesting
5429 * any pm activity
5430 */
5431 ata_lpm_enable(host);
5432
cca3974e 5433 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5434 if (rc == 0)
5435 host->dev->power.power_state = mesg;
500530f6
TH
5436 return rc;
5437}
5438
5439/**
cca3974e
JG
5440 * ata_host_resume - resume host
5441 * @host: host to resume
500530f6 5442 *
cca3974e 5443 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5444 * function requests EH to perform PM operations and returns.
5445 * Note that all resume operations are performed parallely.
5446 *
5447 * LOCKING:
5448 * Kernel thread context (may sleep).
5449 */
cca3974e 5450void ata_host_resume(struct ata_host *host)
500530f6 5451{
cf480626 5452 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5453 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5454 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5455
5456 /* reenable link pm */
5457 ata_lpm_disable(host);
500530f6 5458}
6ffa01d8 5459#endif
500530f6 5460
3ef3b43d
TH
5461/**
5462 * ata_dev_init - Initialize an ata_device structure
5463 * @dev: Device structure to initialize
5464 *
5465 * Initialize @dev in preparation for probing.
5466 *
5467 * LOCKING:
5468 * Inherited from caller.
5469 */
5470void ata_dev_init(struct ata_device *dev)
5471{
b1c72916 5472 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5473 struct ata_port *ap = link->ap;
72fa4b74
TH
5474 unsigned long flags;
5475
b1c72916 5476 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5477 link->sata_spd_limit = link->hw_sata_spd_limit;
5478 link->sata_spd = 0;
5a04bf4b 5479
72fa4b74
TH
5480 /* High bits of dev->flags are used to record warm plug
5481 * requests which occur asynchronously. Synchronize using
cca3974e 5482 * host lock.
72fa4b74 5483 */
ba6a1308 5484 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5485 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5486 dev->horkage = 0;
ba6a1308 5487 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5488
99cf610a
TH
5489 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5490 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5491 dev->pio_mask = UINT_MAX;
5492 dev->mwdma_mask = UINT_MAX;
5493 dev->udma_mask = UINT_MAX;
5494}
5495
4fb37a25
TH
5496/**
5497 * ata_link_init - Initialize an ata_link structure
5498 * @ap: ATA port link is attached to
5499 * @link: Link structure to initialize
8989805d 5500 * @pmp: Port multiplier port number
4fb37a25
TH
5501 *
5502 * Initialize @link.
5503 *
5504 * LOCKING:
5505 * Kernel thread context (may sleep)
5506 */
fb7fd614 5507void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5508{
5509 int i;
5510
5511 /* clear everything except for devices */
5512 memset(link, 0, offsetof(struct ata_link, device[0]));
5513
5514 link->ap = ap;
8989805d 5515 link->pmp = pmp;
4fb37a25
TH
5516 link->active_tag = ATA_TAG_POISON;
5517 link->hw_sata_spd_limit = UINT_MAX;
5518
5519 /* can't use iterator, ap isn't initialized yet */
5520 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5521 struct ata_device *dev = &link->device[i];
5522
5523 dev->link = link;
5524 dev->devno = dev - link->device;
110f66d2
TH
5525#ifdef CONFIG_ATA_ACPI
5526 dev->gtf_filter = ata_acpi_gtf_filter;
5527#endif
4fb37a25
TH
5528 ata_dev_init(dev);
5529 }
5530}
5531
5532/**
5533 * sata_link_init_spd - Initialize link->sata_spd_limit
5534 * @link: Link to configure sata_spd_limit for
5535 *
5536 * Initialize @link->[hw_]sata_spd_limit to the currently
5537 * configured value.
5538 *
5539 * LOCKING:
5540 * Kernel thread context (may sleep).
5541 *
5542 * RETURNS:
5543 * 0 on success, -errno on failure.
5544 */
fb7fd614 5545int sata_link_init_spd(struct ata_link *link)
4fb37a25 5546{
33267325 5547 u8 spd;
4fb37a25
TH
5548 int rc;
5549
d127ea7b 5550 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5551 if (rc)
5552 return rc;
5553
d127ea7b 5554 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5555 if (spd)
5556 link->hw_sata_spd_limit &= (1 << spd) - 1;
5557
05944bdf 5558 ata_force_link_limits(link);
33267325 5559
4fb37a25
TH
5560 link->sata_spd_limit = link->hw_sata_spd_limit;
5561
5562 return 0;
5563}
5564
1da177e4 5565/**
f3187195
TH
5566 * ata_port_alloc - allocate and initialize basic ATA port resources
5567 * @host: ATA host this allocated port belongs to
1da177e4 5568 *
f3187195
TH
5569 * Allocate and initialize basic ATA port resources.
5570 *
5571 * RETURNS:
5572 * Allocate ATA port on success, NULL on failure.
0cba632b 5573 *
1da177e4 5574 * LOCKING:
f3187195 5575 * Inherited from calling layer (may sleep).
