]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: use ata_id_c_string()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1 201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
bd056d7e 211static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 212{
9a3dccc4 213 u8 cmd;
1da177e4 214
9a3dccc4 215 int index, fua, lba48, write;
2e9edbf8 216
9a3dccc4 217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 220
8cbd6df1
AL
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
9a3dccc4 223 index = dev->multi_count ? 0 : 8;
bd056d7e 224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
0565c26d 227 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
228 } else {
229 tf->protocol = ATA_PROT_DMA;
9a3dccc4 230 index = 16;
8cbd6df1 231 }
1da177e4 232
9a3dccc4
TH
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
1da177e4
LT
239}
240
35b649fe
TH
241/**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257{
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282}
283
bd056d7e
TH
284/**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307{
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
317
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
320
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
325
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
329
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
336
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
342
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
349
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
352
353 tf->hob_nsect = (n_block >> 8) & 0xff;
354
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
361
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
364
365 tf->nsect = n_block & 0xff;
366
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
370
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
375
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
379
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
382
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
388
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
391
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
398
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
404 }
405
406 return 0;
407}
408
cb95d562
TH
409/**
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
414 *
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
417 *
418 * LOCKING:
419 * None.
420 *
421 * RETURNS:
422 * Packed xfer_mask.
423 */
424static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
427{
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
431}
432
c0489e4e
TH
433/**
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
439 *
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
442 */
443static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
447{
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
454}
455
cb95d562 456static const struct ata_xfer_ent {
be9a50c8 457 int shift, bits;
cb95d562
TH
458 u8 base;
459} ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
464};
465
466/**
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
469 *
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
472 *
473 * LOCKING:
474 * None.
475 *
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
478 */
479static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
480{
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
483
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
488}
489
490/**
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
493 *
494 * Return matching xfer_mask for @xfer_mode.
495 *
496 * LOCKING:
497 * None.
498 *
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
501 */
502static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
503{
504 const struct ata_xfer_ent *ent;
505
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
510}
511
512/**
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
515 *
516 * Return matching xfer_shift for @xfer_mode.
517 *
518 * LOCKING:
519 * None.
520 *
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
523 */
524static int ata_xfer_mode2shift(unsigned int xfer_mode)
525{
526 const struct ata_xfer_ent *ent;
527
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
532}
533
1da177e4 534/**
1da7b0d0
TH
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
537 *
538 * Determine string which represents the highest speed
1da7b0d0 539 * (highest bit in @modemask).
1da177e4
LT
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Constant C string representing highest speed listed in
1da7b0d0 546 * @mode_mask, or the constant C string "<n/a>".
1da177e4 547 */
1da7b0d0 548static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 549{
75f554bc
TH
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
b352e57d
AC
556 "PIO5",
557 "PIO6",
75f554bc
TH
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
b352e57d
AC
561 "MWDMA3",
562 "MWDMA4",
75f554bc
TH
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
571 };
1da7b0d0 572 int highbit;
1da177e4 573
1da7b0d0
TH
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
1da177e4 577 return "<n/a>";
1da177e4
LT
578}
579
4c360c81
TH
580static const char *sata_spd_string(unsigned int spd)
581{
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
585 };
586
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
590}
591
3373efd8 592void ata_dev_disable(struct ata_device *dev)
0b8efb0a 593{
0dd4b21f 594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
596 dev->class++;
597 }
598}
599
1da177e4
LT
600/**
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
604 *
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
608 *
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
613 *
614 * LOCKING:
615 * caller.
616 */
617
618static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
620{
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
623
624 ap->ops->dev_select(ap, device);
625
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
628
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
631
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
634
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
637
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
640
641 return 0; /* nothing found */
642}
643
644/**
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
648 *
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
652 *
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
657 *
658 * LOCKING:
659 * caller.
660 */
661
662static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
664{
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
667
668 ap->ops->dev_select(ap, device);
669
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
672
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
675
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
678
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
681
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
684
685 return 0; /* nothing found */
686}
687
688/**
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
692 *
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
696 *
697 * LOCKING:
698 * caller.
699 */
700
701static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
703{
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
707}
708
709/**
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
712 *
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
716 *
717 * LOCKING:
718 * None.
719 *
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
723 */
724
057ace5e 725unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
726{
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
730 */
731
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
736 }
737
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
742 }
743
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
746}
747
748/**
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
b4dc7623 752 * @r_err: Value of error register on completion
1da177e4
LT
753 *
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
758 *
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
762 *
763 * LOCKING:
764 * caller.
b4dc7623
TH
765 *
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
768 */
769
b4dc7623
TH
770static unsigned int
771ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 772{
1da177e4
LT
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
776
777 ap->ops->dev_select(ap, device);
778
779 memset(&tf, 0, sizeof(tf));
780
1da177e4 781 ap->ops->tf_read(ap, &tf);
0169e284 782 err = tf.feature;
b4dc7623
TH
783 if (r_err)
784 *r_err = err;
1da177e4 785
93590859
AC
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
1da177e4
LT
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
b4dc7623 795 return ATA_DEV_NONE;
1da177e4 796
b4dc7623 797 /* determine if device is ATA or ATAPI */
1da177e4 798 class = ata_dev_classify(&tf);
b4dc7623 799
1da177e4 800 if (class == ATA_DEV_UNKNOWN)
b4dc7623 801 return ATA_DEV_NONE;
1da177e4 802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
803 return ATA_DEV_NONE;
804 return class;
1da177e4
LT
805}
806
807/**
6a62a04d 808 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
813 *
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
817 *
818 * LOCKING:
819 * caller.
820 */
821
6a62a04d
TH
822void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
1da177e4
LT
824{
825 unsigned int c;
826
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
831
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
835
836 ofs++;
837 len -= 2;
838 }
839}
840
0e949ff3 841/**
6a62a04d 842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
847 *
6a62a04d 848 * This function is identical to ata_id_string except that it
0e949ff3
TH
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
851 *
852 * LOCKING:
853 * caller.
854 */
6a62a04d
TH
855void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
0e949ff3
TH
857{
858 unsigned char *p;
859
860 WARN_ON(!(len & 1));
861
6a62a04d 862 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
863
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
868}
0baab86b 869
2940740b
TH
870static u64 ata_id_n_sectors(const u16 *id)
871{
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
882 }
883}
884
0baab86b
EF
885/**
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * This function performs no actual function.
891 *
892 * May be used as the dev_select() entry in ata_port_operations.
893 *
894 * LOCKING:
895 * caller.
896 */
1da177e4
LT
897void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
898{
899}
900
0baab86b 901
1da177e4
LT
902/**
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
906 *
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
0baab86b
EF
909 * ATA channel. Works with both PIO and MMIO.
910 *
911 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
912 *
913 * LOCKING:
914 * caller.
915 */
916
917void ata_std_dev_select (struct ata_port *ap, unsigned int device)
918{
919 u8 tmp;
920
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
925
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
930 }
931 ata_pause(ap); /* needed; also flushes, for mmio */
932}
933
934/**
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
940 *
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
944 *
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
955{
88574551 956 if (ata_msg_probe(ap))
0dd4b21f 957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 958 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
959
960 if (wait)
961 ata_wait_idle(ap);
962
963 ap->ops->dev_select(ap, device);
964
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
969 }
970}
971
972/**
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 974 * @id: IDENTIFY DEVICE page to dump
1da177e4 975 *
0bd3300a
TH
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
1da177e4
LT
978 *
979 * LOCKING:
980 * caller.
981 */
982
0bd3300a 983static inline void ata_dump_id(const u16 *id)
1da177e4
LT
984{
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
0bd3300a
TH
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
1da177e4
LT
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
0bd3300a
TH
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1da177e4
LT
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
0bd3300a
TH
1007 id[88],
1008 id[93]);
1da177e4
LT
1009}
1010
cb95d562
TH
1011/**
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1014 *
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1017 *
1018 * FIXME: pre IDE drive timing (do we care ?).
1019 *
1020 * LOCKING:
1021 * None.
1022 *
1023 * RETURNS:
1024 * Computed xfermask
1025 */
1026static unsigned int ata_id_xfermask(const u16 *id)
1027{
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1029
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1039 */
7a0f1c8a 1040 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
cb95d562
TH
1045
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1051 */
1052 }
1053
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1055
b352e57d
AC
1056 if (ata_id_is_cfa(id)) {
1057 /*
1058 * Process compact flash extended modes
1059 */
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1062
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1071 }
1072
fb21f0d0
TH
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1076
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1078}
1079
86e45b6b
TH
1080/**
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
e2a7f77a 1083 * @fn: workqueue function to be scheduled
65f27f38 1084 * @data: data for @fn to use
e2a7f77a 1085 * @delay: delay time for workqueue function
86e45b6b
TH
1086 *
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1091 *
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1095 *
1096 * LOCKING:
1097 * Inherited from caller.
1098 */
65f27f38 1099void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1100 unsigned long delay)
1101{
1102 int rc;
1103
b51e9e5d 1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1105 return;
1106
65f27f38
DH
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
86e45b6b 1109
52bad64d 1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1111
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1114}
1115
1116/**
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1119 *
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1122 *
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1125 */
1126void ata_port_flush_task(struct ata_port *ap)
1127{
1128 unsigned long flags;
1129
1130 DPRINTK("ENTER\n");
1131
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1134 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1135
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1138
1139 /*
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1143 */
1144 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1145 if (ata_msg_ctl(ap))
88574551
TH
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
86e45b6b
TH
1148 flush_workqueue(ata_wq);
1149 }
1150
ba6a1308 1151 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1153 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1154
0dd4b21f
BP
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1157}
1158
7102d230 1159static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1160{
77853bf2 1161 struct completion *waiting = qc->private_data;
a2a7a662 1162
a2a7a662 1163 complete(waiting);
a2a7a662
TH
1164}
1165
1166/**
2432697b 1167 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
d69cf37d 1170 * @cdb: CDB for packet command
a2a7a662 1171 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
a2a7a662
TH
1174 *
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1180 *
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
551e8889
TH
1183 *
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1186 */
2432697b
TH
1187unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
a2a7a662 1191{
3373efd8 1192 struct ata_port *ap = dev->ap;
a2a7a662
TH
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
2ab7db1f 1195 unsigned int tag, preempted_tag;
dedaf2b0 1196 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1197 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1198 unsigned long flags;
77853bf2 1199 unsigned int err_mask;
d95a717f 1200 int rc;
a2a7a662 1201
ba6a1308 1202 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1203
e3180499 1204 /* no internal command while frozen */
b51e9e5d 1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1206 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1207 return AC_ERR_SYSTEM;
1208 }
1209
2ab7db1f 1210 /* initialize internal qc */
a2a7a662 1211
2ab7db1f
TH
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1216 */
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1221
6cec4a39 1222 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1223 BUG();
f69499f4 1224 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1225
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1231
1232 preempted_tag = ap->active_tag;
dedaf2b0
TH
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
2ab7db1f 1235 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
2ab7db1f
TH
1238
1239 /* prepare & issue qc */
a2a7a662 1240 qc->tf = *tf;
d69cf37d
TH
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
2432697b
TH
1246 unsigned int i, buflen = 0;
1247
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1250
1251 ata_sg_init(qc, sg, n_elem);
a2a7a662 1252 qc->nsect = buflen / ATA_SECT_SIZE;
49c80429 1253 qc->nbytes = buflen;
a2a7a662
TH
1254 }
1255
77853bf2 1256 qc->private_data = &wait;
a2a7a662
TH
1257 qc->complete_fn = ata_qc_complete_internal;
1258
8e0e694a 1259 ata_qc_issue(qc);
a2a7a662 1260
ba6a1308 1261 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1262
a8601e5f 1263 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1264
1265 ata_port_flush_task(ap);
41ade50c 1266
d95a717f 1267 if (!rc) {
ba6a1308 1268 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1269
1270 /* We're racing with irq here. If we lose, the
1271 * following test prevents us from completing the qc
d95a717f
TH
1272 * twice. If we win, the port is frozen and will be
1273 * cleaned up by ->post_internal_cmd().
a2a7a662 1274 */
77853bf2 1275 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1276 qc->err_mask |= AC_ERR_TIMEOUT;
1277
1278 if (ap->ops->error_handler)
1279 ata_port_freeze(ap);
1280 else
1281 ata_qc_complete(qc);
f15a1daf 1282
0dd4b21f
BP
1283 if (ata_msg_warn(ap))
1284 ata_dev_printk(dev, KERN_WARNING,
88574551 1285 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1286 }
1287
ba6a1308 1288 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1289 }
1290
d95a717f
TH
1291 /* do post_internal_cmd */
1292 if (ap->ops->post_internal_cmd)
1293 ap->ops->post_internal_cmd(qc);
1294
1295 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1296 if (ata_msg_warn(ap))
88574551 1297 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1298 "zero err_mask for failed "
88574551 1299 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1300 qc->err_mask |= AC_ERR_OTHER;
1301 }
1302
15869303 1303 /* finish up */
ba6a1308 1304 spin_lock_irqsave(ap->lock, flags);
15869303 1305
e61e0672 1306 *tf = qc->result_tf;
77853bf2
TH
1307 err_mask = qc->err_mask;
1308
1309 ata_qc_free(qc);
2ab7db1f 1310 ap->active_tag = preempted_tag;
dedaf2b0
TH
1311 ap->sactive = preempted_sactive;
1312 ap->qc_active = preempted_qc_active;
77853bf2 1313
1f7dd3e9
TH
1314 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1315 * Until those drivers are fixed, we detect the condition
1316 * here, fail the command with AC_ERR_SYSTEM and reenable the
1317 * port.
1318 *
1319 * Note that this doesn't change any behavior as internal
1320 * command failure results in disabling the device in the
1321 * higher layer for LLDDs without new reset/EH callbacks.
1322 *
1323 * Kill the following code as soon as those drivers are fixed.
1324 */
198e0fed 1325 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1326 err_mask |= AC_ERR_SYSTEM;
1327 ata_port_probe(ap);
1328 }
1329
ba6a1308 1330 spin_unlock_irqrestore(ap->lock, flags);
15869303 1331
77853bf2 1332 return err_mask;
a2a7a662
TH
1333}
1334
2432697b 1335/**
33480a0e 1336 * ata_exec_internal - execute libata internal command
2432697b
TH
1337 * @dev: Device to which the command is sent
1338 * @tf: Taskfile registers for the command and the result
1339 * @cdb: CDB for packet command
1340 * @dma_dir: Data tranfer direction of the command
1341 * @buf: Data buffer of the command
1342 * @buflen: Length of data buffer
1343 *
1344 * Wrapper around ata_exec_internal_sg() which takes simple
1345 * buffer instead of sg list.
1346 *
1347 * LOCKING:
1348 * None. Should be called with kernel context, might sleep.
1349 *
1350 * RETURNS:
1351 * Zero on success, AC_ERR_* mask on failure
1352 */
1353unsigned ata_exec_internal(struct ata_device *dev,
1354 struct ata_taskfile *tf, const u8 *cdb,
1355 int dma_dir, void *buf, unsigned int buflen)
1356{
33480a0e
TH
1357 struct scatterlist *psg = NULL, sg;
1358 unsigned int n_elem = 0;
2432697b 1359
33480a0e
TH
1360 if (dma_dir != DMA_NONE) {
1361 WARN_ON(!buf);
1362 sg_init_one(&sg, buf, buflen);
1363 psg = &sg;
1364 n_elem++;
1365 }
2432697b 1366
33480a0e 1367 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1368}
1369
977e6b9f
TH
1370/**
1371 * ata_do_simple_cmd - execute simple internal command
1372 * @dev: Device to which the command is sent
1373 * @cmd: Opcode to execute
1374 *
1375 * Execute a 'simple' command, that only consists of the opcode
1376 * 'cmd' itself, without filling any other registers
1377 *
1378 * LOCKING:
1379 * Kernel thread context (may sleep).
1380 *
1381 * RETURNS:
1382 * Zero on success, AC_ERR_* mask on failure
e58eb583 1383 */
77b08fb5 1384unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1385{
1386 struct ata_taskfile tf;
e58eb583
TH
1387
1388 ata_tf_init(dev, &tf);
1389
1390 tf.command = cmd;
1391 tf.flags |= ATA_TFLAG_DEVICE;
1392 tf.protocol = ATA_PROT_NODATA;
1393
977e6b9f 1394 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1395}
1396
1bc4ccff
AC
1397/**
1398 * ata_pio_need_iordy - check if iordy needed
1399 * @adev: ATA device
1400 *
1401 * Check if the current speed of the device requires IORDY. Used
1402 * by various controllers for chip configuration.
1403 */
1404
1405unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1406{
1407 int pio;
1408 int speed = adev->pio_mode - XFER_PIO_0;
1409
1410 if (speed < 2)
1411 return 0;
1412 if (speed > 2)
1413 return 1;
2e9edbf8 1414
1bc4ccff
AC
1415 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1416
1417 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1418 pio = adev->id[ATA_ID_EIDE_PIO];
1419 /* Is the speed faster than the drive allows non IORDY ? */
1420 if (pio) {
1421 /* This is cycle times not frequency - watch the logic! */
1422 if (pio > 240) /* PIO2 is 240nS per cycle */
1423 return 1;
1424 return 0;
1425 }
1426 }
1427 return 0;
1428}
1429
1da177e4 1430/**
49016aca 1431 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1432 * @dev: target device
1433 * @p_class: pointer to class of the target device (may be changed)
bff04647 1434 * @flags: ATA_READID_* flags
fe635c7e 1435 * @id: buffer to read IDENTIFY data into
1da177e4 1436 *
49016aca
TH
1437 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1438 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1439 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1440 * for pre-ATA4 drives.
1da177e4
LT
1441 *
1442 * LOCKING:
49016aca
TH
1443 * Kernel thread context (may sleep)
1444 *
1445 * RETURNS:
1446 * 0 on success, -errno otherwise.
1da177e4 1447 */
a9beec95 1448int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1449 unsigned int flags, u16 *id)
1da177e4 1450{
3373efd8 1451 struct ata_port *ap = dev->ap;
49016aca 1452 unsigned int class = *p_class;
a0123703 1453 struct ata_taskfile tf;
49016aca
TH
1454 unsigned int err_mask = 0;
1455 const char *reason;
1456 int rc;
1da177e4 1457
0dd4b21f 1458 if (ata_msg_ctl(ap))
88574551
TH
1459 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1460 __FUNCTION__, ap->id, dev->devno);
1da177e4 1461
49016aca 1462 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1463
49016aca 1464 retry:
3373efd8 1465 ata_tf_init(dev, &tf);
a0123703 1466
49016aca
TH
1467 switch (class) {
1468 case ATA_DEV_ATA:
a0123703 1469 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1470 break;
1471 case ATA_DEV_ATAPI:
a0123703 1472 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1473 break;
1474 default:
1475 rc = -ENODEV;
1476 reason = "unsupported class";
1477 goto err_out;
1da177e4
LT
1478 }
1479
a0123703 1480 tf.protocol = ATA_PROT_PIO;
800b3996 1481 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1da177e4 1482
3373efd8 1483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1484 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1485 if (err_mask) {
800b3996 1486 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8
TH
1487 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1488 ap->id, dev->devno);
1489 return -ENOENT;
1490 }
1491
49016aca
TH
1492 rc = -EIO;
1493 reason = "I/O error";
1da177e4
LT
1494 goto err_out;
1495 }
1496
49016aca 1497 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1498
49016aca 1499 /* sanity check */
a4f5749b
TH
1500 rc = -EINVAL;
1501 reason = "device reports illegal type";
1502
1503 if (class == ATA_DEV_ATA) {
1504 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1505 goto err_out;
1506 } else {
1507 if (ata_id_is_ata(id))
1508 goto err_out;
49016aca
TH
1509 }
1510
bff04647 1511 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1512 /*
1513 * The exact sequence expected by certain pre-ATA4 drives is:
1514 * SRST RESET
1515 * IDENTIFY
1516 * INITIALIZE DEVICE PARAMETERS
1517 * anything else..
1518 * Some drives were very specific about that exact sequence.
1519 */
1520 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1521 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1522 if (err_mask) {
1523 rc = -EIO;
1524 reason = "INIT_DEV_PARAMS failed";
1525 goto err_out;
1526 }
1527
1528 /* current CHS translation info (id[53-58]) might be
1529 * changed. reread the identify device info.
1530 */
bff04647 1531 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1532 goto retry;
1533 }
1534 }
1535
1536 *p_class = class;
fe635c7e 1537
49016aca
TH
1538 return 0;
1539
1540 err_out:
88574551 1541 if (ata_msg_warn(ap))
0dd4b21f 1542 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1543 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1544 return rc;
1545}
1546
3373efd8 1547static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1548{
3373efd8 1549 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1550}
1551
a6e6ce8e
TH
1552static void ata_dev_config_ncq(struct ata_device *dev,
1553 char *desc, size_t desc_sz)
1554{
1555 struct ata_port *ap = dev->ap;
1556 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1557
1558 if (!ata_id_has_ncq(dev->id)) {
1559 desc[0] = '\0';
1560 return;
1561 }
6919a0a6
AC
1562 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1563 snprintf(desc, desc_sz, "NCQ (not used)");
1564 return;
1565 }
a6e6ce8e 1566 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1567 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1568 dev->flags |= ATA_DFLAG_NCQ;
1569 }
1570
1571 if (hdepth >= ddepth)
1572 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1573 else
1574 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1575}
1576
e6d902a3
BK
1577static void ata_set_port_max_cmd_len(struct ata_port *ap)
1578{
1579 int i;
1580
cca3974e
JG
1581 if (ap->scsi_host) {
1582 unsigned int len = 0;
1583
e6d902a3 1584 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1585 len = max(len, ap->device[i].cdb_len);
1586
1587 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1588 }
1589}
1590
49016aca 1591/**
ffeae418 1592 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1593 * @dev: Target device to configure
1594 *
1595 * Configure @dev according to @dev->id. Generic and low-level
1596 * driver specific fixups are also applied.
