]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
ahci: Remove jmicron fixup
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1 201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
bd056d7e 211static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 212{
9a3dccc4 213 u8 cmd;
1da177e4 214
9a3dccc4 215 int index, fua, lba48, write;
2e9edbf8 216
9a3dccc4 217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 220
8cbd6df1
AL
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
9a3dccc4 223 index = dev->multi_count ? 0 : 8;
bd056d7e 224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
0565c26d 227 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
228 } else {
229 tf->protocol = ATA_PROT_DMA;
9a3dccc4 230 index = 16;
8cbd6df1 231 }
1da177e4 232
9a3dccc4
TH
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
1da177e4
LT
239}
240
35b649fe
TH
241/**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257{
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282}
283
bd056d7e
TH
284/**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307{
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
317
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
320
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
325
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
329
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
336
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
342
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
349
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
352
353 tf->hob_nsect = (n_block >> 8) & 0xff;
354
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
361
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
364
365 tf->nsect = n_block & 0xff;
366
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
370
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
375
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
379
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
382
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
388
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
391
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
398
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
404 }
405
406 return 0;
407}
408
cb95d562
TH
409/**
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
414 *
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
417 *
418 * LOCKING:
419 * None.
420 *
421 * RETURNS:
422 * Packed xfer_mask.
423 */
424static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
427{
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
431}
432
c0489e4e
TH
433/**
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
439 *
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
442 */
443static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
447{
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
454}
455
cb95d562 456static const struct ata_xfer_ent {
be9a50c8 457 int shift, bits;
cb95d562
TH
458 u8 base;
459} ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
464};
465
466/**
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
469 *
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
472 *
473 * LOCKING:
474 * None.
475 *
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
478 */
479static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
480{
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
483
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
488}
489
490/**
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
493 *
494 * Return matching xfer_mask for @xfer_mode.
495 *
496 * LOCKING:
497 * None.
498 *
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
501 */
502static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
503{
504 const struct ata_xfer_ent *ent;
505
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
510}
511
512/**
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
515 *
516 * Return matching xfer_shift for @xfer_mode.
517 *
518 * LOCKING:
519 * None.
520 *
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
523 */
524static int ata_xfer_mode2shift(unsigned int xfer_mode)
525{
526 const struct ata_xfer_ent *ent;
527
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
532}
533
1da177e4 534/**
1da7b0d0
TH
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
537 *
538 * Determine string which represents the highest speed
1da7b0d0 539 * (highest bit in @modemask).
1da177e4
LT
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Constant C string representing highest speed listed in
1da7b0d0 546 * @mode_mask, or the constant C string "<n/a>".
1da177e4 547 */
1da7b0d0 548static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 549{
75f554bc
TH
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
b352e57d
AC
556 "PIO5",
557 "PIO6",
75f554bc
TH
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
b352e57d
AC
561 "MWDMA3",
562 "MWDMA4",
75f554bc
TH
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
571 };
1da7b0d0 572 int highbit;
1da177e4 573
1da7b0d0
TH
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
1da177e4 577 return "<n/a>";
1da177e4
LT
578}
579
4c360c81
TH
580static const char *sata_spd_string(unsigned int spd)
581{
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
585 };
586
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
590}
591
3373efd8 592void ata_dev_disable(struct ata_device *dev)
0b8efb0a 593{
0dd4b21f 594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
596 dev->class++;
597 }
598}
599
1da177e4
LT
600/**
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
604 *
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
608 *
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
613 *
614 * LOCKING:
615 * caller.
616 */
617
618static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
620{
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
623
624 ap->ops->dev_select(ap, device);
625
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
628
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
631
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
634
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
637
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
640
641 return 0; /* nothing found */
642}
643
644/**
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
648 *
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
652 *
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
657 *
658 * LOCKING:
659 * caller.
660 */
661
662static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
664{
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
667
668 ap->ops->dev_select(ap, device);
669
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
672
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
675
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
678
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
681
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
684
685 return 0; /* nothing found */
686}
687
688/**
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
692 *
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
696 *
697 * LOCKING:
698 * caller.
699 */
700
701static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
703{
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
707}
708
709/**
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
712 *
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
716 *
717 * LOCKING:
718 * None.
719 *
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
723 */
724
057ace5e 725unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
726{
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
730 */
731
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
736 }
737
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
742 }
743
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
746}
747
748/**
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
b4dc7623 752 * @r_err: Value of error register on completion
1da177e4
LT
753 *
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
758 *
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
762 *
763 * LOCKING:
764 * caller.
b4dc7623
TH
765 *
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
768 */
769
b4dc7623
TH
770static unsigned int
771ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 772{
1da177e4
LT
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
776
777 ap->ops->dev_select(ap, device);
778
779 memset(&tf, 0, sizeof(tf));
780
1da177e4 781 ap->ops->tf_read(ap, &tf);
0169e284 782 err = tf.feature;
b4dc7623
TH
783 if (r_err)
784 *r_err = err;
1da177e4 785
93590859
AC
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
1da177e4
LT
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
b4dc7623 795 return ATA_DEV_NONE;
1da177e4 796
b4dc7623 797 /* determine if device is ATA or ATAPI */
1da177e4 798 class = ata_dev_classify(&tf);
b4dc7623 799
1da177e4 800 if (class == ATA_DEV_UNKNOWN)
b4dc7623 801 return ATA_DEV_NONE;
1da177e4 802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
803 return ATA_DEV_NONE;
804 return class;
1da177e4
LT
805}
806
807/**
6a62a04d 808 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
813 *
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
817 *
818 * LOCKING:
819 * caller.
820 */
821
6a62a04d
TH
822void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
1da177e4
LT
824{
825 unsigned int c;
826
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
831
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
835
836 ofs++;
837 len -= 2;
838 }
839}
840
0e949ff3 841/**
6a62a04d 842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
847 *
6a62a04d 848 * This function is identical to ata_id_string except that it
0e949ff3
TH
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
851 *
852 * LOCKING:
853 * caller.
854 */
6a62a04d
TH
855void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
0e949ff3
TH
857{
858 unsigned char *p;
859
860 WARN_ON(!(len & 1));
861
6a62a04d 862 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
863
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
868}
0baab86b 869
2940740b
TH
870static u64 ata_id_n_sectors(const u16 *id)
871{
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
882 }
883}
884
0baab86b
EF
885/**
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * This function performs no actual function.
891 *
892 * May be used as the dev_select() entry in ata_port_operations.
893 *
894 * LOCKING:
895 * caller.
896 */
1da177e4
LT
897void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
898{
899}
900
0baab86b 901
1da177e4
LT
902/**
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
906 *
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
0baab86b
EF
909 * ATA channel. Works with both PIO and MMIO.
910 *
911 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
912 *
913 * LOCKING:
914 * caller.
915 */
916
917void ata_std_dev_select (struct ata_port *ap, unsigned int device)
918{
919 u8 tmp;
920
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
925
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
930 }
931 ata_pause(ap); /* needed; also flushes, for mmio */
932}
933
934/**
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
940 *
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
944 *
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
955{
88574551 956 if (ata_msg_probe(ap))
0dd4b21f 957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 958 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
959
960 if (wait)
961 ata_wait_idle(ap);
962
963 ap->ops->dev_select(ap, device);
964
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
969 }
970}
971
972/**
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 974 * @id: IDENTIFY DEVICE page to dump
1da177e4 975 *
0bd3300a
TH
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
1da177e4
LT
978 *
979 * LOCKING:
980 * caller.
981 */
982
0bd3300a 983static inline void ata_dump_id(const u16 *id)
1da177e4
LT
984{
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
0bd3300a
TH
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
1da177e4
LT
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
0bd3300a
TH
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1da177e4
LT
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
0bd3300a
TH
1007 id[88],
1008 id[93]);
1da177e4
LT
1009}
1010
cb95d562
TH
1011/**
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1014 *
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1017 *
1018 * FIXME: pre IDE drive timing (do we care ?).
1019 *
1020 * LOCKING:
1021 * None.
1022 *
1023 * RETURNS:
1024 * Computed xfermask
1025 */
1026static unsigned int ata_id_xfermask(const u16 *id)
1027{
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1029
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1039 */
7a0f1c8a 1040 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
cb95d562
TH
1045
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1051 */
1052 }
1053
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1055
b352e57d
AC
1056 if (ata_id_is_cfa(id)) {
1057 /*
1058 * Process compact flash extended modes
1059 */
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1062
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1071 }
1072
fb21f0d0
TH
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1076
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1078}
1079
86e45b6b
TH
1080/**
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
e2a7f77a 1083 * @fn: workqueue function to be scheduled
65f27f38 1084 * @data: data for @fn to use
e2a7f77a 1085 * @delay: delay time for workqueue function
86e45b6b
TH
1086 *
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1091 *
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1095 *
1096 * LOCKING:
1097 * Inherited from caller.
1098 */
65f27f38 1099void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1100 unsigned long delay)
1101{
1102 int rc;
1103
b51e9e5d 1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1105 return;
1106
65f27f38
DH
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
86e45b6b 1109
52bad64d 1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1111
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1114}
1115
1116/**
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1119 *
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1122 *
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1125 */
1126void ata_port_flush_task(struct ata_port *ap)
1127{
1128 unsigned long flags;
1129
1130 DPRINTK("ENTER\n");
1131
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1134 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1135
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1138
1139 /*
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1143 */
1144 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1145 if (ata_msg_ctl(ap))
88574551
TH
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
86e45b6b
TH
1148 flush_workqueue(ata_wq);
1149 }
1150
ba6a1308 1151 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1153 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1154
0dd4b21f
BP
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1157}
1158
77853bf2 1159void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1160{
77853bf2 1161 struct completion *waiting = qc->private_data;
a2a7a662 1162
a2a7a662 1163 complete(waiting);
a2a7a662
TH
1164}
1165
1166/**
2432697b 1167 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
d69cf37d 1170 * @cdb: CDB for packet command
a2a7a662 1171 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
a2a7a662
TH
1174 *
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1180 *
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
551e8889
TH
1183 *
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1186 */
2432697b
TH
1187unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
a2a7a662 1191{
3373efd8 1192 struct ata_port *ap = dev->ap;
a2a7a662
TH
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
2ab7db1f 1195 unsigned int tag, preempted_tag;
dedaf2b0 1196 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1197 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1198 unsigned long flags;
77853bf2 1199 unsigned int err_mask;
d95a717f 1200 int rc;
a2a7a662 1201
ba6a1308 1202 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1203
e3180499 1204 /* no internal command while frozen */
b51e9e5d 1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1206 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1207 return AC_ERR_SYSTEM;
1208 }
1209
2ab7db1f 1210 /* initialize internal qc */
a2a7a662 1211
2ab7db1f
TH
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1216 */
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1221
6cec4a39 1222 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1223 BUG();
f69499f4 1224 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1225
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1231
1232 preempted_tag = ap->active_tag;
dedaf2b0
TH
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
2ab7db1f 1235 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
2ab7db1f
TH
1238
1239 /* prepare & issue qc */
a2a7a662 1240 qc->tf = *tf;
d69cf37d
TH
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
2432697b
TH
1246 unsigned int i, buflen = 0;
1247
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1250
1251 ata_sg_init(qc, sg, n_elem);
a2a7a662 1252 qc->nsect = buflen / ATA_SECT_SIZE;
49c80429 1253 qc->nbytes = buflen;
a2a7a662
TH
1254 }
1255
77853bf2 1256 qc->private_data = &wait;
a2a7a662
TH
1257 qc->complete_fn = ata_qc_complete_internal;
1258
8e0e694a 1259 ata_qc_issue(qc);
a2a7a662 1260
ba6a1308 1261 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1262
a8601e5f 1263 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1264
1265 ata_port_flush_task(ap);
41ade50c 1266
d95a717f 1267 if (!rc) {
ba6a1308 1268 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1269
1270 /* We're racing with irq here. If we lose, the
1271 * following test prevents us from completing the qc
d95a717f
TH
1272 * twice. If we win, the port is frozen and will be
1273 * cleaned up by ->post_internal_cmd().
a2a7a662 1274 */
77853bf2 1275 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1276 qc->err_mask |= AC_ERR_TIMEOUT;
1277
1278 if (ap->ops->error_handler)
1279 ata_port_freeze(ap);
1280 else
1281 ata_qc_complete(qc);
f15a1daf 1282
0dd4b21f
BP
1283 if (ata_msg_warn(ap))
1284 ata_dev_printk(dev, KERN_WARNING,
88574551 1285 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1286 }
1287
ba6a1308 1288 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1289 }
1290
d95a717f
TH
1291 /* do post_internal_cmd */
1292 if (ap->ops->post_internal_cmd)
1293 ap->ops->post_internal_cmd(qc);
1294
1295 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1296 if (ata_msg_warn(ap))
88574551 1297 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1298 "zero err_mask for failed "
88574551 1299 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1300 qc->err_mask |= AC_ERR_OTHER;
1301 }
1302
15869303 1303 /* finish up */
ba6a1308 1304 spin_lock_irqsave(ap->lock, flags);
15869303 1305
e61e0672 1306 *tf = qc->result_tf;
77853bf2
TH
1307 err_mask = qc->err_mask;
1308
1309 ata_qc_free(qc);
2ab7db1f 1310 ap->active_tag = preempted_tag;
dedaf2b0
TH
1311 ap->sactive = preempted_sactive;
1312 ap->qc_active = preempted_qc_active;
77853bf2 1313
1f7dd3e9
TH
1314 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1315 * Until those drivers are fixed, we detect the condition
1316 * here, fail the command with AC_ERR_SYSTEM and reenable the
1317 * port.
1318 *
1319 * Note that this doesn't change any behavior as internal
1320 * command failure results in disabling the device in the
1321 * higher layer for LLDDs without new reset/EH callbacks.
1322 *
1323 * Kill the following code as soon as those drivers are fixed.
1324 */
198e0fed 1325 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1326 err_mask |= AC_ERR_SYSTEM;
1327 ata_port_probe(ap);
1328 }
1329
ba6a1308 1330 spin_unlock_irqrestore(ap->lock, flags);
15869303 1331
77853bf2 1332 return err_mask;
a2a7a662
TH
1333}
1334
2432697b 1335/**
33480a0e 1336 * ata_exec_internal - execute libata internal command
2432697b
TH
1337 * @dev: Device to which the command is sent
1338 * @tf: Taskfile registers for the command and the result
1339 * @cdb: CDB for packet command
1340 * @dma_dir: Data tranfer direction of the command
1341 * @buf: Data buffer of the command
1342 * @buflen: Length of data buffer
1343 *
1344 * Wrapper around ata_exec_internal_sg() which takes simple
1345 * buffer instead of sg list.
1346 *
1347 * LOCKING:
1348 * None. Should be called with kernel context, might sleep.
1349 *
1350 * RETURNS:
1351 * Zero on success, AC_ERR_* mask on failure
1352 */
1353unsigned ata_exec_internal(struct ata_device *dev,
1354 struct ata_taskfile *tf, const u8 *cdb,
1355 int dma_dir, void *buf, unsigned int buflen)
1356{
33480a0e
TH
1357 struct scatterlist *psg = NULL, sg;
1358 unsigned int n_elem = 0;
2432697b 1359
33480a0e
TH
1360 if (dma_dir != DMA_NONE) {
1361 WARN_ON(!buf);
1362 sg_init_one(&sg, buf, buflen);
1363 psg = &sg;
1364 n_elem++;
1365 }
2432697b 1366
33480a0e 1367 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1368}
1369
977e6b9f
TH
1370/**
1371 * ata_do_simple_cmd - execute simple internal command
1372 * @dev: Device to which the command is sent
1373 * @cmd: Opcode to execute
1374 *
1375 * Execute a 'simple' command, that only consists of the opcode
1376 * 'cmd' itself, without filling any other registers
1377 *
1378 * LOCKING:
1379 * Kernel thread context (may sleep).
1380 *
1381 * RETURNS:
1382 * Zero on success, AC_ERR_* mask on failure
e58eb583 1383 */
77b08fb5 1384unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1385{
1386 struct ata_taskfile tf;
e58eb583
TH
1387
1388 ata_tf_init(dev, &tf);
1389
1390 tf.command = cmd;
1391 tf.flags |= ATA_TFLAG_DEVICE;
1392 tf.protocol = ATA_PROT_NODATA;
1393
977e6b9f 1394 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1395}
1396
1bc4ccff
AC
1397/**
1398 * ata_pio_need_iordy - check if iordy needed
1399 * @adev: ATA device
1400 *
1401 * Check if the current speed of the device requires IORDY. Used
1402 * by various controllers for chip configuration.
1403 */
1404
1405unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1406{
1407 int pio;
1408 int speed = adev->pio_mode - XFER_PIO_0;
1409
1410 if (speed < 2)
1411 return 0;
1412 if (speed > 2)
1413 return 1;
2e9edbf8 1414
1bc4ccff
AC
1415 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1416
1417 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1418 pio = adev->id[ATA_ID_EIDE_PIO];
1419 /* Is the speed faster than the drive allows non IORDY ? */
1420 if (pio) {
1421 /* This is cycle times not frequency - watch the logic! */
1422 if (pio > 240) /* PIO2 is 240nS per cycle */
1423 return 1;
1424 return 0;
1425 }
1426 }
1427 return 0;
1428}
1429
1da177e4 1430/**
49016aca 1431 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1432 * @dev: target device
1433 * @p_class: pointer to class of the target device (may be changed)
bff04647 1434 * @flags: ATA_READID_* flags
fe635c7e 1435 * @id: buffer to read IDENTIFY data into
1da177e4 1436 *
49016aca
TH
1437 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1438 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1439 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1440 * for pre-ATA4 drives.
1da177e4
LT
1441 *
1442 * LOCKING:
49016aca
TH
1443 * Kernel thread context (may sleep)
1444 *
1445 * RETURNS:
1446 * 0 on success, -errno otherwise.
1da177e4 1447 */
a9beec95 1448int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1449 unsigned int flags, u16 *id)
1da177e4 1450{
3373efd8 1451 struct ata_port *ap = dev->ap;
49016aca 1452 unsigned int class = *p_class;
a0123703 1453 struct ata_taskfile tf;
49016aca
TH
1454 unsigned int err_mask = 0;
1455 const char *reason;
1456 int rc;
1da177e4 1457
0dd4b21f 1458 if (ata_msg_ctl(ap))
88574551
TH
1459 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1460 __FUNCTION__, ap->id, dev->devno);
1da177e4 1461
49016aca 1462 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1463
49016aca 1464 retry:
3373efd8 1465 ata_tf_init(dev, &tf);
a0123703 1466
49016aca
TH
1467 switch (class) {
1468 case ATA_DEV_ATA:
a0123703 1469 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1470 break;
1471 case ATA_DEV_ATAPI:
a0123703 1472 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1473 break;
1474 default:
1475 rc = -ENODEV;
1476 reason = "unsupported class";
1477 goto err_out;
1da177e4
LT
1478 }
1479
a0123703 1480 tf.protocol = ATA_PROT_PIO;
800b3996 1481 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1da177e4 1482
3373efd8 1483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1484 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1485 if (err_mask) {
800b3996 1486 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8
TH
1487 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1488 ap->id, dev->devno);
1489 return -ENOENT;
1490 }
1491
49016aca
TH
1492 rc = -EIO;
1493 reason = "I/O error";
1da177e4
LT
1494 goto err_out;
1495 }
1496
49016aca 1497 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1498
49016aca 1499 /* sanity check */
a4f5749b
TH
1500 rc = -EINVAL;
1501 reason = "device reports illegal type";
1502
1503 if (class == ATA_DEV_ATA) {
1504 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1505 goto err_out;
1506 } else {
1507 if (ata_id_is_ata(id))
1508 goto err_out;
49016aca
TH
1509 }
1510
bff04647 1511 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1512 /*
1513 * The exact sequence expected by certain pre-ATA4 drives is:
1514 * SRST RESET
1515 * IDENTIFY
1516 * INITIALIZE DEVICE PARAMETERS
1517 * anything else..
1518 * Some drives were very specific about that exact sequence.
1519 */
1520 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1521 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1522 if (err_mask) {
1523 rc = -EIO;
1524 reason = "INIT_DEV_PARAMS failed";
1525 goto err_out;
1526 }
1527
1528 /* current CHS translation info (id[53-58]) might be
1529 * changed. reread the identify device info.
1530 */
bff04647 1531 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1532 goto retry;
1533 }
1534 }
1535
1536 *p_class = class;
fe635c7e 1537
49016aca
TH
1538 return 0;
1539
1540 err_out:
88574551 1541 if (ata_msg_warn(ap))
0dd4b21f 1542 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1543 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1544 return rc;
1545}
1546
3373efd8 1547static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1548{
3373efd8 1549 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1550}
1551
a6e6ce8e
TH
1552static void ata_dev_config_ncq(struct ata_device *dev,
1553 char *desc, size_t desc_sz)
1554{
1555 struct ata_port *ap = dev->ap;
1556 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1557
1558 if (!ata_id_has_ncq(dev->id)) {
1559 desc[0] = '\0';
1560 return;
1561 }
6919a0a6
AC
1562 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1563 snprintf(desc, desc_sz, "NCQ (not used)");
1564 return;
1565 }
a6e6ce8e 1566 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1567 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1568 dev->flags |= ATA_DFLAG_NCQ;
1569 }
1570
1571 if (hdepth >= ddepth)
1572 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1573 else
1574 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1575}
1576
e6d902a3
BK
1577static void ata_set_port_max_cmd_len(struct ata_port *ap)
1578{
1579 int i;
1580
cca3974e
JG
1581 if (ap->scsi_host) {
1582 unsigned int len = 0;
1583
e6d902a3 1584 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1585 len = max(len, ap->device[i].cdb_len);
1586
1587 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1588 }
1589}
1590
49016aca 1591/**
ffeae418 1592 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1593 * @dev: Target device to configure
1594 *
1595 * Configure @dev according to @dev->id. Generic and low-level
1596 * driver specific fixups are also applied.