1da177e4 5576 */
f3187195 5577struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5578{
f3187195 5579 struct ata_port *ap;
1da177e4 5580
f3187195
TH
5581 DPRINTK("ENTER\n");
5582
5583 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5584 if (!ap)
5585 return NULL;
5586
f4d6d004 5587 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5588 ap->lock = &host->lock;
f3187195 5589 ap->print_id = -1;
cca3974e 5590 ap->host = host;
f3187195 5591 ap->dev = host->dev;
bd5d825c
BP
5592
5593#if defined(ATA_VERBOSE_DEBUG)
5594 /* turn on all debugging levels */
5595 ap->msg_enable = 0x00FF;
5596#elif defined(ATA_DEBUG)
5597 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5598#else
0dd4b21f 5599 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5600#endif
1da177e4 5601
65f27f38
DH
5602 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5603 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5604 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5605 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5606 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5607 init_timer_deferrable(&ap->fastdrain_timer);
5608 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5609 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5610
838df628 5611 ap->cbl = ATA_CBL_NONE;
838df628 5612
8989805d 5613 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5614
5615#ifdef ATA_IRQ_TRAP
5616 ap->stats.unhandled_irq = 1;
5617 ap->stats.idle_irq = 1;
5618#endif
270390e1
TH
5619 ata_sff_port_init(ap);
5620
1da177e4 5621 return ap;
1da177e4
LT
5622}
5623
f0d36efd
TH
5624static void ata_host_release(struct device *gendev, void *res)
5625{
5626 struct ata_host *host = dev_get_drvdata(gendev);
5627 int i;
5628
1aa506e4
TH
5629 for (i = 0; i < host->n_ports; i++) {
5630 struct ata_port *ap = host->ports[i];
5631
4911487a
TH
5632 if (!ap)
5633 continue;
5634
5635 if (ap->scsi_host)
1aa506e4
TH
5636 scsi_host_put(ap->scsi_host);
5637
633273a3 5638 kfree(ap->pmp_link);
b1c72916 5639 kfree(ap->slave_link);
4911487a 5640 kfree(ap);
1aa506e4
TH
5641 host->ports[i] = NULL;
5642 }
5643
1aa56cca 5644 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5645}
5646
f3187195
TH
5647/**
5648 * ata_host_alloc - allocate and init basic ATA host resources
5649 * @dev: generic device this host is associated with
5650 * @max_ports: maximum number of ATA ports associated with this host
5651 *
5652 * Allocate and initialize basic ATA host resources. LLD calls
5653 * this function to allocate a host, initializes it fully and
5654 * attaches it using ata_host_register().
5655 *
5656 * @max_ports ports are allocated and host->n_ports is
5657 * initialized to @max_ports. The caller is allowed to decrease
5658 * host->n_ports before calling ata_host_register(). The unused
5659 * ports will be automatically freed on registration.
5660 *
5661 * RETURNS:
5662 * Allocate ATA host on success, NULL on failure.
5663 *
5664 * LOCKING:
5665 * Inherited from calling layer (may sleep).
5666 */
5667struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5668{
5669 struct ata_host *host;
5670 size_t sz;
5671 int i;
5672
5673 DPRINTK("ENTER\n");
5674
5675 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5676 return NULL;
5677
5678 /* alloc a container for our list of ATA ports (buses) */
5679 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5680 /* alloc a container for our list of ATA ports (buses) */
5681 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5682 if (!host)
5683 goto err_out;
5684
5685 devres_add(dev, host);
5686 dev_set_drvdata(dev, host);
5687
5688 spin_lock_init(&host->lock);
5689 host->dev = dev;
5690 host->n_ports = max_ports;
5691
5692 /* allocate ports bound to this host */
5693 for (i = 0; i < max_ports; i++) {
5694 struct ata_port *ap;
5695
5696 ap = ata_port_alloc(host);
5697 if (!ap)
5698 goto err_out;
5699
5700 ap->port_no = i;
5701 host->ports[i] = ap;
5702 }
5703
5704 devres_remove_group(dev, NULL);
5705 return host;
5706
5707 err_out:
5708 devres_release_group(dev, NULL);
5709 return NULL;
5710}
5711
f5cda257
TH
5712/**
5713 * ata_host_alloc_pinfo - alloc host and init with port_info array
5714 * @dev: generic device this host is associated with
5715 * @ppi: array of ATA port_info to initialize host with
5716 * @n_ports: number of ATA ports attached to this host
5717 *
5718 * Allocate ATA host and initialize with info from @ppi. If NULL
5719 * terminated, @ppi may contain fewer entries than @n_ports. The
5720 * last entry will be used for the remaining ports.
5721 *
5722 * RETURNS:
5723 * Allocate ATA host on success, NULL on failure.
5724 *
5725 * LOCKING:
5726 * Inherited from calling layer (may sleep).
5727 */
5728struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5729 const struct ata_port_info * const * ppi,
5730 int n_ports)
5731{
5732 const struct ata_port_info *pi;
5733 struct ata_host *host;
5734 int i, j;
5735
5736 host = ata_host_alloc(dev, n_ports);
5737 if (!host)
5738 return NULL;
5739
5740 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5741 struct ata_port *ap = host->ports[i];
5742
5743 if (ppi[j])
5744 pi = ppi[j++];
5745
5746 ap->pio_mask = pi->pio_mask;
5747 ap->mwdma_mask = pi->mwdma_mask;
5748 ap->udma_mask = pi->udma_mask;
5749 ap->flags |= pi->flags;
0c88758b 5750 ap->link.flags |= pi->link_flags;
f5cda257
TH
5751 ap->ops = pi->port_ops;
5752
5753 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5754 host->ops = pi->port_ops;
f5cda257
TH
5755 }
5756
5757 return host;
5758}
5759
b1c72916
TH
5760/**
5761 * ata_slave_link_init - initialize slave link
5762 * @ap: port to initialize slave link for
5763 *
5764 * Create and initialize slave link for @ap. This enables slave
5765 * link handling on the port.
