]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: use the enlarged capacity after late HPA unlock
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
71
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
3373efd8 96static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 98
f3187195 99unsigned int ata_print_id = 1;
1da177e4 100
453b07ac
TH
101struct workqueue_struct *ata_aux_wq;
102
33267325
TH
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
05944bdf 110 unsigned int lflags;
33267325
TH
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
2486fa56 127static int atapi_enabled = 1;
1623c81e 128module_param(atapi_enabled, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 130
c5c61bda 131static int atapi_dmadir = 0;
95de719a 132module_param(atapi_dmadir, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 134
baf4fdfa
ML
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 138
c3c013a2
JG
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 142
2dcb407e 143static int ata_ignore_hpa;
1e999736
AC
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
b3a70601
AC
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
87fbc5a0 151static int ata_probe_timeout;
a8601e5f
AM
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
6ebe9d86 155int libata_noacpi = 0;
d7d0dad6 156module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 158
ae8d4ee7
AC
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 162
e7ecd435
TH
163static int atapi_an;
164module_param(atapi_an, int, 0444);
165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
1da177e4
LT
167MODULE_AUTHOR("Jeff Garzik");
168MODULE_DESCRIPTION("Library module for ATA devices");
169MODULE_LICENSE("GPL");
170MODULE_VERSION(DRV_VERSION);
171
0baab86b 172
9913ff8a
TH
173static bool ata_sstatus_online(u32 sstatus)
174{
175 return (sstatus & 0xf) == 0x3;
176}
177
1eca4365
TH
178/**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
aadffb68 186 *
1eca4365
TH
187 * RETURNS:
188 * Pointer to the next link.
aadffb68 189 */
1eca4365
TH
190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
aadffb68 192{
1eca4365
TH
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
aadffb68 196 /* NULL link indicates start of iteration */
1eca4365
TH
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
aadffb68 207
1eca4365
TH
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
b1c72916 217 return ap->slave_link;
1eca4365
TH
218 /* fall through */
219 case ATA_LITER_EDGE:
aadffb68 220 return NULL;
b1c72916 221 }
aadffb68 222
b1c72916
TH
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
1eca4365 227 /* we were over a PMP link */
aadffb68
TH
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
1eca4365
TH
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
aadffb68
TH
234 return NULL;
235}
236
1eca4365
TH
237/**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251{
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288}
289
b1c72916
TH
290/**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305{
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313}
314
33267325
TH
315/**
316 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 317 * @ap: ATA port of interest
33267325
TH
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_printk(ap, KERN_NOTICE,
343 "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346}
347
348/**
05944bdf 349 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
350 * @link: ATA link of interest
351 *
05944bdf
TH
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
33267325
TH
360 *
361 * LOCKING:
362 * EH context.
363 */
05944bdf 364static void ata_force_link_limits(struct ata_link *link)
33267325 365{
05944bdf 366 bool did_spd = false;
b1c72916
TH
367 int linkno = link->pmp;
368 int i;
33267325
TH
369
370 if (ata_is_host_link(link))
b1c72916 371 linkno += 15;
33267325
TH
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
05944bdf
TH
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_printk(link, KERN_NOTICE,
386 "FORCE: PHY spd limit set to %s\n",
387 fe->param.name);
388 did_spd = true;
389 }
33267325 390
05944bdf
TH
391 /* let lflags stack */
392 if (fe->param.lflags) {
393 link->flags |= fe->param.lflags;
394 ata_link_printk(link, KERN_NOTICE,
395 "FORCE: link flag 0x%x forced -> 0x%x\n",
396 fe->param.lflags, link->flags);
397 }
33267325
TH
398 }
399}
400
401/**
402 * ata_force_xfermask - force xfermask according to libata.force
403 * @dev: ATA device of interest
404 *
405 * Force xfer_mask according to libata.force and whine about it.
406 * For consistency with link selection, device number 15 selects
407 * the first device connected to the host link.
408 *
409 * LOCKING:
410 * EH context.
411 */
412static void ata_force_xfermask(struct ata_device *dev)
413{
414 int devno = dev->link->pmp + dev->devno;
415 int alt_devno = devno;
416 int i;
417
b1c72916
TH
418 /* allow n.15/16 for devices attached to host port */
419 if (ata_is_host_link(dev->link))
420 alt_devno += 15;
33267325
TH
421
422 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
423 const struct ata_force_ent *fe = &ata_force_tbl[i];
424 unsigned long pio_mask, mwdma_mask, udma_mask;
425
426 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
427 continue;
428
429 if (fe->device != -1 && fe->device != devno &&
430 fe->device != alt_devno)
431 continue;
432
433 if (!fe->param.xfer_mask)
434 continue;
435
436 ata_unpack_xfermask(fe->param.xfer_mask,
437 &pio_mask, &mwdma_mask, &udma_mask);
438 if (udma_mask)
439 dev->udma_mask = udma_mask;
440 else if (mwdma_mask) {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = mwdma_mask;
443 } else {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = 0;
446 dev->pio_mask = pio_mask;
447 }
448
449 ata_dev_printk(dev, KERN_NOTICE,
450 "FORCE: xfer_mask set to %s\n", fe->param.name);
451 return;
452 }
453}
454
455/**
456 * ata_force_horkage - force horkage according to libata.force
457 * @dev: ATA device of interest
458 *
459 * Force horkage according to libata.force and whine about it.
460 * For consistency with link selection, device number 15 selects
461 * the first device connected to the host link.
462 *
463 * LOCKING:
464 * EH context.
465 */
466static void ata_force_horkage(struct ata_device *dev)
467{
468 int devno = dev->link->pmp + dev->devno;
469 int alt_devno = devno;
470 int i;
471
b1c72916
TH
472 /* allow n.15/16 for devices attached to host port */
473 if (ata_is_host_link(dev->link))
474 alt_devno += 15;
33267325
TH
475
476 for (i = 0; i < ata_force_tbl_size; i++) {
477 const struct ata_force_ent *fe = &ata_force_tbl[i];
478
479 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
480 continue;
481
482 if (fe->device != -1 && fe->device != devno &&
483 fe->device != alt_devno)
484 continue;
485
486 if (!(~dev->horkage & fe->param.horkage_on) &&
487 !(dev->horkage & fe->param.horkage_off))
488 continue;
489
490 dev->horkage |= fe->param.horkage_on;
491 dev->horkage &= ~fe->param.horkage_off;
492
493 ata_dev_printk(dev, KERN_NOTICE,
494 "FORCE: horkage modified (%s)\n", fe->param.name);
495 }
496}
497
436d34b3
TH
498/**
499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
500 * @opcode: SCSI opcode
501 *
502 * Determine ATAPI command type from @opcode.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 */
510int atapi_cmd_type(u8 opcode)
511{
512 switch (opcode) {
513 case GPCMD_READ_10:
514 case GPCMD_READ_12:
515 return ATAPI_READ;
516
517 case GPCMD_WRITE_10:
518 case GPCMD_WRITE_12:
519 case GPCMD_WRITE_AND_VERIFY_10:
520 return ATAPI_WRITE;
521
522 case GPCMD_READ_CD:
523 case GPCMD_READ_CD_MSF:
524 return ATAPI_READ_CD;
525
e52dcc48
TH
526 case ATA_16:
527 case ATA_12:
528 if (atapi_passthru16)
529 return ATAPI_PASS_THRU;
530 /* fall thru */
436d34b3
TH
531 default:
532 return ATAPI_MISC;
533 }
534}
535
1da177e4
LT
536/**
537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
538 * @tf: Taskfile to convert
1da177e4 539 * @pmp: Port multiplier port
9977126c
TH
540 * @is_cmd: This FIS is for command
541 * @fis: Buffer into which data will output
1da177e4
LT
542 *
543 * Converts a standard ATA taskfile to a Serial ATA
544 * FIS structure (Register - Host to Device).
545 *
546 * LOCKING:
547 * Inherited from caller.
548 */
9977126c 549void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 550{
9977126c
TH
551 fis[0] = 0x27; /* Register - Host to Device FIS */
552 fis[1] = pmp & 0xf; /* Port multiplier number*/
553 if (is_cmd)
554 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555
1da177e4
LT
556 fis[2] = tf->command;
557 fis[3] = tf->feature;
558
559 fis[4] = tf->lbal;
560 fis[5] = tf->lbam;
561 fis[6] = tf->lbah;
562 fis[7] = tf->device;
563
564 fis[8] = tf->hob_lbal;
565 fis[9] = tf->hob_lbam;
566 fis[10] = tf->hob_lbah;
567 fis[11] = tf->hob_feature;
568
569 fis[12] = tf->nsect;
570 fis[13] = tf->hob_nsect;
571 fis[14] = 0;
572 fis[15] = tf->ctl;
573
574 fis[16] = 0;
575 fis[17] = 0;
576 fis[18] = 0;
577 fis[19] = 0;
578}
579
580/**
581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
582 * @fis: Buffer from which data will be input
583 * @tf: Taskfile to output
584 *
e12a1be6 585 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
586 *
587 * LOCKING:
588 * Inherited from caller.
589 */
590
057ace5e 591void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
592{
593 tf->command = fis[2]; /* status */
594 tf->feature = fis[3]; /* error */
595
596 tf->lbal = fis[4];
597 tf->lbam = fis[5];
598 tf->lbah = fis[6];
599 tf->device = fis[7];
600
601 tf->hob_lbal = fis[8];
602 tf->hob_lbam = fis[9];
603 tf->hob_lbah = fis[10];
604
605 tf->nsect = fis[12];
606 tf->hob_nsect = fis[13];
607}
608
8cbd6df1
AL
609static const u8 ata_rw_cmds[] = {
610 /* pio multi */
611 ATA_CMD_READ_MULTI,
612 ATA_CMD_WRITE_MULTI,
613 ATA_CMD_READ_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
615 0,
616 0,
617 0,
618 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
619 /* pio */
620 ATA_CMD_PIO_READ,
621 ATA_CMD_PIO_WRITE,
622 ATA_CMD_PIO_READ_EXT,
623 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
624 0,
625 0,
626 0,
627 0,
8cbd6df1
AL
628 /* dma */
629 ATA_CMD_READ,
630 ATA_CMD_WRITE,
631 ATA_CMD_READ_EXT,
9a3dccc4
TH
632 ATA_CMD_WRITE_EXT,
633 0,
634 0,
635 0,
636 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 637};
1da177e4
LT
638
639/**
8cbd6df1 640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
641 * @tf: command to examine and configure
642 * @dev: device tf belongs to
1da177e4 643 *
2e9edbf8 644 * Examine the device configuration and tf->flags to calculate
8cbd6df1 645 * the proper read/write commands and protocol to use.
1da177e4
LT
646 *
647 * LOCKING:
648 * caller.
649 */
bd056d7e 650static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 651{
9a3dccc4 652 u8 cmd;
1da177e4 653
9a3dccc4 654 int index, fua, lba48, write;
2e9edbf8 655
9a3dccc4 656 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
657 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
658 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 659
8cbd6df1
AL
660 if (dev->flags & ATA_DFLAG_PIO) {
661 tf->protocol = ATA_PROT_PIO;
9a3dccc4 662 index = dev->multi_count ? 0 : 8;
9af5c9c9 663 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
664 /* Unable to use DMA due to host limitation */
665 tf->protocol = ATA_PROT_PIO;
0565c26d 666 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
667 } else {
668 tf->protocol = ATA_PROT_DMA;
9a3dccc4 669 index = 16;
8cbd6df1 670 }
1da177e4 671
9a3dccc4
TH
672 cmd = ata_rw_cmds[index + fua + lba48 + write];
673 if (cmd) {
674 tf->command = cmd;
675 return 0;
676 }
677 return -1;
1da177e4
LT
678}
679
35b649fe
TH
680/**
681 * ata_tf_read_block - Read block address from ATA taskfile
682 * @tf: ATA taskfile of interest
683 * @dev: ATA device @tf belongs to
684 *
685 * LOCKING:
686 * None.
687 *
688 * Read block address from @tf. This function can handle all
689 * three address formats - LBA, LBA48 and CHS. tf->protocol and
690 * flags select the address format to use.
691 *
692 * RETURNS:
693 * Block address read from @tf.
694 */
695u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
696{
697 u64 block = 0;
698
699 if (tf->flags & ATA_TFLAG_LBA) {
700 if (tf->flags & ATA_TFLAG_LBA48) {
701 block |= (u64)tf->hob_lbah << 40;
702 block |= (u64)tf->hob_lbam << 32;
44901a96 703 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
704 } else
705 block |= (tf->device & 0xf) << 24;
706
707 block |= tf->lbah << 16;
708 block |= tf->lbam << 8;
709 block |= tf->lbal;
710 } else {
711 u32 cyl, head, sect;
712
713 cyl = tf->lbam | (tf->lbah << 8);
714 head = tf->device & 0xf;
715 sect = tf->lbal;
716
ac8672ea
TH
717 if (!sect) {
718 ata_dev_printk(dev, KERN_WARNING, "device reported "
719 "invalid CHS sector 0\n");
720 sect = 1; /* oh well */
721 }
722
723 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
724 }
725
726 return block;
727}
728
bd056d7e
TH
729/**
730 * ata_build_rw_tf - Build ATA taskfile for given read/write request
731 * @tf: Target ATA taskfile
732 * @dev: ATA device @tf belongs to
733 * @block: Block address
734 * @n_block: Number of blocks
735 * @tf_flags: RW/FUA etc...
736 * @tag: tag
737 *
738 * LOCKING:
739 * None.
740 *
741 * Build ATA taskfile @tf for read/write request described by
742 * @block, @n_block, @tf_flags and @tag on @dev.
743 *
744 * RETURNS:
745 *
746 * 0 on success, -ERANGE if the request is too large for @dev,
747 * -EINVAL if the request is invalid.
748 */
749int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
750 u64 block, u32 n_block, unsigned int tf_flags,
751 unsigned int tag)
752{
753 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
754 tf->flags |= tf_flags;
755
6d1245bf 756 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
757 /* yay, NCQ */
758 if (!lba_48_ok(block, n_block))
759 return -ERANGE;
760
761 tf->protocol = ATA_PROT_NCQ;
762 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
763
764 if (tf->flags & ATA_TFLAG_WRITE)
765 tf->command = ATA_CMD_FPDMA_WRITE;
766 else
767 tf->command = ATA_CMD_FPDMA_READ;
768
769 tf->nsect = tag << 3;
770 tf->hob_feature = (n_block >> 8) & 0xff;
771 tf->feature = n_block & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 tf->lbah = (block >> 16) & 0xff;
777 tf->lbam = (block >> 8) & 0xff;
778 tf->lbal = block & 0xff;
779
780 tf->device = 1 << 6;
781 if (tf->flags & ATA_TFLAG_FUA)
782 tf->device |= 1 << 7;
783 } else if (dev->flags & ATA_DFLAG_LBA) {
784 tf->flags |= ATA_TFLAG_LBA;
785
786 if (lba_28_ok(block, n_block)) {
787 /* use LBA28 */
788 tf->device |= (block >> 24) & 0xf;
789 } else if (lba_48_ok(block, n_block)) {
790 if (!(dev->flags & ATA_DFLAG_LBA48))
791 return -ERANGE;
792
793 /* use LBA48 */
794 tf->flags |= ATA_TFLAG_LBA48;
795
796 tf->hob_nsect = (n_block >> 8) & 0xff;
797
798 tf->hob_lbah = (block >> 40) & 0xff;
799 tf->hob_lbam = (block >> 32) & 0xff;
800 tf->hob_lbal = (block >> 24) & 0xff;
801 } else
802 /* request too large even for LBA48 */
803 return -ERANGE;
804
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
807
808 tf->nsect = n_block & 0xff;
809
810 tf->lbah = (block >> 16) & 0xff;
811 tf->lbam = (block >> 8) & 0xff;
812 tf->lbal = block & 0xff;
813
814 tf->device |= ATA_LBA;
815 } else {
816 /* CHS */
817 u32 sect, head, cyl, track;
818
819 /* The request -may- be too large for CHS addressing. */
820 if (!lba_28_ok(block, n_block))
821 return -ERANGE;
822
823 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
824 return -EINVAL;
825
826 /* Convert LBA to CHS */
827 track = (u32)block / dev->sectors;
828 cyl = track / dev->heads;
829 head = track % dev->heads;
830 sect = (u32)block % dev->sectors + 1;
831
832 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
833 (u32)block, track, cyl, head, sect);
834
835 /* Check whether the converted CHS can fit.
836 Cylinder: 0-65535
837 Head: 0-15
838 Sector: 1-255*/
839 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
840 return -ERANGE;
841
842 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
843 tf->lbal = sect;
844 tf->lbam = cyl;
845 tf->lbah = cyl >> 8;
846 tf->device |= head;
847 }
848
849 return 0;
850}
851
cb95d562
TH
852/**
853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
854 * @pio_mask: pio_mask
855 * @mwdma_mask: mwdma_mask
856 * @udma_mask: udma_mask
857 *
858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
859 * unsigned int xfer_mask.
860 *
861 * LOCKING:
862 * None.
863 *
864 * RETURNS:
865 * Packed xfer_mask.
866 */
7dc951ae
TH
867unsigned long ata_pack_xfermask(unsigned long pio_mask,
868 unsigned long mwdma_mask,
869 unsigned long udma_mask)
cb95d562
TH
870{
871 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
872 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
873 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
874}
875
c0489e4e
TH
876/**
877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
878 * @xfer_mask: xfer_mask to unpack
879 * @pio_mask: resulting pio_mask
880 * @mwdma_mask: resulting mwdma_mask
881 * @udma_mask: resulting udma_mask
882 *
883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
884 * Any NULL distination masks will be ignored.
885 */
7dc951ae
TH
886void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
887 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
888{
889 if (pio_mask)
890 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
891 if (mwdma_mask)
892 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
893 if (udma_mask)
894 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
895}
896
cb95d562 897static const struct ata_xfer_ent {
be9a50c8 898 int shift, bits;
cb95d562
TH
899 u8 base;
900} ata_xfer_tbl[] = {
70cd071e
TH
901 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
902 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
903 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
904 { -1, },
905};
906
907/**
908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
909 * @xfer_mask: xfer_mask of interest
910 *
911 * Return matching XFER_* value for @xfer_mask. Only the highest
912 * bit of @xfer_mask is considered.
913 *
914 * LOCKING:
915 * None.
916 *
917 * RETURNS:
70cd071e 918 * Matching XFER_* value, 0xff if no match found.
cb95d562 919 */
7dc951ae 920u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
921{
922 int highbit = fls(xfer_mask) - 1;
923 const struct ata_xfer_ent *ent;
924
925 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
926 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
927 return ent->base + highbit - ent->shift;
70cd071e 928 return 0xff;
cb95d562
TH
929}
930
931/**
932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
933 * @xfer_mode: XFER_* of interest
934 *
935 * Return matching xfer_mask for @xfer_mode.
936 *
937 * LOCKING:
938 * None.
939 *
940 * RETURNS:
941 * Matching xfer_mask, 0 if no match found.
942 */
7dc951ae 943unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
944{
945 const struct ata_xfer_ent *ent;
946
947 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
948 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
949 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
950 & ~((1 << ent->shift) - 1);
cb95d562
TH
951 return 0;
952}
953
954/**
955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
956 * @xfer_mode: XFER_* of interest
957 *
958 * Return matching xfer_shift for @xfer_mode.
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Matching xfer_shift, -1 if no match found.
965 */
7dc951ae 966int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
967{
968 const struct ata_xfer_ent *ent;
969
970 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
971 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
972 return ent->shift;
973 return -1;
974}
975
1da177e4 976/**
1da7b0d0
TH
977 * ata_mode_string - convert xfer_mask to string
978 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
979 *
980 * Determine string which represents the highest speed
1da7b0d0 981 * (highest bit in @modemask).
1da177e4
LT
982 *
983 * LOCKING:
984 * None.
985 *
986 * RETURNS:
987 * Constant C string representing highest speed listed in
1da7b0d0 988 * @mode_mask, or the constant C string "<n/a>".
1da177e4 989 */
7dc951ae 990const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 991{
75f554bc
TH
992 static const char * const xfer_mode_str[] = {
993 "PIO0",
994 "PIO1",
995 "PIO2",
996 "PIO3",
997 "PIO4",
b352e57d
AC
998 "PIO5",
999 "PIO6",
75f554bc
TH
1000 "MWDMA0",
1001 "MWDMA1",
1002 "MWDMA2",
b352e57d
AC
1003 "MWDMA3",
1004 "MWDMA4",
75f554bc
TH
1005 "UDMA/16",
1006 "UDMA/25",
1007 "UDMA/33",
1008 "UDMA/44",
1009 "UDMA/66",
1010 "UDMA/100",
1011 "UDMA/133",
1012 "UDMA7",
1013 };
1da7b0d0 1014 int highbit;
1da177e4 1015
1da7b0d0
TH
1016 highbit = fls(xfer_mask) - 1;
1017 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1018 return xfer_mode_str[highbit];
1da177e4 1019 return "<n/a>";
1da177e4
LT
1020}
1021
4c360c81
TH
1022static const char *sata_spd_string(unsigned int spd)
1023{
1024 static const char * const spd_str[] = {
1025 "1.5 Gbps",
1026 "3.0 Gbps",
8522ee25 1027 "6.0 Gbps",
4c360c81
TH
1028 };
1029
1030 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1031 return "<unknown>";
1032 return spd_str[spd - 1];
1033}
1034
ca77329f
KCA
1035static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1036{
1037 struct ata_link *link = dev->link;
1038 struct ata_port *ap = link->ap;
1039 u32 scontrol;
1040 unsigned int err_mask;
1041 int rc;
1042
1043 /*
1044 * disallow DIPM for drivers which haven't set
1045 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1046 * phy ready will be set in the interrupt status on
1047 * state changes, which will cause some drivers to
1048 * think there are errors - additionally drivers will
1049 * need to disable hot plug.
1050 */
1051 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1052 ap->pm_policy = NOT_AVAILABLE;
1053 return -EINVAL;
1054 }
1055
1056 /*
1057 * For DIPM, we will only enable it for the
1058 * min_power setting.
1059 *
1060 * Why? Because Disks are too stupid to know that
1061 * If the host rejects a request to go to SLUMBER
1062 * they should retry at PARTIAL, and instead it
1063 * just would give up. So, for medium_power to
1064 * work at all, we need to only allow HIPM.
1065 */
1066 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1067 if (rc)
1068 return rc;
1069
1070 switch (policy) {
1071 case MIN_POWER:
1072 /* no restrictions on IPM transitions */
1073 scontrol &= ~(0x3 << 8);
1074 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1075 if (rc)
1076 return rc;
1077
1078 /* enable DIPM */
1079 if (dev->flags & ATA_DFLAG_DIPM)
1080 err_mask = ata_dev_set_feature(dev,
1081 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1082 break;
1083 case MEDIUM_POWER:
1084 /* allow IPM to PARTIAL */
1085 scontrol &= ~(0x1 << 8);
1086 scontrol |= (0x2 << 8);
1087 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1088 if (rc)
1089 return rc;
1090
f5456b63
KCA
1091 /*
1092 * we don't have to disable DIPM since IPM flags
1093 * disallow transitions to SLUMBER, which effectively
1094 * disable DIPM if it does not support PARTIAL
1095 */
ca77329f
KCA
1096 break;
1097 case NOT_AVAILABLE:
1098 case MAX_PERFORMANCE:
1099 /* disable all IPM transitions */
1100 scontrol |= (0x3 << 8);
1101 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1102 if (rc)
1103 return rc;
1104
f5456b63
KCA
1105 /*
1106 * we don't have to disable DIPM since IPM flags
1107 * disallow all transitions which effectively
1108 * disable DIPM anyway.