49016aca
TH
1597 *
1598 * LOCKING:
ffeae418
TH
1599 * Kernel thread context (may sleep)
1600 *
1601 * RETURNS:
1602 * 0 on success, -errno otherwise
49016aca 1603 */
efdaedc4 1604int ata_dev_configure(struct ata_device *dev)
49016aca 1605{
3373efd8 1606 struct ata_port *ap = dev->ap;
efdaedc4 1607 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1608 const u16 *id = dev->id;
ff8854b2 1609 unsigned int xfer_mask;
b352e57d 1610 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1611 int rc;
49016aca 1612
0dd4b21f 1613 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1614 ata_dev_printk(dev, KERN_INFO,
1615 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1616 __FUNCTION__, ap->id, dev->devno);
ffeae418 1617 return 0;
49016aca
TH
1618 }
1619
0dd4b21f 1620 if (ata_msg_probe(ap))
88574551
TH
1621 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1622 __FUNCTION__, ap->id, dev->devno);
1da177e4 1623
c39f5ebe 1624 /* print device capabilities */
0dd4b21f 1625 if (ata_msg_probe(ap))
88574551
TH
1626 ata_dev_printk(dev, KERN_DEBUG,
1627 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1628 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1629 __FUNCTION__,
f15a1daf
TH
1630 id[49], id[82], id[83], id[84],
1631 id[85], id[86], id[87], id[88]);
c39f5ebe 1632
208a9933 1633 /* initialize to-be-configured parameters */
ea1dd4e1 1634 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1635 dev->max_sectors = 0;
1636 dev->cdb_len = 0;
1637 dev->n_sectors = 0;
1638 dev->cylinders = 0;
1639 dev->heads = 0;
1640 dev->sectors = 0;
1641
1da177e4
LT
1642 /*
1643 * common ATA, ATAPI feature tests
1644 */
1645
ff8854b2 1646 /* find max transfer mode; for printk only */
1148c3a7 1647 xfer_mask = ata_id_xfermask(id);
1da177e4 1648
0dd4b21f
BP
1649 if (ata_msg_probe(ap))
1650 ata_dump_id(id);
1da177e4
LT
1651
1652 /* ATA-specific feature tests */
1653 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1654 if (ata_id_is_cfa(id)) {
1655 if (id[162] & 1) /* CPRM may make this media unusable */
1656 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1657 ap->id, dev->devno);
1658 snprintf(revbuf, 7, "CFA");
1659 }
1660 else
1661 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1662
1148c3a7 1663 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1664
1148c3a7 1665 if (ata_id_has_lba(id)) {
4c2d721a 1666 const char *lba_desc;
a6e6ce8e 1667 char ncq_desc[20];
8bf62ece 1668
4c2d721a
TH
1669 lba_desc = "LBA";
1670 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1671 if (ata_id_has_lba48(id)) {
8bf62ece 1672 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1673 lba_desc = "LBA48";
6fc49adb
TH
1674
1675 if (dev->n_sectors >= (1UL << 28) &&
1676 ata_id_has_flush_ext(id))
1677 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1678 }
8bf62ece 1679
a6e6ce8e
TH
1680 /* config NCQ */
1681 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1682
8bf62ece 1683 /* print device info to dmesg */
5afc8142 1684 if (ata_msg_drv(ap) && print_info)
b352e57d 1685 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1686 "max %s, %Lu sectors: %s %s\n",
b352e57d 1687 revbuf,
f15a1daf
TH
1688 ata_mode_string(xfer_mask),
1689 (unsigned long long)dev->n_sectors,
a6e6ce8e 1690 lba_desc, ncq_desc);
ffeae418 1691 } else {
8bf62ece
AL
1692 /* CHS */
1693
1694 /* Default translation */
1148c3a7
TH
1695 dev->cylinders = id[1];
1696 dev->heads = id[3];
1697 dev->sectors = id[6];
8bf62ece 1698
1148c3a7 1699 if (ata_id_current_chs_valid(id)) {
8bf62ece 1700 /* Current CHS translation is valid. */
1148c3a7
TH
1701 dev->cylinders = id[54];
1702 dev->heads = id[55];
1703 dev->sectors = id[56];
8bf62ece
AL
1704 }
1705
1706 /* print device info to dmesg */
5afc8142 1707 if (ata_msg_drv(ap) && print_info)
b352e57d 1708 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1709 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1710 revbuf,
f15a1daf
TH
1711 ata_mode_string(xfer_mask),
1712 (unsigned long long)dev->n_sectors,
88574551
TH
1713 dev->cylinders, dev->heads,
1714 dev->sectors);
1da177e4
LT
1715 }
1716
07f6f7d0
AL
1717 if (dev->id[59] & 0x100) {
1718 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1719 if (ata_msg_drv(ap) && print_info)
88574551
TH
1720 ata_dev_printk(dev, KERN_INFO,
1721 "ata%u: dev %u multi count %u\n",
1722 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1723 }
1724
6e7846e9 1725 dev->cdb_len = 16;
1da177e4
LT
1726 }
1727
1728 /* ATAPI-specific feature tests */
2c13b7ce 1729 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1730 char *cdb_intr_string = "";
1731
1148c3a7 1732 rc = atapi_cdb_len(id);
1da177e4 1733 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1734 if (ata_msg_warn(ap))
88574551
TH
1735 ata_dev_printk(dev, KERN_WARNING,
1736 "unsupported CDB len\n");
ffeae418 1737 rc = -EINVAL;
1da177e4
LT
1738 goto err_out_nosup;
1739 }
6e7846e9 1740 dev->cdb_len = (unsigned int) rc;
1da177e4 1741
08a556db 1742 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1743 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1744 cdb_intr_string = ", CDB intr";
1745 }
312f7da2 1746
1da177e4 1747 /* print device info to dmesg */
5afc8142 1748 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1749 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1750 ata_mode_string(xfer_mask),
1751 cdb_intr_string);
1da177e4
LT
1752 }
1753
914ed354
TH
1754 /* determine max_sectors */
1755 dev->max_sectors = ATA_MAX_SECTORS;
1756 if (dev->flags & ATA_DFLAG_LBA48)
1757 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1758
93590859
AC
1759 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1760 /* Let the user know. We don't want to disallow opens for
1761 rescue purposes, or in case the vendor is just a blithering
1762 idiot */
1763 if (print_info) {
1764 ata_dev_printk(dev, KERN_WARNING,
1765"Drive reports diagnostics failure. This may indicate a drive\n");
1766 ata_dev_printk(dev, KERN_WARNING,
1767"fault or invalid emulation. Contact drive vendor for information.\n");
1768 }
1769 }
1770
e6d902a3 1771 ata_set_port_max_cmd_len(ap);
6e7846e9 1772
4b2f3ede 1773 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1774 if (ata_dev_knobble(dev)) {
5afc8142 1775 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1776 ata_dev_printk(dev, KERN_INFO,
1777 "applying bridge limits\n");
5a529139 1778 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1779 dev->max_sectors = ATA_MAX_SECTORS;
1780 }
1781
1782 if (ap->ops->dev_config)
1783 ap->ops->dev_config(ap, dev);
1784
0dd4b21f
BP
1785 if (ata_msg_probe(ap))
1786 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1787 __FUNCTION__, ata_chk_status(ap));
ffeae418 1788 return 0;
1da177e4
LT
1789
1790err_out_nosup:
0dd4b21f 1791 if (ata_msg_probe(ap))
88574551
TH
1792 ata_dev_printk(dev, KERN_DEBUG,
1793 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1794 return rc;
1da177e4
LT
1795}
1796
1797/**
1798 * ata_bus_probe - Reset and probe ATA bus
1799 * @ap: Bus to probe
1800 *
0cba632b
JG
1801 * Master ATA bus probing function. Initiates a hardware-dependent
1802 * bus reset, then attempts to identify any devices found on
1803 * the bus.
1804 *
1da177e4 1805 * LOCKING:
0cba632b 1806 * PCI/etc. bus probe sem.
1da177e4
LT
1807 *
1808 * RETURNS:
96072e69 1809 * Zero on success, negative errno otherwise.
1da177e4
LT
1810 */
1811
80289167 1812int ata_bus_probe(struct ata_port *ap)
1da177e4 1813{
28ca5c57 1814 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1815 int tries[ATA_MAX_DEVICES];
1816 int i, rc, down_xfermask;
e82cbdb9 1817 struct ata_device *dev;
1da177e4 1818
28ca5c57 1819 ata_port_probe(ap);
c19ba8af 1820
14d2bac1
TH
1821 for (i = 0; i < ATA_MAX_DEVICES; i++)
1822 tries[i] = ATA_PROBE_MAX_TRIES;
1823
1824 retry:
1825 down_xfermask = 0;
1826
2044470c 1827 /* reset and determine device classes */
52783c5d 1828 ap->ops->phy_reset(ap);
2061a47a 1829
52783c5d
TH
1830 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1831 dev = &ap->device[i];
c19ba8af 1832
52783c5d
TH
1833 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1834 dev->class != ATA_DEV_UNKNOWN)
1835 classes[dev->devno] = dev->class;
1836 else
1837 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1838
52783c5d 1839 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1840 }
1da177e4 1841
52783c5d 1842 ata_port_probe(ap);
2044470c 1843
b6079ca4
AC
1844 /* after the reset the device state is PIO 0 and the controller
1845 state is undefined. Record the mode */
1846
1847 for (i = 0; i < ATA_MAX_DEVICES; i++)
1848 ap->device[i].pio_mode = XFER_PIO_0;
1849
28ca5c57 1850 /* read IDENTIFY page and configure devices */
1da177e4 1851 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1852 dev = &ap->device[i];
28ca5c57 1853
ec573755
TH
1854 if (tries[i])
1855 dev->class = classes[i];
ffeae418 1856
14d2bac1 1857 if (!ata_dev_enabled(dev))
ffeae418 1858 continue;
ffeae418 1859
bff04647
TH
1860 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1861 dev->id);
14d2bac1
TH
1862 if (rc)
1863 goto fail;
1864
efdaedc4
TH
1865 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1866 rc = ata_dev_configure(dev);
1867 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1868 if (rc)
1869 goto fail;
1da177e4
LT
1870 }
1871
e82cbdb9 1872 /* configure transfer mode */
3adcebb2 1873 rc = ata_set_mode(ap, &dev);
51713d35
TH
1874 if (rc) {
1875 down_xfermask = 1;
1876 goto fail;
e82cbdb9 1877 }
1da177e4 1878
e82cbdb9
TH
1879 for (i = 0; i < ATA_MAX_DEVICES; i++)
1880 if (ata_dev_enabled(&ap->device[i]))
1881 return 0;
1da177e4 1882
e82cbdb9
TH
1883 /* no device present, disable port */
1884 ata_port_disable(ap);
1da177e4 1885 ap->ops->port_disable(ap);
96072e69 1886 return -ENODEV;
14d2bac1
TH
1887
1888 fail:
1889 switch (rc) {
1890 case -EINVAL:
1891 case -ENODEV:
1892 tries[dev->devno] = 0;
1893 break;
1894 case -EIO:
3c567b7d 1895 sata_down_spd_limit(ap);
14d2bac1
TH
1896 /* fall through */
1897 default:
1898 tries[dev->devno]--;
1899 if (down_xfermask &&
3373efd8 1900 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1901 tries[dev->devno] = 0;
1902 }
1903
ec573755 1904 if (!tries[dev->devno]) {
3373efd8
TH
1905 ata_down_xfermask_limit(dev, 1);
1906 ata_dev_disable(dev);
ec573755
TH
1907 }
1908
14d2bac1 1909 goto retry;
1da177e4
LT
1910}
1911
1912/**
0cba632b
JG
1913 * ata_port_probe - Mark port as enabled
1914 * @ap: Port for which we indicate enablement
1da177e4 1915 *
0cba632b
JG
1916 * Modify @ap data structure such that the system
1917 * thinks that the entire port is enabled.
1918 *
cca3974e 1919 * LOCKING: host lock, or some other form of
0cba632b 1920 * serialization.
1da177e4
LT
1921 */
1922
1923void ata_port_probe(struct ata_port *ap)
1924{
198e0fed 1925 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1926}
1927
3be680b7
TH
1928/**
1929 * sata_print_link_status - Print SATA link status
1930 * @ap: SATA port to printk link status about
1931 *
1932 * This function prints link speed and status of a SATA link.
1933 *
1934 * LOCKING:
1935 * None.
1936 */
1937static void sata_print_link_status(struct ata_port *ap)
1938{
6d5f9732 1939 u32 sstatus, scontrol, tmp;
3be680b7 1940
81952c54 1941 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1942 return;
81952c54 1943 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1944
81952c54 1945 if (ata_port_online(ap)) {
3be680b7 1946 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1947 ata_port_printk(ap, KERN_INFO,
1948 "SATA link up %s (SStatus %X SControl %X)\n",
1949 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1950 } else {
f15a1daf
TH
1951 ata_port_printk(ap, KERN_INFO,
1952 "SATA link down (SStatus %X SControl %X)\n",
1953 sstatus, scontrol);
3be680b7
TH
1954 }
1955}
1956
1da177e4 1957/**
780a87f7
JG
1958 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1959 * @ap: SATA port associated with target SATA PHY.
1da177e4 1960 *
780a87f7
JG
1961 * This function issues commands to standard SATA Sxxx
1962 * PHY registers, to wake up the phy (and device), and
1963 * clear any reset condition.
1da177e4
LT
1964 *
1965 * LOCKING:
0cba632b 1966 * PCI/etc. bus probe sem.
1da177e4
LT
1967 *
1968 */
1969void __sata_phy_reset(struct ata_port *ap)
1970{
1971 u32 sstatus;
1972 unsigned long timeout = jiffies + (HZ * 5);
1973
1974 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1975 /* issue phy wake/reset */
81952c54 1976 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1977 /* Couldn't find anything in SATA I/II specs, but
1978 * AHCI-1.1 10.4.2 says at least 1 ms. */
1979 mdelay(1);
1da177e4 1980 }
81952c54
TH
1981 /* phy wake/clear reset */
1982 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1983
1984 /* wait for phy to become ready, if necessary */
1985 do {
1986 msleep(200);
81952c54 1987 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1988 if ((sstatus & 0xf) != 1)
1989 break;
1990 } while (time_before(jiffies, timeout));
1991
3be680b7
TH
1992 /* print link status */
1993 sata_print_link_status(ap);
656563e3 1994
3be680b7 1995 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1996 if (!ata_port_offline(ap))
1da177e4 1997 ata_port_probe(ap);
3be680b7 1998 else
1da177e4 1999 ata_port_disable(ap);
1da177e4 2000
198e0fed 2001 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2002 return;
2003
2004 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2005 ata_port_disable(ap);
2006 return;
2007 }
2008
2009 ap->cbl = ATA_CBL_SATA;
2010}
2011
2012/**
780a87f7
JG
2013 * sata_phy_reset - Reset SATA bus.
2014 * @ap: SATA port associated with target SATA PHY.
1da177e4 2015 *
780a87f7
JG
2016 * This function resets the SATA bus, and then probes
2017 * the bus for devices.
1da177e4
LT
2018 *
2019 * LOCKING:
0cba632b 2020 * PCI/etc. bus probe sem.
1da177e4
LT
2021 *
2022 */
2023void sata_phy_reset(struct ata_port *ap)
2024{
2025 __sata_phy_reset(ap);
198e0fed 2026 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2027 return;
2028 ata_bus_reset(ap);
2029}
2030
ebdfca6e
AC
2031/**
2032 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2033 * @adev: device
2034 *
2035 * Obtain the other device on the same cable, or if none is
2036 * present NULL is returned
2037 */
2e9edbf8 2038
3373efd8 2039struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2040{
3373efd8 2041 struct ata_port *ap = adev->ap;
ebdfca6e 2042 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2043 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2044 return NULL;
2045 return pair;
2046}
2047
1da177e4 2048/**
780a87f7
JG
2049 * ata_port_disable - Disable port.
2050 * @ap: Port to be disabled.
1da177e4 2051 *
780a87f7
JG
2052 * Modify @ap data structure such that the system
2053 * thinks that the entire port is disabled, and should
2054 * never attempt to probe or communicate with devices
2055 * on this port.
2056 *
cca3974e 2057 * LOCKING: host lock, or some other form of
780a87f7 2058 * serialization.
1da177e4
LT
2059 */
2060
2061void ata_port_disable(struct ata_port *ap)
2062{
2063 ap->device[0].class = ATA_DEV_NONE;
2064 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2065 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2066}
2067
1c3fae4d 2068/**
3c567b7d 2069 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2070 * @ap: Port to adjust SATA spd limit for
2071 *
2072 * Adjust SATA spd limit of @ap downward. Note that this
2073 * function only adjusts the limit. The change must be applied
3c567b7d 2074 * using sata_set_spd().
1c3fae4d
TH
2075 *
2076 * LOCKING:
2077 * Inherited from caller.
2078 *
2079 * RETURNS:
2080 * 0 on success, negative errno on failure
2081 */
3c567b7d 2082int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2083{
81952c54
TH
2084 u32 sstatus, spd, mask;
2085 int rc, highbit;
1c3fae4d 2086
81952c54
TH
2087 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2088 if (rc)
2089 return rc;
1c3fae4d
TH
2090
2091 mask = ap->sata_spd_limit;
2092 if (mask <= 1)
2093 return -EINVAL;
2094 highbit = fls(mask) - 1;
2095 mask &= ~(1 << highbit);
2096
81952c54 2097 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2098 if (spd <= 1)
2099 return -EINVAL;
2100 spd--;
2101 mask &= (1 << spd) - 1;
2102 if (!mask)
2103 return -EINVAL;
2104
2105 ap->sata_spd_limit = mask;
2106
f15a1daf
TH
2107 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2108 sata_spd_string(fls(mask)));
1c3fae4d
TH
2109
2110 return 0;
2111}
2112
3c567b7d 2113static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2114{
2115 u32 spd, limit;
2116
2117 if (ap->sata_spd_limit == UINT_MAX)
2118 limit = 0;
2119 else
2120 limit = fls(ap->sata_spd_limit);
2121
2122 spd = (*scontrol >> 4) & 0xf;
2123 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2124
2125 return spd != limit;
2126}
2127
2128/**
3c567b7d 2129 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2130 * @ap: Port in question
2131 *
2132 * Test whether the spd limit in SControl matches
2133 * @ap->sata_spd_limit. This function is used to determine
2134 * whether hardreset is necessary to apply SATA spd
2135 * configuration.
2136 *
2137 * LOCKING:
2138 * Inherited from caller.
2139 *
2140 * RETURNS:
2141 * 1 if SATA spd configuration is needed, 0 otherwise.
2142 */
3c567b7d 2143int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2144{
2145 u32 scontrol;
2146
81952c54 2147 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2148 return 0;
2149
3c567b7d 2150 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2151}
2152
2153/**
3c567b7d 2154 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2155 * @ap: Port to set SATA spd for
2156 *
2157 * Set SATA spd of @ap according to sata_spd_limit.
2158 *
2159 * LOCKING:
2160 * Inherited from caller.
2161 *
2162 * RETURNS:
2163 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2164 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2165 */
3c567b7d 2166int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2167{
2168 u32 scontrol;
81952c54 2169 int rc;
1c3fae4d 2170
81952c54
TH
2171 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2172 return rc;
1c3fae4d 2173
3c567b7d 2174 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2175 return 0;
2176
81952c54
TH
2177 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2178 return rc;
2179
1c3fae4d
TH
2180 return 1;
2181}
2182
452503f9
AC
2183/*
2184 * This mode timing computation functionality is ported over from
2185 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2186 */
2187/*
b352e57d 2188 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2189 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2190 * for UDMA6, which is currently supported only by Maxtor drives.
2191 *
2192 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2193 */
2194
2195static const struct ata_timing ata_timing[] = {
2196
2197 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2198 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2199 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2200 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2201
b352e57d
AC
2202 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2203 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2204 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2205 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2206 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2207
2208/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2209
452503f9
AC
2210 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2211 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2212 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2213
452503f9
AC
2214 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2217
b352e57d
AC
2218 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2220 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2221 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2222
2223 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2224 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2225 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2226
2227/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2228
2229 { 0xFF }
2230};
2231
2232#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2233#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2234
2235static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2236{
2237 q->setup = EZ(t->setup * 1000, T);
2238 q->act8b = EZ(t->act8b * 1000, T);
2239 q->rec8b = EZ(t->rec8b * 1000, T);
2240 q->cyc8b = EZ(t->cyc8b * 1000, T);
2241 q->active = EZ(t->active * 1000, T);
2242 q->recover = EZ(t->recover * 1000, T);
2243 q->cycle = EZ(t->cycle * 1000, T);
2244 q->udma = EZ(t->udma * 1000, UT);
2245}
2246
2247void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2248 struct ata_timing *m, unsigned int what)
2249{
2250 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2251 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2252 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2253 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2254 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2255 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2256 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2257 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2258}
2259
2260static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2261{
2262 const struct ata_timing *t;
2263
2264 for (t = ata_timing; t->mode != speed; t++)
91190758 2265 if (t->mode == 0xFF)
452503f9 2266 return NULL;
2e9edbf8 2267 return t;
452503f9
AC
2268}
2269
2270int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2271 struct ata_timing *t, int T, int UT)
2272{
2273 const struct ata_timing *s;
2274 struct ata_timing p;
2275
2276 /*
2e9edbf8 2277 * Find the mode.
75b1f2f8 2278 */
452503f9
AC
2279
2280 if (!(s = ata_timing_find_mode(speed)))
2281 return -EINVAL;
2282
75b1f2f8
AL
2283 memcpy(t, s, sizeof(*s));
2284
452503f9
AC
2285 /*
2286 * If the drive is an EIDE drive, it can tell us it needs extended
2287 * PIO/MW_DMA cycle timing.