49016aca
TH
1597 *
1598 * LOCKING:
ffeae418
TH
1599 * Kernel thread context (may sleep)
1600 *
1601 * RETURNS:
1602 * 0 on success, -errno otherwise
49016aca 1603 */
efdaedc4 1604int ata_dev_configure(struct ata_device *dev)
49016aca 1605{
3373efd8 1606 struct ata_port *ap = dev->ap;
efdaedc4 1607 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1608 const u16 *id = dev->id;
ff8854b2 1609 unsigned int xfer_mask;
b352e57d 1610 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1611 int rc;
49016aca 1612
0dd4b21f 1613 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1614 ata_dev_printk(dev, KERN_INFO,
1615 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1616 __FUNCTION__, ap->id, dev->devno);
ffeae418 1617 return 0;
49016aca
TH
1618 }
1619
0dd4b21f 1620 if (ata_msg_probe(ap))
88574551
TH
1621 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1622 __FUNCTION__, ap->id, dev->devno);
1da177e4 1623
c39f5ebe 1624 /* print device capabilities */
0dd4b21f 1625 if (ata_msg_probe(ap))
88574551
TH
1626 ata_dev_printk(dev, KERN_DEBUG,
1627 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1628 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1629 __FUNCTION__,
f15a1daf
TH
1630 id[49], id[82], id[83], id[84],
1631 id[85], id[86], id[87], id[88]);
c39f5ebe 1632
208a9933 1633 /* initialize to-be-configured parameters */
ea1dd4e1 1634 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1635 dev->max_sectors = 0;
1636 dev->cdb_len = 0;
1637 dev->n_sectors = 0;
1638 dev->cylinders = 0;
1639 dev->heads = 0;
1640 dev->sectors = 0;
1641
1da177e4
LT
1642 /*
1643 * common ATA, ATAPI feature tests
1644 */
1645
ff8854b2 1646 /* find max transfer mode; for printk only */
1148c3a7 1647 xfer_mask = ata_id_xfermask(id);
1da177e4 1648
0dd4b21f
BP
1649 if (ata_msg_probe(ap))
1650 ata_dump_id(id);
1da177e4
LT
1651
1652 /* ATA-specific feature tests */
1653 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1654 if (ata_id_is_cfa(id)) {
1655 if (id[162] & 1) /* CPRM may make this media unusable */
1656 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1657 ap->id, dev->devno);
1658 snprintf(revbuf, 7, "CFA");
1659 }
1660 else
1661 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1662
1148c3a7 1663 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1664
1148c3a7 1665 if (ata_id_has_lba(id)) {
4c2d721a 1666 const char *lba_desc;
a6e6ce8e 1667 char ncq_desc[20];
8bf62ece 1668
4c2d721a
TH
1669 lba_desc = "LBA";
1670 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1671 if (ata_id_has_lba48(id)) {
8bf62ece 1672 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1673 lba_desc = "LBA48";
6fc49adb
TH
1674
1675 if (dev->n_sectors >= (1UL << 28) &&
1676 ata_id_has_flush_ext(id))
1677 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1678 }
8bf62ece 1679
a6e6ce8e
TH
1680 /* config NCQ */
1681 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1682
8bf62ece 1683 /* print device info to dmesg */
5afc8142 1684 if (ata_msg_drv(ap) && print_info)
b352e57d 1685 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1686 "max %s, %Lu sectors: %s %s\n",
b352e57d 1687 revbuf,
f15a1daf
TH
1688 ata_mode_string(xfer_mask),
1689 (unsigned long long)dev->n_sectors,
a6e6ce8e 1690 lba_desc, ncq_desc);
ffeae418 1691 } else {
8bf62ece
AL
1692 /* CHS */
1693
1694 /* Default translation */
1148c3a7
TH
1695 dev->cylinders = id[1];
1696 dev->heads = id[3];
1697 dev->sectors = id[6];
8bf62ece 1698
1148c3a7 1699 if (ata_id_current_chs_valid(id)) {
8bf62ece 1700 /* Current CHS translation is valid. */
1148c3a7
TH
1701 dev->cylinders = id[54];
1702 dev->heads = id[55];
1703 dev->sectors = id[56];
8bf62ece
AL
1704 }
1705
1706 /* print device info to dmesg */
5afc8142 1707 if (ata_msg_drv(ap) && print_info)
b352e57d 1708 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1709 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1710 revbuf,
f15a1daf
TH
1711 ata_mode_string(xfer_mask),
1712 (unsigned long long)dev->n_sectors,
88574551
TH
1713 dev->cylinders, dev->heads,
1714 dev->sectors);
1da177e4
LT
1715 }
1716
07f6f7d0
AL
1717 if (dev->id[59] & 0x100) {
1718 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1719 if (ata_msg_drv(ap) && print_info)
88574551
TH
1720 ata_dev_printk(dev, KERN_INFO,
1721 "ata%u: dev %u multi count %u\n",
1722 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1723 }
1724
6e7846e9 1725 dev->cdb_len = 16;
1da177e4
LT
1726 }
1727
1728 /* ATAPI-specific feature tests */
2c13b7ce 1729 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1730 char *cdb_intr_string = "";
1731
1148c3a7 1732 rc = atapi_cdb_len(id);
1da177e4 1733 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1734 if (ata_msg_warn(ap))
88574551
TH
1735 ata_dev_printk(dev, KERN_WARNING,
1736 "unsupported CDB len\n");
ffeae418 1737 rc = -EINVAL;
1da177e4
LT
1738 goto err_out_nosup;
1739 }
6e7846e9 1740 dev->cdb_len = (unsigned int) rc;
1da177e4 1741
08a556db 1742 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1743 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1744 cdb_intr_string = ", CDB intr";
1745 }
312f7da2 1746
1da177e4 1747 /* print device info to dmesg */
5afc8142 1748 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1749 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1750 ata_mode_string(xfer_mask),
1751 cdb_intr_string);
1da177e4
LT
1752 }
1753
914ed354
TH
1754 /* determine max_sectors */
1755 dev->max_sectors = ATA_MAX_SECTORS;
1756 if (dev->flags & ATA_DFLAG_LBA48)
1757 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1758
93590859
AC
1759 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1760 /* Let the user know. We don't want to disallow opens for
1761 rescue purposes, or in case the vendor is just a blithering
1762 idiot */
1763 if (print_info) {
1764 ata_dev_printk(dev, KERN_WARNING,
1765"Drive reports diagnostics failure. This may indicate a drive\n");
1766 ata_dev_printk(dev, KERN_WARNING,
1767"fault or invalid emulation. Contact drive vendor for information.\n");
1768 }
1769 }
1770
e6d902a3 1771 ata_set_port_max_cmd_len(ap);
6e7846e9 1772
4b2f3ede 1773 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1774 if (ata_dev_knobble(dev)) {
5afc8142 1775 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1776 ata_dev_printk(dev, KERN_INFO,
1777 "applying bridge limits\n");
5a529139 1778 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1779 dev->max_sectors = ATA_MAX_SECTORS;
1780 }
1781
1782 if (ap->ops->dev_config)
1783 ap->ops->dev_config(ap, dev);
1784
0dd4b21f
BP
1785 if (ata_msg_probe(ap))
1786 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1787 __FUNCTION__, ata_chk_status(ap));
ffeae418 1788 return 0;
1da177e4
LT
1789
1790err_out_nosup:
0dd4b21f 1791 if (ata_msg_probe(ap))
88574551
TH
1792 ata_dev_printk(dev, KERN_DEBUG,
1793 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1794 return rc;
1da177e4
LT
1795}
1796
1797/**
1798 * ata_bus_probe - Reset and probe ATA bus
1799 * @ap: Bus to probe
1800 *
0cba632b
JG
1801 * Master ATA bus probing function. Initiates a hardware-dependent
1802 * bus reset, then attempts to identify any devices found on
1803 * the bus.
1804 *
1da177e4 1805 * LOCKING:
0cba632b 1806 * PCI/etc. bus probe sem.
1da177e4
LT
1807 *
1808 * RETURNS:
96072e69 1809 * Zero on success, negative errno otherwise.
1da177e4
LT
1810 */
1811
80289167 1812int ata_bus_probe(struct ata_port *ap)
1da177e4 1813{
28ca5c57 1814 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1815 int tries[ATA_MAX_DEVICES];
1816 int i, rc, down_xfermask;
e82cbdb9 1817 struct ata_device *dev;
1da177e4 1818
28ca5c57 1819 ata_port_probe(ap);
c19ba8af 1820
14d2bac1
TH
1821 for (i = 0; i < ATA_MAX_DEVICES; i++)
1822 tries[i] = ATA_PROBE_MAX_TRIES;
1823
1824 retry:
1825 down_xfermask = 0;
1826
2044470c 1827 /* reset and determine device classes */
52783c5d 1828 ap->ops->phy_reset(ap);
2061a47a 1829
52783c5d
TH
1830 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1831 dev = &ap->device[i];
c19ba8af 1832
52783c5d
TH
1833 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1834 dev->class != ATA_DEV_UNKNOWN)
1835 classes[dev->devno] = dev->class;
1836 else
1837 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1838
52783c5d 1839 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1840 }
1da177e4 1841
52783c5d 1842 ata_port_probe(ap);
2044470c 1843
b6079ca4
AC
1844 /* after the reset the device state is PIO 0 and the controller
1845 state is undefined. Record the mode */
1846
1847 for (i = 0; i < ATA_MAX_DEVICES; i++)
1848 ap->device[i].pio_mode = XFER_PIO_0;
1849
28ca5c57 1850 /* read IDENTIFY page and configure devices */
1da177e4 1851 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1852 dev = &ap->device[i];
28ca5c57 1853
ec573755
TH
1854 if (tries[i])
1855 dev->class = classes[i];
ffeae418 1856
14d2bac1 1857 if (!ata_dev_enabled(dev))
ffeae418 1858 continue;
ffeae418 1859
bff04647
TH
1860 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1861 dev->id);
14d2bac1
TH
1862 if (rc)
1863 goto fail;
1864
efdaedc4
TH
1865 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1866 rc = ata_dev_configure(dev);
1867 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1868 if (rc)
1869 goto fail;
1da177e4
LT
1870 }
1871
e82cbdb9 1872 /* configure transfer mode */
3adcebb2 1873 rc = ata_set_mode(ap, &dev);
51713d35
TH
1874 if (rc) {
1875 down_xfermask = 1;
1876 goto fail;
e82cbdb9 1877 }
1da177e4 1878
e82cbdb9
TH
1879 for (i = 0; i < ATA_MAX_DEVICES; i++)
1880 if (ata_dev_enabled(&ap->device[i]))
1881 return 0;
1da177e4 1882
e82cbdb9
TH
1883 /* no device present, disable port */
1884 ata_port_disable(ap);
1da177e4 1885 ap->ops->port_disable(ap);
96072e69 1886 return -ENODEV;
14d2bac1
TH
1887
1888 fail:
1889 switch (rc) {
1890 case -EINVAL:
1891 case -ENODEV:
1892 tries[dev->devno] = 0;
1893 break;
1894 case -EIO:
3c567b7d 1895 sata_down_spd_limit(ap);
14d2bac1
TH
1896 /* fall through */
1897 default:
1898 tries[dev->devno]--;
1899 if (down_xfermask &&
3373efd8 1900 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1901 tries[dev->devno] = 0;
1902 }
1903
ec573755 1904 if (!tries[dev->devno]) {
3373efd8
TH
1905 ata_down_xfermask_limit(dev, 1);
1906 ata_dev_disable(dev);
ec573755
TH
1907 }
1908
14d2bac1 1909 goto retry;
1da177e4
LT
1910}
1911
1912/**
0cba632b
JG
1913 * ata_port_probe - Mark port as enabled
1914 * @ap: Port for which we indicate enablement
1da177e4 1915 *
0cba632b
JG
1916 * Modify @ap data structure such that the system
1917 * thinks that the entire port is enabled.
1918 *
cca3974e 1919 * LOCKING: host lock, or some other form of
0cba632b 1920 * serialization.
1da177e4
LT
1921 */
1922
1923void ata_port_probe(struct ata_port *ap)
1924{
198e0fed 1925 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1926}
1927
3be680b7
TH
1928/**
1929 * sata_print_link_status - Print SATA link status
1930 * @ap: SATA port to printk link status about
1931 *
1932 * This function prints link speed and status of a SATA link.
1933 *
1934 * LOCKING:
1935 * None.
1936 */
1937static void sata_print_link_status(struct ata_port *ap)
1938{
6d5f9732 1939 u32 sstatus, scontrol, tmp;
3be680b7 1940
81952c54 1941 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1942 return;
81952c54 1943 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1944
81952c54 1945 if (ata_port_online(ap)) {
3be680b7 1946 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1947 ata_port_printk(ap, KERN_INFO,
1948 "SATA link up %s (SStatus %X SControl %X)\n",
1949 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1950 } else {
f15a1daf
TH
1951 ata_port_printk(ap, KERN_INFO,
1952 "SATA link down (SStatus %X SControl %X)\n",
1953 sstatus, scontrol);
3be680b7
TH
1954 }
1955}
1956
1da177e4 1957/**
780a87f7
JG
1958 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1959 * @ap: SATA port associated with target SATA PHY.
1da177e4 1960 *
780a87f7
JG
1961 * This function issues commands to standard SATA Sxxx
1962 * PHY registers, to wake up the phy (and device), and
1963 * clear any reset condition.
1da177e4
LT
1964 *
1965 * LOCKING:
0cba632b 1966 * PCI/etc. bus probe sem.
1da177e4
LT
1967 *
1968 */
1969void __sata_phy_reset(struct ata_port *ap)
1970{
1971 u32 sstatus;
1972 unsigned long timeout = jiffies + (HZ * 5);
1973
1974 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1975 /* issue phy wake/reset */
81952c54 1976 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1977 /* Couldn't find anything in SATA I/II specs, but
1978 * AHCI-1.1 10.4.2 says at least 1 ms. */
1979 mdelay(1);
1da177e4 1980 }
81952c54
TH
1981 /* phy wake/clear reset */
1982 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1983
1984 /* wait for phy to become ready, if necessary */
1985 do {
1986 msleep(200);
81952c54 1987 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1988 if ((sstatus & 0xf) != 1)
1989 break;
1990 } while (time_before(jiffies, timeout));
1991
3be680b7
TH
1992 /* print link status */
1993 sata_print_link_status(ap);
656563e3 1994
3be680b7 1995 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1996 if (!ata_port_offline(ap))
1da177e4 1997 ata_port_probe(ap);
3be680b7 1998 else
1da177e4 1999 ata_port_disable(ap);
1da177e4 2000
198e0fed 2001 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2002 return;
2003
2004 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2005 ata_port_disable(ap);
2006 return;
2007 }
2008
2009 ap->cbl = ATA_CBL_SATA;
2010}
2011
2012/**
780a87f7
JG
2013 * sata_phy_reset - Reset SATA bus.
2014 * @ap: SATA port associated with target SATA PHY.
1da177e4 2015 *
780a87f7
JG
2016 * This function resets the SATA bus, and then probes
2017 * the bus for devices.
1da177e4
LT
2018 *
2019 * LOCKING:
0cba632b 2020 * PCI/etc. bus probe sem.
1da177e4
LT
2021 *
2022 */
2023void sata_phy_reset(struct ata_port *ap)
2024{
2025 __sata_phy_reset(ap);
198e0fed 2026 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2027 return;
2028 ata_bus_reset(ap);
2029}
2030
ebdfca6e
AC
2031/**
2032 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2033 * @adev: device
2034 *
2035 * Obtain the other device on the same cable, or if none is
2036 * present NULL is returned
2037 */
2e9edbf8 2038
3373efd8 2039struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2040{
3373efd8 2041 struct ata_port *ap = adev->ap;
ebdfca6e 2042 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2043 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2044 return NULL;
2045 return pair;
2046}
2047
1da177e4 2048/**
780a87f7
JG
2049 * ata_port_disable - Disable port.
2050 * @ap: Port to be disabled.
1da177e4 2051 *
780a87f7
JG
2052 * Modify @ap data structure such that the system
2053 * thinks that the entire port is disabled, and should
2054 * never attempt to probe or communicate with devices
2055 * on this port.
2056 *
cca3974e 2057 * LOCKING: host lock, or some other form of
780a87f7 2058 * serialization.
1da177e4
LT
2059 */
2060
2061void ata_port_disable(struct ata_port *ap)
2062{
2063 ap->device[0].class = ATA_DEV_NONE;
2064 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2065 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2066}
2067
1c3fae4d 2068/**
3c567b7d 2069 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2070 * @ap: Port to adjust SATA spd limit for
2071 *
2072 * Adjust SATA spd limit of @ap downward. Note that this
2073 * function only adjusts the limit. The change must be applied
3c567b7d 2074 * using sata_set_spd().
1c3fae4d
TH
2075 *
2076 * LOCKING:
2077 * Inherited from caller.
2078 *
2079 * RETURNS:
2080 * 0 on success, negative errno on failure
2081 */
3c567b7d 2082int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2083{
81952c54
TH
2084 u32 sstatus, spd, mask;
2085 int rc, highbit;
1c3fae4d 2086
81952c54
TH
2087 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2088 if (rc)
2089 return rc;
1c3fae4d
TH
2090
2091 mask = ap->sata_spd_limit;
2092 if (mask <= 1)
2093 return -EINVAL;
2094 highbit = fls(mask) - 1;
2095 mask &= ~(1 << highbit);
2096
81952c54 2097 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2098 if (spd <= 1)
2099 return -EINVAL;
2100 spd--;
2101 mask &= (1 << spd) - 1;
2102 if (!mask)
2103 return -EINVAL;
2104
2105 ap->sata_spd_limit = mask;
2106
f15a1daf
TH
2107 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2108 sata_spd_string(fls(mask)));
1c3fae4d
TH
2109
2110 return 0;
2111}
2112
3c567b7d 2113static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2114{
2115 u32 spd, limit;
2116
2117 if (ap->sata_spd_limit == UINT_MAX)
2118 limit = 0;
2119 else
2120 limit = fls(ap->sata_spd_limit);
2121
2122 spd = (*scontrol >> 4) & 0xf;
2123 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2124
2125 return spd != limit;
2126}
2127
2128/**
3c567b7d 2129 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2130 * @ap: Port in question
2131 *
2132 * Test whether the spd limit in SControl matches
2133 * @ap->sata_spd_limit. This function is used to determine
2134 * whether hardreset is necessary to apply SATA spd
2135 * configuration.
2136 *
2137 * LOCKING:
2138 * Inherited from caller.
2139 *
2140 * RETURNS:
2141 * 1 if SATA spd configuration is needed, 0 otherwise.
2142 */
3c567b7d 2143int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2144{
2145 u32 scontrol;
2146
81952c54 2147 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2148 return 0;
2149
3c567b7d 2150 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2151}
2152
2153/**
3c567b7d 2154 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2155 * @ap: Port to set SATA spd for
2156 *
2157 * Set SATA spd of @ap according to sata_spd_limit.
2158 *
2159 * LOCKING:
2160 * Inherited from caller.
2161 *
2162 * RETURNS:
2163 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2164 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2165 */
3c567b7d 2166int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2167{
2168 u32 scontrol;
81952c54 2169 int rc;
1c3fae4d 2170
81952c54
TH
2171 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2172 return rc;
1c3fae4d 2173
3c567b7d 2174 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2175 return 0;
2176
81952c54
TH
2177 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2178 return rc;
2179
1c3fae4d
TH
2180 return 1;
2181}
2182
452503f9
AC
2183/*
2184 * This mode timing computation functionality is ported over from
2185 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2186 */
2187/*
b352e57d 2188 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2189 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2190 * for UDMA6, which is currently supported only by Maxtor drives.
2191 *
2192 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2193 */
2194
2195static const struct ata_timing ata_timing[] = {
2196
2197 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2198 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2199 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2200 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2201
b352e57d
AC
2202 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2203 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2204 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2205 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2206 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2207
2208/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2209
452503f9
AC
2210 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2211 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2212 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2213
452503f9
AC
2214 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2217
b352e57d
AC
2218 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2220 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2221 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2222
2223 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2224 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2225 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2226
2227/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2228
2229 { 0xFF }
2230};
2231
2232#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2233#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2234
2235static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2236{
2237 q->setup = EZ(t->setup * 1000, T);
2238 q->act8b = EZ(t->act8b * 1000, T);
2239 q->rec8b = EZ(t->rec8b * 1000, T);
2240 q->cyc8b = EZ(t->cyc8b * 1000, T);
2241 q->active = EZ(t->active * 1000, T);
2242 q->recover = EZ(t->recover * 1000, T);
2243 q->cycle = EZ(t->cycle * 1000, T);
2244 q->udma = EZ(t->udma * 1000, UT);
2245}
2246
2247void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2248 struct ata_timing *m, unsigned int what)
2249{
2250 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2251 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2252 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2253 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2254 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2255 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2256 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2257 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2258}
2259
2260static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2261{
2262 const struct ata_timing *t;
2263
2264 for (t = ata_timing; t->mode != speed; t++)
91190758 2265 if (t->mode == 0xFF)
452503f9 2266 return NULL;
2e9edbf8 2267 return t;
452503f9
AC
2268}
2269
2270int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2271 struct ata_timing *t, int T, int UT)
2272{
2273 const struct ata_timing *s;
2274 struct ata_timing p;
2275
2276 /*
2e9edbf8 2277 * Find the mode.