5766 *
5767 * In libata, a port contains links and a link contains devices.
5768 * There is single host link but if a PMP is attached to it,
5769 * there can be multiple fan-out links. On SATA, there's usually
5770 * a single device connected to a link but PATA and SATA
5771 * controllers emulating TF based interface can have two - master
5772 * and slave.
5773 *
5774 * However, there are a few controllers which don't fit into this
5775 * abstraction too well - SATA controllers which emulate TF
5776 * interface with both master and slave devices but also have
5777 * separate SCR register sets for each device. These controllers
5778 * need separate links for physical link handling
5779 * (e.g. onlineness, link speed) but should be treated like a
5780 * traditional M/S controller for everything else (e.g. command
5781 * issue, softreset).
5782 *
5783 * slave_link is libata's way of handling this class of
5784 * controllers without impacting core layer too much. For
5785 * anything other than physical link handling, the default host
5786 * link is used for both master and slave. For physical link
5787 * handling, separate @ap->slave_link is used. All dirty details
5788 * are implemented inside libata core layer. From LLD's POV, the
5789 * only difference is that prereset, hardreset and postreset are
5790 * called once more for the slave link, so the reset sequence
5791 * looks like the following.
5792 *
5793 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5794 * softreset(M) -> postreset(M) -> postreset(S)
5795 *
5796 * Note that softreset is called only for the master. Softreset
5797 * resets both M/S by definition, so SRST on master should handle
5798 * both (the standard method will work just fine).
5799 *
5800 * LOCKING:
5801 * Should be called before host is registered.
5802 *
5803 * RETURNS:
5804 * 0 on success, -errno on failure.
5805 */
5806int ata_slave_link_init(struct ata_port *ap)
5807{
5808 struct ata_link *link;
5809
5810 WARN_ON(ap->slave_link);
5811 WARN_ON(ap->flags & ATA_FLAG_PMP);
5812
5813 link = kzalloc(sizeof(*link), GFP_KERNEL);
5814 if (!link)
5815 return -ENOMEM;
5816
5817 ata_link_init(ap, link, 1);
5818 ap->slave_link = link;
5819 return 0;
5820}
5821
32ebbc0c
TH
5822static void ata_host_stop(struct device *gendev, void *res)
5823{
5824 struct ata_host *host = dev_get_drvdata(gendev);
5825 int i;
5826
5827 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5828
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5831
5832 if (ap->ops->port_stop)
5833 ap->ops->port_stop(ap);
5834 }
5835
5836 if (host->ops->host_stop)
5837 host->ops->host_stop(host);
5838}
5839
029cfd6b
TH
5840/**
5841 * ata_finalize_port_ops - finalize ata_port_operations
5842 * @ops: ata_port_operations to finalize
5843 *
5844 * An ata_port_operations can inherit from another ops and that
5845 * ops can again inherit from another. This can go on as many
5846 * times as necessary as long as there is no loop in the
5847 * inheritance chain.
5848 *
5849 * Ops tables are finalized when the host is started. NULL or
5850 * unspecified entries are inherited from the closet ancestor
5851 * which has the method and the entry is populated with it.
5852 * After finalization, the ops table directly points to all the
5853 * methods and ->inherits is no longer necessary and cleared.
5854 *
5855 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5856 *
5857 * LOCKING:
5858 * None.
5859 */
5860static void ata_finalize_port_ops(struct ata_port_operations *ops)
5861{
2da67659 5862 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5863 const struct ata_port_operations *cur;
5864 void **begin = (void **)ops;
5865 void **end = (void **)&ops->inherits;
5866 void **pp;
5867
5868 if (!ops || !ops->inherits)
5869 return;
5870
5871 spin_lock(&lock);
5872
5873 for (cur = ops->inherits; cur; cur = cur->inherits) {
5874 void **inherit = (void **)cur;
5875
5876 for (pp = begin; pp < end; pp++, inherit++)
5877 if (!*pp)
5878 *pp = *inherit;
5879 }
5880
5881 for (pp = begin; pp < end; pp++)
5882 if (IS_ERR(*pp))
5883 *pp = NULL;
5884
5885 ops->inherits = NULL;
5886
5887 spin_unlock(&lock);
5888}
5889
ecef7253
TH
5890/**
5891 * ata_host_start - start and freeze ports of an ATA host
5892 * @host: ATA host to start ports for
5893 *
5894 * Start and then freeze ports of @host. Started status is
5895 * recorded in host->flags, so this function can be called
5896 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5897 * once. If host->ops isn't initialized yet, its set to the
5898 * first non-dummy port ops.
ecef7253
TH
5899 *
5900 * LOCKING:
5901 * Inherited from calling layer (may sleep).