2288 */
2289
2290 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2291 memset(&p, 0, sizeof(p));
2292 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2293 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2294 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2295 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2296 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2297 }
2298 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2299 }
2300
2301 /*
2302 * Convert the timing to bus clock counts.
2303 */
2304
75b1f2f8 2305 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2306
2307 /*
c893a3ae
RD
2308 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2309 * S.M.A.R.T * and some other commands. We have to ensure that the
2310 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2311 */
2312
fd3367af 2313 if (speed > XFER_PIO_6) {
452503f9
AC
2314 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2315 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2316 }
2317
2318 /*
c893a3ae 2319 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2320 */
2321
2322 if (t->act8b + t->rec8b < t->cyc8b) {
2323 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2324 t->rec8b = t->cyc8b - t->act8b;
2325 }
2326
2327 if (t->active + t->recover < t->cycle) {
2328 t->active += (t->cycle - (t->active + t->recover)) / 2;
2329 t->recover = t->cycle - t->active;
2330 }
2331
2332 return 0;
2333}
2334
cf176e1a
TH
2335/**
2336 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2337 * @dev: Device to adjust xfer masks
2338 * @force_pio0: Force PIO0
2339 *
2340 * Adjust xfer masks of @dev downward. Note that this function
2341 * does not apply the change. Invoking ata_set_mode() afterwards
2342 * will apply the limit.
2343 *
2344 * LOCKING:
2345 * Inherited from caller.
2346 *
2347 * RETURNS:
2348 * 0 on success, negative errno on failure
2349 */
3373efd8 2350int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2351{
2352 unsigned long xfer_mask;
2353 int highbit;
2354
2355 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2356 dev->udma_mask);
2357
2358 if (!xfer_mask)
2359 goto fail;
2360 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2361 if (xfer_mask & ATA_MASK_UDMA)
2362 xfer_mask &= ~ATA_MASK_MWDMA;
2363
2364 highbit = fls(xfer_mask) - 1;
2365 xfer_mask &= ~(1 << highbit);
2366 if (force_pio0)
2367 xfer_mask &= 1 << ATA_SHIFT_PIO;
2368 if (!xfer_mask)
2369 goto fail;
2370
2371 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2372 &dev->udma_mask);
2373
f15a1daf
TH
2374 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2375 ata_mode_string(xfer_mask));
cf176e1a
TH
2376
2377 return 0;
2378
2379 fail:
2380 return -EINVAL;
2381}
2382
3373efd8 2383static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2384{
baa1e78a 2385 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2386 unsigned int err_mask;
2387 int rc;
1da177e4 2388
e8384607 2389 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2390 if (dev->xfer_shift == ATA_SHIFT_PIO)
2391 dev->flags |= ATA_DFLAG_PIO;
2392
3373efd8 2393 err_mask = ata_dev_set_xfermode(dev);
83206a29 2394 if (err_mask) {
f15a1daf
TH
2395 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2396 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2397 return -EIO;
2398 }
1da177e4 2399
baa1e78a 2400 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2401 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2402 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2403 if (rc)
83206a29 2404 return rc;
48a8a14f 2405
23e71c3d
TH
2406 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2407 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2408
f15a1daf
TH
2409 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2410 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2411 return 0;
1da177e4
LT
2412}
2413
1da177e4
LT
2414/**
2415 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2416 * @ap: port on which timings will be programmed
e82cbdb9 2417 * @r_failed_dev: out paramter for failed device
1da177e4 2418 *
e82cbdb9
TH
2419 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2420 * ata_set_mode() fails, pointer to the failing device is
2421 * returned in @r_failed_dev.
780a87f7 2422 *
1da177e4 2423 * LOCKING:
0cba632b 2424 * PCI/etc. bus probe sem.
e82cbdb9
TH
2425 *
2426 * RETURNS:
2427 * 0 on success, negative errno otherwise
1da177e4 2428 */
1ad8e7f9 2429int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2430{
e8e0619f 2431 struct ata_device *dev;
e82cbdb9 2432 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2433
3adcebb2 2434 /* has private set_mode? */
b229a7b0
AC
2435 if (ap->ops->set_mode)
2436 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2437
a6d5a51c
TH
2438 /* step 1: calculate xfer_mask */
2439 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2440 unsigned int pio_mask, dma_mask;
a6d5a51c 2441
e8e0619f
TH
2442 dev = &ap->device[i];
2443
e1211e3f 2444 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2445 continue;
2446
3373efd8 2447 ata_dev_xfermask(dev);
1da177e4 2448
acf356b1
TH
2449 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2450 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2451 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2452 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2453
4f65977d 2454 found = 1;
5444a6f4
AC
2455 if (dev->dma_mode)
2456 used_dma = 1;
a6d5a51c 2457 }
4f65977d 2458 if (!found)
e82cbdb9 2459 goto out;
a6d5a51c
TH
2460
2461 /* step 2: always set host PIO timings */
e8e0619f
TH
2462 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2463 dev = &ap->device[i];
2464 if (!ata_dev_enabled(dev))
2465 continue;
2466
2467 if (!dev->pio_mode) {
f15a1daf 2468 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2469 rc = -EINVAL;
e82cbdb9 2470 goto out;
e8e0619f
TH
2471 }
2472
2473 dev->xfer_mode = dev->pio_mode;
2474 dev->xfer_shift = ATA_SHIFT_PIO;
2475 if (ap->ops->set_piomode)
2476 ap->ops->set_piomode(ap, dev);
2477 }
1da177e4 2478
a6d5a51c 2479 /* step 3: set host DMA timings */
e8e0619f
TH
2480 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2481 dev = &ap->device[i];
2482
2483 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2484 continue;
2485
2486 dev->xfer_mode = dev->dma_mode;
2487 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2488 if (ap->ops->set_dmamode)
2489 ap->ops->set_dmamode(ap, dev);
2490 }
1da177e4
LT
2491
2492 /* step 4: update devices' xfer mode */
83206a29 2493 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2494 dev = &ap->device[i];
1da177e4 2495
02670bf3
TH
2496 /* don't udpate suspended devices' xfer mode */
2497 if (!ata_dev_ready(dev))
83206a29
TH
2498 continue;
2499
3373efd8 2500 rc = ata_dev_set_mode(dev);
5bbc53f4 2501 if (rc)
e82cbdb9 2502 goto out;
83206a29 2503 }
1da177e4 2504
e8e0619f
TH
2505 /* Record simplex status. If we selected DMA then the other
2506 * host channels are not permitted to do so.
5444a6f4 2507 */
cca3974e
JG
2508 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2509 ap->host->simplex_claimed = 1;
5444a6f4 2510
e8e0619f 2511 /* step5: chip specific finalisation */
1da177e4
LT
2512 if (ap->ops->post_set_mode)
2513 ap->ops->post_set_mode(ap);
2514
e82cbdb9
TH
2515 out:
2516 if (rc)
2517 *r_failed_dev = dev;
2518 return rc;
1da177e4
LT
2519}
2520
1fdffbce
JG
2521/**
2522 * ata_tf_to_host - issue ATA taskfile to host controller
2523 * @ap: port to which command is being issued
2524 * @tf: ATA taskfile register set
2525 *
2526 * Issues ATA taskfile register set to ATA host controller,
2527 * with proper synchronization with interrupt handler and
2528 * other threads.
2529 *
2530 * LOCKING:
cca3974e 2531 * spin_lock_irqsave(host lock)
1fdffbce
JG
2532 */
2533
2534static inline void ata_tf_to_host(struct ata_port *ap,
2535 const struct ata_taskfile *tf)
2536{
2537 ap->ops->tf_load(ap, tf);
2538 ap->ops->exec_command(ap, tf);
2539}
2540
1da177e4
LT
2541/**
2542 * ata_busy_sleep - sleep until BSY clears, or timeout
2543 * @ap: port containing status register to be polled
2544 * @tmout_pat: impatience timeout
2545 * @tmout: overall timeout
2546 *
780a87f7
JG
2547 * Sleep until ATA Status register bit BSY clears,
2548 * or a timeout occurs.
2549 *
d1adc1bb
TH
2550 * LOCKING:
2551 * Kernel thread context (may sleep).
2552 *
2553 * RETURNS:
2554 * 0 on success, -errno otherwise.
1da177e4 2555 */
d1adc1bb
TH
2556int ata_busy_sleep(struct ata_port *ap,
2557 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2558{
2559 unsigned long timer_start, timeout;
2560 u8 status;
2561
2562 status = ata_busy_wait(ap, ATA_BUSY, 300);
2563 timer_start = jiffies;
2564 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2565 while (status != 0xff && (status & ATA_BUSY) &&
2566 time_before(jiffies, timeout)) {
1da177e4
LT
2567 msleep(50);
2568 status = ata_busy_wait(ap, ATA_BUSY, 3);
2569 }
2570
d1adc1bb 2571 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2572 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2573 "port is slow to respond, please be patient "
2574 "(Status 0x%x)\n", status);
1da177e4
LT
2575
2576 timeout = timer_start + tmout;
d1adc1bb
TH
2577 while (status != 0xff && (status & ATA_BUSY) &&
2578 time_before(jiffies, timeout)) {
1da177e4
LT
2579 msleep(50);
2580 status = ata_chk_status(ap);
2581 }
2582
d1adc1bb
TH
2583 if (status == 0xff)
2584 return -ENODEV;
2585
1da177e4 2586 if (status & ATA_BUSY) {
f15a1daf 2587 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2588 "(%lu secs, Status 0x%x)\n",
2589 tmout / HZ, status);
d1adc1bb 2590 return -EBUSY;
1da177e4
LT
2591 }
2592
2593 return 0;
2594}
2595
2596static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2597{
2598 struct ata_ioports *ioaddr = &ap->ioaddr;
2599 unsigned int dev0 = devmask & (1 << 0);
2600 unsigned int dev1 = devmask & (1 << 1);
2601 unsigned long timeout;
2602
2603 /* if device 0 was found in ata_devchk, wait for its
2604 * BSY bit to clear
2605 */
2606 if (dev0)
2607 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2608
2609 /* if device 1 was found in ata_devchk, wait for
2610 * register access, then wait for BSY to clear
2611 */
2612 timeout = jiffies + ATA_TMOUT_BOOT;
2613 while (dev1) {
2614 u8 nsect, lbal;
2615
2616 ap->ops->dev_select(ap, 1);
2617 if (ap->flags & ATA_FLAG_MMIO) {
2618 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2619 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2620 } else {
2621 nsect = inb(ioaddr->nsect_addr);
2622 lbal = inb(ioaddr->lbal_addr);
2623 }
2624 if ((nsect == 1) && (lbal == 1))
2625 break;
2626 if (time_after(jiffies, timeout)) {
2627 dev1 = 0;
2628 break;
2629 }
2630 msleep(50); /* give drive a breather */
2631 }
2632 if (dev1)
2633 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2634
2635 /* is all this really necessary? */
2636 ap->ops->dev_select(ap, 0);
2637 if (dev1)
2638 ap->ops->dev_select(ap, 1);
2639 if (dev0)
2640 ap->ops->dev_select(ap, 0);
2641}
2642
1da177e4
LT
2643static unsigned int ata_bus_softreset(struct ata_port *ap,
2644 unsigned int devmask)
2645{
2646 struct ata_ioports *ioaddr = &ap->ioaddr;
2647
2648 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2649
2650 /* software reset. causes dev0 to be selected */
2651 if (ap->flags & ATA_FLAG_MMIO) {
2652 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2653 udelay(20); /* FIXME: flush */
2654 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2655 udelay(20); /* FIXME: flush */
2656 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2657 } else {
2658 outb(ap->ctl, ioaddr->ctl_addr);
2659 udelay(10);
2660 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2661 udelay(10);
2662 outb(ap->ctl, ioaddr->ctl_addr);
2663 }
2664
2665 /* spec mandates ">= 2ms" before checking status.
2666 * We wait 150ms, because that was the magic delay used for
2667 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2668 * between when the ATA command register is written, and then
2669 * status is checked. Because waiting for "a while" before
2670 * checking status is fine, post SRST, we perform this magic
2671 * delay here as well.
09c7ad79
AC
2672 *
2673 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2674 */
2675 msleep(150);
2676
2e9edbf8 2677 /* Before we perform post reset processing we want to see if
298a41ca
TH
2678 * the bus shows 0xFF because the odd clown forgets the D7
2679 * pulldown resistor.
2680 */
d1adc1bb
TH
2681 if (ata_check_status(ap) == 0xFF)
2682 return 0;
09c7ad79 2683
1da177e4
LT
2684 ata_bus_post_reset(ap, devmask);
2685
2686 return 0;
2687}
2688
2689/**
2690 * ata_bus_reset - reset host port and associated ATA channel
2691 * @ap: port to reset
2692 *
2693 * This is typically the first time we actually start issuing
2694 * commands to the ATA channel. We wait for BSY to clear, then
2695 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2696 * result. Determine what devices, if any, are on the channel
2697 * by looking at the device 0/1 error register. Look at the signature
2698 * stored in each device's taskfile registers, to determine if
2699 * the device is ATA or ATAPI.
2700 *
2701 * LOCKING:
0cba632b 2702 * PCI/etc. bus probe sem.
cca3974e 2703 * Obtains host lock.
1da177e4
LT
2704 *
2705 * SIDE EFFECTS:
198e0fed 2706 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2707 */
2708
2709void ata_bus_reset(struct ata_port *ap)
2710{
2711 struct ata_ioports *ioaddr = &ap->ioaddr;
2712 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2713 u8 err;
aec5c3c1 2714 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2715
2716 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2717
2718 /* determine if device 0/1 are present */
2719 if (ap->flags & ATA_FLAG_SATA_RESET)
2720 dev0 = 1;
2721 else {
2722 dev0 = ata_devchk(ap, 0);
2723 if (slave_possible)
2724 dev1 = ata_devchk(ap, 1);
2725 }
2726
2727 if (dev0)
2728 devmask |= (1 << 0);
2729 if (dev1)
2730 devmask |= (1 << 1);
2731
2732 /* select device 0 again */
2733 ap->ops->dev_select(ap, 0);
2734
2735 /* issue bus reset */
2736 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2737 if (ata_bus_softreset(ap, devmask))
2738 goto err_out;
1da177e4
LT
2739
2740 /*
2741 * determine by signature whether we have ATA or ATAPI devices
2742 */
b4dc7623 2743 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2744 if ((slave_possible) && (err != 0x81))
b4dc7623 2745 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2746
2747 /* re-enable interrupts */
2748 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2749 ata_irq_on(ap);
2750
2751 /* is double-select really necessary? */
2752 if (ap->device[1].class != ATA_DEV_NONE)
2753 ap->ops->dev_select(ap, 1);
2754 if (ap->device[0].class != ATA_DEV_NONE)
2755 ap->ops->dev_select(ap, 0);
2756
2757 /* if no devices were detected, disable this port */
2758 if ((ap->device[0].class == ATA_DEV_NONE) &&
2759 (ap->device[1].class == ATA_DEV_NONE))
2760 goto err_out;
2761
2762 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2763 /* set up device control for ATA_FLAG_SATA_RESET */
2764 if (ap->flags & ATA_FLAG_MMIO)
2765 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2766 else
2767 outb(ap->ctl, ioaddr->ctl_addr);
2768 }
2769
2770 DPRINTK("EXIT\n");
2771 return;
2772
2773err_out:
f15a1daf 2774 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2775 ap->ops->port_disable(ap);
2776
2777 DPRINTK("EXIT\n");
2778}
2779
d7bb4cc7
TH
2780/**
2781 * sata_phy_debounce - debounce SATA phy status
2782 * @ap: ATA port to debounce SATA phy status for
2783 * @params: timing parameters { interval, duratinon, timeout } in msec
2784 *
2785 * Make sure SStatus of @ap reaches stable state, determined by
2786 * holding the same value where DET is not 1 for @duration polled
2787 * every @interval, before @timeout. Timeout constraints the
2788 * beginning of the stable state. Because, after hot unplugging,
2789 * DET gets stuck at 1 on some controllers, this functions waits
2790 * until timeout then returns 0 if DET is stable at 1.
2791 *
2792 * LOCKING:
2793 * Kernel thread context (may sleep)
2794 *
2795 * RETURNS:
2796 * 0 on success, -errno on failure.
2797 */
2798int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2799{
d7bb4cc7
TH
2800 unsigned long interval_msec = params[0];
2801 unsigned long duration = params[1] * HZ / 1000;
2802 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2803 unsigned long last_jiffies;
2804 u32 last, cur;
2805 int rc;
2806
2807 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2808 return rc;
2809 cur &= 0xf;
2810
2811 last = cur;
2812 last_jiffies = jiffies;
2813
2814 while (1) {
2815 msleep(interval_msec);
2816 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2817 return rc;
2818 cur &= 0xf;
2819
2820 /* DET stable? */
2821 if (cur == last) {
2822 if (cur == 1 && time_before(jiffies, timeout))
2823 continue;
2824 if (time_after(jiffies, last_jiffies + duration))
2825 return 0;
2826 continue;
2827 }
2828
2829 /* unstable, start over */
2830 last = cur;
2831 last_jiffies = jiffies;
2832
2833 /* check timeout */
2834 if (time_after(jiffies, timeout))
2835 return -EBUSY;
2836 }
2837}
2838
2839/**
2840 * sata_phy_resume - resume SATA phy
2841 * @ap: ATA port to resume SATA phy for
2842 * @params: timing parameters { interval, duratinon, timeout } in msec
2843 *
2844 * Resume SATA phy of @ap and debounce it.
2845 *
2846 * LOCKING:
2847 * Kernel thread context (may sleep)
2848 *
2849 * RETURNS:
2850 * 0 on success, -errno on failure.
2851 */
2852int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2853{
2854 u32 scontrol;
81952c54
TH
2855 int rc;
2856
2857 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2858 return rc;
7a7921e8 2859
852ee16a 2860 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2861
2862 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2863 return rc;
7a7921e8 2864
d7bb4cc7
TH
2865 /* Some PHYs react badly if SStatus is pounded immediately
2866 * after resuming. Delay 200ms before debouncing.
2867 */
2868 msleep(200);
7a7921e8 2869
d7bb4cc7 2870 return sata_phy_debounce(ap, params);
7a7921e8
TH
2871}
2872
f5914a46
TH
2873static void ata_wait_spinup(struct ata_port *ap)
2874{
2875 struct ata_eh_context *ehc = &ap->eh_context;
2876 unsigned long end, secs;
2877 int rc;
2878
2879 /* first, debounce phy if SATA */
2880 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2881 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2882
2883 /* if debounced successfully and offline, no need to wait */
2884 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2885 return;
2886 }
2887
2888 /* okay, let's give the drive time to spin up */
2889 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2890 secs = ((end - jiffies) + HZ - 1) / HZ;
2891
2892 if (time_after(jiffies, end))
2893 return;
2894
2895 if (secs > 5)
2896 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2897 "(%lu secs)\n", secs);
2898
2899 schedule_timeout_uninterruptible(end - jiffies);
2900}
2901
2902/**
2903 * ata_std_prereset - prepare for reset
2904 * @ap: ATA port to be reset
2905 *
2906 * @ap is about to be reset. Initialize it.
2907 *
2908 * LOCKING:
2909 * Kernel thread context (may sleep)
2910 *
2911 * RETURNS:
2912 * 0 on success, -errno otherwise.
2913 */
2914int ata_std_prereset(struct ata_port *ap)
2915{
2916 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2917 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2918 int rc;
2919
28324304
TH
2920 /* handle link resume & hotplug spinup */
2921 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2922 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2923 ehc->i.action |= ATA_EH_HARDRESET;
2924
2925 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2926 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2927 ata_wait_spinup(ap);
f5914a46
TH
2928
2929 /* if we're about to do hardreset, nothing more to do */
2930 if (ehc->i.action & ATA_EH_HARDRESET)
2931 return 0;
2932
2933 /* if SATA, resume phy */
2934 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2935 rc = sata_phy_resume(ap, timing);
2936 if (rc && rc != -EOPNOTSUPP) {
2937 /* phy resume failed */
2938 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2939 "link for reset (errno=%d)\n", rc);
2940 return rc;
2941 }
2942 }
2943
2944 /* Wait for !BSY if the controller can wait for the first D2H
2945 * Reg FIS and we don't know that no device is attached.
2946 */
2947 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2948 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2949
2950 return 0;
2951}
2952
c2bd5804
TH
2953/**
2954 * ata_std_softreset - reset host port via ATA SRST
2955 * @ap: port to reset
c2bd5804
TH
2956 * @classes: resulting classes of attached devices
2957 *
52783c5d 2958 * Reset host port using ATA SRST.
c2bd5804
TH
2959 *
2960 * LOCKING:
2961 * Kernel thread context (may sleep)
2962 *
2963 * RETURNS:
2964 * 0 on success, -errno otherwise.
