]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: ata_dev_disable() should be called from EH context
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
67
68#include "libata.h"
69
fda0efc5 70
d7bb4cc7 71/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
72const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 75
3373efd8
TH
76static unsigned int ata_dev_init_params(struct ata_device *dev,
77 u16 heads, u16 sectors);
78static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
79static unsigned int ata_dev_set_feature(struct ata_device *dev,
80 u8 enable, u8 feature);
3373efd8 81static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 82static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 83
f3187195 84unsigned int ata_print_id = 1;
1da177e4
LT
85static struct workqueue_struct *ata_wq;
86
453b07ac
TH
87struct workqueue_struct *ata_aux_wq;
88
418dc1f5 89int atapi_enabled = 1;
1623c81e
JG
90module_param(atapi_enabled, int, 0444);
91MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
92
95de719a
AL
93int atapi_dmadir = 0;
94module_param(atapi_dmadir, int, 0444);
95MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
96
baf4fdfa
ML
97int atapi_passthru16 = 1;
98module_param(atapi_passthru16, int, 0444);
99MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
100
c3c013a2
JG
101int libata_fua = 0;
102module_param_named(fua, libata_fua, int, 0444);
103MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
104
2dcb407e 105static int ata_ignore_hpa;
1e999736
AC
106module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
107MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
108
b3a70601
AC
109static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
110module_param_named(dma, libata_dma_mask, int, 0444);
111MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
112
a8601e5f
AM
113static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
114module_param(ata_probe_timeout, int, 0444);
115MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
116
6ebe9d86 117int libata_noacpi = 0;
d7d0dad6 118module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 119MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 120
1da177e4
LT
121MODULE_AUTHOR("Jeff Garzik");
122MODULE_DESCRIPTION("Library module for ATA devices");
123MODULE_LICENSE("GPL");
124MODULE_VERSION(DRV_VERSION);
125
0baab86b 126
1da177e4
LT
127/**
128 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
129 * @tf: Taskfile to convert
1da177e4 130 * @pmp: Port multiplier port
9977126c
TH
131 * @is_cmd: This FIS is for command
132 * @fis: Buffer into which data will output
1da177e4
LT
133 *
134 * Converts a standard ATA taskfile to a Serial ATA
135 * FIS structure (Register - Host to Device).
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
9977126c 140void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 141{
9977126c
TH
142 fis[0] = 0x27; /* Register - Host to Device FIS */
143 fis[1] = pmp & 0xf; /* Port multiplier number*/
144 if (is_cmd)
145 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
146
1da177e4
LT
147 fis[2] = tf->command;
148 fis[3] = tf->feature;
149
150 fis[4] = tf->lbal;
151 fis[5] = tf->lbam;
152 fis[6] = tf->lbah;
153 fis[7] = tf->device;
154
155 fis[8] = tf->hob_lbal;
156 fis[9] = tf->hob_lbam;
157 fis[10] = tf->hob_lbah;
158 fis[11] = tf->hob_feature;
159
160 fis[12] = tf->nsect;
161 fis[13] = tf->hob_nsect;
162 fis[14] = 0;
163 fis[15] = tf->ctl;
164
165 fis[16] = 0;
166 fis[17] = 0;
167 fis[18] = 0;
168 fis[19] = 0;
169}
170
171/**
172 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
173 * @fis: Buffer from which data will be input
174 * @tf: Taskfile to output
175 *
e12a1be6 176 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
177 *
178 * LOCKING:
179 * Inherited from caller.
180 */
181
057ace5e 182void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
183{
184 tf->command = fis[2]; /* status */
185 tf->feature = fis[3]; /* error */
186
187 tf->lbal = fis[4];
188 tf->lbam = fis[5];
189 tf->lbah = fis[6];
190 tf->device = fis[7];
191
192 tf->hob_lbal = fis[8];
193 tf->hob_lbam = fis[9];
194 tf->hob_lbah = fis[10];
195
196 tf->nsect = fis[12];
197 tf->hob_nsect = fis[13];
198}
199
8cbd6df1
AL
200static const u8 ata_rw_cmds[] = {
201 /* pio multi */
202 ATA_CMD_READ_MULTI,
203 ATA_CMD_WRITE_MULTI,
204 ATA_CMD_READ_MULTI_EXT,
205 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
206 0,
207 0,
208 0,
209 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
210 /* pio */
211 ATA_CMD_PIO_READ,
212 ATA_CMD_PIO_WRITE,
213 ATA_CMD_PIO_READ_EXT,
214 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
215 0,
216 0,
217 0,
218 0,
8cbd6df1
AL
219 /* dma */
220 ATA_CMD_READ,
221 ATA_CMD_WRITE,
222 ATA_CMD_READ_EXT,
9a3dccc4
TH
223 ATA_CMD_WRITE_EXT,
224 0,
225 0,
226 0,
227 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 228};
1da177e4
LT
229
230/**
8cbd6df1 231 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
232 * @tf: command to examine and configure
233 * @dev: device tf belongs to
1da177e4 234 *
2e9edbf8 235 * Examine the device configuration and tf->flags to calculate
8cbd6df1 236 * the proper read/write commands and protocol to use.
1da177e4
LT
237 *
238 * LOCKING:
239 * caller.
240 */
bd056d7e 241static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 242{
9a3dccc4 243 u8 cmd;
1da177e4 244
9a3dccc4 245 int index, fua, lba48, write;
2e9edbf8 246
9a3dccc4 247 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
248 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
249 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 250
8cbd6df1
AL
251 if (dev->flags & ATA_DFLAG_PIO) {
252 tf->protocol = ATA_PROT_PIO;
9a3dccc4 253 index = dev->multi_count ? 0 : 8;
9af5c9c9 254 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
255 /* Unable to use DMA due to host limitation */
256 tf->protocol = ATA_PROT_PIO;
0565c26d 257 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
258 } else {
259 tf->protocol = ATA_PROT_DMA;
9a3dccc4 260 index = 16;
8cbd6df1 261 }
1da177e4 262
9a3dccc4
TH
263 cmd = ata_rw_cmds[index + fua + lba48 + write];
264 if (cmd) {
265 tf->command = cmd;
266 return 0;
267 }
268 return -1;
1da177e4
LT
269}
270
35b649fe
TH
271/**
272 * ata_tf_read_block - Read block address from ATA taskfile
273 * @tf: ATA taskfile of interest
274 * @dev: ATA device @tf belongs to
275 *
276 * LOCKING:
277 * None.
278 *
279 * Read block address from @tf. This function can handle all
280 * three address formats - LBA, LBA48 and CHS. tf->protocol and
281 * flags select the address format to use.
282 *
283 * RETURNS:
284 * Block address read from @tf.
285 */
286u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
287{
288 u64 block = 0;
289
290 if (tf->flags & ATA_TFLAG_LBA) {
291 if (tf->flags & ATA_TFLAG_LBA48) {
292 block |= (u64)tf->hob_lbah << 40;
293 block |= (u64)tf->hob_lbam << 32;
294 block |= tf->hob_lbal << 24;
295 } else
296 block |= (tf->device & 0xf) << 24;
297
298 block |= tf->lbah << 16;
299 block |= tf->lbam << 8;
300 block |= tf->lbal;
301 } else {
302 u32 cyl, head, sect;
303
304 cyl = tf->lbam | (tf->lbah << 8);
305 head = tf->device & 0xf;
306 sect = tf->lbal;
307
308 block = (cyl * dev->heads + head) * dev->sectors + sect;
309 }
310
311 return block;
312}
313
bd056d7e
TH
314/**
315 * ata_build_rw_tf - Build ATA taskfile for given read/write request
316 * @tf: Target ATA taskfile
317 * @dev: ATA device @tf belongs to
318 * @block: Block address
319 * @n_block: Number of blocks
320 * @tf_flags: RW/FUA etc...
321 * @tag: tag
322 *
323 * LOCKING:
324 * None.
325 *
326 * Build ATA taskfile @tf for read/write request described by
327 * @block, @n_block, @tf_flags and @tag on @dev.
328 *
329 * RETURNS:
330 *
331 * 0 on success, -ERANGE if the request is too large for @dev,
332 * -EINVAL if the request is invalid.
333 */
334int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
335 u64 block, u32 n_block, unsigned int tf_flags,
336 unsigned int tag)
337{
338 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
339 tf->flags |= tf_flags;
340
6d1245bf 341 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
342 /* yay, NCQ */
343 if (!lba_48_ok(block, n_block))
344 return -ERANGE;
345
346 tf->protocol = ATA_PROT_NCQ;
347 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
348
349 if (tf->flags & ATA_TFLAG_WRITE)
350 tf->command = ATA_CMD_FPDMA_WRITE;
351 else
352 tf->command = ATA_CMD_FPDMA_READ;
353
354 tf->nsect = tag << 3;
355 tf->hob_feature = (n_block >> 8) & 0xff;
356 tf->feature = n_block & 0xff;
357
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 tf->lbah = (block >> 16) & 0xff;
362 tf->lbam = (block >> 8) & 0xff;
363 tf->lbal = block & 0xff;
364
365 tf->device = 1 << 6;
366 if (tf->flags & ATA_TFLAG_FUA)
367 tf->device |= 1 << 7;
368 } else if (dev->flags & ATA_DFLAG_LBA) {
369 tf->flags |= ATA_TFLAG_LBA;
370
371 if (lba_28_ok(block, n_block)) {
372 /* use LBA28 */
373 tf->device |= (block >> 24) & 0xf;
374 } else if (lba_48_ok(block, n_block)) {
375 if (!(dev->flags & ATA_DFLAG_LBA48))
376 return -ERANGE;
377
378 /* use LBA48 */
379 tf->flags |= ATA_TFLAG_LBA48;
380
381 tf->hob_nsect = (n_block >> 8) & 0xff;
382
383 tf->hob_lbah = (block >> 40) & 0xff;
384 tf->hob_lbam = (block >> 32) & 0xff;
385 tf->hob_lbal = (block >> 24) & 0xff;
386 } else
387 /* request too large even for LBA48 */
388 return -ERANGE;
389
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 return -EINVAL;
392
393 tf->nsect = n_block & 0xff;
394
395 tf->lbah = (block >> 16) & 0xff;
396 tf->lbam = (block >> 8) & 0xff;
397 tf->lbal = block & 0xff;
398
399 tf->device |= ATA_LBA;
400 } else {
401 /* CHS */
402 u32 sect, head, cyl, track;
403
404 /* The request -may- be too large for CHS addressing. */
405 if (!lba_28_ok(block, n_block))
406 return -ERANGE;
407
408 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
409 return -EINVAL;
410
411 /* Convert LBA to CHS */
412 track = (u32)block / dev->sectors;
413 cyl = track / dev->heads;
414 head = track % dev->heads;
415 sect = (u32)block % dev->sectors + 1;
416
417 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
418 (u32)block, track, cyl, head, sect);
419
420 /* Check whether the converted CHS can fit.
421 Cylinder: 0-65535
422 Head: 0-15
423 Sector: 1-255*/
424 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
425 return -ERANGE;
426
427 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
428 tf->lbal = sect;
429 tf->lbam = cyl;
430 tf->lbah = cyl >> 8;
431 tf->device |= head;
432 }
433
434 return 0;
435}
436
cb95d562
TH
437/**
438 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
439 * @pio_mask: pio_mask
440 * @mwdma_mask: mwdma_mask
441 * @udma_mask: udma_mask
442 *
443 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
444 * unsigned int xfer_mask.
445 *
446 * LOCKING:
447 * None.
448 *
449 * RETURNS:
450 * Packed xfer_mask.
451 */
452static unsigned int ata_pack_xfermask(unsigned int pio_mask,
453 unsigned int mwdma_mask,
454 unsigned int udma_mask)
455{
456 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
457 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
458 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
459}
460
c0489e4e
TH
461/**
462 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
463 * @xfer_mask: xfer_mask to unpack
464 * @pio_mask: resulting pio_mask
465 * @mwdma_mask: resulting mwdma_mask
466 * @udma_mask: resulting udma_mask
467 *
468 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
469 * Any NULL distination masks will be ignored.
470 */
471static void ata_unpack_xfermask(unsigned int xfer_mask,
472 unsigned int *pio_mask,
473 unsigned int *mwdma_mask,
474 unsigned int *udma_mask)
475{
476 if (pio_mask)
477 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
478 if (mwdma_mask)
479 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
480 if (udma_mask)
481 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
482}
483
cb95d562 484static const struct ata_xfer_ent {
be9a50c8 485 int shift, bits;
cb95d562
TH
486 u8 base;
487} ata_xfer_tbl[] = {
488 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
489 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
490 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
491 { -1, },
492};
493
494/**
495 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
496 * @xfer_mask: xfer_mask of interest
497 *
498 * Return matching XFER_* value for @xfer_mask. Only the highest
499 * bit of @xfer_mask is considered.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching XFER_* value, 0 if no match found.
506 */
507static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
508{
509 int highbit = fls(xfer_mask) - 1;
510 const struct ata_xfer_ent *ent;
511
512 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
513 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
514 return ent->base + highbit - ent->shift;
515 return 0;
516}
517
518/**
519 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
520 * @xfer_mode: XFER_* of interest
521 *
522 * Return matching xfer_mask for @xfer_mode.
523 *
524 * LOCKING:
525 * None.
526 *
527 * RETURNS:
528 * Matching xfer_mask, 0 if no match found.
529 */
530static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
531{
532 const struct ata_xfer_ent *ent;
533
534 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
535 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
536 return 1 << (ent->shift + xfer_mode - ent->base);
537 return 0;
538}
539
540/**
541 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
542 * @xfer_mode: XFER_* of interest
543 *
544 * Return matching xfer_shift for @xfer_mode.
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Matching xfer_shift, -1 if no match found.
551 */
552static int ata_xfer_mode2shift(unsigned int xfer_mode)
553{
554 const struct ata_xfer_ent *ent;
555
556 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
557 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
558 return ent->shift;
559 return -1;
560}
561
1da177e4 562/**
1da7b0d0
TH
563 * ata_mode_string - convert xfer_mask to string
564 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
565 *
566 * Determine string which represents the highest speed
1da7b0d0 567 * (highest bit in @modemask).
1da177e4
LT
568 *
569 * LOCKING:
570 * None.
571 *
572 * RETURNS:
573 * Constant C string representing highest speed listed in
1da7b0d0 574 * @mode_mask, or the constant C string "<n/a>".
1da177e4 575 */
1da7b0d0 576static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 577{
75f554bc
TH
578 static const char * const xfer_mode_str[] = {
579 "PIO0",
580 "PIO1",
581 "PIO2",
582 "PIO3",
583 "PIO4",
b352e57d
AC
584 "PIO5",
585 "PIO6",
75f554bc
TH
586 "MWDMA0",
587 "MWDMA1",
588 "MWDMA2",
b352e57d
AC
589 "MWDMA3",
590 "MWDMA4",
75f554bc
TH
591 "UDMA/16",
592 "UDMA/25",
593 "UDMA/33",
594 "UDMA/44",
595 "UDMA/66",
596 "UDMA/100",
597 "UDMA/133",
598 "UDMA7",
599 };
1da7b0d0 600 int highbit;
1da177e4 601
1da7b0d0
TH
602 highbit = fls(xfer_mask) - 1;
603 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
604 return xfer_mode_str[highbit];
1da177e4 605 return "<n/a>";
1da177e4
LT
606}
607
4c360c81
TH
608static const char *sata_spd_string(unsigned int spd)
609{
610 static const char * const spd_str[] = {
611 "1.5 Gbps",
612 "3.0 Gbps",
613 };
614
615 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
616 return "<unknown>";
617 return spd_str[spd - 1];
618}
619
3373efd8 620void ata_dev_disable(struct ata_device *dev)
0b8efb0a 621{
09d7f9b0 622 if (ata_dev_enabled(dev)) {
9af5c9c9 623 if (ata_msg_drv(dev->link->ap))
09d7f9b0 624 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
625 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
626 ATA_DNXFER_QUIET);
0b8efb0a
TH
627 dev->class++;
628 }
629}
630
ca77329f
KCA
631static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
632{
633 struct ata_link *link = dev->link;
634 struct ata_port *ap = link->ap;
635 u32 scontrol;
636 unsigned int err_mask;
637 int rc;
638
639 /*
640 * disallow DIPM for drivers which haven't set
641 * ATA_FLAG_IPM. This is because when DIPM is enabled,
642 * phy ready will be set in the interrupt status on
643 * state changes, which will cause some drivers to
644 * think there are errors - additionally drivers will
645 * need to disable hot plug.
646 */
647 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
648 ap->pm_policy = NOT_AVAILABLE;
649 return -EINVAL;
650 }
651
652 /*
653 * For DIPM, we will only enable it for the
654 * min_power setting.
655 *
656 * Why? Because Disks are too stupid to know that
657 * If the host rejects a request to go to SLUMBER
658 * they should retry at PARTIAL, and instead it
659 * just would give up. So, for medium_power to
660 * work at all, we need to only allow HIPM.
661 */
662 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
663 if (rc)
664 return rc;
665
666 switch (policy) {
667 case MIN_POWER:
668 /* no restrictions on IPM transitions */
669 scontrol &= ~(0x3 << 8);
670 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
671 if (rc)
672 return rc;
673
674 /* enable DIPM */
675 if (dev->flags & ATA_DFLAG_DIPM)
676 err_mask = ata_dev_set_feature(dev,
677 SETFEATURES_SATA_ENABLE, SATA_DIPM);
678 break;
679 case MEDIUM_POWER:
680 /* allow IPM to PARTIAL */
681 scontrol &= ~(0x1 << 8);
682 scontrol |= (0x2 << 8);
683 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
684 if (rc)
685 return rc;
686
f5456b63
KCA
687 /*
688 * we don't have to disable DIPM since IPM flags
689 * disallow transitions to SLUMBER, which effectively
690 * disable DIPM if it does not support PARTIAL
691 */
ca77329f
KCA
692 break;
693 case NOT_AVAILABLE:
694 case MAX_PERFORMANCE:
695 /* disable all IPM transitions */
696 scontrol |= (0x3 << 8);
697 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
698 if (rc)
699 return rc;
700
f5456b63
KCA
701 /*
702 * we don't have to disable DIPM since IPM flags
703 * disallow all transitions which effectively
704 * disable DIPM anyway.
705 */
ca77329f
KCA
706 break;
707 }
708
709 /* FIXME: handle SET FEATURES failure */
710 (void) err_mask;
711
712 return 0;
713}
714
715/**
716 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
717 * @dev: device to enable power management
718 * @policy: the link power management policy
ca77329f
KCA
719 *
720 * Enable SATA Interface power management. This will enable
721 * Device Interface Power Management (DIPM) for min_power
722 * policy, and then call driver specific callbacks for
723 * enabling Host Initiated Power management.
724 *
725 * Locking: Caller.
726 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
727 */
728void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
729{
730 int rc = 0;
731 struct ata_port *ap = dev->link->ap;
732
733 /* set HIPM first, then DIPM */
734 if (ap->ops->enable_pm)
735 rc = ap->ops->enable_pm(ap, policy);
736 if (rc)
737 goto enable_pm_out;
738 rc = ata_dev_set_dipm(dev, policy);
739
740enable_pm_out:
741 if (rc)
742 ap->pm_policy = MAX_PERFORMANCE;
743 else
744 ap->pm_policy = policy;
745 return /* rc */; /* hopefully we can use 'rc' eventually */
746}
747
1992a5ed 748#ifdef CONFIG_PM
ca77329f
KCA
749/**
750 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 751 * @dev: device to disable power management
ca77329f
KCA
752 *
753 * Disable SATA Interface power management. This will disable
754 * Device Interface Power Management (DIPM) without changing
755 * policy, call driver specific callbacks for disabling Host
756 * Initiated Power management.
757 *
758 * Locking: Caller.
759 * Returns: void
760 */
761static void ata_dev_disable_pm(struct ata_device *dev)
762{
763 struct ata_port *ap = dev->link->ap;
764
765 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
766 if (ap->ops->disable_pm)
767 ap->ops->disable_pm(ap);
768}
1992a5ed 769#endif /* CONFIG_PM */
ca77329f
KCA
770
771void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
772{
773 ap->pm_policy = policy;
774 ap->link.eh_info.action |= ATA_EHI_LPM;
775 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
776 ata_port_schedule_eh(ap);
777}
778
1992a5ed 779#ifdef CONFIG_PM
ca77329f
KCA
780static void ata_lpm_enable(struct ata_host *host)
781{
782 struct ata_link *link;
783 struct ata_port *ap;
784 struct ata_device *dev;
785 int i;
786
787 for (i = 0; i < host->n_ports; i++) {
788 ap = host->ports[i];
789 ata_port_for_each_link(link, ap) {
790 ata_link_for_each_dev(dev, link)
791 ata_dev_disable_pm(dev);
792 }
793 }
794}
795
796static void ata_lpm_disable(struct ata_host *host)
797{
798 int i;
799
800 for (i = 0; i < host->n_ports; i++) {
801 struct ata_port *ap = host->ports[i];
802 ata_lpm_schedule(ap, ap->pm_policy);
803 }
804}
1992a5ed 805#endif /* CONFIG_PM */
ca77329f
KCA
806
807
1da177e4 808/**
0d5ff566 809 * ata_devchk - PATA device presence detection
1da177e4
LT
810 * @ap: ATA channel to examine
811 * @device: Device to examine (starting at zero)
812 *
813 * This technique was originally described in
814 * Hale Landis's ATADRVR (www.ata-atapi.com), and
815 * later found its way into the ATA/ATAPI spec.
816 *
817 * Write a pattern to the ATA shadow registers,
818 * and if a device is present, it will respond by
819 * correctly storing and echoing back the
820 * ATA shadow register contents.
821 *
822 * LOCKING:
823 * caller.
824 */
825
0d5ff566 826static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
827{
828 struct ata_ioports *ioaddr = &ap->ioaddr;
829 u8 nsect, lbal;
830
831 ap->ops->dev_select(ap, device);
832
0d5ff566
TH
833 iowrite8(0x55, ioaddr->nsect_addr);
834 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 835
0d5ff566
TH
836 iowrite8(0xaa, ioaddr->nsect_addr);
837 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 838
0d5ff566
TH
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 841
0d5ff566
TH
842 nsect = ioread8(ioaddr->nsect_addr);
843 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
844
845 if ((nsect == 0x55) && (lbal == 0xaa))
846 return 1; /* we found a device */
847
848 return 0; /* nothing found */
849}
850
1da177e4
LT
851/**
852 * ata_dev_classify - determine device type based on ATA-spec signature
853 * @tf: ATA taskfile register set for device to be identified
854 *
855 * Determine from taskfile register contents whether a device is
856 * ATA or ATAPI, as per "Signature and persistence" section
857 * of ATA/PI spec (volume 1, sect 5.14).
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
633273a3
TH
863 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
864 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 865 */
057ace5e 866unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
867{
868 /* Apple's open source Darwin code hints that some devices only
869 * put a proper signature into the LBA mid/high registers,
870 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
871 *
872 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
873 * signatures for ATA and ATAPI devices attached on SerialATA,
874 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
875 * spec has never mentioned about using different signatures
876 * for ATA/ATAPI devices. Then, Serial ATA II: Port
877 * Multiplier specification began to use 0x69/0x96 to identify
878 * port multpliers and 0x3c/0xc3 to identify SEMB device.
879 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
880 * 0x69/0x96 shortly and described them as reserved for
881 * SerialATA.
882 *
883 * We follow the current spec and consider that 0x69/0x96
884 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 885 */
633273a3 886 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
887 DPRINTK("found ATA device by sig\n");
888 return ATA_DEV_ATA;
889 }
890
633273a3 891 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
892 DPRINTK("found ATAPI device by sig\n");
893 return ATA_DEV_ATAPI;
894 }
895
633273a3
TH
896 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
897 DPRINTK("found PMP device by sig\n");
898 return ATA_DEV_PMP;
899 }
900
901 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 902 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
903 return ATA_DEV_SEMB_UNSUP; /* not yet */
904 }
905
1da177e4
LT
906 DPRINTK("unknown device\n");
907 return ATA_DEV_UNKNOWN;
908}
909
910/**
911 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
912 * @dev: ATA device to classify (starting at zero)
913 * @present: device seems present
b4dc7623 914 * @r_err: Value of error register on completion
1da177e4
LT
915 *
916 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
917 * an ATA/ATAPI-defined set of values is placed in the ATA
918 * shadow registers, indicating the results of device detection
919 * and diagnostics.
920 *
921 * Select the ATA device, and read the values from the ATA shadow
922 * registers. Then parse according to the Error register value,
923 * and the spec-defined values examined by ata_dev_classify().
924 *
925 * LOCKING:
926 * caller.
b4dc7623
TH
927 *
928 * RETURNS:
929 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 930 */
3f19859e
TH
931unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
932 u8 *r_err)
1da177e4 933{
3f19859e 934 struct ata_port *ap = dev->link->ap;
1da177e4
LT
935 struct ata_taskfile tf;
936 unsigned int class;
937 u8 err;
938
3f19859e 939 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
940
941 memset(&tf, 0, sizeof(tf));
942
1da177e4 943 ap->ops->tf_read(ap, &tf);
0169e284 944 err = tf.feature;
b4dc7623
TH
945 if (r_err)
946 *r_err = err;
1da177e4 947
93590859 948 /* see if device passed diags: if master then continue and warn later */
3f19859e 949 if (err == 0 && dev->devno == 0)
93590859 950 /* diagnostic fail : do nothing _YET_ */
3f19859e 951 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 952 else if (err == 1)
1da177e4 953 /* do nothing */ ;
3f19859e 954 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
955 /* do nothing */ ;
956 else
b4dc7623 957 return ATA_DEV_NONE;
1da177e4 958
b4dc7623 959 /* determine if device is ATA or ATAPI */
1da177e4 960 class = ata_dev_classify(&tf);
b4dc7623 961
d7fbee05
TH
962 if (class == ATA_DEV_UNKNOWN) {
963 /* If the device failed diagnostic, it's likely to
964 * have reported incorrect device signature too.
965 * Assume ATA device if the device seems present but
966 * device signature is invalid with diagnostic
967 * failure.
968 */
969 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
970 class = ATA_DEV_ATA;
971 else
972 class = ATA_DEV_NONE;
973 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
974 class = ATA_DEV_NONE;
975
b4dc7623 976 return class;
1da177e4
LT
977}
978
979/**
6a62a04d 980 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
981 * @id: IDENTIFY DEVICE results we will examine
982 * @s: string into which data is output
983 * @ofs: offset into identify device page
984 * @len: length of string to return. must be an even number.
985 *
986 * The strings in the IDENTIFY DEVICE page are broken up into
987 * 16-bit chunks. Run through the string, and output each
988 * 8-bit chunk linearly, regardless of platform.
989 *
990 * LOCKING:
991 * caller.
992 */
993
6a62a04d
TH
994void ata_id_string(const u16 *id, unsigned char *s,
995 unsigned int ofs, unsigned int len)
1da177e4
LT
996{
997 unsigned int c;
998
999 while (len > 0) {
1000 c = id[ofs] >> 8;
1001 *s = c;
1002 s++;
1003
1004 c = id[ofs] & 0xff;
1005 *s = c;
1006 s++;
1007
1008 ofs++;
1009 len -= 2;
1010 }
1011}
1012
0e949ff3 1013/**
6a62a04d 1014 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1015 * @id: IDENTIFY DEVICE results we will examine
1016 * @s: string into which data is output
1017 * @ofs: offset into identify device page
1018 * @len: length of string to return. must be an odd number.
1019 *
6a62a04d 1020 * This function is identical to ata_id_string except that it
0e949ff3
TH
1021 * trims trailing spaces and terminates the resulting string with
1022 * null. @len must be actual maximum length (even number) + 1.
1023 *
1024 * LOCKING:
1025 * caller.
1026 */
6a62a04d
TH
1027void ata_id_c_string(const u16 *id, unsigned char *s,
1028 unsigned int ofs, unsigned int len)
0e949ff3
TH
1029{
1030 unsigned char *p;
1031
1032 WARN_ON(!(len & 1));
1033
6a62a04d 1034 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1035
1036 p = s + strnlen(s, len - 1);
1037 while (p > s && p[-1] == ' ')
1038 p--;
1039 *p = '\0';
1040}
0baab86b 1041
db6f8759
TH
1042static u64 ata_id_n_sectors(const u16 *id)
1043{
1044 if (ata_id_has_lba(id)) {
1045 if (ata_id_has_lba48(id))
1046 return ata_id_u64(id, 100);
1047 else
1048 return ata_id_u32(id, 60);
1049 } else {
1050 if (ata_id_current_chs_valid(id))
1051 return ata_id_u32(id, 57);
1052 else
1053 return id[1] * id[3] * id[6];
1054 }
1055}
1056
1e999736
AC
1057static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1058{
1059 u64 sectors = 0;
1060
1061 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1062 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1063 sectors |= (tf->hob_lbal & 0xff) << 24;
1064 sectors |= (tf->lbah & 0xff) << 16;
1065 sectors |= (tf->lbam & 0xff) << 8;
1066 sectors |= (tf->lbal & 0xff);
1067
1068 return ++sectors;
1069}
1070
1071static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1072{
1073 u64 sectors = 0;
1074
1075 sectors |= (tf->device & 0x0f) << 24;
1076 sectors |= (tf->lbah & 0xff) << 16;
1077 sectors |= (tf->lbam & 0xff) << 8;
1078 sectors |= (tf->lbal & 0xff);
1079
1080 return ++sectors;
1081}
1082
1083/**
c728a914
TH
1084 * ata_read_native_max_address - Read native max address
1085 * @dev: target device
1086 * @max_sectors: out parameter for the result native max address
1e999736 1087 *
c728a914
TH
1088 * Perform an LBA48 or LBA28 native size query upon the device in
1089 * question.