5902 *
5903 * RETURNS:
5904 * 0 if all ports are started successfully, -errno otherwise.
5905 */
5906int ata_host_start(struct ata_host *host)
5907{
32ebbc0c
TH
5908 int have_stop = 0;
5909 void *start_dr = NULL;
ecef7253
TH
5910 int i, rc;
5911
5912 if (host->flags & ATA_HOST_STARTED)
5913 return 0;
5914
029cfd6b
TH
5915 ata_finalize_port_ops(host->ops);
5916
ecef7253
TH
5917 for (i = 0; i < host->n_ports; i++) {
5918 struct ata_port *ap = host->ports[i];
5919
029cfd6b
TH
5920 ata_finalize_port_ops(ap->ops);
5921
f3187195
TH
5922 if (!host->ops && !ata_port_is_dummy(ap))
5923 host->ops = ap->ops;
5924
32ebbc0c
TH
5925 if (ap->ops->port_stop)
5926 have_stop = 1;
5927 }
5928
5929 if (host->ops->host_stop)
5930 have_stop = 1;
5931
5932 if (have_stop) {
5933 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5934 if (!start_dr)
5935 return -ENOMEM;
5936 }
5937
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940
ecef7253
TH
5941 if (ap->ops->port_start) {
5942 rc = ap->ops->port_start(ap);
5943 if (rc) {
0f9fe9b7 5944 if (rc != -ENODEV)
0f757743
AM
5945 dev_printk(KERN_ERR, host->dev,
5946 "failed to start port %d "
5947 "(errno=%d)\n", i, rc);
ecef7253
TH
5948 goto err_out;
5949 }
5950 }
ecef7253
TH
5951 ata_eh_freeze_port(ap);
5952 }
5953
32ebbc0c
TH
5954 if (start_dr)
5955 devres_add(host->dev, start_dr);
ecef7253
TH
5956 host->flags |= ATA_HOST_STARTED;
5957 return 0;
5958
5959 err_out:
5960 while (--i >= 0) {
5961 struct ata_port *ap = host->ports[i];
5962
5963 if (ap->ops->port_stop)
5964 ap->ops->port_stop(ap);
5965 }
32ebbc0c 5966 devres_free(start_dr);
ecef7253
TH
5967 return rc;
5968}
5969
b03732f0 5970/**
cca3974e
JG
5971 * ata_sas_host_init - Initialize a host struct
5972 * @host: host to initialize
5973 * @dev: device host is attached to
5974 * @flags: host flags
5975 * @ops: port_ops
b03732f0
BK
5976 *
5977 * LOCKING:
5978 * PCI/etc. bus probe sem.
5979 *
5980 */
f3187195 5981/* KILLME - the only user left is ipr */
cca3974e 5982void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5983 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5984{
cca3974e
JG
5985 spin_lock_init(&host->lock);
5986 host->dev = dev;
5987 host->flags = flags;
5988 host->ops = ops;
b03732f0
BK
5989}
5990
79318057
AV
5991
5992static void async_port_probe(void *data, async_cookie_t cookie)
5993{
5994 int rc;
5995 struct ata_port *ap = data;
886ad09f
AV
5996
5997 /*
5998 * If we're not allowed to scan this host in parallel,
5999 * we need to wait until all previous scans have completed
6000 * before going further.
fa853a48
AV
6001 * Jeff Garzik says this is only within a controller, so we
6002 * don't need to wait for port 0, only for later ports.
886ad09f 6003 */
fa853a48 6004 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6005 async_synchronize_cookie(cookie);
6006
79318057
AV
6007 /* probe */
6008 if (ap->ops->error_handler) {
6009 struct ata_eh_info *ehi = &ap->link.eh_info;
6010 unsigned long flags;
6011
79318057
AV
6012 /* kick EH for boot probing */
6013 spin_lock_irqsave(ap->lock, flags);
6014
6015 ehi->probe_mask |= ATA_ALL_DEVICES;
6016 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6017 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6018
6019 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6020 ap->pflags |= ATA_PFLAG_LOADING;
6021 ata_port_schedule_eh(ap);
6022
6023 spin_unlock_irqrestore(ap->lock, flags);
6024
6025 /* wait for EH to finish */
6026 ata_port_wait_eh(ap);
6027 } else {
6028 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6029 rc = ata_bus_probe(ap);
6030 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6031
6032 if (rc) {
6033 /* FIXME: do something useful here?
6034 * Current libata behavior will
6035 * tear down everything when
6036 * the module is removed
6037 * or the h/w is unplugged.
6038 */
6039 }
6040 }
f29d3b23
AV
6041
6042 /* in order to keep device order, we need to synchronize at this point */
6043 async_synchronize_cookie(cookie);
6044
6045 ata_scsi_scan_host(ap, 1);
6046
79318057 6047}
f3187195
TH
6048/**
6049 * ata_host_register - register initialized ATA host
6050 * @host: ATA host to register
6051 * @sht: template for SCSI host
6052 *
6053 * Register initialized ATA host. @host is allocated using
6054 * ata_host_alloc() and fully initialized by LLD. This function
6055 * starts ports, registers @host with ATA and SCSI layers and
6056 * probe registered devices.
6057 *
6058 * LOCKING:
6059 * Inherited from calling layer (may sleep).