2965 */
2bf2cb26 2966int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2967{
2968 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2969 unsigned int devmask = 0, err_mask;
2970 u8 err;
2971
2972 DPRINTK("ENTER\n");
2973
81952c54 2974 if (ata_port_offline(ap)) {
3a39746a
TH
2975 classes[0] = ATA_DEV_NONE;
2976 goto out;
2977 }
2978
c2bd5804
TH
2979 /* determine if device 0/1 are present */
2980 if (ata_devchk(ap, 0))
2981 devmask |= (1 << 0);
2982 if (slave_possible && ata_devchk(ap, 1))
2983 devmask |= (1 << 1);
2984
c2bd5804
TH
2985 /* select device 0 again */
2986 ap->ops->dev_select(ap, 0);
2987
2988 /* issue bus reset */
2989 DPRINTK("about to softreset, devmask=%x\n", devmask);
2990 err_mask = ata_bus_softreset(ap, devmask);
2991 if (err_mask) {
f15a1daf
TH
2992 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2993 err_mask);
c2bd5804
TH
2994 return -EIO;
2995 }
2996
2997 /* determine by signature whether we have ATA or ATAPI devices */
2998 classes[0] = ata_dev_try_classify(ap, 0, &err);
2999 if (slave_possible && err != 0x81)
3000 classes[1] = ata_dev_try_classify(ap, 1, &err);
3001
3a39746a 3002 out:
c2bd5804
TH
3003 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3004 return 0;
3005}
3006
3007/**
b6103f6d 3008 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3009 * @ap: port to reset
b6103f6d 3010 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3011 *
3012 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3013 *
3014 * LOCKING:
3015 * Kernel thread context (may sleep)
3016 *
3017 * RETURNS:
3018 * 0 on success, -errno otherwise.
3019 */
b6103f6d 3020int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3021{
852ee16a 3022 u32 scontrol;
81952c54 3023 int rc;
852ee16a 3024
c2bd5804
TH
3025 DPRINTK("ENTER\n");
3026
3c567b7d 3027 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3028 /* SATA spec says nothing about how to reconfigure
3029 * spd. To be on the safe side, turn off phy during
3030 * reconfiguration. This works for at least ICH7 AHCI
3031 * and Sil3124.
3032 */
81952c54 3033 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3034 goto out;
81952c54 3035
a34b6fc0 3036 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3037
3038 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3039 goto out;
1c3fae4d 3040
3c567b7d 3041 sata_set_spd(ap);
1c3fae4d
TH
3042 }
3043
3044 /* issue phy wake/reset */
81952c54 3045 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3046 goto out;
81952c54 3047
852ee16a 3048 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3049
3050 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3051 goto out;
c2bd5804 3052
1c3fae4d 3053 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3054 * 10.4.2 says at least 1 ms.
3055 */
3056 msleep(1);
3057
1c3fae4d 3058 /* bring phy back */
b6103f6d
TH
3059 rc = sata_phy_resume(ap, timing);
3060 out:
3061 DPRINTK("EXIT, rc=%d\n", rc);
3062 return rc;
3063}
3064
3065/**
3066 * sata_std_hardreset - reset host port via SATA phy reset
3067 * @ap: port to reset
3068 * @class: resulting class of attached device
3069 *
3070 * SATA phy-reset host port using DET bits of SControl register,
3071 * wait for !BSY and classify the attached device.
3072 *
3073 * LOCKING:
3074 * Kernel thread context (may sleep)
3075 *
3076 * RETURNS:
3077 * 0 on success, -errno otherwise.
3078 */
3079int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3080{
3081 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3082 int rc;
3083
3084 DPRINTK("ENTER\n");
3085
3086 /* do hardreset */
3087 rc = sata_port_hardreset(ap, timing);
3088 if (rc) {
3089 ata_port_printk(ap, KERN_ERR,
3090 "COMRESET failed (errno=%d)\n", rc);
3091 return rc;
3092 }
c2bd5804 3093
c2bd5804 3094 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3095 if (ata_port_offline(ap)) {
c2bd5804
TH
3096 *class = ATA_DEV_NONE;
3097 DPRINTK("EXIT, link offline\n");
3098 return 0;
3099 }
3100
3101 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3102 ata_port_printk(ap, KERN_ERR,
3103 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3104 return -EIO;
3105 }
3106
3a39746a
TH
3107 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3108
c2bd5804
TH
3109 *class = ata_dev_try_classify(ap, 0, NULL);
3110
3111 DPRINTK("EXIT, class=%u\n", *class);
3112 return 0;
3113}
3114
3115/**
3116 * ata_std_postreset - standard postreset callback
3117 * @ap: the target ata_port
3118 * @classes: classes of attached devices
3119 *
3120 * This function is invoked after a successful reset. Note that
3121 * the device might have been reset more than once using
3122 * different reset methods before postreset is invoked.
c2bd5804 3123 *
c2bd5804
TH
3124 * LOCKING:
3125 * Kernel thread context (may sleep)
3126 */
3127void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3128{
dc2b3515
TH
3129 u32 serror;
3130
c2bd5804
TH
3131 DPRINTK("ENTER\n");
3132
c2bd5804 3133 /* print link status */
81952c54 3134 sata_print_link_status(ap);
c2bd5804 3135
dc2b3515
TH
3136 /* clear SError */
3137 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3138 sata_scr_write(ap, SCR_ERROR, serror);
3139
3a39746a 3140 /* re-enable interrupts */
e3180499
TH
3141 if (!ap->ops->error_handler) {
3142 /* FIXME: hack. create a hook instead */
3143 if (ap->ioaddr.ctl_addr)
3144 ata_irq_on(ap);
3145 }
c2bd5804
TH
3146
3147 /* is double-select really necessary? */
3148 if (classes[0] != ATA_DEV_NONE)
3149 ap->ops->dev_select(ap, 1);
3150 if (classes[1] != ATA_DEV_NONE)
3151 ap->ops->dev_select(ap, 0);
3152
3a39746a
TH
3153 /* bail out if no device is present */
3154 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3155 DPRINTK("EXIT, no device\n");
3156 return;
3157 }
3158
3159 /* set up device control */
3160 if (ap->ioaddr.ctl_addr) {
3161 if (ap->flags & ATA_FLAG_MMIO)
3162 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3163 else
3164 outb(ap->ctl, ap->ioaddr.ctl_addr);
3165 }
c2bd5804
TH
3166
3167 DPRINTK("EXIT\n");
3168}
3169
623a3128
TH
3170/**
3171 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3172 * @dev: device to compare against
3173 * @new_class: class of the new device
3174 * @new_id: IDENTIFY page of the new device
3175 *
3176 * Compare @new_class and @new_id against @dev and determine
3177 * whether @dev is the device indicated by @new_class and
3178 * @new_id.
3179 *
3180 * LOCKING:
3181 * None.
3182 *
3183 * RETURNS:
3184 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3185 */
3373efd8
TH
3186static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3187 const u16 *new_id)
623a3128
TH
3188{
3189 const u16 *old_id = dev->id;
3190 unsigned char model[2][41], serial[2][21];
3191 u64 new_n_sectors;
3192
3193 if (dev->class != new_class) {
f15a1daf
TH
3194 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3195 dev->class, new_class);
623a3128
TH
3196 return 0;
3197 }
3198
3199 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3200 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3201 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3202 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3203 new_n_sectors = ata_id_n_sectors(new_id);
3204
3205 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3206 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3207 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3208 return 0;
3209 }
3210
3211 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3212 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3213 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3214 return 0;
3215 }
3216
3217 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3218 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3219 "%llu != %llu\n",
3220 (unsigned long long)dev->n_sectors,
3221 (unsigned long long)new_n_sectors);
623a3128
TH
3222 return 0;
3223 }
3224
3225 return 1;
3226}
3227
3228/**
3229 * ata_dev_revalidate - Revalidate ATA device
623a3128 3230 * @dev: device to revalidate
bff04647 3231 * @readid_flags: read ID flags
623a3128
TH
3232 *
3233 * Re-read IDENTIFY page and make sure @dev is still attached to
3234 * the port.
3235 *
3236 * LOCKING:
3237 * Kernel thread context (may sleep)
3238 *
3239 * RETURNS:
3240 * 0 on success, negative errno otherwise
3241 */
bff04647 3242int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3243{
5eb45c02 3244 unsigned int class = dev->class;
f15a1daf 3245 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3246 int rc;
3247
5eb45c02
TH
3248 if (!ata_dev_enabled(dev)) {
3249 rc = -ENODEV;
3250 goto fail;
3251 }
623a3128 3252
fe635c7e 3253 /* read ID data */
bff04647 3254 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3255 if (rc)
3256 goto fail;
3257
3258 /* is the device still there? */
3373efd8 3259 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3260 rc = -ENODEV;
3261 goto fail;
3262 }
3263
fe635c7e 3264 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3265
3266 /* configure device according to the new ID */
efdaedc4 3267 rc = ata_dev_configure(dev);
5eb45c02
TH
3268 if (rc == 0)
3269 return 0;
623a3128
TH
3270
3271 fail:
f15a1daf 3272 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3273 return rc;
3274}
3275
6919a0a6
AC
3276struct ata_blacklist_entry {
3277 const char *model_num;
3278 const char *model_rev;
3279 unsigned long horkage;
3280};
3281
3282static const struct ata_blacklist_entry ata_device_blacklist [] = {
3283 /* Devices with DMA related problems under Linux */
3284 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3285 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3286 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3290 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3291 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3292 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3293 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3296 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3297 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3298 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3299 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3300 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3302 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3303 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3304 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3305 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3306 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3307 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3308 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3309 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3310 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3311 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3312 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3313 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3314
3315 /* Devices we expect to fail diagnostics */
3316
3317 /* Devices where NCQ should be avoided */
3318 /* NCQ is slow */
3319 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3320
3321 /* Devices with NCQ limits */
3322
3323 /* End Marker */
3324 { }
1da177e4 3325};
2e9edbf8 3326
f4b15fef
AC
3327static int ata_strim(char *s, size_t len)
3328{
3329 len = strnlen(s, len);
3330
3331 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3332 while ((len > 0) && (s[len - 1] == ' ')) {
3333 len--;
3334 s[len] = 0;
3335 }
3336 return len;
3337}
1da177e4 3338
6919a0a6 3339unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3340{
f4b15fef
AC
3341 unsigned char model_num[40];
3342 unsigned char model_rev[16];
3343 unsigned int nlen, rlen;
6919a0a6 3344 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3345
f4b15fef
AC
3346 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3347 sizeof(model_num));
3348 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3349 sizeof(model_rev));
3350 nlen = ata_strim(model_num, sizeof(model_num));
3351 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3352
6919a0a6
AC
3353 while (ad->model_num) {
3354 if (!strncmp(ad->model_num, model_num, nlen)) {
3355 if (ad->model_rev == NULL)
3356 return ad->horkage;
3357 if (!strncmp(ad->model_rev, model_rev, rlen))
3358 return ad->horkage;
f4b15fef 3359 }
6919a0a6 3360 ad++;
f4b15fef 3361 }
1da177e4
LT
3362 return 0;
3363}
3364
6919a0a6
AC
3365static int ata_dma_blacklisted(const struct ata_device *dev)
3366{
3367 /* We don't support polling DMA.
3368 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3369 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3370 */
3371 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3372 (dev->flags & ATA_DFLAG_CDB_INTR))
3373 return 1;
3374 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3375}
3376
a6d5a51c
TH
3377/**
3378 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3379 * @dev: Device to compute xfermask for
3380 *
acf356b1
TH
3381 * Compute supported xfermask of @dev and store it in
3382 * dev->*_mask. This function is responsible for applying all
3383 * known limits including host controller limits, device
3384 * blacklist, etc...
a6d5a51c
TH
3385 *
3386 * LOCKING:
3387 * None.
a6d5a51c 3388 */
3373efd8 3389static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3390{
3373efd8 3391 struct ata_port *ap = dev->ap;
cca3974e 3392 struct ata_host *host = ap->host;
a6d5a51c 3393 unsigned long xfer_mask;
1da177e4 3394
37deecb5 3395 /* controller modes available */
565083e1
TH
3396 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3397 ap->mwdma_mask, ap->udma_mask);
3398
3399 /* Apply cable rule here. Don't apply it early because when
3400 * we handle hot plug the cable type can itself change.
3401 */
3402 if (ap->cbl == ATA_CBL_PATA40)
3403 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3404 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3405 * host side are checked drive side as well. Cases where we know a
3406 * 40wire cable is used safely for 80 are not checked here.
3407 */
3408 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3409 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3410
1da177e4 3411
37deecb5
TH
3412 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3413 dev->mwdma_mask, dev->udma_mask);
3414 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3415
b352e57d
AC
3416 /*
3417 * CFA Advanced TrueIDE timings are not allowed on a shared
3418 * cable
3419 */
3420 if (ata_dev_pair(dev)) {
3421 /* No PIO5 or PIO6 */
3422 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3423 /* No MWDMA3 or MWDMA 4 */
3424 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3425 }
3426
37deecb5
TH
3427 if (ata_dma_blacklisted(dev)) {
3428 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3429 ata_dev_printk(dev, KERN_WARNING,
3430 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3431 }
a6d5a51c 3432
cca3974e 3433 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3434 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3435 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3436 "other device, disabling DMA\n");
5444a6f4 3437 }
565083e1 3438
5444a6f4
AC
3439 if (ap->ops->mode_filter)
3440 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3441
565083e1
TH
3442 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3443 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3444}
3445
1da177e4
LT
3446/**
3447 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3448 * @dev: Device to which command will be sent
3449 *
780a87f7
JG
3450 * Issue SET FEATURES - XFER MODE command to device @dev
3451 * on port @ap.
3452 *
1da177e4 3453 * LOCKING:
0cba632b 3454 * PCI/etc. bus probe sem.
83206a29
TH
3455 *
3456 * RETURNS:
3457 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3458 */
3459
3373efd8 3460static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3461{
a0123703 3462 struct ata_taskfile tf;
83206a29 3463 unsigned int err_mask;
1da177e4
LT
3464
3465 /* set up set-features taskfile */
3466 DPRINTK("set features - xfer mode\n");
3467
3373efd8 3468 ata_tf_init(dev, &tf);
a0123703
TH
3469 tf.command = ATA_CMD_SET_FEATURES;
3470 tf.feature = SETFEATURES_XFER;
3471 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3472 tf.protocol = ATA_PROT_NODATA;
3473 tf.nsect = dev->xfer_mode;
1da177e4 3474
3373efd8 3475 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3476
83206a29
TH
3477 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3478 return err_mask;
1da177e4
LT
3479}
3480
8bf62ece
AL
3481/**
3482 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3483 * @dev: Device to which command will be sent
e2a7f77a
RD
3484 * @heads: Number of heads (taskfile parameter)
3485 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3486 *
3487 * LOCKING:
6aff8f1f
TH
3488 * Kernel thread context (may sleep)
3489 *
3490 * RETURNS:
3491 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3492 */
3373efd8
TH
3493static unsigned int ata_dev_init_params(struct ata_device *dev,
3494 u16 heads, u16 sectors)
8bf62ece 3495{
a0123703 3496 struct ata_taskfile tf;
6aff8f1f 3497 unsigned int err_mask;
8bf62ece
AL
3498
3499 /* Number of sectors per track 1-255. Number of heads 1-16 */
3500 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3501 return AC_ERR_INVALID;
8bf62ece
AL
3502
3503 /* set up init dev params taskfile */
3504 DPRINTK("init dev params \n");
3505
3373efd8 3506 ata_tf_init(dev, &tf);
a0123703
TH
3507 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3508 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3509 tf.protocol = ATA_PROT_NODATA;
3510 tf.nsect = sectors;
3511 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3512
3373efd8 3513 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3514
6aff8f1f
TH
3515 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3516 return err_mask;
8bf62ece
AL
3517}
3518
1da177e4 3519/**
0cba632b
JG
3520 * ata_sg_clean - Unmap DMA memory associated with command
3521 * @qc: Command containing DMA memory to be released
3522 *
3523 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3524 *
3525 * LOCKING:
cca3974e 3526 * spin_lock_irqsave(host lock)
1da177e4 3527 */
70e6ad0c 3528void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3529{
3530 struct ata_port *ap = qc->ap;
cedc9a47 3531 struct scatterlist *sg = qc->__sg;
1da177e4 3532 int dir = qc->dma_dir;
cedc9a47 3533 void *pad_buf = NULL;
1da177e4 3534
a4631474
TH
3535 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3536 WARN_ON(sg == NULL);
1da177e4
LT
3537
3538 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3539 WARN_ON(qc->n_elem > 1);
1da177e4 3540
2c13b7ce 3541 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3542
cedc9a47
JG
3543 /* if we padded the buffer out to 32-bit bound, and data
3544 * xfer direction is from-device, we must copy from the
3545 * pad buffer back into the supplied buffer
3546 */
3547 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3548 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3549
3550 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3551 if (qc->n_elem)
2f1f610b 3552 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3553 /* restore last sg */
3554 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3555 if (pad_buf) {
3556 struct scatterlist *psg = &qc->pad_sgent;
3557 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3558 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3559 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3560 }
3561 } else {
2e242fa9 3562 if (qc->n_elem)
2f1f610b 3563 dma_unmap_single(ap->dev,
e1410f2d
JG
3564 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3565 dir);
cedc9a47
JG
3566 /* restore sg */
3567 sg->length += qc->pad_len;
3568 if (pad_buf)
3569 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3570 pad_buf, qc->pad_len);
3571 }
1da177e4
LT
3572
3573 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3574 qc->__sg = NULL;
1da177e4
LT
3575}
3576
3577/**
3578 * ata_fill_sg - Fill PCI IDE PRD table
3579 * @qc: Metadata associated with taskfile to be transferred
3580 *
780a87f7
JG
3581 * Fill PCI IDE PRD (scatter-gather) table with segments
3582 * associated with the current disk command.
3583 *
1da177e4 3584 * LOCKING:
cca3974e 3585 * spin_lock_irqsave(host lock)
1da177e4
LT
3586 *
3587 */
3588static void ata_fill_sg(struct ata_queued_cmd *qc)
3589{
1da177e4 3590 struct ata_port *ap = qc->ap;
cedc9a47
JG
3591 struct scatterlist *sg;
3592 unsigned int idx;
1da177e4 3593
a4631474 3594 WARN_ON(qc->__sg == NULL);
f131883e 3595 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3596
3597 idx = 0;
cedc9a47 3598 ata_for_each_sg(sg, qc) {
1da177e4
LT
3599 u32 addr, offset;
3600 u32 sg_len, len;
3601
3602 /* determine if physical DMA addr spans 64K boundary.
3603 * Note h/w doesn't support 64-bit, so we unconditionally
3604 * truncate dma_addr_t to u32.
3605 */
3606 addr = (u32) sg_dma_address(sg);
3607 sg_len = sg_dma_len(sg);
3608
3609 while (sg_len) {
3610 offset = addr & 0xffff;
3611 len = sg_len;
3612 if ((offset + sg_len) > 0x10000)
3613 len = 0x10000 - offset;
3614
3615 ap->prd[idx].addr = cpu_to_le32(addr);
3616 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3617 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3618
3619 idx++;
3620 sg_len -= len;
3621 addr += len;
3622 }
3623 }
3624
3625 if (idx)
3626 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3627}
3628/**
3629 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3630 * @qc: Metadata associated with taskfile to check
3631 *
780a87f7
JG
3632 * Allow low-level driver to filter ATA PACKET commands, returning
3633 * a status indicating whether or not it is OK to use DMA for the
3634 * supplied PACKET command.
3635 *
1da177e4 3636 * LOCKING:
cca3974e 3637 * spin_lock_irqsave(host lock)
0cba632b 3638 *
1da177e4
LT
3639 * RETURNS: 0 when ATAPI DMA can be used
3640 * nonzero otherwise
3641 */
3642int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3643{
3644 struct ata_port *ap = qc->ap;
3645 int rc = 0; /* Assume ATAPI DMA is OK by default */
3646
3647 if (ap->ops->check_atapi_dma)
3648 rc = ap->ops->check_atapi_dma(qc);
3649
3650 return rc;
3651}
3652/**
3653 * ata_qc_prep - Prepare taskfile for submission
3654 * @qc: Metadata associated with taskfile to be prepared
3655 *
780a87f7
JG
3656 * Prepare ATA taskfile for submission.
3657 *
1da177e4 3658 * LOCKING:
cca3974e 3659 * spin_lock_irqsave(host lock)
1da177e4
LT
3660 */
3661void ata_qc_prep(struct ata_queued_cmd *qc)
3662{
3663 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3664 return;
3665
3666 ata_fill_sg(qc);
3667}
3668
e46834cd
BK
3669void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3670
0cba632b
JG
3671/**
3672 * ata_sg_init_one - Associate command with memory buffer
3673 * @qc: Command to be associated
3674 * @buf: Memory buffer
3675 * @buflen: Length of memory buffer, in bytes.
3676 *
3677 * Initialize the data-related elements of queued_cmd @qc
3678 * to point to a single memory buffer, @buf of byte length @buflen.
3679 *
3680 * LOCKING:
cca3974e 3681 * spin_lock_irqsave(host lock)
0cba632b
JG
3682 */
3683
1da177e4
LT
3684void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3685{
1da177e4
LT
3686 qc->flags |= ATA_QCFLAG_SINGLE;
3687
cedc9a47 3688 qc->__sg = &qc->sgent;
1da177e4 3689 qc->n_elem = 1;
cedc9a47 3690 qc->orig_n_elem = 1;
1da177e4 3691 qc->buf_virt = buf;
233277ca 3692 qc->nbytes = buflen;
1da177e4 3693
61c0596c 3694 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3695}
3696
0cba632b
JG
3697/**
3698 * ata_sg_init - Associate command with scatter-gather table.
3699 * @qc: Command to be associated
3700 * @sg: Scatter-gather table.
3701 * @n_elem: Number of elements in s/g table.
3702 *
3703 * Initialize the data-related elements of queued_cmd @qc
3704 * to point to a scatter-gather table @sg, containing @n_elem
3705 * elements.
3706 *
3707 * LOCKING:
cca3974e 3708 * spin_lock_irqsave(host lock)
0cba632b
JG
3709 */
3710
1da177e4
LT
3711void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3712 unsigned int n_elem)
3713{
3714 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3715 qc->__sg = sg;
1da177e4 3716 qc->n_elem = n_elem;
cedc9a47 3717 qc->orig_n_elem = n_elem;
1da177e4
LT
3718}
3719
3720/**
0cba632b
JG
3721 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3722 * @qc: Command with memory buffer to be mapped.