1109 */
ca77329f
KCA
1110 break;
1111 }
1112
1113 /* FIXME: handle SET FEATURES failure */
1114 (void) err_mask;
1115
1116 return 0;
1117}
1118
1119/**
1120 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1121 * @dev: device to enable power management
1122 * @policy: the link power management policy
ca77329f
KCA
1123 *
1124 * Enable SATA Interface power management. This will enable
1125 * Device Interface Power Management (DIPM) for min_power
1126 * policy, and then call driver specific callbacks for
1127 * enabling Host Initiated Power management.
1128 *
1129 * Locking: Caller.
1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1131 */
1132void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1133{
1134 int rc = 0;
1135 struct ata_port *ap = dev->link->ap;
1136
1137 /* set HIPM first, then DIPM */
1138 if (ap->ops->enable_pm)
1139 rc = ap->ops->enable_pm(ap, policy);
1140 if (rc)
1141 goto enable_pm_out;
1142 rc = ata_dev_set_dipm(dev, policy);
1143
1144enable_pm_out:
1145 if (rc)
1146 ap->pm_policy = MAX_PERFORMANCE;
1147 else
1148 ap->pm_policy = policy;
1149 return /* rc */; /* hopefully we can use 'rc' eventually */
1150}
1151
1992a5ed 1152#ifdef CONFIG_PM
ca77329f
KCA
1153/**
1154 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1155 * @dev: device to disable power management
ca77329f
KCA
1156 *
1157 * Disable SATA Interface power management. This will disable
1158 * Device Interface Power Management (DIPM) without changing
1159 * policy, call driver specific callbacks for disabling Host
1160 * Initiated Power management.
1161 *
1162 * Locking: Caller.
1163 * Returns: void
1164 */
1165static void ata_dev_disable_pm(struct ata_device *dev)
1166{
1167 struct ata_port *ap = dev->link->ap;
1168
1169 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1170 if (ap->ops->disable_pm)
1171 ap->ops->disable_pm(ap);
1172}
1992a5ed 1173#endif /* CONFIG_PM */
ca77329f
KCA
1174
1175void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1176{
1177 ap->pm_policy = policy;
3ec25ebd 1178 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1179 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1180 ata_port_schedule_eh(ap);
1181}
1182
1992a5ed 1183#ifdef CONFIG_PM
ca77329f
KCA
1184static void ata_lpm_enable(struct ata_host *host)
1185{
1186 struct ata_link *link;
1187 struct ata_port *ap;
1188 struct ata_device *dev;
1189 int i;
1190
1191 for (i = 0; i < host->n_ports; i++) {
1192 ap = host->ports[i];
1eca4365
TH
1193 ata_for_each_link(link, ap, EDGE) {
1194 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1195 ata_dev_disable_pm(dev);
1196 }
1197 }
1198}
1199
1200static void ata_lpm_disable(struct ata_host *host)
1201{
1202 int i;
1203
1204 for (i = 0; i < host->n_ports; i++) {
1205 struct ata_port *ap = host->ports[i];
1206 ata_lpm_schedule(ap, ap->pm_policy);
1207 }
1208}
1992a5ed 1209#endif /* CONFIG_PM */
ca77329f 1210
1da177e4
LT
1211/**
1212 * ata_dev_classify - determine device type based on ATA-spec signature
1213 * @tf: ATA taskfile register set for device to be identified
1214 *
1215 * Determine from taskfile register contents whether a device is
1216 * ATA or ATAPI, as per "Signature and persistence" section
1217 * of ATA/PI spec (volume 1, sect 5.14).
1218 *
1219 * LOCKING:
1220 * None.
1221 *
1222 * RETURNS:
633273a3
TH
1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1224 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1225 */
057ace5e 1226unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1227{
1228 /* Apple's open source Darwin code hints that some devices only
1229 * put a proper signature into the LBA mid/high registers,
1230 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1231 *
1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1233 * signatures for ATA and ATAPI devices attached on SerialATA,
1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1235 * spec has never mentioned about using different signatures
1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1237 * Multiplier specification began to use 0x69/0x96 to identify
1238 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1240 * 0x69/0x96 shortly and described them as reserved for
1241 * SerialATA.
1242 *
1243 * We follow the current spec and consider that 0x69/0x96
1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1246 * SEMB signature. This is worked around in
1247 * ata_dev_read_id().
1da177e4 1248 */
633273a3 1249 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1250 DPRINTK("found ATA device by sig\n");
1251 return ATA_DEV_ATA;
1252 }
1253
633273a3 1254 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1255 DPRINTK("found ATAPI device by sig\n");
1256 return ATA_DEV_ATAPI;
1257 }
1258
633273a3
TH
1259 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1260 DPRINTK("found PMP device by sig\n");
1261 return ATA_DEV_PMP;
1262 }
1263
1264 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1265 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1266 return ATA_DEV_SEMB;
633273a3
TH
1267 }
1268
1da177e4
LT
1269 DPRINTK("unknown device\n");
1270 return ATA_DEV_UNKNOWN;
1271}
1272
1da177e4 1273/**
6a62a04d 1274 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1275 * @id: IDENTIFY DEVICE results we will examine
1276 * @s: string into which data is output
1277 * @ofs: offset into identify device page
1278 * @len: length of string to return. must be an even number.
1279 *
1280 * The strings in the IDENTIFY DEVICE page are broken up into
1281 * 16-bit chunks. Run through the string, and output each
1282 * 8-bit chunk linearly, regardless of platform.
1283 *
1284 * LOCKING:
1285 * caller.
1286 */
1287
6a62a04d
TH
1288void ata_id_string(const u16 *id, unsigned char *s,
1289 unsigned int ofs, unsigned int len)
1da177e4
LT
1290{
1291 unsigned int c;
1292
963e4975
AC
1293 BUG_ON(len & 1);
1294
1da177e4
LT
1295 while (len > 0) {
1296 c = id[ofs] >> 8;
1297 *s = c;
1298 s++;
1299
1300 c = id[ofs] & 0xff;
1301 *s = c;
1302 s++;
1303
1304 ofs++;
1305 len -= 2;
1306 }
1307}
1308
0e949ff3 1309/**
6a62a04d 1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1311 * @id: IDENTIFY DEVICE results we will examine
1312 * @s: string into which data is output
1313 * @ofs: offset into identify device page
1314 * @len: length of string to return. must be an odd number.
1315 *
6a62a04d 1316 * This function is identical to ata_id_string except that it
0e949ff3
TH
1317 * trims trailing spaces and terminates the resulting string with
1318 * null. @len must be actual maximum length (even number) + 1.
1319 *
1320 * LOCKING:
1321 * caller.
1322 */
6a62a04d
TH
1323void ata_id_c_string(const u16 *id, unsigned char *s,
1324 unsigned int ofs, unsigned int len)
0e949ff3
TH
1325{
1326 unsigned char *p;
1327
6a62a04d 1328 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1329
1330 p = s + strnlen(s, len - 1);
1331 while (p > s && p[-1] == ' ')
1332 p--;
1333 *p = '\0';
1334}
0baab86b 1335
db6f8759
TH
1336static u64 ata_id_n_sectors(const u16 *id)
1337{
1338 if (ata_id_has_lba(id)) {
1339 if (ata_id_has_lba48(id))
968e594a 1340 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1341 else
968e594a 1342 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1343 } else {
1344 if (ata_id_current_chs_valid(id))
968e594a
RH
1345 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1346 id[ATA_ID_CUR_SECTORS];
db6f8759 1347 else
968e594a
RH
1348 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1349 id[ATA_ID_SECTORS];
db6f8759
TH
1350 }
1351}
1352
a5987e0a 1353u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1354{
1355 u64 sectors = 0;
1356
1357 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1358 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1359 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1363
a5987e0a 1364 return sectors;
1e999736
AC
1365}
1366
a5987e0a 1367u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1368{
1369 u64 sectors = 0;
1370
1371 sectors |= (tf->device & 0x0f) << 24;
1372 sectors |= (tf->lbah & 0xff) << 16;
1373 sectors |= (tf->lbam & 0xff) << 8;
1374 sectors |= (tf->lbal & 0xff);
1375
a5987e0a 1376 return sectors;
1e999736
AC
1377}
1378
1379/**
c728a914
TH
1380 * ata_read_native_max_address - Read native max address
1381 * @dev: target device
1382 * @max_sectors: out parameter for the result native max address
1e999736 1383 *
c728a914
TH
1384 * Perform an LBA48 or LBA28 native size query upon the device in
1385 * question.
1e999736 1386 *
c728a914
TH
1387 * RETURNS:
1388 * 0 on success, -EACCES if command is aborted by the drive.
1389 * -EIO on other errors.
1e999736 1390 */
c728a914 1391static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1392{
c728a914 1393 unsigned int err_mask;
1e999736 1394 struct ata_taskfile tf;
c728a914 1395 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1396
1397 ata_tf_init(dev, &tf);
1398
c728a914 1399 /* always clear all address registers */
1e999736 1400 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1401
c728a914
TH
1402 if (lba48) {
1403 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1404 tf.flags |= ATA_TFLAG_LBA48;
1405 } else
1406 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1407
1e999736 1408 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1409 tf.device |= ATA_LBA;
1410
2b789108 1411 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1412 if (err_mask) {
1413 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1414 "max address (err_mask=0x%x)\n", err_mask);
1415 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1416 return -EACCES;
1417 return -EIO;
1418 }
1e999736 1419
c728a914 1420 if (lba48)
a5987e0a 1421 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1422 else
a5987e0a 1423 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1424 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1425 (*max_sectors)--;
c728a914 1426 return 0;
1e999736
AC
1427}
1428
1429/**
c728a914
TH
1430 * ata_set_max_sectors - Set max sectors
1431 * @dev: target device
6b38d1d1 1432 * @new_sectors: new max sectors value to set for the device
1e999736 1433 *
c728a914
TH
1434 * Set max sectors of @dev to @new_sectors.
1435 *
1436 * RETURNS:
1437 * 0 on success, -EACCES if command is aborted or denied (due to
1438 * previous non-volatile SET_MAX) by the drive. -EIO on other
1439 * errors.
1e999736 1440 */
05027adc 1441static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1442{
c728a914 1443 unsigned int err_mask;
1e999736 1444 struct ata_taskfile tf;
c728a914 1445 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1446
1447 new_sectors--;
1448
1449 ata_tf_init(dev, &tf);
1450
1e999736 1451 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1452
1453 if (lba48) {
1454 tf.command = ATA_CMD_SET_MAX_EXT;
1455 tf.flags |= ATA_TFLAG_LBA48;
1456
1457 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1458 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1459 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1460 } else {
c728a914
TH
1461 tf.command = ATA_CMD_SET_MAX;
1462
1e582ba4
TH
1463 tf.device |= (new_sectors >> 24) & 0xf;
1464 }
1465
1e999736 1466 tf.protocol |= ATA_PROT_NODATA;
c728a914 1467 tf.device |= ATA_LBA;
1e999736
AC
1468
1469 tf.lbal = (new_sectors >> 0) & 0xff;
1470 tf.lbam = (new_sectors >> 8) & 0xff;
1471 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1472
2b789108 1473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1474 if (err_mask) {
1475 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1476 "max address (err_mask=0x%x)\n", err_mask);
1477 if (err_mask == AC_ERR_DEV &&
1478 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1479 return -EACCES;
1480 return -EIO;
1481 }
1482
c728a914 1483 return 0;
1e999736
AC
1484}
1485
1486/**
1487 * ata_hpa_resize - Resize a device with an HPA set
1488 * @dev: Device to resize
1489 *
1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1491 * it if required to the full size of the media. The caller must check
1492 * the drive has the HPA feature set enabled.
05027adc
TH
1493 *
1494 * RETURNS:
1495 * 0 on success, -errno on failure.
1e999736 1496 */
05027adc 1497static int ata_hpa_resize(struct ata_device *dev)
1e999736 1498{
05027adc
TH
1499 struct ata_eh_context *ehc = &dev->link->eh_context;
1500 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1501 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1502 u64 sectors = ata_id_n_sectors(dev->id);
1503 u64 native_sectors;
c728a914 1504 int rc;
a617c09f 1505
05027adc
TH
1506 /* do we need to do it? */
1507 if (dev->class != ATA_DEV_ATA ||
1508 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1509 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1510 return 0;
1e999736 1511
05027adc
TH
1512 /* read native max address */
1513 rc = ata_read_native_max_address(dev, &native_sectors);
1514 if (rc) {
dda7aba1
TH
1515 /* If device aborted the command or HPA isn't going to
1516 * be unlocked, skip HPA resizing.
05027adc 1517 */
445d211b 1518 if (rc == -EACCES || !unlock_hpa) {
05027adc 1519 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1520 "broken, skipping HPA handling\n");
05027adc
TH
1521 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1522
1523 /* we can continue if device aborted the command */
1524 if (rc == -EACCES)
1525 rc = 0;
1e999736 1526 }
37301a55 1527
05027adc
TH
1528 return rc;
1529 }
5920dadf 1530 dev->n_native_sectors = native_sectors;
05027adc
TH
1531
1532 /* nothing to do? */
445d211b 1533 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1534 if (!print_info || native_sectors == sectors)
1535 return 0;
1536
1537 if (native_sectors > sectors)
1538 ata_dev_printk(dev, KERN_INFO,
1539 "HPA detected: current %llu, native %llu\n",
1540 (unsigned long long)sectors,
1541 (unsigned long long)native_sectors);
1542 else if (native_sectors < sectors)
1543 ata_dev_printk(dev, KERN_WARNING,
1544 "native sectors (%llu) is smaller than "
1545 "sectors (%llu)\n",
1546 (unsigned long long)native_sectors,
1547 (unsigned long long)sectors);
1548 return 0;
1549 }
1550
1551 /* let's unlock HPA */
1552 rc = ata_set_max_sectors(dev, native_sectors);
1553 if (rc == -EACCES) {
1554 /* if device aborted the command, skip HPA resizing */
1555 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1556 "(%llu -> %llu), skipping HPA handling\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)native_sectors);
1559 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1560 return 0;
1561 } else if (rc)
1562 return rc;
1563
1564 /* re-read IDENTIFY data */
1565 rc = ata_dev_reread_id(dev, 0);
1566 if (rc) {
1567 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1568 "data after HPA resizing\n");
1569 return rc;
1570 }
1571
1572 if (print_info) {
1573 u64 new_sectors = ata_id_n_sectors(dev->id);
1574 ata_dev_printk(dev, KERN_INFO,
1575 "HPA unlocked: %llu -> %llu, native %llu\n",
1576 (unsigned long long)sectors,
1577 (unsigned long long)new_sectors,
1578 (unsigned long long)native_sectors);
1579 }
1580
1581 return 0;
1e999736
AC
1582}
1583
1da177e4
LT
1584/**
1585 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1586 * @id: IDENTIFY DEVICE page to dump
1da177e4 1587 *
0bd3300a
TH
1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1589 * page.
1da177e4
LT
1590 *
1591 * LOCKING:
1592 * caller.
1593 */
1594
0bd3300a 1595static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1596{
1597 DPRINTK("49==0x%04x "
1598 "53==0x%04x "
1599 "63==0x%04x "
1600 "64==0x%04x "
1601 "75==0x%04x \n",
0bd3300a
TH
1602 id[49],
1603 id[53],
1604 id[63],
1605 id[64],
1606 id[75]);
1da177e4
LT
1607 DPRINTK("80==0x%04x "
1608 "81==0x%04x "
1609 "82==0x%04x "
1610 "83==0x%04x "
1611 "84==0x%04x \n",
0bd3300a
TH
1612 id[80],
1613 id[81],
1614 id[82],
1615 id[83],
1616 id[84]);
1da177e4
LT
1617 DPRINTK("88==0x%04x "
1618 "93==0x%04x\n",
0bd3300a
TH
1619 id[88],
1620 id[93]);
1da177e4
LT
1621}
1622
cb95d562
TH
1623/**
1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1625 * @id: IDENTIFY data to compute xfer mask from
1626 *
1627 * Compute the xfermask for this device. This is not as trivial
1628 * as it seems if we must consider early devices correctly.
1629 *
1630 * FIXME: pre IDE drive timing (do we care ?).
1631 *
1632 * LOCKING:
1633 * None.
1634 *
1635 * RETURNS:
1636 * Computed xfermask
1637 */
7dc951ae 1638unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1639{
7dc951ae 1640 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1641
1642 /* Usual case. Word 53 indicates word 64 is valid */
1643 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1644 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1645 pio_mask <<= 3;
1646 pio_mask |= 0x7;
1647 } else {
1648 /* If word 64 isn't valid then Word 51 high byte holds
1649 * the PIO timing number for the maximum. Turn it into
1650 * a mask.
1651 */
7a0f1c8a 1652 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1653 if (mode < 5) /* Valid PIO range */
2dcb407e 1654 pio_mask = (2 << mode) - 1;
46767aeb
AC
1655 else
1656 pio_mask = 1;
cb95d562
TH
1657
1658 /* But wait.. there's more. Design your standards by
1659 * committee and you too can get a free iordy field to
1660 * process. However its the speeds not the modes that
1661 * are supported... Note drivers using the timing API
1662 * will get this right anyway
1663 */
1664 }
1665
1666 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1667
b352e57d
AC
1668 if (ata_id_is_cfa(id)) {
1669 /*
1670 * Process compact flash extended modes
1671 */
62afe5d7
SS
1672 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1673 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1674
1675 if (pio)
1676 pio_mask |= (1 << 5);
1677 if (pio > 1)
1678 pio_mask |= (1 << 6);
1679 if (dma)
1680 mwdma_mask |= (1 << 3);
1681 if (dma > 1)
1682 mwdma_mask |= (1 << 4);
1683 }
1684
fb21f0d0
TH
1685 udma_mask = 0;
1686 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1687 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1688
1689 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1690}
1691
7102d230 1692static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1693{
77853bf2 1694 struct completion *waiting = qc->private_data;
a2a7a662 1695
a2a7a662 1696 complete(waiting);
a2a7a662
TH
1697}
1698
1699/**
2432697b 1700 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1701 * @dev: Device to which the command is sent
1702 * @tf: Taskfile registers for the command and the result
d69cf37d 1703 * @cdb: CDB for packet command
a2a7a662 1704 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1705 * @sgl: sg list for the data buffer of the command
2432697b 1706 * @n_elem: Number of sg entries
2b789108 1707 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1708 *
1709 * Executes libata internal command with timeout. @tf contains
1710 * command on entry and result on return. Timeout and error
1711 * conditions are reported via return value. No recovery action
1712 * is taken after a command times out. It's caller's duty to
1713 * clean up after timeout.
1714 *
1715 * LOCKING:
1716 * None. Should be called with kernel context, might sleep.
551e8889
TH
1717 *
1718 * RETURNS:
1719 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1720 */
2432697b
TH
1721unsigned ata_exec_internal_sg(struct ata_device *dev,
1722 struct ata_taskfile *tf, const u8 *cdb,
87260216 1723 int dma_dir, struct scatterlist *sgl,
2b789108 1724 unsigned int n_elem, unsigned long timeout)
a2a7a662 1725{
9af5c9c9
TH
1726 struct ata_link *link = dev->link;
1727 struct ata_port *ap = link->ap;
a2a7a662 1728 u8 command = tf->command;
87fbc5a0 1729 int auto_timeout = 0;
a2a7a662 1730 struct ata_queued_cmd *qc;
2ab7db1f 1731 unsigned int tag, preempted_tag;
dedaf2b0 1732 u32 preempted_sactive, preempted_qc_active;
da917d69 1733 int preempted_nr_active_links;
60be6b9a 1734 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1735 unsigned long flags;
77853bf2 1736 unsigned int err_mask;
d95a717f 1737 int rc;
a2a7a662 1738
ba6a1308 1739 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1740
e3180499 1741 /* no internal command while frozen */
b51e9e5d 1742 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1743 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1744 return AC_ERR_SYSTEM;
1745 }
1746
2ab7db1f 1747 /* initialize internal qc */
a2a7a662 1748
2ab7db1f
TH
1749 /* XXX: Tag 0 is used for drivers with legacy EH as some
1750 * drivers choke if any other tag is given. This breaks
1751 * ata_tag_internal() test for those drivers. Don't use new
1752 * EH stuff without converting to it.
1753 */
1754 if (ap->ops->error_handler)
1755 tag = ATA_TAG_INTERNAL;
1756 else
1757 tag = 0;
1758
8a8bc223
TH
1759 if (test_and_set_bit(tag, &ap->qc_allocated))
1760 BUG();
f69499f4 1761 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1762
1763 qc->tag = tag;
1764 qc->scsicmd = NULL;
1765 qc->ap = ap;
1766 qc->dev = dev;
1767 ata_qc_reinit(qc);
1768
9af5c9c9
TH
1769 preempted_tag = link->active_tag;
1770 preempted_sactive = link->sactive;
dedaf2b0 1771 preempted_qc_active = ap->qc_active;
da917d69 1772 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1773 link->active_tag = ATA_TAG_POISON;
1774 link->sactive = 0;
dedaf2b0 1775 ap->qc_active = 0;
da917d69 1776 ap->nr_active_links = 0;
2ab7db1f
TH
1777
1778 /* prepare & issue qc */
a2a7a662 1779 qc->tf = *tf;
d69cf37d
TH
1780 if (cdb)
1781 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1782 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1783 qc->dma_dir = dma_dir;
1784 if (dma_dir != DMA_NONE) {
2432697b 1785 unsigned int i, buflen = 0;
87260216 1786 struct scatterlist *sg;
2432697b 1787
87260216
JA
1788 for_each_sg(sgl, sg, n_elem, i)
1789 buflen += sg->length;
2432697b 1790
87260216 1791 ata_sg_init(qc, sgl, n_elem);
49c80429 1792 qc->nbytes = buflen;
a2a7a662
TH
1793 }
1794
77853bf2 1795 qc->private_data = &wait;
a2a7a662
TH
1796 qc->complete_fn = ata_qc_complete_internal;
1797
8e0e694a 1798 ata_qc_issue(qc);
a2a7a662 1799
ba6a1308 1800 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1801
87fbc5a0
TH
1802 if (!timeout) {
1803 if (ata_probe_timeout)
1804 timeout = ata_probe_timeout * 1000;
1805 else {
1806 timeout = ata_internal_cmd_timeout(dev, command);
1807 auto_timeout = 1;
1808 }
1809 }
2b789108
TH
1810
1811 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1812
c429137a 1813 ata_sff_flush_pio_task(ap);
41ade50c 1814
d95a717f 1815 if (!rc) {
ba6a1308 1816 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1817
1818 /* We're racing with irq here. If we lose, the
1819 * following test prevents us from completing the qc
d95a717f
TH
1820 * twice. If we win, the port is frozen and will be
1821 * cleaned up by ->post_internal_cmd().
a2a7a662 1822 */
77853bf2 1823 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1824 qc->err_mask |= AC_ERR_TIMEOUT;
1825
1826 if (ap->ops->error_handler)
1827 ata_port_freeze(ap);
1828 else
1829 ata_qc_complete(qc);
f15a1daf 1830
0dd4b21f
BP
1831 if (ata_msg_warn(ap))
1832 ata_dev_printk(dev, KERN_WARNING,
88574551 1833 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1834 }
1835
ba6a1308 1836 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1837 }
1838
d95a717f
TH
1839 /* do post_internal_cmd */
1840 if (ap->ops->post_internal_cmd)
1841 ap->ops->post_internal_cmd(qc);
1842
a51d644a
TH
1843 /* perform minimal error analysis */
1844 if (qc->flags & ATA_QCFLAG_FAILED) {
1845 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1846 qc->err_mask |= AC_ERR_DEV;
1847
1848 if (!qc->err_mask)
1849 qc->err_mask |= AC_ERR_OTHER;
1850
1851 if (qc->err_mask & ~AC_ERR_OTHER)
1852 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1853 }
1854
15869303 1855 /* finish up */
ba6a1308 1856 spin_lock_irqsave(ap->lock, flags);
15869303 1857
e61e0672 1858 *tf = qc->result_tf;
77853bf2
TH
1859 err_mask = qc->err_mask;
1860
1861 ata_qc_free(qc);
9af5c9c9
TH
1862 link->active_tag = preempted_tag;
1863 link->sactive = preempted_sactive;
dedaf2b0 1864 ap->qc_active = preempted_qc_active;
da917d69 1865 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1866
ba6a1308 1867 spin_unlock_irqrestore(ap->lock, flags);
15869303 1868
87fbc5a0
TH
1869 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1870 ata_internal_cmd_timed_out(dev, command);
1871
77853bf2 1872 return err_mask;
a2a7a662
TH
1873}
1874
2432697b 1875/**
33480a0e 1876 * ata_exec_internal - execute libata internal command
2432697b
TH
1877 * @dev: Device to which the command is sent
1878 * @tf: Taskfile registers for the command and the result
1879 * @cdb: CDB for packet command
1880 * @dma_dir: Data tranfer direction of the command
1881 * @buf: Data buffer of the command
1882 * @buflen: Length of data buffer
2b789108 1883 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1884 *
1885 * Wrapper around ata_exec_internal_sg() which takes simple
1886 * buffer instead of sg list.