6060 *
6061 * RETURNS:
6062 * 0 on success, -errno otherwise.
6063 */
6064int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6065{
6066 int i, rc;
6067
6068 /* host must have been started */
6069 if (!(host->flags & ATA_HOST_STARTED)) {
6070 dev_printk(KERN_ERR, host->dev,
6071 "BUG: trying to register unstarted host\n");
6072 WARN_ON(1);
6073 return -EINVAL;
6074 }
6075
6076 /* Blow away unused ports. This happens when LLD can't
6077 * determine the exact number of ports to allocate at
6078 * allocation time.
6079 */
6080 for (i = host->n_ports; host->ports[i]; i++)
6081 kfree(host->ports[i]);
6082
6083 /* give ports names and add SCSI hosts */
6084 for (i = 0; i < host->n_ports; i++)
6085 host->ports[i]->print_id = ata_print_id++;
6086
6087 rc = ata_scsi_add_hosts(host, sht);
6088 if (rc)
6089 return rc;
6090
fafbae87
TH
6091 /* associate with ACPI nodes */
6092 ata_acpi_associate(host);
6093
f3187195
TH
6094 /* set cable, sata_spd_limit and report */
6095 for (i = 0; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
f3187195
TH
6097 unsigned long xfer_mask;
6098
6099 /* set SATA cable type if still unset */
6100 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6101 ap->cbl = ATA_CBL_SATA;
6102
6103 /* init sata_spd_limit to the current value */
4fb37a25 6104 sata_link_init_spd(&ap->link);
b1c72916
TH
6105 if (ap->slave_link)
6106 sata_link_init_spd(ap->slave_link);
f3187195 6107
cbcdd875 6108 /* print per-port info to dmesg */
f3187195
TH
6109 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6110 ap->udma_mask);
6111
abf6e8ed 6112 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6113 ata_port_printk(ap, KERN_INFO,
6114 "%cATA max %s %s\n",
a16abc0b 6115 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6116 ata_mode_string(xfer_mask),
cbcdd875 6117 ap->link.eh_info.desc);
abf6e8ed
TH
6118 ata_ehi_clear_desc(&ap->link.eh_info);
6119 } else
f3187195
TH
6120 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6121 }
6122
f6005354 6123 /* perform each probe asynchronously */
f3187195
TH
6124 for (i = 0; i < host->n_ports; i++) {
6125 struct ata_port *ap = host->ports[i];
79318057 6126 async_schedule(async_port_probe, ap);
f3187195 6127 }
f3187195
TH
6128
6129 return 0;
6130}
6131
f5cda257
TH
6132/**
6133 * ata_host_activate - start host, request IRQ and register it
6134 * @host: target ATA host
6135 * @irq: IRQ to request
6136 * @irq_handler: irq_handler used when requesting IRQ
6137 * @irq_flags: irq_flags used when requesting IRQ
6138 * @sht: scsi_host_template to use when registering the host
6139 *
6140 * After allocating an ATA host and initializing it, most libata
6141 * LLDs perform three steps to activate the host - start host,
6142 * request IRQ and register it. This helper takes necessasry
6143 * arguments and performs the three steps in one go.
6144 *
3d46b2e2
PM
6145 * An invalid IRQ skips the IRQ registration and expects the host to
6146 * have set polling mode on the port. In this case, @irq_handler
6147 * should be NULL.
6148 *
f5cda257
TH
6149 * LOCKING:
6150 * Inherited from calling layer (may sleep).
6151 *
6152 * RETURNS:
6153 * 0 on success, -errno otherwise.
6154 */
6155int ata_host_activate(struct ata_host *host, int irq,
6156 irq_handler_t irq_handler, unsigned long irq_flags,
6157 struct scsi_host_template *sht)
6158{
cbcdd875 6159 int i, rc;
f5cda257
TH
6160
6161 rc = ata_host_start(host);
6162 if (rc)
6163 return rc;
6164
3d46b2e2
PM
6165 /* Special case for polling mode */
6166 if (!irq) {
6167 WARN_ON(irq_handler);
6168 return ata_host_register(host, sht);
6169 }
6170
f5cda257
TH
6171 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6172 dev_driver_string(host->dev), host);
6173 if (rc)
6174 return rc;
6175
cbcdd875
TH
6176 for (i = 0; i < host->n_ports; i++)
6177 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6178
f5cda257
TH
6179 rc = ata_host_register(host, sht);
6180 /* if failed, just free the IRQ and leave ports alone */
6181 if (rc)
6182 devm_free_irq(host->dev, irq, host);
6183
6184 return rc;
6185}
6186
720ba126
TH
6187/**
6188 * ata_port_detach - Detach ATA port in prepration of device removal
6189 * @ap: ATA port to be detached
6190 *
6191 * Detach all ATA devices and the associated SCSI devices of @ap;
6192 * then, remove the associated SCSI host. @ap is guaranteed to
6193 * be quiescent on return from this function.
6194 *
6195 * LOCKING:
6196 * Kernel thread context (may sleep).