3723 *
3724 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3725 *
3726 * LOCKING:
cca3974e 3727 * spin_lock_irqsave(host lock)
1da177e4
LT
3728 *
3729 * RETURNS:
0cba632b 3730 * Zero on success, negative on error.
1da177e4
LT
3731 */
3732
3733static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3734{
3735 struct ata_port *ap = qc->ap;
3736 int dir = qc->dma_dir;
cedc9a47 3737 struct scatterlist *sg = qc->__sg;
1da177e4 3738 dma_addr_t dma_address;
2e242fa9 3739 int trim_sg = 0;
1da177e4 3740
cedc9a47
JG
3741 /* we must lengthen transfers to end on a 32-bit boundary */
3742 qc->pad_len = sg->length & 3;
3743 if (qc->pad_len) {
3744 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3745 struct scatterlist *psg = &qc->pad_sgent;
3746
a4631474 3747 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3748
3749 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3750
3751 if (qc->tf.flags & ATA_TFLAG_WRITE)
3752 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3753 qc->pad_len);
3754
3755 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3756 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3757 /* trim sg */
3758 sg->length -= qc->pad_len;
2e242fa9
TH
3759 if (sg->length == 0)
3760 trim_sg = 1;
cedc9a47
JG
3761
3762 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3763 sg->length, qc->pad_len);
3764 }
3765
2e242fa9
TH
3766 if (trim_sg) {
3767 qc->n_elem--;
e1410f2d
JG
3768 goto skip_map;
3769 }
3770
2f1f610b 3771 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3772 sg->length, dir);
537a95d9
TH
3773 if (dma_mapping_error(dma_address)) {
3774 /* restore sg */
3775 sg->length += qc->pad_len;
1da177e4 3776 return -1;
537a95d9 3777 }
1da177e4
LT
3778
3779 sg_dma_address(sg) = dma_address;
32529e01 3780 sg_dma_len(sg) = sg->length;
1da177e4 3781
2e242fa9 3782skip_map:
1da177e4
LT
3783 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3784 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3785
3786 return 0;
3787}
3788
3789/**
0cba632b
JG
3790 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3791 * @qc: Command with scatter-gather table to be mapped.
3792 *
3793 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3794 *
3795 * LOCKING:
cca3974e 3796 * spin_lock_irqsave(host lock)
1da177e4
LT
3797 *
3798 * RETURNS:
0cba632b 3799 * Zero on success, negative on error.
1da177e4
LT
3800 *
3801 */
3802
3803static int ata_sg_setup(struct ata_queued_cmd *qc)
3804{
3805 struct ata_port *ap = qc->ap;
cedc9a47
JG
3806 struct scatterlist *sg = qc->__sg;
3807 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3808 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3809
3810 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3811 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3812
cedc9a47
JG
3813 /* we must lengthen transfers to end on a 32-bit boundary */
3814 qc->pad_len = lsg->length & 3;
3815 if (qc->pad_len) {
3816 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3817 struct scatterlist *psg = &qc->pad_sgent;
3818 unsigned int offset;
3819
a4631474 3820 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3821
3822 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3823
3824 /*
3825 * psg->page/offset are used to copy to-be-written
3826 * data in this function or read data in ata_sg_clean.
3827 */
3828 offset = lsg->offset + lsg->length - qc->pad_len;
3829 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3830 psg->offset = offset_in_page(offset);
3831
3832 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3833 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3834 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3835 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3836 }
3837
3838 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3839 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3840 /* trim last sg */
3841 lsg->length -= qc->pad_len;
e1410f2d
JG
3842 if (lsg->length == 0)
3843 trim_sg = 1;
cedc9a47
JG
3844
3845 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3846 qc->n_elem - 1, lsg->length, qc->pad_len);
3847 }
3848
e1410f2d
JG
3849 pre_n_elem = qc->n_elem;
3850 if (trim_sg && pre_n_elem)
3851 pre_n_elem--;
3852
3853 if (!pre_n_elem) {
3854 n_elem = 0;
3855 goto skip_map;
3856 }
3857
1da177e4 3858 dir = qc->dma_dir;
2f1f610b 3859 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3860 if (n_elem < 1) {
3861 /* restore last sg */
3862 lsg->length += qc->pad_len;
1da177e4 3863 return -1;
537a95d9 3864 }
1da177e4
LT
3865
3866 DPRINTK("%d sg elements mapped\n", n_elem);
3867
e1410f2d 3868skip_map:
1da177e4
LT
3869 qc->n_elem = n_elem;
3870
3871 return 0;
3872}
3873
0baab86b 3874/**
c893a3ae 3875 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3876 * @buf: Buffer to swap
3877 * @buf_words: Number of 16-bit words in buffer.
3878 *
3879 * Swap halves of 16-bit words if needed to convert from
3880 * little-endian byte order to native cpu byte order, or
3881 * vice-versa.
3882 *
3883 * LOCKING:
6f0ef4fa 3884 * Inherited from caller.
0baab86b 3885 */
1da177e4
LT
3886void swap_buf_le16(u16 *buf, unsigned int buf_words)
3887{
3888#ifdef __BIG_ENDIAN
3889 unsigned int i;
3890
3891 for (i = 0; i < buf_words; i++)
3892 buf[i] = le16_to_cpu(buf[i]);
3893#endif /* __BIG_ENDIAN */
3894}
3895
6ae4cfb5
AL
3896/**
3897 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3898 * @adev: device for this I/O
6ae4cfb5
AL
3899 * @buf: data buffer
3900 * @buflen: buffer length
344babaa 3901 * @write_data: read/write
6ae4cfb5
AL
3902 *
3903 * Transfer data from/to the device data register by MMIO.
3904 *
3905 * LOCKING:
3906 * Inherited from caller.
6ae4cfb5
AL
3907 */
3908
88574551 3909void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3910 unsigned int buflen, int write_data)
1da177e4 3911{
a6b2c5d4 3912 struct ata_port *ap = adev->ap;
1da177e4
LT
3913 unsigned int i;
3914 unsigned int words = buflen >> 1;
3915 u16 *buf16 = (u16 *) buf;
3916 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3917
6ae4cfb5 3918 /* Transfer multiple of 2 bytes */
1da177e4
LT
3919 if (write_data) {
3920 for (i = 0; i < words; i++)
3921 writew(le16_to_cpu(buf16[i]), mmio);
3922 } else {
3923 for (i = 0; i < words; i++)
3924 buf16[i] = cpu_to_le16(readw(mmio));
3925 }
6ae4cfb5
AL
3926
3927 /* Transfer trailing 1 byte, if any. */
3928 if (unlikely(buflen & 0x01)) {
3929 u16 align_buf[1] = { 0 };
3930 unsigned char *trailing_buf = buf + buflen - 1;
3931
3932 if (write_data) {
3933 memcpy(align_buf, trailing_buf, 1);
3934 writew(le16_to_cpu(align_buf[0]), mmio);
3935 } else {
3936 align_buf[0] = cpu_to_le16(readw(mmio));
3937 memcpy(trailing_buf, align_buf, 1);
3938 }
3939 }
1da177e4
LT
3940}
3941
6ae4cfb5
AL
3942/**
3943 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3944 * @adev: device to target
6ae4cfb5
AL
3945 * @buf: data buffer
3946 * @buflen: buffer length
344babaa 3947 * @write_data: read/write
6ae4cfb5
AL
3948 *
3949 * Transfer data from/to the device data register by PIO.
3950 *
3951 * LOCKING:
3952 * Inherited from caller.
6ae4cfb5
AL
3953 */
3954
88574551 3955void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3956 unsigned int buflen, int write_data)
1da177e4 3957{
a6b2c5d4 3958 struct ata_port *ap = adev->ap;
6ae4cfb5 3959 unsigned int words = buflen >> 1;
1da177e4 3960
6ae4cfb5 3961 /* Transfer multiple of 2 bytes */
1da177e4 3962 if (write_data)
6ae4cfb5 3963 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3964 else
6ae4cfb5
AL
3965 insw(ap->ioaddr.data_addr, buf, words);
3966
3967 /* Transfer trailing 1 byte, if any. */
3968 if (unlikely(buflen & 0x01)) {
3969 u16 align_buf[1] = { 0 };
3970 unsigned char *trailing_buf = buf + buflen - 1;
3971
3972 if (write_data) {
3973 memcpy(align_buf, trailing_buf, 1);
3974 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3975 } else {
3976 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3977 memcpy(trailing_buf, align_buf, 1);
3978 }
3979 }
1da177e4
LT
3980}
3981
75e99585
AC
3982/**
3983 * ata_pio_data_xfer_noirq - Transfer data by PIO
3984 * @adev: device to target
3985 * @buf: data buffer
3986 * @buflen: buffer length
3987 * @write_data: read/write
3988 *
88574551 3989 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3990 * transfer with interrupts disabled.
3991 *
3992 * LOCKING:
3993 * Inherited from caller.
3994 */
3995
3996void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3997 unsigned int buflen, int write_data)
3998{
3999 unsigned long flags;
4000 local_irq_save(flags);
4001 ata_pio_data_xfer(adev, buf, buflen, write_data);
4002 local_irq_restore(flags);
4003}
4004
4005
6ae4cfb5
AL
4006/**
4007 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4008 * @qc: Command on going
4009 *
4010 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4011 *
4012 * LOCKING:
4013 * Inherited from caller.
4014 */
4015
1da177e4
LT
4016static void ata_pio_sector(struct ata_queued_cmd *qc)
4017{
4018 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4019 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4020 struct ata_port *ap = qc->ap;
4021 struct page *page;
4022 unsigned int offset;
4023 unsigned char *buf;
4024
4025 if (qc->cursect == (qc->nsect - 1))
14be71f4 4026 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4027
4028 page = sg[qc->cursg].page;
4029 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4030
4031 /* get the current page and offset */
4032 page = nth_page(page, (offset >> PAGE_SHIFT));
4033 offset %= PAGE_SIZE;
4034
1da177e4
LT
4035 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4036
91b8b313
AL
4037 if (PageHighMem(page)) {
4038 unsigned long flags;
4039
a6b2c5d4 4040 /* FIXME: use a bounce buffer */
91b8b313
AL
4041 local_irq_save(flags);
4042 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4043
91b8b313 4044 /* do the actual data transfer */
a6b2c5d4 4045 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4046
91b8b313
AL
4047 kunmap_atomic(buf, KM_IRQ0);
4048 local_irq_restore(flags);
4049 } else {
4050 buf = page_address(page);
a6b2c5d4 4051 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4052 }
1da177e4
LT
4053
4054 qc->cursect++;
4055 qc->cursg_ofs++;
4056
32529e01 4057 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
4058 qc->cursg++;
4059 qc->cursg_ofs = 0;
4060 }
1da177e4 4061}
1da177e4 4062
07f6f7d0
AL
4063/**
4064 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4065 * @qc: Command on going
4066 *
c81e29b4 4067 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4068 * ATA device for the DRQ request.
4069 *
4070 * LOCKING:
4071 * Inherited from caller.
4072 */
1da177e4 4073
07f6f7d0
AL
4074static void ata_pio_sectors(struct ata_queued_cmd *qc)
4075{
4076 if (is_multi_taskfile(&qc->tf)) {
4077 /* READ/WRITE MULTIPLE */
4078 unsigned int nsect;
4079
587005de 4080 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4081
07f6f7d0
AL
4082 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4083 while (nsect--)
4084 ata_pio_sector(qc);
4085 } else
4086 ata_pio_sector(qc);
4087}
4088
c71c1857
AL
4089/**
4090 * atapi_send_cdb - Write CDB bytes to hardware
4091 * @ap: Port to which ATAPI device is attached.
4092 * @qc: Taskfile currently active
4093 *
4094 * When device has indicated its readiness to accept
4095 * a CDB, this function is called. Send the CDB.
4096 *
4097 * LOCKING:
4098 * caller.
4099 */
4100
4101static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4102{
4103 /* send SCSI cdb */
4104 DPRINTK("send cdb\n");
db024d53 4105 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4106
a6b2c5d4 4107 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4108 ata_altstatus(ap); /* flush */
4109
4110 switch (qc->tf.protocol) {
4111 case ATA_PROT_ATAPI:
4112 ap->hsm_task_state = HSM_ST;
4113 break;
4114 case ATA_PROT_ATAPI_NODATA:
4115 ap->hsm_task_state = HSM_ST_LAST;
4116 break;
4117 case ATA_PROT_ATAPI_DMA:
4118 ap->hsm_task_state = HSM_ST_LAST;
4119 /* initiate bmdma */
4120 ap->ops->bmdma_start(qc);
4121 break;
4122 }
1da177e4
LT
4123}
4124
6ae4cfb5
AL
4125/**
4126 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4127 * @qc: Command on going
4128 * @bytes: number of bytes
4129 *
4130 * Transfer Transfer data from/to the ATAPI device.
4131 *
4132 * LOCKING:
4133 * Inherited from caller.
4134 *
4135 */
4136
1da177e4
LT
4137static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4138{
4139 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4140 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4141 struct ata_port *ap = qc->ap;
4142 struct page *page;
4143 unsigned char *buf;
4144 unsigned int offset, count;
4145
563a6e1f 4146 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4147 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4148
4149next_sg:
563a6e1f 4150 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4151 /*
563a6e1f
AL
4152 * The end of qc->sg is reached and the device expects
4153 * more data to transfer. In order not to overrun qc->sg
4154 * and fulfill length specified in the byte count register,
4155 * - for read case, discard trailing data from the device
4156 * - for write case, padding zero data to the device
4157 */
4158 u16 pad_buf[1] = { 0 };
4159 unsigned int words = bytes >> 1;
4160 unsigned int i;
4161
4162 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4163 ata_dev_printk(qc->dev, KERN_WARNING,
4164 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4165
4166 for (i = 0; i < words; i++)
a6b2c5d4 4167 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4168
14be71f4 4169 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4170 return;
4171 }
4172
cedc9a47 4173 sg = &qc->__sg[qc->cursg];
1da177e4 4174
1da177e4
LT
4175 page = sg->page;
4176 offset = sg->offset + qc->cursg_ofs;
4177
4178 /* get the current page and offset */
4179 page = nth_page(page, (offset >> PAGE_SHIFT));
4180 offset %= PAGE_SIZE;
4181
6952df03 4182 /* don't overrun current sg */
32529e01 4183 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4184
4185 /* don't cross page boundaries */
4186 count = min(count, (unsigned int)PAGE_SIZE - offset);
4187
7282aa4b
AL
4188 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4189
91b8b313
AL
4190 if (PageHighMem(page)) {
4191 unsigned long flags;
4192
a6b2c5d4 4193 /* FIXME: use bounce buffer */
91b8b313
AL
4194 local_irq_save(flags);
4195 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4196
91b8b313 4197 /* do the actual data transfer */
a6b2c5d4 4198 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4199
91b8b313
AL
4200 kunmap_atomic(buf, KM_IRQ0);
4201 local_irq_restore(flags);
4202 } else {
4203 buf = page_address(page);
a6b2c5d4 4204 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4205 }
1da177e4
LT
4206
4207 bytes -= count;
4208 qc->curbytes += count;
4209 qc->cursg_ofs += count;
4210
32529e01 4211 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4212 qc->cursg++;
4213 qc->cursg_ofs = 0;
4214 }
4215
563a6e1f 4216 if (bytes)
1da177e4 4217 goto next_sg;
1da177e4
LT
4218}
4219
6ae4cfb5
AL
4220/**
4221 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4222 * @qc: Command on going
4223 *
4224 * Transfer Transfer data from/to the ATAPI device.
4225 *
4226 * LOCKING:
4227 * Inherited from caller.
6ae4cfb5
AL
4228 */
4229
1da177e4
LT
4230static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4231{
4232 struct ata_port *ap = qc->ap;
4233 struct ata_device *dev = qc->dev;
4234 unsigned int ireason, bc_lo, bc_hi, bytes;
4235 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4236
eec4c3f3
AL
4237 /* Abuse qc->result_tf for temp storage of intermediate TF
4238 * here to save some kernel stack usage.
4239 * For normal completion, qc->result_tf is not relevant. For
4240 * error, qc->result_tf is later overwritten by ata_qc_complete().
4241 * So, the correctness of qc->result_tf is not affected.
4242 */
4243 ap->ops->tf_read(ap, &qc->result_tf);
4244 ireason = qc->result_tf.nsect;
4245 bc_lo = qc->result_tf.lbam;
4246 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4247 bytes = (bc_hi << 8) | bc_lo;
4248
4249 /* shall be cleared to zero, indicating xfer of data */
4250 if (ireason & (1 << 0))
4251 goto err_out;
4252
4253 /* make sure transfer direction matches expected */
4254 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4255 if (do_write != i_write)
4256 goto err_out;
4257
312f7da2
AL
4258 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4259
1da177e4
LT
4260 __atapi_pio_bytes(qc, bytes);
4261
4262 return;
4263
4264err_out:
f15a1daf 4265 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4266 qc->err_mask |= AC_ERR_HSM;
14be71f4 4267 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4268}
4269
4270/**
c234fb00
AL
4271 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4272 * @ap: the target ata_port
4273 * @qc: qc on going
1da177e4 4274 *
c234fb00
AL
4275 * RETURNS:
4276 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4277 */
c234fb00
AL
4278
4279static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4280{
c234fb00
AL
4281 if (qc->tf.flags & ATA_TFLAG_POLLING)
4282 return 1;
1da177e4 4283
c234fb00
AL
4284 if (ap->hsm_task_state == HSM_ST_FIRST) {
4285 if (qc->tf.protocol == ATA_PROT_PIO &&
4286 (qc->tf.flags & ATA_TFLAG_WRITE))
4287 return 1;
1da177e4 4288
c234fb00
AL
4289 if (is_atapi_taskfile(&qc->tf) &&
4290 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4291 return 1;
fe79e683
AL
4292 }
4293
c234fb00
AL
4294 return 0;
4295}
1da177e4 4296
c17ea20d
TH
4297/**
4298 * ata_hsm_qc_complete - finish a qc running on standard HSM
4299 * @qc: Command to complete
4300 * @in_wq: 1 if called from workqueue, 0 otherwise
4301 *
4302 * Finish @qc which is running on standard HSM.
4303 *
4304 * LOCKING:
cca3974e 4305 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4306 * Otherwise, none on entry and grabs host lock.
4307 */
4308static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4309{
4310 struct ata_port *ap = qc->ap;
4311 unsigned long flags;
4312
4313 if (ap->ops->error_handler) {
4314 if (in_wq) {
ba6a1308 4315 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4316
cca3974e
JG
4317 /* EH might have kicked in while host lock is
4318 * released.
c17ea20d
TH
4319 */
4320 qc = ata_qc_from_tag(ap, qc->tag);
4321 if (qc) {
4322 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4323 ata_irq_on(ap);
4324 ata_qc_complete(qc);
4325 } else
4326 ata_port_freeze(ap);
4327 }
4328
ba6a1308 4329 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4330 } else {
4331 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4332 ata_qc_complete(qc);
4333 else
4334 ata_port_freeze(ap);
4335 }
4336 } else {
4337 if (in_wq) {
ba6a1308 4338 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4339 ata_irq_on(ap);
4340 ata_qc_complete(qc);
ba6a1308 4341 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4342 } else
4343 ata_qc_complete(qc);
4344 }
1da177e4 4345
c81e29b4 4346 ata_altstatus(ap); /* flush */
c17ea20d
TH
4347}
4348
bb5cb290
AL
4349/**
4350 * ata_hsm_move - move the HSM to the next state.
4351 * @ap: the target ata_port
4352 * @qc: qc on going
4353 * @status: current device status
4354 * @in_wq: 1 if called from workqueue, 0 otherwise
4355 *
4356 * RETURNS:
4357 * 1 when poll next status needed, 0 otherwise.
4358 */
9a1004d0
TH
4359int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4360 u8 status, int in_wq)
e2cec771 4361{
bb5cb290
AL
4362 unsigned long flags = 0;
4363 int poll_next;
4364
6912ccd5
AL
4365 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4366
bb5cb290
AL
4367 /* Make sure ata_qc_issue_prot() does not throw things
4368 * like DMA polling into the workqueue. Notice that
4369 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4370 */
c234fb00 4371 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4372
e2cec771 4373fsm_start:
999bb6f4
AL
4374 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4375 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4376
e2cec771
AL
4377 switch (ap->hsm_task_state) {
4378 case HSM_ST_FIRST:
bb5cb290
AL
4379 /* Send first data block or PACKET CDB */
4380
4381 /* If polling, we will stay in the work queue after
4382 * sending the data. Otherwise, interrupt handler
4383 * takes over after sending the data.
4384 */
4385 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4386
e2cec771 4387 /* check device status */
3655d1d3
AL
4388 if (unlikely((status & ATA_DRQ) == 0)) {
4389 /* handle BSY=0, DRQ=0 as error */
4390 if (likely(status & (ATA_ERR | ATA_DF)))
4391 /* device stops HSM for abort/error */
4392 qc->err_mask |= AC_ERR_DEV;
4393 else
4394 /* HSM violation. Let EH handle this */
4395 qc->err_mask |= AC_ERR_HSM;
4396
14be71f4 4397 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4398 goto fsm_start;
1da177e4
LT
4399 }
4400
71601958
AL
4401 /* Device should not ask for data transfer (DRQ=1)
4402 * when it finds something wrong.
eee6c32f
AL
4403 * We ignore DRQ here and stop the HSM by
4404 * changing hsm_task_state to HSM_ST_ERR and
4405 * let the EH abort the command or reset the device.
71601958
AL
4406 */
4407 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4408 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4409 ap->id, status);
3655d1d3 4410 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4411 ap->hsm_task_state = HSM_ST_ERR;
4412 goto fsm_start;
71601958 4413 }
1da177e4 4414
bb5cb290
AL
4415 /* Send the CDB (atapi) or the first data block (ata pio out).