1887 *
1888 * LOCKING:
1889 * None. Should be called with kernel context, might sleep.
1890 *
1891 * RETURNS:
1892 * Zero on success, AC_ERR_* mask on failure
1893 */
1894unsigned ata_exec_internal(struct ata_device *dev,
1895 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1896 int dma_dir, void *buf, unsigned int buflen,
1897 unsigned long timeout)
2432697b 1898{
33480a0e
TH
1899 struct scatterlist *psg = NULL, sg;
1900 unsigned int n_elem = 0;
2432697b 1901
33480a0e
TH
1902 if (dma_dir != DMA_NONE) {
1903 WARN_ON(!buf);
1904 sg_init_one(&sg, buf, buflen);
1905 psg = &sg;
1906 n_elem++;
1907 }
2432697b 1908
2b789108
TH
1909 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1910 timeout);
2432697b
TH
1911}
1912
977e6b9f
TH
1913/**
1914 * ata_do_simple_cmd - execute simple internal command
1915 * @dev: Device to which the command is sent
1916 * @cmd: Opcode to execute
1917 *
1918 * Execute a 'simple' command, that only consists of the opcode
1919 * 'cmd' itself, without filling any other registers
1920 *
1921 * LOCKING:
1922 * Kernel thread context (may sleep).
1923 *
1924 * RETURNS:
1925 * Zero on success, AC_ERR_* mask on failure
e58eb583 1926 */
77b08fb5 1927unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1928{
1929 struct ata_taskfile tf;
e58eb583
TH
1930
1931 ata_tf_init(dev, &tf);
1932
1933 tf.command = cmd;
1934 tf.flags |= ATA_TFLAG_DEVICE;
1935 tf.protocol = ATA_PROT_NODATA;
1936
2b789108 1937 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1938}
1939
1bc4ccff
AC
1940/**
1941 * ata_pio_need_iordy - check if iordy needed
1942 * @adev: ATA device
1943 *
1944 * Check if the current speed of the device requires IORDY. Used
1945 * by various controllers for chip configuration.
1946 */
1bc4ccff
AC
1947unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1948{
0d9e6659
TH
1949 /* Don't set IORDY if we're preparing for reset. IORDY may
1950 * lead to controller lock up on certain controllers if the
1951 * port is not occupied. See bko#11703 for details.
1952 */
1953 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1954 return 0;
1955 /* Controller doesn't support IORDY. Probably a pointless
1956 * check as the caller should know this.
1957 */
9af5c9c9 1958 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1959 return 0;
5c18c4d2
DD
1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1961 if (ata_id_is_cfa(adev->id)
1962 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1963 return 0;
432729f0
AC
1964 /* PIO3 and higher it is mandatory */
1965 if (adev->pio_mode > XFER_PIO_2)
1966 return 1;
1967 /* We turn it on when possible */
1968 if (ata_id_has_iordy(adev->id))
1bc4ccff 1969 return 1;
432729f0
AC
1970 return 0;
1971}
2e9edbf8 1972
432729f0
AC
1973/**
1974 * ata_pio_mask_no_iordy - Return the non IORDY mask
1975 * @adev: ATA device
1976 *
1977 * Compute the highest mode possible if we are not using iordy. Return
1978 * -1 if no iordy mode is available.
1979 */
432729f0
AC
1980static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1981{
1bc4ccff 1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1984 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1985 /* Is the speed faster than the drive allows non IORDY ? */
1986 if (pio) {
1987 /* This is cycle times not frequency - watch the logic! */
1988 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1989 return 3 << ATA_SHIFT_PIO;
1990 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1991 }
1992 }
432729f0 1993 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1994}
1995
963e4975
AC
1996/**
1997 * ata_do_dev_read_id - default ID read method
1998 * @dev: device
1999 * @tf: proposed taskfile
2000 * @id: data buffer
2001 *
2002 * Issue the identify taskfile and hand back the buffer containing
2003 * identify data. For some RAID controllers and for pre ATA devices
2004 * this function is wrapped or replaced by the driver
2005 */
2006unsigned int ata_do_dev_read_id(struct ata_device *dev,
2007 struct ata_taskfile *tf, u16 *id)
2008{
2009 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2010 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2011}
2012
1da177e4 2013/**
49016aca 2014 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2015 * @dev: target device
2016 * @p_class: pointer to class of the target device (may be changed)
bff04647 2017 * @flags: ATA_READID_* flags
fe635c7e 2018 * @id: buffer to read IDENTIFY data into
1da177e4 2019 *
49016aca
TH
2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2023 * for pre-ATA4 drives.
1da177e4 2024 *
50a99018 2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2026 * now we abort if we hit that case.
50a99018 2027 *
1da177e4 2028 * LOCKING:
49016aca
TH
2029 * Kernel thread context (may sleep)
2030 *
2031 * RETURNS:
2032 * 0 on success, -errno otherwise.
1da177e4 2033 */
a9beec95 2034int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2035 unsigned int flags, u16 *id)
1da177e4 2036{
9af5c9c9 2037 struct ata_port *ap = dev->link->ap;
49016aca 2038 unsigned int class = *p_class;
a0123703 2039 struct ata_taskfile tf;
49016aca
TH
2040 unsigned int err_mask = 0;
2041 const char *reason;
79b42bab 2042 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2043 int may_fallback = 1, tried_spinup = 0;
49016aca 2044 int rc;
1da177e4 2045
0dd4b21f 2046 if (ata_msg_ctl(ap))
7f5e4e8d 2047 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2048
963e4975 2049retry:
3373efd8 2050 ata_tf_init(dev, &tf);
a0123703 2051
49016aca 2052 switch (class) {
79b42bab
TH
2053 case ATA_DEV_SEMB:
2054 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2055 case ATA_DEV_ATA:
a0123703 2056 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2057 break;
2058 case ATA_DEV_ATAPI:
a0123703 2059 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2060 break;
2061 default:
2062 rc = -ENODEV;
2063 reason = "unsupported class";
2064 goto err_out;
1da177e4
LT
2065 }
2066
a0123703 2067 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2068
2069 /* Some devices choke if TF registers contain garbage. Make
2070 * sure those are properly initialized.
2071 */
2072 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2073
2074 /* Device presence detection is unreliable on some
2075 * controllers. Always poll IDENTIFY if available.
2076 */
2077 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2078
963e4975
AC
2079 if (ap->ops->read_id)
2080 err_mask = ap->ops->read_id(dev, &tf, id);
2081 else
2082 err_mask = ata_do_dev_read_id(dev, &tf, id);
2083
a0123703 2084 if (err_mask) {
800b3996 2085 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2086 ata_dev_printk(dev, KERN_DEBUG,
2087 "NODEV after polling detection\n");
55a8e2c8
TH
2088 return -ENOENT;
2089 }
2090
79b42bab
TH
2091 if (is_semb) {
2092 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2093 "device w/ SEMB sig, disabled\n");
2094 /* SEMB is not supported yet */
2095 *p_class = ATA_DEV_SEMB_UNSUP;
2096 return 0;
2097 }
2098
1ffc151f
TH
2099 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2100 /* Device or controller might have reported
2101 * the wrong device class. Give a shot at the
2102 * other IDENTIFY if the current one is
2103 * aborted by the device.
2104 */
2105 if (may_fallback) {
2106 may_fallback = 0;
2107
2108 if (class == ATA_DEV_ATA)
2109 class = ATA_DEV_ATAPI;
2110 else
2111 class = ATA_DEV_ATA;
2112 goto retry;
2113 }
2114
2115 /* Control reaches here iff the device aborted
2116 * both flavors of IDENTIFYs which happens
2117 * sometimes with phantom devices.
2118 */
2119 ata_dev_printk(dev, KERN_DEBUG,
2120 "both IDENTIFYs aborted, assuming NODEV\n");
2121 return -ENOENT;
54936f8b
TH
2122 }
2123
49016aca
TH
2124 rc = -EIO;
2125 reason = "I/O error";
1da177e4
LT
2126 goto err_out;
2127 }
2128
43c9c591
TH
2129 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
2130 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
2131 "class=%d may_fallback=%d tried_spinup=%d\n",
2132 class, may_fallback, tried_spinup);
2133 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
2134 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
2135 }
2136
54936f8b
TH
2137 /* Falling back doesn't make sense if ID data was read
2138 * successfully at least once.
2139 */
2140 may_fallback = 0;
2141
49016aca 2142 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2143
49016aca 2144 /* sanity check */
a4f5749b 2145 rc = -EINVAL;
6070068b 2146 reason = "device reports invalid type";
a4f5749b
TH
2147
2148 if (class == ATA_DEV_ATA) {
2149 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2150 goto err_out;
2151 } else {
2152 if (ata_id_is_ata(id))
2153 goto err_out;
49016aca
TH
2154 }
2155
169439c2
ML
2156 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2157 tried_spinup = 1;
2158 /*
2159 * Drive powered-up in standby mode, and requires a specific
2160 * SET_FEATURES spin-up subcommand before it will accept
2161 * anything other than the original IDENTIFY command.
2162 */
218f3d30 2163 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2164 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2165 rc = -EIO;
2166 reason = "SPINUP failed";
2167 goto err_out;
2168 }
2169 /*
2170 * If the drive initially returned incomplete IDENTIFY info,
2171 * we now must reissue the IDENTIFY command.
2172 */
2173 if (id[2] == 0x37c8)
2174 goto retry;
2175 }
2176
bff04647 2177 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2178 /*
2179 * The exact sequence expected by certain pre-ATA4 drives is:
2180 * SRST RESET
50a99018
AC
2181 * IDENTIFY (optional in early ATA)
2182 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2183 * anything else..
2184 * Some drives were very specific about that exact sequence.
50a99018
AC
2185 *
2186 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2187 * should never trigger.
49016aca
TH
2188 */
2189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2190 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2191 if (err_mask) {
2192 rc = -EIO;
2193 reason = "INIT_DEV_PARAMS failed";
2194 goto err_out;
2195 }
2196
2197 /* current CHS translation info (id[53-58]) might be
2198 * changed. reread the identify device info.
2199 */
bff04647 2200 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2201 goto retry;
2202 }
2203 }
2204
2205 *p_class = class;
fe635c7e 2206
49016aca
TH
2207 return 0;
2208
2209 err_out:
88574551 2210 if (ata_msg_warn(ap))
0dd4b21f 2211 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2212 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2213 return rc;
2214}
2215
9062712f
TH
2216static int ata_do_link_spd_horkage(struct ata_device *dev)
2217{
2218 struct ata_link *plink = ata_dev_phys_link(dev);
2219 u32 target, target_limit;
2220
2221 if (!sata_scr_valid(plink))
2222 return 0;
2223
2224 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2225 target = 1;
2226 else
2227 return 0;
2228
2229 target_limit = (1 << target) - 1;
2230
2231 /* if already on stricter limit, no need to push further */
2232 if (plink->sata_spd_limit <= target_limit)
2233 return 0;
2234
2235 plink->sata_spd_limit = target_limit;
2236
2237 /* Request another EH round by returning -EAGAIN if link is
2238 * going faster than the target speed. Forward progress is
2239 * guaranteed by setting sata_spd_limit to target_limit above.
2240 */
2241 if (plink->sata_spd > target) {
2242 ata_dev_printk(dev, KERN_INFO,
2243 "applying link speed limit horkage to %s\n",
2244 sata_spd_string(target));
2245 return -EAGAIN;
2246 }
2247 return 0;
2248}
2249
3373efd8 2250static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2251{
9af5c9c9 2252 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2253
2254 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2255 return 0;
2256
9af5c9c9 2257 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2258}
2259
388539f3 2260static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2261 char *desc, size_t desc_sz)
2262{
9af5c9c9 2263 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2264 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2265 unsigned int err_mask;
2266 char *aa_desc = "";
a6e6ce8e
TH
2267
2268 if (!ata_id_has_ncq(dev->id)) {
2269 desc[0] = '\0';
388539f3 2270 return 0;
a6e6ce8e 2271 }
75683fe7 2272 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2273 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2274 return 0;
6919a0a6 2275 }
a6e6ce8e 2276 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2277 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2278 dev->flags |= ATA_DFLAG_NCQ;
2279 }
2280
388539f3
SL
2281 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2282 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2283 ata_id_has_fpdma_aa(dev->id)) {
2284 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2285 SATA_FPDMA_AA);
2286 if (err_mask) {
2287 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2288 "(error_mask=0x%x)\n", err_mask);
2289 if (err_mask != AC_ERR_DEV) {
2290 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2291 return -EIO;
2292 }
2293 } else
2294 aa_desc = ", AA";
2295 }
2296
a6e6ce8e 2297 if (hdepth >= ddepth)
388539f3 2298 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2299 else
388539f3
SL
2300 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2301 ddepth, aa_desc);
2302 return 0;
a6e6ce8e
TH
2303}
2304
49016aca 2305/**
ffeae418 2306 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2307 * @dev: Target device to configure
2308 *
2309 * Configure @dev according to @dev->id. Generic and low-level
2310 * driver specific fixups are also applied.
49016aca
TH
2311 *
2312 * LOCKING:
ffeae418
TH
2313 * Kernel thread context (may sleep)
2314 *
2315 * RETURNS:
2316 * 0 on success, -errno otherwise
49016aca 2317 */
efdaedc4 2318int ata_dev_configure(struct ata_device *dev)
49016aca 2319{
9af5c9c9
TH
2320 struct ata_port *ap = dev->link->ap;
2321 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2322 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2323 const u16 *id = dev->id;
7dc951ae 2324 unsigned long xfer_mask;
b352e57d 2325 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2326 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2327 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2328 int rc;
49016aca 2329
0dd4b21f 2330 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2331 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2332 __func__);
ffeae418 2333 return 0;
49016aca
TH
2334 }
2335
0dd4b21f 2336 if (ata_msg_probe(ap))
7f5e4e8d 2337 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2338
75683fe7
TH
2339 /* set horkage */
2340 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2341 ata_force_horkage(dev);
75683fe7 2342
50af2fa1
TH
2343 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2344 ata_dev_printk(dev, KERN_INFO,
2345 "unsupported device, disabling\n");
2346 ata_dev_disable(dev);
2347 return 0;
2348 }
2349
2486fa56
TH
2350 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2351 dev->class == ATA_DEV_ATAPI) {
2352 ata_dev_printk(dev, KERN_WARNING,
2353 "WARNING: ATAPI is %s, device ignored.\n",
2354 atapi_enabled ? "not supported with this driver"
2355 : "disabled");
2356 ata_dev_disable(dev);
2357 return 0;
2358 }
2359
9062712f
TH
2360 rc = ata_do_link_spd_horkage(dev);
2361 if (rc)
2362 return rc;
2363
6746544c
TH
2364 /* let ACPI work its magic */
2365 rc = ata_acpi_on_devcfg(dev);
2366 if (rc)
2367 return rc;
08573a86 2368
05027adc
TH
2369 /* massage HPA, do it early as it might change IDENTIFY data */
2370 rc = ata_hpa_resize(dev);
2371 if (rc)
2372 return rc;
2373
c39f5ebe 2374 /* print device capabilities */
0dd4b21f 2375 if (ata_msg_probe(ap))
88574551
TH
2376 ata_dev_printk(dev, KERN_DEBUG,
2377 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2378 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2379 __func__,
f15a1daf
TH
2380 id[49], id[82], id[83], id[84],
2381 id[85], id[86], id[87], id[88]);
c39f5ebe 2382
208a9933 2383 /* initialize to-be-configured parameters */
ea1dd4e1 2384 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2385 dev->max_sectors = 0;
2386 dev->cdb_len = 0;
2387 dev->n_sectors = 0;
2388 dev->cylinders = 0;
2389 dev->heads = 0;
2390 dev->sectors = 0;
e18086d6 2391 dev->multi_count = 0;
208a9933 2392
1da177e4
LT
2393 /*
2394 * common ATA, ATAPI feature tests
2395 */
2396
ff8854b2 2397 /* find max transfer mode; for printk only */
1148c3a7 2398 xfer_mask = ata_id_xfermask(id);
1da177e4 2399
0dd4b21f
BP
2400 if (ata_msg_probe(ap))
2401 ata_dump_id(id);
1da177e4 2402
ef143d57
AL
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 sizeof(fwrevbuf));
2406
2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 sizeof(modelbuf));
2409
1da177e4
LT
2410 /* ATA-specific feature tests */
2411 if (dev->class == ATA_DEV_ATA) {
b352e57d 2412 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2413 /* CPRM may make this media unusable */
2414 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2415 ata_dev_printk(dev, KERN_WARNING,
2416 "supports DRM functions and may "
2417 "not be fully accessable.\n");
b352e57d 2418 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2419 } else {
2dcb407e 2420 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2421 /* Warn the user if the device has TPM extensions */
2422 if (ata_id_has_tpm(id))
2423 ata_dev_printk(dev, KERN_WARNING,
2424 "supports DRM functions and may "
2425 "not be fully accessable.\n");
2426 }
b352e57d 2427
1148c3a7 2428 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2429
e18086d6
ML
2430 /* get current R/W Multiple count setting */
2431 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2432 unsigned int max = dev->id[47] & 0xff;
2433 unsigned int cnt = dev->id[59] & 0xff;
2434 /* only recognize/allow powers of two here */
2435 if (is_power_of_2(max) && is_power_of_2(cnt))
2436 if (cnt <= max)
2437 dev->multi_count = cnt;
2438 }
3f64f565 2439
1148c3a7 2440 if (ata_id_has_lba(id)) {
4c2d721a 2441 const char *lba_desc;
388539f3 2442 char ncq_desc[24];
8bf62ece 2443
4c2d721a
TH
2444 lba_desc = "LBA";
2445 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2446 if (ata_id_has_lba48(id)) {
8bf62ece 2447 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2448 lba_desc = "LBA48";
6fc49adb
TH
2449
2450 if (dev->n_sectors >= (1UL << 28) &&
2451 ata_id_has_flush_ext(id))
2452 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2453 }
8bf62ece 2454
a6e6ce8e 2455 /* config NCQ */
388539f3
SL
2456 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2457 if (rc)
2458 return rc;
a6e6ce8e 2459
8bf62ece 2460 /* print device info to dmesg */
3f64f565
EM
2461 if (ata_msg_drv(ap) && print_info) {
2462 ata_dev_printk(dev, KERN_INFO,
2463 "%s: %s, %s, max %s\n",
2464 revbuf, modelbuf, fwrevbuf,
2465 ata_mode_string(xfer_mask));
2466 ata_dev_printk(dev, KERN_INFO,
2467 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2468 (unsigned long long)dev->n_sectors,
3f64f565
EM
2469 dev->multi_count, lba_desc, ncq_desc);
2470 }
ffeae418 2471 } else {
8bf62ece
AL
2472 /* CHS */
2473
2474 /* Default translation */
1148c3a7
TH
2475 dev->cylinders = id[1];
2476 dev->heads = id[3];
2477 dev->sectors = id[6];
8bf62ece 2478
1148c3a7 2479 if (ata_id_current_chs_valid(id)) {
8bf62ece 2480 /* Current CHS translation is valid. */
1148c3a7
TH
2481 dev->cylinders = id[54];
2482 dev->heads = id[55];
2483 dev->sectors = id[56];
8bf62ece
AL
2484 }
2485
2486 /* print device info to dmesg */
3f64f565 2487 if (ata_msg_drv(ap) && print_info) {
88574551 2488 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2489 "%s: %s, %s, max %s\n",
2490 revbuf, modelbuf, fwrevbuf,
2491 ata_mode_string(xfer_mask));
a84471fe 2492 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2493 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2494 (unsigned long long)dev->n_sectors,
2495 dev->multi_count, dev->cylinders,
2496 dev->heads, dev->sectors);
2497 }
07f6f7d0
AL
2498 }
2499
6e7846e9 2500 dev->cdb_len = 16;
1da177e4
LT
2501 }
2502
2503 /* ATAPI-specific feature tests */
2c13b7ce 2504 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2505 const char *cdb_intr_string = "";
2506 const char *atapi_an_string = "";
91163006 2507 const char *dma_dir_string = "";
7d77b247 2508 u32 sntf;
08a556db 2509
1148c3a7 2510 rc = atapi_cdb_len(id);
1da177e4 2511 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2512 if (ata_msg_warn(ap))
88574551
TH
2513 ata_dev_printk(dev, KERN_WARNING,
2514 "unsupported CDB len\n");
ffeae418 2515 rc = -EINVAL;
1da177e4
LT
2516 goto err_out_nosup;
2517 }
6e7846e9 2518 dev->cdb_len = (unsigned int) rc;
1da177e4 2519
7d77b247
TH
2520 /* Enable ATAPI AN if both the host and device have
2521 * the support. If PMP is attached, SNTF is required
2522 * to enable ATAPI AN to discern between PHY status
2523 * changed notifications and ATAPI ANs.