6197 */
741b7763 6198static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6199{
6200 unsigned long flags;
720ba126
TH
6201
6202 if (!ap->ops->error_handler)
c3cf30a9 6203 goto skip_eh;
720ba126
TH
6204
6205 /* tell EH we're leaving & flush EH */
ba6a1308 6206 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6207 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6208 ata_port_schedule_eh(ap);
ba6a1308 6209 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6210
ece180d1 6211 /* wait till EH commits suicide */
720ba126
TH
6212 ata_port_wait_eh(ap);
6213
ece180d1
TH
6214 /* it better be dead now */
6215 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6216
45a66c1c 6217 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6218
c3cf30a9 6219 skip_eh:
720ba126 6220 /* remove the associated SCSI host */
cca3974e 6221 scsi_remove_host(ap->scsi_host);
720ba126
TH
6222}
6223
0529c159
TH
6224/**
6225 * ata_host_detach - Detach all ports of an ATA host
6226 * @host: Host to detach
6227 *
6228 * Detach all ports of @host.
6229 *
6230 * LOCKING:
6231 * Kernel thread context (may sleep).
6232 */
6233void ata_host_detach(struct ata_host *host)
6234{
6235 int i;
6236
6237 for (i = 0; i < host->n_ports; i++)
6238 ata_port_detach(host->ports[i]);
562f0c2d
TH
6239
6240 /* the host is dead now, dissociate ACPI */
6241 ata_acpi_dissociate(host);
0529c159
TH
6242}
6243
374b1873
JG
6244#ifdef CONFIG_PCI
6245
1da177e4
LT
6246/**
6247 * ata_pci_remove_one - PCI layer callback for device removal
6248 * @pdev: PCI device that was removed
6249 *
b878ca5d
TH
6250 * PCI layer indicates to libata via this hook that hot-unplug or
6251 * module unload event has occurred. Detach all ports. Resource
6252 * release is handled via devres.
1da177e4
LT
6253 *
6254 * LOCKING:
6255 * Inherited from PCI layer (may sleep).
6256 */
f0d36efd 6257void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6258{
2855568b 6259 struct device *dev = &pdev->dev;
cca3974e 6260 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6261
b878ca5d 6262 ata_host_detach(host);
1da177e4
LT
6263}
6264
6265/* move to PCI subsystem */
057ace5e 6266int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6267{
6268 unsigned long tmp = 0;
6269
6270 switch (bits->width) {
6271 case 1: {
6272 u8 tmp8 = 0;
6273 pci_read_config_byte(pdev, bits->reg, &tmp8);
6274 tmp = tmp8;
6275 break;
6276 }
6277 case 2: {
6278 u16 tmp16 = 0;
6279 pci_read_config_word(pdev, bits->reg, &tmp16);
6280 tmp = tmp16;
6281 break;
6282 }
6283 case 4: {
6284 u32 tmp32 = 0;
6285 pci_read_config_dword(pdev, bits->reg, &tmp32);
6286 tmp = tmp32;
6287 break;
6288 }
6289
6290 default:
6291 return -EINVAL;
6292 }
6293
6294 tmp &= bits->mask;
6295
6296 return (tmp == bits->val) ? 1 : 0;
6297}
9b847548 6298
6ffa01d8 6299#ifdef CONFIG_PM
3c5100c1 6300void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6301{
6302 pci_save_state(pdev);
4c90d971 6303 pci_disable_device(pdev);
500530f6 6304
3a2d5b70 6305 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6306 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6307}
6308
553c4aa6 6309int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6310{
553c4aa6
TH
6311 int rc;
6312
9b847548
JA
6313 pci_set_power_state(pdev, PCI_D0);
6314 pci_restore_state(pdev);
553c4aa6 6315
b878ca5d 6316 rc = pcim_enable_device(pdev);
553c4aa6
TH
6317 if (rc) {
6318 dev_printk(KERN_ERR, &pdev->dev,
6319 "failed to enable device after resume (%d)\n", rc);
6320 return rc;
6321 }
6322
9b847548 6323 pci_set_master(pdev);
553c4aa6 6324 return 0;
500530f6
TH
6325}
6326
3c5100c1 6327int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6328{
cca3974e 6329 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6330 int rc = 0;
6331
cca3974e 6332 rc = ata_host_suspend(host, mesg);
500530f6
TH
6333 if (rc)
6334 return rc;
6335
3c5100c1 6336 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6337
6338 return 0;
6339}
6340
6341int ata_pci_device_resume(struct pci_dev *pdev)
6342{
cca3974e 6343 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6344 int rc;
500530f6 6345
553c4aa6
TH
6346 rc = ata_pci_device_do_resume(pdev);
6347 if (rc == 0)
6348 ata_host_resume(host);
6349 return rc;
9b847548 6350}
6ffa01d8
TH
6351#endif /* CONFIG_PM */
6352
1da177e4
LT
6353#endif /* CONFIG_PCI */
6354
33267325
TH
6355static int __init ata_parse_force_one(char **cur,
6356 struct ata_force_ent *force_ent,
6357 const char **reason)
6358{
6359 /* FIXME: Currently, there's no way to tag init const data and
6360 * using __initdata causes build failure on some versions of
6361 * gcc. Once __initdataconst is implemented, add const to the
6362 * following structure.