75b1f2f8 2278 */
452503f9
AC
2279
2280 if (!(s = ata_timing_find_mode(speed)))
2281 return -EINVAL;
2282
75b1f2f8
AL
2283 memcpy(t, s, sizeof(*s));
2284
452503f9
AC
2285 /*
2286 * If the drive is an EIDE drive, it can tell us it needs extended
2287 * PIO/MW_DMA cycle timing.
2288 */
2289
2290 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2291 memset(&p, 0, sizeof(p));
2292 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2293 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2294 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2295 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2296 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2297 }
2298 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2299 }
2300
2301 /*
2302 * Convert the timing to bus clock counts.
2303 */
2304
75b1f2f8 2305 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2306
2307 /*
c893a3ae
RD
2308 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2309 * S.M.A.R.T * and some other commands. We have to ensure that the
2310 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2311 */
2312
fd3367af 2313 if (speed > XFER_PIO_6) {
452503f9
AC
2314 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2315 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2316 }
2317
2318 /*
c893a3ae 2319 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2320 */
2321
2322 if (t->act8b + t->rec8b < t->cyc8b) {
2323 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2324 t->rec8b = t->cyc8b - t->act8b;
2325 }
2326
2327 if (t->active + t->recover < t->cycle) {
2328 t->active += (t->cycle - (t->active + t->recover)) / 2;
2329 t->recover = t->cycle - t->active;
2330 }
2331
2332 return 0;
2333}
2334
cf176e1a
TH
2335/**
2336 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2337 * @dev: Device to adjust xfer masks
2338 * @force_pio0: Force PIO0
2339 *
2340 * Adjust xfer masks of @dev downward. Note that this function
2341 * does not apply the change. Invoking ata_set_mode() afterwards
2342 * will apply the limit.
2343 *
2344 * LOCKING:
2345 * Inherited from caller.
2346 *
2347 * RETURNS:
2348 * 0 on success, negative errno on failure
2349 */
3373efd8 2350int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2351{
2352 unsigned long xfer_mask;
2353 int highbit;
2354
2355 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2356 dev->udma_mask);
2357
2358 if (!xfer_mask)
2359 goto fail;
2360 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2361 if (xfer_mask & ATA_MASK_UDMA)
2362 xfer_mask &= ~ATA_MASK_MWDMA;
2363
2364 highbit = fls(xfer_mask) - 1;
2365 xfer_mask &= ~(1 << highbit);
2366 if (force_pio0)
2367 xfer_mask &= 1 << ATA_SHIFT_PIO;
2368 if (!xfer_mask)
2369 goto fail;
2370
2371 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2372 &dev->udma_mask);
2373
f15a1daf
TH
2374 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2375 ata_mode_string(xfer_mask));
cf176e1a
TH
2376
2377 return 0;
2378
2379 fail:
2380 return -EINVAL;
2381}
2382
3373efd8 2383static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2384{
baa1e78a 2385 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2386 unsigned int err_mask;
2387 int rc;
1da177e4 2388
e8384607 2389 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2390 if (dev->xfer_shift == ATA_SHIFT_PIO)
2391 dev->flags |= ATA_DFLAG_PIO;
2392
3373efd8 2393 err_mask = ata_dev_set_xfermode(dev);
83206a29 2394 if (err_mask) {
f15a1daf
TH
2395 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2396 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2397 return -EIO;
2398 }
1da177e4 2399
baa1e78a 2400 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2401 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2402 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2403 if (rc)
83206a29 2404 return rc;
48a8a14f 2405
23e71c3d
TH
2406 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2407 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2408
f15a1daf
TH
2409 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2410 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2411 return 0;
1da177e4
LT
2412}
2413
1da177e4
LT
2414/**
2415 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2416 * @ap: port on which timings will be programmed
e82cbdb9 2417 * @r_failed_dev: out paramter for failed device
1da177e4 2418 *
e82cbdb9
TH
2419 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2420 * ata_set_mode() fails, pointer to the failing device is
2421 * returned in @r_failed_dev.
780a87f7 2422 *
1da177e4 2423 * LOCKING:
0cba632b 2424 * PCI/etc. bus probe sem.
e82cbdb9
TH
2425 *
2426 * RETURNS:
2427 * 0 on success, negative errno otherwise
1da177e4 2428 */
1ad8e7f9 2429int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2430{
e8e0619f 2431 struct ata_device *dev;
e82cbdb9 2432 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2433
3adcebb2 2434 /* has private set_mode? */
b229a7b0
AC
2435 if (ap->ops->set_mode)
2436 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2437
a6d5a51c
TH
2438 /* step 1: calculate xfer_mask */
2439 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2440 unsigned int pio_mask, dma_mask;
a6d5a51c 2441
e8e0619f
TH
2442 dev = &ap->device[i];
2443
e1211e3f 2444 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2445 continue;
2446
3373efd8 2447 ata_dev_xfermask(dev);
1da177e4 2448
acf356b1
TH
2449 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2450 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2451 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2452 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2453
4f65977d 2454 found = 1;
5444a6f4
AC
2455 if (dev->dma_mode)
2456 used_dma = 1;
a6d5a51c 2457 }
4f65977d 2458 if (!found)
e82cbdb9 2459 goto out;
a6d5a51c
TH
2460
2461 /* step 2: always set host PIO timings */
e8e0619f
TH
2462 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2463 dev = &ap->device[i];
2464 if (!ata_dev_enabled(dev))
2465 continue;
2466
2467 if (!dev->pio_mode) {
f15a1daf 2468 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2469 rc = -EINVAL;
e82cbdb9 2470 goto out;
e8e0619f
TH
2471 }
2472
2473 dev->xfer_mode = dev->pio_mode;
2474 dev->xfer_shift = ATA_SHIFT_PIO;
2475 if (ap->ops->set_piomode)
2476 ap->ops->set_piomode(ap, dev);
2477 }
1da177e4 2478
a6d5a51c 2479 /* step 3: set host DMA timings */
e8e0619f
TH
2480 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2481 dev = &ap->device[i];
2482
2483 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2484 continue;
2485
2486 dev->xfer_mode = dev->dma_mode;
2487 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2488 if (ap->ops->set_dmamode)
2489 ap->ops->set_dmamode(ap, dev);
2490 }
1da177e4
LT
2491
2492 /* step 4: update devices' xfer mode */
83206a29 2493 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2494 dev = &ap->device[i];
1da177e4 2495
02670bf3
TH
2496 /* don't udpate suspended devices' xfer mode */
2497 if (!ata_dev_ready(dev))
83206a29
TH
2498 continue;
2499
3373efd8 2500 rc = ata_dev_set_mode(dev);
5bbc53f4 2501 if (rc)
e82cbdb9 2502 goto out;
83206a29 2503 }
1da177e4 2504
e8e0619f
TH
2505 /* Record simplex status. If we selected DMA then the other
2506 * host channels are not permitted to do so.
5444a6f4 2507 */
cca3974e
JG
2508 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2509 ap->host->simplex_claimed = 1;
5444a6f4 2510
e8e0619f 2511 /* step5: chip specific finalisation */
1da177e4
LT
2512 if (ap->ops->post_set_mode)
2513 ap->ops->post_set_mode(ap);
2514
e82cbdb9
TH
2515 out:
2516 if (rc)
2517 *r_failed_dev = dev;
2518 return rc;
1da177e4
LT
2519}
2520
1fdffbce
JG
2521/**
2522 * ata_tf_to_host - issue ATA taskfile to host controller
2523 * @ap: port to which command is being issued
2524 * @tf: ATA taskfile register set
2525 *
2526 * Issues ATA taskfile register set to ATA host controller,
2527 * with proper synchronization with interrupt handler and
2528 * other threads.
2529 *
2530 * LOCKING:
cca3974e 2531 * spin_lock_irqsave(host lock)
1fdffbce
JG
2532 */
2533
2534static inline void ata_tf_to_host(struct ata_port *ap,
2535 const struct ata_taskfile *tf)
2536{
2537 ap->ops->tf_load(ap, tf);
2538 ap->ops->exec_command(ap, tf);
2539}
2540
1da177e4
LT
2541/**
2542 * ata_busy_sleep - sleep until BSY clears, or timeout
2543 * @ap: port containing status register to be polled
2544 * @tmout_pat: impatience timeout
2545 * @tmout: overall timeout
2546 *
780a87f7
JG
2547 * Sleep until ATA Status register bit BSY clears,
2548 * or a timeout occurs.
2549 *
d1adc1bb
TH
2550 * LOCKING:
2551 * Kernel thread context (may sleep).
2552 *
2553 * RETURNS:
2554 * 0 on success, -errno otherwise.
1da177e4 2555 */
d1adc1bb
TH
2556int ata_busy_sleep(struct ata_port *ap,
2557 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2558{
2559 unsigned long timer_start, timeout;
2560 u8 status;
2561
2562 status = ata_busy_wait(ap, ATA_BUSY, 300);
2563 timer_start = jiffies;
2564 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2565 while (status != 0xff && (status & ATA_BUSY) &&
2566 time_before(jiffies, timeout)) {
1da177e4
LT
2567 msleep(50);
2568 status = ata_busy_wait(ap, ATA_BUSY, 3);
2569 }
2570
d1adc1bb 2571 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2572 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2573 "port is slow to respond, please be patient "
2574 "(Status 0x%x)\n", status);
1da177e4
LT
2575
2576 timeout = timer_start + tmout;
d1adc1bb
TH
2577 while (status != 0xff && (status & ATA_BUSY) &&
2578 time_before(jiffies, timeout)) {
1da177e4
LT
2579 msleep(50);
2580 status = ata_chk_status(ap);
2581 }
2582
d1adc1bb
TH
2583 if (status == 0xff)
2584 return -ENODEV;
2585
1da177e4 2586 if (status & ATA_BUSY) {
f15a1daf 2587 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2588 "(%lu secs, Status 0x%x)\n",
2589 tmout / HZ, status);
d1adc1bb 2590 return -EBUSY;
1da177e4
LT
2591 }
2592
2593 return 0;
2594}
2595
2596static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2597{
2598 struct ata_ioports *ioaddr = &ap->ioaddr;
2599 unsigned int dev0 = devmask & (1 << 0);
2600 unsigned int dev1 = devmask & (1 << 1);
2601 unsigned long timeout;
2602
2603 /* if device 0 was found in ata_devchk, wait for its
2604 * BSY bit to clear
2605 */
2606 if (dev0)
2607 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2608
2609 /* if device 1 was found in ata_devchk, wait for
2610 * register access, then wait for BSY to clear
2611 */
2612 timeout = jiffies + ATA_TMOUT_BOOT;
2613 while (dev1) {
2614 u8 nsect, lbal;
2615
2616 ap->ops->dev_select(ap, 1);
2617 if (ap->flags & ATA_FLAG_MMIO) {
2618 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2619 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2620 } else {
2621 nsect = inb(ioaddr->nsect_addr);
2622 lbal = inb(ioaddr->lbal_addr);
2623 }
2624 if ((nsect == 1) && (lbal == 1))
2625 break;
2626 if (time_after(jiffies, timeout)) {
2627 dev1 = 0;
2628 break;
2629 }
2630 msleep(50); /* give drive a breather */
2631 }
2632 if (dev1)
2633 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2634
2635 /* is all this really necessary? */
2636 ap->ops->dev_select(ap, 0);
2637 if (dev1)
2638 ap->ops->dev_select(ap, 1);
2639 if (dev0)
2640 ap->ops->dev_select(ap, 0);
2641}
2642
1da177e4
LT
2643static unsigned int ata_bus_softreset(struct ata_port *ap,
2644 unsigned int devmask)
2645{
2646 struct ata_ioports *ioaddr = &ap->ioaddr;
2647
2648 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2649
2650 /* software reset. causes dev0 to be selected */
2651 if (ap->flags & ATA_FLAG_MMIO) {
2652 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2653 udelay(20); /* FIXME: flush */
2654 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2655 udelay(20); /* FIXME: flush */
2656 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2657 } else {
2658 outb(ap->ctl, ioaddr->ctl_addr);
2659 udelay(10);
2660 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2661 udelay(10);
2662 outb(ap->ctl, ioaddr->ctl_addr);
2663 }
2664
2665 /* spec mandates ">= 2ms" before checking status.
2666 * We wait 150ms, because that was the magic delay used for
2667 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2668 * between when the ATA command register is written, and then
2669 * status is checked. Because waiting for "a while" before
2670 * checking status is fine, post SRST, we perform this magic
2671 * delay here as well.
09c7ad79
AC
2672 *
2673 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2674 */
2675 msleep(150);
2676
2e9edbf8 2677 /* Before we perform post reset processing we want to see if
298a41ca
TH
2678 * the bus shows 0xFF because the odd clown forgets the D7
2679 * pulldown resistor.
2680 */
d1adc1bb
TH
2681 if (ata_check_status(ap) == 0xFF)
2682 return 0;
09c7ad79 2683
1da177e4
LT
2684 ata_bus_post_reset(ap, devmask);
2685
2686 return 0;
2687}
2688
2689/**
2690 * ata_bus_reset - reset host port and associated ATA channel
2691 * @ap: port to reset
2692 *
2693 * This is typically the first time we actually start issuing
2694 * commands to the ATA channel. We wait for BSY to clear, then
2695 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2696 * result. Determine what devices, if any, are on the channel
2697 * by looking at the device 0/1 error register. Look at the signature
2698 * stored in each device's taskfile registers, to determine if
2699 * the device is ATA or ATAPI.
2700 *
2701 * LOCKING:
0cba632b 2702 * PCI/etc. bus probe sem.
cca3974e 2703 * Obtains host lock.
1da177e4
LT
2704 *
2705 * SIDE EFFECTS:
198e0fed 2706 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2707 */
2708
2709void ata_bus_reset(struct ata_port *ap)
2710{
2711 struct ata_ioports *ioaddr = &ap->ioaddr;
2712 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2713 u8 err;
aec5c3c1 2714 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2715
2716 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2717
2718 /* determine if device 0/1 are present */
2719 if (ap->flags & ATA_FLAG_SATA_RESET)
2720 dev0 = 1;
2721 else {
2722 dev0 = ata_devchk(ap, 0);
2723 if (slave_possible)
2724 dev1 = ata_devchk(ap, 1);
2725 }
2726
2727 if (dev0)
2728 devmask |= (1 << 0);
2729 if (dev1)
2730 devmask |= (1 << 1);
2731
2732 /* select device 0 again */
2733 ap->ops->dev_select(ap, 0);
2734
2735 /* issue bus reset */
2736 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2737 if (ata_bus_softreset(ap, devmask))
2738 goto err_out;
1da177e4
LT
2739
2740 /*
2741 * determine by signature whether we have ATA or ATAPI devices
2742 */
b4dc7623 2743 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2744 if ((slave_possible) && (err != 0x81))
b4dc7623 2745 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2746
2747 /* re-enable interrupts */
2748 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2749 ata_irq_on(ap);
2750
2751 /* is double-select really necessary? */
2752 if (ap->device[1].class != ATA_DEV_NONE)
2753 ap->ops->dev_select(ap, 1);
2754 if (ap->device[0].class != ATA_DEV_NONE)
2755 ap->ops->dev_select(ap, 0);
2756
2757 /* if no devices were detected, disable this port */
2758 if ((ap->device[0].class == ATA_DEV_NONE) &&
2759 (ap->device[1].class == ATA_DEV_NONE))
2760 goto err_out;
2761
2762 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2763 /* set up device control for ATA_FLAG_SATA_RESET */
2764 if (ap->flags & ATA_FLAG_MMIO)
2765 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2766 else
2767 outb(ap->ctl, ioaddr->ctl_addr);
2768 }
2769
2770 DPRINTK("EXIT\n");
2771 return;
2772
2773err_out:
f15a1daf 2774 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2775 ap->ops->port_disable(ap);
2776
2777 DPRINTK("EXIT\n");
2778}
2779
d7bb4cc7
TH
2780/**
2781 * sata_phy_debounce - debounce SATA phy status
2782 * @ap: ATA port to debounce SATA phy status for
2783 * @params: timing parameters { interval, duratinon, timeout } in msec
2784 *
2785 * Make sure SStatus of @ap reaches stable state, determined by
2786 * holding the same value where DET is not 1 for @duration polled
2787 * every @interval, before @timeout. Timeout constraints the
2788 * beginning of the stable state. Because, after hot unplugging,
2789 * DET gets stuck at 1 on some controllers, this functions waits
2790 * until timeout then returns 0 if DET is stable at 1.
2791 *
2792 * LOCKING:
2793 * Kernel thread context (may sleep)
2794 *
2795 * RETURNS:
2796 * 0 on success, -errno on failure.
2797 */
2798int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2799{
d7bb4cc7
TH
2800 unsigned long interval_msec = params[0];
2801 unsigned long duration = params[1] * HZ / 1000;
2802 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2803 unsigned long last_jiffies;
2804 u32 last, cur;
2805 int rc;
2806
2807 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2808 return rc;
2809 cur &= 0xf;
2810
2811 last = cur;
2812 last_jiffies = jiffies;
2813
2814 while (1) {
2815 msleep(interval_msec);
2816 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2817 return rc;
2818 cur &= 0xf;
2819
2820 /* DET stable? */
2821 if (cur == last) {
2822 if (cur == 1 && time_before(jiffies, timeout))
2823 continue;
2824 if (time_after(jiffies, last_jiffies + duration))
2825 return 0;
2826 continue;
2827 }
2828
2829 /* unstable, start over */
2830 last = cur;
2831 last_jiffies = jiffies;
2832
2833 /* check timeout */
2834 if (time_after(jiffies, timeout))
2835 return -EBUSY;
2836 }
2837}
2838
2839/**
2840 * sata_phy_resume - resume SATA phy
2841 * @ap: ATA port to resume SATA phy for
2842 * @params: timing parameters { interval, duratinon, timeout } in msec
2843 *
2844 * Resume SATA phy of @ap and debounce it.
2845 *
2846 * LOCKING:
2847 * Kernel thread context (may sleep)
2848 *
2849 * RETURNS:
2850 * 0 on success, -errno on failure.
2851 */
2852int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2853{
2854 u32 scontrol;
81952c54
TH
2855 int rc;
2856
2857 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2858 return rc;
7a7921e8 2859
852ee16a 2860 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2861
2862 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2863 return rc;
7a7921e8 2864
d7bb4cc7
TH
2865 /* Some PHYs react badly if SStatus is pounded immediately
2866 * after resuming. Delay 200ms before debouncing.
2867 */
2868 msleep(200);
7a7921e8 2869
d7bb4cc7 2870 return sata_phy_debounce(ap, params);
7a7921e8
TH
2871}
2872
f5914a46
TH
2873static void ata_wait_spinup(struct ata_port *ap)
2874{
2875 struct ata_eh_context *ehc = &ap->eh_context;
2876 unsigned long end, secs;
2877 int rc;
2878
2879 /* first, debounce phy if SATA */
2880 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2881 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2882
2883 /* if debounced successfully and offline, no need to wait */
2884 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2885 return;
2886 }
2887
2888 /* okay, let's give the drive time to spin up */
2889 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2890 secs = ((end - jiffies) + HZ - 1) / HZ;
2891
2892 if (time_after(jiffies, end))
2893 return;
2894
2895 if (secs > 5)
2896 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2897 "(%lu secs)\n", secs);
2898
2899 schedule_timeout_uninterruptible(end - jiffies);
2900}
2901
2902/**
2903 * ata_std_prereset - prepare for reset
2904 * @ap: ATA port to be reset
2905 *
2906 * @ap is about to be reset. Initialize it.
2907 *
2908 * LOCKING:
2909 * Kernel thread context (may sleep)
2910 *
2911 * RETURNS:
2912 * 0 on success, -errno otherwise.
2913 */
2914int ata_std_prereset(struct ata_port *ap)
2915{
2916 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2917 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2918 int rc;
2919
28324304
TH
2920 /* handle link resume & hotplug spinup */
2921 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2922 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2923 ehc->i.action |= ATA_EH_HARDRESET;
2924
2925 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2926 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2927 ata_wait_spinup(ap);
f5914a46
TH
2928
2929 /* if we're about to do hardreset, nothing more to do */
2930 if (ehc->i.action & ATA_EH_HARDRESET)
2931 return 0;
2932
2933 /* if SATA, resume phy */
2934 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2935 rc = sata_phy_resume(ap, timing);
2936 if (rc && rc != -EOPNOTSUPP) {
2937 /* phy resume failed */
2938 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2939 "link for reset (errno=%d)\n", rc);
2940 return rc;
2941 }
2942 }
2943
2944 /* Wait for !BSY if the controller can wait for the first D2H
2945 * Reg FIS and we don't know that no device is attached.
2946 */
2947 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2948 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2949
2950 return 0;
2951}
2952
c2bd5804
TH
2953/**
2954 * ata_std_softreset - reset host port via ATA SRST
2955 * @ap: port to reset
c2bd5804
TH
2956 * @classes: resulting classes of attached devices
2957 *
52783c5d 2958 * Reset host port using ATA SRST.
c2bd5804
TH
2959 *
2960 * LOCKING:
2961 * Kernel thread context (may sleep)
2962 *
2963 * RETURNS:
2964 * 0 on success, -errno otherwise.