1e999736 1090 *
c728a914
TH
1091 * RETURNS:
1092 * 0 on success, -EACCES if command is aborted by the drive.
1093 * -EIO on other errors.
1e999736 1094 */
c728a914 1095static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1096{
c728a914 1097 unsigned int err_mask;
1e999736 1098 struct ata_taskfile tf;
c728a914 1099 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1100
1101 ata_tf_init(dev, &tf);
1102
c728a914 1103 /* always clear all address registers */
1e999736 1104 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1105
c728a914
TH
1106 if (lba48) {
1107 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1108 tf.flags |= ATA_TFLAG_LBA48;
1109 } else
1110 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1111
1e999736 1112 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1113 tf.device |= ATA_LBA;
1114
2b789108 1115 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1116 if (err_mask) {
1117 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1118 "max address (err_mask=0x%x)\n", err_mask);
1119 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1120 return -EACCES;
1121 return -EIO;
1122 }
1e999736 1123
c728a914
TH
1124 if (lba48)
1125 *max_sectors = ata_tf_to_lba48(&tf);
1126 else
1127 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1128 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1129 (*max_sectors)--;
c728a914 1130 return 0;
1e999736
AC
1131}
1132
1133/**
c728a914
TH
1134 * ata_set_max_sectors - Set max sectors
1135 * @dev: target device
6b38d1d1 1136 * @new_sectors: new max sectors value to set for the device
1e999736 1137 *
c728a914
TH
1138 * Set max sectors of @dev to @new_sectors.
1139 *
1140 * RETURNS:
1141 * 0 on success, -EACCES if command is aborted or denied (due to
1142 * previous non-volatile SET_MAX) by the drive. -EIO on other
1143 * errors.
1e999736 1144 */
05027adc 1145static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1146{
c728a914 1147 unsigned int err_mask;
1e999736 1148 struct ata_taskfile tf;
c728a914 1149 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1150
1151 new_sectors--;
1152
1153 ata_tf_init(dev, &tf);
1154
1e999736 1155 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1156
1157 if (lba48) {
1158 tf.command = ATA_CMD_SET_MAX_EXT;
1159 tf.flags |= ATA_TFLAG_LBA48;
1160
1161 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1162 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1163 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1164 } else {
c728a914
TH
1165 tf.command = ATA_CMD_SET_MAX;
1166
1e582ba4
TH
1167 tf.device |= (new_sectors >> 24) & 0xf;
1168 }
1169
1e999736 1170 tf.protocol |= ATA_PROT_NODATA;
c728a914 1171 tf.device |= ATA_LBA;
1e999736
AC
1172
1173 tf.lbal = (new_sectors >> 0) & 0xff;
1174 tf.lbam = (new_sectors >> 8) & 0xff;
1175 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1176
2b789108 1177 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1178 if (err_mask) {
1179 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1180 "max address (err_mask=0x%x)\n", err_mask);
1181 if (err_mask == AC_ERR_DEV &&
1182 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1183 return -EACCES;
1184 return -EIO;
1185 }
1186
c728a914 1187 return 0;
1e999736
AC
1188}
1189
1190/**
1191 * ata_hpa_resize - Resize a device with an HPA set
1192 * @dev: Device to resize
1193 *
1194 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1195 * it if required to the full size of the media. The caller must check
1196 * the drive has the HPA feature set enabled.
05027adc
TH
1197 *
1198 * RETURNS:
1199 * 0 on success, -errno on failure.
1e999736 1200 */
05027adc 1201static int ata_hpa_resize(struct ata_device *dev)
1e999736 1202{
05027adc
TH
1203 struct ata_eh_context *ehc = &dev->link->eh_context;
1204 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1205 u64 sectors = ata_id_n_sectors(dev->id);
1206 u64 native_sectors;
c728a914 1207 int rc;
a617c09f 1208
05027adc
TH
1209 /* do we need to do it? */
1210 if (dev->class != ATA_DEV_ATA ||
1211 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1212 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1213 return 0;
1e999736 1214
05027adc
TH
1215 /* read native max address */
1216 rc = ata_read_native_max_address(dev, &native_sectors);
1217 if (rc) {
1218 /* If HPA isn't going to be unlocked, skip HPA
1219 * resizing from the next try.
1220 */
1221 if (!ata_ignore_hpa) {
1222 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1223 "broken, will skip HPA handling\n");
1224 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1225
1226 /* we can continue if device aborted the command */
1227 if (rc == -EACCES)
1228 rc = 0;
1e999736 1229 }
37301a55 1230
05027adc
TH
1231 return rc;
1232 }
1233
1234 /* nothing to do? */
1235 if (native_sectors <= sectors || !ata_ignore_hpa) {
1236 if (!print_info || native_sectors == sectors)
1237 return 0;
1238
1239 if (native_sectors > sectors)
1240 ata_dev_printk(dev, KERN_INFO,
1241 "HPA detected: current %llu, native %llu\n",
1242 (unsigned long long)sectors,
1243 (unsigned long long)native_sectors);
1244 else if (native_sectors < sectors)
1245 ata_dev_printk(dev, KERN_WARNING,
1246 "native sectors (%llu) is smaller than "
1247 "sectors (%llu)\n",
1248 (unsigned long long)native_sectors,
1249 (unsigned long long)sectors);
1250 return 0;
1251 }
1252
1253 /* let's unlock HPA */
1254 rc = ata_set_max_sectors(dev, native_sectors);
1255 if (rc == -EACCES) {
1256 /* if device aborted the command, skip HPA resizing */
1257 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1258 "(%llu -> %llu), skipping HPA handling\n",
1259 (unsigned long long)sectors,
1260 (unsigned long long)native_sectors);
1261 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1262 return 0;
1263 } else if (rc)
1264 return rc;
1265
1266 /* re-read IDENTIFY data */
1267 rc = ata_dev_reread_id(dev, 0);
1268 if (rc) {
1269 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1270 "data after HPA resizing\n");
1271 return rc;
1272 }
1273
1274 if (print_info) {
1275 u64 new_sectors = ata_id_n_sectors(dev->id);
1276 ata_dev_printk(dev, KERN_INFO,
1277 "HPA unlocked: %llu -> %llu, native %llu\n",
1278 (unsigned long long)sectors,
1279 (unsigned long long)new_sectors,
1280 (unsigned long long)native_sectors);
1281 }
1282
1283 return 0;
1e999736
AC
1284}
1285
10305f0f
AC
1286/**
1287 * ata_id_to_dma_mode - Identify DMA mode from id block
1288 * @dev: device to identify
cc261267 1289 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1290 *
1291 * Set up the timing values for the device based upon the identify
1292 * reported values for the DMA mode. This function is used by drivers
1293 * which rely upon firmware configured modes, but wish to report the
1294 * mode correctly when possible.
1295 *
1296 * In addition we emit similarly formatted messages to the default
1297 * ata_dev_set_mode handler, in order to provide consistency of
1298 * presentation.
1299 */
1300
1301void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1302{
1303 unsigned int mask;
1304 u8 mode;
1305
1306 /* Pack the DMA modes */
1307 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1308 if (dev->id[53] & 0x04)
1309 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1310
1311 /* Select the mode in use */
1312 mode = ata_xfer_mask2mode(mask);
1313
1314 if (mode != 0) {
1315 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1316 ata_mode_string(mask));
1317 } else {
1318 /* SWDMA perhaps ? */
1319 mode = unknown;
1320 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1321 }
1322
1323 /* Configure the device reporting */
1324 dev->xfer_mode = mode;
1325 dev->xfer_shift = ata_xfer_mode2shift(mode);
1326}
1327
0baab86b
EF
1328/**
1329 * ata_noop_dev_select - Select device 0/1 on ATA bus
1330 * @ap: ATA channel to manipulate
1331 * @device: ATA device (numbered from zero) to select
1332 *
1333 * This function performs no actual function.
1334 *
1335 * May be used as the dev_select() entry in ata_port_operations.
1336 *
1337 * LOCKING:
1338 * caller.
1339 */
2dcb407e 1340void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1341{
1342}
1343
0baab86b 1344
1da177e4
LT
1345/**
1346 * ata_std_dev_select - Select device 0/1 on ATA bus
1347 * @ap: ATA channel to manipulate
1348 * @device: ATA device (numbered from zero) to select
1349 *
1350 * Use the method defined in the ATA specification to
1351 * make either device 0, or device 1, active on the
0baab86b
EF
1352 * ATA channel. Works with both PIO and MMIO.
1353 *
1354 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1355 *
1356 * LOCKING:
1357 * caller.
1358 */
1359
2dcb407e 1360void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1361{
1362 u8 tmp;
1363
1364 if (device == 0)
1365 tmp = ATA_DEVICE_OBS;
1366 else
1367 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1368
0d5ff566 1369 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1370 ata_pause(ap); /* needed; also flushes, for mmio */
1371}
1372
1373/**
1374 * ata_dev_select - Select device 0/1 on ATA bus
1375 * @ap: ATA channel to manipulate
1376 * @device: ATA device (numbered from zero) to select
1377 * @wait: non-zero to wait for Status register BSY bit to clear
1378 * @can_sleep: non-zero if context allows sleeping
1379 *
1380 * Use the method defined in the ATA specification to
1381 * make either device 0, or device 1, active on the
1382 * ATA channel.
1383 *
1384 * This is a high-level version of ata_std_dev_select(),
1385 * which additionally provides the services of inserting
1386 * the proper pauses and status polling, where needed.
1387 *
1388 * LOCKING:
1389 * caller.
1390 */
1391
1392void ata_dev_select(struct ata_port *ap, unsigned int device,
1393 unsigned int wait, unsigned int can_sleep)
1394{
88574551 1395 if (ata_msg_probe(ap))
44877b4e
TH
1396 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1397 "device %u, wait %u\n", device, wait);
1da177e4
LT
1398
1399 if (wait)
1400 ata_wait_idle(ap);
1401
1402 ap->ops->dev_select(ap, device);
1403
1404 if (wait) {
9af5c9c9 1405 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1406 msleep(150);
1407 ata_wait_idle(ap);
1408 }
1409}
1410
1411/**
1412 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1413 * @id: IDENTIFY DEVICE page to dump
1da177e4 1414 *
0bd3300a
TH
1415 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1416 * page.
1da177e4
LT
1417 *
1418 * LOCKING:
1419 * caller.
1420 */
1421
0bd3300a 1422static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1423{
1424 DPRINTK("49==0x%04x "
1425 "53==0x%04x "
1426 "63==0x%04x "
1427 "64==0x%04x "
1428 "75==0x%04x \n",
0bd3300a
TH
1429 id[49],
1430 id[53],
1431 id[63],
1432 id[64],
1433 id[75]);
1da177e4
LT
1434 DPRINTK("80==0x%04x "
1435 "81==0x%04x "
1436 "82==0x%04x "
1437 "83==0x%04x "
1438 "84==0x%04x \n",
0bd3300a
TH
1439 id[80],
1440 id[81],
1441 id[82],
1442 id[83],
1443 id[84]);
1da177e4
LT
1444 DPRINTK("88==0x%04x "
1445 "93==0x%04x\n",
0bd3300a
TH
1446 id[88],
1447 id[93]);
1da177e4
LT
1448}
1449
cb95d562
TH
1450/**
1451 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1452 * @id: IDENTIFY data to compute xfer mask from
1453 *
1454 * Compute the xfermask for this device. This is not as trivial
1455 * as it seems if we must consider early devices correctly.
1456 *
1457 * FIXME: pre IDE drive timing (do we care ?).
1458 *
1459 * LOCKING:
1460 * None.
1461 *
1462 * RETURNS:
1463 * Computed xfermask
1464 */
1465static unsigned int ata_id_xfermask(const u16 *id)
1466{
1467 unsigned int pio_mask, mwdma_mask, udma_mask;
1468
1469 /* Usual case. Word 53 indicates word 64 is valid */
1470 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1471 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1472 pio_mask <<= 3;
1473 pio_mask |= 0x7;
1474 } else {
1475 /* If word 64 isn't valid then Word 51 high byte holds
1476 * the PIO timing number for the maximum. Turn it into
1477 * a mask.
1478 */
7a0f1c8a 1479 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1480 if (mode < 5) /* Valid PIO range */
2dcb407e 1481 pio_mask = (2 << mode) - 1;
46767aeb
AC
1482 else
1483 pio_mask = 1;
cb95d562
TH
1484
1485 /* But wait.. there's more. Design your standards by
1486 * committee and you too can get a free iordy field to
1487 * process. However its the speeds not the modes that
1488 * are supported... Note drivers using the timing API
1489 * will get this right anyway
1490 */
1491 }
1492
1493 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1494
b352e57d
AC
1495 if (ata_id_is_cfa(id)) {
1496 /*
1497 * Process compact flash extended modes
1498 */
1499 int pio = id[163] & 0x7;
1500 int dma = (id[163] >> 3) & 7;
1501
1502 if (pio)
1503 pio_mask |= (1 << 5);
1504 if (pio > 1)
1505 pio_mask |= (1 << 6);
1506 if (dma)
1507 mwdma_mask |= (1 << 3);
1508 if (dma > 1)
1509 mwdma_mask |= (1 << 4);
1510 }
1511
fb21f0d0
TH
1512 udma_mask = 0;
1513 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1514 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1515
1516 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1517}
1518
86e45b6b
TH
1519/**
1520 * ata_port_queue_task - Queue port_task
1521 * @ap: The ata_port to queue port_task for
e2a7f77a 1522 * @fn: workqueue function to be scheduled
65f27f38 1523 * @data: data for @fn to use
e2a7f77a 1524 * @delay: delay time for workqueue function
86e45b6b
TH
1525 *
1526 * Schedule @fn(@data) for execution after @delay jiffies using
1527 * port_task. There is one port_task per port and it's the
1528 * user(low level driver)'s responsibility to make sure that only
1529 * one task is active at any given time.
1530 *
1531 * libata core layer takes care of synchronization between
1532 * port_task and EH. ata_port_queue_task() may be ignored for EH
1533 * synchronization.
1534 *
1535 * LOCKING:
1536 * Inherited from caller.
1537 */
65f27f38 1538void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1539 unsigned long delay)
1540{
65f27f38
DH
1541 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1542 ap->port_task_data = data;
86e45b6b 1543
45a66c1c
ON
1544 /* may fail if ata_port_flush_task() in progress */
1545 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1546}
1547
1548/**
1549 * ata_port_flush_task - Flush port_task
1550 * @ap: The ata_port to flush port_task for
1551 *
1552 * After this function completes, port_task is guranteed not to
1553 * be running or scheduled.
1554 *
1555 * LOCKING:
1556 * Kernel thread context (may sleep)
1557 */
1558void ata_port_flush_task(struct ata_port *ap)
1559{
86e45b6b
TH
1560 DPRINTK("ENTER\n");
1561
45a66c1c 1562 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1563
0dd4b21f
BP
1564 if (ata_msg_ctl(ap))
1565 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1566}
1567
7102d230 1568static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1569{
77853bf2 1570 struct completion *waiting = qc->private_data;
a2a7a662 1571
a2a7a662 1572 complete(waiting);
a2a7a662
TH
1573}
1574
1575/**
2432697b 1576 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1577 * @dev: Device to which the command is sent
1578 * @tf: Taskfile registers for the command and the result
d69cf37d 1579 * @cdb: CDB for packet command
a2a7a662 1580 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1581 * @sgl: sg list for the data buffer of the command
2432697b 1582 * @n_elem: Number of sg entries
2b789108 1583 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1584 *
1585 * Executes libata internal command with timeout. @tf contains
1586 * command on entry and result on return. Timeout and error
1587 * conditions are reported via return value. No recovery action
1588 * is taken after a command times out. It's caller's duty to
1589 * clean up after timeout.
1590 *
1591 * LOCKING:
1592 * None. Should be called with kernel context, might sleep.
551e8889
TH
1593 *
1594 * RETURNS:
1595 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1596 */
2432697b
TH
1597unsigned ata_exec_internal_sg(struct ata_device *dev,
1598 struct ata_taskfile *tf, const u8 *cdb,
87260216 1599 int dma_dir, struct scatterlist *sgl,
2b789108 1600 unsigned int n_elem, unsigned long timeout)
a2a7a662 1601{
9af5c9c9
TH
1602 struct ata_link *link = dev->link;
1603 struct ata_port *ap = link->ap;
a2a7a662
TH
1604 u8 command = tf->command;
1605 struct ata_queued_cmd *qc;
2ab7db1f 1606 unsigned int tag, preempted_tag;
dedaf2b0 1607 u32 preempted_sactive, preempted_qc_active;
da917d69 1608 int preempted_nr_active_links;
60be6b9a 1609 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1610 unsigned long flags;
77853bf2 1611 unsigned int err_mask;
d95a717f 1612 int rc;
a2a7a662 1613
ba6a1308 1614 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1615
e3180499 1616 /* no internal command while frozen */
b51e9e5d 1617 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1618 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1619 return AC_ERR_SYSTEM;
1620 }
1621
2ab7db1f 1622 /* initialize internal qc */
a2a7a662 1623
2ab7db1f
TH
1624 /* XXX: Tag 0 is used for drivers with legacy EH as some
1625 * drivers choke if any other tag is given. This breaks
1626 * ata_tag_internal() test for those drivers. Don't use new
1627 * EH stuff without converting to it.
1628 */
1629 if (ap->ops->error_handler)
1630 tag = ATA_TAG_INTERNAL;
1631 else
1632 tag = 0;
1633
6cec4a39 1634 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1635 BUG();
f69499f4 1636 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1637
1638 qc->tag = tag;
1639 qc->scsicmd = NULL;
1640 qc->ap = ap;
1641 qc->dev = dev;
1642 ata_qc_reinit(qc);
1643
9af5c9c9
TH
1644 preempted_tag = link->active_tag;
1645 preempted_sactive = link->sactive;
dedaf2b0 1646 preempted_qc_active = ap->qc_active;
da917d69 1647 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1648 link->active_tag = ATA_TAG_POISON;
1649 link->sactive = 0;
dedaf2b0 1650 ap->qc_active = 0;
da917d69 1651 ap->nr_active_links = 0;
2ab7db1f
TH
1652
1653 /* prepare & issue qc */
a2a7a662 1654 qc->tf = *tf;
d69cf37d
TH
1655 if (cdb)
1656 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1657 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1658 qc->dma_dir = dma_dir;
1659 if (dma_dir != DMA_NONE) {
2432697b 1660 unsigned int i, buflen = 0;
87260216 1661 struct scatterlist *sg;
2432697b 1662
87260216
JA
1663 for_each_sg(sgl, sg, n_elem, i)
1664 buflen += sg->length;
2432697b 1665
87260216 1666 ata_sg_init(qc, sgl, n_elem);
49c80429 1667 qc->nbytes = buflen;
a2a7a662
TH
1668 }
1669
77853bf2 1670 qc->private_data = &wait;
a2a7a662
TH
1671 qc->complete_fn = ata_qc_complete_internal;
1672
8e0e694a 1673 ata_qc_issue(qc);
a2a7a662 1674
ba6a1308 1675 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1676
2b789108
TH
1677 if (!timeout)
1678 timeout = ata_probe_timeout * 1000 / HZ;
1679
1680 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1681
1682 ata_port_flush_task(ap);
41ade50c 1683
d95a717f 1684 if (!rc) {
ba6a1308 1685 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1686
1687 /* We're racing with irq here. If we lose, the
1688 * following test prevents us from completing the qc
d95a717f
TH
1689 * twice. If we win, the port is frozen and will be
1690 * cleaned up by ->post_internal_cmd().
a2a7a662 1691 */
77853bf2 1692 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1693 qc->err_mask |= AC_ERR_TIMEOUT;
1694
1695 if (ap->ops->error_handler)
1696 ata_port_freeze(ap);
1697 else
1698 ata_qc_complete(qc);
f15a1daf 1699
0dd4b21f
BP
1700 if (ata_msg_warn(ap))
1701 ata_dev_printk(dev, KERN_WARNING,
88574551 1702 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1703 }
1704
ba6a1308 1705 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1706 }
1707
d95a717f
TH
1708 /* do post_internal_cmd */
1709 if (ap->ops->post_internal_cmd)
1710 ap->ops->post_internal_cmd(qc);
1711
a51d644a
TH
1712 /* perform minimal error analysis */
1713 if (qc->flags & ATA_QCFLAG_FAILED) {
1714 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1715 qc->err_mask |= AC_ERR_DEV;
1716
1717 if (!qc->err_mask)
1718 qc->err_mask |= AC_ERR_OTHER;
1719
1720 if (qc->err_mask & ~AC_ERR_OTHER)
1721 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1722 }
1723
15869303 1724 /* finish up */
ba6a1308 1725 spin_lock_irqsave(ap->lock, flags);
15869303 1726
e61e0672 1727 *tf = qc->result_tf;
77853bf2
TH
1728 err_mask = qc->err_mask;
1729
1730 ata_qc_free(qc);
9af5c9c9
TH
1731 link->active_tag = preempted_tag;
1732 link->sactive = preempted_sactive;
dedaf2b0 1733 ap->qc_active = preempted_qc_active;
da917d69 1734 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1735
1f7dd3e9
TH
1736 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1737 * Until those drivers are fixed, we detect the condition
1738 * here, fail the command with AC_ERR_SYSTEM and reenable the
1739 * port.
1740 *
1741 * Note that this doesn't change any behavior as internal
1742 * command failure results in disabling the device in the
1743 * higher layer for LLDDs without new reset/EH callbacks.
1744 *
1745 * Kill the following code as soon as those drivers are fixed.
1746 */
198e0fed 1747 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1748 err_mask |= AC_ERR_SYSTEM;
1749 ata_port_probe(ap);
1750 }
1751
ba6a1308 1752 spin_unlock_irqrestore(ap->lock, flags);
15869303 1753
77853bf2 1754 return err_mask;
a2a7a662
TH
1755}
1756
2432697b 1757/**
33480a0e 1758 * ata_exec_internal - execute libata internal command
2432697b
TH
1759 * @dev: Device to which the command is sent
1760 * @tf: Taskfile registers for the command and the result
1761 * @cdb: CDB for packet command
1762 * @dma_dir: Data tranfer direction of the command
1763 * @buf: Data buffer of the command
1764 * @buflen: Length of data buffer
2b789108 1765 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1766 *
1767 * Wrapper around ata_exec_internal_sg() which takes simple
1768 * buffer instead of sg list.
1769 *
1770 * LOCKING:
1771 * None. Should be called with kernel context, might sleep.
1772 *
1773 * RETURNS:
1774 * Zero on success, AC_ERR_* mask on failure
1775 */
1776unsigned ata_exec_internal(struct ata_device *dev,
1777 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1778 int dma_dir, void *buf, unsigned int buflen,
1779 unsigned long timeout)
2432697b 1780{
33480a0e
TH
1781 struct scatterlist *psg = NULL, sg;
1782 unsigned int n_elem = 0;
2432697b 1783
33480a0e
TH
1784 if (dma_dir != DMA_NONE) {
1785 WARN_ON(!buf);
1786 sg_init_one(&sg, buf, buflen);
1787 psg = &sg;
1788 n_elem++;
1789 }
2432697b 1790
2b789108
TH
1791 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1792 timeout);
2432697b
TH
1793}
1794
977e6b9f
TH
1795/**
1796 * ata_do_simple_cmd - execute simple internal command
1797 * @dev: Device to which the command is sent
1798 * @cmd: Opcode to execute
1799 *
1800 * Execute a 'simple' command, that only consists of the opcode
1801 * 'cmd' itself, without filling any other registers
1802 *
1803 * LOCKING:
1804 * Kernel thread context (may sleep).
1805 *
1806 * RETURNS:
1807 * Zero on success, AC_ERR_* mask on failure
e58eb583 1808 */
77b08fb5 1809unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1810{
1811 struct ata_taskfile tf;
e58eb583
TH
1812
1813 ata_tf_init(dev, &tf);
1814
1815 tf.command = cmd;
1816 tf.flags |= ATA_TFLAG_DEVICE;
1817 tf.protocol = ATA_PROT_NODATA;
1818
2b789108 1819 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1820}
1821
1bc4ccff
AC
1822/**
1823 * ata_pio_need_iordy - check if iordy needed
1824 * @adev: ATA device
1825 *
1826 * Check if the current speed of the device requires IORDY. Used
1827 * by various controllers for chip configuration.
1828 */
a617c09f 1829
1bc4ccff
AC
1830unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1831{
432729f0
AC
1832 /* Controller doesn't support IORDY. Probably a pointless check
1833 as the caller should know this */
9af5c9c9 1834 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1835 return 0;
432729f0
AC
1836 /* PIO3 and higher it is mandatory */
1837 if (adev->pio_mode > XFER_PIO_2)
1838 return 1;
1839 /* We turn it on when possible */
1840 if (ata_id_has_iordy(adev->id))
1bc4ccff 1841 return 1;
432729f0
AC
1842 return 0;
1843}
2e9edbf8 1844
432729f0
AC
1845/**
1846 * ata_pio_mask_no_iordy - Return the non IORDY mask
1847 * @adev: ATA device
1848 *
1849 * Compute the highest mode possible if we are not using iordy. Return
1850 * -1 if no iordy mode is available.
1851 */
a617c09f 1852
432729f0
AC
1853static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1854{
1bc4ccff 1855 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1856 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1857 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1858 /* Is the speed faster than the drive allows non IORDY ? */
1859 if (pio) {
1860 /* This is cycle times not frequency - watch the logic! */
1861 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1862 return 3 << ATA_SHIFT_PIO;
1863 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1864 }
1865 }
432729f0 1866 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1867}
1868
1da177e4 1869/**
49016aca 1870 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1871 * @dev: target device
1872 * @p_class: pointer to class of the target device (may be changed)
bff04647 1873 * @flags: ATA_READID_* flags
fe635c7e 1874 * @id: buffer to read IDENTIFY data into
1da177e4 1875 *
49016aca
TH
1876 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1877 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1878 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1879 * for pre-ATA4 drives.
1da177e4 1880 *
50a99018 1881 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1882 * now we abort if we hit that case.
50a99018 1883 *
1da177e4 1884 * LOCKING:
49016aca
TH
1885 * Kernel thread context (may sleep)
1886 *
1887 * RETURNS:
1888 * 0 on success, -errno otherwise.
1da177e4 1889 */
a9beec95 1890int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1891 unsigned int flags, u16 *id)
1da177e4 1892{
9af5c9c9 1893 struct ata_port *ap = dev->link->ap;
49016aca 1894 unsigned int class = *p_class;
a0123703 1895 struct ata_taskfile tf;
49016aca
TH
1896 unsigned int err_mask = 0;
1897 const char *reason;
54936f8b 1898 int may_fallback = 1, tried_spinup = 0;
49016aca 1899 int rc;
1da177e4 1900
0dd4b21f 1901 if (ata_msg_ctl(ap))
44877b4e 1902 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1903
49016aca 1904 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1905 retry:
3373efd8 1906 ata_tf_init(dev, &tf);
a0123703 1907
49016aca
TH
1908 switch (class) {
1909 case ATA_DEV_ATA:
a0123703 1910 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1911 break;
1912 case ATA_DEV_ATAPI:
a0123703 1913 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1914 break;
1915 default:
1916 rc = -ENODEV;
1917 reason = "unsupported class";
1918 goto err_out;
1da177e4
LT
1919 }
1920
a0123703 1921 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1922
1923 /* Some devices choke if TF registers contain garbage. Make
1924 * sure those are properly initialized.
1925 */
1926 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1927
1928 /* Device presence detection is unreliable on some
1929 * controllers. Always poll IDENTIFY if available.
1930 */
1931 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1932
3373efd8 1933 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1934 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1935 if (err_mask) {
800b3996 1936 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1937 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1938 ap->print_id, dev->devno);
55a8e2c8
TH
1939 return -ENOENT;
1940 }
1941
54936f8b
TH
1942 /* Device or controller might have reported the wrong
1943 * device class. Give a shot at the other IDENTIFY if
1944 * the current one is aborted by the device.
1945 */
1946 if (may_fallback &&
1947 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1948 may_fallback = 0;
1949
1950 if (class == ATA_DEV_ATA)
1951 class = ATA_DEV_ATAPI;
1952 else
1953 class = ATA_DEV_ATA;
1954 goto retry;
1955 }
1956
49016aca
TH
1957 rc = -EIO;
1958 reason = "I/O error";
1da177e4
LT
1959 goto err_out;
1960 }
1961
54936f8b
TH
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
49016aca 1967 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1968
49016aca 1969 /* sanity check */
a4f5749b 1970 rc = -EINVAL;
6070068b 1971 reason = "device reports invalid type";
a4f5749b
TH
1972
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
49016aca
TH
1979 }
1980
169439c2
ML
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
218f3d30 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1989 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
bff04647 2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
50a99018
AC
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
50a99018
AC
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * shoud never trigger.