6363 */
6364 static struct ata_force_param force_tbl[] __initdata = {
6365 { "40c", .cbl = ATA_CBL_PATA40 },
6366 { "80c", .cbl = ATA_CBL_PATA80 },
6367 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6368 { "unk", .cbl = ATA_CBL_PATA_UNK },
6369 { "ign", .cbl = ATA_CBL_PATA_IGN },
6370 { "sata", .cbl = ATA_CBL_SATA },
6371 { "1.5Gbps", .spd_limit = 1 },
6372 { "3.0Gbps", .spd_limit = 2 },
6373 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6374 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6375 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6376 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6377 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6378 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6379 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6380 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6381 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6382 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6383 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6384 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6385 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6386 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6387 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6388 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6389 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6390 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6391 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6392 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6393 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6394 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6395 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6396 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6397 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6398 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6399 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6400 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6401 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6402 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6403 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6404 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6405 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6406 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6407 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6408 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6409 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6410 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6411 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6412 };
6413 char *start = *cur, *p = *cur;
6414 char *id, *val, *endp;
6415 const struct ata_force_param *match_fp = NULL;
6416 int nr_matches = 0, i;
6417
6418 /* find where this param ends and update *cur */
6419 while (*p != '\0' && *p != ',')
6420 p++;
6421
6422 if (*p == '\0')
6423 *cur = p;
6424 else
6425 *cur = p + 1;
6426
6427 *p = '\0';
6428
6429 /* parse */
6430 p = strchr(start, ':');
6431 if (!p) {
6432 val = strstrip(start);
6433 goto parse_val;
6434 }
6435 *p = '\0';
6436
6437 id = strstrip(start);
6438 val = strstrip(p + 1);
6439
6440 /* parse id */
6441 p = strchr(id, '.');
6442 if (p) {
6443 *p++ = '\0';
6444 force_ent->device = simple_strtoul(p, &endp, 10);
6445 if (p == endp || *endp != '\0') {
6446 *reason = "invalid device";
6447 return -EINVAL;
6448 }
6449 }
6450
6451 force_ent->port = simple_strtoul(id, &endp, 10);
6452 if (p == endp || *endp != '\0') {
6453 *reason = "invalid port/link";
6454 return -EINVAL;
6455 }
6456
6457 parse_val:
6458 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6459 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6460 const struct ata_force_param *fp = &force_tbl[i];
6461
6462 if (strncasecmp(val, fp->name, strlen(val)))
6463 continue;
6464
6465 nr_matches++;
6466 match_fp = fp;
6467
6468 if (strcasecmp(val, fp->name) == 0) {
6469 nr_matches = 1;
6470 break;
6471 }
6472 }
6473
6474 if (!nr_matches) {
6475 *reason = "unknown value";
6476 return -EINVAL;
6477 }
6478 if (nr_matches > 1) {
6479 *reason = "ambigious value";
6480 return -EINVAL;
6481 }
6482
6483 force_ent->param = *match_fp;
6484
6485 return 0;
6486}
6487
6488static void __init ata_parse_force_param(void)
6489{
6490 int idx = 0, size = 1;
6491 int last_port = -1, last_device = -1;
6492 char *p, *cur, *next;
6493
6494 /* calculate maximum number of params and allocate force_tbl */
6495 for (p = ata_force_param_buf; *p; p++)
6496 if (*p == ',')
6497 size++;
6498
6499 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6500 if (!ata_force_tbl) {
6501 printk(KERN_WARNING "ata: failed to extend force table, "
6502 "libata.force ignored\n");
6503 return;
6504 }
6505
6506 /* parse and populate the table */
6507 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6508 const char *reason = "";
6509 struct ata_force_ent te = { .port = -1, .device = -1 };
6510
6511 next = cur;
6512 if (ata_parse_force_one(&next, &te, &reason)) {
6513 printk(KERN_WARNING "ata: failed to parse force "
6514 "parameter \"%s\" (%s)\n",
6515 cur, reason);
6516 continue;
6517 }
6518
6519 if (te.port == -1) {
6520 te.port = last_port;
6521 te.device = last_device;
6522 }
6523
6524 ata_force_tbl[idx++] = te;
6525
6526 last_port = te.port;
6527 last_device = te.device;
6528 }
6529
6530 ata_force_tbl_size = idx;
6531}
1da177e4 6532
1da177e4
LT
6533static int __init ata_init(void)
6534{
270390e1
TH
6535 int rc = -ENOMEM;
6536
33267325
TH
6537 ata_parse_force_param();
6538
453b07ac 6539 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04 6540 if (!ata_aux_wq)
270390e1
TH
6541 goto fail;
6542
6543 rc = ata_sff_init();
6544 if (rc)
6545 goto fail;
453b07ac 6546
1da177e4
LT
6547 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6548 return 0;
49ea3b04 6549
270390e1 6550fail:
49ea3b04 6551 kfree(ata_force_tbl);
270390e1
TH
6552 if (ata_aux_wq)
6553 destroy_workqueue(ata_aux_wq);
6554 return rc;
1da177e4
LT
6555}
6556
6557static void __exit ata_exit(void)
6558{
270390e1 6559 ata_sff_exit();
33267325 6560 kfree(ata_force_tbl);
453b07ac 6561 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6562}
6563
a4625085 6564subsys_initcall(ata_init);
1da177e4
LT
6565module_exit(ata_exit);
6566
9990b6f3 6567static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6568
6569int ata_ratelimit(void)
6570{
9990b6f3 6571 return __ratelimit(&ratelimit);
67846b30
JG
6572}
6573
c22daff4
TH
6574/**
6575 * ata_wait_register - wait until register value changes
6576 * @reg: IO-mapped register
6577 * @mask: Mask to apply to read register value
6578 * @val: Wait condition
341c2c95
TH
6579 * @interval: polling interval in milliseconds
6580 * @timeout: timeout in milliseconds
c22daff4
TH
6581 *
6582 * Waiting for some bits of register to change is a common
6583 * operation for ATA controllers. This function reads 32bit LE
6584 * IO-mapped register @reg and tests for the following condition.