2965 */
2bf2cb26 2966int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2967{
2968 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2969 unsigned int devmask = 0, err_mask;
2970 u8 err;
2971
2972 DPRINTK("ENTER\n");
2973
81952c54 2974 if (ata_port_offline(ap)) {
3a39746a
TH
2975 classes[0] = ATA_DEV_NONE;
2976 goto out;
2977 }
2978
c2bd5804
TH
2979 /* determine if device 0/1 are present */
2980 if (ata_devchk(ap, 0))
2981 devmask |= (1 << 0);
2982 if (slave_possible && ata_devchk(ap, 1))
2983 devmask |= (1 << 1);
2984
c2bd5804
TH
2985 /* select device 0 again */
2986 ap->ops->dev_select(ap, 0);
2987
2988 /* issue bus reset */
2989 DPRINTK("about to softreset, devmask=%x\n", devmask);
2990 err_mask = ata_bus_softreset(ap, devmask);
2991 if (err_mask) {
f15a1daf
TH
2992 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2993 err_mask);
c2bd5804
TH
2994 return -EIO;
2995 }
2996
2997 /* determine by signature whether we have ATA or ATAPI devices */
2998 classes[0] = ata_dev_try_classify(ap, 0, &err);
2999 if (slave_possible && err != 0x81)
3000 classes[1] = ata_dev_try_classify(ap, 1, &err);
3001
3a39746a 3002 out:
c2bd5804
TH
3003 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3004 return 0;
3005}
3006
3007/**
b6103f6d 3008 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3009 * @ap: port to reset
b6103f6d 3010 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3011 *
3012 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3013 *
3014 * LOCKING:
3015 * Kernel thread context (may sleep)
3016 *
3017 * RETURNS:
3018 * 0 on success, -errno otherwise.
3019 */
b6103f6d 3020int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3021{
852ee16a 3022 u32 scontrol;
81952c54 3023 int rc;
852ee16a 3024
c2bd5804
TH
3025 DPRINTK("ENTER\n");
3026
3c567b7d 3027 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3028 /* SATA spec says nothing about how to reconfigure
3029 * spd. To be on the safe side, turn off phy during
3030 * reconfiguration. This works for at least ICH7 AHCI
3031 * and Sil3124.
3032 */
81952c54 3033 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3034 goto out;
81952c54 3035
a34b6fc0 3036 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3037
3038 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3039 goto out;
1c3fae4d 3040
3c567b7d 3041 sata_set_spd(ap);
1c3fae4d
TH
3042 }
3043
3044 /* issue phy wake/reset */
81952c54 3045 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3046 goto out;
81952c54 3047
852ee16a 3048 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3049
3050 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3051 goto out;
c2bd5804 3052
1c3fae4d 3053 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3054 * 10.4.2 says at least 1 ms.
3055 */
3056 msleep(1);
3057
1c3fae4d 3058 /* bring phy back */
b6103f6d
TH
3059 rc = sata_phy_resume(ap, timing);
3060 out:
3061 DPRINTK("EXIT, rc=%d\n", rc);
3062 return rc;
3063}
3064
3065/**
3066 * sata_std_hardreset - reset host port via SATA phy reset
3067 * @ap: port to reset
3068 * @class: resulting class of attached device
3069 *
3070 * SATA phy-reset host port using DET bits of SControl register,
3071 * wait for !BSY and classify the attached device.
3072 *
3073 * LOCKING:
3074 * Kernel thread context (may sleep)
3075 *
3076 * RETURNS:
3077 * 0 on success, -errno otherwise.
3078 */
3079int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3080{
3081 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3082 int rc;
3083
3084 DPRINTK("ENTER\n");
3085
3086 /* do hardreset */
3087 rc = sata_port_hardreset(ap, timing);
3088 if (rc) {
3089 ata_port_printk(ap, KERN_ERR,
3090 "COMRESET failed (errno=%d)\n", rc);
3091 return rc;
3092 }
c2bd5804 3093
c2bd5804 3094 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3095 if (ata_port_offline(ap)) {
c2bd5804
TH
3096 *class = ATA_DEV_NONE;
3097 DPRINTK("EXIT, link offline\n");
3098 return 0;
3099 }
3100
3101 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3102 ata_port_printk(ap, KERN_ERR,
3103 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3104 return -EIO;
3105 }
3106
3a39746a
TH
3107 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3108
c2bd5804
TH
3109 *class = ata_dev_try_classify(ap, 0, NULL);
3110
3111 DPRINTK("EXIT, class=%u\n", *class);
3112 return 0;
3113}
3114
3115/**
3116 * ata_std_postreset - standard postreset callback
3117 * @ap: the target ata_port
3118 * @classes: classes of attached devices
3119 *
3120 * This function is invoked after a successful reset. Note that
3121 * the device might have been reset more than once using
3122 * different reset methods before postreset is invoked.
c2bd5804 3123 *
c2bd5804
TH
3124 * LOCKING:
3125 * Kernel thread context (may sleep)
3126 */
3127void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3128{
dc2b3515
TH
3129 u32 serror;
3130
c2bd5804
TH
3131 DPRINTK("ENTER\n");
3132
c2bd5804 3133 /* print link status */
81952c54 3134 sata_print_link_status(ap);
c2bd5804 3135
dc2b3515
TH
3136 /* clear SError */
3137 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3138 sata_scr_write(ap, SCR_ERROR, serror);
3139
3a39746a 3140 /* re-enable interrupts */
e3180499
TH
3141 if (!ap->ops->error_handler) {
3142 /* FIXME: hack. create a hook instead */
3143 if (ap->ioaddr.ctl_addr)
3144 ata_irq_on(ap);
3145 }
c2bd5804
TH
3146
3147 /* is double-select really necessary? */
3148 if (classes[0] != ATA_DEV_NONE)
3149 ap->ops->dev_select(ap, 1);
3150 if (classes[1] != ATA_DEV_NONE)
3151 ap->ops->dev_select(ap, 0);
3152
3a39746a
TH
3153 /* bail out if no device is present */
3154 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3155 DPRINTK("EXIT, no device\n");
3156 return;
3157 }
3158
3159 /* set up device control */
3160 if (ap->ioaddr.ctl_addr) {
3161 if (ap->flags & ATA_FLAG_MMIO)
3162 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3163 else
3164 outb(ap->ctl, ap->ioaddr.ctl_addr);
3165 }
c2bd5804
TH
3166
3167 DPRINTK("EXIT\n");
3168}
3169
623a3128
TH
3170/**
3171 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3172 * @dev: device to compare against
3173 * @new_class: class of the new device
3174 * @new_id: IDENTIFY page of the new device
3175 *
3176 * Compare @new_class and @new_id against @dev and determine
3177 * whether @dev is the device indicated by @new_class and
3178 * @new_id.
3179 *
3180 * LOCKING:
3181 * None.
3182 *
3183 * RETURNS:
3184 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3185 */
3373efd8
TH
3186static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3187 const u16 *new_id)
623a3128
TH
3188{
3189 const u16 *old_id = dev->id;
a0cf733b
TH
3190 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3191 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3192 u64 new_n_sectors;
3193
3194 if (dev->class != new_class) {
f15a1daf
TH
3195 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3196 dev->class, new_class);
623a3128
TH
3197 return 0;
3198 }
3199
a0cf733b
TH
3200 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3201 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3202 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3203 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3204 new_n_sectors = ata_id_n_sectors(new_id);
3205
3206 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3207 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3208 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3209 return 0;
3210 }
3211
3212 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3213 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3214 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3215 return 0;
3216 }
3217
3218 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3219 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3220 "%llu != %llu\n",
3221 (unsigned long long)dev->n_sectors,
3222 (unsigned long long)new_n_sectors);
623a3128
TH
3223 return 0;
3224 }
3225
3226 return 1;
3227}
3228
3229/**
3230 * ata_dev_revalidate - Revalidate ATA device
623a3128 3231 * @dev: device to revalidate
bff04647 3232 * @readid_flags: read ID flags
623a3128
TH
3233 *
3234 * Re-read IDENTIFY page and make sure @dev is still attached to
3235 * the port.
3236 *
3237 * LOCKING:
3238 * Kernel thread context (may sleep)
3239 *
3240 * RETURNS:
3241 * 0 on success, negative errno otherwise
3242 */
bff04647 3243int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3244{
5eb45c02 3245 unsigned int class = dev->class;
f15a1daf 3246 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3247 int rc;
3248
5eb45c02
TH
3249 if (!ata_dev_enabled(dev)) {
3250 rc = -ENODEV;
3251 goto fail;
3252 }
623a3128 3253
fe635c7e 3254 /* read ID data */
bff04647 3255 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3256 if (rc)
3257 goto fail;
3258
3259 /* is the device still there? */
3373efd8 3260 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3261 rc = -ENODEV;
3262 goto fail;
3263 }
3264
fe635c7e 3265 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3266
3267 /* configure device according to the new ID */
efdaedc4 3268 rc = ata_dev_configure(dev);
5eb45c02
TH
3269 if (rc == 0)
3270 return 0;
623a3128
TH
3271
3272 fail:
f15a1daf 3273 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3274 return rc;
3275}
3276
6919a0a6
AC
3277struct ata_blacklist_entry {
3278 const char *model_num;
3279 const char *model_rev;
3280 unsigned long horkage;
3281};
3282
3283static const struct ata_blacklist_entry ata_device_blacklist [] = {
3284 /* Devices with DMA related problems under Linux */
3285 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3286 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3291 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3292 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3293 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3297 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3298 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3299 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3300 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3303 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3304 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3305 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3306 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3307 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3308 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3309 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3310 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3311 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3312 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3313 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3314 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3315
3316 /* Devices we expect to fail diagnostics */
3317
3318 /* Devices where NCQ should be avoided */
3319 /* NCQ is slow */
3320 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3321
3322 /* Devices with NCQ limits */
3323
3324 /* End Marker */
3325 { }
1da177e4 3326};
2e9edbf8 3327
6919a0a6 3328unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3329{
8bfa79fc
TH
3330 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3331 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3332 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3333
8bfa79fc
TH
3334 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3335 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3336
6919a0a6 3337 while (ad->model_num) {
8bfa79fc 3338 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3339 if (ad->model_rev == NULL)
3340 return ad->horkage;
8bfa79fc 3341 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3342 return ad->horkage;
f4b15fef 3343 }
6919a0a6 3344 ad++;
f4b15fef 3345 }
1da177e4
LT
3346 return 0;
3347}
3348
6919a0a6
AC
3349static int ata_dma_blacklisted(const struct ata_device *dev)
3350{
3351 /* We don't support polling DMA.
3352 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3353 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3354 */
3355 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3356 (dev->flags & ATA_DFLAG_CDB_INTR))
3357 return 1;
3358 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3359}
3360
a6d5a51c
TH
3361/**
3362 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3363 * @dev: Device to compute xfermask for
3364 *
acf356b1
TH
3365 * Compute supported xfermask of @dev and store it in
3366 * dev->*_mask. This function is responsible for applying all
3367 * known limits including host controller limits, device
3368 * blacklist, etc...
a6d5a51c
TH
3369 *
3370 * LOCKING:
3371 * None.
a6d5a51c 3372 */
3373efd8 3373static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3374{
3373efd8 3375 struct ata_port *ap = dev->ap;
cca3974e 3376 struct ata_host *host = ap->host;
a6d5a51c 3377 unsigned long xfer_mask;
1da177e4 3378
37deecb5 3379 /* controller modes available */
565083e1
TH
3380 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3381 ap->mwdma_mask, ap->udma_mask);
3382
3383 /* Apply cable rule here. Don't apply it early because when
3384 * we handle hot plug the cable type can itself change.
3385 */
3386 if (ap->cbl == ATA_CBL_PATA40)
3387 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3388 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3389 * host side are checked drive side as well. Cases where we know a
3390 * 40wire cable is used safely for 80 are not checked here.
3391 */
3392 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3393 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3394
1da177e4 3395
37deecb5
TH
3396 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3397 dev->mwdma_mask, dev->udma_mask);
3398 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3399
b352e57d
AC
3400 /*
3401 * CFA Advanced TrueIDE timings are not allowed on a shared
3402 * cable
3403 */
3404 if (ata_dev_pair(dev)) {
3405 /* No PIO5 or PIO6 */
3406 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3407 /* No MWDMA3 or MWDMA 4 */
3408 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3409 }
3410
37deecb5
TH
3411 if (ata_dma_blacklisted(dev)) {
3412 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3413 ata_dev_printk(dev, KERN_WARNING,
3414 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3415 }
a6d5a51c 3416
cca3974e 3417 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3418 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3419 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3420 "other device, disabling DMA\n");
5444a6f4 3421 }
565083e1 3422
5444a6f4
AC
3423 if (ap->ops->mode_filter)
3424 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3425
565083e1
TH
3426 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3427 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3428}
3429
1da177e4
LT
3430/**
3431 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3432 * @dev: Device to which command will be sent
3433 *
780a87f7
JG
3434 * Issue SET FEATURES - XFER MODE command to device @dev
3435 * on port @ap.
3436 *
1da177e4 3437 * LOCKING:
0cba632b 3438 * PCI/etc. bus probe sem.
83206a29
TH
3439 *
3440 * RETURNS:
3441 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3442 */
3443
3373efd8 3444static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3445{
a0123703 3446 struct ata_taskfile tf;
83206a29 3447 unsigned int err_mask;
1da177e4
LT
3448
3449 /* set up set-features taskfile */
3450 DPRINTK("set features - xfer mode\n");
3451
3373efd8 3452 ata_tf_init(dev, &tf);
a0123703
TH
3453 tf.command = ATA_CMD_SET_FEATURES;
3454 tf.feature = SETFEATURES_XFER;
3455 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3456 tf.protocol = ATA_PROT_NODATA;
3457 tf.nsect = dev->xfer_mode;
1da177e4 3458
3373efd8 3459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3460
83206a29
TH
3461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3462 return err_mask;
1da177e4
LT
3463}
3464
8bf62ece
AL
3465/**
3466 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3467 * @dev: Device to which command will be sent
e2a7f77a
RD
3468 * @heads: Number of heads (taskfile parameter)
3469 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3470 *
3471 * LOCKING:
6aff8f1f
TH
3472 * Kernel thread context (may sleep)
3473 *
3474 * RETURNS:
3475 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3476 */
3373efd8
TH
3477static unsigned int ata_dev_init_params(struct ata_device *dev,
3478 u16 heads, u16 sectors)
8bf62ece 3479{
a0123703 3480 struct ata_taskfile tf;
6aff8f1f 3481 unsigned int err_mask;
8bf62ece
AL
3482
3483 /* Number of sectors per track 1-255. Number of heads 1-16 */
3484 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3485 return AC_ERR_INVALID;
8bf62ece
AL
3486
3487 /* set up init dev params taskfile */
3488 DPRINTK("init dev params \n");
3489
3373efd8 3490 ata_tf_init(dev, &tf);
a0123703
TH
3491 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3492 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3493 tf.protocol = ATA_PROT_NODATA;
3494 tf.nsect = sectors;
3495 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3496
3373efd8 3497 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3498
6aff8f1f
TH
3499 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3500 return err_mask;
8bf62ece
AL
3501}
3502
1da177e4 3503/**
0cba632b
JG
3504 * ata_sg_clean - Unmap DMA memory associated with command
3505 * @qc: Command containing DMA memory to be released
3506 *
3507 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3508 *
3509 * LOCKING:
cca3974e 3510 * spin_lock_irqsave(host lock)
1da177e4 3511 */
70e6ad0c 3512void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3513{
3514 struct ata_port *ap = qc->ap;
cedc9a47 3515 struct scatterlist *sg = qc->__sg;
1da177e4 3516 int dir = qc->dma_dir;
cedc9a47 3517 void *pad_buf = NULL;
1da177e4 3518
a4631474
TH
3519 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3520 WARN_ON(sg == NULL);
1da177e4
LT
3521
3522 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3523 WARN_ON(qc->n_elem > 1);
1da177e4 3524
2c13b7ce 3525 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3526
cedc9a47
JG
3527 /* if we padded the buffer out to 32-bit bound, and data
3528 * xfer direction is from-device, we must copy from the
3529 * pad buffer back into the supplied buffer
3530 */
3531 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3532 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3533
3534 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3535 if (qc->n_elem)
2f1f610b 3536 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3537 /* restore last sg */
3538 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3539 if (pad_buf) {
3540 struct scatterlist *psg = &qc->pad_sgent;
3541 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3542 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3543 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3544 }
3545 } else {
2e242fa9 3546 if (qc->n_elem)
2f1f610b 3547 dma_unmap_single(ap->dev,
e1410f2d
JG
3548 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3549 dir);
cedc9a47
JG
3550 /* restore sg */
3551 sg->length += qc->pad_len;
3552 if (pad_buf)
3553 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3554 pad_buf, qc->pad_len);
3555 }
1da177e4
LT
3556
3557 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3558 qc->__sg = NULL;
1da177e4
LT
3559}
3560
3561/**
3562 * ata_fill_sg - Fill PCI IDE PRD table
3563 * @qc: Metadata associated with taskfile to be transferred
3564 *
780a87f7
JG
3565 * Fill PCI IDE PRD (scatter-gather) table with segments
3566 * associated with the current disk command.
3567 *
1da177e4 3568 * LOCKING:
cca3974e 3569 * spin_lock_irqsave(host lock)
1da177e4
LT
3570 *
3571 */
3572static void ata_fill_sg(struct ata_queued_cmd *qc)
3573{
1da177e4 3574 struct ata_port *ap = qc->ap;
cedc9a47
JG
3575 struct scatterlist *sg;
3576 unsigned int idx;
1da177e4 3577
a4631474 3578 WARN_ON(qc->__sg == NULL);
f131883e 3579 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3580
3581 idx = 0;
cedc9a47 3582 ata_for_each_sg(sg, qc) {
1da177e4
LT
3583 u32 addr, offset;
3584 u32 sg_len, len;
3585
3586 /* determine if physical DMA addr spans 64K boundary.
3587 * Note h/w doesn't support 64-bit, so we unconditionally
3588 * truncate dma_addr_t to u32.
3589 */
3590 addr = (u32) sg_dma_address(sg);
3591 sg_len = sg_dma_len(sg);
3592
3593 while (sg_len) {
3594 offset = addr & 0xffff;
3595 len = sg_len;
3596 if ((offset + sg_len) > 0x10000)
3597 len = 0x10000 - offset;
3598
3599 ap->prd[idx].addr = cpu_to_le32(addr);
3600 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3601 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3602
3603 idx++;
3604 sg_len -= len;
3605 addr += len;
3606 }
3607 }
3608
3609 if (idx)
3610 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3611}
3612/**
3613 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3614 * @qc: Metadata associated with taskfile to check
3615 *
780a87f7
JG
3616 * Allow low-level driver to filter ATA PACKET commands, returning
3617 * a status indicating whether or not it is OK to use DMA for the
3618 * supplied PACKET command.
3619 *
1da177e4 3620 * LOCKING:
cca3974e 3621 * spin_lock_irqsave(host lock)
0cba632b 3622 *
1da177e4
LT
3623 * RETURNS: 0 when ATAPI DMA can be used
3624 * nonzero otherwise
3625 */
3626int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3627{
3628 struct ata_port *ap = qc->ap;
3629 int rc = 0; /* Assume ATAPI DMA is OK by default */
3630
3631 if (ap->ops->check_atapi_dma)
3632 rc = ap->ops->check_atapi_dma(qc);
3633
3634 return rc;
3635}
3636/**
3637 * ata_qc_prep - Prepare taskfile for submission
3638 * @qc: Metadata associated with taskfile to be prepared
3639 *
780a87f7
JG
3640 * Prepare ATA taskfile for submission.
3641 *
1da177e4 3642 * LOCKING:
cca3974e 3643 * spin_lock_irqsave(host lock)
1da177e4
LT
3644 */
3645void ata_qc_prep(struct ata_queued_cmd *qc)
3646{
3647 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3648 return;
3649
3650 ata_fill_sg(qc);
3651}
3652
e46834cd
BK
3653void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3654
0cba632b
JG
3655/**
3656 * ata_sg_init_one - Associate command with memory buffer
3657 * @qc: Command to be associated
3658 * @buf: Memory buffer
3659 * @buflen: Length of memory buffer, in bytes.
3660 *
3661 * Initialize the data-related elements of queued_cmd @qc
3662 * to point to a single memory buffer, @buf of byte length @buflen.
3663 *
3664 * LOCKING:
cca3974e 3665 * spin_lock_irqsave(host lock)
0cba632b
JG
3666 */
3667
1da177e4
LT
3668void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3669{
1da177e4
LT
3670 qc->flags |= ATA_QCFLAG_SINGLE;
3671
cedc9a47 3672 qc->__sg = &qc->sgent;
1da177e4 3673 qc->n_elem = 1;
cedc9a47 3674 qc->orig_n_elem = 1;
1da177e4 3675 qc->buf_virt = buf;
233277ca 3676 qc->nbytes = buflen;
1da177e4 3677
61c0596c 3678 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3679}
3680
0cba632b
JG
3681/**
3682 * ata_sg_init - Associate command with scatter-gather table.
3683 * @qc: Command to be associated
3684 * @sg: Scatter-gather table.
3685 * @n_elem: Number of elements in s/g table.
3686 *
3687 * Initialize the data-related elements of queued_cmd @qc
3688 * to point to a scatter-gather table @sg, containing @n_elem
3689 * elements.
3690 *
3691 * LOCKING:
cca3974e 3692 * spin_lock_irqsave(host lock)
0cba632b
JG
3693 */
3694
1da177e4
LT
3695void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3696 unsigned int n_elem)
3697{
3698 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3699 qc->__sg = sg;
1da177e4 3700 qc->n_elem = n_elem;
cedc9a47 3701 qc->orig_n_elem = n_elem;
1da177e4
LT
3702}
3703
3704/**
0cba632b
JG
3705 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3706 * @qc: Command with memory buffer to be mapped.