49016aca
TH
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
bff04647 2025 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
fe635c7e 2031
49016aca
TH
2032 return 0;
2033
2034 err_out:
88574551 2035 if (ata_msg_warn(ap))
0dd4b21f 2036 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2037 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2038 return rc;
2039}
2040
3373efd8 2041static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2042{
9af5c9c9
TH
2043 struct ata_port *ap = dev->link->ap;
2044 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2045}
2046
a6e6ce8e
TH
2047static void ata_dev_config_ncq(struct ata_device *dev,
2048 char *desc, size_t desc_sz)
2049{
9af5c9c9 2050 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2051 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2052
2053 if (!ata_id_has_ncq(dev->id)) {
2054 desc[0] = '\0';
2055 return;
2056 }
75683fe7 2057 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2058 snprintf(desc, desc_sz, "NCQ (not used)");
2059 return;
2060 }
a6e6ce8e 2061 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2062 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2063 dev->flags |= ATA_DFLAG_NCQ;
2064 }
2065
2066 if (hdepth >= ddepth)
2067 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2068 else
2069 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2070}
2071
49016aca 2072/**
ffeae418 2073 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2074 * @dev: Target device to configure
2075 *
2076 * Configure @dev according to @dev->id. Generic and low-level
2077 * driver specific fixups are also applied.
49016aca
TH
2078 *
2079 * LOCKING:
ffeae418
TH
2080 * Kernel thread context (may sleep)
2081 *
2082 * RETURNS:
2083 * 0 on success, -errno otherwise
49016aca 2084 */
efdaedc4 2085int ata_dev_configure(struct ata_device *dev)
49016aca 2086{
9af5c9c9
TH
2087 struct ata_port *ap = dev->link->ap;
2088 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2089 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2090 const u16 *id = dev->id;
ff8854b2 2091 unsigned int xfer_mask;
b352e57d 2092 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2093 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2094 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2095 int rc;
49016aca 2096
0dd4b21f 2097 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2098 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2099 __FUNCTION__);
ffeae418 2100 return 0;
49016aca
TH
2101 }
2102
0dd4b21f 2103 if (ata_msg_probe(ap))
44877b4e 2104 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2105
75683fe7
TH
2106 /* set horkage */
2107 dev->horkage |= ata_dev_blacklisted(dev);
2108
6746544c
TH
2109 /* let ACPI work its magic */
2110 rc = ata_acpi_on_devcfg(dev);
2111 if (rc)
2112 return rc;
08573a86 2113
05027adc
TH
2114 /* massage HPA, do it early as it might change IDENTIFY data */
2115 rc = ata_hpa_resize(dev);
2116 if (rc)
2117 return rc;
2118
c39f5ebe 2119 /* print device capabilities */
0dd4b21f 2120 if (ata_msg_probe(ap))
88574551
TH
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2123 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2124 __FUNCTION__,
f15a1daf
TH
2125 id[49], id[82], id[83], id[84],
2126 id[85], id[86], id[87], id[88]);
c39f5ebe 2127
208a9933 2128 /* initialize to-be-configured parameters */
ea1dd4e1 2129 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2130 dev->max_sectors = 0;
2131 dev->cdb_len = 0;
2132 dev->n_sectors = 0;
2133 dev->cylinders = 0;
2134 dev->heads = 0;
2135 dev->sectors = 0;
2136
1da177e4
LT
2137 /*
2138 * common ATA, ATAPI feature tests
2139 */
2140
ff8854b2 2141 /* find max transfer mode; for printk only */
1148c3a7 2142 xfer_mask = ata_id_xfermask(id);
1da177e4 2143
0dd4b21f
BP
2144 if (ata_msg_probe(ap))
2145 ata_dump_id(id);
1da177e4 2146
ef143d57
AL
2147 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2148 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2149 sizeof(fwrevbuf));
2150
2151 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2152 sizeof(modelbuf));
2153
1da177e4
LT
2154 /* ATA-specific feature tests */
2155 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2156 if (ata_id_is_cfa(id)) {
2157 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2158 ata_dev_printk(dev, KERN_WARNING,
2159 "supports DRM functions and may "
2160 "not be fully accessable.\n");
b352e57d 2161 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2162 } else
2163 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2164
1148c3a7 2165 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2166
3f64f565
EM
2167 if (dev->id[59] & 0x100)
2168 dev->multi_count = dev->id[59] & 0xff;
2169
1148c3a7 2170 if (ata_id_has_lba(id)) {
4c2d721a 2171 const char *lba_desc;
a6e6ce8e 2172 char ncq_desc[20];
8bf62ece 2173
4c2d721a
TH
2174 lba_desc = "LBA";
2175 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2176 if (ata_id_has_lba48(id)) {
8bf62ece 2177 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2178 lba_desc = "LBA48";
6fc49adb
TH
2179
2180 if (dev->n_sectors >= (1UL << 28) &&
2181 ata_id_has_flush_ext(id))
2182 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2183 }
8bf62ece 2184
a6e6ce8e
TH
2185 /* config NCQ */
2186 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2187
8bf62ece 2188 /* print device info to dmesg */
3f64f565
EM
2189 if (ata_msg_drv(ap) && print_info) {
2190 ata_dev_printk(dev, KERN_INFO,
2191 "%s: %s, %s, max %s\n",
2192 revbuf, modelbuf, fwrevbuf,
2193 ata_mode_string(xfer_mask));
2194 ata_dev_printk(dev, KERN_INFO,
2195 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2196 (unsigned long long)dev->n_sectors,
3f64f565
EM
2197 dev->multi_count, lba_desc, ncq_desc);
2198 }
ffeae418 2199 } else {
8bf62ece
AL
2200 /* CHS */
2201
2202 /* Default translation */
1148c3a7
TH
2203 dev->cylinders = id[1];
2204 dev->heads = id[3];
2205 dev->sectors = id[6];
8bf62ece 2206
1148c3a7 2207 if (ata_id_current_chs_valid(id)) {
8bf62ece 2208 /* Current CHS translation is valid. */
1148c3a7
TH
2209 dev->cylinders = id[54];
2210 dev->heads = id[55];
2211 dev->sectors = id[56];
8bf62ece
AL
2212 }
2213
2214 /* print device info to dmesg */
3f64f565 2215 if (ata_msg_drv(ap) && print_info) {
88574551 2216 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2217 "%s: %s, %s, max %s\n",
2218 revbuf, modelbuf, fwrevbuf,
2219 ata_mode_string(xfer_mask));
a84471fe 2220 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2221 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2222 (unsigned long long)dev->n_sectors,
2223 dev->multi_count, dev->cylinders,
2224 dev->heads, dev->sectors);
2225 }
07f6f7d0
AL
2226 }
2227
6e7846e9 2228 dev->cdb_len = 16;
1da177e4
LT
2229 }
2230
2231 /* ATAPI-specific feature tests */
2c13b7ce 2232 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2233 const char *cdb_intr_string = "";
2234 const char *atapi_an_string = "";
7d77b247 2235 u32 sntf;
08a556db 2236
1148c3a7 2237 rc = atapi_cdb_len(id);
1da177e4 2238 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2239 if (ata_msg_warn(ap))
88574551
TH
2240 ata_dev_printk(dev, KERN_WARNING,
2241 "unsupported CDB len\n");
ffeae418 2242 rc = -EINVAL;
1da177e4
LT
2243 goto err_out_nosup;
2244 }
6e7846e9 2245 dev->cdb_len = (unsigned int) rc;
1da177e4 2246
7d77b247
TH
2247 /* Enable ATAPI AN if both the host and device have
2248 * the support. If PMP is attached, SNTF is required
2249 * to enable ATAPI AN to discern between PHY status
2250 * changed notifications and ATAPI ANs.
9f45cbd3 2251 */
7d77b247
TH
2252 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2253 (!ap->nr_pmp_links ||
2254 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2255 unsigned int err_mask;
2256
9f45cbd3 2257 /* issue SET feature command to turn this on */
218f3d30
JG
2258 err_mask = ata_dev_set_feature(dev,
2259 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2260 if (err_mask)
9f45cbd3 2261 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2262 "failed to enable ATAPI AN "
2263 "(err_mask=0x%x)\n", err_mask);
2264 else {
9f45cbd3 2265 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2266 atapi_an_string = ", ATAPI AN";
2267 }
9f45cbd3
KCA
2268 }
2269
08a556db 2270 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2271 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2272 cdb_intr_string = ", CDB intr";
2273 }
312f7da2 2274
1da177e4 2275 /* print device info to dmesg */
5afc8142 2276 if (ata_msg_drv(ap) && print_info)
ef143d57 2277 ata_dev_printk(dev, KERN_INFO,
854c73a2 2278 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2279 modelbuf, fwrevbuf,
12436c30 2280 ata_mode_string(xfer_mask),
854c73a2 2281 cdb_intr_string, atapi_an_string);
1da177e4
LT
2282 }
2283
914ed354
TH
2284 /* determine max_sectors */
2285 dev->max_sectors = ATA_MAX_SECTORS;
2286 if (dev->flags & ATA_DFLAG_LBA48)
2287 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2288
ca77329f
KCA
2289 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2290 if (ata_id_has_hipm(dev->id))
2291 dev->flags |= ATA_DFLAG_HIPM;
2292 if (ata_id_has_dipm(dev->id))
2293 dev->flags |= ATA_DFLAG_DIPM;
2294 }
2295
93590859
AC
2296 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2297 /* Let the user know. We don't want to disallow opens for
2298 rescue purposes, or in case the vendor is just a blithering
2299 idiot */
2dcb407e 2300 if (print_info) {
93590859
AC
2301 ata_dev_printk(dev, KERN_WARNING,
2302"Drive reports diagnostics failure. This may indicate a drive\n");
2303 ata_dev_printk(dev, KERN_WARNING,
2304"fault or invalid emulation. Contact drive vendor for information.\n");
2305 }
2306 }
2307
4b2f3ede 2308 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2309 if (ata_dev_knobble(dev)) {
5afc8142 2310 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2311 ata_dev_printk(dev, KERN_INFO,
2312 "applying bridge limits\n");
5a529139 2313 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2314 dev->max_sectors = ATA_MAX_SECTORS;
2315 }
2316
f8d8e579 2317 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2318 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2319 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2320 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2321 }
f8d8e579 2322
75683fe7 2323 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2324 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2325 dev->max_sectors);
18d6e9d5 2326
ca77329f
KCA
2327 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2328 dev->horkage |= ATA_HORKAGE_IPM;
2329
2330 /* reset link pm_policy for this port to no pm */
2331 ap->pm_policy = MAX_PERFORMANCE;
2332 }
2333
4b2f3ede 2334 if (ap->ops->dev_config)
cd0d3bbc 2335 ap->ops->dev_config(dev);
4b2f3ede 2336
0dd4b21f
BP
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2339 __FUNCTION__, ata_chk_status(ap));
ffeae418 2340 return 0;
1da177e4
LT
2341
2342err_out_nosup:
0dd4b21f 2343 if (ata_msg_probe(ap))
88574551
TH
2344 ata_dev_printk(dev, KERN_DEBUG,
2345 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2346 return rc;
1da177e4
LT
2347}
2348
be0d18df 2349/**
2e41e8e6 2350 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2351 * @ap: port
2352 *
2e41e8e6 2353 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2354 * detection.
2355 */
2356
2357int ata_cable_40wire(struct ata_port *ap)
2358{
2359 return ATA_CBL_PATA40;
2360}
2361
2362/**
2e41e8e6 2363 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2364 * @ap: port
2365 *
2e41e8e6 2366 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2367 * detection.
2368 */
2369
2370int ata_cable_80wire(struct ata_port *ap)
2371{
2372 return ATA_CBL_PATA80;
2373}
2374
2375/**
2376 * ata_cable_unknown - return unknown PATA cable.
2377 * @ap: port
2378 *
2379 * Helper method for drivers which have no PATA cable detection.
2380 */
2381
2382int ata_cable_unknown(struct ata_port *ap)
2383{
2384 return ATA_CBL_PATA_UNK;
2385}
2386
2387/**
2388 * ata_cable_sata - return SATA cable type
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have SATA cables
2392 */
2393
2394int ata_cable_sata(struct ata_port *ap)
2395{
2396 return ATA_CBL_SATA;
2397}
2398
1da177e4
LT
2399/**
2400 * ata_bus_probe - Reset and probe ATA bus
2401 * @ap: Bus to probe
2402 *
0cba632b
JG
2403 * Master ATA bus probing function. Initiates a hardware-dependent
2404 * bus reset, then attempts to identify any devices found on
2405 * the bus.
2406 *
1da177e4 2407 * LOCKING:
0cba632b 2408 * PCI/etc. bus probe sem.
1da177e4
LT
2409 *
2410 * RETURNS:
96072e69 2411 * Zero on success, negative errno otherwise.
1da177e4
LT
2412 */
2413
80289167 2414int ata_bus_probe(struct ata_port *ap)
1da177e4 2415{
28ca5c57 2416 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2417 int tries[ATA_MAX_DEVICES];
f58229f8 2418 int rc;
e82cbdb9 2419 struct ata_device *dev;
1da177e4 2420
28ca5c57 2421 ata_port_probe(ap);
c19ba8af 2422
f58229f8
TH
2423 ata_link_for_each_dev(dev, &ap->link)
2424 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2425
2426 retry:
cdeab114
TH
2427 ata_link_for_each_dev(dev, &ap->link) {
2428 /* If we issue an SRST then an ATA drive (not ATAPI)
2429 * may change configuration and be in PIO0 timing. If
2430 * we do a hard reset (or are coming from power on)
2431 * this is true for ATA or ATAPI. Until we've set a
2432 * suitable controller mode we should not touch the
2433 * bus as we may be talking too fast.
2434 */
2435 dev->pio_mode = XFER_PIO_0;
2436
2437 /* If the controller has a pio mode setup function
2438 * then use it to set the chipset to rights. Don't
2439 * touch the DMA setup as that will be dealt with when
2440 * configuring devices.
2441 */
2442 if (ap->ops->set_piomode)
2443 ap->ops->set_piomode(ap, dev);
2444 }
2445
2044470c 2446 /* reset and determine device classes */
52783c5d 2447 ap->ops->phy_reset(ap);
2061a47a 2448
f58229f8 2449 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2450 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2451 dev->class != ATA_DEV_UNKNOWN)
2452 classes[dev->devno] = dev->class;
2453 else
2454 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2455
52783c5d 2456 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2457 }
1da177e4 2458
52783c5d 2459 ata_port_probe(ap);
2044470c 2460
f31f0cc2
JG
2461 /* read IDENTIFY page and configure devices. We have to do the identify
2462 specific sequence bass-ackwards so that PDIAG- is released by
2463 the slave device */
2464
f58229f8
TH
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (tries[dev->devno])
2467 dev->class = classes[dev->devno];
ffeae418 2468
14d2bac1 2469 if (!ata_dev_enabled(dev))
ffeae418 2470 continue;
ffeae418 2471
bff04647
TH
2472 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2473 dev->id);
14d2bac1
TH
2474 if (rc)
2475 goto fail;
f31f0cc2
JG
2476 }
2477
be0d18df
AC
2478 /* Now ask for the cable type as PDIAG- should have been released */
2479 if (ap->ops->cable_detect)
2480 ap->cbl = ap->ops->cable_detect(ap);
2481
614fe29b
AC
2482 /* We may have SATA bridge glue hiding here irrespective of the
2483 reported cable types and sensed types */
2484 ata_link_for_each_dev(dev, &ap->link) {
2485 if (!ata_dev_enabled(dev))
2486 continue;
2487 /* SATA drives indicate we have a bridge. We don't know which
2488 end of the link the bridge is which is a problem */
2489 if (ata_id_is_sata(dev->id))
2490 ap->cbl = ATA_CBL_SATA;
2491 }
2492
f31f0cc2
JG
2493 /* After the identify sequence we can now set up the devices. We do
2494 this in the normal order so that the user doesn't get confused */
2495
f58229f8 2496 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2497 if (!ata_dev_enabled(dev))
2498 continue;
14d2bac1 2499
9af5c9c9 2500 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2501 rc = ata_dev_configure(dev);
9af5c9c9 2502 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2503 if (rc)
2504 goto fail;
1da177e4
LT
2505 }
2506
e82cbdb9 2507 /* configure transfer mode */
0260731f 2508 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2509 if (rc)
51713d35 2510 goto fail;
1da177e4 2511
f58229f8
TH
2512 ata_link_for_each_dev(dev, &ap->link)
2513 if (ata_dev_enabled(dev))
e82cbdb9 2514 return 0;
1da177e4 2515
e82cbdb9
TH
2516 /* no device present, disable port */
2517 ata_port_disable(ap);
96072e69 2518 return -ENODEV;
14d2bac1
TH
2519
2520 fail:
4ae72a1e
TH
2521 tries[dev->devno]--;
2522
14d2bac1
TH
2523 switch (rc) {
2524 case -EINVAL:
4ae72a1e 2525 /* eeek, something went very wrong, give up */
14d2bac1
TH
2526 tries[dev->devno] = 0;
2527 break;
4ae72a1e
TH
2528
2529 case -ENODEV:
2530 /* give it just one more chance */
2531 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2532 case -EIO:
4ae72a1e
TH
2533 if (tries[dev->devno] == 1) {
2534 /* This is the last chance, better to slow
2535 * down than lose it.
2536 */
936fd732 2537 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2538 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2539 }
14d2bac1
TH
2540 }
2541
4ae72a1e 2542 if (!tries[dev->devno])
3373efd8 2543 ata_dev_disable(dev);
ec573755 2544
14d2bac1 2545 goto retry;
1da177e4
LT
2546}
2547
2548/**
0cba632b
JG
2549 * ata_port_probe - Mark port as enabled
2550 * @ap: Port for which we indicate enablement
1da177e4 2551 *
0cba632b
JG
2552 * Modify @ap data structure such that the system
2553 * thinks that the entire port is enabled.
2554 *
cca3974e 2555 * LOCKING: host lock, or some other form of
0cba632b 2556 * serialization.
1da177e4
LT
2557 */
2558
2559void ata_port_probe(struct ata_port *ap)
2560{
198e0fed 2561 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2562}
2563
3be680b7
TH
2564/**
2565 * sata_print_link_status - Print SATA link status
936fd732 2566 * @link: SATA link to printk link status about
3be680b7
TH
2567 *
2568 * This function prints link speed and status of a SATA link.
2569 *
2570 * LOCKING:
2571 * None.
2572 */
936fd732 2573void sata_print_link_status(struct ata_link *link)
3be680b7 2574{
6d5f9732 2575 u32 sstatus, scontrol, tmp;
3be680b7 2576
936fd732 2577 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2578 return;
936fd732 2579 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2580
936fd732 2581 if (ata_link_online(link)) {
3be680b7 2582 tmp = (sstatus >> 4) & 0xf;
936fd732 2583 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2584 "SATA link up %s (SStatus %X SControl %X)\n",
2585 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2586 } else {
936fd732 2587 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2588 "SATA link down (SStatus %X SControl %X)\n",
2589 sstatus, scontrol);
3be680b7
TH
2590 }
2591}
2592
ebdfca6e
AC
2593/**
2594 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2595 * @adev: device
2596 *
2597 * Obtain the other device on the same cable, or if none is
2598 * present NULL is returned
2599 */
2e9edbf8 2600
3373efd8 2601struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2602{
9af5c9c9
TH
2603 struct ata_link *link = adev->link;
2604 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2605 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2606 return NULL;
2607 return pair;
2608}
2609
1da177e4 2610/**
780a87f7
JG
2611 * ata_port_disable - Disable port.
2612 * @ap: Port to be disabled.
1da177e4 2613 *
780a87f7
JG
2614 * Modify @ap data structure such that the system
2615 * thinks that the entire port is disabled, and should
2616 * never attempt to probe or communicate with devices
2617 * on this port.
2618 *
cca3974e 2619 * LOCKING: host lock, or some other form of
780a87f7 2620 * serialization.
1da177e4
LT
2621 */
2622
2623void ata_port_disable(struct ata_port *ap)
2624{
9af5c9c9
TH
2625 ap->link.device[0].class = ATA_DEV_NONE;
2626 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2627 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2628}
2629
1c3fae4d 2630/**
3c567b7d 2631 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2632 * @link: Link to adjust SATA spd limit for
1c3fae4d 2633 *
936fd732 2634 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2635 * function only adjusts the limit. The change must be applied
3c567b7d 2636 * using sata_set_spd().
1c3fae4d
TH
2637 *
2638 * LOCKING:
2639 * Inherited from caller.
2640 *
2641 * RETURNS:
2642 * 0 on success, negative errno on failure
2643 */
936fd732 2644int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2645{
81952c54
TH
2646 u32 sstatus, spd, mask;
2647 int rc, highbit;
1c3fae4d 2648
936fd732 2649 if (!sata_scr_valid(link))
008a7896
TH
2650 return -EOPNOTSUPP;
2651
2652 /* If SCR can be read, use it to determine the current SPD.
936fd732 2653 * If not, use cached value in link->sata_spd.
008a7896 2654 */
936fd732 2655 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2656 if (rc == 0)
2657 spd = (sstatus >> 4) & 0xf;
2658 else
936fd732 2659 spd = link->sata_spd;
1c3fae4d 2660
936fd732 2661 mask = link->sata_spd_limit;
1c3fae4d
TH
2662 if (mask <= 1)
2663 return -EINVAL;
008a7896
TH
2664
2665 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2666 highbit = fls(mask) - 1;
2667 mask &= ~(1 << highbit);
2668
008a7896
TH
2669 /* Mask off all speeds higher than or equal to the current
2670 * one. Force 1.5Gbps if current SPD is not available.
2671 */
2672 if (spd > 1)
2673 mask &= (1 << (spd - 1)) - 1;
2674 else
2675 mask &= 1;
2676
2677 /* were we already at the bottom? */
1c3fae4d
TH
2678 if (!mask)
2679 return -EINVAL;
2680
936fd732 2681 link->sata_spd_limit = mask;
1c3fae4d 2682
936fd732 2683 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2684 sata_spd_string(fls(mask)));
1c3fae4d
TH
2685
2686 return 0;
2687}
2688
936fd732 2689static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2690{
5270222f
TH
2691 struct ata_link *host_link = &link->ap->link;
2692 u32 limit, target, spd;
1c3fae4d 2693
5270222f
TH
2694 limit = link->sata_spd_limit;
2695
2696 /* Don't configure downstream link faster than upstream link.
2697 * It doesn't speed up anything and some PMPs choke on such
2698 * configuration.
2699 */
2700 if (!ata_is_host_link(link) && host_link->sata_spd)
2701 limit &= (1 << host_link->sata_spd) - 1;
2702
2703 if (limit == UINT_MAX)
2704 target = 0;
1c3fae4d 2705 else
5270222f 2706 target = fls(limit);
1c3fae4d
TH
2707
2708 spd = (*scontrol >> 4) & 0xf;
5270222f 2709 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2710
5270222f 2711 return spd != target;
1c3fae4d
TH
2712}
2713
2714/**
3c567b7d 2715 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2716 * @link: Link in question
1c3fae4d
TH
2717 *
2718 * Test whether the spd limit in SControl matches
936fd732 2719 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2720 * whether hardreset is necessary to apply SATA spd
2721 * configuration.
2722 *
2723 * LOCKING:
2724 * Inherited from caller.
2725 *
2726 * RETURNS:
2727 * 1 if SATA spd configuration is needed, 0 otherwise.
2728 */
936fd732 2729int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2730{
2731 u32 scontrol;
2732
936fd732 2733 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2734 return 1;
1c3fae4d 2735
936fd732 2736 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2737}
2738
2739/**
3c567b7d 2740 * sata_set_spd - set SATA spd according to spd limit
936fd732 2741 * @link: Link to set SATA spd for
1c3fae4d 2742 *
936fd732 2743 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2744 *
2745 * LOCKING:
2746 * Inherited from caller.
2747 *
2748 * RETURNS:
2749 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2750 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2751 */
936fd732 2752int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2753{
2754 u32 scontrol;
81952c54 2755 int rc;
1c3fae4d 2756
936fd732 2757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2758 return rc;
1c3fae4d 2759
936fd732 2760 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2761 return 0;
2762
936fd732 2763 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2764 return rc;
2765
1c3fae4d
TH
2766 return 1;
2767}
2768
452503f9
AC
2769/*
2770 * This mode timing computation functionality is ported over from
2771 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2772 */
2773/*
b352e57d 2774 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2775 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2776 * for UDMA6, which is currently supported only by Maxtor drives.
2777 *
2778 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2779 */
2780
2781static const struct ata_timing ata_timing[] = {
2782
2783 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2784 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2785 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2787
b352e57d
AC
2788 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2789 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2790 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2791 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2792 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2793
2794/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2795
452503f9
AC
2796 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2797 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2798 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2799
452503f9
AC
2800 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2801 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2802 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2803
b352e57d
AC
2804 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2805 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2806 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2807 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2808
2809 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2810 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2811 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2812
2813/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2814
2815 { 0xFF }
2816};
2817
2dcb407e
JG
2818#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2819#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2820
2821static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2822{
2823 q->setup = EZ(t->setup * 1000, T);
2824 q->act8b = EZ(t->act8b * 1000, T);
2825 q->rec8b = EZ(t->rec8b * 1000, T);
2826 q->cyc8b = EZ(t->cyc8b * 1000, T);
2827 q->active = EZ(t->active * 1000, T);
2828 q->recover = EZ(t->recover * 1000, T);
2829 q->cycle = EZ(t->cycle * 1000, T);
2830 q->udma = EZ(t->udma * 1000, UT);
2831}
2832
2833void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2834 struct ata_timing *m, unsigned int what)
2835{
2836 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2837 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2838 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2839 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2840 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2841 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2842 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2843 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2844}
2845
2dcb407e 2846static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2847{
2848 const struct ata_timing *t;
2849
2850 for (t = ata_timing; t->mode != speed; t++)
91190758 2851 if (t->mode == 0xFF)
452503f9 2852 return NULL;
2e9edbf8 2853 return t;
452503f9
AC
2854}
2855
2856int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2857 struct ata_timing *t, int T, int UT)
2858{
2859 const struct ata_timing *s;
2860 struct ata_timing p;
2861
2862 /*
2e9edbf8 2863 * Find the mode.
75b1f2f8 2864 */
452503f9
AC
2865
2866 if (!(s = ata_timing_find_mode(speed)))
2867 return -EINVAL;
2868
75b1f2f8
AL
2869 memcpy(t, s, sizeof(*s));
2870
452503f9
AC
2871 /*
2872 * If the drive is an EIDE drive, it can tell us it needs extended
2873 * PIO/MW_DMA cycle timing.
2874 */
2875
2876 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2877 memset(&p, 0, sizeof(p));
2dcb407e 2878 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2879 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2880 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2881 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2882 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2883 }
2884 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2885 }
2886
2887 /*
2888 * Convert the timing to bus clock counts.
2889 */
2890
75b1f2f8 2891 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2892
2893 /*
c893a3ae
RD
2894 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2895 * S.M.A.R.T * and some other commands. We have to ensure that the
2896 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2897 */
2898
fd3367af 2899 if (speed > XFER_PIO_6) {
452503f9
AC
2900 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2901 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2902 }
2903
2904 /*
c893a3ae 2905 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2906 */
2907
2908 if (t->act8b + t->rec8b < t->cyc8b) {
2909 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2910 t->rec8b = t->cyc8b - t->act8b;
2911 }
2912
2913 if (t->active + t->recover < t->cycle) {
2914 t->active += (t->cycle - (t->active + t->recover)) / 2;
2915 t->recover = t->cycle - t->active;
2916 }
a617c09f 2917
4f701d1e
AC
2918 /* In a few cases quantisation may produce enough errors to
2919 leave t->cycle too low for the sum of active and recovery
2920 if so we must correct this */
2921 if (t->active + t->recover > t->cycle)
2922 t->cycle = t->active + t->recover;
452503f9
AC
2923
2924 return 0;
2925}
2926
cf176e1a
TH
2927/**
2928 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2929 * @dev: Device to adjust xfer masks
458337db 2930 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2931 *
2932 * Adjust xfer masks of @dev downward. Note that this function
2933 * does not apply the change. Invoking ata_set_mode() afterwards
2934 * will apply the limit.
2935 *
2936 * LOCKING:
2937 * Inherited from caller.