6585 *
6586 * (*@reg & mask) != val
6587 *
6588 * If the condition is met, it returns; otherwise, the process is
6589 * repeated after @interval_msec until timeout.
6590 *
6591 * LOCKING:
6592 * Kernel thread context (may sleep)
6593 *
6594 * RETURNS:
6595 * The final register value.
6596 */
6597u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6598 unsigned long interval, unsigned long timeout)
c22daff4 6599{
341c2c95 6600 unsigned long deadline;
c22daff4
TH
6601 u32 tmp;
6602
6603 tmp = ioread32(reg);
6604
6605 /* Calculate timeout _after_ the first read to make sure
6606 * preceding writes reach the controller before starting to
6607 * eat away the timeout.
6608 */
341c2c95 6609 deadline = ata_deadline(jiffies, timeout);
c22daff4 6610
341c2c95
TH
6611 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6612 msleep(interval);
c22daff4
TH
6613 tmp = ioread32(reg);
6614 }
6615
6616 return tmp;
6617}
6618
dd5b06c4
TH
6619/*
6620 * Dummy port_ops
6621 */
182d7bba 6622static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6623{
182d7bba 6624 return AC_ERR_SYSTEM;
dd5b06c4
TH
6625}
6626
182d7bba 6627static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6628{
182d7bba 6629 /* truly dummy */
dd5b06c4
TH
6630}
6631
029cfd6b 6632struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6633 .qc_prep = ata_noop_qc_prep,
6634 .qc_issue = ata_dummy_qc_issue,
182d7bba 6635 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6636};
6637
21b0ad4f
TH
6638const struct ata_port_info ata_dummy_port_info = {
6639 .port_ops = &ata_dummy_port_ops,
6640};
6641
1da177e4
LT
6642/*
6643 * libata is essentially a library of internal helper functions for
6644 * low-level ATA host controller drivers. As such, the API/ABI is
6645 * likely to change as new drivers are added and updated.
6646 * Do not depend on ABI/API stability.
6647 */
e9c83914
TH
6648EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6649EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6650EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6651EXPORT_SYMBOL_GPL(ata_base_port_ops);
6652EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6653EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6654EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6655EXPORT_SYMBOL_GPL(ata_link_next);
6656EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6657EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6658EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6659EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6660EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6661EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6662EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6663EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6664EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6665EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6666EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6667EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6668EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6669EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6670EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6671EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6672EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6673EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6674EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6675EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6676EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6677EXPORT_SYMBOL_GPL(ata_mode_string);
6678EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6679EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6680EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6681EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6682EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6683EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6684EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6685EXPORT_SYMBOL_GPL(sata_link_debounce);
6686EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6687EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6688EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6689EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6690EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6691EXPORT_SYMBOL_GPL(ata_dev_classify);
6692EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6693EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6694EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6695EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6696EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6697EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6698EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6699EXPORT_SYMBOL_GPL(sata_scr_valid);
6700EXPORT_SYMBOL_GPL(sata_scr_read);
6701EXPORT_SYMBOL_GPL(sata_scr_write);
6702EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6703EXPORT_SYMBOL_GPL(ata_link_online);
6704EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6705#ifdef CONFIG_PM
cca3974e
JG
6706EXPORT_SYMBOL_GPL(ata_host_suspend);
6707EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6708#endif /* CONFIG_PM */
6a62a04d
TH
6709EXPORT_SYMBOL_GPL(ata_id_string);
6710EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6711EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6712EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6713
1bc4ccff 6714EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6715EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6716EXPORT_SYMBOL_GPL(ata_timing_compute);
6717EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6718EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6719
1da177e4
LT
6720#ifdef CONFIG_PCI
6721EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6722EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6723#ifdef CONFIG_PM
500530f6
TH
6724EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6725EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6726EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6727EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6728#endif /* CONFIG_PM */
1da177e4 6729#endif /* CONFIG_PCI */
9b847548 6730
b64bbc39
TH
6731EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6732EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6733EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6734EXPORT_SYMBOL_GPL(ata_port_desc);
6735#ifdef CONFIG_PCI
6736EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6737#endif /* CONFIG_PCI */
7b70fc03 6738EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6739EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6740EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6741EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6742EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6743EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6744EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6745EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6746EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6747EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6748EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6749EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6750
6751EXPORT_SYMBOL_GPL(ata_cable_40wire);
6752EXPORT_SYMBOL_GPL(ata_cable_80wire);
6753EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6754EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6755EXPORT_SYMBOL_GPL(ata_cable_sata);