3707 *
3708 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3709 *
3710 * LOCKING:
cca3974e 3711 * spin_lock_irqsave(host lock)
1da177e4
LT
3712 *
3713 * RETURNS:
0cba632b 3714 * Zero on success, negative on error.
1da177e4
LT
3715 */
3716
3717static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3718{
3719 struct ata_port *ap = qc->ap;
3720 int dir = qc->dma_dir;
cedc9a47 3721 struct scatterlist *sg = qc->__sg;
1da177e4 3722 dma_addr_t dma_address;
2e242fa9 3723 int trim_sg = 0;
1da177e4 3724
cedc9a47
JG
3725 /* we must lengthen transfers to end on a 32-bit boundary */
3726 qc->pad_len = sg->length & 3;
3727 if (qc->pad_len) {
3728 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3729 struct scatterlist *psg = &qc->pad_sgent;
3730
a4631474 3731 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3732
3733 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3734
3735 if (qc->tf.flags & ATA_TFLAG_WRITE)
3736 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3737 qc->pad_len);
3738
3739 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3740 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3741 /* trim sg */
3742 sg->length -= qc->pad_len;
2e242fa9
TH
3743 if (sg->length == 0)
3744 trim_sg = 1;
cedc9a47
JG
3745
3746 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3747 sg->length, qc->pad_len);
3748 }
3749
2e242fa9
TH
3750 if (trim_sg) {
3751 qc->n_elem--;
e1410f2d
JG
3752 goto skip_map;
3753 }
3754
2f1f610b 3755 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3756 sg->length, dir);
537a95d9
TH
3757 if (dma_mapping_error(dma_address)) {
3758 /* restore sg */
3759 sg->length += qc->pad_len;
1da177e4 3760 return -1;
537a95d9 3761 }
1da177e4
LT
3762
3763 sg_dma_address(sg) = dma_address;
32529e01 3764 sg_dma_len(sg) = sg->length;
1da177e4 3765
2e242fa9 3766skip_map:
1da177e4
LT
3767 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3768 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3769
3770 return 0;
3771}
3772
3773/**
0cba632b
JG
3774 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3775 * @qc: Command with scatter-gather table to be mapped.
3776 *
3777 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3778 *
3779 * LOCKING:
cca3974e 3780 * spin_lock_irqsave(host lock)
1da177e4
LT
3781 *
3782 * RETURNS:
0cba632b 3783 * Zero on success, negative on error.
1da177e4
LT
3784 *
3785 */
3786
3787static int ata_sg_setup(struct ata_queued_cmd *qc)
3788{
3789 struct ata_port *ap = qc->ap;
cedc9a47
JG
3790 struct scatterlist *sg = qc->__sg;
3791 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3792 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3793
3794 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3795 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3796
cedc9a47
JG
3797 /* we must lengthen transfers to end on a 32-bit boundary */
3798 qc->pad_len = lsg->length & 3;
3799 if (qc->pad_len) {
3800 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3801 struct scatterlist *psg = &qc->pad_sgent;
3802 unsigned int offset;
3803
a4631474 3804 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3805
3806 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3807
3808 /*
3809 * psg->page/offset are used to copy to-be-written
3810 * data in this function or read data in ata_sg_clean.
3811 */
3812 offset = lsg->offset + lsg->length - qc->pad_len;
3813 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3814 psg->offset = offset_in_page(offset);
3815
3816 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3817 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3818 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3819 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3820 }
3821
3822 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3823 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3824 /* trim last sg */
3825 lsg->length -= qc->pad_len;
e1410f2d
JG
3826 if (lsg->length == 0)
3827 trim_sg = 1;
cedc9a47
JG
3828
3829 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3830 qc->n_elem - 1, lsg->length, qc->pad_len);
3831 }
3832
e1410f2d
JG
3833 pre_n_elem = qc->n_elem;
3834 if (trim_sg && pre_n_elem)
3835 pre_n_elem--;
3836
3837 if (!pre_n_elem) {
3838 n_elem = 0;
3839 goto skip_map;
3840 }
3841
1da177e4 3842 dir = qc->dma_dir;
2f1f610b 3843 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3844 if (n_elem < 1) {
3845 /* restore last sg */
3846 lsg->length += qc->pad_len;
1da177e4 3847 return -1;
537a95d9 3848 }
1da177e4
LT
3849
3850 DPRINTK("%d sg elements mapped\n", n_elem);
3851
e1410f2d 3852skip_map:
1da177e4
LT
3853 qc->n_elem = n_elem;
3854
3855 return 0;
3856}
3857
0baab86b 3858/**
c893a3ae 3859 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3860 * @buf: Buffer to swap
3861 * @buf_words: Number of 16-bit words in buffer.
3862 *
3863 * Swap halves of 16-bit words if needed to convert from
3864 * little-endian byte order to native cpu byte order, or
3865 * vice-versa.
3866 *
3867 * LOCKING:
6f0ef4fa 3868 * Inherited from caller.
0baab86b 3869 */
1da177e4
LT
3870void swap_buf_le16(u16 *buf, unsigned int buf_words)
3871{
3872#ifdef __BIG_ENDIAN
3873 unsigned int i;
3874
3875 for (i = 0; i < buf_words; i++)
3876 buf[i] = le16_to_cpu(buf[i]);
3877#endif /* __BIG_ENDIAN */
3878}
3879
6ae4cfb5
AL
3880/**
3881 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3882 * @adev: device for this I/O
6ae4cfb5
AL
3883 * @buf: data buffer
3884 * @buflen: buffer length
344babaa 3885 * @write_data: read/write
6ae4cfb5
AL
3886 *
3887 * Transfer data from/to the device data register by MMIO.
3888 *
3889 * LOCKING:
3890 * Inherited from caller.
6ae4cfb5
AL
3891 */
3892
88574551 3893void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3894 unsigned int buflen, int write_data)
1da177e4 3895{
a6b2c5d4 3896 struct ata_port *ap = adev->ap;
1da177e4
LT
3897 unsigned int i;
3898 unsigned int words = buflen >> 1;
3899 u16 *buf16 = (u16 *) buf;
3900 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3901
6ae4cfb5 3902 /* Transfer multiple of 2 bytes */
1da177e4
LT
3903 if (write_data) {
3904 for (i = 0; i < words; i++)
3905 writew(le16_to_cpu(buf16[i]), mmio);
3906 } else {
3907 for (i = 0; i < words; i++)
3908 buf16[i] = cpu_to_le16(readw(mmio));
3909 }
6ae4cfb5
AL
3910
3911 /* Transfer trailing 1 byte, if any. */
3912 if (unlikely(buflen & 0x01)) {
3913 u16 align_buf[1] = { 0 };
3914 unsigned char *trailing_buf = buf + buflen - 1;
3915
3916 if (write_data) {
3917 memcpy(align_buf, trailing_buf, 1);
3918 writew(le16_to_cpu(align_buf[0]), mmio);
3919 } else {
3920 align_buf[0] = cpu_to_le16(readw(mmio));
3921 memcpy(trailing_buf, align_buf, 1);
3922 }
3923 }
1da177e4
LT
3924}
3925
6ae4cfb5
AL
3926/**
3927 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3928 * @adev: device to target
6ae4cfb5
AL
3929 * @buf: data buffer
3930 * @buflen: buffer length
344babaa 3931 * @write_data: read/write
6ae4cfb5
AL
3932 *
3933 * Transfer data from/to the device data register by PIO.
3934 *
3935 * LOCKING:
3936 * Inherited from caller.
6ae4cfb5
AL
3937 */
3938
88574551 3939void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3940 unsigned int buflen, int write_data)
1da177e4 3941{
a6b2c5d4 3942 struct ata_port *ap = adev->ap;
6ae4cfb5 3943 unsigned int words = buflen >> 1;
1da177e4 3944
6ae4cfb5 3945 /* Transfer multiple of 2 bytes */
1da177e4 3946 if (write_data)
6ae4cfb5 3947 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3948 else
6ae4cfb5
AL
3949 insw(ap->ioaddr.data_addr, buf, words);
3950
3951 /* Transfer trailing 1 byte, if any. */
3952 if (unlikely(buflen & 0x01)) {
3953 u16 align_buf[1] = { 0 };
3954 unsigned char *trailing_buf = buf + buflen - 1;
3955
3956 if (write_data) {
3957 memcpy(align_buf, trailing_buf, 1);
3958 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3959 } else {
3960 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3961 memcpy(trailing_buf, align_buf, 1);
3962 }
3963 }
1da177e4
LT
3964}
3965
75e99585
AC
3966/**
3967 * ata_pio_data_xfer_noirq - Transfer data by PIO
3968 * @adev: device to target
3969 * @buf: data buffer
3970 * @buflen: buffer length
3971 * @write_data: read/write
3972 *
88574551 3973 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3974 * transfer with interrupts disabled.
3975 *
3976 * LOCKING:
3977 * Inherited from caller.
3978 */
3979
3980void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3981 unsigned int buflen, int write_data)
3982{
3983 unsigned long flags;
3984 local_irq_save(flags);
3985 ata_pio_data_xfer(adev, buf, buflen, write_data);
3986 local_irq_restore(flags);
3987}
3988
3989
6ae4cfb5
AL
3990/**
3991 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3992 * @qc: Command on going
3993 *
3994 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3995 *
3996 * LOCKING:
3997 * Inherited from caller.
3998 */
3999
1da177e4
LT
4000static void ata_pio_sector(struct ata_queued_cmd *qc)
4001{
4002 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4003 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4004 struct ata_port *ap = qc->ap;
4005 struct page *page;
4006 unsigned int offset;
4007 unsigned char *buf;
4008
4009 if (qc->cursect == (qc->nsect - 1))
14be71f4 4010 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4011
4012 page = sg[qc->cursg].page;
4013 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4014
4015 /* get the current page and offset */
4016 page = nth_page(page, (offset >> PAGE_SHIFT));
4017 offset %= PAGE_SIZE;
4018
1da177e4
LT
4019 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4020
91b8b313
AL
4021 if (PageHighMem(page)) {
4022 unsigned long flags;
4023
a6b2c5d4 4024 /* FIXME: use a bounce buffer */
91b8b313
AL
4025 local_irq_save(flags);
4026 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4027
91b8b313 4028 /* do the actual data transfer */
a6b2c5d4 4029 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4030
91b8b313
AL
4031 kunmap_atomic(buf, KM_IRQ0);
4032 local_irq_restore(flags);
4033 } else {
4034 buf = page_address(page);
a6b2c5d4 4035 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4036 }
1da177e4
LT
4037
4038 qc->cursect++;
4039 qc->cursg_ofs++;
4040
32529e01 4041 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
4042 qc->cursg++;
4043 qc->cursg_ofs = 0;
4044 }
1da177e4 4045}
1da177e4 4046
07f6f7d0
AL
4047/**
4048 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4049 * @qc: Command on going
4050 *
c81e29b4 4051 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4052 * ATA device for the DRQ request.
4053 *
4054 * LOCKING:
4055 * Inherited from caller.
4056 */
1da177e4 4057
07f6f7d0
AL
4058static void ata_pio_sectors(struct ata_queued_cmd *qc)
4059{
4060 if (is_multi_taskfile(&qc->tf)) {
4061 /* READ/WRITE MULTIPLE */
4062 unsigned int nsect;
4063
587005de 4064 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4065
07f6f7d0
AL
4066 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4067 while (nsect--)
4068 ata_pio_sector(qc);
4069 } else
4070 ata_pio_sector(qc);
4071}
4072
c71c1857
AL
4073/**
4074 * atapi_send_cdb - Write CDB bytes to hardware
4075 * @ap: Port to which ATAPI device is attached.
4076 * @qc: Taskfile currently active
4077 *
4078 * When device has indicated its readiness to accept
4079 * a CDB, this function is called. Send the CDB.
4080 *
4081 * LOCKING:
4082 * caller.
4083 */
4084
4085static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4086{
4087 /* send SCSI cdb */
4088 DPRINTK("send cdb\n");
db024d53 4089 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4090
a6b2c5d4 4091 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4092 ata_altstatus(ap); /* flush */
4093
4094 switch (qc->tf.protocol) {
4095 case ATA_PROT_ATAPI:
4096 ap->hsm_task_state = HSM_ST;
4097 break;
4098 case ATA_PROT_ATAPI_NODATA:
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 break;
4101 case ATA_PROT_ATAPI_DMA:
4102 ap->hsm_task_state = HSM_ST_LAST;
4103 /* initiate bmdma */
4104 ap->ops->bmdma_start(qc);
4105 break;
4106 }
1da177e4
LT
4107}
4108
6ae4cfb5
AL
4109/**
4110 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4111 * @qc: Command on going
4112 * @bytes: number of bytes
4113 *
4114 * Transfer Transfer data from/to the ATAPI device.
4115 *
4116 * LOCKING:
4117 * Inherited from caller.
4118 *
4119 */
4120
1da177e4
LT
4121static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4122{
4123 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4124 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4125 struct ata_port *ap = qc->ap;
4126 struct page *page;
4127 unsigned char *buf;
4128 unsigned int offset, count;
4129
563a6e1f 4130 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4131 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4132
4133next_sg:
563a6e1f 4134 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4135 /*
563a6e1f
AL
4136 * The end of qc->sg is reached and the device expects
4137 * more data to transfer. In order not to overrun qc->sg
4138 * and fulfill length specified in the byte count register,
4139 * - for read case, discard trailing data from the device
4140 * - for write case, padding zero data to the device
4141 */
4142 u16 pad_buf[1] = { 0 };
4143 unsigned int words = bytes >> 1;
4144 unsigned int i;
4145
4146 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4147 ata_dev_printk(qc->dev, KERN_WARNING,
4148 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4149
4150 for (i = 0; i < words; i++)
a6b2c5d4 4151 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4152
14be71f4 4153 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4154 return;
4155 }
4156
cedc9a47 4157 sg = &qc->__sg[qc->cursg];
1da177e4 4158
1da177e4
LT
4159 page = sg->page;
4160 offset = sg->offset + qc->cursg_ofs;
4161
4162 /* get the current page and offset */
4163 page = nth_page(page, (offset >> PAGE_SHIFT));
4164 offset %= PAGE_SIZE;
4165
6952df03 4166 /* don't overrun current sg */
32529e01 4167 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4168
4169 /* don't cross page boundaries */
4170 count = min(count, (unsigned int)PAGE_SIZE - offset);
4171
7282aa4b
AL
4172 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4173
91b8b313
AL
4174 if (PageHighMem(page)) {
4175 unsigned long flags;
4176
a6b2c5d4 4177 /* FIXME: use bounce buffer */
91b8b313
AL
4178 local_irq_save(flags);
4179 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4180
91b8b313 4181 /* do the actual data transfer */
a6b2c5d4 4182 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4183
91b8b313
AL
4184 kunmap_atomic(buf, KM_IRQ0);
4185 local_irq_restore(flags);
4186 } else {
4187 buf = page_address(page);
a6b2c5d4 4188 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4189 }
1da177e4
LT
4190
4191 bytes -= count;
4192 qc->curbytes += count;
4193 qc->cursg_ofs += count;
4194
32529e01 4195 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4196 qc->cursg++;
4197 qc->cursg_ofs = 0;
4198 }
4199
563a6e1f 4200 if (bytes)
1da177e4 4201 goto next_sg;
1da177e4
LT
4202}
4203
6ae4cfb5
AL
4204/**
4205 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4206 * @qc: Command on going
4207 *
4208 * Transfer Transfer data from/to the ATAPI device.
4209 *
4210 * LOCKING:
4211 * Inherited from caller.
6ae4cfb5
AL
4212 */
4213
1da177e4
LT
4214static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4215{
4216 struct ata_port *ap = qc->ap;
4217 struct ata_device *dev = qc->dev;
4218 unsigned int ireason, bc_lo, bc_hi, bytes;
4219 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4220
eec4c3f3
AL
4221 /* Abuse qc->result_tf for temp storage of intermediate TF
4222 * here to save some kernel stack usage.
4223 * For normal completion, qc->result_tf is not relevant. For
4224 * error, qc->result_tf is later overwritten by ata_qc_complete().
4225 * So, the correctness of qc->result_tf is not affected.
4226 */
4227 ap->ops->tf_read(ap, &qc->result_tf);
4228 ireason = qc->result_tf.nsect;
4229 bc_lo = qc->result_tf.lbam;
4230 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4231 bytes = (bc_hi << 8) | bc_lo;
4232
4233 /* shall be cleared to zero, indicating xfer of data */
4234 if (ireason & (1 << 0))
4235 goto err_out;
4236
4237 /* make sure transfer direction matches expected */
4238 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4239 if (do_write != i_write)
4240 goto err_out;
4241
312f7da2
AL
4242 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4243
1da177e4
LT
4244 __atapi_pio_bytes(qc, bytes);
4245
4246 return;
4247
4248err_out:
f15a1daf 4249 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4250 qc->err_mask |= AC_ERR_HSM;
14be71f4 4251 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4252}
4253
4254/**
c234fb00
AL
4255 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4256 * @ap: the target ata_port
4257 * @qc: qc on going
1da177e4 4258 *
c234fb00
AL
4259 * RETURNS:
4260 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4261 */
c234fb00
AL
4262
4263static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4264{
c234fb00
AL
4265 if (qc->tf.flags & ATA_TFLAG_POLLING)
4266 return 1;
1da177e4 4267
c234fb00
AL
4268 if (ap->hsm_task_state == HSM_ST_FIRST) {
4269 if (qc->tf.protocol == ATA_PROT_PIO &&
4270 (qc->tf.flags & ATA_TFLAG_WRITE))
4271 return 1;
1da177e4 4272
c234fb00
AL
4273 if (is_atapi_taskfile(&qc->tf) &&
4274 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4275 return 1;
fe79e683
AL
4276 }
4277
c234fb00
AL
4278 return 0;
4279}
1da177e4 4280
c17ea20d
TH
4281/**
4282 * ata_hsm_qc_complete - finish a qc running on standard HSM
4283 * @qc: Command to complete
4284 * @in_wq: 1 if called from workqueue, 0 otherwise
4285 *
4286 * Finish @qc which is running on standard HSM.
4287 *
4288 * LOCKING:
cca3974e 4289 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4290 * Otherwise, none on entry and grabs host lock.
4291 */
4292static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4293{
4294 struct ata_port *ap = qc->ap;
4295 unsigned long flags;
4296
4297 if (ap->ops->error_handler) {
4298 if (in_wq) {
ba6a1308 4299 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4300
cca3974e
JG
4301 /* EH might have kicked in while host lock is
4302 * released.
c17ea20d
TH
4303 */
4304 qc = ata_qc_from_tag(ap, qc->tag);
4305 if (qc) {
4306 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4307 ata_irq_on(ap);
4308 ata_qc_complete(qc);
4309 } else
4310 ata_port_freeze(ap);
4311 }
4312
ba6a1308 4313 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4314 } else {
4315 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4316 ata_qc_complete(qc);
4317 else
4318 ata_port_freeze(ap);
4319 }
4320 } else {
4321 if (in_wq) {
ba6a1308 4322 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4323 ata_irq_on(ap);
4324 ata_qc_complete(qc);
ba6a1308 4325 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4326 } else
4327 ata_qc_complete(qc);
4328 }
1da177e4 4329
c81e29b4 4330 ata_altstatus(ap); /* flush */
c17ea20d
TH
4331}
4332
bb5cb290
AL
4333/**
4334 * ata_hsm_move - move the HSM to the next state.
4335 * @ap: the target ata_port
4336 * @qc: qc on going
4337 * @status: current device status
4338 * @in_wq: 1 if called from workqueue, 0 otherwise
4339 *
4340 * RETURNS:
4341 * 1 when poll next status needed, 0 otherwise.
4342 */
9a1004d0
TH
4343int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4344 u8 status, int in_wq)
e2cec771 4345{
bb5cb290
AL
4346 unsigned long flags = 0;
4347 int poll_next;
4348
6912ccd5
AL
4349 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4350
bb5cb290
AL
4351 /* Make sure ata_qc_issue_prot() does not throw things
4352 * like DMA polling into the workqueue. Notice that
4353 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4354 */
c234fb00 4355 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4356
e2cec771 4357fsm_start:
999bb6f4
AL
4358 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4359 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4360
e2cec771
AL
4361 switch (ap->hsm_task_state) {
4362 case HSM_ST_FIRST:
bb5cb290
AL
4363 /* Send first data block or PACKET CDB */
4364
4365 /* If polling, we will stay in the work queue after
4366 * sending the data. Otherwise, interrupt handler
4367 * takes over after sending the data.
4368 */
4369 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4370
e2cec771 4371 /* check device status */
3655d1d3
AL
4372 if (unlikely((status & ATA_DRQ) == 0)) {
4373 /* handle BSY=0, DRQ=0 as error */
4374 if (likely(status & (ATA_ERR | ATA_DF)))
4375 /* device stops HSM for abort/error */
4376 qc->err_mask |= AC_ERR_DEV;
4377 else
4378 /* HSM violation. Let EH handle this */
4379 qc->err_mask |= AC_ERR_HSM;
4380
14be71f4 4381 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4382 goto fsm_start;
1da177e4
LT
4383 }
4384
71601958
AL
4385 /* Device should not ask for data transfer (DRQ=1)
4386 * when it finds something wrong.
eee6c32f
AL
4387 * We ignore DRQ here and stop the HSM by
4388 * changing hsm_task_state to HSM_ST_ERR and
4389 * let the EH abort the command or reset the device.
71601958
AL
4390 */
4391 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4392 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4393 ap->id, status);
3655d1d3 4394 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4395 ap->hsm_task_state = HSM_ST_ERR;
4396 goto fsm_start;
71601958 4397 }
1da177e4 4398
bb5cb290
AL
4399 /* Send the CDB (atapi) or the first data block (ata pio out).