2938 *
2939 * RETURNS:
2940 * 0 on success, negative errno on failure
2941 */
458337db 2942int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2943{
458337db
TH
2944 char buf[32];
2945 unsigned int orig_mask, xfer_mask;
2946 unsigned int pio_mask, mwdma_mask, udma_mask;
2947 int quiet, highbit;
cf176e1a 2948
458337db
TH
2949 quiet = !!(sel & ATA_DNXFER_QUIET);
2950 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2951
458337db
TH
2952 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2953 dev->mwdma_mask,
2954 dev->udma_mask);
2955 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2956
458337db
TH
2957 switch (sel) {
2958 case ATA_DNXFER_PIO:
2959 highbit = fls(pio_mask) - 1;
2960 pio_mask &= ~(1 << highbit);
2961 break;
2962
2963 case ATA_DNXFER_DMA:
2964 if (udma_mask) {
2965 highbit = fls(udma_mask) - 1;
2966 udma_mask &= ~(1 << highbit);
2967 if (!udma_mask)
2968 return -ENOENT;
2969 } else if (mwdma_mask) {
2970 highbit = fls(mwdma_mask) - 1;
2971 mwdma_mask &= ~(1 << highbit);
2972 if (!mwdma_mask)
2973 return -ENOENT;
2974 }
2975 break;
2976
2977 case ATA_DNXFER_40C:
2978 udma_mask &= ATA_UDMA_MASK_40C;
2979 break;
2980
2981 case ATA_DNXFER_FORCE_PIO0:
2982 pio_mask &= 1;
2983 case ATA_DNXFER_FORCE_PIO:
2984 mwdma_mask = 0;
2985 udma_mask = 0;
2986 break;
2987
458337db
TH
2988 default:
2989 BUG();
2990 }
2991
2992 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2993
2994 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2995 return -ENOENT;
2996
2997 if (!quiet) {
2998 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2999 snprintf(buf, sizeof(buf), "%s:%s",
3000 ata_mode_string(xfer_mask),
3001 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3002 else
3003 snprintf(buf, sizeof(buf), "%s",
3004 ata_mode_string(xfer_mask));
3005
3006 ata_dev_printk(dev, KERN_WARNING,
3007 "limiting speed to %s\n", buf);
3008 }
cf176e1a
TH
3009
3010 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3011 &dev->udma_mask);
3012
cf176e1a 3013 return 0;
cf176e1a
TH
3014}
3015
3373efd8 3016static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3017{
9af5c9c9 3018 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3019 unsigned int err_mask;
3020 int rc;
1da177e4 3021
e8384607 3022 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3023 if (dev->xfer_shift == ATA_SHIFT_PIO)
3024 dev->flags |= ATA_DFLAG_PIO;
3025
3373efd8 3026 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3027
11750a40
AC
3028 /* Old CFA may refuse this command, which is just fine */
3029 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3030 err_mask &= ~AC_ERR_DEV;
3031
0bc2a79a
AC
3032 /* Some very old devices and some bad newer ones fail any kind of
3033 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3034 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3035 dev->pio_mode <= XFER_PIO_2)
3036 err_mask &= ~AC_ERR_DEV;
2dcb407e 3037
3acaf94b
AC
3038 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3039 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3040 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3041 dev->dma_mode == XFER_MW_DMA_0 &&
3042 (dev->id[63] >> 8) & 1)
3043 err_mask &= ~AC_ERR_DEV;
3044
83206a29 3045 if (err_mask) {
f15a1daf
TH
3046 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3047 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3048 return -EIO;
3049 }
1da177e4 3050
baa1e78a 3051 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3052 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3053 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3054 if (rc)
83206a29 3055 return rc;
48a8a14f 3056
23e71c3d
TH
3057 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3058 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3059
f15a1daf
TH
3060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3061 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3062 return 0;
1da177e4
LT
3063}
3064
1da177e4 3065/**
04351821 3066 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3067 * @link: link on which timings will be programmed
e82cbdb9 3068 * @r_failed_dev: out paramter for failed device
1da177e4 3069 *
04351821
AC
3070 * Standard implementation of the function used to tune and set
3071 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3072 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3073 * returned in @r_failed_dev.
780a87f7 3074 *
1da177e4 3075 * LOCKING:
0cba632b 3076 * PCI/etc. bus probe sem.
e82cbdb9
TH
3077 *
3078 * RETURNS:
3079 * 0 on success, negative errno otherwise
1da177e4 3080 */
04351821 3081
0260731f 3082int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3083{
0260731f 3084 struct ata_port *ap = link->ap;
e8e0619f 3085 struct ata_device *dev;
f58229f8 3086 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3087
a6d5a51c 3088 /* step 1: calculate xfer_mask */
f58229f8 3089 ata_link_for_each_dev(dev, link) {
acf356b1 3090 unsigned int pio_mask, dma_mask;
b3a70601 3091 unsigned int mode_mask;
a6d5a51c 3092
e1211e3f 3093 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3094 continue;
3095
b3a70601
AC
3096 mode_mask = ATA_DMA_MASK_ATA;
3097 if (dev->class == ATA_DEV_ATAPI)
3098 mode_mask = ATA_DMA_MASK_ATAPI;
3099 else if (ata_id_is_cfa(dev->id))
3100 mode_mask = ATA_DMA_MASK_CFA;
3101
3373efd8 3102 ata_dev_xfermask(dev);
1da177e4 3103
acf356b1
TH
3104 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3105 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3106
3107 if (libata_dma_mask & mode_mask)
3108 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3109 else
3110 dma_mask = 0;
3111
acf356b1
TH
3112 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3113 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3114
4f65977d 3115 found = 1;
5444a6f4
AC
3116 if (dev->dma_mode)
3117 used_dma = 1;
a6d5a51c 3118 }
4f65977d 3119 if (!found)
e82cbdb9 3120 goto out;
a6d5a51c
TH
3121
3122 /* step 2: always set host PIO timings */
f58229f8 3123 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3124 if (!ata_dev_enabled(dev))
3125 continue;
3126
3127 if (!dev->pio_mode) {
f15a1daf 3128 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3129 rc = -EINVAL;
e82cbdb9 3130 goto out;
e8e0619f
TH
3131 }
3132
3133 dev->xfer_mode = dev->pio_mode;
3134 dev->xfer_shift = ATA_SHIFT_PIO;
3135 if (ap->ops->set_piomode)
3136 ap->ops->set_piomode(ap, dev);
3137 }
1da177e4 3138
a6d5a51c 3139 /* step 3: set host DMA timings */
f58229f8 3140 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3141 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3142 continue;
3143
3144 dev->xfer_mode = dev->dma_mode;
3145 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3146 if (ap->ops->set_dmamode)
3147 ap->ops->set_dmamode(ap, dev);
3148 }
1da177e4
LT
3149
3150 /* step 4: update devices' xfer mode */
f58229f8 3151 ata_link_for_each_dev(dev, link) {
18d90deb 3152 /* don't update suspended devices' xfer mode */
9666f400 3153 if (!ata_dev_enabled(dev))
83206a29
TH
3154 continue;
3155
3373efd8 3156 rc = ata_dev_set_mode(dev);
5bbc53f4 3157 if (rc)
e82cbdb9 3158 goto out;
83206a29 3159 }
1da177e4 3160
e8e0619f
TH
3161 /* Record simplex status. If we selected DMA then the other
3162 * host channels are not permitted to do so.
5444a6f4 3163 */
cca3974e 3164 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3165 ap->host->simplex_claimed = ap;
5444a6f4 3166
e82cbdb9
TH
3167 out:
3168 if (rc)
3169 *r_failed_dev = dev;
3170 return rc;
1da177e4
LT
3171}
3172
04351821
AC
3173/**
3174 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3175 * @link: link on which timings will be programmed
04351821
AC
3176 * @r_failed_dev: out paramter for failed device
3177 *
3178 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3179 * ata_set_mode() fails, pointer to the failing device is
3180 * returned in @r_failed_dev.
3181 *
3182 * LOCKING:
3183 * PCI/etc. bus probe sem.
3184 *
3185 * RETURNS:
3186 * 0 on success, negative errno otherwise
3187 */
0260731f 3188int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3189{
0260731f
TH
3190 struct ata_port *ap = link->ap;
3191
04351821
AC
3192 /* has private set_mode? */
3193 if (ap->ops->set_mode)
0260731f
TH
3194 return ap->ops->set_mode(link, r_failed_dev);
3195 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3196}
3197
1fdffbce
JG
3198/**
3199 * ata_tf_to_host - issue ATA taskfile to host controller
3200 * @ap: port to which command is being issued
3201 * @tf: ATA taskfile register set
3202 *
3203 * Issues ATA taskfile register set to ATA host controller,
3204 * with proper synchronization with interrupt handler and
3205 * other threads.
3206 *
3207 * LOCKING:
cca3974e 3208 * spin_lock_irqsave(host lock)
1fdffbce
JG
3209 */
3210
3211static inline void ata_tf_to_host(struct ata_port *ap,
3212 const struct ata_taskfile *tf)
3213{
3214 ap->ops->tf_load(ap, tf);
3215 ap->ops->exec_command(ap, tf);
3216}
3217
1da177e4
LT
3218/**
3219 * ata_busy_sleep - sleep until BSY clears, or timeout
3220 * @ap: port containing status register to be polled
3221 * @tmout_pat: impatience timeout
3222 * @tmout: overall timeout
3223 *
780a87f7
JG
3224 * Sleep until ATA Status register bit BSY clears,
3225 * or a timeout occurs.
3226 *
d1adc1bb
TH
3227 * LOCKING:
3228 * Kernel thread context (may sleep).
3229 *
3230 * RETURNS:
3231 * 0 on success, -errno otherwise.
1da177e4 3232 */
d1adc1bb
TH
3233int ata_busy_sleep(struct ata_port *ap,
3234 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3235{
3236 unsigned long timer_start, timeout;
3237 u8 status;
3238
3239 status = ata_busy_wait(ap, ATA_BUSY, 300);
3240 timer_start = jiffies;
3241 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3242 while (status != 0xff && (status & ATA_BUSY) &&
3243 time_before(jiffies, timeout)) {
1da177e4
LT
3244 msleep(50);
3245 status = ata_busy_wait(ap, ATA_BUSY, 3);
3246 }
3247
d1adc1bb 3248 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3249 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3250 "port is slow to respond, please be patient "
3251 "(Status 0x%x)\n", status);
1da177e4
LT
3252
3253 timeout = timer_start + tmout;
d1adc1bb
TH
3254 while (status != 0xff && (status & ATA_BUSY) &&
3255 time_before(jiffies, timeout)) {
1da177e4
LT
3256 msleep(50);
3257 status = ata_chk_status(ap);
3258 }
3259
d1adc1bb
TH
3260 if (status == 0xff)
3261 return -ENODEV;
3262
1da177e4 3263 if (status & ATA_BUSY) {
f15a1daf 3264 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3265 "(%lu secs, Status 0x%x)\n",
3266 tmout / HZ, status);
d1adc1bb 3267 return -EBUSY;
1da177e4
LT
3268 }
3269
3270 return 0;
3271}
3272
88ff6eaf
TH
3273/**
3274 * ata_wait_after_reset - wait before checking status after reset
3275 * @ap: port containing status register to be polled
3276 * @deadline: deadline jiffies for the operation
3277 *
3278 * After reset, we need to pause a while before reading status.
3279 * Also, certain combination of controller and device report 0xff
3280 * for some duration (e.g. until SATA PHY is up and running)
3281 * which is interpreted as empty port in ATA world. This
3282 * function also waits for such devices to get out of 0xff
3283 * status.
3284 *
3285 * LOCKING:
3286 * Kernel thread context (may sleep).
3287 */
3288void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3289{
3290 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3291
3292 if (time_before(until, deadline))
3293 deadline = until;
3294
3295 /* Spec mandates ">= 2ms" before checking status. We wait
3296 * 150ms, because that was the magic delay used for ATAPI
3297 * devices in Hale Landis's ATADRVR, for the period of time
3298 * between when the ATA command register is written, and then
3299 * status is checked. Because waiting for "a while" before
3300 * checking status is fine, post SRST, we perform this magic
3301 * delay here as well.
3302 *
3303 * Old drivers/ide uses the 2mS rule and then waits for ready.
3304 */
3305 msleep(150);
3306
3307 /* Wait for 0xff to clear. Some SATA devices take a long time
3308 * to clear 0xff after reset. For example, HHD424020F7SV00
3309 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3310 * than that.
1974e201
TH
3311 *
3312 * Note that some PATA controllers (pata_ali) explode if
3313 * status register is read more than once when there's no
3314 * device attached.
88ff6eaf 3315 */
1974e201
TH
3316 if (ap->flags & ATA_FLAG_SATA) {
3317 while (1) {
3318 u8 status = ata_chk_status(ap);
88ff6eaf 3319
1974e201
TH
3320 if (status != 0xff || time_after(jiffies, deadline))
3321 return;
88ff6eaf 3322
1974e201
TH
3323 msleep(50);
3324 }
88ff6eaf
TH
3325 }
3326}
3327
d4b2bab4
TH
3328/**
3329 * ata_wait_ready - sleep until BSY clears, or timeout
3330 * @ap: port containing status register to be polled
3331 * @deadline: deadline jiffies for the operation
3332 *
3333 * Sleep until ATA Status register bit BSY clears, or timeout
3334 * occurs.
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep).
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
3342int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3343{
3344 unsigned long start = jiffies;
3345 int warned = 0;
3346
3347 while (1) {
3348 u8 status = ata_chk_status(ap);
3349 unsigned long now = jiffies;
3350
3351 if (!(status & ATA_BUSY))
3352 return 0;
936fd732 3353 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3354 return -ENODEV;
3355 if (time_after(now, deadline))
3356 return -EBUSY;
3357
3358 if (!warned && time_after(now, start + 5 * HZ) &&
3359 (deadline - now > 3 * HZ)) {
3360 ata_port_printk(ap, KERN_WARNING,
3361 "port is slow to respond, please be patient "
3362 "(Status 0x%x)\n", status);
3363 warned = 1;
3364 }
3365
3366 msleep(50);
3367 }
3368}
3369
3370static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3371 unsigned long deadline)
1da177e4
LT
3372{
3373 struct ata_ioports *ioaddr = &ap->ioaddr;
3374 unsigned int dev0 = devmask & (1 << 0);
3375 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3376 int rc, ret = 0;
1da177e4
LT
3377
3378 /* if device 0 was found in ata_devchk, wait for its
3379 * BSY bit to clear
3380 */
d4b2bab4
TH
3381 if (dev0) {
3382 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3383 if (rc) {
3384 if (rc != -ENODEV)
3385 return rc;
3386 ret = rc;
3387 }
d4b2bab4 3388 }
1da177e4 3389
e141d999
TH
3390 /* if device 1 was found in ata_devchk, wait for register
3391 * access briefly, then wait for BSY to clear.
1da177e4 3392 */
e141d999
TH
3393 if (dev1) {
3394 int i;
1da177e4
LT
3395
3396 ap->ops->dev_select(ap, 1);
e141d999
TH
3397
3398 /* Wait for register access. Some ATAPI devices fail
3399 * to set nsect/lbal after reset, so don't waste too
3400 * much time on it. We're gonna wait for !BSY anyway.
3401 */
3402 for (i = 0; i < 2; i++) {
3403 u8 nsect, lbal;
3404
3405 nsect = ioread8(ioaddr->nsect_addr);
3406 lbal = ioread8(ioaddr->lbal_addr);
3407 if ((nsect == 1) && (lbal == 1))
3408 break;
3409 msleep(50); /* give drive a breather */
3410 }
3411
d4b2bab4 3412 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3413 if (rc) {
3414 if (rc != -ENODEV)
3415 return rc;
3416 ret = rc;
3417 }
d4b2bab4 3418 }
1da177e4
LT
3419
3420 /* is all this really necessary? */
3421 ap->ops->dev_select(ap, 0);
3422 if (dev1)
3423 ap->ops->dev_select(ap, 1);
3424 if (dev0)
3425 ap->ops->dev_select(ap, 0);
d4b2bab4 3426
9b89391c 3427 return ret;
1da177e4
LT
3428}
3429
d4b2bab4
TH
3430static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3431 unsigned long deadline)
1da177e4
LT
3432{
3433 struct ata_ioports *ioaddr = &ap->ioaddr;
3434
44877b4e 3435 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3436
3437 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3438 iowrite8(ap->ctl, ioaddr->ctl_addr);
3439 udelay(20); /* FIXME: flush */
3440 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3443
88ff6eaf
TH
3444 /* wait a while before checking status */
3445 ata_wait_after_reset(ap, deadline);
1da177e4 3446
2e9edbf8 3447 /* Before we perform post reset processing we want to see if
298a41ca
TH
3448 * the bus shows 0xFF because the odd clown forgets the D7
3449 * pulldown resistor.
3450 */
150981b0 3451 if (ata_chk_status(ap) == 0xFF)
9b89391c 3452 return -ENODEV;
09c7ad79 3453
d4b2bab4 3454 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3455}
3456
3457/**
3458 * ata_bus_reset - reset host port and associated ATA channel
3459 * @ap: port to reset
3460 *
3461 * This is typically the first time we actually start issuing
3462 * commands to the ATA channel. We wait for BSY to clear, then
3463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3464 * result. Determine what devices, if any, are on the channel
3465 * by looking at the device 0/1 error register. Look at the signature
3466 * stored in each device's taskfile registers, to determine if
3467 * the device is ATA or ATAPI.
3468 *
3469 * LOCKING:
0cba632b 3470 * PCI/etc. bus probe sem.
cca3974e 3471 * Obtains host lock.
1da177e4
LT
3472 *
3473 * SIDE EFFECTS:
198e0fed 3474 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3475 */
3476
3477void ata_bus_reset(struct ata_port *ap)
3478{
9af5c9c9 3479 struct ata_device *device = ap->link.device;
1da177e4
LT
3480 struct ata_ioports *ioaddr = &ap->ioaddr;
3481 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3482 u8 err;
aec5c3c1 3483 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3484 int rc;
1da177e4 3485
44877b4e 3486 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3487
3488 /* determine if device 0/1 are present */
3489 if (ap->flags & ATA_FLAG_SATA_RESET)
3490 dev0 = 1;
3491 else {
3492 dev0 = ata_devchk(ap, 0);
3493 if (slave_possible)
3494 dev1 = ata_devchk(ap, 1);
3495 }
3496
3497 if (dev0)
3498 devmask |= (1 << 0);
3499 if (dev1)
3500 devmask |= (1 << 1);
3501
3502 /* select device 0 again */
3503 ap->ops->dev_select(ap, 0);
3504
3505 /* issue bus reset */
9b89391c
TH
3506 if (ap->flags & ATA_FLAG_SRST) {
3507 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3508 if (rc && rc != -ENODEV)
aec5c3c1 3509 goto err_out;
9b89391c 3510 }
1da177e4
LT
3511
3512 /*
3513 * determine by signature whether we have ATA or ATAPI devices
3514 */
3f19859e 3515 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3516 if ((slave_possible) && (err != 0x81))
3f19859e 3517 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3518
1da177e4 3519 /* is double-select really necessary? */
9af5c9c9 3520 if (device[1].class != ATA_DEV_NONE)
1da177e4 3521 ap->ops->dev_select(ap, 1);
9af5c9c9 3522 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3523 ap->ops->dev_select(ap, 0);
3524
3525 /* if no devices were detected, disable this port */
9af5c9c9
TH
3526 if ((device[0].class == ATA_DEV_NONE) &&
3527 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3528 goto err_out;
3529
3530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3531 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3532 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3533 }
3534
3535 DPRINTK("EXIT\n");
3536 return;
3537
3538err_out:
f15a1daf 3539 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3540 ata_port_disable(ap);
1da177e4
LT
3541
3542 DPRINTK("EXIT\n");
3543}
3544
d7bb4cc7 3545/**
936fd732
TH
3546 * sata_link_debounce - debounce SATA phy status
3547 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3548 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3549 * @deadline: deadline jiffies for the operation
d7bb4cc7 3550 *
936fd732 3551* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3552 * holding the same value where DET is not 1 for @duration polled
3553 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3554 * beginning of the stable state. Because DET gets stuck at 1 on
3555 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3556 * until timeout then returns 0 if DET is stable at 1.
3557 *
d4b2bab4
TH
3558 * @timeout is further limited by @deadline. The sooner of the
3559 * two is used.
3560 *
d7bb4cc7
TH
3561 * LOCKING:
3562 * Kernel thread context (may sleep)
3563 *
3564 * RETURNS:
3565 * 0 on success, -errno on failure.
3566 */
936fd732
TH
3567int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3568 unsigned long deadline)
7a7921e8 3569{
d7bb4cc7 3570 unsigned long interval_msec = params[0];
d4b2bab4
TH
3571 unsigned long duration = msecs_to_jiffies(params[1]);
3572 unsigned long last_jiffies, t;
d7bb4cc7
TH
3573 u32 last, cur;
3574 int rc;
3575
d4b2bab4
TH
3576 t = jiffies + msecs_to_jiffies(params[2]);
3577 if (time_before(t, deadline))
3578 deadline = t;
3579
936fd732 3580 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3581 return rc;
3582 cur &= 0xf;
3583
3584 last = cur;
3585 last_jiffies = jiffies;
3586
3587 while (1) {
3588 msleep(interval_msec);
936fd732 3589 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3590 return rc;
3591 cur &= 0xf;
3592
3593 /* DET stable? */
3594 if (cur == last) {
d4b2bab4 3595 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3596 continue;
3597 if (time_after(jiffies, last_jiffies + duration))
3598 return 0;
3599 continue;
3600 }
3601
3602 /* unstable, start over */
3603 last = cur;
3604 last_jiffies = jiffies;
3605
f1545154
TH
3606 /* Check deadline. If debouncing failed, return
3607 * -EPIPE to tell upper layer to lower link speed.
3608 */
d4b2bab4 3609 if (time_after(jiffies, deadline))
f1545154 3610 return -EPIPE;
d7bb4cc7
TH
3611 }
3612}
3613
3614/**
936fd732
TH
3615 * sata_link_resume - resume SATA link
3616 * @link: ATA link to resume SATA
d7bb4cc7 3617 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3618 * @deadline: deadline jiffies for the operation
d7bb4cc7 3619 *
936fd732 3620 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3621 *
3622 * LOCKING:
3623 * Kernel thread context (may sleep)
3624 *
3625 * RETURNS:
3626 * 0 on success, -errno on failure.
3627 */
936fd732
TH
3628int sata_link_resume(struct ata_link *link, const unsigned long *params,
3629 unsigned long deadline)
d7bb4cc7
TH
3630{
3631 u32 scontrol;
81952c54
TH
3632 int rc;
3633
936fd732 3634 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3635 return rc;
7a7921e8 3636
852ee16a 3637 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3638
936fd732 3639 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3640 return rc;
7a7921e8 3641
d7bb4cc7
TH
3642 /* Some PHYs react badly if SStatus is pounded immediately
3643 * after resuming. Delay 200ms before debouncing.
3644 */
3645 msleep(200);
7a7921e8 3646
936fd732 3647 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3648}
3649
f5914a46
TH
3650/**
3651 * ata_std_prereset - prepare for reset
cc0680a5 3652 * @link: ATA link to be reset
d4b2bab4 3653 * @deadline: deadline jiffies for the operation
f5914a46 3654 *
cc0680a5 3655 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3656 * prereset makes libata abort whole reset sequence and give up
3657 * that port, so prereset should be best-effort. It does its
3658 * best to prepare for reset sequence but if things go wrong, it
3659 * should just whine, not fail.
f5914a46
TH
3660 *
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3663 *
3664 * RETURNS:
3665 * 0 on success, -errno otherwise.
3666 */
cc0680a5 3667int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3668{
cc0680a5 3669 struct ata_port *ap = link->ap;
936fd732 3670 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3671 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3672 int rc;
3673
31daabda 3674 /* handle link resume */
28324304 3675 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3676 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3677 ehc->i.action |= ATA_EH_HARDRESET;
3678
633273a3
TH
3679 /* Some PMPs don't work with only SRST, force hardreset if PMP
3680 * is supported.
3681 */
3682 if (ap->flags & ATA_FLAG_PMP)
3683 ehc->i.action |= ATA_EH_HARDRESET;
3684
f5914a46
TH
3685 /* if we're about to do hardreset, nothing more to do */
3686 if (ehc->i.action & ATA_EH_HARDRESET)
3687 return 0;
3688
936fd732 3689 /* if SATA, resume link */
a16abc0b 3690 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3691 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3692 /* whine about phy resume failure but proceed */
3693 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3694 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3695 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3696 }
3697
3698 /* Wait for !BSY if the controller can wait for the first D2H
3699 * Reg FIS and we don't know that no device is attached.
3700 */
0c88758b 3701 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3702 rc = ata_wait_ready(ap, deadline);
6dffaf61 3703 if (rc && rc != -ENODEV) {
cc0680a5 3704 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3705 "(errno=%d), forcing hardreset\n", rc);
3706 ehc->i.action |= ATA_EH_HARDRESET;
3707 }
3708 }
f5914a46
TH
3709
3710 return 0;
3711}
3712
c2bd5804
TH
3713/**
3714 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3715 * @link: ATA link to reset
c2bd5804 3716 * @classes: resulting classes of attached devices
d4b2bab4 3717 * @deadline: deadline jiffies for the operation
c2bd5804 3718 *
52783c5d 3719 * Reset host port using ATA SRST.
c2bd5804
TH
3720 *
3721 * LOCKING:
3722 * Kernel thread context (may sleep)
3723 *
3724 * RETURNS:
3725 * 0 on success, -errno otherwise.
3726 */
cc0680a5 3727int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3728 unsigned long deadline)
c2bd5804 3729{
cc0680a5 3730 struct ata_port *ap = link->ap;
c2bd5804 3731 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3732 unsigned int devmask = 0;
3733 int rc;
c2bd5804
TH
3734 u8 err;
3735
3736 DPRINTK("ENTER\n");
3737
936fd732 3738 if (ata_link_offline(link)) {
3a39746a
TH
3739 classes[0] = ATA_DEV_NONE;
3740 goto out;
3741 }
3742
c2bd5804
TH
3743 /* determine if device 0/1 are present */
3744 if (ata_devchk(ap, 0))
3745 devmask |= (1 << 0);
3746 if (slave_possible && ata_devchk(ap, 1))
3747 devmask |= (1 << 1);
3748
c2bd5804
TH
3749 /* select device 0 again */
3750 ap->ops->dev_select(ap, 0);
3751
3752 /* issue bus reset */
3753 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3754 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3755 /* if link is occupied, -ENODEV too is an error */
936fd732 3756 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3757 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3758 return rc;
c2bd5804
TH
3759 }
3760
3761 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3762 classes[0] = ata_dev_try_classify(&link->device[0],
3763 devmask & (1 << 0), &err);
c2bd5804 3764 if (slave_possible && err != 0x81)
3f19859e
TH
3765 classes[1] = ata_dev_try_classify(&link->device[1],
3766 devmask & (1 << 1), &err);
c2bd5804 3767
3a39746a 3768 out:
c2bd5804
TH
3769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3770 return 0;
3771}
3772
3773/**
cc0680a5
TH
3774 * sata_link_hardreset - reset link via SATA phy reset
3775 * @link: link to reset
b6103f6d 3776 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3777 * @deadline: deadline jiffies for the operation
c2bd5804 3778 *
cc0680a5 3779 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3780 *
3781 * LOCKING:
3782 * Kernel thread context (may sleep)
3783 *
3784 * RETURNS:
3785 * 0 on success, -errno otherwise.
3786 */
cc0680a5 3787int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3788 unsigned long deadline)
c2bd5804 3789{
852ee16a 3790 u32 scontrol;
81952c54 3791 int rc;
852ee16a 3792
c2bd5804
TH
3793 DPRINTK("ENTER\n");
3794
936fd732 3795 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3796 /* SATA spec says nothing about how to reconfigure
3797 * spd. To be on the safe side, turn off phy during
3798 * reconfiguration. This works for at least ICH7 AHCI
3799 * and Sil3124.
3800 */
936fd732 3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3802 goto out;
81952c54 3803
a34b6fc0 3804 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3805
936fd732 3806 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3807 goto out;
1c3fae4d 3808
936fd732 3809 sata_set_spd(link);
1c3fae4d
TH
3810 }
3811
3812 /* issue phy wake/reset */
936fd732 3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3814 goto out;
81952c54 3815
852ee16a 3816 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3817
936fd732 3818 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3819 goto out;
c2bd5804 3820
1c3fae4d 3821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3822 * 10.4.2 says at least 1 ms.
3823 */
3824 msleep(1);
3825
936fd732
TH
3826 /* bring link back */
3827 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3828 out:
3829 DPRINTK("EXIT, rc=%d\n", rc);
3830 return rc;
3831}
3832
3833/**
3834 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3835 * @link: link to reset
b6103f6d 3836 * @class: resulting class of attached device
d4b2bab4 3837 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3838 *
3839 * SATA phy-reset host port using DET bits of SControl register,
3840 * wait for !BSY and classify the attached device.
3841 *
3842 * LOCKING:
3843 * Kernel thread context (may sleep)
3844 *
3845 * RETURNS:
3846 * 0 on success, -errno otherwise.
3847 */
cc0680a5 3848int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3849 unsigned long deadline)
b6103f6d 3850{
cc0680a5 3851 struct ata_port *ap = link->ap;
936fd732 3852 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3853 int rc;
3854
3855 DPRINTK("ENTER\n");
3856
3857 /* do hardreset */
cc0680a5 3858 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3859 if (rc) {
cc0680a5 3860 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3861 "COMRESET failed (errno=%d)\n", rc);
3862 return rc;
3863 }
c2bd5804 3864
c2bd5804 3865 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3866 if (ata_link_offline(link)) {
c2bd5804
TH
3867 *class = ATA_DEV_NONE;
3868 DPRINTK("EXIT, link offline\n");
3869 return 0;
3870 }
3871
88ff6eaf
TH
3872 /* wait a while before checking status */
3873 ata_wait_after_reset(ap, deadline);
34fee227 3874
633273a3
TH
3875 /* If PMP is supported, we have to do follow-up SRST. Note
3876 * that some PMPs don't send D2H Reg FIS after hardreset at
3877 * all if the first port is empty. Wait for it just for a
3878 * second and request follow-up SRST.