9f45cbd3 2524 */
e7ecd435
TH
2525 if (atapi_an &&
2526 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2527 (!sata_pmp_attached(ap) ||
7d77b247 2528 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2529 unsigned int err_mask;
2530
9f45cbd3 2531 /* issue SET feature command to turn this on */
218f3d30
JG
2532 err_mask = ata_dev_set_feature(dev,
2533 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2534 if (err_mask)
9f45cbd3 2535 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2536 "failed to enable ATAPI AN "
2537 "(err_mask=0x%x)\n", err_mask);
2538 else {
9f45cbd3 2539 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2540 atapi_an_string = ", ATAPI AN";
2541 }
9f45cbd3
KCA
2542 }
2543
08a556db 2544 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2545 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2546 cdb_intr_string = ", CDB intr";
2547 }
312f7da2 2548
91163006
TH
2549 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2550 dev->flags |= ATA_DFLAG_DMADIR;
2551 dma_dir_string = ", DMADIR";
2552 }
2553
1da177e4 2554 /* print device info to dmesg */
5afc8142 2555 if (ata_msg_drv(ap) && print_info)
ef143d57 2556 ata_dev_printk(dev, KERN_INFO,
91163006 2557 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2558 modelbuf, fwrevbuf,
12436c30 2559 ata_mode_string(xfer_mask),
91163006
TH
2560 cdb_intr_string, atapi_an_string,
2561 dma_dir_string);
1da177e4
LT
2562 }
2563
914ed354
TH
2564 /* determine max_sectors */
2565 dev->max_sectors = ATA_MAX_SECTORS;
2566 if (dev->flags & ATA_DFLAG_LBA48)
2567 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2568
ca77329f
KCA
2569 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2570 if (ata_id_has_hipm(dev->id))
2571 dev->flags |= ATA_DFLAG_HIPM;
2572 if (ata_id_has_dipm(dev->id))
2573 dev->flags |= ATA_DFLAG_DIPM;
2574 }
2575
c5038fc0
AC
2576 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2577 200 sectors */
3373efd8 2578 if (ata_dev_knobble(dev)) {
5afc8142 2579 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2580 ata_dev_printk(dev, KERN_INFO,
2581 "applying bridge limits\n");
5a529139 2582 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2583 dev->max_sectors = ATA_MAX_SECTORS;
2584 }
2585
f8d8e579 2586 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2587 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2588 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2589 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2590 }
f8d8e579 2591
75683fe7 2592 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2593 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2594 dev->max_sectors);
18d6e9d5 2595
ca77329f
KCA
2596 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2597 dev->horkage |= ATA_HORKAGE_IPM;
2598
2599 /* reset link pm_policy for this port to no pm */
2600 ap->pm_policy = MAX_PERFORMANCE;
2601 }
2602
4b2f3ede 2603 if (ap->ops->dev_config)
cd0d3bbc 2604 ap->ops->dev_config(dev);
4b2f3ede 2605
c5038fc0
AC
2606 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2607 /* Let the user know. We don't want to disallow opens for
2608 rescue purposes, or in case the vendor is just a blithering
2609 idiot. Do this after the dev_config call as some controllers
2610 with buggy firmware may want to avoid reporting false device
2611 bugs */
2612
2613 if (print_info) {
2614 ata_dev_printk(dev, KERN_WARNING,
2615"Drive reports diagnostics failure. This may indicate a drive\n");
2616 ata_dev_printk(dev, KERN_WARNING,
2617"fault or invalid emulation. Contact drive vendor for information.\n");
2618 }
2619 }
2620
ac70a964
TH
2621 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2622 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2623 "firmware update to be fully functional.\n");
2624 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2625 "or visit http://ata.wiki.kernel.org.\n");
2626 }
2627
ffeae418 2628 return 0;
1da177e4
LT
2629
2630err_out_nosup:
0dd4b21f 2631 if (ata_msg_probe(ap))
88574551 2632 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2633 "%s: EXIT, err\n", __func__);
ffeae418 2634 return rc;
1da177e4
LT
2635}
2636
be0d18df 2637/**
2e41e8e6 2638 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2639 * @ap: port
2640 *
2e41e8e6 2641 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2642 * detection.
2643 */
2644
2645int ata_cable_40wire(struct ata_port *ap)
2646{
2647 return ATA_CBL_PATA40;
2648}
2649
2650/**
2e41e8e6 2651 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2652 * @ap: port
2653 *
2e41e8e6 2654 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2655 * detection.
2656 */
2657
2658int ata_cable_80wire(struct ata_port *ap)
2659{
2660 return ATA_CBL_PATA80;
2661}
2662
2663/**
2664 * ata_cable_unknown - return unknown PATA cable.
2665 * @ap: port
2666 *
2667 * Helper method for drivers which have no PATA cable detection.
2668 */
2669
2670int ata_cable_unknown(struct ata_port *ap)
2671{
2672 return ATA_CBL_PATA_UNK;
2673}
2674
c88f90c3
TH
2675/**
2676 * ata_cable_ignore - return ignored PATA cable.
2677 * @ap: port
2678 *
2679 * Helper method for drivers which don't use cable type to limit
2680 * transfer mode.
2681 */
2682int ata_cable_ignore(struct ata_port *ap)
2683{
2684 return ATA_CBL_PATA_IGN;
2685}
2686
be0d18df
AC
2687/**
2688 * ata_cable_sata - return SATA cable type
2689 * @ap: port
2690 *
2691 * Helper method for drivers which have SATA cables
2692 */
2693
2694int ata_cable_sata(struct ata_port *ap)
2695{
2696 return ATA_CBL_SATA;
2697}
2698
1da177e4
LT
2699/**
2700 * ata_bus_probe - Reset and probe ATA bus
2701 * @ap: Bus to probe
2702 *
0cba632b
JG
2703 * Master ATA bus probing function. Initiates a hardware-dependent
2704 * bus reset, then attempts to identify any devices found on
2705 * the bus.
2706 *
1da177e4 2707 * LOCKING:
0cba632b 2708 * PCI/etc. bus probe sem.
1da177e4
LT
2709 *
2710 * RETURNS:
96072e69 2711 * Zero on success, negative errno otherwise.
1da177e4
LT
2712 */
2713
80289167 2714int ata_bus_probe(struct ata_port *ap)
1da177e4 2715{
28ca5c57 2716 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2717 int tries[ATA_MAX_DEVICES];
f58229f8 2718 int rc;
e82cbdb9 2719 struct ata_device *dev;
1da177e4 2720
1eca4365 2721 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2723
2724 retry:
1eca4365 2725 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2732 */
2733 dev->pio_mode = XFER_PIO_0;
2734
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2739 */
2740 if (ap->ops->set_piomode)
2741 ap->ops->set_piomode(ap, dev);
2742 }
2743
2044470c 2744 /* reset and determine device classes */
52783c5d 2745 ap->ops->phy_reset(ap);
2061a47a 2746
1eca4365 2747 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2748 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2749 classes[dev->devno] = dev->class;
2750 else
2751 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2752
52783c5d 2753 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2754 }
1da177e4 2755
f31f0cc2
JG
2756 /* read IDENTIFY page and configure devices. We have to do the identify
2757 specific sequence bass-ackwards so that PDIAG- is released by
2758 the slave device */
2759
1eca4365 2760 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2761 if (tries[dev->devno])
2762 dev->class = classes[dev->devno];
ffeae418 2763
14d2bac1 2764 if (!ata_dev_enabled(dev))
ffeae418 2765 continue;
ffeae418 2766
bff04647
TH
2767 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2768 dev->id);
14d2bac1
TH
2769 if (rc)
2770 goto fail;
f31f0cc2
JG
2771 }
2772
be0d18df
AC
2773 /* Now ask for the cable type as PDIAG- should have been released */
2774 if (ap->ops->cable_detect)
2775 ap->cbl = ap->ops->cable_detect(ap);
2776
1eca4365
TH
2777 /* We may have SATA bridge glue hiding here irrespective of
2778 * the reported cable types and sensed types. When SATA
2779 * drives indicate we have a bridge, we don't know which end
2780 * of the link the bridge is which is a problem.
2781 */
2782 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2783 if (ata_id_is_sata(dev->id))
2784 ap->cbl = ATA_CBL_SATA;
614fe29b 2785
f31f0cc2
JG
2786 /* After the identify sequence we can now set up the devices. We do
2787 this in the normal order so that the user doesn't get confused */
2788
1eca4365 2789 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2790 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2791 rc = ata_dev_configure(dev);
9af5c9c9 2792 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2793 if (rc)
2794 goto fail;
1da177e4
LT
2795 }
2796
e82cbdb9 2797 /* configure transfer mode */
0260731f 2798 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2799 if (rc)
51713d35 2800 goto fail;
1da177e4 2801
1eca4365
TH
2802 ata_for_each_dev(dev, &ap->link, ENABLED)
2803 return 0;
1da177e4 2804
96072e69 2805 return -ENODEV;
14d2bac1
TH
2806
2807 fail:
4ae72a1e
TH
2808 tries[dev->devno]--;
2809
14d2bac1
TH
2810 switch (rc) {
2811 case -EINVAL:
4ae72a1e 2812 /* eeek, something went very wrong, give up */
14d2bac1
TH
2813 tries[dev->devno] = 0;
2814 break;
4ae72a1e
TH
2815
2816 case -ENODEV:
2817 /* give it just one more chance */
2818 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2819 case -EIO:
4ae72a1e
TH
2820 if (tries[dev->devno] == 1) {
2821 /* This is the last chance, better to slow
2822 * down than lose it.
2823 */
a07d499b 2824 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2825 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2826 }
14d2bac1
TH
2827 }
2828
4ae72a1e 2829 if (!tries[dev->devno])
3373efd8 2830 ata_dev_disable(dev);
ec573755 2831
14d2bac1 2832 goto retry;
1da177e4
LT
2833}
2834
3be680b7
TH
2835/**
2836 * sata_print_link_status - Print SATA link status
936fd732 2837 * @link: SATA link to printk link status about
3be680b7
TH
2838 *
2839 * This function prints link speed and status of a SATA link.
2840 *
2841 * LOCKING:
2842 * None.
2843 */
6bdb4fc9 2844static void sata_print_link_status(struct ata_link *link)
3be680b7 2845{
6d5f9732 2846 u32 sstatus, scontrol, tmp;
3be680b7 2847
936fd732 2848 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2849 return;
936fd732 2850 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2851
b1c72916 2852 if (ata_phys_link_online(link)) {
3be680b7 2853 tmp = (sstatus >> 4) & 0xf;
936fd732 2854 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2855 "SATA link up %s (SStatus %X SControl %X)\n",
2856 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2857 } else {
936fd732 2858 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2859 "SATA link down (SStatus %X SControl %X)\n",
2860 sstatus, scontrol);
3be680b7
TH
2861 }
2862}
2863
ebdfca6e
AC
2864/**
2865 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2866 * @adev: device
2867 *
2868 * Obtain the other device on the same cable, or if none is
2869 * present NULL is returned
2870 */
2e9edbf8 2871
3373efd8 2872struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2873{
9af5c9c9
TH
2874 struct ata_link *link = adev->link;
2875 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2876 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2877 return NULL;
2878 return pair;
2879}
2880
1c3fae4d 2881/**
3c567b7d 2882 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2883 * @link: Link to adjust SATA spd limit for
a07d499b 2884 * @spd_limit: Additional limit
1c3fae4d 2885 *
936fd732 2886 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2887 * function only adjusts the limit. The change must be applied
3c567b7d 2888 * using sata_set_spd().
1c3fae4d 2889 *
a07d499b
TH
2890 * If @spd_limit is non-zero, the speed is limited to equal to or
2891 * lower than @spd_limit if such speed is supported. If
2892 * @spd_limit is slower than any supported speed, only the lowest
2893 * supported speed is allowed.
2894 *
1c3fae4d
TH
2895 * LOCKING:
2896 * Inherited from caller.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno on failure
2900 */
a07d499b 2901int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2902{
81952c54 2903 u32 sstatus, spd, mask;
a07d499b 2904 int rc, bit;
1c3fae4d 2905
936fd732 2906 if (!sata_scr_valid(link))
008a7896
TH
2907 return -EOPNOTSUPP;
2908
2909 /* If SCR can be read, use it to determine the current SPD.
936fd732 2910 * If not, use cached value in link->sata_spd.
008a7896 2911 */
936fd732 2912 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2913 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2914 spd = (sstatus >> 4) & 0xf;
2915 else
936fd732 2916 spd = link->sata_spd;
1c3fae4d 2917
936fd732 2918 mask = link->sata_spd_limit;
1c3fae4d
TH
2919 if (mask <= 1)
2920 return -EINVAL;
008a7896
TH
2921
2922 /* unconditionally mask off the highest bit */
a07d499b
TH
2923 bit = fls(mask) - 1;
2924 mask &= ~(1 << bit);
1c3fae4d 2925
008a7896
TH
2926 /* Mask off all speeds higher than or equal to the current
2927 * one. Force 1.5Gbps if current SPD is not available.
2928 */
2929 if (spd > 1)
2930 mask &= (1 << (spd - 1)) - 1;
2931 else
2932 mask &= 1;
2933
2934 /* were we already at the bottom? */
1c3fae4d
TH
2935 if (!mask)
2936 return -EINVAL;
2937
a07d499b
TH
2938 if (spd_limit) {
2939 if (mask & ((1 << spd_limit) - 1))
2940 mask &= (1 << spd_limit) - 1;
2941 else {
2942 bit = ffs(mask) - 1;
2943 mask = 1 << bit;
2944 }
2945 }
2946
936fd732 2947 link->sata_spd_limit = mask;
1c3fae4d 2948
936fd732 2949 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2950 sata_spd_string(fls(mask)));
1c3fae4d
TH
2951
2952 return 0;
2953}
2954
936fd732 2955static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2956{
5270222f
TH
2957 struct ata_link *host_link = &link->ap->link;
2958 u32 limit, target, spd;
1c3fae4d 2959
5270222f
TH
2960 limit = link->sata_spd_limit;
2961
2962 /* Don't configure downstream link faster than upstream link.
2963 * It doesn't speed up anything and some PMPs choke on such
2964 * configuration.
2965 */
2966 if (!ata_is_host_link(link) && host_link->sata_spd)
2967 limit &= (1 << host_link->sata_spd) - 1;
2968
2969 if (limit == UINT_MAX)
2970 target = 0;
1c3fae4d 2971 else
5270222f 2972 target = fls(limit);
1c3fae4d
TH
2973
2974 spd = (*scontrol >> 4) & 0xf;
5270222f 2975 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2976
5270222f 2977 return spd != target;
1c3fae4d
TH
2978}
2979
2980/**
3c567b7d 2981 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2982 * @link: Link in question
1c3fae4d
TH
2983 *
2984 * Test whether the spd limit in SControl matches
936fd732 2985 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2986 * whether hardreset is necessary to apply SATA spd
2987 * configuration.
2988 *
2989 * LOCKING:
2990 * Inherited from caller.
2991 *
2992 * RETURNS:
2993 * 1 if SATA spd configuration is needed, 0 otherwise.
2994 */
1dc55e87 2995static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2996{
2997 u32 scontrol;
2998
936fd732 2999 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3000 return 1;
1c3fae4d 3001
936fd732 3002 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3003}
3004
3005/**
3c567b7d 3006 * sata_set_spd - set SATA spd according to spd limit
936fd732 3007 * @link: Link to set SATA spd for
1c3fae4d 3008 *
936fd732 3009 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3010 *
3011 * LOCKING:
3012 * Inherited from caller.
3013 *
3014 * RETURNS:
3015 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3016 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3017 */
936fd732 3018int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3019{
3020 u32 scontrol;
81952c54 3021 int rc;
1c3fae4d 3022
936fd732 3023 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3024 return rc;
1c3fae4d 3025
936fd732 3026 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3027 return 0;
3028
936fd732 3029 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3030 return rc;
3031
1c3fae4d
TH
3032 return 1;
3033}
3034
452503f9
AC
3035/*
3036 * This mode timing computation functionality is ported over from
3037 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3038 */
3039/*
b352e57d 3040 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3041 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3042 * for UDMA6, which is currently supported only by Maxtor drives.
3043 *
3044 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3045 */
3046
3047static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3048/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3049 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3050 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3051 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3052 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3053 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3054 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3055 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3056
3057 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3058 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3059 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3060
3061 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3062 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3063 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3064 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3065 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3066
3067/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3068 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3069 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3070 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3071 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3072 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3073 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3074 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3075
3076 { 0xFF }
3077};
3078
2dcb407e
JG
3079#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3080#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3081
3082static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3083{
3ada9c12
DD
3084 q->setup = EZ(t->setup * 1000, T);
3085 q->act8b = EZ(t->act8b * 1000, T);
3086 q->rec8b = EZ(t->rec8b * 1000, T);
3087 q->cyc8b = EZ(t->cyc8b * 1000, T);
3088 q->active = EZ(t->active * 1000, T);
3089 q->recover = EZ(t->recover * 1000, T);
3090 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3091 q->cycle = EZ(t->cycle * 1000, T);
3092 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3093}
3094
3095void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3096 struct ata_timing *m, unsigned int what)
3097{
3098 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3099 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3100 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3101 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3102 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3103 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3104 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3105 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3106 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3107}
3108
6357357c 3109const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3110{
70cd071e
TH
3111 const struct ata_timing *t = ata_timing;
3112
3113 while (xfer_mode > t->mode)
3114 t++;
452503f9 3115
70cd071e
TH
3116 if (xfer_mode == t->mode)
3117 return t;
3118 return NULL;
452503f9
AC
3119}
3120
3121int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3122 struct ata_timing *t, int T, int UT)
3123{
9e8808a9 3124 const u16 *id = adev->id;
452503f9
AC
3125 const struct ata_timing *s;
3126 struct ata_timing p;
3127
3128 /*
2e9edbf8 3129 * Find the mode.
75b1f2f8 3130 */
452503f9
AC
3131
3132 if (!(s = ata_timing_find_mode(speed)))
3133 return -EINVAL;
3134
75b1f2f8
AL
3135 memcpy(t, s, sizeof(*s));
3136
452503f9
AC
3137 /*
3138 * If the drive is an EIDE drive, it can tell us it needs extended
3139 * PIO/MW_DMA cycle timing.
3140 */
3141
9e8808a9 3142 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3143 memset(&p, 0, sizeof(p));
9e8808a9 3144
2dcb407e 3145 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3146 if (speed <= XFER_PIO_2)
3147 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3148 else if ((speed <= XFER_PIO_4) ||
3149 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3150 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3151 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3152 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3153
452503f9
AC
3154 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3155 }
3156
3157 /*
3158 * Convert the timing to bus clock counts.
3159 */
3160
75b1f2f8 3161 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3162
3163 /*
c893a3ae
RD
3164 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3165 * S.M.A.R.T * and some other commands. We have to ensure that the
3166 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3167 */
3168
fd3367af 3169 if (speed > XFER_PIO_6) {
452503f9
AC
3170 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3171 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3172 }
3173
3174 /*
c893a3ae 3175 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3176 */
3177
3178 if (t->act8b + t->rec8b < t->cyc8b) {
3179 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3180 t->rec8b = t->cyc8b - t->act8b;
3181 }
3182
3183 if (t->active + t->recover < t->cycle) {
3184 t->active += (t->cycle - (t->active + t->recover)) / 2;
3185 t->recover = t->cycle - t->active;
3186 }
a617c09f 3187
4f701d1e
AC
3188 /* In a few cases quantisation may produce enough errors to
3189 leave t->cycle too low for the sum of active and recovery
3190 if so we must correct this */
3191 if (t->active + t->recover > t->cycle)
3192 t->cycle = t->active + t->recover;
452503f9
AC
3193
3194 return 0;
3195}
3196
a0f79b92
TH
3197/**
3198 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3199 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3200 * @cycle: cycle duration in ns
3201 *
3202 * Return matching xfer mode for @cycle. The returned mode is of
3203 * the transfer type specified by @xfer_shift. If @cycle is too
3204 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3205 * than the fastest known mode, the fasted mode is returned.
3206 *
3207 * LOCKING:
3208 * None.
3209 *
3210 * RETURNS:
3211 * Matching xfer_mode, 0xff if no match found.
3212 */
3213u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3214{
3215 u8 base_mode = 0xff, last_mode = 0xff;
3216 const struct ata_xfer_ent *ent;
3217 const struct ata_timing *t;
3218
3219 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3220 if (ent->shift == xfer_shift)
3221 base_mode = ent->base;
3222
3223 for (t = ata_timing_find_mode(base_mode);
3224 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3225 unsigned short this_cycle;
3226
3227 switch (xfer_shift) {
3228 case ATA_SHIFT_PIO:
3229 case ATA_SHIFT_MWDMA:
3230 this_cycle = t->cycle;
3231 break;
3232 case ATA_SHIFT_UDMA:
3233 this_cycle = t->udma;
3234 break;
3235 default:
3236 return 0xff;
3237 }
3238
3239 if (cycle > this_cycle)
3240 break;
3241
3242 last_mode = t->mode;
3243 }
3244
3245 return last_mode;
3246}
3247
cf176e1a
TH
3248/**
3249 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3250 * @dev: Device to adjust xfer masks
458337db 3251 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3252 *
3253 * Adjust xfer masks of @dev downward. Note that this function
3254 * does not apply the change. Invoking ata_set_mode() afterwards
3255 * will apply the limit.
3256 *
3257 * LOCKING:
3258 * Inherited from caller.