4400 * During the state transition, interrupt handler shouldn't
4401 * be invoked before the data transfer is complete and
4402 * hsm_task_state is changed. Hence, the following locking.
4403 */
4404 if (in_wq)
ba6a1308 4405 spin_lock_irqsave(ap->lock, flags);
1da177e4 4406
bb5cb290
AL
4407 if (qc->tf.protocol == ATA_PROT_PIO) {
4408 /* PIO data out protocol.
4409 * send first data block.
4410 */
0565c26d 4411
bb5cb290
AL
4412 /* ata_pio_sectors() might change the state
4413 * to HSM_ST_LAST. so, the state is changed here
4414 * before ata_pio_sectors().
4415 */
4416 ap->hsm_task_state = HSM_ST;
4417 ata_pio_sectors(qc);
4418 ata_altstatus(ap); /* flush */
4419 } else
4420 /* send CDB */
4421 atapi_send_cdb(ap, qc);
4422
4423 if (in_wq)
ba6a1308 4424 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4425
4426 /* if polling, ata_pio_task() handles the rest.
4427 * otherwise, interrupt handler takes over from here.
4428 */
e2cec771 4429 break;
1c848984 4430
e2cec771
AL
4431 case HSM_ST:
4432 /* complete command or read/write the data register */
4433 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4434 /* ATAPI PIO protocol */
4435 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4436 /* No more data to transfer or device error.
4437 * Device error will be tagged in HSM_ST_LAST.
4438 */
e2cec771
AL
4439 ap->hsm_task_state = HSM_ST_LAST;
4440 goto fsm_start;
4441 }
1da177e4 4442
71601958
AL
4443 /* Device should not ask for data transfer (DRQ=1)
4444 * when it finds something wrong.
eee6c32f
AL
4445 * We ignore DRQ here and stop the HSM by
4446 * changing hsm_task_state to HSM_ST_ERR and
4447 * let the EH abort the command or reset the device.
71601958
AL
4448 */
4449 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4450 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4451 ap->id, status);
3655d1d3 4452 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4453 ap->hsm_task_state = HSM_ST_ERR;
4454 goto fsm_start;
71601958 4455 }
1da177e4 4456
e2cec771 4457 atapi_pio_bytes(qc);
7fb6ec28 4458
e2cec771
AL
4459 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4460 /* bad ireason reported by device */
4461 goto fsm_start;
1da177e4 4462
e2cec771
AL
4463 } else {
4464 /* ATA PIO protocol */
4465 if (unlikely((status & ATA_DRQ) == 0)) {
4466 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4467 if (likely(status & (ATA_ERR | ATA_DF)))
4468 /* device stops HSM for abort/error */
4469 qc->err_mask |= AC_ERR_DEV;
4470 else
55a8e2c8
TH
4471 /* HSM violation. Let EH handle this.
4472 * Phantom devices also trigger this
4473 * condition. Mark hint.
4474 */
4475 qc->err_mask |= AC_ERR_HSM |
4476 AC_ERR_NODEV_HINT;
3655d1d3 4477
e2cec771
AL
4478 ap->hsm_task_state = HSM_ST_ERR;
4479 goto fsm_start;
4480 }
1da177e4 4481
eee6c32f
AL
4482 /* For PIO reads, some devices may ask for
4483 * data transfer (DRQ=1) alone with ERR=1.
4484 * We respect DRQ here and transfer one
4485 * block of junk data before changing the
4486 * hsm_task_state to HSM_ST_ERR.
4487 *
4488 * For PIO writes, ERR=1 DRQ=1 doesn't make
4489 * sense since the data block has been
4490 * transferred to the device.
71601958
AL
4491 */
4492 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4493 /* data might be corrputed */
4494 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4495
4496 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4497 ata_pio_sectors(qc);
4498 ata_altstatus(ap);
4499 status = ata_wait_idle(ap);
4500 }
4501
3655d1d3
AL
4502 if (status & (ATA_BUSY | ATA_DRQ))
4503 qc->err_mask |= AC_ERR_HSM;
4504
eee6c32f
AL
4505 /* ata_pio_sectors() might change the
4506 * state to HSM_ST_LAST. so, the state
4507 * is changed after ata_pio_sectors().
4508 */
4509 ap->hsm_task_state = HSM_ST_ERR;
4510 goto fsm_start;
71601958
AL
4511 }
4512
e2cec771
AL
4513 ata_pio_sectors(qc);
4514
4515 if (ap->hsm_task_state == HSM_ST_LAST &&
4516 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4517 /* all data read */
4518 ata_altstatus(ap);
52a32205 4519 status = ata_wait_idle(ap);
e2cec771
AL
4520 goto fsm_start;
4521 }
4522 }
4523
4524 ata_altstatus(ap); /* flush */
bb5cb290 4525 poll_next = 1;
1da177e4
LT
4526 break;
4527
14be71f4 4528 case HSM_ST_LAST:
6912ccd5
AL
4529 if (unlikely(!ata_ok(status))) {
4530 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4531 ap->hsm_task_state = HSM_ST_ERR;
4532 goto fsm_start;
4533 }
4534
4535 /* no more data to transfer */
4332a771
AL
4536 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4537 ap->id, qc->dev->devno, status);
e2cec771 4538
6912ccd5
AL
4539 WARN_ON(qc->err_mask);
4540
e2cec771 4541 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4542
e2cec771 4543 /* complete taskfile transaction */
c17ea20d 4544 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4545
4546 poll_next = 0;
1da177e4
LT
4547 break;
4548
14be71f4 4549 case HSM_ST_ERR:
e2cec771
AL
4550 /* make sure qc->err_mask is available to
4551 * know what's wrong and recover
4552 */
4553 WARN_ON(qc->err_mask == 0);
4554
4555 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4556
999bb6f4 4557 /* complete taskfile transaction */
c17ea20d 4558 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4559
4560 poll_next = 0;
e2cec771
AL
4561 break;
4562 default:
bb5cb290 4563 poll_next = 0;
6912ccd5 4564 BUG();
1da177e4
LT
4565 }
4566
bb5cb290 4567 return poll_next;
1da177e4
LT
4568}
4569
65f27f38 4570static void ata_pio_task(struct work_struct *work)
8061f5f0 4571{
65f27f38
DH
4572 struct ata_port *ap =
4573 container_of(work, struct ata_port, port_task.work);
4574 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4575 u8 status;
a1af3734 4576 int poll_next;
8061f5f0 4577
7fb6ec28 4578fsm_start:
a1af3734 4579 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4580
a1af3734
AL
4581 /*
4582 * This is purely heuristic. This is a fast path.
4583 * Sometimes when we enter, BSY will be cleared in
4584 * a chk-status or two. If not, the drive is probably seeking
4585 * or something. Snooze for a couple msecs, then
4586 * chk-status again. If still busy, queue delayed work.
4587 */
4588 status = ata_busy_wait(ap, ATA_BUSY, 5);
4589 if (status & ATA_BUSY) {
4590 msleep(2);
4591 status = ata_busy_wait(ap, ATA_BUSY, 10);
4592 if (status & ATA_BUSY) {
31ce6dae 4593 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4594 return;
4595 }
8061f5f0
TH
4596 }
4597
a1af3734
AL
4598 /* move the HSM */
4599 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4600
a1af3734
AL
4601 /* another command or interrupt handler
4602 * may be running at this point.
4603 */
4604 if (poll_next)
7fb6ec28 4605 goto fsm_start;
8061f5f0
TH
4606}
4607
1da177e4
LT
4608/**
4609 * ata_qc_new - Request an available ATA command, for queueing
4610 * @ap: Port associated with device @dev
4611 * @dev: Device from whom we request an available command structure
4612 *
4613 * LOCKING:
0cba632b 4614 * None.
1da177e4
LT
4615 */
4616
4617static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4618{
4619 struct ata_queued_cmd *qc = NULL;
4620 unsigned int i;
4621
e3180499 4622 /* no command while frozen */
b51e9e5d 4623 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4624 return NULL;
4625
2ab7db1f
TH
4626 /* the last tag is reserved for internal command. */
4627 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4628 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4629 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4630 break;
4631 }
4632
4633 if (qc)
4634 qc->tag = i;
4635
4636 return qc;
4637}
4638
4639/**
4640 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4641 * @dev: Device from whom we request an available command structure
4642 *
4643 * LOCKING:
0cba632b 4644 * None.
1da177e4
LT
4645 */
4646
3373efd8 4647struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4648{
3373efd8 4649 struct ata_port *ap = dev->ap;
1da177e4
LT
4650 struct ata_queued_cmd *qc;
4651
4652 qc = ata_qc_new(ap);
4653 if (qc) {
1da177e4
LT
4654 qc->scsicmd = NULL;
4655 qc->ap = ap;
4656 qc->dev = dev;
1da177e4 4657
2c13b7ce 4658 ata_qc_reinit(qc);
1da177e4
LT
4659 }
4660
4661 return qc;
4662}
4663
1da177e4
LT
4664/**
4665 * ata_qc_free - free unused ata_queued_cmd
4666 * @qc: Command to complete
4667 *
4668 * Designed to free unused ata_queued_cmd object
4669 * in case something prevents using it.
4670 *
4671 * LOCKING:
cca3974e 4672 * spin_lock_irqsave(host lock)
1da177e4
LT
4673 */
4674void ata_qc_free(struct ata_queued_cmd *qc)
4675{
4ba946e9
TH
4676 struct ata_port *ap = qc->ap;
4677 unsigned int tag;
4678
a4631474 4679 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4680
4ba946e9
TH
4681 qc->flags = 0;
4682 tag = qc->tag;
4683 if (likely(ata_tag_valid(tag))) {
4ba946e9 4684 qc->tag = ATA_TAG_POISON;
6cec4a39 4685 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4686 }
1da177e4
LT
4687}
4688
76014427 4689void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4690{
dedaf2b0
TH
4691 struct ata_port *ap = qc->ap;
4692
a4631474
TH
4693 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4694 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4695
4696 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4697 ata_sg_clean(qc);
4698
7401abf2 4699 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4700 if (qc->tf.protocol == ATA_PROT_NCQ)
4701 ap->sactive &= ~(1 << qc->tag);
4702 else
4703 ap->active_tag = ATA_TAG_POISON;
7401abf2 4704
3f3791d3
AL
4705 /* atapi: mark qc as inactive to prevent the interrupt handler
4706 * from completing the command twice later, before the error handler
4707 * is called. (when rc != 0 and atapi request sense is needed)
4708 */
4709 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4710 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4711
1da177e4 4712 /* call completion callback */
77853bf2 4713 qc->complete_fn(qc);
1da177e4
LT
4714}
4715
39599a53
TH
4716static void fill_result_tf(struct ata_queued_cmd *qc)
4717{
4718 struct ata_port *ap = qc->ap;
4719
4720 ap->ops->tf_read(ap, &qc->result_tf);
4721 qc->result_tf.flags = qc->tf.flags;
4722}
4723
f686bcb8
TH
4724/**
4725 * ata_qc_complete - Complete an active ATA command
4726 * @qc: Command to complete
4727 * @err_mask: ATA Status register contents
4728 *
4729 * Indicate to the mid and upper layers that an ATA
4730 * command has completed, with either an ok or not-ok status.
4731 *
4732 * LOCKING:
cca3974e 4733 * spin_lock_irqsave(host lock)
f686bcb8
TH
4734 */
4735void ata_qc_complete(struct ata_queued_cmd *qc)
4736{
4737 struct ata_port *ap = qc->ap;
4738
4739 /* XXX: New EH and old EH use different mechanisms to
4740 * synchronize EH with regular execution path.
4741 *
4742 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4743 * Normal execution path is responsible for not accessing a
4744 * failed qc. libata core enforces the rule by returning NULL
4745 * from ata_qc_from_tag() for failed qcs.
4746 *
4747 * Old EH depends on ata_qc_complete() nullifying completion
4748 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4749 * not synchronize with interrupt handler. Only PIO task is
4750 * taken care of.
4751 */
4752 if (ap->ops->error_handler) {
b51e9e5d 4753 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4754
4755 if (unlikely(qc->err_mask))
4756 qc->flags |= ATA_QCFLAG_FAILED;
4757
4758 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4759 if (!ata_tag_internal(qc->tag)) {
4760 /* always fill result TF for failed qc */
39599a53 4761 fill_result_tf(qc);
f686bcb8
TH
4762 ata_qc_schedule_eh(qc);
4763 return;
4764 }
4765 }
4766
4767 /* read result TF if requested */
4768 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4769 fill_result_tf(qc);
f686bcb8
TH
4770
4771 __ata_qc_complete(qc);
4772 } else {
4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4774 return;
4775
4776 /* read result TF if failed or requested */
4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4778 fill_result_tf(qc);
f686bcb8
TH
4779
4780 __ata_qc_complete(qc);
4781 }
4782}
4783
dedaf2b0
TH
4784/**
4785 * ata_qc_complete_multiple - Complete multiple qcs successfully
4786 * @ap: port in question
4787 * @qc_active: new qc_active mask
4788 * @finish_qc: LLDD callback invoked before completing a qc
4789 *
4790 * Complete in-flight commands. This functions is meant to be
4791 * called from low-level driver's interrupt routine to complete
4792 * requests normally. ap->qc_active and @qc_active is compared
4793 * and commands are completed accordingly.
4794 *
4795 * LOCKING:
cca3974e 4796 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4797 *
4798 * RETURNS:
4799 * Number of completed commands on success, -errno otherwise.
4800 */
4801int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4802 void (*finish_qc)(struct ata_queued_cmd *))
4803{
4804 int nr_done = 0;
4805 u32 done_mask;
4806 int i;
4807
4808 done_mask = ap->qc_active ^ qc_active;
4809
4810 if (unlikely(done_mask & qc_active)) {
4811 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4812 "(%08x->%08x)\n", ap->qc_active, qc_active);
4813 return -EINVAL;
4814 }
4815
4816 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4817 struct ata_queued_cmd *qc;
4818
4819 if (!(done_mask & (1 << i)))
4820 continue;
4821
4822 if ((qc = ata_qc_from_tag(ap, i))) {
4823 if (finish_qc)
4824 finish_qc(qc);
4825 ata_qc_complete(qc);
4826 nr_done++;
4827 }
4828 }
4829
4830 return nr_done;
4831}
4832
1da177e4
LT
4833static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4834{
4835 struct ata_port *ap = qc->ap;
4836
4837 switch (qc->tf.protocol) {
3dc1d881 4838 case ATA_PROT_NCQ:
1da177e4
LT
4839 case ATA_PROT_DMA:
4840 case ATA_PROT_ATAPI_DMA:
4841 return 1;
4842
4843 case ATA_PROT_ATAPI:
4844 case ATA_PROT_PIO:
1da177e4
LT
4845 if (ap->flags & ATA_FLAG_PIO_DMA)
4846 return 1;
4847
4848 /* fall through */
4849
4850 default:
4851 return 0;
4852 }
4853
4854 /* never reached */
4855}
4856
4857/**
4858 * ata_qc_issue - issue taskfile to device
4859 * @qc: command to issue to device
4860 *
4861 * Prepare an ATA command to submission to device.
4862 * This includes mapping the data into a DMA-able
4863 * area, filling in the S/G table, and finally
4864 * writing the taskfile to hardware, starting the command.
4865 *
4866 * LOCKING:
cca3974e 4867 * spin_lock_irqsave(host lock)
1da177e4 4868 */
8e0e694a 4869void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4870{
4871 struct ata_port *ap = qc->ap;
4872
dedaf2b0
TH
4873 /* Make sure only one non-NCQ command is outstanding. The
4874 * check is skipped for old EH because it reuses active qc to
4875 * request ATAPI sense.
4876 */
4877 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4878
4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 WARN_ON(ap->sactive & (1 << qc->tag));
4881 ap->sactive |= 1 << qc->tag;
4882 } else {
4883 WARN_ON(ap->sactive);
4884 ap->active_tag = qc->tag;
4885 }
4886
e4a70e76 4887 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4888 ap->qc_active |= 1 << qc->tag;
e4a70e76 4889
1da177e4
LT
4890 if (ata_should_dma_map(qc)) {
4891 if (qc->flags & ATA_QCFLAG_SG) {
4892 if (ata_sg_setup(qc))
8e436af9 4893 goto sg_err;
1da177e4
LT
4894 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4895 if (ata_sg_setup_one(qc))
8e436af9 4896 goto sg_err;
1da177e4
LT
4897 }
4898 } else {
4899 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4900 }
4901
4902 ap->ops->qc_prep(qc);
4903
8e0e694a
TH
4904 qc->err_mask |= ap->ops->qc_issue(qc);
4905 if (unlikely(qc->err_mask))
4906 goto err;
4907 return;
1da177e4 4908
8e436af9
TH
4909sg_err:
4910 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4911 qc->err_mask |= AC_ERR_SYSTEM;
4912err:
4913 ata_qc_complete(qc);
1da177e4
LT
4914}
4915
4916/**
4917 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4918 * @qc: command to issue to device
4919 *
4920 * Using various libata functions and hooks, this function
4921 * starts an ATA command. ATA commands are grouped into
4922 * classes called "protocols", and issuing each type of protocol
4923 * is slightly different.
4924 *
0baab86b
EF
4925 * May be used as the qc_issue() entry in ata_port_operations.
4926 *
1da177e4 4927 * LOCKING:
cca3974e 4928 * spin_lock_irqsave(host lock)
1da177e4
LT
4929 *
4930 * RETURNS:
9a3d9eb0 4931 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4932 */
4933
9a3d9eb0 4934unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4935{
4936 struct ata_port *ap = qc->ap;
4937
e50362ec
AL
4938 /* Use polling pio if the LLD doesn't handle
4939 * interrupt driven pio and atapi CDB interrupt.
4940 */
4941 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4942 switch (qc->tf.protocol) {
4943 case ATA_PROT_PIO:
e3472cbe 4944 case ATA_PROT_NODATA:
e50362ec
AL
4945 case ATA_PROT_ATAPI:
4946 case ATA_PROT_ATAPI_NODATA:
4947 qc->tf.flags |= ATA_TFLAG_POLLING;
4948 break;
4949 case ATA_PROT_ATAPI_DMA:
4950 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4951 /* see ata_dma_blacklisted() */
e50362ec
AL
4952 BUG();
4953 break;
4954 default:
4955 break;
4956 }
4957 }
4958
3d3cca37
TH
4959 /* Some controllers show flaky interrupt behavior after
4960 * setting xfer mode. Use polling instead.
4961 */
4962 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4963 qc->tf.feature == SETFEATURES_XFER) &&
4964 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4965 qc->tf.flags |= ATA_TFLAG_POLLING;
4966
312f7da2 4967 /* select the device */
1da177e4
LT
4968 ata_dev_select(ap, qc->dev->devno, 1, 0);
4969
312f7da2 4970 /* start the command */
1da177e4
LT
4971 switch (qc->tf.protocol) {
4972 case ATA_PROT_NODATA:
312f7da2
AL
4973 if (qc->tf.flags & ATA_TFLAG_POLLING)
4974 ata_qc_set_polling(qc);
4975
e5338254 4976 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4977 ap->hsm_task_state = HSM_ST_LAST;
4978
4979 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4980 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4981
1da177e4
LT
4982 break;
4983
4984 case ATA_PROT_DMA:
587005de 4985 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4986
1da177e4
LT
4987 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4988 ap->ops->bmdma_setup(qc); /* set up bmdma */
4989 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4990 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4991 break;
4992
312f7da2
AL
4993 case ATA_PROT_PIO:
4994 if (qc->tf.flags & ATA_TFLAG_POLLING)
4995 ata_qc_set_polling(qc);
1da177e4 4996
e5338254 4997 ata_tf_to_host(ap, &qc->tf);
312f7da2 4998
54f00389
AL
4999 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5000 /* PIO data out protocol */
5001 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5002 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5003
5004 /* always send first data block using
e27486db 5005 * the ata_pio_task() codepath.
54f00389 5006 */
312f7da2 5007 } else {
54f00389
AL
5008 /* PIO data in protocol */
5009 ap->hsm_task_state = HSM_ST;
5010
5011 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5012 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5013
5014 /* if polling, ata_pio_task() handles the rest.
5015 * otherwise, interrupt handler takes over from here.
5016 */
312f7da2
AL
5017 }
5018
1da177e4
LT
5019 break;
5020
1da177e4 5021 case ATA_PROT_ATAPI:
1da177e4 5022 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5023 if (qc->tf.flags & ATA_TFLAG_POLLING)
5024 ata_qc_set_polling(qc);
5025
e5338254 5026 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5027
312f7da2
AL
5028 ap->hsm_task_state = HSM_ST_FIRST;
5029
5030 /* send cdb by polling if no cdb interrupt */
5031 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5032 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5033 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5034 break;
5035
5036 case ATA_PROT_ATAPI_DMA:
587005de 5037 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5038
1da177e4
LT
5039 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5040 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5041 ap->hsm_task_state = HSM_ST_FIRST;
5042
5043 /* send cdb by polling if no cdb interrupt */
5044 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5045 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5046 break;
5047
5048 default:
5049 WARN_ON(1);
9a3d9eb0 5050 return AC_ERR_SYSTEM;
1da177e4
LT
5051 }
5052
5053 return 0;
5054}
5055
1da177e4
LT
5056/**
5057 * ata_host_intr - Handle host interrupt for given (port, task)
5058 * @ap: Port on which interrupt arrived (possibly...)
5059 * @qc: Taskfile currently active in engine
5060 *
5061 * Handle host interrupt for given queued command. Currently,
5062 * only DMA interrupts are handled. All other commands are
5063 * handled via polling with interrupts disabled (nIEN bit).