3879 */
3880 if (ap->flags & ATA_FLAG_PMP) {
3881 ata_wait_ready(ap, jiffies + HZ);
3882 return -EAGAIN;
3883 }
3884
d4b2bab4 3885 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3886 /* link occupied, -ENODEV too is an error */
3887 if (rc) {
cc0680a5 3888 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3889 "COMRESET failed (errno=%d)\n", rc);
3890 return rc;
c2bd5804
TH
3891 }
3892
3a39746a
TH
3893 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3894
3f19859e 3895 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3896
3897 DPRINTK("EXIT, class=%u\n", *class);
3898 return 0;
3899}
3900
3901/**
3902 * ata_std_postreset - standard postreset callback
cc0680a5 3903 * @link: the target ata_link
c2bd5804
TH
3904 * @classes: classes of attached devices
3905 *
3906 * This function is invoked after a successful reset. Note that
3907 * the device might have been reset more than once using
3908 * different reset methods before postreset is invoked.
c2bd5804 3909 *
c2bd5804
TH
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3912 */
cc0680a5 3913void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3914{
cc0680a5 3915 struct ata_port *ap = link->ap;
dc2b3515
TH
3916 u32 serror;
3917
c2bd5804
TH
3918 DPRINTK("ENTER\n");
3919
c2bd5804 3920 /* print link status */
936fd732 3921 sata_print_link_status(link);
c2bd5804 3922
dc2b3515 3923 /* clear SError */
936fd732
TH
3924 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3925 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3926 link->eh_info.serror = 0;
dc2b3515 3927
c2bd5804
TH
3928 /* is double-select really necessary? */
3929 if (classes[0] != ATA_DEV_NONE)
3930 ap->ops->dev_select(ap, 1);
3931 if (classes[1] != ATA_DEV_NONE)
3932 ap->ops->dev_select(ap, 0);
3933
3a39746a
TH
3934 /* bail out if no device is present */
3935 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3936 DPRINTK("EXIT, no device\n");
3937 return;
3938 }
3939
3940 /* set up device control */
0d5ff566
TH
3941 if (ap->ioaddr.ctl_addr)
3942 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3943
3944 DPRINTK("EXIT\n");
3945}
3946
623a3128
TH
3947/**
3948 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3949 * @dev: device to compare against
3950 * @new_class: class of the new device
3951 * @new_id: IDENTIFY page of the new device
3952 *
3953 * Compare @new_class and @new_id against @dev and determine
3954 * whether @dev is the device indicated by @new_class and
3955 * @new_id.
3956 *
3957 * LOCKING:
3958 * None.
3959 *
3960 * RETURNS:
3961 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3962 */
3373efd8
TH
3963static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3964 const u16 *new_id)
623a3128
TH
3965{
3966 const u16 *old_id = dev->id;
a0cf733b
TH
3967 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3968 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3969
3970 if (dev->class != new_class) {
f15a1daf
TH
3971 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3972 dev->class, new_class);
623a3128
TH
3973 return 0;
3974 }
3975
a0cf733b
TH
3976 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3977 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3978 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3979 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3980
3981 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3982 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3983 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3984 return 0;
3985 }
3986
3987 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3988 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3989 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3990 return 0;
3991 }
3992
623a3128
TH
3993 return 1;
3994}
3995
3996/**
fe30911b 3997 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3998 * @dev: target ATA device
bff04647 3999 * @readid_flags: read ID flags
623a3128
TH
4000 *
4001 * Re-read IDENTIFY page and make sure @dev is still attached to
4002 * the port.
4003 *
4004 * LOCKING:
4005 * Kernel thread context (may sleep)
4006 *
4007 * RETURNS:
4008 * 0 on success, negative errno otherwise
4009 */
fe30911b 4010int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4011{
5eb45c02 4012 unsigned int class = dev->class;
9af5c9c9 4013 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4014 int rc;
4015
fe635c7e 4016 /* read ID data */
bff04647 4017 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4018 if (rc)
fe30911b 4019 return rc;
623a3128
TH
4020
4021 /* is the device still there? */
fe30911b
TH
4022 if (!ata_dev_same_device(dev, class, id))
4023 return -ENODEV;
623a3128 4024
fe635c7e 4025 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4026 return 0;
4027}
4028
4029/**
4030 * ata_dev_revalidate - Revalidate ATA device
4031 * @dev: device to revalidate
422c9daa 4032 * @new_class: new class code
fe30911b
TH
4033 * @readid_flags: read ID flags
4034 *
4035 * Re-read IDENTIFY page, make sure @dev is still attached to the
4036 * port and reconfigure it according to the new IDENTIFY page.
4037 *
4038 * LOCKING:
4039 * Kernel thread context (may sleep)
4040 *
4041 * RETURNS:
4042 * 0 on success, negative errno otherwise
4043 */
422c9daa
TH
4044int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4045 unsigned int readid_flags)
fe30911b 4046{
6ddcd3b0 4047 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4048 int rc;
4049
4050 if (!ata_dev_enabled(dev))
4051 return -ENODEV;
4052
422c9daa
TH
4053 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4054 if (ata_class_enabled(new_class) &&
4055 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4056 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4057 dev->class, new_class);
4058 rc = -ENODEV;
4059 goto fail;
4060 }
4061
fe30911b
TH
4062 /* re-read ID */
4063 rc = ata_dev_reread_id(dev, readid_flags);
4064 if (rc)
4065 goto fail;
623a3128
TH
4066
4067 /* configure device according to the new ID */
efdaedc4 4068 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4069 if (rc)
4070 goto fail;
4071
4072 /* verify n_sectors hasn't changed */
b54eebd6
TH
4073 if (dev->class == ATA_DEV_ATA && n_sectors &&
4074 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4075 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4076 "%llu != %llu\n",
4077 (unsigned long long)n_sectors,
4078 (unsigned long long)dev->n_sectors);
8270bec4
TH
4079
4080 /* restore original n_sectors */
4081 dev->n_sectors = n_sectors;
4082
6ddcd3b0
TH
4083 rc = -ENODEV;
4084 goto fail;
4085 }
4086
4087 return 0;
623a3128
TH
4088
4089 fail:
f15a1daf 4090 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4091 return rc;
4092}
4093
6919a0a6
AC
4094struct ata_blacklist_entry {
4095 const char *model_num;
4096 const char *model_rev;
4097 unsigned long horkage;
4098};
4099
4100static const struct ata_blacklist_entry ata_device_blacklist [] = {
4101 /* Devices with DMA related problems under Linux */
4102 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4104 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4105 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4106 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4107 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4108 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4109 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4110 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4111 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4112 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4113 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4114 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4115 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4116 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4117 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4118 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4119 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4120 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4121 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4122 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4123 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4124 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4125 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4126 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4127 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4128 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4129 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4130 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4131 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4132 /* Odd clown on sil3726/4726 PMPs */
4133 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4134 ATA_HORKAGE_SKIP_PM },
6919a0a6 4135
18d6e9d5 4136 /* Weird ATAPI devices */
40a1d531 4137 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4138
6919a0a6
AC
4139 /* Devices we expect to fail diagnostics */
4140
4141 /* Devices where NCQ should be avoided */
4142 /* NCQ is slow */
2dcb407e 4143 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4144 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4145 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4146 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4147 /* NCQ is broken */
539cc7c7 4148 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4149 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4150 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4151 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4152 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4153 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4154
36e337d0
RH
4155 /* Blacklist entries taken from Silicon Image 3124/3132
4156 Windows driver .inf file - also several Linux problem reports */
4157 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4158 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4159 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4160
16c55b03
TH
4161 /* devices which puke on READ_NATIVE_MAX */
4162 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4163 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4164 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4165 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4166
93328e11
AC
4167 /* Devices which report 1 sector over size HPA */
4168 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4169 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4170
6bbfd53d
AC
4171 /* Devices which get the IVB wrong */
4172 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4173 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4174 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4175 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4176 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4177
6919a0a6
AC
4178 /* End Marker */
4179 { }
1da177e4 4180};
2e9edbf8 4181
741b7763 4182static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4183{
4184 const char *p;
4185 int len;
4186
4187 /*
4188 * check for trailing wildcard: *\0
4189 */
4190 p = strchr(patt, wildchar);
4191 if (p && ((*(p + 1)) == 0))
4192 len = p - patt;
317b50b8 4193 else {
539cc7c7 4194 len = strlen(name);
317b50b8
AP
4195 if (!len) {
4196 if (!*patt)
4197 return 0;
4198 return -1;
4199 }
4200 }
539cc7c7
JG
4201
4202 return strncmp(patt, name, len);
4203}
4204
75683fe7 4205static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4206{
8bfa79fc
TH
4207 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4208 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4209 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4210
8bfa79fc
TH
4211 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4212 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4213
6919a0a6 4214 while (ad->model_num) {
539cc7c7 4215 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4216 if (ad->model_rev == NULL)
4217 return ad->horkage;
539cc7c7 4218 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4219 return ad->horkage;
f4b15fef 4220 }
6919a0a6 4221 ad++;
f4b15fef 4222 }
1da177e4
LT
4223 return 0;
4224}
4225
6919a0a6
AC
4226static int ata_dma_blacklisted(const struct ata_device *dev)
4227{
4228 /* We don't support polling DMA.
4229 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4230 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4231 */
9af5c9c9 4232 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4233 (dev->flags & ATA_DFLAG_CDB_INTR))
4234 return 1;
75683fe7 4235 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4236}
4237
6bbfd53d
AC
4238/**
4239 * ata_is_40wire - check drive side detection
4240 * @dev: device
4241 *
4242 * Perform drive side detection decoding, allowing for device vendors
4243 * who can't follow the documentation.
4244 */
4245
4246static int ata_is_40wire(struct ata_device *dev)
4247{
4248 if (dev->horkage & ATA_HORKAGE_IVB)
4249 return ata_drive_40wire_relaxed(dev->id);
4250 return ata_drive_40wire(dev->id);
4251}
4252
a6d5a51c
TH
4253/**
4254 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4255 * @dev: Device to compute xfermask for
4256 *
acf356b1
TH
4257 * Compute supported xfermask of @dev and store it in
4258 * dev->*_mask. This function is responsible for applying all
4259 * known limits including host controller limits, device
4260 * blacklist, etc...
a6d5a51c
TH
4261 *
4262 * LOCKING:
4263 * None.
a6d5a51c 4264 */
3373efd8 4265static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4266{
9af5c9c9
TH
4267 struct ata_link *link = dev->link;
4268 struct ata_port *ap = link->ap;
cca3974e 4269 struct ata_host *host = ap->host;
a6d5a51c 4270 unsigned long xfer_mask;
1da177e4 4271
37deecb5 4272 /* controller modes available */
565083e1
TH
4273 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4274 ap->mwdma_mask, ap->udma_mask);
4275
8343f889 4276 /* drive modes available */
37deecb5
TH
4277 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4278 dev->mwdma_mask, dev->udma_mask);
4279 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4280
b352e57d
AC
4281 /*
4282 * CFA Advanced TrueIDE timings are not allowed on a shared
4283 * cable
4284 */
4285 if (ata_dev_pair(dev)) {
4286 /* No PIO5 or PIO6 */
4287 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4288 /* No MWDMA3 or MWDMA 4 */
4289 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4290 }
4291
37deecb5
TH
4292 if (ata_dma_blacklisted(dev)) {
4293 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4294 ata_dev_printk(dev, KERN_WARNING,
4295 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4296 }
a6d5a51c 4297
14d66ab7 4298 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4299 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4300 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4301 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4302 "other device, disabling DMA\n");
5444a6f4 4303 }
565083e1 4304
e424675f
JG
4305 if (ap->flags & ATA_FLAG_NO_IORDY)
4306 xfer_mask &= ata_pio_mask_no_iordy(dev);
4307
5444a6f4 4308 if (ap->ops->mode_filter)
a76b62ca 4309 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4310
8343f889
RH
4311 /* Apply cable rule here. Don't apply it early because when
4312 * we handle hot plug the cable type can itself change.
4313 * Check this last so that we know if the transfer rate was
4314 * solely limited by the cable.
4315 * Unknown or 80 wire cables reported host side are checked
4316 * drive side as well. Cases where we know a 40wire cable
4317 * is used safely for 80 are not checked here.
4318 */
4319 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4320 /* UDMA/44 or higher would be available */
2dcb407e 4321 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4322 (ata_is_40wire(dev) &&
2dcb407e
JG
4323 (ap->cbl == ATA_CBL_PATA_UNK ||
4324 ap->cbl == ATA_CBL_PATA80))) {
4325 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4326 "limited to UDMA/33 due to 40-wire cable\n");
4327 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4328 }
4329
565083e1
TH
4330 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4331 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4332}
4333
1da177e4
LT
4334/**
4335 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4336 * @dev: Device to which command will be sent
4337 *
780a87f7
JG
4338 * Issue SET FEATURES - XFER MODE command to device @dev
4339 * on port @ap.
4340 *
1da177e4 4341 * LOCKING:
0cba632b 4342 * PCI/etc. bus probe sem.
83206a29
TH
4343 *
4344 * RETURNS:
4345 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4346 */
4347
3373efd8 4348static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4349{
a0123703 4350 struct ata_taskfile tf;
83206a29 4351 unsigned int err_mask;
1da177e4
LT
4352
4353 /* set up set-features taskfile */
4354 DPRINTK("set features - xfer mode\n");
4355
464cf177
TH
4356 /* Some controllers and ATAPI devices show flaky interrupt
4357 * behavior after setting xfer mode. Use polling instead.
4358 */
3373efd8 4359 ata_tf_init(dev, &tf);
a0123703
TH
4360 tf.command = ATA_CMD_SET_FEATURES;
4361 tf.feature = SETFEATURES_XFER;
464cf177 4362 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4363 tf.protocol = ATA_PROT_NODATA;
4364 tf.nsect = dev->xfer_mode;
1da177e4 4365
2b789108 4366 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4367
4368 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4369 return err_mask;
4370}
9f45cbd3 4371/**
218f3d30 4372 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4373 * @dev: Device to which command will be sent
4374 * @enable: Whether to enable or disable the feature
218f3d30 4375 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4376 *
4377 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4378 * on port @ap with sector count
9f45cbd3
KCA
4379 *
4380 * LOCKING:
4381 * PCI/etc. bus probe sem.
4382 *
4383 * RETURNS:
4384 * 0 on success, AC_ERR_* mask otherwise.
4385 */
218f3d30
JG
4386static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4387 u8 feature)
9f45cbd3
KCA
4388{
4389 struct ata_taskfile tf;
4390 unsigned int err_mask;
4391
4392 /* set up set-features taskfile */
4393 DPRINTK("set features - SATA features\n");
4394
4395 ata_tf_init(dev, &tf);
4396 tf.command = ATA_CMD_SET_FEATURES;
4397 tf.feature = enable;
4398 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4399 tf.protocol = ATA_PROT_NODATA;
218f3d30 4400 tf.nsect = feature;
9f45cbd3 4401
2b789108 4402 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4403
83206a29
TH
4404 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4405 return err_mask;
1da177e4
LT
4406}
4407
8bf62ece
AL
4408/**
4409 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4410 * @dev: Device to which command will be sent
e2a7f77a
RD
4411 * @heads: Number of heads (taskfile parameter)
4412 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4413 *
4414 * LOCKING:
6aff8f1f
TH
4415 * Kernel thread context (may sleep)
4416 *
4417 * RETURNS:
4418 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4419 */
3373efd8
TH
4420static unsigned int ata_dev_init_params(struct ata_device *dev,
4421 u16 heads, u16 sectors)
8bf62ece 4422{
a0123703 4423 struct ata_taskfile tf;
6aff8f1f 4424 unsigned int err_mask;
8bf62ece
AL
4425
4426 /* Number of sectors per track 1-255. Number of heads 1-16 */
4427 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4428 return AC_ERR_INVALID;
8bf62ece
AL
4429
4430 /* set up init dev params taskfile */
4431 DPRINTK("init dev params \n");
4432
3373efd8 4433 ata_tf_init(dev, &tf);
a0123703
TH
4434 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4435 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4436 tf.protocol = ATA_PROT_NODATA;
4437 tf.nsect = sectors;
4438 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4439
2b789108 4440 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4441 /* A clean abort indicates an original or just out of spec drive
4442 and we should continue as we issue the setup based on the
4443 drive reported working geometry */
4444 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4445 err_mask = 0;
8bf62ece 4446
6aff8f1f
TH
4447 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4448 return err_mask;
8bf62ece
AL
4449}
4450
1da177e4 4451/**
0cba632b
JG
4452 * ata_sg_clean - Unmap DMA memory associated with command
4453 * @qc: Command containing DMA memory to be released
4454 *
4455 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4456 *
4457 * LOCKING:
cca3974e 4458 * spin_lock_irqsave(host lock)
1da177e4 4459 */
70e6ad0c 4460void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4461{
4462 struct ata_port *ap = qc->ap;
cedc9a47 4463 struct scatterlist *sg = qc->__sg;
1da177e4 4464 int dir = qc->dma_dir;
cedc9a47 4465 void *pad_buf = NULL;
1da177e4 4466
a4631474
TH
4467 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4468 WARN_ON(sg == NULL);
1da177e4
LT
4469
4470 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4471 WARN_ON(qc->n_elem > 1);
1da177e4 4472
2c13b7ce 4473 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4474
cedc9a47
JG
4475 /* if we padded the buffer out to 32-bit bound, and data
4476 * xfer direction is from-device, we must copy from the
4477 * pad buffer back into the supplied buffer
4478 */
4479 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4480 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4481
4482 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4483 if (qc->n_elem)
2f1f610b 4484 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4485 /* restore last sg */
87260216 4486 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4487 if (pad_buf) {
4488 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4489 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4490 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4491 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4492 }
4493 } else {
2e242fa9 4494 if (qc->n_elem)
2f1f610b 4495 dma_unmap_single(ap->dev,
e1410f2d
JG
4496 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4497 dir);
cedc9a47
JG
4498 /* restore sg */
4499 sg->length += qc->pad_len;
4500 if (pad_buf)
4501 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4502 pad_buf, qc->pad_len);
4503 }
1da177e4
LT
4504
4505 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4506 qc->__sg = NULL;
1da177e4
LT
4507}
4508
4509/**
4510 * ata_fill_sg - Fill PCI IDE PRD table
4511 * @qc: Metadata associated with taskfile to be transferred
4512 *
780a87f7
JG
4513 * Fill PCI IDE PRD (scatter-gather) table with segments
4514 * associated with the current disk command.
4515 *
1da177e4 4516 * LOCKING:
cca3974e 4517 * spin_lock_irqsave(host lock)
1da177e4
LT
4518 *
4519 */
4520static void ata_fill_sg(struct ata_queued_cmd *qc)
4521{
1da177e4 4522 struct ata_port *ap = qc->ap;
cedc9a47
JG
4523 struct scatterlist *sg;
4524 unsigned int idx;
1da177e4 4525
a4631474 4526 WARN_ON(qc->__sg == NULL);
f131883e 4527 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4528
4529 idx = 0;
cedc9a47 4530 ata_for_each_sg(sg, qc) {
1da177e4
LT
4531 u32 addr, offset;
4532 u32 sg_len, len;
4533
4534 /* determine if physical DMA addr spans 64K boundary.
4535 * Note h/w doesn't support 64-bit, so we unconditionally
4536 * truncate dma_addr_t to u32.
4537 */
4538 addr = (u32) sg_dma_address(sg);
4539 sg_len = sg_dma_len(sg);
4540
4541 while (sg_len) {
4542 offset = addr & 0xffff;
4543 len = sg_len;
4544 if ((offset + sg_len) > 0x10000)
4545 len = 0x10000 - offset;
4546
4547 ap->prd[idx].addr = cpu_to_le32(addr);
4548 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4549 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4550
4551 idx++;
4552 sg_len -= len;
4553 addr += len;
4554 }
4555 }
4556
4557 if (idx)
4558 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4559}
b9a4197e 4560
d26fc955
AC
4561/**
4562 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4563 * @qc: Metadata associated with taskfile to be transferred
4564 *
4565 * Fill PCI IDE PRD (scatter-gather) table with segments
4566 * associated with the current disk command. Perform the fill
4567 * so that we avoid writing any length 64K records for
4568 * controllers that don't follow the spec.
4569 *
4570 * LOCKING:
4571 * spin_lock_irqsave(host lock)
4572 *
4573 */
4574static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4575{
4576 struct ata_port *ap = qc->ap;
4577 struct scatterlist *sg;
4578 unsigned int idx;
4579
4580 WARN_ON(qc->__sg == NULL);
4581 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4582
4583 idx = 0;
4584 ata_for_each_sg(sg, qc) {
4585 u32 addr, offset;
4586 u32 sg_len, len, blen;
4587
2dcb407e 4588 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4589 * Note h/w doesn't support 64-bit, so we unconditionally
4590 * truncate dma_addr_t to u32.
4591 */
4592 addr = (u32) sg_dma_address(sg);
4593 sg_len = sg_dma_len(sg);
4594
4595 while (sg_len) {
4596 offset = addr & 0xffff;
4597 len = sg_len;
4598 if ((offset + sg_len) > 0x10000)
4599 len = 0x10000 - offset;
4600
4601 blen = len & 0xffff;
4602 ap->prd[idx].addr = cpu_to_le32(addr);
4603 if (blen == 0) {
4604 /* Some PATA chipsets like the CS5530 can't
4605 cope with 0x0000 meaning 64K as the spec says */
4606 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4607 blen = 0x8000;
4608 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4609 }
4610 ap->prd[idx].flags_len = cpu_to_le32(blen);
4611 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4612
4613 idx++;
4614 sg_len -= len;
4615 addr += len;
4616 }
4617 }
4618
4619 if (idx)
4620 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4621}
4622
1da177e4
LT
4623/**
4624 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4625 * @qc: Metadata associated with taskfile to check
4626 *
780a87f7
JG
4627 * Allow low-level driver to filter ATA PACKET commands, returning
4628 * a status indicating whether or not it is OK to use DMA for the
4629 * supplied PACKET command.
4630 *
1da177e4 4631 * LOCKING:
cca3974e 4632 * spin_lock_irqsave(host lock)
0cba632b 4633 *
1da177e4
LT
4634 * RETURNS: 0 when ATAPI DMA can be used
4635 * nonzero otherwise
4636 */
4637int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4638{
4639 struct ata_port *ap = qc->ap;
b9a4197e
TH
4640
4641 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4642 * few ATAPI devices choke on such DMA requests.
4643 */
4644 if (unlikely(qc->nbytes & 15))
4645 return 1;
6f23a31d 4646
1da177e4 4647 if (ap->ops->check_atapi_dma)
b9a4197e 4648 return ap->ops->check_atapi_dma(qc);
1da177e4 4649
b9a4197e 4650 return 0;
1da177e4 4651}
b9a4197e 4652
31cc23b3
TH
4653/**
4654 * ata_std_qc_defer - Check whether a qc needs to be deferred
4655 * @qc: ATA command in question
4656 *
4657 * Non-NCQ commands cannot run with any other command, NCQ or
4658 * not. As upper layer only knows the queue depth, we are
4659 * responsible for maintaining exclusion. This function checks
4660 * whether a new command @qc can be issued.
4661 *
4662 * LOCKING:
4663 * spin_lock_irqsave(host lock)
4664 *
4665 * RETURNS:
4666 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4667 */
4668int ata_std_qc_defer(struct ata_queued_cmd *qc)
4669{
4670 struct ata_link *link = qc->dev->link;
4671
4672 if (qc->tf.protocol == ATA_PROT_NCQ) {
4673 if (!ata_tag_valid(link->active_tag))
4674 return 0;
4675 } else {
4676 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4677 return 0;
4678 }
4679
4680 return ATA_DEFER_LINK;
4681}
4682
1da177e4
LT
4683/**
4684 * ata_qc_prep - Prepare taskfile for submission
4685 * @qc: Metadata associated with taskfile to be prepared
4686 *
780a87f7
JG
4687 * Prepare ATA taskfile for submission.
4688 *
1da177e4 4689 * LOCKING:
cca3974e 4690 * spin_lock_irqsave(host lock)
1da177e4
LT
4691 */
4692void ata_qc_prep(struct ata_queued_cmd *qc)
4693{
4694 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4695 return;
4696
4697 ata_fill_sg(qc);
4698}
4699
d26fc955
AC
4700/**
4701 * ata_dumb_qc_prep - Prepare taskfile for submission
4702 * @qc: Metadata associated with taskfile to be prepared
4703 *
4704 * Prepare ATA taskfile for submission.
4705 *
4706 * LOCKING:
4707 * spin_lock_irqsave(host lock)
4708 */
4709void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4710{
4711 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4712 return;
4713
4714 ata_fill_sg_dumb(qc);
4715}
4716
e46834cd
BK
4717void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4718
0cba632b
JG
4719/**
4720 * ata_sg_init_one - Associate command with memory buffer
4721 * @qc: Command to be associated
4722 * @buf: Memory buffer
4723 * @buflen: Length of memory buffer, in bytes.
4724 *
4725 * Initialize the data-related elements of queued_cmd @qc
4726 * to point to a single memory buffer, @buf of byte length @buflen.
4727 *
4728 * LOCKING:
cca3974e 4729 * spin_lock_irqsave(host lock)
0cba632b
JG
4730 */
4731
1da177e4
LT
4732void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4733{
1da177e4
LT
4734 qc->flags |= ATA_QCFLAG_SINGLE;
4735
cedc9a47 4736 qc->__sg = &qc->sgent;
1da177e4 4737 qc->n_elem = 1;
cedc9a47 4738 qc->orig_n_elem = 1;
1da177e4 4739 qc->buf_virt = buf;
233277ca 4740 qc->nbytes = buflen;
87260216 4741 qc->cursg = qc->__sg;
1da177e4 4742
61c0596c 4743 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4744}
4745
0cba632b
JG
4746/**
4747 * ata_sg_init - Associate command with scatter-gather table.
4748 * @qc: Command to be associated
4749 * @sg: Scatter-gather table.
4750 * @n_elem: Number of elements in s/g table.
4751 *
4752 * Initialize the data-related elements of queued_cmd @qc
4753 * to point to a scatter-gather table @sg, containing @n_elem
4754 * elements.
4755 *
4756 * LOCKING:
cca3974e 4757 * spin_lock_irqsave(host lock)
0cba632b
JG
4758 */
4759
1da177e4
LT
4760void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4761 unsigned int n_elem)
4762{
4763 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4764 qc->__sg = sg;
1da177e4 4765 qc->n_elem = n_elem;
cedc9a47 4766 qc->orig_n_elem = n_elem;
87260216 4767 qc->cursg = qc->__sg;
1da177e4
LT
4768}
4769
4770/**
0cba632b
JG
4771 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4772 * @qc: Command with memory buffer to be mapped.
4773 *
4774 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4775 *
4776 * LOCKING:
cca3974e 4777 * spin_lock_irqsave(host lock)
1da177e4
LT
4778 *
4779 * RETURNS:
0cba632b 4780 * Zero on success, negative on error.
1da177e4
LT
4781 */
4782
4783static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4784{
4785 struct ata_port *ap = qc->ap;
4786 int dir = qc->dma_dir;
cedc9a47 4787 struct scatterlist *sg = qc->__sg;
1da177e4 4788 dma_addr_t dma_address;
2e242fa9 4789 int trim_sg = 0;
1da177e4 4790
cedc9a47
JG
4791 /* we must lengthen transfers to end on a 32-bit boundary */
4792 qc->pad_len = sg->length & 3;
4793 if (qc->pad_len) {
4794 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4795 struct scatterlist *psg = &qc->pad_sgent;
4796
a4631474 4797 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4798
4799 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4800
4801 if (qc->tf.flags & ATA_TFLAG_WRITE)
4802 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4803 qc->pad_len);
4804
4805 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4806 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4807 /* trim sg */
4808 sg->length -= qc->pad_len;
2e242fa9
TH
4809 if (sg->length == 0)
4810 trim_sg = 1;
cedc9a47
JG
4811
4812 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4813 sg->length, qc->pad_len);
4814 }
4815
2e242fa9
TH
4816 if (trim_sg) {
4817 qc->n_elem--;
e1410f2d
JG
4818 goto skip_map;
4819 }
4820
2f1f610b 4821 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4822 sg->length, dir);
537a95d9
TH
4823 if (dma_mapping_error(dma_address)) {
4824 /* restore sg */
4825 sg->length += qc->pad_len;
1da177e4 4826 return -1;
537a95d9 4827 }
1da177e4
LT
4828
4829 sg_dma_address(sg) = dma_address;
32529e01 4830 sg_dma_len(sg) = sg->length;
1da177e4 4831
2e242fa9 4832skip_map:
1da177e4
LT
4833 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4834 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4835
4836 return 0;
4837}
4838
4839/**
0cba632b
JG
4840 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4841 * @qc: Command with scatter-gather table to be mapped.
4842 *
4843 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4844 *
4845 * LOCKING:
cca3974e 4846 * spin_lock_irqsave(host lock)
1da177e4
LT
4847 *
4848 * RETURNS:
0cba632b 4849 * Zero on success, negative on error.