3259 *
3260 * RETURNS:
3261 * 0 on success, negative errno on failure
3262 */
458337db 3263int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3264{
458337db 3265 char buf[32];
7dc951ae
TH
3266 unsigned long orig_mask, xfer_mask;
3267 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3268 int quiet, highbit;
cf176e1a 3269
458337db
TH
3270 quiet = !!(sel & ATA_DNXFER_QUIET);
3271 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3272
458337db
TH
3273 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3274 dev->mwdma_mask,
3275 dev->udma_mask);
3276 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3277
458337db
TH
3278 switch (sel) {
3279 case ATA_DNXFER_PIO:
3280 highbit = fls(pio_mask) - 1;
3281 pio_mask &= ~(1 << highbit);
3282 break;
3283
3284 case ATA_DNXFER_DMA:
3285 if (udma_mask) {
3286 highbit = fls(udma_mask) - 1;
3287 udma_mask &= ~(1 << highbit);
3288 if (!udma_mask)
3289 return -ENOENT;
3290 } else if (mwdma_mask) {
3291 highbit = fls(mwdma_mask) - 1;
3292 mwdma_mask &= ~(1 << highbit);
3293 if (!mwdma_mask)
3294 return -ENOENT;
3295 }
3296 break;
3297
3298 case ATA_DNXFER_40C:
3299 udma_mask &= ATA_UDMA_MASK_40C;
3300 break;
3301
3302 case ATA_DNXFER_FORCE_PIO0:
3303 pio_mask &= 1;
3304 case ATA_DNXFER_FORCE_PIO:
3305 mwdma_mask = 0;
3306 udma_mask = 0;
3307 break;
3308
458337db
TH
3309 default:
3310 BUG();
3311 }
3312
3313 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3314
3315 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3316 return -ENOENT;
3317
3318 if (!quiet) {
3319 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3320 snprintf(buf, sizeof(buf), "%s:%s",
3321 ata_mode_string(xfer_mask),
3322 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3323 else
3324 snprintf(buf, sizeof(buf), "%s",
3325 ata_mode_string(xfer_mask));
3326
3327 ata_dev_printk(dev, KERN_WARNING,
3328 "limiting speed to %s\n", buf);
3329 }
cf176e1a
TH
3330
3331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3332 &dev->udma_mask);
3333
cf176e1a 3334 return 0;
cf176e1a
TH
3335}
3336
3373efd8 3337static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3338{
d0cb43b3 3339 struct ata_port *ap = dev->link->ap;
9af5c9c9 3340 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3341 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3342 const char *dev_err_whine = "";
3343 int ign_dev_err = 0;
d0cb43b3 3344 unsigned int err_mask = 0;
83206a29 3345 int rc;
1da177e4 3346
e8384607 3347 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3348 if (dev->xfer_shift == ATA_SHIFT_PIO)
3349 dev->flags |= ATA_DFLAG_PIO;
3350
d0cb43b3
TH
3351 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3352 dev_err_whine = " (SET_XFERMODE skipped)";
3353 else {
3354 if (nosetxfer)
3355 ata_dev_printk(dev, KERN_WARNING,
3356 "NOSETXFER but PATA detected - can't "
3357 "skip SETXFER, might malfunction\n");
3358 err_mask = ata_dev_set_xfermode(dev);
3359 }
2dcb407e 3360
4055dee7
TH
3361 if (err_mask & ~AC_ERR_DEV)
3362 goto fail;
3363
3364 /* revalidate */
3365 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3366 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3367 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3368 if (rc)
3369 return rc;
3370
b93fda12
AC
3371 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3372 /* Old CFA may refuse this command, which is just fine */
3373 if (ata_id_is_cfa(dev->id))
3374 ign_dev_err = 1;
3375 /* Catch several broken garbage emulations plus some pre
3376 ATA devices */
3377 if (ata_id_major_version(dev->id) == 0 &&
3378 dev->pio_mode <= XFER_PIO_2)
3379 ign_dev_err = 1;
3380 /* Some very old devices and some bad newer ones fail
3381 any kind of SET_XFERMODE request but support PIO0-2
3382 timings and no IORDY */
3383 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3384 ign_dev_err = 1;
3385 }
3acaf94b
AC
3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3388 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3389 dev->dma_mode == XFER_MW_DMA_0 &&
3390 (dev->id[63] >> 8) & 1)
4055dee7 3391 ign_dev_err = 1;
3acaf94b 3392
4055dee7
TH
3393 /* if the device is actually configured correctly, ignore dev err */
3394 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3395 ign_dev_err = 1;
1da177e4 3396
4055dee7
TH
3397 if (err_mask & AC_ERR_DEV) {
3398 if (!ign_dev_err)
3399 goto fail;
3400 else
3401 dev_err_whine = " (device error ignored)";
3402 }
48a8a14f 3403
23e71c3d
TH
3404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3405 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3406
4055dee7
TH
3407 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3408 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3409 dev_err_whine);
3410
83206a29 3411 return 0;
4055dee7
TH
3412
3413 fail:
3414 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3415 "(err_mask=0x%x)\n", err_mask);
3416 return -EIO;
1da177e4
LT
3417}
3418
1da177e4 3419/**
04351821 3420 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3421 * @link: link on which timings will be programmed
1967b7ff 3422 * @r_failed_dev: out parameter for failed device
1da177e4 3423 *
04351821
AC
3424 * Standard implementation of the function used to tune and set
3425 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3426 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3427 * returned in @r_failed_dev.
780a87f7 3428 *
1da177e4 3429 * LOCKING:
0cba632b 3430 * PCI/etc. bus probe sem.
e82cbdb9
TH
3431 *
3432 * RETURNS:
3433 * 0 on success, negative errno otherwise
1da177e4 3434 */
04351821 3435
0260731f 3436int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3437{
0260731f 3438 struct ata_port *ap = link->ap;
e8e0619f 3439 struct ata_device *dev;
f58229f8 3440 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3441
a6d5a51c 3442 /* step 1: calculate xfer_mask */
1eca4365 3443 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3444 unsigned long pio_mask, dma_mask;
b3a70601 3445 unsigned int mode_mask;
a6d5a51c 3446
b3a70601
AC
3447 mode_mask = ATA_DMA_MASK_ATA;
3448 if (dev->class == ATA_DEV_ATAPI)
3449 mode_mask = ATA_DMA_MASK_ATAPI;
3450 else if (ata_id_is_cfa(dev->id))
3451 mode_mask = ATA_DMA_MASK_CFA;
3452
3373efd8 3453 ata_dev_xfermask(dev);
33267325 3454 ata_force_xfermask(dev);
1da177e4 3455
acf356b1
TH
3456 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3457 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3458
3459 if (libata_dma_mask & mode_mask)
3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3461 else
3462 dma_mask = 0;
3463
acf356b1
TH
3464 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3465 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3466
4f65977d 3467 found = 1;
b15b3eba 3468 if (ata_dma_enabled(dev))
5444a6f4 3469 used_dma = 1;
a6d5a51c 3470 }
4f65977d 3471 if (!found)
e82cbdb9 3472 goto out;
a6d5a51c
TH
3473
3474 /* step 2: always set host PIO timings */
1eca4365 3475 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3476 if (dev->pio_mode == 0xff) {
f15a1daf 3477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3478 rc = -EINVAL;
e82cbdb9 3479 goto out;
e8e0619f
TH
3480 }
3481
3482 dev->xfer_mode = dev->pio_mode;
3483 dev->xfer_shift = ATA_SHIFT_PIO;
3484 if (ap->ops->set_piomode)
3485 ap->ops->set_piomode(ap, dev);
3486 }
1da177e4 3487
a6d5a51c 3488 /* step 3: set host DMA timings */
1eca4365
TH
3489 ata_for_each_dev(dev, link, ENABLED) {
3490 if (!ata_dma_enabled(dev))
e8e0619f
TH
3491 continue;
3492
3493 dev->xfer_mode = dev->dma_mode;
3494 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3495 if (ap->ops->set_dmamode)
3496 ap->ops->set_dmamode(ap, dev);
3497 }
1da177e4
LT
3498
3499 /* step 4: update devices' xfer mode */
1eca4365 3500 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3501 rc = ata_dev_set_mode(dev);
5bbc53f4 3502 if (rc)
e82cbdb9 3503 goto out;
83206a29 3504 }
1da177e4 3505
e8e0619f
TH
3506 /* Record simplex status. If we selected DMA then the other
3507 * host channels are not permitted to do so.
5444a6f4 3508 */
cca3974e 3509 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3510 ap->host->simplex_claimed = ap;
5444a6f4 3511
e82cbdb9
TH
3512 out:
3513 if (rc)
3514 *r_failed_dev = dev;
3515 return rc;
1da177e4
LT
3516}
3517
aa2731ad
TH
3518/**
3519 * ata_wait_ready - wait for link to become ready
3520 * @link: link to be waited on
3521 * @deadline: deadline jiffies for the operation
3522 * @check_ready: callback to check link readiness
3523 *
3524 * Wait for @link to become ready. @check_ready should return
3525 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3526 * link doesn't seem to be occupied, other errno for other error
3527 * conditions.
3528 *
3529 * Transient -ENODEV conditions are allowed for
3530 * ATA_TMOUT_FF_WAIT.
3531 *
3532 * LOCKING:
3533 * EH context.
3534 *
3535 * RETURNS:
3536 * 0 if @linke is ready before @deadline; otherwise, -errno.
3537 */
3538int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3539 int (*check_ready)(struct ata_link *link))
3540{
3541 unsigned long start = jiffies;
b48d58f5 3542 unsigned long nodev_deadline;
aa2731ad
TH
3543 int warned = 0;
3544
b48d58f5
TH
3545 /* choose which 0xff timeout to use, read comment in libata.h */
3546 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3548 else
3549 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3550
b1c72916
TH
3551 /* Slave readiness can't be tested separately from master. On
3552 * M/S emulation configuration, this function should be called
3553 * only on the master and it will handle both master and slave.
3554 */
3555 WARN_ON(link == link->ap->slave_link);
3556
aa2731ad
TH
3557 if (time_after(nodev_deadline, deadline))
3558 nodev_deadline = deadline;
3559
3560 while (1) {
3561 unsigned long now = jiffies;
3562 int ready, tmp;
3563
3564 ready = tmp = check_ready(link);
3565 if (ready > 0)
3566 return 0;
3567
b48d58f5
TH
3568 /*
3569 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3570 * is online. Also, some SATA devices take a long
b48d58f5
TH
3571 * time to clear 0xff after reset. Wait for
3572 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3573 * offline.
aa2731ad
TH
3574 *
3575 * Note that some PATA controllers (pata_ali) explode
3576 * if status register is read more than once when
3577 * there's no device attached.
3578 */
3579 if (ready == -ENODEV) {
3580 if (ata_link_online(link))
3581 ready = 0;
3582 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3583 !ata_link_offline(link) &&
3584 time_before(now, nodev_deadline))
3585 ready = 0;
3586 }
3587
3588 if (ready)
3589 return ready;
3590 if (time_after(now, deadline))
3591 return -EBUSY;
3592
3593 if (!warned && time_after(now, start + 5 * HZ) &&
3594 (deadline - now > 3 * HZ)) {
3595 ata_link_printk(link, KERN_WARNING,
3596 "link is slow to respond, please be patient "
3597 "(ready=%d)\n", tmp);
3598 warned = 1;
3599 }
3600
3601 msleep(50);
3602 }
3603}
3604
3605/**
3606 * ata_wait_after_reset - wait for link to become ready after reset
3607 * @link: link to be waited on
3608 * @deadline: deadline jiffies for the operation
3609 * @check_ready: callback to check link readiness
3610 *
3611 * Wait for @link to become ready after reset.
3612 *
3613 * LOCKING:
3614 * EH context.
3615 *
3616 * RETURNS:
3617 * 0 if @linke is ready before @deadline; otherwise, -errno.
3618 */
2b4221bb 3619int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3620 int (*check_ready)(struct ata_link *link))
3621{
341c2c95 3622 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3623
3624 return ata_wait_ready(link, deadline, check_ready);
3625}
3626
d7bb4cc7 3627/**
936fd732
TH
3628 * sata_link_debounce - debounce SATA phy status
3629 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3630 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3631 * @deadline: deadline jiffies for the operation
d7bb4cc7 3632 *
936fd732 3633* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3634 * holding the same value where DET is not 1 for @duration polled
3635 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3636 * beginning of the stable state. Because DET gets stuck at 1 on
3637 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3638 * until timeout then returns 0 if DET is stable at 1.
3639 *
d4b2bab4
TH
3640 * @timeout is further limited by @deadline. The sooner of the
3641 * two is used.
3642 *
d7bb4cc7
TH
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3645 *
3646 * RETURNS:
3647 * 0 on success, -errno on failure.
3648 */
936fd732
TH
3649int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3650 unsigned long deadline)
7a7921e8 3651{
341c2c95
TH
3652 unsigned long interval = params[0];
3653 unsigned long duration = params[1];
d4b2bab4 3654 unsigned long last_jiffies, t;
d7bb4cc7
TH
3655 u32 last, cur;
3656 int rc;
3657
341c2c95 3658 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3659 if (time_before(t, deadline))
3660 deadline = t;
3661
936fd732 3662 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3663 return rc;
3664 cur &= 0xf;
3665
3666 last = cur;
3667 last_jiffies = jiffies;
3668
3669 while (1) {
341c2c95 3670 msleep(interval);
936fd732 3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3672 return rc;
3673 cur &= 0xf;
3674
3675 /* DET stable? */
3676 if (cur == last) {
d4b2bab4 3677 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3678 continue;
341c2c95
TH
3679 if (time_after(jiffies,
3680 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3681 return 0;
3682 continue;
3683 }
3684
3685 /* unstable, start over */
3686 last = cur;
3687 last_jiffies = jiffies;
3688
f1545154
TH
3689 /* Check deadline. If debouncing failed, return
3690 * -EPIPE to tell upper layer to lower link speed.
3691 */
d4b2bab4 3692 if (time_after(jiffies, deadline))
f1545154 3693 return -EPIPE;
d7bb4cc7
TH
3694 }
3695}
3696
3697/**
936fd732
TH
3698 * sata_link_resume - resume SATA link
3699 * @link: ATA link to resume SATA
d7bb4cc7 3700 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3701 * @deadline: deadline jiffies for the operation
d7bb4cc7 3702 *
936fd732 3703 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3704 *
3705 * LOCKING:
3706 * Kernel thread context (may sleep)
3707 *
3708 * RETURNS:
3709 * 0 on success, -errno on failure.
3710 */
936fd732
TH
3711int sata_link_resume(struct ata_link *link, const unsigned long *params,
3712 unsigned long deadline)
d7bb4cc7 3713{
5040ab67 3714 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3715 u32 scontrol, serror;
81952c54
TH
3716 int rc;
3717
936fd732 3718 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3719 return rc;
7a7921e8 3720
5040ab67
TH
3721 /*
3722 * Writes to SControl sometimes get ignored under certain
3723 * controllers (ata_piix SIDPR). Make sure DET actually is
3724 * cleared.
3725 */
3726 do {
3727 scontrol = (scontrol & 0x0f0) | 0x300;
3728 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3729 return rc;
3730 /*
3731 * Some PHYs react badly if SStatus is pounded
3732 * immediately after resuming. Delay 200ms before
3733 * debouncing.
3734 */
3735 msleep(200);
81952c54 3736
5040ab67
TH
3737 /* is SControl restored correctly? */
3738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3739 return rc;
3740 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3741
5040ab67
TH
3742 if ((scontrol & 0xf0f) != 0x300) {
3743 ata_link_printk(link, KERN_ERR,
3744 "failed to resume link (SControl %X)\n",
3745 scontrol);
3746 return 0;
3747 }
3748
3749 if (tries < ATA_LINK_RESUME_TRIES)
3750 ata_link_printk(link, KERN_WARNING,
3751 "link resume succeeded after %d retries\n",
3752 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3753
ac371987
TH
3754 if ((rc = sata_link_debounce(link, params, deadline)))
3755 return rc;
3756
f046519f 3757 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3758 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3759 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3760
f046519f 3761 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3762}
3763
f5914a46 3764/**
0aa1113d 3765 * ata_std_prereset - prepare for reset
cc0680a5 3766 * @link: ATA link to be reset
d4b2bab4 3767 * @deadline: deadline jiffies for the operation
f5914a46 3768 *
cc0680a5 3769 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3770 * prereset makes libata abort whole reset sequence and give up
3771 * that port, so prereset should be best-effort. It does its
3772 * best to prepare for reset sequence but if things go wrong, it
3773 * should just whine, not fail.
f5914a46
TH
3774 *
3775 * LOCKING:
3776 * Kernel thread context (may sleep)
3777 *
3778 * RETURNS:
3779 * 0 on success, -errno otherwise.
3780 */
0aa1113d 3781int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3782{
cc0680a5 3783 struct ata_port *ap = link->ap;
936fd732 3784 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3785 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3786 int rc;
3787
f5914a46
TH
3788 /* if we're about to do hardreset, nothing more to do */
3789 if (ehc->i.action & ATA_EH_HARDRESET)
3790 return 0;
3791
936fd732 3792 /* if SATA, resume link */
a16abc0b 3793 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3794 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3795 /* whine about phy resume failure but proceed */
3796 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3797 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3798 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3799 }
3800
45db2f6c 3801 /* no point in trying softreset on offline link */
b1c72916 3802 if (ata_phys_link_offline(link))
45db2f6c
TH
3803 ehc->i.action &= ~ATA_EH_SOFTRESET;
3804
f5914a46
TH
3805 return 0;
3806}
3807
c2bd5804 3808/**
624d5c51
TH
3809 * sata_link_hardreset - reset link via SATA phy reset
3810 * @link: link to reset
3811 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3812 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3813 * @online: optional out parameter indicating link onlineness
3814 * @check_ready: optional callback to check link readiness
c2bd5804 3815 *
624d5c51 3816 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3817 * After hardreset, link readiness is waited upon using
3818 * ata_wait_ready() if @check_ready is specified. LLDs are
3819 * allowed to not specify @check_ready and wait itself after this
3820 * function returns. Device classification is LLD's
3821 * responsibility.
3822 *
3823 * *@online is set to one iff reset succeeded and @link is online
3824 * after reset.
c2bd5804
TH
3825 *
3826 * LOCKING:
3827 * Kernel thread context (may sleep)
3828 *
3829 * RETURNS:
3830 * 0 on success, -errno otherwise.
3831 */
624d5c51 3832int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3833 unsigned long deadline,
3834 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3835{
624d5c51 3836 u32 scontrol;
81952c54 3837 int rc;
852ee16a 3838
c2bd5804
TH
3839 DPRINTK("ENTER\n");
3840
9dadd45b
TH
3841 if (online)
3842 *online = false;
3843
936fd732 3844 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3845 /* SATA spec says nothing about how to reconfigure
3846 * spd. To be on the safe side, turn off phy during
3847 * reconfiguration. This works for at least ICH7 AHCI
3848 * and Sil3124.
3849 */
936fd732 3850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3851 goto out;
81952c54 3852
a34b6fc0 3853 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3854
936fd732 3855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3856 goto out;
1c3fae4d 3857
936fd732 3858 sata_set_spd(link);
1c3fae4d
TH
3859 }
3860
3861 /* issue phy wake/reset */
936fd732 3862 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3863 goto out;
81952c54 3864
852ee16a 3865 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3866
936fd732 3867 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3868 goto out;
c2bd5804 3869
1c3fae4d 3870 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3871 * 10.4.2 says at least 1 ms.
3872 */
3873 msleep(1);
3874
936fd732
TH
3875 /* bring link back */
3876 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3877 if (rc)
3878 goto out;
3879 /* if link is offline nothing more to do */
b1c72916 3880 if (ata_phys_link_offline(link))
9dadd45b
TH
3881 goto out;
3882
3883 /* Link is online. From this point, -ENODEV too is an error. */
3884 if (online)
3885 *online = true;
3886
071f44b1 3887 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3888 /* If PMP is supported, we have to do follow-up SRST.
3889 * Some PMPs don't send D2H Reg FIS after hardreset if
3890 * the first port is empty. Wait only for
3891 * ATA_TMOUT_PMP_SRST_WAIT.
3892 */
3893 if (check_ready) {
3894 unsigned long pmp_deadline;
3895
341c2c95
TH
3896 pmp_deadline = ata_deadline(jiffies,
3897 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3898 if (time_after(pmp_deadline, deadline))
3899 pmp_deadline = deadline;
3900 ata_wait_ready(link, pmp_deadline, check_ready);
3901 }
3902 rc = -EAGAIN;
3903 goto out;
3904 }
3905
3906 rc = 0;
3907 if (check_ready)
3908 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3909 out:
0cbf0711
TH
3910 if (rc && rc != -EAGAIN) {
3911 /* online is set iff link is online && reset succeeded */
3912 if (online)
3913 *online = false;
9dadd45b
TH
3914 ata_link_printk(link, KERN_ERR,
3915 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3916 }
b6103f6d
TH
3917 DPRINTK("EXIT, rc=%d\n", rc);
3918 return rc;
3919}
3920
57c9efdf
TH
3921/**
3922 * sata_std_hardreset - COMRESET w/o waiting or classification
3923 * @link: link to reset
3924 * @class: resulting class of attached device
3925 * @deadline: deadline jiffies for the operation
3926 *
3927 * Standard SATA COMRESET w/o waiting or classification.
3928 *
3929 * LOCKING:
3930 * Kernel thread context (may sleep)
3931 *
3932 * RETURNS:
3933 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3934 */
3935int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3936 unsigned long deadline)
3937{
3938 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3939 bool online;
3940 int rc;
3941
3942 /* do hardreset */
3943 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3944 return online ? -EAGAIN : rc;
3945}
3946
c2bd5804 3947/**
203c75b8 3948 * ata_std_postreset - standard postreset callback
cc0680a5 3949 * @link: the target ata_link
c2bd5804
TH
3950 * @classes: classes of attached devices
3951 *
3952 * This function is invoked after a successful reset. Note that
3953 * the device might have been reset more than once using
3954 * different reset methods before postreset is invoked.
c2bd5804 3955 *
c2bd5804
TH
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3958 */
203c75b8 3959void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3960{
f046519f
TH
3961 u32 serror;
3962
c2bd5804
TH
3963 DPRINTK("ENTER\n");
3964
f046519f
TH
3965 /* reset complete, clear SError */
3966 if (!sata_scr_read(link, SCR_ERROR, &serror))
3967 sata_scr_write(link, SCR_ERROR, serror);
3968
c2bd5804 3969 /* print link status */
936fd732 3970 sata_print_link_status(link);
c2bd5804 3971
c2bd5804
TH
3972 DPRINTK("EXIT\n");
3973}
3974
623a3128
TH
3975/**
3976 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3977 * @dev: device to compare against
3978 * @new_class: class of the new device
3979 * @new_id: IDENTIFY page of the new device
3980 *
3981 * Compare @new_class and @new_id against @dev and determine
3982 * whether @dev is the device indicated by @new_class and
3983 * @new_id.
3984 *
3985 * LOCKING:
3986 * None.
3987 *
3988 * RETURNS:
3989 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3990 */
3373efd8
TH
3991static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3992 const u16 *new_id)
623a3128
TH
3993{
3994 const u16 *old_id = dev->id;
a0cf733b
TH
3995 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3996 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3997
3998 if (dev->class != new_class) {
f15a1daf
TH
3999 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4000 dev->class, new_class);
623a3128
TH
4001 return 0;
4002 }
4003
a0cf733b
TH
4004 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4005 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4006 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4007 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4008
4009 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4010 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4011 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4012 return 0;
4013 }
4014
4015 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4016 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4017 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4018 return 0;
4019 }
4020
623a3128
TH
4021 return 1;
4022}
4023
4024/**
fe30911b 4025 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4026 * @dev: target ATA device
bff04647 4027 * @readid_flags: read ID flags
623a3128
TH
4028 *
4029 * Re-read IDENTIFY page and make sure @dev is still attached to
4030 * the port.
4031 *
4032 * LOCKING:
4033 * Kernel thread context (may sleep)
4034 *
4035 * RETURNS:
4036 * 0 on success, negative errno otherwise
4037 */
fe30911b 4038int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4039{
5eb45c02 4040 unsigned int class = dev->class;
9af5c9c9 4041 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4042 int rc;
4043
fe635c7e 4044 /* read ID data */
bff04647 4045 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4046 if (rc)
fe30911b 4047 return rc;
623a3128
TH
4048
4049 /* is the device still there? */
fe30911b
TH
4050 if (!ata_dev_same_device(dev, class, id))
4051 return -ENODEV;
623a3128 4052
fe635c7e 4053 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4054 return 0;
4055}
4056
4057/**
4058 * ata_dev_revalidate - Revalidate ATA device
4059 * @dev: device to revalidate
422c9daa 4060 * @new_class: new class code
fe30911b
TH
4061 * @readid_flags: read ID flags
4062 *
4063 * Re-read IDENTIFY page, make sure @dev is still attached to the
4064 * port and reconfigure it according to the new IDENTIFY page.