5064 *
5065 * LOCKING:
cca3974e 5066 * spin_lock_irqsave(host lock)
1da177e4
LT
5067 *
5068 * RETURNS:
5069 * One if interrupt was handled, zero if not (shared irq).
5070 */
5071
5072inline unsigned int ata_host_intr (struct ata_port *ap,
5073 struct ata_queued_cmd *qc)
5074{
ea54763f 5075 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5076 u8 status, host_stat = 0;
1da177e4 5077
312f7da2
AL
5078 VPRINTK("ata%u: protocol %d task_state %d\n",
5079 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5080
312f7da2
AL
5081 /* Check whether we are expecting interrupt in this state */
5082 switch (ap->hsm_task_state) {
5083 case HSM_ST_FIRST:
6912ccd5
AL
5084 /* Some pre-ATAPI-4 devices assert INTRQ
5085 * at this state when ready to receive CDB.
5086 */
1da177e4 5087
312f7da2
AL
5088 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5089 * The flag was turned on only for atapi devices.
5090 * No need to check is_atapi_taskfile(&qc->tf) again.
5091 */
5092 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5093 goto idle_irq;
1da177e4 5094 break;
312f7da2
AL
5095 case HSM_ST_LAST:
5096 if (qc->tf.protocol == ATA_PROT_DMA ||
5097 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5098 /* check status of DMA engine */
5099 host_stat = ap->ops->bmdma_status(ap);
5100 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5101
5102 /* if it's not our irq... */
5103 if (!(host_stat & ATA_DMA_INTR))
5104 goto idle_irq;
5105
5106 /* before we do anything else, clear DMA-Start bit */
5107 ap->ops->bmdma_stop(qc);
a4f16610
AL
5108
5109 if (unlikely(host_stat & ATA_DMA_ERR)) {
5110 /* error when transfering data to/from memory */
5111 qc->err_mask |= AC_ERR_HOST_BUS;
5112 ap->hsm_task_state = HSM_ST_ERR;
5113 }
312f7da2
AL
5114 }
5115 break;
5116 case HSM_ST:
5117 break;
1da177e4
LT
5118 default:
5119 goto idle_irq;
5120 }
5121
312f7da2
AL
5122 /* check altstatus */
5123 status = ata_altstatus(ap);
5124 if (status & ATA_BUSY)
5125 goto idle_irq;
1da177e4 5126
312f7da2
AL
5127 /* check main status, clearing INTRQ */
5128 status = ata_chk_status(ap);
5129 if (unlikely(status & ATA_BUSY))
5130 goto idle_irq;
1da177e4 5131
312f7da2
AL
5132 /* ack bmdma irq events */
5133 ap->ops->irq_clear(ap);
1da177e4 5134
bb5cb290 5135 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5136
5137 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5138 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5139 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5140
1da177e4
LT
5141 return 1; /* irq handled */
5142
5143idle_irq:
5144 ap->stats.idle_irq++;
5145
5146#ifdef ATA_IRQ_TRAP
5147 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5148 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5149 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5150 return 1;
1da177e4
LT
5151 }
5152#endif
5153 return 0; /* irq not handled */
5154}
5155
5156/**
5157 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5158 * @irq: irq line (unused)
cca3974e 5159 * @dev_instance: pointer to our ata_host information structure
1da177e4 5160 *
0cba632b
JG
5161 * Default interrupt handler for PCI IDE devices. Calls
5162 * ata_host_intr() for each port that is not disabled.
5163 *
1da177e4 5164 * LOCKING:
cca3974e 5165 * Obtains host lock during operation.
1da177e4
LT
5166 *
5167 * RETURNS:
0cba632b 5168 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5169 */
5170
7d12e780 5171irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5172{
cca3974e 5173 struct ata_host *host = dev_instance;
1da177e4
LT
5174 unsigned int i;
5175 unsigned int handled = 0;
5176 unsigned long flags;
5177
5178 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5179 spin_lock_irqsave(&host->lock, flags);
1da177e4 5180
cca3974e 5181 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5182 struct ata_port *ap;
5183
cca3974e 5184 ap = host->ports[i];
c1389503 5185 if (ap &&
029f5468 5186 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5187 struct ata_queued_cmd *qc;
5188
5189 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5190 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5191 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5192 handled |= ata_host_intr(ap, qc);
5193 }
5194 }
5195
cca3974e 5196 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5197
5198 return IRQ_RETVAL(handled);
5199}
5200
34bf2170
TH
5201/**
5202 * sata_scr_valid - test whether SCRs are accessible
5203 * @ap: ATA port to test SCR accessibility for
5204 *
5205 * Test whether SCRs are accessible for @ap.
5206 *
5207 * LOCKING:
5208 * None.
5209 *
5210 * RETURNS:
5211 * 1 if SCRs are accessible, 0 otherwise.
5212 */
5213int sata_scr_valid(struct ata_port *ap)
5214{
5215 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5216}
5217
5218/**
5219 * sata_scr_read - read SCR register of the specified port
5220 * @ap: ATA port to read SCR for
5221 * @reg: SCR to read
5222 * @val: Place to store read value
5223 *
5224 * Read SCR register @reg of @ap into *@val. This function is
5225 * guaranteed to succeed if the cable type of the port is SATA
5226 * and the port implements ->scr_read.
5227 *
5228 * LOCKING:
5229 * None.
5230 *
5231 * RETURNS:
5232 * 0 on success, negative errno on failure.
5233 */
5234int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5235{
5236 if (sata_scr_valid(ap)) {
5237 *val = ap->ops->scr_read(ap, reg);
5238 return 0;
5239 }
5240 return -EOPNOTSUPP;
5241}
5242
5243/**
5244 * sata_scr_write - write SCR register of the specified port
5245 * @ap: ATA port to write SCR for
5246 * @reg: SCR to write
5247 * @val: value to write
5248 *
5249 * Write @val to SCR register @reg of @ap. This function is
5250 * guaranteed to succeed if the cable type of the port is SATA
5251 * and the port implements ->scr_read.
5252 *
5253 * LOCKING:
5254 * None.
5255 *
5256 * RETURNS:
5257 * 0 on success, negative errno on failure.
5258 */
5259int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5260{
5261 if (sata_scr_valid(ap)) {
5262 ap->ops->scr_write(ap, reg, val);
5263 return 0;
5264 }
5265 return -EOPNOTSUPP;
5266}
5267
5268/**
5269 * sata_scr_write_flush - write SCR register of the specified port and flush
5270 * @ap: ATA port to write SCR for
5271 * @reg: SCR to write
5272 * @val: value to write
5273 *
5274 * This function is identical to sata_scr_write() except that this
5275 * function performs flush after writing to the register.
5276 *
5277 * LOCKING:
5278 * None.
5279 *
5280 * RETURNS:
5281 * 0 on success, negative errno on failure.
5282 */
5283int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5284{
5285 if (sata_scr_valid(ap)) {
5286 ap->ops->scr_write(ap, reg, val);
5287 ap->ops->scr_read(ap, reg);
5288 return 0;
5289 }
5290 return -EOPNOTSUPP;
5291}
5292
5293/**
5294 * ata_port_online - test whether the given port is online
5295 * @ap: ATA port to test
5296 *
5297 * Test whether @ap is online. Note that this function returns 0
5298 * if online status of @ap cannot be obtained, so
5299 * ata_port_online(ap) != !ata_port_offline(ap).
5300 *
5301 * LOCKING:
5302 * None.
5303 *
5304 * RETURNS:
5305 * 1 if the port online status is available and online.
5306 */
5307int ata_port_online(struct ata_port *ap)
5308{
5309 u32 sstatus;
5310
5311 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5312 return 1;
5313 return 0;
5314}
5315
5316/**
5317 * ata_port_offline - test whether the given port is offline
5318 * @ap: ATA port to test
5319 *
5320 * Test whether @ap is offline. Note that this function returns
5321 * 0 if offline status of @ap cannot be obtained, so
5322 * ata_port_online(ap) != !ata_port_offline(ap).
5323 *
5324 * LOCKING:
5325 * None.
5326 *
5327 * RETURNS:
5328 * 1 if the port offline status is available and offline.
5329 */
5330int ata_port_offline(struct ata_port *ap)
5331{
5332 u32 sstatus;
5333
5334 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5335 return 1;
5336 return 0;
5337}
0baab86b 5338
77b08fb5 5339int ata_flush_cache(struct ata_device *dev)
9b847548 5340{
977e6b9f 5341 unsigned int err_mask;
9b847548
JA
5342 u8 cmd;
5343
5344 if (!ata_try_flush_cache(dev))
5345 return 0;
5346
6fc49adb 5347 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5348 cmd = ATA_CMD_FLUSH_EXT;
5349 else
5350 cmd = ATA_CMD_FLUSH;
5351
977e6b9f
TH
5352 err_mask = ata_do_simple_cmd(dev, cmd);
5353 if (err_mask) {
5354 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5355 return -EIO;
5356 }
5357
5358 return 0;
9b847548
JA
5359}
5360
cca3974e
JG
5361static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5362 unsigned int action, unsigned int ehi_flags,
5363 int wait)
500530f6
TH
5364{
5365 unsigned long flags;
5366 int i, rc;
5367
cca3974e
JG
5368 for (i = 0; i < host->n_ports; i++) {
5369 struct ata_port *ap = host->ports[i];
500530f6
TH
5370
5371 /* Previous resume operation might still be in
5372 * progress. Wait for PM_PENDING to clear.
5373 */
5374 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5375 ata_port_wait_eh(ap);
5376 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5377 }
5378
5379 /* request PM ops to EH */
5380 spin_lock_irqsave(ap->lock, flags);
5381
5382 ap->pm_mesg = mesg;
5383 if (wait) {
5384 rc = 0;
5385 ap->pm_result = &rc;
5386 }
5387
5388 ap->pflags |= ATA_PFLAG_PM_PENDING;
5389 ap->eh_info.action |= action;
5390 ap->eh_info.flags |= ehi_flags;
5391
5392 ata_port_schedule_eh(ap);
5393
5394 spin_unlock_irqrestore(ap->lock, flags);
5395
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5402 }
5403 }
5404
5405 return 0;
5406}
5407
5408/**
cca3974e
JG
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
500530f6
TH
5411 * @mesg: PM message
5412 *
cca3974e 5413 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
cca3974e 5423int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5424{
5425 int i, j, rc;
5426
cca3974e 5427 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5428 if (rc)
5429 goto fail;
5430
5431 /* EH is quiescent now. Fail if we have any ready device.
5432 * This happens if hotplug occurs between completion of device
5433 * suspension and here.
5434 */
cca3974e
JG
5435 for (i = 0; i < host->n_ports; i++) {
5436 struct ata_port *ap = host->ports[i];
500530f6
TH
5437
5438 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5439 struct ata_device *dev = &ap->device[j];
5440
5441 if (ata_dev_ready(dev)) {
5442 ata_port_printk(ap, KERN_WARNING,
5443 "suspend failed, device %d "
5444 "still active\n", dev->devno);
5445 rc = -EBUSY;
5446 goto fail;
5447 }
5448 }
5449 }
5450
cca3974e 5451 host->dev->power.power_state = mesg;
500530f6
TH
5452 return 0;
5453
5454 fail:
cca3974e 5455 ata_host_resume(host);
500530f6
TH
5456 return rc;
5457}
5458
5459/**
cca3974e
JG
5460 * ata_host_resume - resume host
5461 * @host: host to resume
500530f6 5462 *
cca3974e 5463 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5464 * function requests EH to perform PM operations and returns.
5465 * Note that all resume operations are performed parallely.
5466 *
5467 * LOCKING:
5468 * Kernel thread context (may sleep).
5469 */
cca3974e 5470void ata_host_resume(struct ata_host *host)
500530f6 5471{
cca3974e
JG
5472 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5473 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5474 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5475}
5476
c893a3ae
RD
5477/**
5478 * ata_port_start - Set port up for dma.
5479 * @ap: Port to initialize
5480 *
5481 * Called just after data structures for each port are
5482 * initialized. Allocates space for PRD table.
5483 *
5484 * May be used as the port_start() entry in ata_port_operations.
5485 *
5486 * LOCKING:
5487 * Inherited from caller.
5488 */
5489
1da177e4
LT
5490int ata_port_start (struct ata_port *ap)
5491{
2f1f610b 5492 struct device *dev = ap->dev;
6037d6bb 5493 int rc;
1da177e4
LT
5494
5495 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5496 if (!ap->prd)
5497 return -ENOMEM;
5498
6037d6bb
JG
5499 rc = ata_pad_alloc(ap, dev);
5500 if (rc) {
cedc9a47 5501 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5502 return rc;
cedc9a47
JG
5503 }
5504
1da177e4
LT
5505 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5506
5507 return 0;
5508}
5509
0baab86b
EF
5510
5511/**
5512 * ata_port_stop - Undo ata_port_start()
5513 * @ap: Port to shut down
5514 *
5515 * Frees the PRD table.
5516 *
5517 * May be used as the port_stop() entry in ata_port_operations.
5518 *
5519 * LOCKING:
6f0ef4fa 5520 * Inherited from caller.
0baab86b
EF
5521 */
5522
1da177e4
LT
5523void ata_port_stop (struct ata_port *ap)
5524{
2f1f610b 5525 struct device *dev = ap->dev;
1da177e4
LT
5526
5527 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5528 ata_pad_free(ap, dev);
1da177e4
LT
5529}
5530
cca3974e 5531void ata_host_stop (struct ata_host *host)
aa8f0dc6 5532{
cca3974e
JG
5533 if (host->mmio_base)
5534 iounmap(host->mmio_base);
aa8f0dc6
JG
5535}
5536
3ef3b43d
TH
5537/**
5538 * ata_dev_init - Initialize an ata_device structure
5539 * @dev: Device structure to initialize
5540 *
5541 * Initialize @dev in preparation for probing.
5542 *
5543 * LOCKING:
5544 * Inherited from caller.
5545 */
5546void ata_dev_init(struct ata_device *dev)
5547{
5548 struct ata_port *ap = dev->ap;
72fa4b74
TH
5549 unsigned long flags;
5550
5a04bf4b
TH
5551 /* SATA spd limit is bound to the first device */
5552 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5553
72fa4b74
TH
5554 /* High bits of dev->flags are used to record warm plug
5555 * requests which occur asynchronously. Synchronize using
cca3974e 5556 * host lock.
72fa4b74 5557 */
ba6a1308 5558 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5559 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5560 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5561
72fa4b74
TH
5562 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5563 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5564 dev->pio_mask = UINT_MAX;
5565 dev->mwdma_mask = UINT_MAX;
5566 dev->udma_mask = UINT_MAX;
5567}
5568
1da177e4 5569/**
155a8a9c 5570 * ata_port_init - Initialize an ata_port structure
1da177e4 5571 * @ap: Structure to initialize
cca3974e 5572 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5573 * @ent: Probe information provided by low-level driver
5574 * @port_no: Port number associated with this ata_port
5575 *
155a8a9c 5576 * Initialize a new ata_port structure.
0cba632b 5577 *
1da177e4 5578 * LOCKING:
0cba632b 5579 * Inherited from caller.
1da177e4 5580 */
cca3974e 5581void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5582 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5583{
5584 unsigned int i;
5585
cca3974e 5586 ap->lock = &host->lock;
198e0fed 5587 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5588 ap->id = ata_unique_id++;
1da177e4 5589 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5590 ap->host = host;
2f1f610b 5591 ap->dev = ent->dev;
1da177e4 5592 ap->port_no = port_no;
fea63e38
TH
5593 if (port_no == 1 && ent->pinfo2) {
5594 ap->pio_mask = ent->pinfo2->pio_mask;
5595 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5596 ap->udma_mask = ent->pinfo2->udma_mask;
5597 ap->flags |= ent->pinfo2->flags;
5598 ap->ops = ent->pinfo2->port_ops;
5599 } else {
5600 ap->pio_mask = ent->pio_mask;
5601 ap->mwdma_mask = ent->mwdma_mask;
5602 ap->udma_mask = ent->udma_mask;
5603 ap->flags |= ent->port_flags;
5604 ap->ops = ent->port_ops;
5605 }
5a04bf4b 5606 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5607 ap->active_tag = ATA_TAG_POISON;
5608 ap->last_ctl = 0xFF;
bd5d825c
BP
5609
5610#if defined(ATA_VERBOSE_DEBUG)
5611 /* turn on all debugging levels */
5612 ap->msg_enable = 0x00FF;
5613#elif defined(ATA_DEBUG)
5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5615#else
0dd4b21f 5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5617#endif
1da177e4 5618
65f27f38
DH
5619 INIT_DELAYED_WORK(&ap->port_task, NULL);
5620 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5621 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5622 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5623 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5624
838df628
TH
5625 /* set cable type */
5626 ap->cbl = ATA_CBL_NONE;
5627 if (ap->flags & ATA_FLAG_SATA)
5628 ap->cbl = ATA_CBL_SATA;
5629
acf356b1
TH
5630 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5631 struct ata_device *dev = &ap->device[i];
38d87234 5632 dev->ap = ap;
72fa4b74 5633 dev->devno = i;
3ef3b43d 5634 ata_dev_init(dev);
acf356b1 5635 }
1da177e4
LT
5636
5637#ifdef ATA_IRQ_TRAP
5638 ap->stats.unhandled_irq = 1;
5639 ap->stats.idle_irq = 1;
5640#endif
5641
5642 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5643}
5644
155a8a9c 5645/**
4608c160
TH
5646 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5647 * @ap: ATA port to initialize SCSI host for
5648 * @shost: SCSI host associated with @ap
155a8a9c 5649 *
4608c160 5650 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5651 *
5652 * LOCKING:
5653 * Inherited from caller.
5654 */
4608c160 5655static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5656{
cca3974e 5657 ap->scsi_host = shost;
155a8a9c 5658
4608c160
TH
5659 shost->unique_id = ap->id;
5660 shost->max_id = 16;
5661 shost->max_lun = 1;
5662 shost->max_channel = 1;
5663 shost->max_cmd_len = 12;
155a8a9c
BK
5664}
5665
1da177e4 5666/**
996139f1 5667 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5668 * @ent: Information provided by low-level driver
cca3974e 5669 * @host: Collections of ports to which we add
1da177e4
LT
5670 * @port_no: Port number associated with this host
5671 *
0cba632b
JG
5672 * Attach low-level ATA driver to system.
5673 *
1da177e4 5674 * LOCKING:
0cba632b 5675 * PCI/etc. bus probe sem.
1da177e4
LT
5676 *
5677 * RETURNS:
0cba632b 5678 * New ata_port on success, for NULL on error.
1da177e4 5679 */
996139f1 5680static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5681 struct ata_host *host,
1da177e4
LT
5682 unsigned int port_no)
5683{
996139f1 5684 struct Scsi_Host *shost;
1da177e4 5685 struct ata_port *ap;
1da177e4
LT
5686
5687 DPRINTK("ENTER\n");
aec5c3c1 5688
52783c5d 5689 if (!ent->port_ops->error_handler &&
cca3974e 5690 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5691 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5692 port_no);
5693 return NULL;
5694 }
5695
996139f1
JG
5696 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5697 if (!shost)
1da177e4
LT
5698 return NULL;
5699
996139f1 5700 shost->transportt = &ata_scsi_transport_template;
30afc84c 5701
996139f1 5702 ap = ata_shost_to_port(shost);
1da177e4 5703
cca3974e 5704 ata_port_init(ap, host, ent, port_no);
996139f1 5705 ata_port_init_shost(ap, shost);
1da177e4 5706
1da177e4 5707 return ap;
1da177e4
LT
5708}
5709
b03732f0 5710/**
cca3974e
JG
5711 * ata_sas_host_init - Initialize a host struct
5712 * @host: host to initialize
5713 * @dev: device host is attached to
5714 * @flags: host flags
5715 * @ops: port_ops
b03732f0
BK
5716 *
5717 * LOCKING:
5718 * PCI/etc. bus probe sem.
5719 *
5720 */
5721
cca3974e
JG
5722void ata_host_init(struct ata_host *host, struct device *dev,
5723 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5724{
cca3974e
JG
5725 spin_lock_init(&host->lock);
5726 host->dev = dev;
5727 host->flags = flags;
5728 host->ops = ops;
b03732f0
BK
5729}
5730
1da177e4 5731/**
0cba632b
JG
5732 * ata_device_add - Register hardware device with ATA and SCSI layers
5733 * @ent: Probe information describing hardware device to be registered
5734 *
5735 * This function processes the information provided in the probe
5736 * information struct @ent, allocates the necessary ATA and SCSI
5737 * host information structures, initializes them, and registers
5738 * everything with requisite kernel subsystems.
5739 *
5740 * This function requests irqs, probes the ATA bus, and probes
5741 * the SCSI bus.
1da177e4
LT
5742 *
5743 * LOCKING:
0cba632b 5744 * PCI/etc. bus probe sem.