4416 * During the state transition, interrupt handler shouldn't
4417 * be invoked before the data transfer is complete and
4418 * hsm_task_state is changed. Hence, the following locking.
4419 */
4420 if (in_wq)
ba6a1308 4421 spin_lock_irqsave(ap->lock, flags);
1da177e4 4422
bb5cb290
AL
4423 if (qc->tf.protocol == ATA_PROT_PIO) {
4424 /* PIO data out protocol.
4425 * send first data block.
4426 */
0565c26d 4427
bb5cb290
AL
4428 /* ata_pio_sectors() might change the state
4429 * to HSM_ST_LAST. so, the state is changed here
4430 * before ata_pio_sectors().
4431 */
4432 ap->hsm_task_state = HSM_ST;
4433 ata_pio_sectors(qc);
4434 ata_altstatus(ap); /* flush */
4435 } else
4436 /* send CDB */
4437 atapi_send_cdb(ap, qc);
4438
4439 if (in_wq)
ba6a1308 4440 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4441
4442 /* if polling, ata_pio_task() handles the rest.
4443 * otherwise, interrupt handler takes over from here.
4444 */
e2cec771 4445 break;
1c848984 4446
e2cec771
AL
4447 case HSM_ST:
4448 /* complete command or read/write the data register */
4449 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4450 /* ATAPI PIO protocol */
4451 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4452 /* No more data to transfer or device error.
4453 * Device error will be tagged in HSM_ST_LAST.
4454 */
e2cec771
AL
4455 ap->hsm_task_state = HSM_ST_LAST;
4456 goto fsm_start;
4457 }
1da177e4 4458
71601958
AL
4459 /* Device should not ask for data transfer (DRQ=1)
4460 * when it finds something wrong.
eee6c32f
AL
4461 * We ignore DRQ here and stop the HSM by
4462 * changing hsm_task_state to HSM_ST_ERR and
4463 * let the EH abort the command or reset the device.
71601958
AL
4464 */
4465 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4466 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4467 ap->id, status);
3655d1d3 4468 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4469 ap->hsm_task_state = HSM_ST_ERR;
4470 goto fsm_start;
71601958 4471 }
1da177e4 4472
e2cec771 4473 atapi_pio_bytes(qc);
7fb6ec28 4474
e2cec771
AL
4475 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4476 /* bad ireason reported by device */
4477 goto fsm_start;
1da177e4 4478
e2cec771
AL
4479 } else {
4480 /* ATA PIO protocol */
4481 if (unlikely((status & ATA_DRQ) == 0)) {
4482 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4483 if (likely(status & (ATA_ERR | ATA_DF)))
4484 /* device stops HSM for abort/error */
4485 qc->err_mask |= AC_ERR_DEV;
4486 else
55a8e2c8
TH
4487 /* HSM violation. Let EH handle this.
4488 * Phantom devices also trigger this
4489 * condition. Mark hint.
4490 */
4491 qc->err_mask |= AC_ERR_HSM |
4492 AC_ERR_NODEV_HINT;
3655d1d3 4493
e2cec771
AL
4494 ap->hsm_task_state = HSM_ST_ERR;
4495 goto fsm_start;
4496 }
1da177e4 4497
eee6c32f
AL
4498 /* For PIO reads, some devices may ask for
4499 * data transfer (DRQ=1) alone with ERR=1.
4500 * We respect DRQ here and transfer one
4501 * block of junk data before changing the
4502 * hsm_task_state to HSM_ST_ERR.
4503 *
4504 * For PIO writes, ERR=1 DRQ=1 doesn't make
4505 * sense since the data block has been
4506 * transferred to the device.
71601958
AL
4507 */
4508 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4509 /* data might be corrputed */
4510 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4511
4512 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4513 ata_pio_sectors(qc);
4514 ata_altstatus(ap);
4515 status = ata_wait_idle(ap);
4516 }
4517
3655d1d3
AL
4518 if (status & (ATA_BUSY | ATA_DRQ))
4519 qc->err_mask |= AC_ERR_HSM;
4520
eee6c32f
AL
4521 /* ata_pio_sectors() might change the
4522 * state to HSM_ST_LAST. so, the state
4523 * is changed after ata_pio_sectors().
4524 */
4525 ap->hsm_task_state = HSM_ST_ERR;
4526 goto fsm_start;
71601958
AL
4527 }
4528
e2cec771
AL
4529 ata_pio_sectors(qc);
4530
4531 if (ap->hsm_task_state == HSM_ST_LAST &&
4532 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4533 /* all data read */
4534 ata_altstatus(ap);
52a32205 4535 status = ata_wait_idle(ap);
e2cec771
AL
4536 goto fsm_start;
4537 }
4538 }
4539
4540 ata_altstatus(ap); /* flush */
bb5cb290 4541 poll_next = 1;
1da177e4
LT
4542 break;
4543
14be71f4 4544 case HSM_ST_LAST:
6912ccd5
AL
4545 if (unlikely(!ata_ok(status))) {
4546 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4547 ap->hsm_task_state = HSM_ST_ERR;
4548 goto fsm_start;
4549 }
4550
4551 /* no more data to transfer */
4332a771
AL
4552 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4553 ap->id, qc->dev->devno, status);
e2cec771 4554
6912ccd5
AL
4555 WARN_ON(qc->err_mask);
4556
e2cec771 4557 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4558
e2cec771 4559 /* complete taskfile transaction */
c17ea20d 4560 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4561
4562 poll_next = 0;
1da177e4
LT
4563 break;
4564
14be71f4 4565 case HSM_ST_ERR:
e2cec771
AL
4566 /* make sure qc->err_mask is available to
4567 * know what's wrong and recover
4568 */
4569 WARN_ON(qc->err_mask == 0);
4570
4571 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4572
999bb6f4 4573 /* complete taskfile transaction */
c17ea20d 4574 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4575
4576 poll_next = 0;
e2cec771
AL
4577 break;
4578 default:
bb5cb290 4579 poll_next = 0;
6912ccd5 4580 BUG();
1da177e4
LT
4581 }
4582
bb5cb290 4583 return poll_next;
1da177e4
LT
4584}
4585
65f27f38 4586static void ata_pio_task(struct work_struct *work)
8061f5f0 4587{
65f27f38
DH
4588 struct ata_port *ap =
4589 container_of(work, struct ata_port, port_task.work);
4590 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4591 u8 status;
a1af3734 4592 int poll_next;
8061f5f0 4593
7fb6ec28 4594fsm_start:
a1af3734 4595 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4596
a1af3734
AL
4597 /*
4598 * This is purely heuristic. This is a fast path.
4599 * Sometimes when we enter, BSY will be cleared in
4600 * a chk-status or two. If not, the drive is probably seeking
4601 * or something. Snooze for a couple msecs, then
4602 * chk-status again. If still busy, queue delayed work.
4603 */
4604 status = ata_busy_wait(ap, ATA_BUSY, 5);
4605 if (status & ATA_BUSY) {
4606 msleep(2);
4607 status = ata_busy_wait(ap, ATA_BUSY, 10);
4608 if (status & ATA_BUSY) {
31ce6dae 4609 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4610 return;
4611 }
8061f5f0
TH
4612 }
4613
a1af3734
AL
4614 /* move the HSM */
4615 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4616
a1af3734
AL
4617 /* another command or interrupt handler
4618 * may be running at this point.
4619 */
4620 if (poll_next)
7fb6ec28 4621 goto fsm_start;
8061f5f0
TH
4622}
4623
1da177e4
LT
4624/**
4625 * ata_qc_new - Request an available ATA command, for queueing
4626 * @ap: Port associated with device @dev
4627 * @dev: Device from whom we request an available command structure
4628 *
4629 * LOCKING:
0cba632b 4630 * None.
1da177e4
LT
4631 */
4632
4633static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4634{
4635 struct ata_queued_cmd *qc = NULL;
4636 unsigned int i;
4637
e3180499 4638 /* no command while frozen */
b51e9e5d 4639 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4640 return NULL;
4641
2ab7db1f
TH
4642 /* the last tag is reserved for internal command. */
4643 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4644 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4645 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4646 break;
4647 }
4648
4649 if (qc)
4650 qc->tag = i;
4651
4652 return qc;
4653}
4654
4655/**
4656 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4657 * @dev: Device from whom we request an available command structure
4658 *
4659 * LOCKING:
0cba632b 4660 * None.
1da177e4
LT
4661 */
4662
3373efd8 4663struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4664{
3373efd8 4665 struct ata_port *ap = dev->ap;
1da177e4
LT
4666 struct ata_queued_cmd *qc;
4667
4668 qc = ata_qc_new(ap);
4669 if (qc) {
1da177e4
LT
4670 qc->scsicmd = NULL;
4671 qc->ap = ap;
4672 qc->dev = dev;
1da177e4 4673
2c13b7ce 4674 ata_qc_reinit(qc);
1da177e4
LT
4675 }
4676
4677 return qc;
4678}
4679
1da177e4
LT
4680/**
4681 * ata_qc_free - free unused ata_queued_cmd
4682 * @qc: Command to complete
4683 *
4684 * Designed to free unused ata_queued_cmd object
4685 * in case something prevents using it.
4686 *
4687 * LOCKING:
cca3974e 4688 * spin_lock_irqsave(host lock)
1da177e4
LT
4689 */
4690void ata_qc_free(struct ata_queued_cmd *qc)
4691{
4ba946e9
TH
4692 struct ata_port *ap = qc->ap;
4693 unsigned int tag;
4694
a4631474 4695 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4696
4ba946e9
TH
4697 qc->flags = 0;
4698 tag = qc->tag;
4699 if (likely(ata_tag_valid(tag))) {
4ba946e9 4700 qc->tag = ATA_TAG_POISON;
6cec4a39 4701 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4702 }
1da177e4
LT
4703}
4704
76014427 4705void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4706{
dedaf2b0
TH
4707 struct ata_port *ap = qc->ap;
4708
a4631474
TH
4709 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4710 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4711
4712 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4713 ata_sg_clean(qc);
4714
7401abf2 4715 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4716 if (qc->tf.protocol == ATA_PROT_NCQ)
4717 ap->sactive &= ~(1 << qc->tag);
4718 else
4719 ap->active_tag = ATA_TAG_POISON;
7401abf2 4720
3f3791d3
AL
4721 /* atapi: mark qc as inactive to prevent the interrupt handler
4722 * from completing the command twice later, before the error handler
4723 * is called. (when rc != 0 and atapi request sense is needed)
4724 */
4725 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4726 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4727
1da177e4 4728 /* call completion callback */
77853bf2 4729 qc->complete_fn(qc);
1da177e4
LT
4730}
4731
39599a53
TH
4732static void fill_result_tf(struct ata_queued_cmd *qc)
4733{
4734 struct ata_port *ap = qc->ap;
4735
4736 ap->ops->tf_read(ap, &qc->result_tf);
4737 qc->result_tf.flags = qc->tf.flags;
4738}
4739
f686bcb8
TH
4740/**
4741 * ata_qc_complete - Complete an active ATA command
4742 * @qc: Command to complete
4743 * @err_mask: ATA Status register contents
4744 *
4745 * Indicate to the mid and upper layers that an ATA
4746 * command has completed, with either an ok or not-ok status.
4747 *
4748 * LOCKING:
cca3974e 4749 * spin_lock_irqsave(host lock)
f686bcb8
TH
4750 */
4751void ata_qc_complete(struct ata_queued_cmd *qc)
4752{
4753 struct ata_port *ap = qc->ap;
4754
4755 /* XXX: New EH and old EH use different mechanisms to
4756 * synchronize EH with regular execution path.
4757 *
4758 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4759 * Normal execution path is responsible for not accessing a
4760 * failed qc. libata core enforces the rule by returning NULL
4761 * from ata_qc_from_tag() for failed qcs.
4762 *
4763 * Old EH depends on ata_qc_complete() nullifying completion
4764 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4765 * not synchronize with interrupt handler. Only PIO task is
4766 * taken care of.
4767 */
4768 if (ap->ops->error_handler) {
b51e9e5d 4769 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4770
4771 if (unlikely(qc->err_mask))
4772 qc->flags |= ATA_QCFLAG_FAILED;
4773
4774 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4775 if (!ata_tag_internal(qc->tag)) {
4776 /* always fill result TF for failed qc */
39599a53 4777 fill_result_tf(qc);
f686bcb8
TH
4778 ata_qc_schedule_eh(qc);
4779 return;
4780 }
4781 }
4782
4783 /* read result TF if requested */
4784 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4785 fill_result_tf(qc);
f686bcb8
TH
4786
4787 __ata_qc_complete(qc);
4788 } else {
4789 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4790 return;
4791
4792 /* read result TF if failed or requested */
4793 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4794 fill_result_tf(qc);
f686bcb8
TH
4795
4796 __ata_qc_complete(qc);
4797 }
4798}
4799
dedaf2b0
TH
4800/**
4801 * ata_qc_complete_multiple - Complete multiple qcs successfully
4802 * @ap: port in question
4803 * @qc_active: new qc_active mask
4804 * @finish_qc: LLDD callback invoked before completing a qc
4805 *
4806 * Complete in-flight commands. This functions is meant to be
4807 * called from low-level driver's interrupt routine to complete
4808 * requests normally. ap->qc_active and @qc_active is compared
4809 * and commands are completed accordingly.
4810 *
4811 * LOCKING:
cca3974e 4812 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4813 *
4814 * RETURNS:
4815 * Number of completed commands on success, -errno otherwise.
4816 */
4817int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4818 void (*finish_qc)(struct ata_queued_cmd *))
4819{
4820 int nr_done = 0;
4821 u32 done_mask;
4822 int i;
4823
4824 done_mask = ap->qc_active ^ qc_active;
4825
4826 if (unlikely(done_mask & qc_active)) {
4827 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4828 "(%08x->%08x)\n", ap->qc_active, qc_active);
4829 return -EINVAL;
4830 }
4831
4832 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4833 struct ata_queued_cmd *qc;
4834
4835 if (!(done_mask & (1 << i)))
4836 continue;
4837
4838 if ((qc = ata_qc_from_tag(ap, i))) {
4839 if (finish_qc)
4840 finish_qc(qc);
4841 ata_qc_complete(qc);
4842 nr_done++;
4843 }
4844 }
4845
4846 return nr_done;
4847}
4848
1da177e4
LT
4849static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4850{
4851 struct ata_port *ap = qc->ap;
4852
4853 switch (qc->tf.protocol) {
3dc1d881 4854 case ATA_PROT_NCQ:
1da177e4
LT
4855 case ATA_PROT_DMA:
4856 case ATA_PROT_ATAPI_DMA:
4857 return 1;
4858
4859 case ATA_PROT_ATAPI:
4860 case ATA_PROT_PIO:
1da177e4
LT
4861 if (ap->flags & ATA_FLAG_PIO_DMA)
4862 return 1;
4863
4864 /* fall through */
4865
4866 default:
4867 return 0;
4868 }
4869
4870 /* never reached */
4871}
4872
4873/**
4874 * ata_qc_issue - issue taskfile to device
4875 * @qc: command to issue to device
4876 *
4877 * Prepare an ATA command to submission to device.
4878 * This includes mapping the data into a DMA-able
4879 * area, filling in the S/G table, and finally
4880 * writing the taskfile to hardware, starting the command.
4881 *
4882 * LOCKING:
cca3974e 4883 * spin_lock_irqsave(host lock)
1da177e4 4884 */
8e0e694a 4885void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4886{
4887 struct ata_port *ap = qc->ap;
4888
dedaf2b0
TH
4889 /* Make sure only one non-NCQ command is outstanding. The
4890 * check is skipped for old EH because it reuses active qc to
4891 * request ATAPI sense.
4892 */
4893 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4894
4895 if (qc->tf.protocol == ATA_PROT_NCQ) {
4896 WARN_ON(ap->sactive & (1 << qc->tag));
4897 ap->sactive |= 1 << qc->tag;
4898 } else {
4899 WARN_ON(ap->sactive);
4900 ap->active_tag = qc->tag;
4901 }
4902
e4a70e76 4903 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4904 ap->qc_active |= 1 << qc->tag;
e4a70e76 4905
1da177e4
LT
4906 if (ata_should_dma_map(qc)) {
4907 if (qc->flags & ATA_QCFLAG_SG) {
4908 if (ata_sg_setup(qc))
8e436af9 4909 goto sg_err;
1da177e4
LT
4910 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4911 if (ata_sg_setup_one(qc))
8e436af9 4912 goto sg_err;
1da177e4
LT
4913 }
4914 } else {
4915 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4916 }
4917
4918 ap->ops->qc_prep(qc);
4919
8e0e694a
TH
4920 qc->err_mask |= ap->ops->qc_issue(qc);
4921 if (unlikely(qc->err_mask))
4922 goto err;
4923 return;
1da177e4 4924
8e436af9
TH
4925sg_err:
4926 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4927 qc->err_mask |= AC_ERR_SYSTEM;
4928err:
4929 ata_qc_complete(qc);
1da177e4
LT
4930}
4931
4932/**
4933 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4934 * @qc: command to issue to device
4935 *
4936 * Using various libata functions and hooks, this function
4937 * starts an ATA command. ATA commands are grouped into
4938 * classes called "protocols", and issuing each type of protocol
4939 * is slightly different.
4940 *
0baab86b
EF
4941 * May be used as the qc_issue() entry in ata_port_operations.
4942 *
1da177e4 4943 * LOCKING:
cca3974e 4944 * spin_lock_irqsave(host lock)
1da177e4
LT
4945 *
4946 * RETURNS:
9a3d9eb0 4947 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4948 */
4949
9a3d9eb0 4950unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4951{
4952 struct ata_port *ap = qc->ap;
4953
e50362ec
AL
4954 /* Use polling pio if the LLD doesn't handle
4955 * interrupt driven pio and atapi CDB interrupt.
4956 */
4957 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4958 switch (qc->tf.protocol) {
4959 case ATA_PROT_PIO:
e3472cbe 4960 case ATA_PROT_NODATA:
e50362ec
AL
4961 case ATA_PROT_ATAPI:
4962 case ATA_PROT_ATAPI_NODATA:
4963 qc->tf.flags |= ATA_TFLAG_POLLING;
4964 break;
4965 case ATA_PROT_ATAPI_DMA:
4966 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4967 /* see ata_dma_blacklisted() */
e50362ec
AL
4968 BUG();
4969 break;
4970 default:
4971 break;
4972 }
4973 }
4974
3d3cca37
TH
4975 /* Some controllers show flaky interrupt behavior after
4976 * setting xfer mode. Use polling instead.
4977 */
4978 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4979 qc->tf.feature == SETFEATURES_XFER) &&
4980 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4981 qc->tf.flags |= ATA_TFLAG_POLLING;
4982
312f7da2 4983 /* select the device */
1da177e4
LT
4984 ata_dev_select(ap, qc->dev->devno, 1, 0);
4985
312f7da2 4986 /* start the command */
1da177e4
LT
4987 switch (qc->tf.protocol) {
4988 case ATA_PROT_NODATA:
312f7da2
AL
4989 if (qc->tf.flags & ATA_TFLAG_POLLING)
4990 ata_qc_set_polling(qc);
4991
e5338254 4992 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4993 ap->hsm_task_state = HSM_ST_LAST;
4994
4995 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4996 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4997
1da177e4
LT
4998 break;
4999
5000 case ATA_PROT_DMA:
587005de 5001 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5002
1da177e4
LT
5003 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5004 ap->ops->bmdma_setup(qc); /* set up bmdma */
5005 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5006 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5007 break;
5008
312f7da2
AL
5009 case ATA_PROT_PIO:
5010 if (qc->tf.flags & ATA_TFLAG_POLLING)
5011 ata_qc_set_polling(qc);
1da177e4 5012
e5338254 5013 ata_tf_to_host(ap, &qc->tf);
312f7da2 5014
54f00389
AL
5015 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5016 /* PIO data out protocol */
5017 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5018 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5019
5020 /* always send first data block using
e27486db 5021 * the ata_pio_task() codepath.
54f00389 5022 */
312f7da2 5023 } else {
54f00389
AL
5024 /* PIO data in protocol */
5025 ap->hsm_task_state = HSM_ST;
5026
5027 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5028 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5029
5030 /* if polling, ata_pio_task() handles the rest.
5031 * otherwise, interrupt handler takes over from here.
5032 */
312f7da2
AL
5033 }
5034
1da177e4
LT
5035 break;
5036
1da177e4 5037 case ATA_PROT_ATAPI:
1da177e4 5038 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5039 if (qc->tf.flags & ATA_TFLAG_POLLING)
5040 ata_qc_set_polling(qc);
5041
e5338254 5042 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5043
312f7da2
AL
5044 ap->hsm_task_state = HSM_ST_FIRST;
5045
5046 /* send cdb by polling if no cdb interrupt */
5047 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5048 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5049 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5050 break;
5051
5052 case ATA_PROT_ATAPI_DMA:
587005de 5053 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5054
1da177e4
LT
5055 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5056 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5057 ap->hsm_task_state = HSM_ST_FIRST;
5058
5059 /* send cdb by polling if no cdb interrupt */
5060 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5061 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5062 break;
5063
5064 default:
5065 WARN_ON(1);
9a3d9eb0 5066 return AC_ERR_SYSTEM;
1da177e4
LT
5067 }
5068
5069 return 0;
5070}
5071
1da177e4
LT
5072/**
5073 * ata_host_intr - Handle host interrupt for given (port, task)
5074 * @ap: Port on which interrupt arrived (possibly...)
5075 * @qc: Taskfile currently active in engine
5076 *
5077 * Handle host interrupt for given queued command. Currently,
5078 * only DMA interrupts are handled. All other commands are
5079 * handled via polling with interrupts disabled (nIEN bit).