1da177e4
LT
4850 *
4851 */
4852
4853static int ata_sg_setup(struct ata_queued_cmd *qc)
4854{
4855 struct ata_port *ap = qc->ap;
cedc9a47 4856 struct scatterlist *sg = qc->__sg;
87260216 4857 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4858 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4859
44877b4e 4860 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4861 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4862
cedc9a47
JG
4863 /* we must lengthen transfers to end on a 32-bit boundary */
4864 qc->pad_len = lsg->length & 3;
4865 if (qc->pad_len) {
4866 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4867 struct scatterlist *psg = &qc->pad_sgent;
4868 unsigned int offset;
4869
a4631474 4870 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4871
4872 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4873
4874 /*
4875 * psg->page/offset are used to copy to-be-written
4876 * data in this function or read data in ata_sg_clean.
4877 */
4878 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4879 sg_init_table(psg, 1);
642f1490
JA
4880 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4881 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4882
4883 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4884 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4885 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4886 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4887 }
4888
4889 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4890 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4891 /* trim last sg */
4892 lsg->length -= qc->pad_len;
e1410f2d
JG
4893 if (lsg->length == 0)
4894 trim_sg = 1;
cedc9a47
JG
4895
4896 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4897 qc->n_elem - 1, lsg->length, qc->pad_len);
4898 }
4899
e1410f2d
JG
4900 pre_n_elem = qc->n_elem;
4901 if (trim_sg && pre_n_elem)
4902 pre_n_elem--;
4903
4904 if (!pre_n_elem) {
4905 n_elem = 0;
4906 goto skip_map;
4907 }
4908
1da177e4 4909 dir = qc->dma_dir;
2f1f610b 4910 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4911 if (n_elem < 1) {
4912 /* restore last sg */
4913 lsg->length += qc->pad_len;
1da177e4 4914 return -1;
537a95d9 4915 }
1da177e4
LT
4916
4917 DPRINTK("%d sg elements mapped\n", n_elem);
4918
e1410f2d 4919skip_map:
1da177e4
LT
4920 qc->n_elem = n_elem;
4921
4922 return 0;
4923}
4924
0baab86b 4925/**
c893a3ae 4926 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4927 * @buf: Buffer to swap
4928 * @buf_words: Number of 16-bit words in buffer.
4929 *
4930 * Swap halves of 16-bit words if needed to convert from
4931 * little-endian byte order to native cpu byte order, or
4932 * vice-versa.
4933 *
4934 * LOCKING:
6f0ef4fa 4935 * Inherited from caller.
0baab86b 4936 */
1da177e4
LT
4937void swap_buf_le16(u16 *buf, unsigned int buf_words)
4938{
4939#ifdef __BIG_ENDIAN
4940 unsigned int i;
4941
4942 for (i = 0; i < buf_words; i++)
4943 buf[i] = le16_to_cpu(buf[i]);
4944#endif /* __BIG_ENDIAN */
4945}
4946
6ae4cfb5 4947/**
0d5ff566 4948 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4949 * @adev: device to target
6ae4cfb5
AL
4950 * @buf: data buffer
4951 * @buflen: buffer length
344babaa 4952 * @write_data: read/write
6ae4cfb5
AL
4953 *
4954 * Transfer data from/to the device data register by PIO.
4955 *
4956 * LOCKING:
4957 * Inherited from caller.
6ae4cfb5 4958 */
0d5ff566
TH
4959void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4960 unsigned int buflen, int write_data)
1da177e4 4961{
9af5c9c9 4962 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4963 unsigned int words = buflen >> 1;
1da177e4 4964
6ae4cfb5 4965 /* Transfer multiple of 2 bytes */
1da177e4 4966 if (write_data)
0d5ff566 4967 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4968 else
0d5ff566 4969 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4970
4971 /* Transfer trailing 1 byte, if any. */
4972 if (unlikely(buflen & 0x01)) {
4973 u16 align_buf[1] = { 0 };
4974 unsigned char *trailing_buf = buf + buflen - 1;
4975
4976 if (write_data) {
4977 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4978 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4979 } else {
0d5ff566 4980 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4981 memcpy(trailing_buf, align_buf, 1);
4982 }
4983 }
1da177e4
LT
4984}
4985
75e99585 4986/**
0d5ff566 4987 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4988 * @adev: device to target
4989 * @buf: data buffer
4990 * @buflen: buffer length
4991 * @write_data: read/write
4992 *
88574551 4993 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4994 * transfer with interrupts disabled.
4995 *
4996 * LOCKING:
4997 * Inherited from caller.
4998 */
0d5ff566
TH
4999void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5000 unsigned int buflen, int write_data)
75e99585
AC
5001{
5002 unsigned long flags;
5003 local_irq_save(flags);
0d5ff566 5004 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5005 local_irq_restore(flags);
5006}
5007
5008
6ae4cfb5 5009/**
5a5dbd18 5010 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5011 * @qc: Command on going
5012 *
5a5dbd18 5013 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5014 *
5015 * LOCKING:
5016 * Inherited from caller.
5017 */
5018
1da177e4
LT
5019static void ata_pio_sector(struct ata_queued_cmd *qc)
5020{
5021 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5022 struct ata_port *ap = qc->ap;
5023 struct page *page;
5024 unsigned int offset;
5025 unsigned char *buf;
5026
5a5dbd18 5027 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5028 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5029
45711f1a 5030 page = sg_page(qc->cursg);
87260216 5031 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5032
5033 /* get the current page and offset */
5034 page = nth_page(page, (offset >> PAGE_SHIFT));
5035 offset %= PAGE_SIZE;
5036
1da177e4
LT
5037 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5038
91b8b313
AL
5039 if (PageHighMem(page)) {
5040 unsigned long flags;
5041
a6b2c5d4 5042 /* FIXME: use a bounce buffer */
91b8b313
AL
5043 local_irq_save(flags);
5044 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5045
91b8b313 5046 /* do the actual data transfer */
5a5dbd18 5047 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5048
91b8b313
AL
5049 kunmap_atomic(buf, KM_IRQ0);
5050 local_irq_restore(flags);
5051 } else {
5052 buf = page_address(page);
5a5dbd18 5053 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5054 }
1da177e4 5055
5a5dbd18
ML
5056 qc->curbytes += qc->sect_size;
5057 qc->cursg_ofs += qc->sect_size;
1da177e4 5058
87260216
JA
5059 if (qc->cursg_ofs == qc->cursg->length) {
5060 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5061 qc->cursg_ofs = 0;
5062 }
1da177e4 5063}
1da177e4 5064
07f6f7d0 5065/**
5a5dbd18 5066 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5067 * @qc: Command on going
5068 *
5a5dbd18 5069 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5070 * ATA device for the DRQ request.
5071 *
5072 * LOCKING:
5073 * Inherited from caller.
5074 */
1da177e4 5075
07f6f7d0
AL
5076static void ata_pio_sectors(struct ata_queued_cmd *qc)
5077{
5078 if (is_multi_taskfile(&qc->tf)) {
5079 /* READ/WRITE MULTIPLE */
5080 unsigned int nsect;
5081
587005de 5082 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5083
5a5dbd18 5084 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5085 qc->dev->multi_count);
07f6f7d0
AL
5086 while (nsect--)
5087 ata_pio_sector(qc);
5088 } else
5089 ata_pio_sector(qc);
4cc980b3
AL
5090
5091 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5092}
5093
c71c1857
AL
5094/**
5095 * atapi_send_cdb - Write CDB bytes to hardware
5096 * @ap: Port to which ATAPI device is attached.
5097 * @qc: Taskfile currently active
5098 *
5099 * When device has indicated its readiness to accept
5100 * a CDB, this function is called. Send the CDB.
5101 *
5102 * LOCKING:
5103 * caller.
5104 */
5105
5106static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5107{
5108 /* send SCSI cdb */
5109 DPRINTK("send cdb\n");
db024d53 5110 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5111
a6b2c5d4 5112 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5113 ata_altstatus(ap); /* flush */
5114
5115 switch (qc->tf.protocol) {
5116 case ATA_PROT_ATAPI:
5117 ap->hsm_task_state = HSM_ST;
5118 break;
5119 case ATA_PROT_ATAPI_NODATA:
5120 ap->hsm_task_state = HSM_ST_LAST;
5121 break;
5122 case ATA_PROT_ATAPI_DMA:
5123 ap->hsm_task_state = HSM_ST_LAST;
5124 /* initiate bmdma */
5125 ap->ops->bmdma_start(qc);
5126 break;
5127 }
1da177e4
LT
5128}
5129
6ae4cfb5
AL
5130/**
5131 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5132 * @qc: Command on going
5133 * @bytes: number of bytes
5134 *
5135 * Transfer Transfer data from/to the ATAPI device.
5136 *
5137 * LOCKING:
5138 * Inherited from caller.
5139 *
5140 */
5141
1da177e4
LT
5142static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5143{
5144 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5145 struct scatterlist *sg = qc->__sg;
0874ee76 5146 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5147 struct ata_port *ap = qc->ap;
5148 struct page *page;
5149 unsigned char *buf;
5150 unsigned int offset, count;
0874ee76 5151 int no_more_sg = 0;
1da177e4 5152
563a6e1f 5153 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5154 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5155
5156next_sg:
0874ee76 5157 if (unlikely(no_more_sg)) {
7fb6ec28 5158 /*
563a6e1f
AL
5159 * The end of qc->sg is reached and the device expects
5160 * more data to transfer. In order not to overrun qc->sg
5161 * and fulfill length specified in the byte count register,
5162 * - for read case, discard trailing data from the device
5163 * - for write case, padding zero data to the device
5164 */
5165 u16 pad_buf[1] = { 0 };
5166 unsigned int words = bytes >> 1;
5167 unsigned int i;
5168
5169 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5170 ata_dev_printk(qc->dev, KERN_WARNING,
5171 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5172
5173 for (i = 0; i < words; i++)
2dcb407e 5174 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5175
14be71f4 5176 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5177 return;
5178 }
5179
87260216 5180 sg = qc->cursg;
1da177e4 5181
45711f1a 5182 page = sg_page(sg);
1da177e4
LT
5183 offset = sg->offset + qc->cursg_ofs;
5184
5185 /* get the current page and offset */
5186 page = nth_page(page, (offset >> PAGE_SHIFT));
5187 offset %= PAGE_SIZE;
5188
6952df03 5189 /* don't overrun current sg */
32529e01 5190 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5191
5192 /* don't cross page boundaries */
5193 count = min(count, (unsigned int)PAGE_SIZE - offset);
5194
7282aa4b
AL
5195 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5196
91b8b313
AL
5197 if (PageHighMem(page)) {
5198 unsigned long flags;
5199
a6b2c5d4 5200 /* FIXME: use bounce buffer */
91b8b313
AL
5201 local_irq_save(flags);
5202 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5203
91b8b313 5204 /* do the actual data transfer */
a6b2c5d4 5205 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5206
91b8b313
AL
5207 kunmap_atomic(buf, KM_IRQ0);
5208 local_irq_restore(flags);
5209 } else {
5210 buf = page_address(page);
a6b2c5d4 5211 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5212 }
1da177e4
LT
5213
5214 bytes -= count;
5215 qc->curbytes += count;
5216 qc->cursg_ofs += count;
5217
32529e01 5218 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5219 if (qc->cursg == lsg)
5220 no_more_sg = 1;
5221
87260216 5222 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5223 qc->cursg_ofs = 0;
5224 }
5225
563a6e1f 5226 if (bytes)
1da177e4 5227 goto next_sg;
1da177e4
LT
5228}
5229
6ae4cfb5
AL
5230/**
5231 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5232 * @qc: Command on going
5233 *
5234 * Transfer Transfer data from/to the ATAPI device.
5235 *
5236 * LOCKING:
5237 * Inherited from caller.
6ae4cfb5
AL
5238 */
5239
1da177e4
LT
5240static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5241{
5242 struct ata_port *ap = qc->ap;
5243 struct ata_device *dev = qc->dev;
5244 unsigned int ireason, bc_lo, bc_hi, bytes;
5245 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5246
eec4c3f3
AL
5247 /* Abuse qc->result_tf for temp storage of intermediate TF
5248 * here to save some kernel stack usage.
5249 * For normal completion, qc->result_tf is not relevant. For
5250 * error, qc->result_tf is later overwritten by ata_qc_complete().
5251 * So, the correctness of qc->result_tf is not affected.
5252 */
5253 ap->ops->tf_read(ap, &qc->result_tf);
5254 ireason = qc->result_tf.nsect;
5255 bc_lo = qc->result_tf.lbam;
5256 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5257 bytes = (bc_hi << 8) | bc_lo;
5258
5259 /* shall be cleared to zero, indicating xfer of data */
5260 if (ireason & (1 << 0))
5261 goto err_out;
5262
5263 /* make sure transfer direction matches expected */
5264 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5265 if (do_write != i_write)
5266 goto err_out;
5267
44877b4e 5268 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5269
1da177e4 5270 __atapi_pio_bytes(qc, bytes);
4cc980b3 5271 ata_altstatus(ap); /* flush */
1da177e4
LT
5272
5273 return;
5274
5275err_out:
f15a1daf 5276 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5277 qc->err_mask |= AC_ERR_HSM;
14be71f4 5278 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5279}
5280
5281/**
c234fb00
AL
5282 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5283 * @ap: the target ata_port
5284 * @qc: qc on going
1da177e4 5285 *
c234fb00
AL
5286 * RETURNS:
5287 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5288 */
c234fb00
AL
5289
5290static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5291{
c234fb00
AL
5292 if (qc->tf.flags & ATA_TFLAG_POLLING)
5293 return 1;
1da177e4 5294
c234fb00
AL
5295 if (ap->hsm_task_state == HSM_ST_FIRST) {
5296 if (qc->tf.protocol == ATA_PROT_PIO &&
5297 (qc->tf.flags & ATA_TFLAG_WRITE))
5298 return 1;
1da177e4 5299
c234fb00
AL
5300 if (is_atapi_taskfile(&qc->tf) &&
5301 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5302 return 1;
fe79e683
AL
5303 }
5304
c234fb00
AL
5305 return 0;
5306}
1da177e4 5307
c17ea20d
TH
5308/**
5309 * ata_hsm_qc_complete - finish a qc running on standard HSM
5310 * @qc: Command to complete
5311 * @in_wq: 1 if called from workqueue, 0 otherwise
5312 *
5313 * Finish @qc which is running on standard HSM.
5314 *
5315 * LOCKING:
cca3974e 5316 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5317 * Otherwise, none on entry and grabs host lock.
5318 */
5319static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5320{
5321 struct ata_port *ap = qc->ap;
5322 unsigned long flags;
5323
5324 if (ap->ops->error_handler) {
5325 if (in_wq) {
ba6a1308 5326 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5327
cca3974e
JG
5328 /* EH might have kicked in while host lock is
5329 * released.
c17ea20d
TH
5330 */
5331 qc = ata_qc_from_tag(ap, qc->tag);
5332 if (qc) {
5333 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5334 ap->ops->irq_on(ap);
c17ea20d
TH
5335 ata_qc_complete(qc);
5336 } else
5337 ata_port_freeze(ap);
5338 }
5339
ba6a1308 5340 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5341 } else {
5342 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5343 ata_qc_complete(qc);
5344 else
5345 ata_port_freeze(ap);
5346 }
5347 } else {
5348 if (in_wq) {
ba6a1308 5349 spin_lock_irqsave(ap->lock, flags);
83625006 5350 ap->ops->irq_on(ap);
c17ea20d 5351 ata_qc_complete(qc);
ba6a1308 5352 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5353 } else
5354 ata_qc_complete(qc);
5355 }
5356}
5357
bb5cb290
AL
5358/**
5359 * ata_hsm_move - move the HSM to the next state.
5360 * @ap: the target ata_port
5361 * @qc: qc on going
5362 * @status: current device status
5363 * @in_wq: 1 if called from workqueue, 0 otherwise
5364 *
5365 * RETURNS:
5366 * 1 when poll next status needed, 0 otherwise.
5367 */
9a1004d0
TH
5368int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5369 u8 status, int in_wq)
e2cec771 5370{
bb5cb290
AL
5371 unsigned long flags = 0;
5372 int poll_next;
5373
6912ccd5
AL
5374 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5375
bb5cb290
AL
5376 /* Make sure ata_qc_issue_prot() does not throw things
5377 * like DMA polling into the workqueue. Notice that
5378 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5379 */
c234fb00 5380 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5381
e2cec771 5382fsm_start:
999bb6f4 5383 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5384 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5385
e2cec771
AL
5386 switch (ap->hsm_task_state) {
5387 case HSM_ST_FIRST:
bb5cb290
AL
5388 /* Send first data block or PACKET CDB */
5389
5390 /* If polling, we will stay in the work queue after
5391 * sending the data. Otherwise, interrupt handler
5392 * takes over after sending the data.
5393 */
5394 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5395
e2cec771 5396 /* check device status */
3655d1d3
AL
5397 if (unlikely((status & ATA_DRQ) == 0)) {
5398 /* handle BSY=0, DRQ=0 as error */
5399 if (likely(status & (ATA_ERR | ATA_DF)))
5400 /* device stops HSM for abort/error */
5401 qc->err_mask |= AC_ERR_DEV;
5402 else
5403 /* HSM violation. Let EH handle this */
5404 qc->err_mask |= AC_ERR_HSM;
5405
14be71f4 5406 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5407 goto fsm_start;
1da177e4
LT
5408 }
5409
71601958
AL
5410 /* Device should not ask for data transfer (DRQ=1)
5411 * when it finds something wrong.
eee6c32f
AL
5412 * We ignore DRQ here and stop the HSM by
5413 * changing hsm_task_state to HSM_ST_ERR and
5414 * let the EH abort the command or reset the device.
71601958
AL
5415 */
5416 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5417 /* Some ATAPI tape drives forget to clear the ERR bit
5418 * when doing the next command (mostly request sense).
5419 * We ignore ERR here to workaround and proceed sending
5420 * the CDB.
5421 */
5422 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5423 ata_port_printk(ap, KERN_WARNING,
5424 "DRQ=1 with device error, "
5425 "dev_stat 0x%X\n", status);
5426 qc->err_mask |= AC_ERR_HSM;
5427 ap->hsm_task_state = HSM_ST_ERR;
5428 goto fsm_start;
5429 }
71601958 5430 }
1da177e4 5431
bb5cb290
AL
5432 /* Send the CDB (atapi) or the first data block (ata pio out).
5433 * During the state transition, interrupt handler shouldn't
5434 * be invoked before the data transfer is complete and
5435 * hsm_task_state is changed. Hence, the following locking.
5436 */
5437 if (in_wq)
ba6a1308 5438 spin_lock_irqsave(ap->lock, flags);
1da177e4 5439
bb5cb290
AL
5440 if (qc->tf.protocol == ATA_PROT_PIO) {
5441 /* PIO data out protocol.
5442 * send first data block.
5443 */
0565c26d 5444
bb5cb290
AL
5445 /* ata_pio_sectors() might change the state
5446 * to HSM_ST_LAST. so, the state is changed here
5447 * before ata_pio_sectors().
5448 */
5449 ap->hsm_task_state = HSM_ST;
5450 ata_pio_sectors(qc);
bb5cb290
AL
5451 } else
5452 /* send CDB */
5453 atapi_send_cdb(ap, qc);
5454
5455 if (in_wq)
ba6a1308 5456 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5457
5458 /* if polling, ata_pio_task() handles the rest.
5459 * otherwise, interrupt handler takes over from here.
5460 */
e2cec771 5461 break;
1c848984 5462
e2cec771
AL
5463 case HSM_ST:
5464 /* complete command or read/write the data register */
5465 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5466 /* ATAPI PIO protocol */
5467 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5468 /* No more data to transfer or device error.
5469 * Device error will be tagged in HSM_ST_LAST.
5470 */
e2cec771
AL
5471 ap->hsm_task_state = HSM_ST_LAST;
5472 goto fsm_start;
5473 }
1da177e4 5474
71601958
AL
5475 /* Device should not ask for data transfer (DRQ=1)
5476 * when it finds something wrong.
eee6c32f
AL
5477 * We ignore DRQ here and stop the HSM by
5478 * changing hsm_task_state to HSM_ST_ERR and
5479 * let the EH abort the command or reset the device.
71601958
AL
5480 */
5481 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5482 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5483 "device error, dev_stat 0x%X\n",
5484 status);
3655d1d3 5485 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5486 ap->hsm_task_state = HSM_ST_ERR;
5487 goto fsm_start;
71601958 5488 }
1da177e4 5489
e2cec771 5490 atapi_pio_bytes(qc);
7fb6ec28 5491
e2cec771
AL
5492 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5493 /* bad ireason reported by device */
5494 goto fsm_start;
1da177e4 5495
e2cec771
AL
5496 } else {
5497 /* ATA PIO protocol */
5498 if (unlikely((status & ATA_DRQ) == 0)) {
5499 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5500 if (likely(status & (ATA_ERR | ATA_DF)))
5501 /* device stops HSM for abort/error */
5502 qc->err_mask |= AC_ERR_DEV;
5503 else
55a8e2c8
TH
5504 /* HSM violation. Let EH handle this.
5505 * Phantom devices also trigger this
5506 * condition. Mark hint.
5507 */
5508 qc->err_mask |= AC_ERR_HSM |
5509 AC_ERR_NODEV_HINT;
3655d1d3 5510
e2cec771
AL
5511 ap->hsm_task_state = HSM_ST_ERR;
5512 goto fsm_start;
5513 }
1da177e4 5514
eee6c32f
AL
5515 /* For PIO reads, some devices may ask for
5516 * data transfer (DRQ=1) alone with ERR=1.
5517 * We respect DRQ here and transfer one
5518 * block of junk data before changing the
5519 * hsm_task_state to HSM_ST_ERR.
5520 *
5521 * For PIO writes, ERR=1 DRQ=1 doesn't make
5522 * sense since the data block has been
5523 * transferred to the device.
71601958
AL
5524 */
5525 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5526 /* data might be corrputed */
5527 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5528
5529 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5530 ata_pio_sectors(qc);
eee6c32f
AL
5531 status = ata_wait_idle(ap);
5532 }
5533
3655d1d3
AL
5534 if (status & (ATA_BUSY | ATA_DRQ))
5535 qc->err_mask |= AC_ERR_HSM;
5536
eee6c32f
AL
5537 /* ata_pio_sectors() might change the
5538 * state to HSM_ST_LAST. so, the state
5539 * is changed after ata_pio_sectors().
5540 */
5541 ap->hsm_task_state = HSM_ST_ERR;
5542 goto fsm_start;
71601958
AL
5543 }
5544
e2cec771
AL
5545 ata_pio_sectors(qc);
5546
5547 if (ap->hsm_task_state == HSM_ST_LAST &&
5548 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5549 /* all data read */
52a32205 5550 status = ata_wait_idle(ap);
e2cec771
AL
5551 goto fsm_start;
5552 }
5553 }
5554
bb5cb290 5555 poll_next = 1;
1da177e4
LT
5556 break;
5557
14be71f4 5558 case HSM_ST_LAST:
6912ccd5
AL
5559 if (unlikely(!ata_ok(status))) {
5560 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5561 ap->hsm_task_state = HSM_ST_ERR;
5562 goto fsm_start;
5563 }
5564
5565 /* no more data to transfer */
4332a771 5566 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5567 ap->print_id, qc->dev->devno, status);
e2cec771 5568
6912ccd5
AL
5569 WARN_ON(qc->err_mask);
5570
e2cec771 5571 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5572
e2cec771 5573 /* complete taskfile transaction */
c17ea20d 5574 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5575
5576 poll_next = 0;
1da177e4
LT
5577 break;
5578
14be71f4 5579 case HSM_ST_ERR:
e2cec771
AL
5580 /* make sure qc->err_mask is available to
5581 * know what's wrong and recover
5582 */
5583 WARN_ON(qc->err_mask == 0);
5584
5585 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5586
999bb6f4 5587 /* complete taskfile transaction */
c17ea20d 5588 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5589
5590 poll_next = 0;
e2cec771
AL
5591 break;
5592 default:
bb5cb290 5593 poll_next = 0;
6912ccd5 5594 BUG();
1da177e4
LT
5595 }
5596
bb5cb290 5597 return poll_next;
1da177e4
LT
5598}
5599
65f27f38 5600static void ata_pio_task(struct work_struct *work)
8061f5f0 5601{
65f27f38
DH
5602 struct ata_port *ap =
5603 container_of(work, struct ata_port, port_task.work);
5604 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5605 u8 status;
a1af3734 5606 int poll_next;
8061f5f0 5607
7fb6ec28 5608fsm_start:
a1af3734 5609 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5610
a1af3734
AL
5611 /*
5612 * This is purely heuristic. This is a fast path.
5613 * Sometimes when we enter, BSY will be cleared in
5614 * a chk-status or two. If not, the drive is probably seeking
5615 * or something. Snooze for a couple msecs, then
5616 * chk-status again. If still busy, queue delayed work.
5617 */
5618 status = ata_busy_wait(ap, ATA_BUSY, 5);
5619 if (status & ATA_BUSY) {
5620 msleep(2);
5621 status = ata_busy_wait(ap, ATA_BUSY, 10);
5622 if (status & ATA_BUSY) {
31ce6dae 5623 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5624 return;
5625 }
8061f5f0
TH
5626 }
5627
a1af3734
AL
5628 /* move the HSM */
5629 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5630
a1af3734
AL
5631 /* another command or interrupt handler
5632 * may be running at this point.
5633 */
5634 if (poll_next)
7fb6ec28 5635 goto fsm_start;
8061f5f0
TH
5636}
5637
1da177e4
LT
5638/**
5639 * ata_qc_new - Request an available ATA command, for queueing
5640 * @ap: Port associated with device @dev
5641 * @dev: Device from whom we request an available command structure
5642 *
5643 * LOCKING:
0cba632b 5644 * None.
1da177e4
LT
5645 */
5646
5647static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5648{
5649 struct ata_queued_cmd *qc = NULL;
5650 unsigned int i;
5651
e3180499 5652 /* no command while frozen */
b51e9e5d 5653 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5654 return NULL;
5655
2ab7db1f
TH
5656 /* the last tag is reserved for internal command. */
5657 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5658 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5659 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5660 break;
5661 }
5662
5663 if (qc)
5664 qc->tag = i;
5665
5666 return qc;
5667}
5668
5669/**
5670 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5671 * @dev: Device from whom we request an available command structure
5672 *
5673 * LOCKING:
0cba632b 5674 * None.
1da177e4
LT
5675 */
5676
3373efd8 5677struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5678{
9af5c9c9 5679 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5680 struct ata_queued_cmd *qc;
5681
5682 qc = ata_qc_new(ap);
5683 if (qc) {
1da177e4
LT
5684 qc->scsicmd = NULL;
5685 qc->ap = ap;
5686 qc->dev = dev;
1da177e4 5687
2c13b7ce 5688 ata_qc_reinit(qc);
1da177e4
LT
5689 }
5690
5691 return qc;
5692}
5693
1da177e4
LT
5694/**
5695 * ata_qc_free - free unused ata_queued_cmd
5696 * @qc: Command to complete
5697 *
5698 * Designed to free unused ata_queued_cmd object
5699 * in case something prevents using it.
5700 *
5701 * LOCKING:
cca3974e 5702 * spin_lock_irqsave(host lock)
1da177e4
LT
5703 */
5704void ata_qc_free(struct ata_queued_cmd *qc)
5705{
4ba946e9
TH
5706 struct ata_port *ap = qc->ap;
5707 unsigned int tag;
5708
a4631474 5709 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5710
4ba946e9
TH
5711 qc->flags = 0;
5712 tag = qc->tag;
5713 if (likely(ata_tag_valid(tag))) {
4ba946e9 5714 qc->tag = ATA_TAG_POISON;
6cec4a39 5715 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5716 }
1da177e4
LT
5717}
5718
76014427 5719void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5720{
dedaf2b0 5721 struct ata_port *ap = qc->ap;
9af5c9c9 5722 struct ata_link *link = qc->dev->link;
dedaf2b0 5723
a4631474
TH
5724 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5725 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5726
5727 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5728 ata_sg_clean(qc);
5729
7401abf2 5730 /* command should be marked inactive atomically with qc completion */
da917d69 5731 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5732 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5733 if (!link->sactive)
5734 ap->nr_active_links--;
5735 } else {
9af5c9c9 5736 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5737 ap->nr_active_links--;
5738 }
5739
5740 /* clear exclusive status */
5741 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5742 ap->excl_link == link))
5743 ap->excl_link = NULL;
7401abf2 5744
3f3791d3
AL
5745 /* atapi: mark qc as inactive to prevent the interrupt handler
5746 * from completing the command twice later, before the error handler
5747 * is called. (when rc != 0 and atapi request sense is needed)
5748 */
5749 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5750 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5751
1da177e4 5752 /* call completion callback */
77853bf2 5753 qc->complete_fn(qc);
1da177e4
LT
5754}
5755
39599a53
TH
5756static void fill_result_tf(struct ata_queued_cmd *qc)
5757{
5758 struct ata_port *ap = qc->ap;
5759
39599a53 5760 qc->result_tf.flags = qc->tf.flags;
4742d54f 5761 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5762}
5763
f686bcb8
TH
5764/**
5765 * ata_qc_complete - Complete an active ATA command
5766 * @qc: Command to complete
5767 * @err_mask: ATA Status register contents
5768 *
5769 * Indicate to the mid and upper layers that an ATA
5770 * command has completed, with either an ok or not-ok status.