4065 *
4066 * LOCKING:
4067 * Kernel thread context (may sleep)
4068 *
4069 * RETURNS:
4070 * 0 on success, negative errno otherwise
4071 */
422c9daa
TH
4072int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4073 unsigned int readid_flags)
fe30911b 4074{
6ddcd3b0 4075 u64 n_sectors = dev->n_sectors;
5920dadf 4076 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4077 int rc;
4078
4079 if (!ata_dev_enabled(dev))
4080 return -ENODEV;
4081
422c9daa
TH
4082 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4083 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4084 new_class != ATA_DEV_ATA &&
4085 new_class != ATA_DEV_ATAPI &&
4086 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4087 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4088 dev->class, new_class);
4089 rc = -ENODEV;
4090 goto fail;
4091 }
4092
fe30911b
TH
4093 /* re-read ID */
4094 rc = ata_dev_reread_id(dev, readid_flags);
4095 if (rc)
4096 goto fail;
623a3128
TH
4097
4098 /* configure device according to the new ID */
efdaedc4 4099 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4100 if (rc)
4101 goto fail;
4102
4103 /* verify n_sectors hasn't changed */
445d211b
TH
4104 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4105 dev->n_sectors == n_sectors)
4106 return 0;
4107
4108 /* n_sectors has changed */
4109 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4110 (unsigned long long)n_sectors,
4111 (unsigned long long)dev->n_sectors);
4112
4113 /*
4114 * Something could have caused HPA to be unlocked
4115 * involuntarily. If n_native_sectors hasn't changed and the
4116 * new size matches it, keep the device.
4117 */
4118 if (dev->n_native_sectors == n_native_sectors &&
4119 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4120 ata_dev_printk(dev, KERN_WARNING,
4121 "new n_sectors matches native, probably "
68939ce5
TH
4122 "late HPA unlock, n_sectors updated\n");
4123 /* use the larger n_sectors */
445d211b 4124 return 0;
6ddcd3b0
TH
4125 }
4126
445d211b
TH
4127 /*
4128 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4129 * unlocking HPA in those cases.
4130 *
4131 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4132 */
4133 if (dev->n_native_sectors == n_native_sectors &&
4134 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4135 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4136 ata_dev_printk(dev, KERN_WARNING,
4137 "old n_sectors matches native, probably "
4138 "late HPA lock, will try to unlock HPA\n");
4139 /* try unlocking HPA */
4140 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4141 rc = -EIO;
4142 } else
4143 rc = -ENODEV;
623a3128 4144
445d211b
TH
4145 /* restore original n_[native_]sectors and fail */
4146 dev->n_native_sectors = n_native_sectors;
4147 dev->n_sectors = n_sectors;
623a3128 4148 fail:
f15a1daf 4149 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4150 return rc;
4151}
4152
6919a0a6
AC
4153struct ata_blacklist_entry {
4154 const char *model_num;
4155 const char *model_rev;
4156 unsigned long horkage;
4157};
4158
4159static const struct ata_blacklist_entry ata_device_blacklist [] = {
4160 /* Devices with DMA related problems under Linux */
4161 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4165 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4166 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4167 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4168 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4170 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4171 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4172 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4173 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4174 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4175 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4176 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4177 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4178 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4179 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4180 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4181 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4182 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4183 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4184 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4185 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4186 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4187 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4188 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4189 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4190 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4191 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4192 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4193
18d6e9d5 4194 /* Weird ATAPI devices */
40a1d531 4195 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4196 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4197
6919a0a6
AC
4198 /* Devices we expect to fail diagnostics */
4199
4200 /* Devices where NCQ should be avoided */
4201 /* NCQ is slow */
2dcb407e 4202 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4203 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4204 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4205 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4206 /* NCQ is broken */
539cc7c7 4207 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4208 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4210 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4211 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4212
ac70a964 4213 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4214 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4215 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4216 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4217 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4218 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4219 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4220 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4221 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4222 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4223 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4224
4225 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235
4236 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4237 ATA_HORKAGE_FIRMWARE_WARN },
4238 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4239 ATA_HORKAGE_FIRMWARE_WARN },
4240 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246
4247 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4248 ATA_HORKAGE_FIRMWARE_WARN },
4249 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4250 ATA_HORKAGE_FIRMWARE_WARN },
4251 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257
4258 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4259 ATA_HORKAGE_FIRMWARE_WARN },
4260 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4261 ATA_HORKAGE_FIRMWARE_WARN },
4262 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4263 ATA_HORKAGE_FIRMWARE_WARN },
4264 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4265 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268
4269 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4270 ATA_HORKAGE_FIRMWARE_WARN },
4271 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4272 ATA_HORKAGE_FIRMWARE_WARN },
4273 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4274 ATA_HORKAGE_FIRMWARE_WARN },
4275 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4276 ATA_HORKAGE_FIRMWARE_WARN },
4277 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4278 ATA_HORKAGE_FIRMWARE_WARN },
4279
36e337d0
RH
4280 /* Blacklist entries taken from Silicon Image 3124/3132
4281 Windows driver .inf file - also several Linux problem reports */
4282 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4283 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4284 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4285
68b0ddb2
TH
4286 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4287 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4288
16c55b03
TH
4289 /* devices which puke on READ_NATIVE_MAX */
4290 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4291 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4292 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4293 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4294
7831387b
TH
4295 /* this one allows HPA unlocking but fails IOs on the area */
4296 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4297
93328e11
AC
4298 /* Devices which report 1 sector over size HPA */
4299 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4300 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4301 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4302
6bbfd53d
AC
4303 /* Devices which get the IVB wrong */
4304 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4305 /* Maybe we should just blacklist TSSTcorp... */
4306 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4307 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4308 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4309 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4310 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4311 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4312
9ce8e307
JA
4313 /* Devices that do not need bridging limits applied */
4314 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4315
9062712f
TH
4316 /* Devices which aren't very happy with higher link speeds */
4317 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4318
d0cb43b3
TH
4319 /*
4320 * Devices which choke on SETXFER. Applies only if both the
4321 * device and controller are SATA.
4322 */
4323 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4324
6919a0a6
AC
4325 /* End Marker */
4326 { }
1da177e4 4327};
2e9edbf8 4328
741b7763 4329static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4330{
4331 const char *p;
4332 int len;
4333
4334 /*
4335 * check for trailing wildcard: *\0
4336 */
4337 p = strchr(patt, wildchar);
4338 if (p && ((*(p + 1)) == 0))
4339 len = p - patt;
317b50b8 4340 else {
539cc7c7 4341 len = strlen(name);
317b50b8
AP
4342 if (!len) {
4343 if (!*patt)
4344 return 0;
4345 return -1;
4346 }
4347 }
539cc7c7
JG
4348
4349 return strncmp(patt, name, len);
4350}
4351
75683fe7 4352static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4353{
8bfa79fc
TH
4354 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4355 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4356 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4357
8bfa79fc
TH
4358 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4359 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4360
6919a0a6 4361 while (ad->model_num) {
539cc7c7 4362 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4363 if (ad->model_rev == NULL)
4364 return ad->horkage;
539cc7c7 4365 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4366 return ad->horkage;
f4b15fef 4367 }
6919a0a6 4368 ad++;
f4b15fef 4369 }
1da177e4
LT
4370 return 0;
4371}
4372
6919a0a6
AC
4373static int ata_dma_blacklisted(const struct ata_device *dev)
4374{
4375 /* We don't support polling DMA.
4376 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4377 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4378 */
9af5c9c9 4379 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4380 (dev->flags & ATA_DFLAG_CDB_INTR))
4381 return 1;
75683fe7 4382 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4383}
4384
6bbfd53d
AC
4385/**
4386 * ata_is_40wire - check drive side detection
4387 * @dev: device
4388 *
4389 * Perform drive side detection decoding, allowing for device vendors
4390 * who can't follow the documentation.
4391 */
4392
4393static int ata_is_40wire(struct ata_device *dev)
4394{
4395 if (dev->horkage & ATA_HORKAGE_IVB)
4396 return ata_drive_40wire_relaxed(dev->id);
4397 return ata_drive_40wire(dev->id);
4398}
4399
15a5551c
AC
4400/**
4401 * cable_is_40wire - 40/80/SATA decider
4402 * @ap: port to consider
4403 *
4404 * This function encapsulates the policy for speed management
4405 * in one place. At the moment we don't cache the result but
4406 * there is a good case for setting ap->cbl to the result when
4407 * we are called with unknown cables (and figuring out if it
4408 * impacts hotplug at all).
4409 *
4410 * Return 1 if the cable appears to be 40 wire.
4411 */
4412
4413static int cable_is_40wire(struct ata_port *ap)
4414{
4415 struct ata_link *link;
4416 struct ata_device *dev;
4417
4a9c7b33 4418 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4419 if (ap->cbl == ATA_CBL_PATA40)
4420 return 1;
4a9c7b33
TH
4421
4422 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4423 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4424 return 0;
4a9c7b33
TH
4425
4426 /* If the system is known to be 40 wire short cable (eg
4427 * laptop), then we allow 80 wire modes even if the drive
4428 * isn't sure.
4429 */
f792068e
AC
4430 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4431 return 0;
4a9c7b33
TH
4432
4433 /* If the controller doesn't know, we scan.
4434 *
4435 * Note: We look for all 40 wire detects at this point. Any
4436 * 80 wire detect is taken to be 80 wire cable because
4437 * - in many setups only the one drive (slave if present) will
4438 * give a valid detect
4439 * - if you have a non detect capable drive you don't want it
4440 * to colour the choice
4441 */
1eca4365
TH
4442 ata_for_each_link(link, ap, EDGE) {
4443 ata_for_each_dev(dev, link, ENABLED) {
4444 if (!ata_is_40wire(dev))
15a5551c
AC
4445 return 0;
4446 }
4447 }
4448 return 1;
4449}
4450
a6d5a51c
TH
4451/**
4452 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4453 * @dev: Device to compute xfermask for
4454 *
acf356b1
TH
4455 * Compute supported xfermask of @dev and store it in
4456 * dev->*_mask. This function is responsible for applying all
4457 * known limits including host controller limits, device
4458 * blacklist, etc...
a6d5a51c
TH
4459 *
4460 * LOCKING:
4461 * None.
a6d5a51c 4462 */
3373efd8 4463static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4464{
9af5c9c9
TH
4465 struct ata_link *link = dev->link;
4466 struct ata_port *ap = link->ap;
cca3974e 4467 struct ata_host *host = ap->host;
a6d5a51c 4468 unsigned long xfer_mask;
1da177e4 4469
37deecb5 4470 /* controller modes available */
565083e1
TH
4471 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4472 ap->mwdma_mask, ap->udma_mask);
4473
8343f889 4474 /* drive modes available */
37deecb5
TH
4475 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4476 dev->mwdma_mask, dev->udma_mask);
4477 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4478
b352e57d
AC
4479 /*
4480 * CFA Advanced TrueIDE timings are not allowed on a shared
4481 * cable
4482 */
4483 if (ata_dev_pair(dev)) {
4484 /* No PIO5 or PIO6 */
4485 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4486 /* No MWDMA3 or MWDMA 4 */
4487 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4488 }
4489
37deecb5
TH
4490 if (ata_dma_blacklisted(dev)) {
4491 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4492 ata_dev_printk(dev, KERN_WARNING,
4493 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4494 }
a6d5a51c 4495
14d66ab7 4496 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4497 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4498 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4499 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4500 "other device, disabling DMA\n");
5444a6f4 4501 }
565083e1 4502
e424675f
JG
4503 if (ap->flags & ATA_FLAG_NO_IORDY)
4504 xfer_mask &= ata_pio_mask_no_iordy(dev);
4505
5444a6f4 4506 if (ap->ops->mode_filter)
a76b62ca 4507 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4508
8343f889
RH
4509 /* Apply cable rule here. Don't apply it early because when
4510 * we handle hot plug the cable type can itself change.
4511 * Check this last so that we know if the transfer rate was
4512 * solely limited by the cable.
4513 * Unknown or 80 wire cables reported host side are checked
4514 * drive side as well. Cases where we know a 40wire cable
4515 * is used safely for 80 are not checked here.
4516 */
4517 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4518 /* UDMA/44 or higher would be available */
15a5551c 4519 if (cable_is_40wire(ap)) {
2dcb407e 4520 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4521 "limited to UDMA/33 due to 40-wire cable\n");
4522 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4523 }
4524
565083e1
TH
4525 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4526 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4527}
4528
1da177e4
LT
4529/**
4530 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4531 * @dev: Device to which command will be sent
4532 *
780a87f7
JG
4533 * Issue SET FEATURES - XFER MODE command to device @dev
4534 * on port @ap.
4535 *
1da177e4 4536 * LOCKING:
0cba632b 4537 * PCI/etc. bus probe sem.
83206a29
TH
4538 *
4539 * RETURNS:
4540 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4541 */
4542
3373efd8 4543static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4544{
a0123703 4545 struct ata_taskfile tf;
83206a29 4546 unsigned int err_mask;
1da177e4
LT
4547
4548 /* set up set-features taskfile */
4549 DPRINTK("set features - xfer mode\n");
4550
464cf177
TH
4551 /* Some controllers and ATAPI devices show flaky interrupt
4552 * behavior after setting xfer mode. Use polling instead.
4553 */
3373efd8 4554 ata_tf_init(dev, &tf);
a0123703
TH
4555 tf.command = ATA_CMD_SET_FEATURES;
4556 tf.feature = SETFEATURES_XFER;
464cf177 4557 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4558 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4559 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4560 if (ata_pio_need_iordy(dev))
4561 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4562 /* If the device has IORDY and the controller does not - turn it off */
4563 else if (ata_id_has_iordy(dev->id))
11b7becc 4564 tf.nsect = 0x01;
b9f8ab2d
AC
4565 else /* In the ancient relic department - skip all of this */
4566 return 0;
1da177e4 4567
2b789108 4568 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4569
4570 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4571 return err_mask;
4572}
9f45cbd3 4573/**
218f3d30 4574 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4575 * @dev: Device to which command will be sent
4576 * @enable: Whether to enable or disable the feature
218f3d30 4577 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4578 *
4579 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4580 * on port @ap with sector count
9f45cbd3
KCA
4581 *
4582 * LOCKING:
4583 * PCI/etc. bus probe sem.
4584 *
4585 * RETURNS:
4586 * 0 on success, AC_ERR_* mask otherwise.
4587 */
218f3d30
JG
4588static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4589 u8 feature)
9f45cbd3
KCA
4590{
4591 struct ata_taskfile tf;
4592 unsigned int err_mask;
4593
4594 /* set up set-features taskfile */
4595 DPRINTK("set features - SATA features\n");
4596
4597 ata_tf_init(dev, &tf);
4598 tf.command = ATA_CMD_SET_FEATURES;
4599 tf.feature = enable;
4600 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4601 tf.protocol = ATA_PROT_NODATA;
218f3d30 4602 tf.nsect = feature;
9f45cbd3 4603
2b789108 4604 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4605
83206a29
TH
4606 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4607 return err_mask;
1da177e4
LT
4608}
4609
8bf62ece
AL
4610/**
4611 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4612 * @dev: Device to which command will be sent
e2a7f77a
RD
4613 * @heads: Number of heads (taskfile parameter)
4614 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4615 *
4616 * LOCKING:
6aff8f1f
TH
4617 * Kernel thread context (may sleep)
4618 *
4619 * RETURNS:
4620 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4621 */
3373efd8
TH
4622static unsigned int ata_dev_init_params(struct ata_device *dev,
4623 u16 heads, u16 sectors)
8bf62ece 4624{
a0123703 4625 struct ata_taskfile tf;
6aff8f1f 4626 unsigned int err_mask;
8bf62ece
AL
4627
4628 /* Number of sectors per track 1-255. Number of heads 1-16 */
4629 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4630 return AC_ERR_INVALID;
8bf62ece
AL
4631
4632 /* set up init dev params taskfile */
4633 DPRINTK("init dev params \n");
4634
3373efd8 4635 ata_tf_init(dev, &tf);
a0123703
TH
4636 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4637 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4638 tf.protocol = ATA_PROT_NODATA;
4639 tf.nsect = sectors;
4640 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4641
2b789108 4642 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4643 /* A clean abort indicates an original or just out of spec drive
4644 and we should continue as we issue the setup based on the
4645 drive reported working geometry */
4646 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4647 err_mask = 0;
8bf62ece 4648
6aff8f1f
TH
4649 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4650 return err_mask;
8bf62ece
AL
4651}
4652
1da177e4 4653/**
0cba632b
JG
4654 * ata_sg_clean - Unmap DMA memory associated with command
4655 * @qc: Command containing DMA memory to be released
4656 *
4657 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4658 *
4659 * LOCKING:
cca3974e 4660 * spin_lock_irqsave(host lock)
1da177e4 4661 */
70e6ad0c 4662void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4663{
4664 struct ata_port *ap = qc->ap;
ff2aeb1e 4665 struct scatterlist *sg = qc->sg;
1da177e4
LT
4666 int dir = qc->dma_dir;
4667
efcb3cf7 4668 WARN_ON_ONCE(sg == NULL);
1da177e4 4669
dde20207 4670 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4671
dde20207 4672 if (qc->n_elem)
5825627c 4673 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4674
4675 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4676 qc->sg = NULL;
1da177e4
LT
4677}
4678
1da177e4 4679/**
5895ef9a 4680 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4681 * @qc: Metadata associated with taskfile to check
4682 *
780a87f7
JG
4683 * Allow low-level driver to filter ATA PACKET commands, returning
4684 * a status indicating whether or not it is OK to use DMA for the
4685 * supplied PACKET command.
4686 *
1da177e4 4687 * LOCKING:
624d5c51
TH
4688 * spin_lock_irqsave(host lock)
4689 *
4690 * RETURNS: 0 when ATAPI DMA can be used
4691 * nonzero otherwise
4692 */
5895ef9a 4693int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4694{
4695 struct ata_port *ap = qc->ap;
71601958 4696
624d5c51
TH
4697 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4698 * few ATAPI devices choke on such DMA requests.
4699 */
6a87e42e
TH
4700 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4701 unlikely(qc->nbytes & 15))
624d5c51 4702 return 1;
e2cec771 4703
624d5c51
TH
4704 if (ap->ops->check_atapi_dma)
4705 return ap->ops->check_atapi_dma(qc);
e2cec771 4706
624d5c51
TH
4707 return 0;
4708}
1da177e4 4709
624d5c51
TH
4710/**
4711 * ata_std_qc_defer - Check whether a qc needs to be deferred
4712 * @qc: ATA command in question
4713 *
4714 * Non-NCQ commands cannot run with any other command, NCQ or
4715 * not. As upper layer only knows the queue depth, we are
4716 * responsible for maintaining exclusion. This function checks
4717 * whether a new command @qc can be issued.
4718 *
4719 * LOCKING:
4720 * spin_lock_irqsave(host lock)
4721 *
4722 * RETURNS:
4723 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4724 */
4725int ata_std_qc_defer(struct ata_queued_cmd *qc)
4726{
4727 struct ata_link *link = qc->dev->link;
e2cec771 4728
624d5c51
TH
4729 if (qc->tf.protocol == ATA_PROT_NCQ) {
4730 if (!ata_tag_valid(link->active_tag))
4731 return 0;
4732 } else {
4733 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4734 return 0;
4735 }
e2cec771 4736
624d5c51
TH
4737 return ATA_DEFER_LINK;
4738}
6912ccd5 4739
624d5c51 4740void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4741
624d5c51
TH
4742/**
4743 * ata_sg_init - Associate command with scatter-gather table.
4744 * @qc: Command to be associated
4745 * @sg: Scatter-gather table.
4746 * @n_elem: Number of elements in s/g table.
4747 *
4748 * Initialize the data-related elements of queued_cmd @qc
4749 * to point to a scatter-gather table @sg, containing @n_elem
4750 * elements.
4751 *
4752 * LOCKING:
4753 * spin_lock_irqsave(host lock)
4754 */
4755void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4756 unsigned int n_elem)
4757{
4758 qc->sg = sg;
4759 qc->n_elem = n_elem;
4760 qc->cursg = qc->sg;
4761}
bb5cb290 4762
624d5c51
TH
4763/**
4764 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4765 * @qc: Command with scatter-gather table to be mapped.
4766 *
4767 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4768 *
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4771 *
4772 * RETURNS:
4773 * Zero on success, negative on error.
4774 *
4775 */
4776static int ata_sg_setup(struct ata_queued_cmd *qc)
4777{
4778 struct ata_port *ap = qc->ap;
4779 unsigned int n_elem;
1da177e4 4780
624d5c51 4781 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4782
624d5c51
TH
4783 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4784 if (n_elem < 1)
4785 return -1;
bb5cb290 4786
624d5c51 4787 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4788 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4789 qc->n_elem = n_elem;
4790 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4791
624d5c51 4792 return 0;
1da177e4
LT
4793}
4794
624d5c51
TH
4795/**
4796 * swap_buf_le16 - swap halves of 16-bit words in place
4797 * @buf: Buffer to swap
4798 * @buf_words: Number of 16-bit words in buffer.
4799 *
4800 * Swap halves of 16-bit words if needed to convert from
4801 * little-endian byte order to native cpu byte order, or
4802 * vice-versa.
4803 *
4804 * LOCKING:
4805 * Inherited from caller.
4806 */
4807void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4808{
624d5c51
TH
4809#ifdef __BIG_ENDIAN
4810 unsigned int i;
8061f5f0 4811
624d5c51
TH
4812 for (i = 0; i < buf_words; i++)
4813 buf[i] = le16_to_cpu(buf[i]);
4814#endif /* __BIG_ENDIAN */
8061f5f0
TH
4815}
4816
8a8bc223
TH
4817/**
4818 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4819 * @ap: target port
8a8bc223
TH
4820 *
4821 * LOCKING:
4822 * None.
4823 */
4824
4825static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4826{
4827 struct ata_queued_cmd *qc = NULL;
4828 unsigned int i;
4829
4830 /* no command while frozen */
4831 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4832 return NULL;
4833
4834 /* the last tag is reserved for internal command. */
4835 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4836 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4837 qc = __ata_qc_from_tag(ap, i);
4838 break;
4839 }
4840
4841 if (qc)
4842 qc->tag = i;
4843
4844 return qc;
4845}
4846
1da177e4
LT
4847/**
4848 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4849 * @dev: Device from whom we request an available command structure
4850 *
4851 * LOCKING:
0cba632b 4852 * None.
1da177e4
LT
4853 */
4854
8a8bc223 4855struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4856{
9af5c9c9 4857 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4858 struct ata_queued_cmd *qc;
4859
8a8bc223 4860 qc = ata_qc_new(ap);
1da177e4 4861 if (qc) {
1da177e4
LT
4862 qc->scsicmd = NULL;
4863 qc->ap = ap;
4864 qc->dev = dev;
1da177e4 4865
2c13b7ce 4866 ata_qc_reinit(qc);
1da177e4
LT
4867 }
4868
4869 return qc;
4870}
4871
8a8bc223
TH
4872/**
4873 * ata_qc_free - free unused ata_queued_cmd
4874 * @qc: Command to complete
4875 *
4876 * Designed to free unused ata_queued_cmd object
4877 * in case something prevents using it.