5080 *
5081 * LOCKING:
cca3974e 5082 * spin_lock_irqsave(host lock)
1da177e4
LT
5083 *
5084 * RETURNS:
5085 * One if interrupt was handled, zero if not (shared irq).
5086 */
5087
5088inline unsigned int ata_host_intr (struct ata_port *ap,
5089 struct ata_queued_cmd *qc)
5090{
ea54763f 5091 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5092 u8 status, host_stat = 0;
1da177e4 5093
312f7da2
AL
5094 VPRINTK("ata%u: protocol %d task_state %d\n",
5095 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5096
312f7da2
AL
5097 /* Check whether we are expecting interrupt in this state */
5098 switch (ap->hsm_task_state) {
5099 case HSM_ST_FIRST:
6912ccd5
AL
5100 /* Some pre-ATAPI-4 devices assert INTRQ
5101 * at this state when ready to receive CDB.
5102 */
1da177e4 5103
312f7da2
AL
5104 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5105 * The flag was turned on only for atapi devices.
5106 * No need to check is_atapi_taskfile(&qc->tf) again.
5107 */
5108 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5109 goto idle_irq;
1da177e4 5110 break;
312f7da2
AL
5111 case HSM_ST_LAST:
5112 if (qc->tf.protocol == ATA_PROT_DMA ||
5113 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5114 /* check status of DMA engine */
5115 host_stat = ap->ops->bmdma_status(ap);
5116 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5117
5118 /* if it's not our irq... */
5119 if (!(host_stat & ATA_DMA_INTR))
5120 goto idle_irq;
5121
5122 /* before we do anything else, clear DMA-Start bit */
5123 ap->ops->bmdma_stop(qc);
a4f16610
AL
5124
5125 if (unlikely(host_stat & ATA_DMA_ERR)) {
5126 /* error when transfering data to/from memory */
5127 qc->err_mask |= AC_ERR_HOST_BUS;
5128 ap->hsm_task_state = HSM_ST_ERR;
5129 }
312f7da2
AL
5130 }
5131 break;
5132 case HSM_ST:
5133 break;
1da177e4
LT
5134 default:
5135 goto idle_irq;
5136 }
5137
312f7da2
AL
5138 /* check altstatus */
5139 status = ata_altstatus(ap);
5140 if (status & ATA_BUSY)
5141 goto idle_irq;
1da177e4 5142
312f7da2
AL
5143 /* check main status, clearing INTRQ */
5144 status = ata_chk_status(ap);
5145 if (unlikely(status & ATA_BUSY))
5146 goto idle_irq;
1da177e4 5147
312f7da2
AL
5148 /* ack bmdma irq events */
5149 ap->ops->irq_clear(ap);
1da177e4 5150
bb5cb290 5151 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5152
5153 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5154 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5155 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5156
1da177e4
LT
5157 return 1; /* irq handled */
5158
5159idle_irq:
5160 ap->stats.idle_irq++;
5161
5162#ifdef ATA_IRQ_TRAP
5163 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5164 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5165 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5166 return 1;
1da177e4
LT
5167 }
5168#endif
5169 return 0; /* irq not handled */
5170}
5171
5172/**
5173 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5174 * @irq: irq line (unused)
cca3974e 5175 * @dev_instance: pointer to our ata_host information structure
1da177e4 5176 *
0cba632b
JG
5177 * Default interrupt handler for PCI IDE devices. Calls
5178 * ata_host_intr() for each port that is not disabled.
5179 *
1da177e4 5180 * LOCKING:
cca3974e 5181 * Obtains host lock during operation.
1da177e4
LT
5182 *
5183 * RETURNS:
0cba632b 5184 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5185 */
5186
7d12e780 5187irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5188{
cca3974e 5189 struct ata_host *host = dev_instance;
1da177e4
LT
5190 unsigned int i;
5191 unsigned int handled = 0;
5192 unsigned long flags;
5193
5194 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5195 spin_lock_irqsave(&host->lock, flags);
1da177e4 5196
cca3974e 5197 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5198 struct ata_port *ap;
5199
cca3974e 5200 ap = host->ports[i];
c1389503 5201 if (ap &&
029f5468 5202 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5203 struct ata_queued_cmd *qc;
5204
5205 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5206 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5207 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5208 handled |= ata_host_intr(ap, qc);
5209 }
5210 }
5211
cca3974e 5212 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5213
5214 return IRQ_RETVAL(handled);
5215}
5216
34bf2170
TH
5217/**
5218 * sata_scr_valid - test whether SCRs are accessible
5219 * @ap: ATA port to test SCR accessibility for
5220 *
5221 * Test whether SCRs are accessible for @ap.
5222 *
5223 * LOCKING:
5224 * None.
5225 *
5226 * RETURNS:
5227 * 1 if SCRs are accessible, 0 otherwise.
5228 */
5229int sata_scr_valid(struct ata_port *ap)
5230{
5231 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5232}
5233
5234/**
5235 * sata_scr_read - read SCR register of the specified port
5236 * @ap: ATA port to read SCR for
5237 * @reg: SCR to read
5238 * @val: Place to store read value
5239 *
5240 * Read SCR register @reg of @ap into *@val. This function is
5241 * guaranteed to succeed if the cable type of the port is SATA
5242 * and the port implements ->scr_read.
5243 *
5244 * LOCKING:
5245 * None.
5246 *
5247 * RETURNS:
5248 * 0 on success, negative errno on failure.
5249 */
5250int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5251{
5252 if (sata_scr_valid(ap)) {
5253 *val = ap->ops->scr_read(ap, reg);
5254 return 0;
5255 }
5256 return -EOPNOTSUPP;
5257}
5258
5259/**
5260 * sata_scr_write - write SCR register of the specified port
5261 * @ap: ATA port to write SCR for
5262 * @reg: SCR to write
5263 * @val: value to write
5264 *
5265 * Write @val to SCR register @reg of @ap. This function is
5266 * guaranteed to succeed if the cable type of the port is SATA
5267 * and the port implements ->scr_read.
5268 *
5269 * LOCKING:
5270 * None.
5271 *
5272 * RETURNS:
5273 * 0 on success, negative errno on failure.
5274 */
5275int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5276{
5277 if (sata_scr_valid(ap)) {
5278 ap->ops->scr_write(ap, reg, val);
5279 return 0;
5280 }
5281 return -EOPNOTSUPP;
5282}
5283
5284/**
5285 * sata_scr_write_flush - write SCR register of the specified port and flush
5286 * @ap: ATA port to write SCR for
5287 * @reg: SCR to write
5288 * @val: value to write
5289 *
5290 * This function is identical to sata_scr_write() except that this
5291 * function performs flush after writing to the register.
5292 *
5293 * LOCKING:
5294 * None.
5295 *
5296 * RETURNS:
5297 * 0 on success, negative errno on failure.
5298 */
5299int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5300{
5301 if (sata_scr_valid(ap)) {
5302 ap->ops->scr_write(ap, reg, val);
5303 ap->ops->scr_read(ap, reg);
5304 return 0;
5305 }
5306 return -EOPNOTSUPP;
5307}
5308
5309/**
5310 * ata_port_online - test whether the given port is online
5311 * @ap: ATA port to test
5312 *
5313 * Test whether @ap is online. Note that this function returns 0
5314 * if online status of @ap cannot be obtained, so
5315 * ata_port_online(ap) != !ata_port_offline(ap).
5316 *
5317 * LOCKING:
5318 * None.
5319 *
5320 * RETURNS:
5321 * 1 if the port online status is available and online.
5322 */
5323int ata_port_online(struct ata_port *ap)
5324{
5325 u32 sstatus;
5326
5327 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5328 return 1;
5329 return 0;
5330}
5331
5332/**
5333 * ata_port_offline - test whether the given port is offline
5334 * @ap: ATA port to test
5335 *
5336 * Test whether @ap is offline. Note that this function returns
5337 * 0 if offline status of @ap cannot be obtained, so
5338 * ata_port_online(ap) != !ata_port_offline(ap).
5339 *
5340 * LOCKING:
5341 * None.
5342 *
5343 * RETURNS:
5344 * 1 if the port offline status is available and offline.
5345 */
5346int ata_port_offline(struct ata_port *ap)
5347{
5348 u32 sstatus;
5349
5350 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5351 return 1;
5352 return 0;
5353}
0baab86b 5354
77b08fb5 5355int ata_flush_cache(struct ata_device *dev)
9b847548 5356{
977e6b9f 5357 unsigned int err_mask;
9b847548
JA
5358 u8 cmd;
5359
5360 if (!ata_try_flush_cache(dev))
5361 return 0;
5362
6fc49adb 5363 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5364 cmd = ATA_CMD_FLUSH_EXT;
5365 else
5366 cmd = ATA_CMD_FLUSH;
5367
977e6b9f
TH
5368 err_mask = ata_do_simple_cmd(dev, cmd);
5369 if (err_mask) {
5370 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5371 return -EIO;
5372 }
5373
5374 return 0;
9b847548
JA
5375}
5376
cca3974e
JG
5377static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5378 unsigned int action, unsigned int ehi_flags,
5379 int wait)
500530f6
TH
5380{
5381 unsigned long flags;
5382 int i, rc;
5383
cca3974e
JG
5384 for (i = 0; i < host->n_ports; i++) {
5385 struct ata_port *ap = host->ports[i];
500530f6
TH
5386
5387 /* Previous resume operation might still be in
5388 * progress. Wait for PM_PENDING to clear.
5389 */
5390 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5391 ata_port_wait_eh(ap);
5392 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5393 }
5394
5395 /* request PM ops to EH */
5396 spin_lock_irqsave(ap->lock, flags);
5397
5398 ap->pm_mesg = mesg;
5399 if (wait) {
5400 rc = 0;
5401 ap->pm_result = &rc;
5402 }
5403
5404 ap->pflags |= ATA_PFLAG_PM_PENDING;
5405 ap->eh_info.action |= action;
5406 ap->eh_info.flags |= ehi_flags;
5407
5408 ata_port_schedule_eh(ap);
5409
5410 spin_unlock_irqrestore(ap->lock, flags);
5411
5412 /* wait and check result */
5413 if (wait) {
5414 ata_port_wait_eh(ap);
5415 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5416 if (rc)
5417 return rc;
5418 }
5419 }
5420
5421 return 0;
5422}
5423
5424/**
cca3974e
JG
5425 * ata_host_suspend - suspend host
5426 * @host: host to suspend
500530f6
TH
5427 * @mesg: PM message
5428 *
cca3974e 5429 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5430 * function requests EH to perform PM operations and waits for EH
5431 * to finish.
5432 *
5433 * LOCKING:
5434 * Kernel thread context (may sleep).
5435 *
5436 * RETURNS:
5437 * 0 on success, -errno on failure.
5438 */
cca3974e 5439int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5440{
5441 int i, j, rc;
5442
cca3974e 5443 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5444 if (rc)
5445 goto fail;
5446
5447 /* EH is quiescent now. Fail if we have any ready device.
5448 * This happens if hotplug occurs between completion of device
5449 * suspension and here.
5450 */
cca3974e
JG
5451 for (i = 0; i < host->n_ports; i++) {
5452 struct ata_port *ap = host->ports[i];
500530f6
TH
5453
5454 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5455 struct ata_device *dev = &ap->device[j];
5456
5457 if (ata_dev_ready(dev)) {
5458 ata_port_printk(ap, KERN_WARNING,
5459 "suspend failed, device %d "
5460 "still active\n", dev->devno);
5461 rc = -EBUSY;
5462 goto fail;
5463 }
5464 }
5465 }
5466
cca3974e 5467 host->dev->power.power_state = mesg;
500530f6
TH
5468 return 0;
5469
5470 fail:
cca3974e 5471 ata_host_resume(host);
500530f6
TH
5472 return rc;
5473}
5474
5475/**
cca3974e
JG
5476 * ata_host_resume - resume host
5477 * @host: host to resume
500530f6 5478 *
cca3974e 5479 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5480 * function requests EH to perform PM operations and returns.
5481 * Note that all resume operations are performed parallely.
5482 *
5483 * LOCKING:
5484 * Kernel thread context (may sleep).
5485 */
cca3974e 5486void ata_host_resume(struct ata_host *host)
500530f6 5487{
cca3974e
JG
5488 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5489 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5490 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5491}
5492
c893a3ae
RD
5493/**
5494 * ata_port_start - Set port up for dma.
5495 * @ap: Port to initialize
5496 *
5497 * Called just after data structures for each port are
5498 * initialized. Allocates space for PRD table.
5499 *
5500 * May be used as the port_start() entry in ata_port_operations.
5501 *
5502 * LOCKING:
5503 * Inherited from caller.
5504 */
5505
1da177e4
LT
5506int ata_port_start (struct ata_port *ap)
5507{
2f1f610b 5508 struct device *dev = ap->dev;
6037d6bb 5509 int rc;
1da177e4
LT
5510
5511 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5512 if (!ap->prd)
5513 return -ENOMEM;
5514
6037d6bb
JG
5515 rc = ata_pad_alloc(ap, dev);
5516 if (rc) {
cedc9a47 5517 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5518 return rc;
cedc9a47
JG
5519 }
5520
1da177e4
LT
5521 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5522
5523 return 0;
5524}
5525
0baab86b
EF
5526
5527/**
5528 * ata_port_stop - Undo ata_port_start()
5529 * @ap: Port to shut down
5530 *
5531 * Frees the PRD table.
5532 *
5533 * May be used as the port_stop() entry in ata_port_operations.
5534 *
5535 * LOCKING:
6f0ef4fa 5536 * Inherited from caller.
0baab86b
EF
5537 */
5538
1da177e4
LT
5539void ata_port_stop (struct ata_port *ap)
5540{
2f1f610b 5541 struct device *dev = ap->dev;
1da177e4
LT
5542
5543 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5544 ata_pad_free(ap, dev);
1da177e4
LT
5545}
5546
cca3974e 5547void ata_host_stop (struct ata_host *host)
aa8f0dc6 5548{
cca3974e
JG
5549 if (host->mmio_base)
5550 iounmap(host->mmio_base);
aa8f0dc6
JG
5551}
5552
3ef3b43d
TH
5553/**
5554 * ata_dev_init - Initialize an ata_device structure
5555 * @dev: Device structure to initialize
5556 *
5557 * Initialize @dev in preparation for probing.
5558 *
5559 * LOCKING:
5560 * Inherited from caller.
5561 */
5562void ata_dev_init(struct ata_device *dev)
5563{
5564 struct ata_port *ap = dev->ap;
72fa4b74
TH
5565 unsigned long flags;
5566
5a04bf4b
TH
5567 /* SATA spd limit is bound to the first device */
5568 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5569
72fa4b74
TH
5570 /* High bits of dev->flags are used to record warm plug
5571 * requests which occur asynchronously. Synchronize using
cca3974e 5572 * host lock.
72fa4b74 5573 */
ba6a1308 5574 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5575 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5576 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5577
72fa4b74
TH
5578 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5579 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5580 dev->pio_mask = UINT_MAX;
5581 dev->mwdma_mask = UINT_MAX;
5582 dev->udma_mask = UINT_MAX;
5583}
5584
1da177e4 5585/**
155a8a9c 5586 * ata_port_init - Initialize an ata_port structure
1da177e4 5587 * @ap: Structure to initialize
cca3974e 5588 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5589 * @ent: Probe information provided by low-level driver
5590 * @port_no: Port number associated with this ata_port
5591 *
155a8a9c 5592 * Initialize a new ata_port structure.
0cba632b 5593 *
1da177e4 5594 * LOCKING:
0cba632b 5595 * Inherited from caller.
1da177e4 5596 */
cca3974e 5597void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5598 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5599{
5600 unsigned int i;
5601
cca3974e 5602 ap->lock = &host->lock;
198e0fed 5603 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5604 ap->id = ata_unique_id++;
1da177e4 5605 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5606 ap->host = host;
2f1f610b 5607 ap->dev = ent->dev;
1da177e4 5608 ap->port_no = port_no;
fea63e38
TH
5609 if (port_no == 1 && ent->pinfo2) {
5610 ap->pio_mask = ent->pinfo2->pio_mask;
5611 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5612 ap->udma_mask = ent->pinfo2->udma_mask;
5613 ap->flags |= ent->pinfo2->flags;
5614 ap->ops = ent->pinfo2->port_ops;
5615 } else {
5616 ap->pio_mask = ent->pio_mask;
5617 ap->mwdma_mask = ent->mwdma_mask;
5618 ap->udma_mask = ent->udma_mask;
5619 ap->flags |= ent->port_flags;
5620 ap->ops = ent->port_ops;
5621 }
5a04bf4b 5622 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5623 ap->active_tag = ATA_TAG_POISON;
5624 ap->last_ctl = 0xFF;
bd5d825c
BP
5625
5626#if defined(ATA_VERBOSE_DEBUG)
5627 /* turn on all debugging levels */
5628 ap->msg_enable = 0x00FF;
5629#elif defined(ATA_DEBUG)
5630 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5631#else
0dd4b21f 5632 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5633#endif
1da177e4 5634
65f27f38
DH
5635 INIT_DELAYED_WORK(&ap->port_task, NULL);
5636 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5637 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5638 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5639 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5640
838df628
TH
5641 /* set cable type */
5642 ap->cbl = ATA_CBL_NONE;
5643 if (ap->flags & ATA_FLAG_SATA)
5644 ap->cbl = ATA_CBL_SATA;
5645
acf356b1
TH
5646 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5647 struct ata_device *dev = &ap->device[i];
38d87234 5648 dev->ap = ap;
72fa4b74 5649 dev->devno = i;
3ef3b43d 5650 ata_dev_init(dev);
acf356b1 5651 }
1da177e4
LT
5652
5653#ifdef ATA_IRQ_TRAP
5654 ap->stats.unhandled_irq = 1;
5655 ap->stats.idle_irq = 1;
5656#endif
5657
5658 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5659}
5660
155a8a9c 5661/**
4608c160
TH
5662 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5663 * @ap: ATA port to initialize SCSI host for
5664 * @shost: SCSI host associated with @ap
155a8a9c 5665 *
4608c160 5666 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5667 *
5668 * LOCKING:
5669 * Inherited from caller.
5670 */
4608c160 5671static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5672{
cca3974e 5673 ap->scsi_host = shost;
155a8a9c 5674
4608c160
TH
5675 shost->unique_id = ap->id;
5676 shost->max_id = 16;
5677 shost->max_lun = 1;
5678 shost->max_channel = 1;
5679 shost->max_cmd_len = 12;
155a8a9c
BK
5680}
5681
1da177e4 5682/**
996139f1 5683 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5684 * @ent: Information provided by low-level driver
cca3974e 5685 * @host: Collections of ports to which we add
1da177e4
LT
5686 * @port_no: Port number associated with this host
5687 *
0cba632b
JG
5688 * Attach low-level ATA driver to system.
5689 *
1da177e4 5690 * LOCKING:
0cba632b 5691 * PCI/etc. bus probe sem.
1da177e4
LT
5692 *
5693 * RETURNS:
0cba632b 5694 * New ata_port on success, for NULL on error.
1da177e4 5695 */
996139f1 5696static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5697 struct ata_host *host,
1da177e4
LT
5698 unsigned int port_no)
5699{
996139f1 5700 struct Scsi_Host *shost;
1da177e4 5701 struct ata_port *ap;
1da177e4
LT
5702
5703 DPRINTK("ENTER\n");
aec5c3c1 5704
52783c5d 5705 if (!ent->port_ops->error_handler &&
cca3974e 5706 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5707 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5708 port_no);
5709 return NULL;
5710 }
5711
996139f1
JG
5712 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5713 if (!shost)
1da177e4
LT
5714 return NULL;
5715
996139f1 5716 shost->transportt = &ata_scsi_transport_template;
30afc84c 5717
996139f1 5718 ap = ata_shost_to_port(shost);
1da177e4 5719
cca3974e 5720 ata_port_init(ap, host, ent, port_no);
996139f1 5721 ata_port_init_shost(ap, shost);
1da177e4 5722
1da177e4 5723 return ap;
1da177e4
LT
5724}
5725
b03732f0 5726/**
cca3974e
JG
5727 * ata_sas_host_init - Initialize a host struct
5728 * @host: host to initialize
5729 * @dev: device host is attached to
5730 * @flags: host flags
5731 * @ops: port_ops
b03732f0
BK
5732 *
5733 * LOCKING:
5734 * PCI/etc. bus probe sem.
5735 *
5736 */
5737
cca3974e
JG
5738void ata_host_init(struct ata_host *host, struct device *dev,
5739 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5740{
cca3974e
JG
5741 spin_lock_init(&host->lock);
5742 host->dev = dev;
5743 host->flags = flags;
5744 host->ops = ops;
b03732f0
BK
5745}
5746
1da177e4 5747/**
0cba632b
JG
5748 * ata_device_add - Register hardware device with ATA and SCSI layers
5749 * @ent: Probe information describing hardware device to be registered
5750 *
5751 * This function processes the information provided in the probe
5752 * information struct @ent, allocates the necessary ATA and SCSI
5753 * host information structures, initializes them, and registers
5754 * everything with requisite kernel subsystems.
5755 *
5756 * This function requests irqs, probes the ATA bus, and probes
5757 * the SCSI bus.
1da177e4
LT
5758 *
5759 * LOCKING:
0cba632b 5760 * PCI/etc. bus probe sem.