5771 *
5772 * LOCKING:
cca3974e 5773 * spin_lock_irqsave(host lock)
f686bcb8
TH
5774 */
5775void ata_qc_complete(struct ata_queued_cmd *qc)
5776{
5777 struct ata_port *ap = qc->ap;
5778
5779 /* XXX: New EH and old EH use different mechanisms to
5780 * synchronize EH with regular execution path.
5781 *
5782 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5783 * Normal execution path is responsible for not accessing a
5784 * failed qc. libata core enforces the rule by returning NULL
5785 * from ata_qc_from_tag() for failed qcs.
5786 *
5787 * Old EH depends on ata_qc_complete() nullifying completion
5788 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5789 * not synchronize with interrupt handler. Only PIO task is
5790 * taken care of.
5791 */
5792 if (ap->ops->error_handler) {
4dbfa39b
TH
5793 struct ata_device *dev = qc->dev;
5794 struct ata_eh_info *ehi = &dev->link->eh_info;
5795
b51e9e5d 5796 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5797
5798 if (unlikely(qc->err_mask))
5799 qc->flags |= ATA_QCFLAG_FAILED;
5800
5801 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5802 if (!ata_tag_internal(qc->tag)) {
5803 /* always fill result TF for failed qc */
39599a53 5804 fill_result_tf(qc);
f686bcb8
TH
5805 ata_qc_schedule_eh(qc);
5806 return;
5807 }
5808 }
5809
5810 /* read result TF if requested */
5811 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5812 fill_result_tf(qc);
f686bcb8 5813
4dbfa39b
TH
5814 /* Some commands need post-processing after successful
5815 * completion.
5816 */
5817 switch (qc->tf.command) {
5818 case ATA_CMD_SET_FEATURES:
5819 if (qc->tf.feature != SETFEATURES_WC_ON &&
5820 qc->tf.feature != SETFEATURES_WC_OFF)
5821 break;
5822 /* fall through */
5823 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5824 case ATA_CMD_SET_MULTI: /* multi_count changed */
5825 /* revalidate device */
5826 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5827 ata_port_schedule_eh(ap);
5828 break;
054a5fba
TH
5829
5830 case ATA_CMD_SLEEP:
5831 dev->flags |= ATA_DFLAG_SLEEPING;
5832 break;
4dbfa39b
TH
5833 }
5834
f686bcb8
TH
5835 __ata_qc_complete(qc);
5836 } else {
5837 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5838 return;
5839
5840 /* read result TF if failed or requested */
5841 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5842 fill_result_tf(qc);
f686bcb8
TH
5843
5844 __ata_qc_complete(qc);
5845 }
5846}
5847
dedaf2b0
TH
5848/**
5849 * ata_qc_complete_multiple - Complete multiple qcs successfully
5850 * @ap: port in question
5851 * @qc_active: new qc_active mask
5852 * @finish_qc: LLDD callback invoked before completing a qc
5853 *
5854 * Complete in-flight commands. This functions is meant to be
5855 * called from low-level driver's interrupt routine to complete
5856 * requests normally. ap->qc_active and @qc_active is compared
5857 * and commands are completed accordingly.
5858 *
5859 * LOCKING:
cca3974e 5860 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5861 *
5862 * RETURNS:
5863 * Number of completed commands on success, -errno otherwise.
5864 */
5865int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5866 void (*finish_qc)(struct ata_queued_cmd *))
5867{
5868 int nr_done = 0;
5869 u32 done_mask;
5870 int i;
5871
5872 done_mask = ap->qc_active ^ qc_active;
5873
5874 if (unlikely(done_mask & qc_active)) {
5875 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5876 "(%08x->%08x)\n", ap->qc_active, qc_active);
5877 return -EINVAL;
5878 }
5879
5880 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5881 struct ata_queued_cmd *qc;
5882
5883 if (!(done_mask & (1 << i)))
5884 continue;
5885
5886 if ((qc = ata_qc_from_tag(ap, i))) {
5887 if (finish_qc)
5888 finish_qc(qc);
5889 ata_qc_complete(qc);
5890 nr_done++;
5891 }
5892 }
5893
5894 return nr_done;
5895}
5896
1da177e4
LT
5897static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5898{
5899 struct ata_port *ap = qc->ap;
5900
5901 switch (qc->tf.protocol) {
3dc1d881 5902 case ATA_PROT_NCQ:
1da177e4
LT
5903 case ATA_PROT_DMA:
5904 case ATA_PROT_ATAPI_DMA:
5905 return 1;
5906
5907 case ATA_PROT_ATAPI:
5908 case ATA_PROT_PIO:
1da177e4
LT
5909 if (ap->flags & ATA_FLAG_PIO_DMA)
5910 return 1;
5911
5912 /* fall through */
5913
5914 default:
5915 return 0;
5916 }
5917
5918 /* never reached */
5919}
5920
5921/**
5922 * ata_qc_issue - issue taskfile to device
5923 * @qc: command to issue to device
5924 *
5925 * Prepare an ATA command to submission to device.
5926 * This includes mapping the data into a DMA-able
5927 * area, filling in the S/G table, and finally
5928 * writing the taskfile to hardware, starting the command.
5929 *
5930 * LOCKING:
cca3974e 5931 * spin_lock_irqsave(host lock)
1da177e4 5932 */
8e0e694a 5933void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5934{
5935 struct ata_port *ap = qc->ap;
9af5c9c9 5936 struct ata_link *link = qc->dev->link;
1da177e4 5937
dedaf2b0
TH
5938 /* Make sure only one non-NCQ command is outstanding. The
5939 * check is skipped for old EH because it reuses active qc to
5940 * request ATAPI sense.
5941 */
9af5c9c9 5942 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5943
5944 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5945 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5946
5947 if (!link->sactive)
5948 ap->nr_active_links++;
9af5c9c9 5949 link->sactive |= 1 << qc->tag;
dedaf2b0 5950 } else {
9af5c9c9 5951 WARN_ON(link->sactive);
da917d69
TH
5952
5953 ap->nr_active_links++;
9af5c9c9 5954 link->active_tag = qc->tag;
dedaf2b0
TH
5955 }
5956
e4a70e76 5957 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5958 ap->qc_active |= 1 << qc->tag;
e4a70e76 5959
1da177e4
LT
5960 if (ata_should_dma_map(qc)) {
5961 if (qc->flags & ATA_QCFLAG_SG) {
5962 if (ata_sg_setup(qc))
8e436af9 5963 goto sg_err;
1da177e4
LT
5964 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5965 if (ata_sg_setup_one(qc))
8e436af9 5966 goto sg_err;
1da177e4
LT
5967 }
5968 } else {
5969 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5970 }
5971
054a5fba
TH
5972 /* if device is sleeping, schedule softreset and abort the link */
5973 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5974 link->eh_info.action |= ATA_EH_SOFTRESET;
5975 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5976 ata_link_abort(link);
5977 return;
5978 }
5979
1da177e4
LT
5980 ap->ops->qc_prep(qc);
5981
8e0e694a
TH
5982 qc->err_mask |= ap->ops->qc_issue(qc);
5983 if (unlikely(qc->err_mask))
5984 goto err;
5985 return;
1da177e4 5986
8e436af9
TH
5987sg_err:
5988 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5989 qc->err_mask |= AC_ERR_SYSTEM;
5990err:
5991 ata_qc_complete(qc);
1da177e4
LT
5992}
5993
5994/**
5995 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5996 * @qc: command to issue to device
5997 *
5998 * Using various libata functions and hooks, this function
5999 * starts an ATA command. ATA commands are grouped into
6000 * classes called "protocols", and issuing each type of protocol
6001 * is slightly different.
6002 *
0baab86b
EF
6003 * May be used as the qc_issue() entry in ata_port_operations.
6004 *
1da177e4 6005 * LOCKING:
cca3974e 6006 * spin_lock_irqsave(host lock)
1da177e4
LT
6007 *
6008 * RETURNS:
9a3d9eb0 6009 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6010 */
6011
9a3d9eb0 6012unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6013{
6014 struct ata_port *ap = qc->ap;
6015
e50362ec
AL
6016 /* Use polling pio if the LLD doesn't handle
6017 * interrupt driven pio and atapi CDB interrupt.
6018 */
6019 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6020 switch (qc->tf.protocol) {
6021 case ATA_PROT_PIO:
e3472cbe 6022 case ATA_PROT_NODATA:
e50362ec
AL
6023 case ATA_PROT_ATAPI:
6024 case ATA_PROT_ATAPI_NODATA:
6025 qc->tf.flags |= ATA_TFLAG_POLLING;
6026 break;
6027 case ATA_PROT_ATAPI_DMA:
6028 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6029 /* see ata_dma_blacklisted() */
e50362ec
AL
6030 BUG();
6031 break;
6032 default:
6033 break;
6034 }
6035 }
6036
312f7da2 6037 /* select the device */
1da177e4
LT
6038 ata_dev_select(ap, qc->dev->devno, 1, 0);
6039
312f7da2 6040 /* start the command */
1da177e4
LT
6041 switch (qc->tf.protocol) {
6042 case ATA_PROT_NODATA:
312f7da2
AL
6043 if (qc->tf.flags & ATA_TFLAG_POLLING)
6044 ata_qc_set_polling(qc);
6045
e5338254 6046 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6047 ap->hsm_task_state = HSM_ST_LAST;
6048
6049 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6050 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6051
1da177e4
LT
6052 break;
6053
6054 case ATA_PROT_DMA:
587005de 6055 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6056
1da177e4
LT
6057 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6058 ap->ops->bmdma_setup(qc); /* set up bmdma */
6059 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6060 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6061 break;
6062
312f7da2
AL
6063 case ATA_PROT_PIO:
6064 if (qc->tf.flags & ATA_TFLAG_POLLING)
6065 ata_qc_set_polling(qc);
1da177e4 6066
e5338254 6067 ata_tf_to_host(ap, &qc->tf);
312f7da2 6068
54f00389
AL
6069 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6070 /* PIO data out protocol */
6071 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6072 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6073
6074 /* always send first data block using
e27486db 6075 * the ata_pio_task() codepath.
54f00389 6076 */
312f7da2 6077 } else {
54f00389
AL
6078 /* PIO data in protocol */
6079 ap->hsm_task_state = HSM_ST;
6080
6081 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6082 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6083
6084 /* if polling, ata_pio_task() handles the rest.
6085 * otherwise, interrupt handler takes over from here.
6086 */
312f7da2
AL
6087 }
6088
1da177e4
LT
6089 break;
6090
1da177e4 6091 case ATA_PROT_ATAPI:
1da177e4 6092 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6093 if (qc->tf.flags & ATA_TFLAG_POLLING)
6094 ata_qc_set_polling(qc);
6095
e5338254 6096 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6097
312f7da2
AL
6098 ap->hsm_task_state = HSM_ST_FIRST;
6099
6100 /* send cdb by polling if no cdb interrupt */
6101 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6102 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6103 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6104 break;
6105
6106 case ATA_PROT_ATAPI_DMA:
587005de 6107 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6108
1da177e4
LT
6109 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6110 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6111 ap->hsm_task_state = HSM_ST_FIRST;
6112
6113 /* send cdb by polling if no cdb interrupt */
6114 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6115 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6116 break;
6117
6118 default:
6119 WARN_ON(1);
9a3d9eb0 6120 return AC_ERR_SYSTEM;
1da177e4
LT
6121 }
6122
6123 return 0;
6124}
6125
1da177e4
LT
6126/**
6127 * ata_host_intr - Handle host interrupt for given (port, task)
6128 * @ap: Port on which interrupt arrived (possibly...)
6129 * @qc: Taskfile currently active in engine
6130 *
6131 * Handle host interrupt for given queued command. Currently,
6132 * only DMA interrupts are handled. All other commands are
6133 * handled via polling with interrupts disabled (nIEN bit).
6134 *
6135 * LOCKING:
cca3974e 6136 * spin_lock_irqsave(host lock)
1da177e4
LT
6137 *
6138 * RETURNS:
6139 * One if interrupt was handled, zero if not (shared irq).
6140 */
6141
2dcb407e
JG
6142inline unsigned int ata_host_intr(struct ata_port *ap,
6143 struct ata_queued_cmd *qc)
1da177e4 6144{
9af5c9c9 6145 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6146 u8 status, host_stat = 0;
1da177e4 6147
312f7da2 6148 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6149 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6150
312f7da2
AL
6151 /* Check whether we are expecting interrupt in this state */
6152 switch (ap->hsm_task_state) {
6153 case HSM_ST_FIRST:
6912ccd5
AL
6154 /* Some pre-ATAPI-4 devices assert INTRQ
6155 * at this state when ready to receive CDB.
6156 */
1da177e4 6157
312f7da2
AL
6158 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6159 * The flag was turned on only for atapi devices.
6160 * No need to check is_atapi_taskfile(&qc->tf) again.
6161 */
6162 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6163 goto idle_irq;
1da177e4 6164 break;
312f7da2
AL
6165 case HSM_ST_LAST:
6166 if (qc->tf.protocol == ATA_PROT_DMA ||
6167 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6168 /* check status of DMA engine */
6169 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6170 VPRINTK("ata%u: host_stat 0x%X\n",
6171 ap->print_id, host_stat);
312f7da2
AL
6172
6173 /* if it's not our irq... */
6174 if (!(host_stat & ATA_DMA_INTR))
6175 goto idle_irq;
6176
6177 /* before we do anything else, clear DMA-Start bit */
6178 ap->ops->bmdma_stop(qc);
a4f16610
AL
6179
6180 if (unlikely(host_stat & ATA_DMA_ERR)) {
6181 /* error when transfering data to/from memory */
6182 qc->err_mask |= AC_ERR_HOST_BUS;
6183 ap->hsm_task_state = HSM_ST_ERR;
6184 }
312f7da2
AL
6185 }
6186 break;
6187 case HSM_ST:
6188 break;
1da177e4
LT
6189 default:
6190 goto idle_irq;
6191 }
6192
312f7da2
AL
6193 /* check altstatus */
6194 status = ata_altstatus(ap);
6195 if (status & ATA_BUSY)
6196 goto idle_irq;
1da177e4 6197
312f7da2
AL
6198 /* check main status, clearing INTRQ */
6199 status = ata_chk_status(ap);
6200 if (unlikely(status & ATA_BUSY))
6201 goto idle_irq;
1da177e4 6202
312f7da2
AL
6203 /* ack bmdma irq events */
6204 ap->ops->irq_clear(ap);
1da177e4 6205
bb5cb290 6206 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6207
6208 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6209 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6210 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6211
1da177e4
LT
6212 return 1; /* irq handled */
6213
6214idle_irq:
6215 ap->stats.idle_irq++;
6216
6217#ifdef ATA_IRQ_TRAP
6218 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6219 ata_chk_status(ap);
6220 ap->ops->irq_clear(ap);
f15a1daf 6221 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6222 return 1;
1da177e4
LT
6223 }
6224#endif
6225 return 0; /* irq not handled */
6226}
6227
6228/**
6229 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6230 * @irq: irq line (unused)
cca3974e 6231 * @dev_instance: pointer to our ata_host information structure
1da177e4 6232 *
0cba632b
JG
6233 * Default interrupt handler for PCI IDE devices. Calls
6234 * ata_host_intr() for each port that is not disabled.
6235 *
1da177e4 6236 * LOCKING:
cca3974e 6237 * Obtains host lock during operation.
1da177e4
LT
6238 *
6239 * RETURNS:
0cba632b 6240 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6241 */
6242
2dcb407e 6243irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6244{
cca3974e 6245 struct ata_host *host = dev_instance;
1da177e4
LT
6246 unsigned int i;
6247 unsigned int handled = 0;
6248 unsigned long flags;
6249
6250 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6251 spin_lock_irqsave(&host->lock, flags);
1da177e4 6252
cca3974e 6253 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6254 struct ata_port *ap;
6255
cca3974e 6256 ap = host->ports[i];
c1389503 6257 if (ap &&
029f5468 6258 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6259 struct ata_queued_cmd *qc;
6260
9af5c9c9 6261 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6262 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6263 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6264 handled |= ata_host_intr(ap, qc);
6265 }
6266 }
6267
cca3974e 6268 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6269
6270 return IRQ_RETVAL(handled);
6271}
6272
34bf2170
TH
6273/**
6274 * sata_scr_valid - test whether SCRs are accessible
936fd732 6275 * @link: ATA link to test SCR accessibility for
34bf2170 6276 *
936fd732 6277 * Test whether SCRs are accessible for @link.
34bf2170
TH
6278 *
6279 * LOCKING:
6280 * None.
6281 *
6282 * RETURNS:
6283 * 1 if SCRs are accessible, 0 otherwise.
6284 */
936fd732 6285int sata_scr_valid(struct ata_link *link)
34bf2170 6286{
936fd732
TH
6287 struct ata_port *ap = link->ap;
6288
a16abc0b 6289 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6290}
6291
6292/**
6293 * sata_scr_read - read SCR register of the specified port
936fd732 6294 * @link: ATA link to read SCR for
34bf2170
TH
6295 * @reg: SCR to read
6296 * @val: Place to store read value
6297 *
936fd732 6298 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6299 * guaranteed to succeed if @link is ap->link, the cable type of
6300 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6301 *
6302 * LOCKING:
633273a3 6303 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6304 *
6305 * RETURNS:
6306 * 0 on success, negative errno on failure.
6307 */
936fd732 6308int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6309{
633273a3
TH
6310 if (ata_is_host_link(link)) {
6311 struct ata_port *ap = link->ap;
936fd732 6312
633273a3
TH
6313 if (sata_scr_valid(link))
6314 return ap->ops->scr_read(ap, reg, val);
6315 return -EOPNOTSUPP;
6316 }
6317
6318 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6319}
6320
6321/**
6322 * sata_scr_write - write SCR register of the specified port
936fd732 6323 * @link: ATA link to write SCR for
34bf2170
TH
6324 * @reg: SCR to write
6325 * @val: value to write
6326 *
936fd732 6327 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6328 * guaranteed to succeed if @link is ap->link, the cable type of
6329 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6330 *
6331 * LOCKING:
633273a3 6332 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6333 *
6334 * RETURNS:
6335 * 0 on success, negative errno on failure.
6336 */
936fd732 6337int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6338{
633273a3
TH
6339 if (ata_is_host_link(link)) {
6340 struct ata_port *ap = link->ap;
6341
6342 if (sata_scr_valid(link))
6343 return ap->ops->scr_write(ap, reg, val);
6344 return -EOPNOTSUPP;
6345 }
936fd732 6346
633273a3 6347 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6348}
6349
6350/**
6351 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6352 * @link: ATA link to write SCR for
34bf2170
TH
6353 * @reg: SCR to write
6354 * @val: value to write
6355 *
6356 * This function is identical to sata_scr_write() except that this
6357 * function performs flush after writing to the register.
6358 *
6359 * LOCKING:
633273a3 6360 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6361 *
6362 * RETURNS:
6363 * 0 on success, negative errno on failure.
6364 */
936fd732 6365int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6366{
633273a3
TH
6367 if (ata_is_host_link(link)) {
6368 struct ata_port *ap = link->ap;
6369 int rc;
da3dbb17 6370
633273a3
TH
6371 if (sata_scr_valid(link)) {
6372 rc = ap->ops->scr_write(ap, reg, val);
6373 if (rc == 0)
6374 rc = ap->ops->scr_read(ap, reg, &val);
6375 return rc;
6376 }
6377 return -EOPNOTSUPP;
34bf2170 6378 }
633273a3
TH
6379
6380 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6381}
6382
6383/**
936fd732
TH
6384 * ata_link_online - test whether the given link is online
6385 * @link: ATA link to test
34bf2170 6386 *
936fd732
TH
6387 * Test whether @link is online. Note that this function returns
6388 * 0 if online status of @link cannot be obtained, so
6389 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6390 *
6391 * LOCKING:
6392 * None.
6393 *
6394 * RETURNS:
6395 * 1 if the port online status is available and online.
6396 */
936fd732 6397int ata_link_online(struct ata_link *link)
34bf2170
TH
6398{
6399 u32 sstatus;
6400
936fd732
TH
6401 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6402 (sstatus & 0xf) == 0x3)
34bf2170
TH
6403 return 1;
6404 return 0;
6405}
6406
6407/**
936fd732
TH
6408 * ata_link_offline - test whether the given link is offline
6409 * @link: ATA link to test
34bf2170 6410 *
936fd732
TH
6411 * Test whether @link is offline. Note that this function
6412 * returns 0 if offline status of @link cannot be obtained, so
6413 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6414 *
6415 * LOCKING:
6416 * None.
6417 *
6418 * RETURNS:
6419 * 1 if the port offline status is available and offline.
6420 */
936fd732 6421int ata_link_offline(struct ata_link *link)
34bf2170
TH
6422{
6423 u32 sstatus;
6424
936fd732
TH
6425 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6426 (sstatus & 0xf) != 0x3)
34bf2170
TH
6427 return 1;
6428 return 0;
6429}
0baab86b 6430
77b08fb5 6431int ata_flush_cache(struct ata_device *dev)
9b847548 6432{
977e6b9f 6433 unsigned int err_mask;
9b847548
JA
6434 u8 cmd;
6435
6436 if (!ata_try_flush_cache(dev))
6437 return 0;
6438
6fc49adb 6439 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6440 cmd = ATA_CMD_FLUSH_EXT;
6441 else
6442 cmd = ATA_CMD_FLUSH;
6443
4f34337b
AC
6444 /* This is wrong. On a failed flush we get back the LBA of the lost
6445 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6446 a further flush command to continue the writeback until it
4f34337b 6447 does not error */
977e6b9f
TH
6448 err_mask = ata_do_simple_cmd(dev, cmd);
6449 if (err_mask) {
6450 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6451 return -EIO;
6452 }
6453
6454 return 0;
9b847548
JA
6455}
6456
6ffa01d8 6457#ifdef CONFIG_PM
cca3974e
JG
6458static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6459 unsigned int action, unsigned int ehi_flags,
6460 int wait)
500530f6
TH
6461{
6462 unsigned long flags;
6463 int i, rc;
6464
cca3974e
JG
6465 for (i = 0; i < host->n_ports; i++) {
6466 struct ata_port *ap = host->ports[i];
e3667ebf 6467 struct ata_link *link;
500530f6
TH
6468
6469 /* Previous resume operation might still be in
6470 * progress. Wait for PM_PENDING to clear.
6471 */
6472 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6473 ata_port_wait_eh(ap);
6474 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6475 }
6476
6477 /* request PM ops to EH */
6478 spin_lock_irqsave(ap->lock, flags);
6479
6480 ap->pm_mesg = mesg;
6481 if (wait) {
6482 rc = 0;
6483 ap->pm_result = &rc;
6484 }
6485
6486 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6487 __ata_port_for_each_link(link, ap) {
6488 link->eh_info.action |= action;
6489 link->eh_info.flags |= ehi_flags;
6490 }
500530f6
TH
6491
6492 ata_port_schedule_eh(ap);
6493
6494 spin_unlock_irqrestore(ap->lock, flags);
6495
6496 /* wait and check result */
6497 if (wait) {
6498 ata_port_wait_eh(ap);
6499 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6500 if (rc)
6501 return rc;
6502 }
6503 }
6504
6505 return 0;
6506}
6507
6508/**
cca3974e
JG
6509 * ata_host_suspend - suspend host
6510 * @host: host to suspend
500530f6
TH
6511 * @mesg: PM message
6512 *
cca3974e 6513 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6514 * function requests EH to perform PM operations and waits for EH
6515 * to finish.
6516 *
6517 * LOCKING:
6518 * Kernel thread context (may sleep).
6519 *
6520 * RETURNS:
6521 * 0 on success, -errno on failure.
6522 */
cca3974e 6523int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6524{
9666f400 6525 int rc;
500530f6 6526
ca77329f
KCA
6527 /*
6528 * disable link pm on all ports before requesting
6529 * any pm activity
6530 */
6531 ata_lpm_enable(host);
6532
cca3974e 6533 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6534 if (rc == 0)
6535 host->dev->power.power_state = mesg;
500530f6
TH
6536 return rc;
6537}
6538
6539/**
cca3974e
JG
6540 * ata_host_resume - resume host
6541 * @host: host to resume
500530f6 6542 *
cca3974e 6543 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6544 * function requests EH to perform PM operations and returns.
6545 * Note that all resume operations are performed parallely.
6546 *
6547 * LOCKING:
6548 * Kernel thread context (may sleep).
6549 */
cca3974e 6550void ata_host_resume(struct ata_host *host)
500530f6 6551{
cca3974e
JG
6552 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6553 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6554 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6555
6556 /* reenable link pm */
6557 ata_lpm_disable(host);
500530f6 6558}
6ffa01d8 6559#endif
500530f6 6560
c893a3ae
RD
6561/**
6562 * ata_port_start - Set port up for dma.
6563 * @ap: Port to initialize
6564 *
6565 * Called just after data structures for each port are
6566 * initialized. Allocates space for PRD table.
6567 *
6568 * May be used as the port_start() entry in ata_port_operations.
6569 *
6570 * LOCKING:
6571 * Inherited from caller.
6572 */
f0d36efd 6573int ata_port_start(struct ata_port *ap)
1da177e4 6574{
2f1f610b 6575 struct device *dev = ap->dev;
6037d6bb 6576 int rc;
1da177e4 6577
f0d36efd
TH
6578 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6579 GFP_KERNEL);
1da177e4
LT
6580 if (!ap->prd)
6581 return -ENOMEM;
6582
6037d6bb 6583 rc = ata_pad_alloc(ap, dev);
f0d36efd 6584 if (rc)
6037d6bb 6585 return rc;
1da177e4 6586
f0d36efd
TH
6587 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6588 (unsigned long long)ap->prd_dma);
1da177e4
LT
6589 return 0;
6590}
6591
3ef3b43d
TH
6592/**
6593 * ata_dev_init - Initialize an ata_device structure
6594 * @dev: Device structure to initialize
6595 *
6596 * Initialize @dev in preparation for probing.
6597 *
6598 * LOCKING:
6599 * Inherited from caller.
6600 */
6601void ata_dev_init(struct ata_device *dev)
6602{
9af5c9c9
TH
6603 struct ata_link *link = dev->link;
6604 struct ata_port *ap = link->ap;
72fa4b74
TH
6605 unsigned long flags;
6606
5a04bf4b 6607 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6608 link->sata_spd_limit = link->hw_sata_spd_limit;
6609 link->sata_spd = 0;
5a04bf4b 6610
72fa4b74
TH
6611 /* High bits of dev->flags are used to record warm plug
6612 * requests which occur asynchronously. Synchronize using
cca3974e 6613 * host lock.
72fa4b74 6614 */
ba6a1308 6615 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6616 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6617 dev->horkage = 0;
ba6a1308 6618 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6619
72fa4b74
TH
6620 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6621 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6622 dev->pio_mask = UINT_MAX;
6623 dev->mwdma_mask = UINT_MAX;
6624 dev->udma_mask = UINT_MAX;
6625}
6626
4fb37a25
TH
6627/**
6628 * ata_link_init - Initialize an ata_link structure
6629 * @ap: ATA port link is attached to
6630 * @link: Link structure to initialize
8989805d 6631 * @pmp: Port multiplier port number
4fb37a25
TH
6632 *
6633 * Initialize @link.
6634 *
6635 * LOCKING:
6636 * Kernel thread context (may sleep)
6637 */
fb7fd614 6638void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6639{
6640 int i;
6641
6642 /* clear everything except for devices */
6643 memset(link, 0, offsetof(struct ata_link, device[0]));
6644
6645 link->ap = ap;
8989805d 6646 link->pmp = pmp;
4fb37a25
TH
6647 link->active_tag = ATA_TAG_POISON;
6648 link->hw_sata_spd_limit = UINT_MAX;
6649
6650 /* can't use iterator, ap isn't initialized yet */
6651 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6652 struct ata_device *dev = &link->device[i];
6653
6654 dev->link = link;
6655 dev->devno = dev - link->device;
6656 ata_dev_init(dev);
6657 }
6658}
6659
6660/**
6661 * sata_link_init_spd - Initialize link->sata_spd_limit
6662 * @link: Link to configure sata_spd_limit for
6663 *
6664 * Initialize @link->[hw_]sata_spd_limit to the currently
6665 * configured value.
6666 *
6667 * LOCKING:
6668 * Kernel thread context (may sleep).
6669 *
6670 * RETURNS:
6671 * 0 on success, -errno on failure.
6672 */
fb7fd614 6673int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6674{
6675 u32 scontrol, spd;
6676 int rc;
6677
6678 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6679 if (rc)
6680 return rc;
6681
6682 spd = (scontrol >> 4) & 0xf;
6683 if (spd)
6684 link->hw_sata_spd_limit &= (1 << spd) - 1;
6685
6686 link->sata_spd_limit = link->hw_sata_spd_limit;
6687
6688 return 0;
6689}
6690
1da177e4 6691/**
f3187195
TH
6692 * ata_port_alloc - allocate and initialize basic ATA port resources
6693 * @host: ATA host this allocated port belongs to
1da177e4 6694 *
f3187195
TH
6695 * Allocate and initialize basic ATA port resources.
6696 *
6697 * RETURNS:
6698 * Allocate ATA port on success, NULL on failure.
0cba632b 6699 *
1da177e4 6700 * LOCKING:
f3187195 6701 * Inherited from calling layer (may sleep).