4878 *
4879 * LOCKING:
4880 * spin_lock_irqsave(host lock)
4881 */
4882void ata_qc_free(struct ata_queued_cmd *qc)
4883{
a1104016 4884 struct ata_port *ap;
8a8bc223
TH
4885 unsigned int tag;
4886
efcb3cf7 4887 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4888 ap = qc->ap;
8a8bc223
TH
4889
4890 qc->flags = 0;
4891 tag = qc->tag;
4892 if (likely(ata_tag_valid(tag))) {
4893 qc->tag = ATA_TAG_POISON;
4894 clear_bit(tag, &ap->qc_allocated);
4895 }
4896}
4897
76014427 4898void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4899{
a1104016
JL
4900 struct ata_port *ap;
4901 struct ata_link *link;
dedaf2b0 4902
efcb3cf7
TH
4903 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4904 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4905 ap = qc->ap;
4906 link = qc->dev->link;
1da177e4
LT
4907
4908 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4909 ata_sg_clean(qc);
4910
7401abf2 4911 /* command should be marked inactive atomically with qc completion */
da917d69 4912 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4913 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4914 if (!link->sactive)
4915 ap->nr_active_links--;
4916 } else {
9af5c9c9 4917 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4918 ap->nr_active_links--;
4919 }
4920
4921 /* clear exclusive status */
4922 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4923 ap->excl_link == link))
4924 ap->excl_link = NULL;
7401abf2 4925
3f3791d3
AL
4926 /* atapi: mark qc as inactive to prevent the interrupt handler
4927 * from completing the command twice later, before the error handler
4928 * is called. (when rc != 0 and atapi request sense is needed)
4929 */
4930 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4931 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4932
1da177e4 4933 /* call completion callback */
77853bf2 4934 qc->complete_fn(qc);
1da177e4
LT
4935}
4936
39599a53
TH
4937static void fill_result_tf(struct ata_queued_cmd *qc)
4938{
4939 struct ata_port *ap = qc->ap;
4940
39599a53 4941 qc->result_tf.flags = qc->tf.flags;
22183bf5 4942 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4943}
4944
00115e0f
TH
4945static void ata_verify_xfer(struct ata_queued_cmd *qc)
4946{
4947 struct ata_device *dev = qc->dev;
4948
4949 if (ata_tag_internal(qc->tag))
4950 return;
4951
4952 if (ata_is_nodata(qc->tf.protocol))
4953 return;
4954
4955 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4956 return;
4957
4958 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4959}
4960
f686bcb8
TH
4961/**
4962 * ata_qc_complete - Complete an active ATA command
4963 * @qc: Command to complete
f686bcb8
TH
4964 *
4965 * Indicate to the mid and upper layers that an ATA
4966 * command has completed, with either an ok or not-ok status.
4967 *
4968 * LOCKING:
cca3974e 4969 * spin_lock_irqsave(host lock)
f686bcb8
TH
4970 */
4971void ata_qc_complete(struct ata_queued_cmd *qc)
4972{
4973 struct ata_port *ap = qc->ap;
4974
4975 /* XXX: New EH and old EH use different mechanisms to
4976 * synchronize EH with regular execution path.
4977 *
4978 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4979 * Normal execution path is responsible for not accessing a
4980 * failed qc. libata core enforces the rule by returning NULL
4981 * from ata_qc_from_tag() for failed qcs.
4982 *
4983 * Old EH depends on ata_qc_complete() nullifying completion
4984 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4985 * not synchronize with interrupt handler. Only PIO task is
4986 * taken care of.
4987 */
4988 if (ap->ops->error_handler) {
4dbfa39b
TH
4989 struct ata_device *dev = qc->dev;
4990 struct ata_eh_info *ehi = &dev->link->eh_info;
4991
f686bcb8
TH
4992 if (unlikely(qc->err_mask))
4993 qc->flags |= ATA_QCFLAG_FAILED;
4994
4995 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
4996 /* always fill result TF for failed qc */
4997 fill_result_tf(qc);
4998
4999 if (!ata_tag_internal(qc->tag))
f686bcb8 5000 ata_qc_schedule_eh(qc);
f4b31db9
TH
5001 else
5002 __ata_qc_complete(qc);
5003 return;
f686bcb8
TH
5004 }
5005
4dc738ed
TH
5006 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5007
f686bcb8
TH
5008 /* read result TF if requested */
5009 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5010 fill_result_tf(qc);
f686bcb8 5011
4dbfa39b
TH
5012 /* Some commands need post-processing after successful
5013 * completion.
5014 */
5015 switch (qc->tf.command) {
5016 case ATA_CMD_SET_FEATURES:
5017 if (qc->tf.feature != SETFEATURES_WC_ON &&
5018 qc->tf.feature != SETFEATURES_WC_OFF)
5019 break;
5020 /* fall through */
5021 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5022 case ATA_CMD_SET_MULTI: /* multi_count changed */
5023 /* revalidate device */
5024 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5025 ata_port_schedule_eh(ap);
5026 break;
054a5fba
TH
5027
5028 case ATA_CMD_SLEEP:
5029 dev->flags |= ATA_DFLAG_SLEEPING;
5030 break;
4dbfa39b
TH
5031 }
5032
00115e0f
TH
5033 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5034 ata_verify_xfer(qc);
5035
f686bcb8
TH
5036 __ata_qc_complete(qc);
5037 } else {
5038 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5039 return;
5040
5041 /* read result TF if failed or requested */
5042 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5043 fill_result_tf(qc);
f686bcb8
TH
5044
5045 __ata_qc_complete(qc);
5046 }
5047}
5048
dedaf2b0
TH
5049/**
5050 * ata_qc_complete_multiple - Complete multiple qcs successfully
5051 * @ap: port in question
5052 * @qc_active: new qc_active mask
dedaf2b0
TH
5053 *
5054 * Complete in-flight commands. This functions is meant to be
5055 * called from low-level driver's interrupt routine to complete
5056 * requests normally. ap->qc_active and @qc_active is compared
5057 * and commands are completed accordingly.
5058 *
5059 * LOCKING:
cca3974e 5060 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5061 *
5062 * RETURNS:
5063 * Number of completed commands on success, -errno otherwise.
5064 */
79f97dad 5065int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5066{
5067 int nr_done = 0;
5068 u32 done_mask;
dedaf2b0
TH
5069
5070 done_mask = ap->qc_active ^ qc_active;
5071
5072 if (unlikely(done_mask & qc_active)) {
5073 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5074 "(%08x->%08x)\n", ap->qc_active, qc_active);
5075 return -EINVAL;
5076 }
5077
43768180 5078 while (done_mask) {
dedaf2b0 5079 struct ata_queued_cmd *qc;
43768180 5080 unsigned int tag = __ffs(done_mask);
dedaf2b0 5081
43768180
JA
5082 qc = ata_qc_from_tag(ap, tag);
5083 if (qc) {
dedaf2b0
TH
5084 ata_qc_complete(qc);
5085 nr_done++;
5086 }
43768180 5087 done_mask &= ~(1 << tag);
dedaf2b0
TH
5088 }
5089
5090 return nr_done;
5091}
5092
1da177e4
LT
5093/**
5094 * ata_qc_issue - issue taskfile to device
5095 * @qc: command to issue to device
5096 *
5097 * Prepare an ATA command to submission to device.
5098 * This includes mapping the data into a DMA-able
5099 * area, filling in the S/G table, and finally
5100 * writing the taskfile to hardware, starting the command.
5101 *
5102 * LOCKING:
cca3974e 5103 * spin_lock_irqsave(host lock)
1da177e4 5104 */
8e0e694a 5105void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5106{
5107 struct ata_port *ap = qc->ap;
9af5c9c9 5108 struct ata_link *link = qc->dev->link;
405e66b3 5109 u8 prot = qc->tf.protocol;
1da177e4 5110
dedaf2b0
TH
5111 /* Make sure only one non-NCQ command is outstanding. The
5112 * check is skipped for old EH because it reuses active qc to
5113 * request ATAPI sense.
5114 */
efcb3cf7 5115 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5116
1973a023 5117 if (ata_is_ncq(prot)) {
efcb3cf7 5118 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5119
5120 if (!link->sactive)
5121 ap->nr_active_links++;
9af5c9c9 5122 link->sactive |= 1 << qc->tag;
dedaf2b0 5123 } else {
efcb3cf7 5124 WARN_ON_ONCE(link->sactive);
da917d69
TH
5125
5126 ap->nr_active_links++;
9af5c9c9 5127 link->active_tag = qc->tag;
dedaf2b0
TH
5128 }
5129
e4a70e76 5130 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5131 ap->qc_active |= 1 << qc->tag;
e4a70e76 5132
f92a2636
TH
5133 /* We guarantee to LLDs that they will have at least one
5134 * non-zero sg if the command is a data command.
5135 */
ff2aeb1e 5136 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5137
405e66b3 5138 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5139 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5140 if (ata_sg_setup(qc))
5141 goto sg_err;
1da177e4 5142
cf480626 5143 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5144 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5145 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5146 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5147 ata_link_abort(link);
5148 return;
5149 }
5150
1da177e4
LT
5151 ap->ops->qc_prep(qc);
5152
8e0e694a
TH
5153 qc->err_mask |= ap->ops->qc_issue(qc);
5154 if (unlikely(qc->err_mask))
5155 goto err;
5156 return;
1da177e4 5157
8e436af9 5158sg_err:
8e0e694a
TH
5159 qc->err_mask |= AC_ERR_SYSTEM;
5160err:
5161 ata_qc_complete(qc);
1da177e4
LT
5162}
5163
34bf2170
TH
5164/**
5165 * sata_scr_valid - test whether SCRs are accessible
936fd732 5166 * @link: ATA link to test SCR accessibility for
34bf2170 5167 *
936fd732 5168 * Test whether SCRs are accessible for @link.
34bf2170
TH
5169 *
5170 * LOCKING:
5171 * None.
5172 *
5173 * RETURNS:
5174 * 1 if SCRs are accessible, 0 otherwise.
5175 */
936fd732 5176int sata_scr_valid(struct ata_link *link)
34bf2170 5177{
936fd732
TH
5178 struct ata_port *ap = link->ap;
5179
a16abc0b 5180 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5181}
5182
5183/**
5184 * sata_scr_read - read SCR register of the specified port
936fd732 5185 * @link: ATA link to read SCR for
34bf2170
TH
5186 * @reg: SCR to read
5187 * @val: Place to store read value
5188 *
936fd732 5189 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5190 * guaranteed to succeed if @link is ap->link, the cable type of
5191 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5192 *
5193 * LOCKING:
633273a3 5194 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5195 *
5196 * RETURNS:
5197 * 0 on success, negative errno on failure.
5198 */
936fd732 5199int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5200{
633273a3 5201 if (ata_is_host_link(link)) {
633273a3 5202 if (sata_scr_valid(link))
82ef04fb 5203 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5204 return -EOPNOTSUPP;
5205 }
5206
5207 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5208}
5209
5210/**
5211 * sata_scr_write - write SCR register of the specified port
936fd732 5212 * @link: ATA link to write SCR for
34bf2170
TH
5213 * @reg: SCR to write
5214 * @val: value to write
5215 *
936fd732 5216 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5217 * guaranteed to succeed if @link is ap->link, the cable type of
5218 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5219 *
5220 * LOCKING:
633273a3 5221 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5222 *
5223 * RETURNS:
5224 * 0 on success, negative errno on failure.
5225 */
936fd732 5226int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5227{
633273a3 5228 if (ata_is_host_link(link)) {
633273a3 5229 if (sata_scr_valid(link))
82ef04fb 5230 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5231 return -EOPNOTSUPP;
5232 }
936fd732 5233
633273a3 5234 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5235}
5236
5237/**
5238 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5239 * @link: ATA link to write SCR for
34bf2170
TH
5240 * @reg: SCR to write
5241 * @val: value to write
5242 *
5243 * This function is identical to sata_scr_write() except that this
5244 * function performs flush after writing to the register.
5245 *
5246 * LOCKING:
633273a3 5247 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5248 *
5249 * RETURNS:
5250 * 0 on success, negative errno on failure.
5251 */
936fd732 5252int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5253{
633273a3 5254 if (ata_is_host_link(link)) {
633273a3 5255 int rc;
da3dbb17 5256
633273a3 5257 if (sata_scr_valid(link)) {
82ef04fb 5258 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5259 if (rc == 0)
82ef04fb 5260 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5261 return rc;
5262 }
5263 return -EOPNOTSUPP;
34bf2170 5264 }
633273a3
TH
5265
5266 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5267}
5268
5269/**
b1c72916 5270 * ata_phys_link_online - test whether the given link is online
936fd732 5271 * @link: ATA link to test
34bf2170 5272 *
936fd732
TH
5273 * Test whether @link is online. Note that this function returns
5274 * 0 if online status of @link cannot be obtained, so
5275 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5276 *
5277 * LOCKING:
5278 * None.
5279 *
5280 * RETURNS:
b5b3fa38 5281 * True if the port online status is available and online.
34bf2170 5282 */
b1c72916 5283bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5284{
5285 u32 sstatus;
5286
936fd732 5287 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5288 ata_sstatus_online(sstatus))
b5b3fa38
TH
5289 return true;
5290 return false;
34bf2170
TH
5291}
5292
5293/**
b1c72916 5294 * ata_phys_link_offline - test whether the given link is offline
936fd732 5295 * @link: ATA link to test
34bf2170 5296 *
936fd732
TH
5297 * Test whether @link is offline. Note that this function
5298 * returns 0 if offline status of @link cannot be obtained, so
5299 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5300 *
5301 * LOCKING:
5302 * None.
5303 *
5304 * RETURNS:
b5b3fa38 5305 * True if the port offline status is available and offline.
34bf2170 5306 */
b1c72916 5307bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5308{
5309 u32 sstatus;
5310
936fd732 5311 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5312 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5313 return true;
5314 return false;
34bf2170 5315}
0baab86b 5316
b1c72916
TH
5317/**
5318 * ata_link_online - test whether the given link is online
5319 * @link: ATA link to test
5320 *
5321 * Test whether @link is online. This is identical to
5322 * ata_phys_link_online() when there's no slave link. When
5323 * there's a slave link, this function should only be called on
5324 * the master link and will return true if any of M/S links is
5325 * online.
5326 *
5327 * LOCKING:
5328 * None.
5329 *
5330 * RETURNS:
5331 * True if the port online status is available and online.
5332 */
5333bool ata_link_online(struct ata_link *link)
5334{
5335 struct ata_link *slave = link->ap->slave_link;
5336
5337 WARN_ON(link == slave); /* shouldn't be called on slave link */
5338
5339 return ata_phys_link_online(link) ||
5340 (slave && ata_phys_link_online(slave));
5341}
5342
5343/**
5344 * ata_link_offline - test whether the given link is offline
5345 * @link: ATA link to test
5346 *
5347 * Test whether @link is offline. This is identical to
5348 * ata_phys_link_offline() when there's no slave link. When
5349 * there's a slave link, this function should only be called on
5350 * the master link and will return true if both M/S links are
5351 * offline.
5352 *
5353 * LOCKING:
5354 * None.
5355 *
5356 * RETURNS:
5357 * True if the port offline status is available and offline.
5358 */
5359bool ata_link_offline(struct ata_link *link)
5360{
5361 struct ata_link *slave = link->ap->slave_link;
5362
5363 WARN_ON(link == slave); /* shouldn't be called on slave link */
5364
5365 return ata_phys_link_offline(link) &&
5366 (!slave || ata_phys_link_offline(slave));
5367}
5368
6ffa01d8 5369#ifdef CONFIG_PM
cca3974e
JG
5370static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5371 unsigned int action, unsigned int ehi_flags,
5372 int wait)
500530f6
TH
5373{
5374 unsigned long flags;
5375 int i, rc;
5376
cca3974e
JG
5377 for (i = 0; i < host->n_ports; i++) {
5378 struct ata_port *ap = host->ports[i];
e3667ebf 5379 struct ata_link *link;
500530f6
TH
5380
5381 /* Previous resume operation might still be in
5382 * progress. Wait for PM_PENDING to clear.
5383 */
5384 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5385 ata_port_wait_eh(ap);
5386 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5387 }
5388
5389 /* request PM ops to EH */
5390 spin_lock_irqsave(ap->lock, flags);
5391
5392 ap->pm_mesg = mesg;
5393 if (wait) {
5394 rc = 0;
5395 ap->pm_result = &rc;
5396 }
5397
5398 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5399 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5400 link->eh_info.action |= action;
5401 link->eh_info.flags |= ehi_flags;
5402 }
500530f6
TH
5403
5404 ata_port_schedule_eh(ap);
5405
5406 spin_unlock_irqrestore(ap->lock, flags);
5407
5408 /* wait and check result */
5409 if (wait) {
5410 ata_port_wait_eh(ap);
5411 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5412 if (rc)
5413 return rc;
5414 }
5415 }
5416
5417 return 0;
5418}
5419
5420/**
cca3974e
JG
5421 * ata_host_suspend - suspend host
5422 * @host: host to suspend
500530f6
TH
5423 * @mesg: PM message
5424 *
cca3974e 5425 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5426 * function requests EH to perform PM operations and waits for EH
5427 * to finish.
5428 *
5429 * LOCKING:
5430 * Kernel thread context (may sleep).
5431 *
5432 * RETURNS:
5433 * 0 on success, -errno on failure.
5434 */
cca3974e 5435int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5436{
9666f400 5437 int rc;
500530f6 5438
ca77329f
KCA
5439 /*
5440 * disable link pm on all ports before requesting
5441 * any pm activity
5442 */
5443 ata_lpm_enable(host);
5444
cca3974e 5445 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5446 if (rc == 0)
5447 host->dev->power.power_state = mesg;
500530f6
TH
5448 return rc;
5449}
5450
5451/**
cca3974e
JG
5452 * ata_host_resume - resume host
5453 * @host: host to resume
500530f6 5454 *
cca3974e 5455 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5456 * function requests EH to perform PM operations and returns.
5457 * Note that all resume operations are performed parallely.
5458 *
5459 * LOCKING:
5460 * Kernel thread context (may sleep).
5461 */
cca3974e 5462void ata_host_resume(struct ata_host *host)
500530f6 5463{
cf480626 5464 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5465 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5466 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5467
5468 /* reenable link pm */
5469 ata_lpm_disable(host);
500530f6 5470}
6ffa01d8 5471#endif
500530f6 5472
3ef3b43d
TH
5473/**
5474 * ata_dev_init - Initialize an ata_device structure
5475 * @dev: Device structure to initialize
5476 *
5477 * Initialize @dev in preparation for probing.
5478 *
5479 * LOCKING:
5480 * Inherited from caller.
5481 */
5482void ata_dev_init(struct ata_device *dev)
5483{
b1c72916 5484 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5485 struct ata_port *ap = link->ap;
72fa4b74
TH
5486 unsigned long flags;
5487
b1c72916 5488 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5489 link->sata_spd_limit = link->hw_sata_spd_limit;
5490 link->sata_spd = 0;
5a04bf4b 5491
72fa4b74
TH
5492 /* High bits of dev->flags are used to record warm plug
5493 * requests which occur asynchronously. Synchronize using
cca3974e 5494 * host lock.
72fa4b74 5495 */
ba6a1308 5496 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5497 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5498 dev->horkage = 0;
ba6a1308 5499 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5500
99cf610a
TH
5501 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5502 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5503 dev->pio_mask = UINT_MAX;
5504 dev->mwdma_mask = UINT_MAX;
5505 dev->udma_mask = UINT_MAX;
5506}
5507
4fb37a25
TH
5508/**
5509 * ata_link_init - Initialize an ata_link structure
5510 * @ap: ATA port link is attached to
5511 * @link: Link structure to initialize
8989805d 5512 * @pmp: Port multiplier port number
4fb37a25
TH
5513 *
5514 * Initialize @link.
5515 *
5516 * LOCKING:
5517 * Kernel thread context (may sleep)
5518 */
fb7fd614 5519void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5520{
5521 int i;
5522
5523 /* clear everything except for devices */
5524 memset(link, 0, offsetof(struct ata_link, device[0]));
5525
5526 link->ap = ap;
8989805d 5527 link->pmp = pmp;
4fb37a25
TH
5528 link->active_tag = ATA_TAG_POISON;
5529 link->hw_sata_spd_limit = UINT_MAX;
5530
5531 /* can't use iterator, ap isn't initialized yet */
5532 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5533 struct ata_device *dev = &link->device[i];
5534
5535 dev->link = link;
5536 dev->devno = dev - link->device;
110f66d2
TH
5537#ifdef CONFIG_ATA_ACPI
5538 dev->gtf_filter = ata_acpi_gtf_filter;
5539#endif
4fb37a25
TH
5540 ata_dev_init(dev);
5541 }
5542}
5543
5544/**
5545 * sata_link_init_spd - Initialize link->sata_spd_limit
5546 * @link: Link to configure sata_spd_limit for
5547 *
5548 * Initialize @link->[hw_]sata_spd_limit to the currently
5549 * configured value.
5550 *
5551 * LOCKING:
5552 * Kernel thread context (may sleep).
5553 *
5554 * RETURNS:
5555 * 0 on success, -errno on failure.
5556 */
fb7fd614 5557int sata_link_init_spd(struct ata_link *link)
4fb37a25 5558{
33267325 5559 u8 spd;
4fb37a25
TH
5560 int rc;
5561
d127ea7b 5562 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5563 if (rc)
5564 return rc;
5565
d127ea7b 5566 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5567 if (spd)
5568 link->hw_sata_spd_limit &= (1 << spd) - 1;
5569
05944bdf 5570 ata_force_link_limits(link);
33267325 5571
4fb37a25
TH
5572 link->sata_spd_limit = link->hw_sata_spd_limit;
5573
5574 return 0;
5575}
5576
1da177e4 5577/**
f3187195
TH
5578 * ata_port_alloc - allocate and initialize basic ATA port resources
5579 * @host: ATA host this allocated port belongs to
1da177e4 5580 *
f3187195
TH
5581 * Allocate and initialize basic ATA port resources.
5582 *
5583 * RETURNS:
5584 * Allocate ATA port on success, NULL on failure.
0cba632b 5585 *
1da177e4 5586 * LOCKING:
f3187195 5587 * Inherited from calling layer (may sleep).