1da177e4
LT
5761 *
5762 * RETURNS:
0cba632b 5763 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5764 */
057ace5e 5765int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5766{
6d0500df 5767 unsigned int i;
1da177e4 5768 struct device *dev = ent->dev;
cca3974e 5769 struct ata_host *host;
39b07ce6 5770 int rc;
1da177e4
LT
5771
5772 DPRINTK("ENTER\n");
f20b16ff 5773
02f076aa
AC
5774 if (ent->irq == 0) {
5775 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5776 return 0;
5777 }
1da177e4 5778 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5779 host = kzalloc(sizeof(struct ata_host) +
5780 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5781 if (!host)
1da177e4 5782 return 0;
1da177e4 5783
cca3974e
JG
5784 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5785 host->n_ports = ent->n_ports;
5786 host->irq = ent->irq;
5787 host->irq2 = ent->irq2;
5788 host->mmio_base = ent->mmio_base;
5789 host->private_data = ent->private_data;
1da177e4
LT
5790
5791 /* register each port bound to this device */
cca3974e 5792 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5793 struct ata_port *ap;
5794 unsigned long xfer_mode_mask;
2ec7df04 5795 int irq_line = ent->irq;
1da177e4 5796
cca3974e 5797 ap = ata_port_add(ent, host, i);
c38778c3 5798 host->ports[i] = ap;
1da177e4
LT
5799 if (!ap)
5800 goto err_out;
5801
dd5b06c4
TH
5802 /* dummy? */
5803 if (ent->dummy_port_mask & (1 << i)) {
5804 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5805 ap->ops = &ata_dummy_port_ops;
5806 continue;
5807 }
5808
5809 /* start port */
5810 rc = ap->ops->port_start(ap);
5811 if (rc) {
cca3974e
JG
5812 host->ports[i] = NULL;
5813 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5814 goto err_out;
5815 }
5816
2ec7df04
AC
5817 /* Report the secondary IRQ for second channel legacy */
5818 if (i == 1 && ent->irq2)
5819 irq_line = ent->irq2;
5820
1da177e4
LT
5821 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5822 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5823 (ap->pio_mask << ATA_SHIFT_PIO);
5824
5825 /* print per-port info to dmesg */
f15a1daf 5826 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5827 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5828 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5829 ata_mode_string(xfer_mode_mask),
5830 ap->ioaddr.cmd_addr,
5831 ap->ioaddr.ctl_addr,
5832 ap->ioaddr.bmdma_addr,
2ec7df04 5833 irq_line);
1da177e4 5834
0f0a3ad3
TH
5835 /* freeze port before requesting IRQ */
5836 ata_eh_freeze_port(ap);
1da177e4
LT
5837 }
5838
2ec7df04 5839 /* obtain irq, that may be shared between channels */
39b07ce6 5840 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5841 DRV_NAME, host);
39b07ce6
JG
5842 if (rc) {
5843 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5844 ent->irq, rc);
1da177e4 5845 goto err_out;
39b07ce6 5846 }
1da177e4 5847
2ec7df04
AC
5848 /* do we have a second IRQ for the other channel, eg legacy mode */
5849 if (ent->irq2) {
5850 /* We will get weird core code crashes later if this is true
5851 so trap it now */
5852 BUG_ON(ent->irq == ent->irq2);
5853
5854 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5855 DRV_NAME, host);
2ec7df04
AC
5856 if (rc) {
5857 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5858 ent->irq2, rc);
5859 goto err_out_free_irq;
5860 }
5861 }
5862
1da177e4
LT
5863 /* perform each probe synchronously */
5864 DPRINTK("probe begin\n");
cca3974e
JG
5865 for (i = 0; i < host->n_ports; i++) {
5866 struct ata_port *ap = host->ports[i];
5a04bf4b 5867 u32 scontrol;
1da177e4
LT
5868 int rc;
5869
5a04bf4b
TH
5870 /* init sata_spd_limit to the current value */
5871 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5872 int spd = (scontrol >> 4) & 0xf;
5873 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5874 }
5875 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5876
cca3974e 5877 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5878 if (rc) {
f15a1daf 5879 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5880 /* FIXME: do something useful here */
5881 /* FIXME: handle unconditional calls to
5882 * scsi_scan_host and ata_host_remove, below,
5883 * at the very least
5884 */
5885 }
3e706399 5886
52783c5d 5887 if (ap->ops->error_handler) {
1cdaf534 5888 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5889 unsigned long flags;
5890
5891 ata_port_probe(ap);
5892
5893 /* kick EH for boot probing */
ba6a1308 5894 spin_lock_irqsave(ap->lock, flags);
3e706399 5895
1cdaf534
TH
5896 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5897 ehi->action |= ATA_EH_SOFTRESET;
5898 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5899
b51e9e5d 5900 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5901 ata_port_schedule_eh(ap);
5902
ba6a1308 5903 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5904
5905 /* wait for EH to finish */
5906 ata_port_wait_eh(ap);
5907 } else {
5908 DPRINTK("ata%u: bus probe begin\n", ap->id);
5909 rc = ata_bus_probe(ap);
5910 DPRINTK("ata%u: bus probe end\n", ap->id);
5911
5912 if (rc) {
5913 /* FIXME: do something useful here?
5914 * Current libata behavior will
5915 * tear down everything when
5916 * the module is removed
5917 * or the h/w is unplugged.
5918 */
5919 }
5920 }
1da177e4
LT
5921 }
5922
5923 /* probes are done, now scan each port's disk(s) */
c893a3ae 5924 DPRINTK("host probe begin\n");
cca3974e
JG
5925 for (i = 0; i < host->n_ports; i++) {
5926 struct ata_port *ap = host->ports[i];
1da177e4 5927
644dd0cc 5928 ata_scsi_scan_host(ap);
1da177e4
LT
5929 }
5930
cca3974e 5931 dev_set_drvdata(dev, host);
1da177e4
LT
5932
5933 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5934 return ent->n_ports; /* success */
5935
2ec7df04 5936err_out_free_irq:
cca3974e 5937 free_irq(ent->irq, host);
1da177e4 5938err_out:
cca3974e
JG
5939 for (i = 0; i < host->n_ports; i++) {
5940 struct ata_port *ap = host->ports[i];
77f3f879
TH
5941 if (ap) {
5942 ap->ops->port_stop(ap);
cca3974e 5943 scsi_host_put(ap->scsi_host);
77f3f879 5944 }
1da177e4 5945 }
6d0500df 5946
cca3974e 5947 kfree(host);
1da177e4
LT
5948 VPRINTK("EXIT, returning 0\n");
5949 return 0;
5950}
5951
720ba126
TH
5952/**
5953 * ata_port_detach - Detach ATA port in prepration of device removal
5954 * @ap: ATA port to be detached
5955 *
5956 * Detach all ATA devices and the associated SCSI devices of @ap;
5957 * then, remove the associated SCSI host. @ap is guaranteed to
5958 * be quiescent on return from this function.
5959 *
5960 * LOCKING:
5961 * Kernel thread context (may sleep).
5962 */
5963void ata_port_detach(struct ata_port *ap)
5964{
5965 unsigned long flags;
5966 int i;
5967
5968 if (!ap->ops->error_handler)
c3cf30a9 5969 goto skip_eh;
720ba126
TH
5970
5971 /* tell EH we're leaving & flush EH */
ba6a1308 5972 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5973 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5974 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5975
5976 ata_port_wait_eh(ap);
5977
5978 /* EH is now guaranteed to see UNLOADING, so no new device
5979 * will be attached. Disable all existing devices.
5980 */
ba6a1308 5981 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5982
5983 for (i = 0; i < ATA_MAX_DEVICES; i++)
5984 ata_dev_disable(&ap->device[i]);
5985
ba6a1308 5986 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5987
5988 /* Final freeze & EH. All in-flight commands are aborted. EH
5989 * will be skipped and retrials will be terminated with bad
5990 * target.
5991 */
ba6a1308 5992 spin_lock_irqsave(ap->lock, flags);
720ba126 5993 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5994 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5995
5996 ata_port_wait_eh(ap);
5997
5998 /* Flush hotplug task. The sequence is similar to
5999 * ata_port_flush_task().
6000 */
6001 flush_workqueue(ata_aux_wq);
6002 cancel_delayed_work(&ap->hotplug_task);
6003 flush_workqueue(ata_aux_wq);
6004
c3cf30a9 6005 skip_eh:
720ba126 6006 /* remove the associated SCSI host */
cca3974e 6007 scsi_remove_host(ap->scsi_host);
720ba126
TH
6008}
6009
17b14451 6010/**
cca3974e
JG
6011 * ata_host_remove - PCI layer callback for device removal
6012 * @host: ATA host set that was removed
17b14451 6013 *
2e9edbf8 6014 * Unregister all objects associated with this host set. Free those
17b14451
AC
6015 * objects.
6016 *
6017 * LOCKING:
6018 * Inherited from calling layer (may sleep).
6019 */
6020
cca3974e 6021void ata_host_remove(struct ata_host *host)
17b14451 6022{
17b14451
AC
6023 unsigned int i;
6024
cca3974e
JG
6025 for (i = 0; i < host->n_ports; i++)
6026 ata_port_detach(host->ports[i]);
17b14451 6027
cca3974e
JG
6028 free_irq(host->irq, host);
6029 if (host->irq2)
6030 free_irq(host->irq2, host);
17b14451 6031
cca3974e
JG
6032 for (i = 0; i < host->n_ports; i++) {
6033 struct ata_port *ap = host->ports[i];
17b14451 6034
cca3974e 6035 ata_scsi_release(ap->scsi_host);
17b14451
AC
6036
6037 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6038 struct ata_ioports *ioaddr = &ap->ioaddr;
6039
2ec7df04
AC
6040 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6041 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6042 release_region(ATA_PRIMARY_CMD, 8);
6043 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6044 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
6045 }
6046
cca3974e 6047 scsi_host_put(ap->scsi_host);
17b14451
AC
6048 }
6049
cca3974e
JG
6050 if (host->ops->host_stop)
6051 host->ops->host_stop(host);
17b14451 6052
cca3974e 6053 kfree(host);
17b14451
AC
6054}
6055
1da177e4
LT
6056/**
6057 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 6058 * @shost: libata host to be unloaded
1da177e4
LT
6059 *
6060 * Performs all duties necessary to shut down a libata port...
6061 * Kill port kthread, disable port, and release resources.
6062 *
6063 * LOCKING:
6064 * Inherited from SCSI layer.
6065 *
6066 * RETURNS:
6067 * One.
6068 */
6069
cca3974e 6070int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 6071{
cca3974e 6072 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
6073
6074 DPRINTK("ENTER\n");
6075
6076 ap->ops->port_disable(ap);
6543bc07 6077 ap->ops->port_stop(ap);
1da177e4
LT
6078
6079 DPRINTK("EXIT\n");
6080 return 1;
6081}
6082
f6d950e2
BK
6083struct ata_probe_ent *
6084ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6085{
6086 struct ata_probe_ent *probe_ent;
6087
6088 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6089 if (!probe_ent) {
6090 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6091 kobject_name(&(dev->kobj)));
6092 return NULL;
6093 }
6094
6095 INIT_LIST_HEAD(&probe_ent->node);
6096 probe_ent->dev = dev;
6097
6098 probe_ent->sht = port->sht;
cca3974e 6099 probe_ent->port_flags = port->flags;
f6d950e2
BK
6100 probe_ent->pio_mask = port->pio_mask;
6101 probe_ent->mwdma_mask = port->mwdma_mask;
6102 probe_ent->udma_mask = port->udma_mask;
6103 probe_ent->port_ops = port->port_ops;
d639ca94 6104 probe_ent->private_data = port->private_data;
f6d950e2
BK
6105
6106 return probe_ent;
6107}
6108
1da177e4
LT
6109/**
6110 * ata_std_ports - initialize ioaddr with standard port offsets.
6111 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6112 *
6113 * Utility function which initializes data_addr, error_addr,
6114 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6115 * device_addr, status_addr, and command_addr to standard offsets
6116 * relative to cmd_addr.
6117 *
6118 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6119 */
0baab86b 6120
1da177e4
LT
6121void ata_std_ports(struct ata_ioports *ioaddr)
6122{
6123 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6124 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6125 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6126 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6127 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6128 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6129 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6130 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6131 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6132 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6133}
6134
0baab86b 6135
374b1873
JG
6136#ifdef CONFIG_PCI
6137
cca3974e 6138void ata_pci_host_stop (struct ata_host *host)
374b1873 6139{
cca3974e 6140 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 6141
cca3974e 6142 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
6143}
6144
1da177e4
LT
6145/**
6146 * ata_pci_remove_one - PCI layer callback for device removal
6147 * @pdev: PCI device that was removed
6148 *
6149 * PCI layer indicates to libata via this hook that
6f0ef4fa 6150 * hot-unplug or module unload event has occurred.
1da177e4
LT
6151 * Handle this by unregistering all objects associated
6152 * with this PCI device. Free those objects. Then finally
6153 * release PCI resources and disable device.
6154 *
6155 * LOCKING:
6156 * Inherited from PCI layer (may sleep).
6157 */
6158
6159void ata_pci_remove_one (struct pci_dev *pdev)
6160{
6161 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6162 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6163
cca3974e 6164 ata_host_remove(host);
f0eb62b8 6165
1da177e4
LT
6166 pci_release_regions(pdev);
6167 pci_disable_device(pdev);
6168 dev_set_drvdata(dev, NULL);
6169}
6170
6171/* move to PCI subsystem */
057ace5e 6172int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6173{
6174 unsigned long tmp = 0;
6175
6176 switch (bits->width) {
6177 case 1: {
6178 u8 tmp8 = 0;
6179 pci_read_config_byte(pdev, bits->reg, &tmp8);
6180 tmp = tmp8;
6181 break;
6182 }
6183 case 2: {
6184 u16 tmp16 = 0;
6185 pci_read_config_word(pdev, bits->reg, &tmp16);
6186 tmp = tmp16;
6187 break;
6188 }
6189 case 4: {
6190 u32 tmp32 = 0;
6191 pci_read_config_dword(pdev, bits->reg, &tmp32);
6192 tmp = tmp32;
6193 break;
6194 }
6195
6196 default:
6197 return -EINVAL;
6198 }
6199
6200 tmp &= bits->mask;
6201
6202 return (tmp == bits->val) ? 1 : 0;
6203}
9b847548 6204
3c5100c1 6205void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6206{
6207 pci_save_state(pdev);
500530f6 6208
3c5100c1 6209 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6210 pci_disable_device(pdev);
6211 pci_set_power_state(pdev, PCI_D3hot);
6212 }
9b847548
JA
6213}
6214
500530f6 6215void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
6216{
6217 pci_set_power_state(pdev, PCI_D0);
6218 pci_restore_state(pdev);
6219 pci_enable_device(pdev);
6220 pci_set_master(pdev);
500530f6
TH
6221}
6222
3c5100c1 6223int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6224{
cca3974e 6225 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6226 int rc = 0;
6227
cca3974e 6228 rc = ata_host_suspend(host, mesg);
500530f6
TH
6229 if (rc)
6230 return rc;
6231
3c5100c1 6232 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6233
6234 return 0;
6235}
6236
6237int ata_pci_device_resume(struct pci_dev *pdev)
6238{
cca3974e 6239 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6240
6241 ata_pci_device_do_resume(pdev);
cca3974e 6242 ata_host_resume(host);
9b847548
JA
6243 return 0;
6244}
1da177e4
LT
6245#endif /* CONFIG_PCI */
6246
6247
1da177e4
LT
6248static int __init ata_init(void)
6249{
a8601e5f 6250 ata_probe_timeout *= HZ;
1da177e4
LT
6251 ata_wq = create_workqueue("ata");
6252 if (!ata_wq)
6253 return -ENOMEM;
6254
453b07ac
TH
6255 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6256 if (!ata_aux_wq) {
6257 destroy_workqueue(ata_wq);
6258 return -ENOMEM;
6259 }
6260
1da177e4
LT
6261 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6262 return 0;
6263}
6264
6265static void __exit ata_exit(void)
6266{
6267 destroy_workqueue(ata_wq);
453b07ac 6268 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6269}
6270
a4625085 6271subsys_initcall(ata_init);
1da177e4
LT
6272module_exit(ata_exit);
6273
67846b30 6274static unsigned long ratelimit_time;
34af946a 6275static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6276
6277int ata_ratelimit(void)
6278{
6279 int rc;
6280 unsigned long flags;
6281
6282 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6283
6284 if (time_after(jiffies, ratelimit_time)) {
6285 rc = 1;
6286 ratelimit_time = jiffies + (HZ/5);
6287 } else
6288 rc = 0;
6289
6290 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6291
6292 return rc;
6293}
6294
c22daff4
TH
6295/**
6296 * ata_wait_register - wait until register value changes
6297 * @reg: IO-mapped register
6298 * @mask: Mask to apply to read register value
6299 * @val: Wait condition
6300 * @interval_msec: polling interval in milliseconds
6301 * @timeout_msec: timeout in milliseconds
6302 *
6303 * Waiting for some bits of register to change is a common
6304 * operation for ATA controllers. This function reads 32bit LE
6305 * IO-mapped register @reg and tests for the following condition.
6306 *
6307 * (*@reg & mask) != val
6308 *
6309 * If the condition is met, it returns; otherwise, the process is
6310 * repeated after @interval_msec until timeout.
6311 *
6312 * LOCKING:
6313 * Kernel thread context (may sleep)
6314 *
6315 * RETURNS:
6316 * The final register value.
6317 */
6318u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6319 unsigned long interval_msec,
6320 unsigned long timeout_msec)
6321{
6322 unsigned long timeout;
6323 u32 tmp;
6324
6325 tmp = ioread32(reg);
6326
6327 /* Calculate timeout _after_ the first read to make sure
6328 * preceding writes reach the controller before starting to
6329 * eat away the timeout.
6330 */
6331 timeout = jiffies + (timeout_msec * HZ) / 1000;
6332
6333 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6334 msleep(interval_msec);
6335 tmp = ioread32(reg);
6336 }
6337
6338 return tmp;
6339}
6340
dd5b06c4
TH
6341/*
6342 * Dummy port_ops
6343 */
6344static void ata_dummy_noret(struct ata_port *ap) { }
6345static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6346static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6347
6348static u8 ata_dummy_check_status(struct ata_port *ap)
6349{
6350 return ATA_DRDY;
6351}
6352
6353static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6354{
6355 return AC_ERR_SYSTEM;
6356}
6357
6358const struct ata_port_operations ata_dummy_port_ops = {
6359 .port_disable = ata_port_disable,
6360 .check_status = ata_dummy_check_status,
6361 .check_altstatus = ata_dummy_check_status,
6362 .dev_select = ata_noop_dev_select,
6363 .qc_prep = ata_noop_qc_prep,
6364 .qc_issue = ata_dummy_qc_issue,
6365 .freeze = ata_dummy_noret,
6366 .thaw = ata_dummy_noret,
6367 .error_handler = ata_dummy_noret,
6368 .post_internal_cmd = ata_dummy_qc_noret,
6369 .irq_clear = ata_dummy_noret,
6370 .port_start = ata_dummy_ret0,
6371 .port_stop = ata_dummy_noret,
6372};
6373
1da177e4
LT
6374/*
6375 * libata is essentially a library of internal helper functions for
6376 * low-level ATA host controller drivers. As such, the API/ABI is
6377 * likely to change as new drivers are added and updated.
6378 * Do not depend on ABI/API stability.
6379 */
6380
e9c83914
TH
6381EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6382EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6383EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6384EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6385EXPORT_SYMBOL_GPL(ata_std_bios_param);
6386EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6387EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6388EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6389EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6390EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6391EXPORT_SYMBOL_GPL(ata_sg_init);
6392EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6393EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6394EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6395EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6396EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6397EXPORT_SYMBOL_GPL(ata_tf_load);
6398EXPORT_SYMBOL_GPL(ata_tf_read);
6399EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6400EXPORT_SYMBOL_GPL(ata_std_dev_select);
6401EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6402EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6403EXPORT_SYMBOL_GPL(ata_check_status);
6404EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6405EXPORT_SYMBOL_GPL(ata_exec_command);
6406EXPORT_SYMBOL_GPL(ata_port_start);
6407EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6408EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6409EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6410EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6411EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6412EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6413EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6414EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6415EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6416EXPORT_SYMBOL_GPL(ata_bmdma_start);
6417EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6418EXPORT_SYMBOL_GPL(ata_bmdma_status);
6419EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6420EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6421EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6422EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6423EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6424EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6425EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6426EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6427EXPORT_SYMBOL_GPL(sata_phy_debounce);
6428EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6429EXPORT_SYMBOL_GPL(sata_phy_reset);
6430EXPORT_SYMBOL_GPL(__sata_phy_reset);
6431EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6432EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6433EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6434EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6435EXPORT_SYMBOL_GPL(sata_std_hardreset);
6436EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6437EXPORT_SYMBOL_GPL(ata_dev_classify);
6438EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6439EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6440EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6441EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6442EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6443EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6444EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6445EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6446EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6447EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6448EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6449EXPORT_SYMBOL_GPL(ata_scsi_release);
6450EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6451EXPORT_SYMBOL_GPL(sata_scr_valid);
6452EXPORT_SYMBOL_GPL(sata_scr_read);
6453EXPORT_SYMBOL_GPL(sata_scr_write);
6454EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6455EXPORT_SYMBOL_GPL(ata_port_online);
6456EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6457EXPORT_SYMBOL_GPL(ata_host_suspend);
6458EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6459EXPORT_SYMBOL_GPL(ata_id_string);
6460EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6461EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6462EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6463
1bc4ccff 6464EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6465EXPORT_SYMBOL_GPL(ata_timing_compute);
6466EXPORT_SYMBOL_GPL(ata_timing_merge);
6467
1da177e4
LT
6468#ifdef CONFIG_PCI
6469EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6470EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6471EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6472EXPORT_SYMBOL_GPL(ata_pci_init_one);
6473EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6474EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6475EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6476EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6477EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6478EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6479EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6480#endif /* CONFIG_PCI */
9b847548 6481
9b847548
JA
6482EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6483EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6484
ece1d636 6485EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6486EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6487EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6488EXPORT_SYMBOL_GPL(ata_port_freeze);
6489EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6490EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6491EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6492EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6493EXPORT_SYMBOL_GPL(ata_do_eh);