1da177e4 6702 */
f3187195 6703struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6704{
f3187195 6705 struct ata_port *ap;
1da177e4 6706
f3187195
TH
6707 DPRINTK("ENTER\n");
6708
6709 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6710 if (!ap)
6711 return NULL;
6712
f4d6d004 6713 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6714 ap->lock = &host->lock;
198e0fed 6715 ap->flags = ATA_FLAG_DISABLED;
f3187195 6716 ap->print_id = -1;
1da177e4 6717 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6718 ap->host = host;
f3187195 6719 ap->dev = host->dev;
1da177e4 6720 ap->last_ctl = 0xFF;
bd5d825c
BP
6721
6722#if defined(ATA_VERBOSE_DEBUG)
6723 /* turn on all debugging levels */
6724 ap->msg_enable = 0x00FF;
6725#elif defined(ATA_DEBUG)
6726 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6727#else
0dd4b21f 6728 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6729#endif
1da177e4 6730
65f27f38
DH
6731 INIT_DELAYED_WORK(&ap->port_task, NULL);
6732 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6733 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6734 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6735 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6736 init_timer_deferrable(&ap->fastdrain_timer);
6737 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6738 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6739
838df628 6740 ap->cbl = ATA_CBL_NONE;
838df628 6741
8989805d 6742 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6743
6744#ifdef ATA_IRQ_TRAP
6745 ap->stats.unhandled_irq = 1;
6746 ap->stats.idle_irq = 1;
6747#endif
1da177e4 6748 return ap;
1da177e4
LT
6749}
6750
f0d36efd
TH
6751static void ata_host_release(struct device *gendev, void *res)
6752{
6753 struct ata_host *host = dev_get_drvdata(gendev);
6754 int i;
6755
1aa506e4
TH
6756 for (i = 0; i < host->n_ports; i++) {
6757 struct ata_port *ap = host->ports[i];
6758
4911487a
TH
6759 if (!ap)
6760 continue;
6761
6762 if (ap->scsi_host)
1aa506e4
TH
6763 scsi_host_put(ap->scsi_host);
6764
633273a3 6765 kfree(ap->pmp_link);
4911487a 6766 kfree(ap);
1aa506e4
TH
6767 host->ports[i] = NULL;
6768 }
6769
1aa56cca 6770 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6771}
6772
f3187195
TH
6773/**
6774 * ata_host_alloc - allocate and init basic ATA host resources
6775 * @dev: generic device this host is associated with
6776 * @max_ports: maximum number of ATA ports associated with this host
6777 *
6778 * Allocate and initialize basic ATA host resources. LLD calls
6779 * this function to allocate a host, initializes it fully and
6780 * attaches it using ata_host_register().
6781 *
6782 * @max_ports ports are allocated and host->n_ports is
6783 * initialized to @max_ports. The caller is allowed to decrease
6784 * host->n_ports before calling ata_host_register(). The unused
6785 * ports will be automatically freed on registration.
6786 *
6787 * RETURNS:
6788 * Allocate ATA host on success, NULL on failure.
6789 *
6790 * LOCKING:
6791 * Inherited from calling layer (may sleep).
6792 */
6793struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6794{
6795 struct ata_host *host;
6796 size_t sz;
6797 int i;
6798
6799 DPRINTK("ENTER\n");
6800
6801 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6802 return NULL;
6803
6804 /* alloc a container for our list of ATA ports (buses) */
6805 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6806 /* alloc a container for our list of ATA ports (buses) */
6807 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6808 if (!host)
6809 goto err_out;
6810
6811 devres_add(dev, host);
6812 dev_set_drvdata(dev, host);
6813
6814 spin_lock_init(&host->lock);
6815 host->dev = dev;
6816 host->n_ports = max_ports;
6817
6818 /* allocate ports bound to this host */
6819 for (i = 0; i < max_ports; i++) {
6820 struct ata_port *ap;
6821
6822 ap = ata_port_alloc(host);
6823 if (!ap)
6824 goto err_out;
6825
6826 ap->port_no = i;
6827 host->ports[i] = ap;
6828 }
6829
6830 devres_remove_group(dev, NULL);
6831 return host;
6832
6833 err_out:
6834 devres_release_group(dev, NULL);
6835 return NULL;
6836}
6837
f5cda257
TH
6838/**
6839 * ata_host_alloc_pinfo - alloc host and init with port_info array
6840 * @dev: generic device this host is associated with
6841 * @ppi: array of ATA port_info to initialize host with
6842 * @n_ports: number of ATA ports attached to this host
6843 *
6844 * Allocate ATA host and initialize with info from @ppi. If NULL
6845 * terminated, @ppi may contain fewer entries than @n_ports. The
6846 * last entry will be used for the remaining ports.
6847 *
6848 * RETURNS:
6849 * Allocate ATA host on success, NULL on failure.
6850 *
6851 * LOCKING:
6852 * Inherited from calling layer (may sleep).
6853 */
6854struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6855 const struct ata_port_info * const * ppi,
6856 int n_ports)
6857{
6858 const struct ata_port_info *pi;
6859 struct ata_host *host;
6860 int i, j;
6861
6862 host = ata_host_alloc(dev, n_ports);
6863 if (!host)
6864 return NULL;
6865
6866 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6867 struct ata_port *ap = host->ports[i];
6868
6869 if (ppi[j])
6870 pi = ppi[j++];
6871
6872 ap->pio_mask = pi->pio_mask;
6873 ap->mwdma_mask = pi->mwdma_mask;
6874 ap->udma_mask = pi->udma_mask;
6875 ap->flags |= pi->flags;
0c88758b 6876 ap->link.flags |= pi->link_flags;
f5cda257
TH
6877 ap->ops = pi->port_ops;
6878
6879 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6880 host->ops = pi->port_ops;
6881 if (!host->private_data && pi->private_data)
6882 host->private_data = pi->private_data;
6883 }
6884
6885 return host;
6886}
6887
32ebbc0c
TH
6888static void ata_host_stop(struct device *gendev, void *res)
6889{
6890 struct ata_host *host = dev_get_drvdata(gendev);
6891 int i;
6892
6893 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6894
6895 for (i = 0; i < host->n_ports; i++) {
6896 struct ata_port *ap = host->ports[i];
6897
6898 if (ap->ops->port_stop)
6899 ap->ops->port_stop(ap);
6900 }
6901
6902 if (host->ops->host_stop)
6903 host->ops->host_stop(host);
6904}
6905
ecef7253
TH
6906/**
6907 * ata_host_start - start and freeze ports of an ATA host
6908 * @host: ATA host to start ports for
6909 *
6910 * Start and then freeze ports of @host. Started status is
6911 * recorded in host->flags, so this function can be called
6912 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6913 * once. If host->ops isn't initialized yet, its set to the
6914 * first non-dummy port ops.
ecef7253
TH
6915 *
6916 * LOCKING:
6917 * Inherited from calling layer (may sleep).
6918 *
6919 * RETURNS:
6920 * 0 if all ports are started successfully, -errno otherwise.
6921 */
6922int ata_host_start(struct ata_host *host)
6923{
32ebbc0c
TH
6924 int have_stop = 0;
6925 void *start_dr = NULL;
ecef7253
TH
6926 int i, rc;
6927
6928 if (host->flags & ATA_HOST_STARTED)
6929 return 0;
6930
6931 for (i = 0; i < host->n_ports; i++) {
6932 struct ata_port *ap = host->ports[i];
6933
f3187195
TH
6934 if (!host->ops && !ata_port_is_dummy(ap))
6935 host->ops = ap->ops;
6936
32ebbc0c
TH
6937 if (ap->ops->port_stop)
6938 have_stop = 1;
6939 }
6940
6941 if (host->ops->host_stop)
6942 have_stop = 1;
6943
6944 if (have_stop) {
6945 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6946 if (!start_dr)
6947 return -ENOMEM;
6948 }
6949
6950 for (i = 0; i < host->n_ports; i++) {
6951 struct ata_port *ap = host->ports[i];
6952
ecef7253
TH
6953 if (ap->ops->port_start) {
6954 rc = ap->ops->port_start(ap);
6955 if (rc) {
0f9fe9b7
AC
6956 if (rc != -ENODEV)
6957 dev_printk(KERN_ERR, host->dev, "failed to start port %d (errno=%d)\n", i, rc);
ecef7253
TH
6958 goto err_out;
6959 }
6960 }
ecef7253
TH
6961 ata_eh_freeze_port(ap);
6962 }
6963
32ebbc0c
TH
6964 if (start_dr)
6965 devres_add(host->dev, start_dr);
ecef7253
TH
6966 host->flags |= ATA_HOST_STARTED;
6967 return 0;
6968
6969 err_out:
6970 while (--i >= 0) {
6971 struct ata_port *ap = host->ports[i];
6972
6973 if (ap->ops->port_stop)
6974 ap->ops->port_stop(ap);
6975 }
32ebbc0c 6976 devres_free(start_dr);
ecef7253
TH
6977 return rc;
6978}
6979
b03732f0 6980/**
cca3974e
JG
6981 * ata_sas_host_init - Initialize a host struct
6982 * @host: host to initialize
6983 * @dev: device host is attached to
6984 * @flags: host flags
6985 * @ops: port_ops
b03732f0
BK
6986 *
6987 * LOCKING:
6988 * PCI/etc. bus probe sem.
6989 *
6990 */
f3187195 6991/* KILLME - the only user left is ipr */
cca3974e
JG
6992void ata_host_init(struct ata_host *host, struct device *dev,
6993 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6994{
cca3974e
JG
6995 spin_lock_init(&host->lock);
6996 host->dev = dev;
6997 host->flags = flags;
6998 host->ops = ops;
b03732f0
BK
6999}
7000
f3187195
TH
7001/**
7002 * ata_host_register - register initialized ATA host
7003 * @host: ATA host to register
7004 * @sht: template for SCSI host
7005 *
7006 * Register initialized ATA host. @host is allocated using
7007 * ata_host_alloc() and fully initialized by LLD. This function
7008 * starts ports, registers @host with ATA and SCSI layers and
7009 * probe registered devices.
7010 *
7011 * LOCKING:
7012 * Inherited from calling layer (may sleep).
7013 *
7014 * RETURNS:
7015 * 0 on success, -errno otherwise.
7016 */
7017int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7018{
7019 int i, rc;
7020
7021 /* host must have been started */
7022 if (!(host->flags & ATA_HOST_STARTED)) {
7023 dev_printk(KERN_ERR, host->dev,
7024 "BUG: trying to register unstarted host\n");
7025 WARN_ON(1);
7026 return -EINVAL;
7027 }
7028
7029 /* Blow away unused ports. This happens when LLD can't
7030 * determine the exact number of ports to allocate at
7031 * allocation time.
7032 */
7033 for (i = host->n_ports; host->ports[i]; i++)
7034 kfree(host->ports[i]);
7035
7036 /* give ports names and add SCSI hosts */
7037 for (i = 0; i < host->n_ports; i++)
7038 host->ports[i]->print_id = ata_print_id++;
7039
7040 rc = ata_scsi_add_hosts(host, sht);
7041 if (rc)
7042 return rc;
7043
fafbae87
TH
7044 /* associate with ACPI nodes */
7045 ata_acpi_associate(host);
7046
f3187195
TH
7047 /* set cable, sata_spd_limit and report */
7048 for (i = 0; i < host->n_ports; i++) {
7049 struct ata_port *ap = host->ports[i];
f3187195
TH
7050 unsigned long xfer_mask;
7051
7052 /* set SATA cable type if still unset */
7053 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7054 ap->cbl = ATA_CBL_SATA;
7055
7056 /* init sata_spd_limit to the current value */
4fb37a25 7057 sata_link_init_spd(&ap->link);
f3187195 7058
cbcdd875 7059 /* print per-port info to dmesg */
f3187195
TH
7060 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7061 ap->udma_mask);
7062
abf6e8ed 7063 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7064 ata_port_printk(ap, KERN_INFO,
7065 "%cATA max %s %s\n",
a16abc0b 7066 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7067 ata_mode_string(xfer_mask),
cbcdd875 7068 ap->link.eh_info.desc);
abf6e8ed
TH
7069 ata_ehi_clear_desc(&ap->link.eh_info);
7070 } else
f3187195
TH
7071 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7072 }
7073
7074 /* perform each probe synchronously */
7075 DPRINTK("probe begin\n");
7076 for (i = 0; i < host->n_ports; i++) {
7077 struct ata_port *ap = host->ports[i];
7078 int rc;
7079
7080 /* probe */
7081 if (ap->ops->error_handler) {
9af5c9c9 7082 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7083 unsigned long flags;
7084
7085 ata_port_probe(ap);
7086
7087 /* kick EH for boot probing */
7088 spin_lock_irqsave(ap->lock, flags);
7089
f58229f8
TH
7090 ehi->probe_mask =
7091 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7092 ehi->action |= ATA_EH_SOFTRESET;
7093 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7094
f4d6d004 7095 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7096 ap->pflags |= ATA_PFLAG_LOADING;
7097 ata_port_schedule_eh(ap);
7098
7099 spin_unlock_irqrestore(ap->lock, flags);
7100
7101 /* wait for EH to finish */
7102 ata_port_wait_eh(ap);
7103 } else {
7104 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7105 rc = ata_bus_probe(ap);
7106 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7107
7108 if (rc) {
7109 /* FIXME: do something useful here?
7110 * Current libata behavior will
7111 * tear down everything when
7112 * the module is removed
7113 * or the h/w is unplugged.
7114 */
7115 }
7116 }
7117 }
7118
7119 /* probes are done, now scan each port's disk(s) */
7120 DPRINTK("host probe begin\n");
7121 for (i = 0; i < host->n_ports; i++) {
7122 struct ata_port *ap = host->ports[i];
7123
1ae46317 7124 ata_scsi_scan_host(ap, 1);
ca77329f 7125 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7126 }
7127
7128 return 0;
7129}
7130
f5cda257
TH
7131/**
7132 * ata_host_activate - start host, request IRQ and register it
7133 * @host: target ATA host
7134 * @irq: IRQ to request
7135 * @irq_handler: irq_handler used when requesting IRQ
7136 * @irq_flags: irq_flags used when requesting IRQ
7137 * @sht: scsi_host_template to use when registering the host
7138 *
7139 * After allocating an ATA host and initializing it, most libata
7140 * LLDs perform three steps to activate the host - start host,
7141 * request IRQ and register it. This helper takes necessasry
7142 * arguments and performs the three steps in one go.
7143 *
3d46b2e2
PM
7144 * An invalid IRQ skips the IRQ registration and expects the host to
7145 * have set polling mode on the port. In this case, @irq_handler
7146 * should be NULL.
7147 *
f5cda257
TH
7148 * LOCKING:
7149 * Inherited from calling layer (may sleep).
7150 *
7151 * RETURNS:
7152 * 0 on success, -errno otherwise.
7153 */
7154int ata_host_activate(struct ata_host *host, int irq,
7155 irq_handler_t irq_handler, unsigned long irq_flags,
7156 struct scsi_host_template *sht)
7157{
cbcdd875 7158 int i, rc;
f5cda257
TH
7159
7160 rc = ata_host_start(host);
7161 if (rc)
7162 return rc;
7163
3d46b2e2
PM
7164 /* Special case for polling mode */
7165 if (!irq) {
7166 WARN_ON(irq_handler);
7167 return ata_host_register(host, sht);
7168 }
7169
f5cda257
TH
7170 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7171 dev_driver_string(host->dev), host);
7172 if (rc)
7173 return rc;
7174
cbcdd875
TH
7175 for (i = 0; i < host->n_ports; i++)
7176 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7177
f5cda257
TH
7178 rc = ata_host_register(host, sht);
7179 /* if failed, just free the IRQ and leave ports alone */
7180 if (rc)
7181 devm_free_irq(host->dev, irq, host);
7182
7183 return rc;
7184}
7185
720ba126
TH
7186/**
7187 * ata_port_detach - Detach ATA port in prepration of device removal
7188 * @ap: ATA port to be detached
7189 *
7190 * Detach all ATA devices and the associated SCSI devices of @ap;
7191 * then, remove the associated SCSI host. @ap is guaranteed to
7192 * be quiescent on return from this function.
7193 *
7194 * LOCKING:
7195 * Kernel thread context (may sleep).
7196 */
741b7763 7197static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7198{
7199 unsigned long flags;
41bda9c9 7200 struct ata_link *link;
f58229f8 7201 struct ata_device *dev;
720ba126
TH
7202
7203 if (!ap->ops->error_handler)
c3cf30a9 7204 goto skip_eh;
720ba126
TH
7205
7206 /* tell EH we're leaving & flush EH */
ba6a1308 7207 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7208 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7209 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7210
7211 ata_port_wait_eh(ap);
7212
7f9ad9b8
TH
7213 /* EH is now guaranteed to see UNLOADING - EH context belongs
7214 * to us. Disable all existing devices.
720ba126 7215 */
41bda9c9
TH
7216 ata_port_for_each_link(link, ap) {
7217 ata_link_for_each_dev(dev, link)
7218 ata_dev_disable(dev);
7219 }
720ba126 7220
720ba126
TH
7221 /* Final freeze & EH. All in-flight commands are aborted. EH
7222 * will be skipped and retrials will be terminated with bad
7223 * target.
7224 */
ba6a1308 7225 spin_lock_irqsave(ap->lock, flags);
720ba126 7226 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7227 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7228
7229 ata_port_wait_eh(ap);
45a66c1c 7230 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7231
c3cf30a9 7232 skip_eh:
720ba126 7233 /* remove the associated SCSI host */
cca3974e 7234 scsi_remove_host(ap->scsi_host);
720ba126
TH
7235}
7236
0529c159
TH
7237/**
7238 * ata_host_detach - Detach all ports of an ATA host
7239 * @host: Host to detach
7240 *
7241 * Detach all ports of @host.
7242 *
7243 * LOCKING:
7244 * Kernel thread context (may sleep).
7245 */
7246void ata_host_detach(struct ata_host *host)
7247{
7248 int i;
7249
7250 for (i = 0; i < host->n_ports; i++)
7251 ata_port_detach(host->ports[i]);
7252}
7253
1da177e4
LT
7254/**
7255 * ata_std_ports - initialize ioaddr with standard port offsets.
7256 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7257 *
7258 * Utility function which initializes data_addr, error_addr,
7259 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7260 * device_addr, status_addr, and command_addr to standard offsets
7261 * relative to cmd_addr.
7262 *
7263 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7264 */
0baab86b 7265
1da177e4
LT
7266void ata_std_ports(struct ata_ioports *ioaddr)
7267{
7268 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7269 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7270 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7271 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7272 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7273 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7274 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7275 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7276 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7277 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7278}
7279
0baab86b 7280
374b1873
JG
7281#ifdef CONFIG_PCI
7282
1da177e4
LT
7283/**
7284 * ata_pci_remove_one - PCI layer callback for device removal
7285 * @pdev: PCI device that was removed
7286 *
b878ca5d
TH
7287 * PCI layer indicates to libata via this hook that hot-unplug or
7288 * module unload event has occurred. Detach all ports. Resource
7289 * release is handled via devres.
1da177e4
LT
7290 *
7291 * LOCKING:
7292 * Inherited from PCI layer (may sleep).
7293 */
f0d36efd 7294void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7295{
2855568b 7296 struct device *dev = &pdev->dev;
cca3974e 7297 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7298
b878ca5d 7299 ata_host_detach(host);
1da177e4
LT
7300}
7301
7302/* move to PCI subsystem */
057ace5e 7303int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7304{
7305 unsigned long tmp = 0;
7306
7307 switch (bits->width) {
7308 case 1: {
7309 u8 tmp8 = 0;
7310 pci_read_config_byte(pdev, bits->reg, &tmp8);
7311 tmp = tmp8;
7312 break;
7313 }
7314 case 2: {
7315 u16 tmp16 = 0;
7316 pci_read_config_word(pdev, bits->reg, &tmp16);
7317 tmp = tmp16;
7318 break;
7319 }
7320 case 4: {
7321 u32 tmp32 = 0;
7322 pci_read_config_dword(pdev, bits->reg, &tmp32);
7323 tmp = tmp32;
7324 break;
7325 }
7326
7327 default:
7328 return -EINVAL;
7329 }
7330
7331 tmp &= bits->mask;
7332
7333 return (tmp == bits->val) ? 1 : 0;
7334}
9b847548 7335
6ffa01d8 7336#ifdef CONFIG_PM
3c5100c1 7337void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7338{
7339 pci_save_state(pdev);
4c90d971 7340 pci_disable_device(pdev);
500530f6 7341
4c90d971 7342 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7343 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7344}
7345
553c4aa6 7346int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7347{
553c4aa6
TH
7348 int rc;
7349
9b847548
JA
7350 pci_set_power_state(pdev, PCI_D0);
7351 pci_restore_state(pdev);
553c4aa6 7352
b878ca5d 7353 rc = pcim_enable_device(pdev);
553c4aa6
TH
7354 if (rc) {
7355 dev_printk(KERN_ERR, &pdev->dev,
7356 "failed to enable device after resume (%d)\n", rc);
7357 return rc;
7358 }
7359
9b847548 7360 pci_set_master(pdev);
553c4aa6 7361 return 0;
500530f6
TH
7362}
7363
3c5100c1 7364int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7365{
cca3974e 7366 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7367 int rc = 0;
7368
cca3974e 7369 rc = ata_host_suspend(host, mesg);
500530f6
TH
7370 if (rc)
7371 return rc;
7372
3c5100c1 7373 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7374
7375 return 0;
7376}
7377
7378int ata_pci_device_resume(struct pci_dev *pdev)
7379{
cca3974e 7380 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7381 int rc;
500530f6 7382
553c4aa6
TH
7383 rc = ata_pci_device_do_resume(pdev);
7384 if (rc == 0)
7385 ata_host_resume(host);
7386 return rc;
9b847548 7387}
6ffa01d8
TH
7388#endif /* CONFIG_PM */
7389
1da177e4
LT
7390#endif /* CONFIG_PCI */
7391
7392
1da177e4
LT
7393static int __init ata_init(void)
7394{
a8601e5f 7395 ata_probe_timeout *= HZ;
1da177e4
LT
7396 ata_wq = create_workqueue("ata");
7397 if (!ata_wq)
7398 return -ENOMEM;
7399
453b07ac
TH
7400 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7401 if (!ata_aux_wq) {
7402 destroy_workqueue(ata_wq);
7403 return -ENOMEM;
7404 }
7405
1da177e4
LT
7406 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7407 return 0;
7408}
7409
7410static void __exit ata_exit(void)
7411{
7412 destroy_workqueue(ata_wq);
453b07ac 7413 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7414}
7415
a4625085 7416subsys_initcall(ata_init);
1da177e4
LT
7417module_exit(ata_exit);
7418
67846b30 7419static unsigned long ratelimit_time;
34af946a 7420static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7421
7422int ata_ratelimit(void)
7423{
7424 int rc;
7425 unsigned long flags;
7426
7427 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7428
7429 if (time_after(jiffies, ratelimit_time)) {
7430 rc = 1;
7431 ratelimit_time = jiffies + (HZ/5);
7432 } else
7433 rc = 0;
7434
7435 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7436
7437 return rc;
7438}
7439
c22daff4
TH
7440/**
7441 * ata_wait_register - wait until register value changes
7442 * @reg: IO-mapped register
7443 * @mask: Mask to apply to read register value
7444 * @val: Wait condition
7445 * @interval_msec: polling interval in milliseconds
7446 * @timeout_msec: timeout in milliseconds
7447 *
7448 * Waiting for some bits of register to change is a common
7449 * operation for ATA controllers. This function reads 32bit LE
7450 * IO-mapped register @reg and tests for the following condition.
7451 *
7452 * (*@reg & mask) != val
7453 *
7454 * If the condition is met, it returns; otherwise, the process is
7455 * repeated after @interval_msec until timeout.
7456 *
7457 * LOCKING:
7458 * Kernel thread context (may sleep)
7459 *
7460 * RETURNS:
7461 * The final register value.
7462 */
7463u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7464 unsigned long interval_msec,
7465 unsigned long timeout_msec)
7466{
7467 unsigned long timeout;
7468 u32 tmp;
7469
7470 tmp = ioread32(reg);
7471
7472 /* Calculate timeout _after_ the first read to make sure
7473 * preceding writes reach the controller before starting to
7474 * eat away the timeout.
7475 */
7476 timeout = jiffies + (timeout_msec * HZ) / 1000;
7477
7478 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7479 msleep(interval_msec);
7480 tmp = ioread32(reg);
7481 }
7482
7483 return tmp;
7484}
7485
dd5b06c4
TH
7486/*
7487 * Dummy port_ops
7488 */
7489static void ata_dummy_noret(struct ata_port *ap) { }
7490static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7491static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7492
7493static u8 ata_dummy_check_status(struct ata_port *ap)
7494{
7495 return ATA_DRDY;
7496}
7497
7498static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7499{
7500 return AC_ERR_SYSTEM;
7501}
7502
7503const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7504 .check_status = ata_dummy_check_status,
7505 .check_altstatus = ata_dummy_check_status,
7506 .dev_select = ata_noop_dev_select,
7507 .qc_prep = ata_noop_qc_prep,
7508 .qc_issue = ata_dummy_qc_issue,
7509 .freeze = ata_dummy_noret,
7510 .thaw = ata_dummy_noret,
7511 .error_handler = ata_dummy_noret,
7512 .post_internal_cmd = ata_dummy_qc_noret,
7513 .irq_clear = ata_dummy_noret,
7514 .port_start = ata_dummy_ret0,
7515 .port_stop = ata_dummy_noret,
7516};
7517
21b0ad4f
TH
7518const struct ata_port_info ata_dummy_port_info = {
7519 .port_ops = &ata_dummy_port_ops,
7520};
7521
1da177e4
LT
7522/*
7523 * libata is essentially a library of internal helper functions for
7524 * low-level ATA host controller drivers. As such, the API/ABI is
7525 * likely to change as new drivers are added and updated.
7526 * Do not depend on ABI/API stability.
7527 */
e9c83914
TH
7528EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7529EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7530EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7531EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7532EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7533EXPORT_SYMBOL_GPL(ata_std_bios_param);
7534EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7535EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7536EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7537EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7538EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7539EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7540EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7541EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7542EXPORT_SYMBOL_GPL(ata_sg_init);
7543EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7544EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7545EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7546EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7547EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7548EXPORT_SYMBOL_GPL(ata_tf_load);
7549EXPORT_SYMBOL_GPL(ata_tf_read);
7550EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7551EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7552EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7553EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7554EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7555EXPORT_SYMBOL_GPL(ata_check_status);
7556EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7557EXPORT_SYMBOL_GPL(ata_exec_command);
7558EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7559EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7560EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7561EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7562EXPORT_SYMBOL_GPL(ata_data_xfer);
7563EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7564EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7565EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7566EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7567EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7568EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7569EXPORT_SYMBOL_GPL(ata_bmdma_start);
7570EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7571EXPORT_SYMBOL_GPL(ata_bmdma_status);
7572EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7573EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7574EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7575EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7576EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7577EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7578EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7579EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7580EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7581EXPORT_SYMBOL_GPL(sata_link_debounce);
7582EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7583EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7584EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7585EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7586EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7587EXPORT_SYMBOL_GPL(sata_std_hardreset);
7588EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7589EXPORT_SYMBOL_GPL(ata_dev_classify);
7590EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7591EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7592EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7593EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7594EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7595EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7596EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7597EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7598EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7599EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7600EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7601EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7602EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7603EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7604EXPORT_SYMBOL_GPL(sata_scr_valid);
7605EXPORT_SYMBOL_GPL(sata_scr_read);
7606EXPORT_SYMBOL_GPL(sata_scr_write);
7607EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7608EXPORT_SYMBOL_GPL(ata_link_online);
7609EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7610#ifdef CONFIG_PM
cca3974e
JG
7611EXPORT_SYMBOL_GPL(ata_host_suspend);
7612EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7613#endif /* CONFIG_PM */
6a62a04d
TH
7614EXPORT_SYMBOL_GPL(ata_id_string);
7615EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7616EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7617EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7618
1bc4ccff 7619EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7620EXPORT_SYMBOL_GPL(ata_timing_compute);
7621EXPORT_SYMBOL_GPL(ata_timing_merge);
7622
1da177e4
LT
7623#ifdef CONFIG_PCI
7624EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7625EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7626EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7627EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7628EXPORT_SYMBOL_GPL(ata_pci_init_one);
7629EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7630#ifdef CONFIG_PM
500530f6
TH
7631EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7632EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7633EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7634EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7635#endif /* CONFIG_PM */
67951ade
AC
7636EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7637EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7638#endif /* CONFIG_PCI */
9b847548 7639
31f88384 7640EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7641EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7642EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7643EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7644EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7645
b64bbc39
TH
7646EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7647EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7648EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7649EXPORT_SYMBOL_GPL(ata_port_desc);
7650#ifdef CONFIG_PCI
7651EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7652#endif /* CONFIG_PCI */
7b70fc03 7653EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7654EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7655EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7656EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7657EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7658EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7659EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7660EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7661EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7662EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7663EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7664EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7665
7666EXPORT_SYMBOL_GPL(ata_cable_40wire);
7667EXPORT_SYMBOL_GPL(ata_cable_80wire);
7668EXPORT_SYMBOL_GPL(ata_cable_unknown);
7669EXPORT_SYMBOL_GPL(ata_cable_sata);