1da177e4
LT
5745 *
5746 * RETURNS:
0cba632b 5747 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5748 */
057ace5e 5749int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5750{
6d0500df 5751 unsigned int i;
1da177e4 5752 struct device *dev = ent->dev;
cca3974e 5753 struct ata_host *host;
39b07ce6 5754 int rc;
1da177e4
LT
5755
5756 DPRINTK("ENTER\n");
f20b16ff 5757
02f076aa
AC
5758 if (ent->irq == 0) {
5759 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5760 return 0;
5761 }
1da177e4 5762 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5763 host = kzalloc(sizeof(struct ata_host) +
5764 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5765 if (!host)
1da177e4 5766 return 0;
1da177e4 5767
cca3974e
JG
5768 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5769 host->n_ports = ent->n_ports;
5770 host->irq = ent->irq;
5771 host->irq2 = ent->irq2;
5772 host->mmio_base = ent->mmio_base;
5773 host->private_data = ent->private_data;
1da177e4
LT
5774
5775 /* register each port bound to this device */
cca3974e 5776 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5777 struct ata_port *ap;
5778 unsigned long xfer_mode_mask;
2ec7df04 5779 int irq_line = ent->irq;
1da177e4 5780
cca3974e 5781 ap = ata_port_add(ent, host, i);
c38778c3 5782 host->ports[i] = ap;
1da177e4
LT
5783 if (!ap)
5784 goto err_out;
5785
dd5b06c4
TH
5786 /* dummy? */
5787 if (ent->dummy_port_mask & (1 << i)) {
5788 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5789 ap->ops = &ata_dummy_port_ops;
5790 continue;
5791 }
5792
5793 /* start port */
5794 rc = ap->ops->port_start(ap);
5795 if (rc) {
cca3974e
JG
5796 host->ports[i] = NULL;
5797 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5798 goto err_out;
5799 }
5800
2ec7df04
AC
5801 /* Report the secondary IRQ for second channel legacy */
5802 if (i == 1 && ent->irq2)
5803 irq_line = ent->irq2;
5804
1da177e4
LT
5805 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5806 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5807 (ap->pio_mask << ATA_SHIFT_PIO);
5808
5809 /* print per-port info to dmesg */
f15a1daf 5810 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5811 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5812 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5813 ata_mode_string(xfer_mode_mask),
5814 ap->ioaddr.cmd_addr,
5815 ap->ioaddr.ctl_addr,
5816 ap->ioaddr.bmdma_addr,
2ec7df04 5817 irq_line);
1da177e4 5818
0f0a3ad3
TH
5819 /* freeze port before requesting IRQ */
5820 ata_eh_freeze_port(ap);
1da177e4
LT
5821 }
5822
2ec7df04 5823 /* obtain irq, that may be shared between channels */
39b07ce6 5824 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5825 DRV_NAME, host);
39b07ce6
JG
5826 if (rc) {
5827 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5828 ent->irq, rc);
1da177e4 5829 goto err_out;
39b07ce6 5830 }
1da177e4 5831
2ec7df04
AC
5832 /* do we have a second IRQ for the other channel, eg legacy mode */
5833 if (ent->irq2) {
5834 /* We will get weird core code crashes later if this is true
5835 so trap it now */
5836 BUG_ON(ent->irq == ent->irq2);
5837
5838 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5839 DRV_NAME, host);
2ec7df04
AC
5840 if (rc) {
5841 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5842 ent->irq2, rc);
5843 goto err_out_free_irq;
5844 }
5845 }
5846
1da177e4
LT
5847 /* perform each probe synchronously */
5848 DPRINTK("probe begin\n");
cca3974e
JG
5849 for (i = 0; i < host->n_ports; i++) {
5850 struct ata_port *ap = host->ports[i];
5a04bf4b 5851 u32 scontrol;
1da177e4
LT
5852 int rc;
5853
5a04bf4b
TH
5854 /* init sata_spd_limit to the current value */
5855 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5856 int spd = (scontrol >> 4) & 0xf;
5857 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5858 }
5859 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5860
cca3974e 5861 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5862 if (rc) {
f15a1daf 5863 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5864 /* FIXME: do something useful here */
5865 /* FIXME: handle unconditional calls to
5866 * scsi_scan_host and ata_host_remove, below,
5867 * at the very least
5868 */
5869 }
3e706399 5870
52783c5d 5871 if (ap->ops->error_handler) {
1cdaf534 5872 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5873 unsigned long flags;
5874
5875 ata_port_probe(ap);
5876
5877 /* kick EH for boot probing */
ba6a1308 5878 spin_lock_irqsave(ap->lock, flags);
3e706399 5879
1cdaf534
TH
5880 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5881 ehi->action |= ATA_EH_SOFTRESET;
5882 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5883
b51e9e5d 5884 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5885 ata_port_schedule_eh(ap);
5886
ba6a1308 5887 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5888
5889 /* wait for EH to finish */
5890 ata_port_wait_eh(ap);
5891 } else {
5892 DPRINTK("ata%u: bus probe begin\n", ap->id);
5893 rc = ata_bus_probe(ap);
5894 DPRINTK("ata%u: bus probe end\n", ap->id);
5895
5896 if (rc) {
5897 /* FIXME: do something useful here?
5898 * Current libata behavior will
5899 * tear down everything when
5900 * the module is removed
5901 * or the h/w is unplugged.
5902 */
5903 }
5904 }
1da177e4
LT
5905 }
5906
5907 /* probes are done, now scan each port's disk(s) */
c893a3ae 5908 DPRINTK("host probe begin\n");
cca3974e
JG
5909 for (i = 0; i < host->n_ports; i++) {
5910 struct ata_port *ap = host->ports[i];
1da177e4 5911
644dd0cc 5912 ata_scsi_scan_host(ap);
1da177e4
LT
5913 }
5914
cca3974e 5915 dev_set_drvdata(dev, host);
1da177e4
LT
5916
5917 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5918 return ent->n_ports; /* success */
5919
2ec7df04 5920err_out_free_irq:
cca3974e 5921 free_irq(ent->irq, host);
1da177e4 5922err_out:
cca3974e
JG
5923 for (i = 0; i < host->n_ports; i++) {
5924 struct ata_port *ap = host->ports[i];
77f3f879
TH
5925 if (ap) {
5926 ap->ops->port_stop(ap);
cca3974e 5927 scsi_host_put(ap->scsi_host);
77f3f879 5928 }
1da177e4 5929 }
6d0500df 5930
cca3974e 5931 kfree(host);
1da177e4
LT
5932 VPRINTK("EXIT, returning 0\n");
5933 return 0;
5934}
5935
720ba126
TH
5936/**
5937 * ata_port_detach - Detach ATA port in prepration of device removal
5938 * @ap: ATA port to be detached
5939 *
5940 * Detach all ATA devices and the associated SCSI devices of @ap;
5941 * then, remove the associated SCSI host. @ap is guaranteed to
5942 * be quiescent on return from this function.
5943 *
5944 * LOCKING:
5945 * Kernel thread context (may sleep).
5946 */
5947void ata_port_detach(struct ata_port *ap)
5948{
5949 unsigned long flags;
5950 int i;
5951
5952 if (!ap->ops->error_handler)
c3cf30a9 5953 goto skip_eh;
720ba126
TH
5954
5955 /* tell EH we're leaving & flush EH */
ba6a1308 5956 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5957 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5958 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5959
5960 ata_port_wait_eh(ap);
5961
5962 /* EH is now guaranteed to see UNLOADING, so no new device
5963 * will be attached. Disable all existing devices.
5964 */
ba6a1308 5965 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5966
5967 for (i = 0; i < ATA_MAX_DEVICES; i++)
5968 ata_dev_disable(&ap->device[i]);
5969
ba6a1308 5970 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5971
5972 /* Final freeze & EH. All in-flight commands are aborted. EH
5973 * will be skipped and retrials will be terminated with bad
5974 * target.
5975 */
ba6a1308 5976 spin_lock_irqsave(ap->lock, flags);
720ba126 5977 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5978 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5979
5980 ata_port_wait_eh(ap);
5981
5982 /* Flush hotplug task. The sequence is similar to
5983 * ata_port_flush_task().
5984 */
5985 flush_workqueue(ata_aux_wq);
5986 cancel_delayed_work(&ap->hotplug_task);
5987 flush_workqueue(ata_aux_wq);
5988
c3cf30a9 5989 skip_eh:
720ba126 5990 /* remove the associated SCSI host */
cca3974e 5991 scsi_remove_host(ap->scsi_host);
720ba126
TH
5992}
5993
17b14451 5994/**
cca3974e
JG
5995 * ata_host_remove - PCI layer callback for device removal
5996 * @host: ATA host set that was removed
17b14451 5997 *
2e9edbf8 5998 * Unregister all objects associated with this host set. Free those
17b14451
AC
5999 * objects.
6000 *
6001 * LOCKING:
6002 * Inherited from calling layer (may sleep).
6003 */
6004
cca3974e 6005void ata_host_remove(struct ata_host *host)
17b14451 6006{
17b14451
AC
6007 unsigned int i;
6008
cca3974e
JG
6009 for (i = 0; i < host->n_ports; i++)
6010 ata_port_detach(host->ports[i]);
17b14451 6011
cca3974e
JG
6012 free_irq(host->irq, host);
6013 if (host->irq2)
6014 free_irq(host->irq2, host);
17b14451 6015
cca3974e
JG
6016 for (i = 0; i < host->n_ports; i++) {
6017 struct ata_port *ap = host->ports[i];
17b14451 6018
cca3974e 6019 ata_scsi_release(ap->scsi_host);
17b14451
AC
6020
6021 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6022 struct ata_ioports *ioaddr = &ap->ioaddr;
6023
2ec7df04
AC
6024 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6025 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6026 release_region(ATA_PRIMARY_CMD, 8);
6027 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6028 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
6029 }
6030
cca3974e 6031 scsi_host_put(ap->scsi_host);
17b14451
AC
6032 }
6033
cca3974e
JG
6034 if (host->ops->host_stop)
6035 host->ops->host_stop(host);
17b14451 6036
cca3974e 6037 kfree(host);
17b14451
AC
6038}
6039
1da177e4
LT
6040/**
6041 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 6042 * @shost: libata host to be unloaded
1da177e4
LT
6043 *
6044 * Performs all duties necessary to shut down a libata port...
6045 * Kill port kthread, disable port, and release resources.
6046 *
6047 * LOCKING:
6048 * Inherited from SCSI layer.
6049 *
6050 * RETURNS:
6051 * One.
6052 */
6053
cca3974e 6054int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 6055{
cca3974e 6056 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
6057
6058 DPRINTK("ENTER\n");
6059
6060 ap->ops->port_disable(ap);
6543bc07 6061 ap->ops->port_stop(ap);
1da177e4
LT
6062
6063 DPRINTK("EXIT\n");
6064 return 1;
6065}
6066
f6d950e2
BK
6067struct ata_probe_ent *
6068ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6069{
6070 struct ata_probe_ent *probe_ent;
6071
6072 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6073 if (!probe_ent) {
6074 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6075 kobject_name(&(dev->kobj)));
6076 return NULL;
6077 }
6078
6079 INIT_LIST_HEAD(&probe_ent->node);
6080 probe_ent->dev = dev;
6081
6082 probe_ent->sht = port->sht;
cca3974e 6083 probe_ent->port_flags = port->flags;
f6d950e2
BK
6084 probe_ent->pio_mask = port->pio_mask;
6085 probe_ent->mwdma_mask = port->mwdma_mask;
6086 probe_ent->udma_mask = port->udma_mask;
6087 probe_ent->port_ops = port->port_ops;
d639ca94 6088 probe_ent->private_data = port->private_data;
f6d950e2
BK
6089
6090 return probe_ent;
6091}
6092
1da177e4
LT
6093/**
6094 * ata_std_ports - initialize ioaddr with standard port offsets.
6095 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6096 *
6097 * Utility function which initializes data_addr, error_addr,
6098 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6099 * device_addr, status_addr, and command_addr to standard offsets
6100 * relative to cmd_addr.
6101 *
6102 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6103 */
0baab86b 6104
1da177e4
LT
6105void ata_std_ports(struct ata_ioports *ioaddr)
6106{
6107 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6108 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6109 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6110 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6111 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6112 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6113 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6114 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6115 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6116 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6117}
6118
0baab86b 6119
374b1873
JG
6120#ifdef CONFIG_PCI
6121
cca3974e 6122void ata_pci_host_stop (struct ata_host *host)
374b1873 6123{
cca3974e 6124 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 6125
cca3974e 6126 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
6127}
6128
1da177e4
LT
6129/**
6130 * ata_pci_remove_one - PCI layer callback for device removal
6131 * @pdev: PCI device that was removed
6132 *
6133 * PCI layer indicates to libata via this hook that
6f0ef4fa 6134 * hot-unplug or module unload event has occurred.
1da177e4
LT
6135 * Handle this by unregistering all objects associated
6136 * with this PCI device. Free those objects. Then finally
6137 * release PCI resources and disable device.
6138 *
6139 * LOCKING:
6140 * Inherited from PCI layer (may sleep).
6141 */
6142
6143void ata_pci_remove_one (struct pci_dev *pdev)
6144{
6145 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6146 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6147
cca3974e 6148 ata_host_remove(host);
f0eb62b8 6149
1da177e4
LT
6150 pci_release_regions(pdev);
6151 pci_disable_device(pdev);
6152 dev_set_drvdata(dev, NULL);
6153}
6154
6155/* move to PCI subsystem */
057ace5e 6156int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6157{
6158 unsigned long tmp = 0;
6159
6160 switch (bits->width) {
6161 case 1: {
6162 u8 tmp8 = 0;
6163 pci_read_config_byte(pdev, bits->reg, &tmp8);
6164 tmp = tmp8;
6165 break;
6166 }
6167 case 2: {
6168 u16 tmp16 = 0;
6169 pci_read_config_word(pdev, bits->reg, &tmp16);
6170 tmp = tmp16;
6171 break;
6172 }
6173 case 4: {
6174 u32 tmp32 = 0;
6175 pci_read_config_dword(pdev, bits->reg, &tmp32);
6176 tmp = tmp32;
6177 break;
6178 }
6179
6180 default:
6181 return -EINVAL;
6182 }
6183
6184 tmp &= bits->mask;
6185
6186 return (tmp == bits->val) ? 1 : 0;
6187}
9b847548 6188
3c5100c1 6189void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6190{
6191 pci_save_state(pdev);
500530f6 6192
3c5100c1 6193 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6194 pci_disable_device(pdev);
6195 pci_set_power_state(pdev, PCI_D3hot);
6196 }
9b847548
JA
6197}
6198
500530f6 6199void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
6200{
6201 pci_set_power_state(pdev, PCI_D0);
6202 pci_restore_state(pdev);
6203 pci_enable_device(pdev);
6204 pci_set_master(pdev);
500530f6
TH
6205}
6206
3c5100c1 6207int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6208{
cca3974e 6209 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6210 int rc = 0;
6211
cca3974e 6212 rc = ata_host_suspend(host, mesg);
500530f6
TH
6213 if (rc)
6214 return rc;
6215
3c5100c1 6216 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6217
6218 return 0;
6219}
6220
6221int ata_pci_device_resume(struct pci_dev *pdev)
6222{
cca3974e 6223 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6224
6225 ata_pci_device_do_resume(pdev);
cca3974e 6226 ata_host_resume(host);
9b847548
JA
6227 return 0;
6228}
1da177e4
LT
6229#endif /* CONFIG_PCI */
6230
6231
1da177e4
LT
6232static int __init ata_init(void)
6233{
a8601e5f 6234 ata_probe_timeout *= HZ;
1da177e4
LT
6235 ata_wq = create_workqueue("ata");
6236 if (!ata_wq)
6237 return -ENOMEM;
6238
453b07ac
TH
6239 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6240 if (!ata_aux_wq) {
6241 destroy_workqueue(ata_wq);
6242 return -ENOMEM;
6243 }
6244
1da177e4
LT
6245 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6246 return 0;
6247}
6248
6249static void __exit ata_exit(void)
6250{
6251 destroy_workqueue(ata_wq);
453b07ac 6252 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6253}
6254
a4625085 6255subsys_initcall(ata_init);
1da177e4
LT
6256module_exit(ata_exit);
6257
67846b30 6258static unsigned long ratelimit_time;
34af946a 6259static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6260
6261int ata_ratelimit(void)
6262{
6263 int rc;
6264 unsigned long flags;
6265
6266 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6267
6268 if (time_after(jiffies, ratelimit_time)) {
6269 rc = 1;
6270 ratelimit_time = jiffies + (HZ/5);
6271 } else
6272 rc = 0;
6273
6274 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6275
6276 return rc;
6277}
6278
c22daff4
TH
6279/**
6280 * ata_wait_register - wait until register value changes
6281 * @reg: IO-mapped register
6282 * @mask: Mask to apply to read register value
6283 * @val: Wait condition
6284 * @interval_msec: polling interval in milliseconds
6285 * @timeout_msec: timeout in milliseconds
6286 *
6287 * Waiting for some bits of register to change is a common
6288 * operation for ATA controllers. This function reads 32bit LE
6289 * IO-mapped register @reg and tests for the following condition.
6290 *
6291 * (*@reg & mask) != val
6292 *
6293 * If the condition is met, it returns; otherwise, the process is
6294 * repeated after @interval_msec until timeout.
6295 *
6296 * LOCKING:
6297 * Kernel thread context (may sleep)
6298 *
6299 * RETURNS:
6300 * The final register value.
6301 */
6302u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6303 unsigned long interval_msec,
6304 unsigned long timeout_msec)
6305{
6306 unsigned long timeout;
6307 u32 tmp;
6308
6309 tmp = ioread32(reg);
6310
6311 /* Calculate timeout _after_ the first read to make sure
6312 * preceding writes reach the controller before starting to
6313 * eat away the timeout.
6314 */
6315 timeout = jiffies + (timeout_msec * HZ) / 1000;
6316
6317 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6318 msleep(interval_msec);
6319 tmp = ioread32(reg);
6320 }
6321
6322 return tmp;
6323}
6324
dd5b06c4
TH
6325/*
6326 * Dummy port_ops
6327 */
6328static void ata_dummy_noret(struct ata_port *ap) { }
6329static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6330static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6331
6332static u8 ata_dummy_check_status(struct ata_port *ap)
6333{
6334 return ATA_DRDY;
6335}
6336
6337static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6338{
6339 return AC_ERR_SYSTEM;
6340}
6341
6342const struct ata_port_operations ata_dummy_port_ops = {
6343 .port_disable = ata_port_disable,
6344 .check_status = ata_dummy_check_status,
6345 .check_altstatus = ata_dummy_check_status,
6346 .dev_select = ata_noop_dev_select,
6347 .qc_prep = ata_noop_qc_prep,
6348 .qc_issue = ata_dummy_qc_issue,
6349 .freeze = ata_dummy_noret,
6350 .thaw = ata_dummy_noret,
6351 .error_handler = ata_dummy_noret,
6352 .post_internal_cmd = ata_dummy_qc_noret,
6353 .irq_clear = ata_dummy_noret,
6354 .port_start = ata_dummy_ret0,
6355 .port_stop = ata_dummy_noret,
6356};
6357
1da177e4
LT
6358/*
6359 * libata is essentially a library of internal helper functions for
6360 * low-level ATA host controller drivers. As such, the API/ABI is
6361 * likely to change as new drivers are added and updated.
6362 * Do not depend on ABI/API stability.
6363 */
6364
e9c83914
TH
6365EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6366EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6367EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6368EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6369EXPORT_SYMBOL_GPL(ata_std_bios_param);
6370EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6371EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6372EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6373EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6374EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6375EXPORT_SYMBOL_GPL(ata_sg_init);
6376EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6377EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6378EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6379EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6380EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6381EXPORT_SYMBOL_GPL(ata_tf_load);
6382EXPORT_SYMBOL_GPL(ata_tf_read);
6383EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6384EXPORT_SYMBOL_GPL(ata_std_dev_select);
6385EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6386EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6387EXPORT_SYMBOL_GPL(ata_check_status);
6388EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6389EXPORT_SYMBOL_GPL(ata_exec_command);
6390EXPORT_SYMBOL_GPL(ata_port_start);
6391EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6392EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6393EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6394EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6395EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6396EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6397EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6398EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6399EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6400EXPORT_SYMBOL_GPL(ata_bmdma_start);
6401EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6402EXPORT_SYMBOL_GPL(ata_bmdma_status);
6403EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6404EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6405EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6406EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6407EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6408EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6409EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6410EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6411EXPORT_SYMBOL_GPL(sata_phy_debounce);
6412EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6413EXPORT_SYMBOL_GPL(sata_phy_reset);
6414EXPORT_SYMBOL_GPL(__sata_phy_reset);
6415EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6416EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6417EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6418EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6419EXPORT_SYMBOL_GPL(sata_std_hardreset);
6420EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6421EXPORT_SYMBOL_GPL(ata_dev_classify);
6422EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6423EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6424EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6425EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6426EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6427EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6428EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6429EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6430EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6431EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6432EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6433EXPORT_SYMBOL_GPL(ata_scsi_release);
6434EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6435EXPORT_SYMBOL_GPL(sata_scr_valid);
6436EXPORT_SYMBOL_GPL(sata_scr_read);
6437EXPORT_SYMBOL_GPL(sata_scr_write);
6438EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6439EXPORT_SYMBOL_GPL(ata_port_online);
6440EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6441EXPORT_SYMBOL_GPL(ata_host_suspend);
6442EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6443EXPORT_SYMBOL_GPL(ata_id_string);
6444EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6445EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6446EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6447
1bc4ccff 6448EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6449EXPORT_SYMBOL_GPL(ata_timing_compute);
6450EXPORT_SYMBOL_GPL(ata_timing_merge);
6451
1da177e4
LT
6452#ifdef CONFIG_PCI
6453EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6454EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6455EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6456EXPORT_SYMBOL_GPL(ata_pci_init_one);
6457EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6458EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6459EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6460EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6461EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6462EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6463EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6464#endif /* CONFIG_PCI */
9b847548 6465
9b847548
JA
6466EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6467EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6468
ece1d636 6469EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6470EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6471EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6472EXPORT_SYMBOL_GPL(ata_port_freeze);
6473EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6474EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6475EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6476EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6477EXPORT_SYMBOL_GPL(ata_do_eh);