1da177e4 5588 */
f3187195 5589struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5590{
f3187195 5591 struct ata_port *ap;
1da177e4 5592
f3187195
TH
5593 DPRINTK("ENTER\n");
5594
5595 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5596 if (!ap)
5597 return NULL;
5598
f4d6d004 5599 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5600 ap->lock = &host->lock;
f3187195 5601 ap->print_id = -1;
cca3974e 5602 ap->host = host;
f3187195 5603 ap->dev = host->dev;
bd5d825c
BP
5604
5605#if defined(ATA_VERBOSE_DEBUG)
5606 /* turn on all debugging levels */
5607 ap->msg_enable = 0x00FF;
5608#elif defined(ATA_DEBUG)
5609 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5610#else
0dd4b21f 5611 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5612#endif
1da177e4 5613
65f27f38
DH
5614 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5615 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5616 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5617 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5618 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5619 init_timer_deferrable(&ap->fastdrain_timer);
5620 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5621 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5622
838df628 5623 ap->cbl = ATA_CBL_NONE;
838df628 5624
8989805d 5625 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5626
5627#ifdef ATA_IRQ_TRAP
5628 ap->stats.unhandled_irq = 1;
5629 ap->stats.idle_irq = 1;
5630#endif
270390e1
TH
5631 ata_sff_port_init(ap);
5632
1da177e4 5633 return ap;
1da177e4
LT
5634}
5635
f0d36efd
TH
5636static void ata_host_release(struct device *gendev, void *res)
5637{
5638 struct ata_host *host = dev_get_drvdata(gendev);
5639 int i;
5640
1aa506e4
TH
5641 for (i = 0; i < host->n_ports; i++) {
5642 struct ata_port *ap = host->ports[i];
5643
4911487a
TH
5644 if (!ap)
5645 continue;
5646
5647 if (ap->scsi_host)
1aa506e4
TH
5648 scsi_host_put(ap->scsi_host);
5649
633273a3 5650 kfree(ap->pmp_link);
b1c72916 5651 kfree(ap->slave_link);
4911487a 5652 kfree(ap);
1aa506e4
TH
5653 host->ports[i] = NULL;
5654 }
5655
1aa56cca 5656 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5657}
5658
f3187195
TH
5659/**
5660 * ata_host_alloc - allocate and init basic ATA host resources
5661 * @dev: generic device this host is associated with
5662 * @max_ports: maximum number of ATA ports associated with this host
5663 *
5664 * Allocate and initialize basic ATA host resources. LLD calls
5665 * this function to allocate a host, initializes it fully and
5666 * attaches it using ata_host_register().
5667 *
5668 * @max_ports ports are allocated and host->n_ports is
5669 * initialized to @max_ports. The caller is allowed to decrease
5670 * host->n_ports before calling ata_host_register(). The unused
5671 * ports will be automatically freed on registration.
5672 *
5673 * RETURNS:
5674 * Allocate ATA host on success, NULL on failure.
5675 *
5676 * LOCKING:
5677 * Inherited from calling layer (may sleep).
5678 */
5679struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5680{
5681 struct ata_host *host;
5682 size_t sz;
5683 int i;
5684
5685 DPRINTK("ENTER\n");
5686
5687 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5688 return NULL;
5689
5690 /* alloc a container for our list of ATA ports (buses) */
5691 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5692 /* alloc a container for our list of ATA ports (buses) */
5693 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5694 if (!host)
5695 goto err_out;
5696
5697 devres_add(dev, host);
5698 dev_set_drvdata(dev, host);
5699
5700 spin_lock_init(&host->lock);
5701 host->dev = dev;
5702 host->n_ports = max_ports;
5703
5704 /* allocate ports bound to this host */
5705 for (i = 0; i < max_ports; i++) {
5706 struct ata_port *ap;
5707
5708 ap = ata_port_alloc(host);
5709 if (!ap)
5710 goto err_out;
5711
5712 ap->port_no = i;
5713 host->ports[i] = ap;
5714 }
5715
5716 devres_remove_group(dev, NULL);
5717 return host;
5718
5719 err_out:
5720 devres_release_group(dev, NULL);
5721 return NULL;
5722}
5723
f5cda257
TH
5724/**
5725 * ata_host_alloc_pinfo - alloc host and init with port_info array
5726 * @dev: generic device this host is associated with
5727 * @ppi: array of ATA port_info to initialize host with
5728 * @n_ports: number of ATA ports attached to this host
5729 *
5730 * Allocate ATA host and initialize with info from @ppi. If NULL
5731 * terminated, @ppi may contain fewer entries than @n_ports. The
5732 * last entry will be used for the remaining ports.
5733 *
5734 * RETURNS:
5735 * Allocate ATA host on success, NULL on failure.
5736 *
5737 * LOCKING:
5738 * Inherited from calling layer (may sleep).
5739 */
5740struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5741 const struct ata_port_info * const * ppi,
5742 int n_ports)
5743{
5744 const struct ata_port_info *pi;
5745 struct ata_host *host;
5746 int i, j;
5747
5748 host = ata_host_alloc(dev, n_ports);
5749 if (!host)
5750 return NULL;
5751
5752 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5753 struct ata_port *ap = host->ports[i];
5754
5755 if (ppi[j])
5756 pi = ppi[j++];
5757
5758 ap->pio_mask = pi->pio_mask;
5759 ap->mwdma_mask = pi->mwdma_mask;
5760 ap->udma_mask = pi->udma_mask;
5761 ap->flags |= pi->flags;
0c88758b 5762 ap->link.flags |= pi->link_flags;
f5cda257
TH
5763 ap->ops = pi->port_ops;
5764
5765 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5766 host->ops = pi->port_ops;
f5cda257
TH
5767 }
5768
5769 return host;
5770}
5771
b1c72916
TH
5772/**
5773 * ata_slave_link_init - initialize slave link
5774 * @ap: port to initialize slave link for
5775 *
5776 * Create and initialize slave link for @ap. This enables slave
5777 * link handling on the port.
5778 *
5779 * In libata, a port contains links and a link contains devices.
5780 * There is single host link but if a PMP is attached to it,
5781 * there can be multiple fan-out links. On SATA, there's usually
5782 * a single device connected to a link but PATA and SATA
5783 * controllers emulating TF based interface can have two - master
5784 * and slave.
5785 *
5786 * However, there are a few controllers which don't fit into this
5787 * abstraction too well - SATA controllers which emulate TF
5788 * interface with both master and slave devices but also have
5789 * separate SCR register sets for each device. These controllers
5790 * need separate links for physical link handling
5791 * (e.g. onlineness, link speed) but should be treated like a
5792 * traditional M/S controller for everything else (e.g. command
5793 * issue, softreset).
5794 *
5795 * slave_link is libata's way of handling this class of
5796 * controllers without impacting core layer too much. For
5797 * anything other than physical link handling, the default host
5798 * link is used for both master and slave. For physical link
5799 * handling, separate @ap->slave_link is used. All dirty details
5800 * are implemented inside libata core layer. From LLD's POV, the
5801 * only difference is that prereset, hardreset and postreset are
5802 * called once more for the slave link, so the reset sequence
5803 * looks like the following.
5804 *
5805 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5806 * softreset(M) -> postreset(M) -> postreset(S)
5807 *
5808 * Note that softreset is called only for the master. Softreset
5809 * resets both M/S by definition, so SRST on master should handle
5810 * both (the standard method will work just fine).
5811 *
5812 * LOCKING:
5813 * Should be called before host is registered.
5814 *
5815 * RETURNS:
5816 * 0 on success, -errno on failure.
5817 */
5818int ata_slave_link_init(struct ata_port *ap)
5819{
5820 struct ata_link *link;
5821
5822 WARN_ON(ap->slave_link);
5823 WARN_ON(ap->flags & ATA_FLAG_PMP);
5824
5825 link = kzalloc(sizeof(*link), GFP_KERNEL);
5826 if (!link)
5827 return -ENOMEM;
5828
5829 ata_link_init(ap, link, 1);
5830 ap->slave_link = link;
5831 return 0;
5832}
5833
32ebbc0c
TH
5834static void ata_host_stop(struct device *gendev, void *res)
5835{
5836 struct ata_host *host = dev_get_drvdata(gendev);
5837 int i;
5838
5839 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5840
5841 for (i = 0; i < host->n_ports; i++) {
5842 struct ata_port *ap = host->ports[i];
5843
5844 if (ap->ops->port_stop)
5845 ap->ops->port_stop(ap);
5846 }
5847
5848 if (host->ops->host_stop)
5849 host->ops->host_stop(host);
5850}
5851
029cfd6b
TH
5852/**
5853 * ata_finalize_port_ops - finalize ata_port_operations
5854 * @ops: ata_port_operations to finalize
5855 *
5856 * An ata_port_operations can inherit from another ops and that
5857 * ops can again inherit from another. This can go on as many
5858 * times as necessary as long as there is no loop in the
5859 * inheritance chain.
5860 *
5861 * Ops tables are finalized when the host is started. NULL or
5862 * unspecified entries are inherited from the closet ancestor
5863 * which has the method and the entry is populated with it.
5864 * After finalization, the ops table directly points to all the
5865 * methods and ->inherits is no longer necessary and cleared.
5866 *
5867 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5868 *
5869 * LOCKING:
5870 * None.
5871 */
5872static void ata_finalize_port_ops(struct ata_port_operations *ops)
5873{
2da67659 5874 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5875 const struct ata_port_operations *cur;
5876 void **begin = (void **)ops;
5877 void **end = (void **)&ops->inherits;
5878 void **pp;
5879
5880 if (!ops || !ops->inherits)
5881 return;
5882
5883 spin_lock(&lock);
5884
5885 for (cur = ops->inherits; cur; cur = cur->inherits) {
5886 void **inherit = (void **)cur;
5887
5888 for (pp = begin; pp < end; pp++, inherit++)
5889 if (!*pp)
5890 *pp = *inherit;
5891 }
5892
5893 for (pp = begin; pp < end; pp++)
5894 if (IS_ERR(*pp))
5895 *pp = NULL;
5896
5897 ops->inherits = NULL;
5898
5899 spin_unlock(&lock);
5900}
5901
ecef7253
TH
5902/**
5903 * ata_host_start - start and freeze ports of an ATA host
5904 * @host: ATA host to start ports for
5905 *
5906 * Start and then freeze ports of @host. Started status is
5907 * recorded in host->flags, so this function can be called
5908 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5909 * once. If host->ops isn't initialized yet, its set to the
5910 * first non-dummy port ops.
ecef7253
TH
5911 *
5912 * LOCKING:
5913 * Inherited from calling layer (may sleep).
5914 *
5915 * RETURNS:
5916 * 0 if all ports are started successfully, -errno otherwise.
5917 */
5918int ata_host_start(struct ata_host *host)
5919{
32ebbc0c
TH
5920 int have_stop = 0;
5921 void *start_dr = NULL;
ecef7253
TH
5922 int i, rc;
5923
5924 if (host->flags & ATA_HOST_STARTED)
5925 return 0;
5926
029cfd6b
TH
5927 ata_finalize_port_ops(host->ops);
5928
ecef7253
TH
5929 for (i = 0; i < host->n_ports; i++) {
5930 struct ata_port *ap = host->ports[i];
5931
029cfd6b
TH
5932 ata_finalize_port_ops(ap->ops);
5933
f3187195
TH
5934 if (!host->ops && !ata_port_is_dummy(ap))
5935 host->ops = ap->ops;
5936
32ebbc0c
TH
5937 if (ap->ops->port_stop)
5938 have_stop = 1;
5939 }
5940
5941 if (host->ops->host_stop)
5942 have_stop = 1;
5943
5944 if (have_stop) {
5945 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5946 if (!start_dr)
5947 return -ENOMEM;
5948 }
5949
5950 for (i = 0; i < host->n_ports; i++) {
5951 struct ata_port *ap = host->ports[i];
5952
ecef7253
TH
5953 if (ap->ops->port_start) {
5954 rc = ap->ops->port_start(ap);
5955 if (rc) {
0f9fe9b7 5956 if (rc != -ENODEV)
0f757743
AM
5957 dev_printk(KERN_ERR, host->dev,
5958 "failed to start port %d "
5959 "(errno=%d)\n", i, rc);
ecef7253
TH
5960 goto err_out;
5961 }
5962 }
ecef7253
TH
5963 ata_eh_freeze_port(ap);
5964 }
5965
32ebbc0c
TH
5966 if (start_dr)
5967 devres_add(host->dev, start_dr);
ecef7253
TH
5968 host->flags |= ATA_HOST_STARTED;
5969 return 0;
5970
5971 err_out:
5972 while (--i >= 0) {
5973 struct ata_port *ap = host->ports[i];
5974
5975 if (ap->ops->port_stop)
5976 ap->ops->port_stop(ap);
5977 }
32ebbc0c 5978 devres_free(start_dr);
ecef7253
TH
5979 return rc;
5980}
5981
b03732f0 5982/**
cca3974e
JG
5983 * ata_sas_host_init - Initialize a host struct
5984 * @host: host to initialize
5985 * @dev: device host is attached to
5986 * @flags: host flags
5987 * @ops: port_ops
b03732f0
BK
5988 *
5989 * LOCKING:
5990 * PCI/etc. bus probe sem.
5991 *
5992 */
f3187195 5993/* KILLME - the only user left is ipr */
cca3974e 5994void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5995 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5996{
cca3974e
JG
5997 spin_lock_init(&host->lock);
5998 host->dev = dev;
5999 host->flags = flags;
6000 host->ops = ops;
b03732f0
BK
6001}
6002
79318057
AV
6003
6004static void async_port_probe(void *data, async_cookie_t cookie)
6005{
6006 int rc;
6007 struct ata_port *ap = data;
886ad09f
AV
6008
6009 /*
6010 * If we're not allowed to scan this host in parallel,
6011 * we need to wait until all previous scans have completed
6012 * before going further.
fa853a48
AV
6013 * Jeff Garzik says this is only within a controller, so we
6014 * don't need to wait for port 0, only for later ports.
886ad09f 6015 */
fa853a48 6016 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6017 async_synchronize_cookie(cookie);
6018
79318057
AV
6019 /* probe */
6020 if (ap->ops->error_handler) {
6021 struct ata_eh_info *ehi = &ap->link.eh_info;
6022 unsigned long flags;
6023
79318057
AV
6024 /* kick EH for boot probing */
6025 spin_lock_irqsave(ap->lock, flags);
6026
6027 ehi->probe_mask |= ATA_ALL_DEVICES;
6028 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6029 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6030
6031 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6032 ap->pflags |= ATA_PFLAG_LOADING;
6033 ata_port_schedule_eh(ap);
6034
6035 spin_unlock_irqrestore(ap->lock, flags);
6036
6037 /* wait for EH to finish */
6038 ata_port_wait_eh(ap);
6039 } else {
6040 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6041 rc = ata_bus_probe(ap);
6042 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6043
6044 if (rc) {
6045 /* FIXME: do something useful here?
6046 * Current libata behavior will
6047 * tear down everything when
6048 * the module is removed
6049 * or the h/w is unplugged.
6050 */
6051 }
6052 }
f29d3b23
AV
6053
6054 /* in order to keep device order, we need to synchronize at this point */
6055 async_synchronize_cookie(cookie);
6056
6057 ata_scsi_scan_host(ap, 1);
6058
79318057 6059}
f3187195
TH
6060/**
6061 * ata_host_register - register initialized ATA host
6062 * @host: ATA host to register
6063 * @sht: template for SCSI host
6064 *
6065 * Register initialized ATA host. @host is allocated using
6066 * ata_host_alloc() and fully initialized by LLD. This function
6067 * starts ports, registers @host with ATA and SCSI layers and
6068 * probe registered devices.
6069 *
6070 * LOCKING:
6071 * Inherited from calling layer (may sleep).
6072 *
6073 * RETURNS:
6074 * 0 on success, -errno otherwise.
6075 */
6076int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6077{
6078 int i, rc;
6079
6080 /* host must have been started */
6081 if (!(host->flags & ATA_HOST_STARTED)) {
6082 dev_printk(KERN_ERR, host->dev,
6083 "BUG: trying to register unstarted host\n");
6084 WARN_ON(1);
6085 return -EINVAL;
6086 }
6087
6088 /* Blow away unused ports. This happens when LLD can't
6089 * determine the exact number of ports to allocate at
6090 * allocation time.
6091 */
6092 for (i = host->n_ports; host->ports[i]; i++)
6093 kfree(host->ports[i]);
6094
6095 /* give ports names and add SCSI hosts */
6096 for (i = 0; i < host->n_ports; i++)
6097 host->ports[i]->print_id = ata_print_id++;
6098
6099 rc = ata_scsi_add_hosts(host, sht);
6100 if (rc)
6101 return rc;
6102
fafbae87
TH
6103 /* associate with ACPI nodes */
6104 ata_acpi_associate(host);
6105
f3187195
TH
6106 /* set cable, sata_spd_limit and report */
6107 for (i = 0; i < host->n_ports; i++) {
6108 struct ata_port *ap = host->ports[i];
f3187195
TH
6109 unsigned long xfer_mask;
6110
6111 /* set SATA cable type if still unset */
6112 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6113 ap->cbl = ATA_CBL_SATA;
6114
6115 /* init sata_spd_limit to the current value */
4fb37a25 6116 sata_link_init_spd(&ap->link);
b1c72916
TH
6117 if (ap->slave_link)
6118 sata_link_init_spd(ap->slave_link);
f3187195 6119
cbcdd875 6120 /* print per-port info to dmesg */
f3187195
TH
6121 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6122 ap->udma_mask);
6123
abf6e8ed 6124 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6125 ata_port_printk(ap, KERN_INFO,
6126 "%cATA max %s %s\n",
a16abc0b 6127 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6128 ata_mode_string(xfer_mask),
cbcdd875 6129 ap->link.eh_info.desc);
abf6e8ed
TH
6130 ata_ehi_clear_desc(&ap->link.eh_info);
6131 } else
f3187195
TH
6132 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6133 }
6134
f6005354 6135 /* perform each probe asynchronously */
f3187195
TH
6136 for (i = 0; i < host->n_ports; i++) {
6137 struct ata_port *ap = host->ports[i];
79318057 6138 async_schedule(async_port_probe, ap);
f3187195 6139 }
f3187195
TH
6140
6141 return 0;
6142}
6143
f5cda257
TH
6144/**
6145 * ata_host_activate - start host, request IRQ and register it
6146 * @host: target ATA host
6147 * @irq: IRQ to request
6148 * @irq_handler: irq_handler used when requesting IRQ
6149 * @irq_flags: irq_flags used when requesting IRQ
6150 * @sht: scsi_host_template to use when registering the host
6151 *
6152 * After allocating an ATA host and initializing it, most libata
6153 * LLDs perform three steps to activate the host - start host,
6154 * request IRQ and register it. This helper takes necessasry
6155 * arguments and performs the three steps in one go.
6156 *
3d46b2e2
PM
6157 * An invalid IRQ skips the IRQ registration and expects the host to
6158 * have set polling mode on the port. In this case, @irq_handler
6159 * should be NULL.
6160 *
f5cda257
TH
6161 * LOCKING:
6162 * Inherited from calling layer (may sleep).
6163 *
6164 * RETURNS:
6165 * 0 on success, -errno otherwise.
6166 */
6167int ata_host_activate(struct ata_host *host, int irq,
6168 irq_handler_t irq_handler, unsigned long irq_flags,
6169 struct scsi_host_template *sht)
6170{
cbcdd875 6171 int i, rc;
f5cda257
TH
6172
6173 rc = ata_host_start(host);
6174 if (rc)
6175 return rc;
6176
3d46b2e2
PM
6177 /* Special case for polling mode */
6178 if (!irq) {
6179 WARN_ON(irq_handler);
6180 return ata_host_register(host, sht);
6181 }
6182
f5cda257
TH
6183 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6184 dev_driver_string(host->dev), host);
6185 if (rc)
6186 return rc;
6187
cbcdd875
TH
6188 for (i = 0; i < host->n_ports; i++)
6189 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6190
f5cda257
TH
6191 rc = ata_host_register(host, sht);
6192 /* if failed, just free the IRQ and leave ports alone */
6193 if (rc)
6194 devm_free_irq(host->dev, irq, host);
6195
6196 return rc;
6197}
6198
720ba126
TH
6199/**
6200 * ata_port_detach - Detach ATA port in prepration of device removal
6201 * @ap: ATA port to be detached
6202 *
6203 * Detach all ATA devices and the associated SCSI devices of @ap;
6204 * then, remove the associated SCSI host. @ap is guaranteed to
6205 * be quiescent on return from this function.
6206 *
6207 * LOCKING:
6208 * Kernel thread context (may sleep).
6209 */
741b7763 6210static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6211{
6212 unsigned long flags;
720ba126
TH
6213
6214 if (!ap->ops->error_handler)
c3cf30a9 6215 goto skip_eh;
720ba126
TH
6216
6217 /* tell EH we're leaving & flush EH */
ba6a1308 6218 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6219 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6220 ata_port_schedule_eh(ap);
ba6a1308 6221 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6222
ece180d1 6223 /* wait till EH commits suicide */
720ba126
TH
6224 ata_port_wait_eh(ap);
6225
ece180d1
TH
6226 /* it better be dead now */
6227 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6228
45a66c1c 6229 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6230
c3cf30a9 6231 skip_eh:
720ba126 6232 /* remove the associated SCSI host */
cca3974e 6233 scsi_remove_host(ap->scsi_host);
720ba126
TH
6234}
6235
0529c159
TH
6236/**
6237 * ata_host_detach - Detach all ports of an ATA host
6238 * @host: Host to detach
6239 *
6240 * Detach all ports of @host.
6241 *
6242 * LOCKING:
6243 * Kernel thread context (may sleep).
6244 */
6245void ata_host_detach(struct ata_host *host)
6246{
6247 int i;
6248
6249 for (i = 0; i < host->n_ports; i++)
6250 ata_port_detach(host->ports[i]);
562f0c2d
TH
6251
6252 /* the host is dead now, dissociate ACPI */
6253 ata_acpi_dissociate(host);
0529c159
TH
6254}
6255
374b1873
JG
6256#ifdef CONFIG_PCI
6257
1da177e4
LT
6258/**
6259 * ata_pci_remove_one - PCI layer callback for device removal
6260 * @pdev: PCI device that was removed
6261 *
b878ca5d
TH
6262 * PCI layer indicates to libata via this hook that hot-unplug or
6263 * module unload event has occurred. Detach all ports. Resource
6264 * release is handled via devres.
1da177e4
LT
6265 *
6266 * LOCKING:
6267 * Inherited from PCI layer (may sleep).
6268 */
f0d36efd 6269void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6270{
2855568b 6271 struct device *dev = &pdev->dev;
cca3974e 6272 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6273
b878ca5d 6274 ata_host_detach(host);
1da177e4
LT
6275}
6276
6277/* move to PCI subsystem */
057ace5e 6278int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6279{
6280 unsigned long tmp = 0;
6281
6282 switch (bits->width) {
6283 case 1: {
6284 u8 tmp8 = 0;
6285 pci_read_config_byte(pdev, bits->reg, &tmp8);
6286 tmp = tmp8;
6287 break;
6288 }
6289 case 2: {
6290 u16 tmp16 = 0;
6291 pci_read_config_word(pdev, bits->reg, &tmp16);
6292 tmp = tmp16;
6293 break;
6294 }
6295 case 4: {
6296 u32 tmp32 = 0;
6297 pci_read_config_dword(pdev, bits->reg, &tmp32);
6298 tmp = tmp32;
6299 break;
6300 }
6301
6302 default:
6303 return -EINVAL;
6304 }
6305
6306 tmp &= bits->mask;
6307
6308 return (tmp == bits->val) ? 1 : 0;
6309}
9b847548 6310
6ffa01d8 6311#ifdef CONFIG_PM
3c5100c1 6312void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6313{
6314 pci_save_state(pdev);
4c90d971 6315 pci_disable_device(pdev);
500530f6 6316
3a2d5b70 6317 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6318 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6319}
6320
553c4aa6 6321int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6322{
553c4aa6
TH
6323 int rc;
6324
9b847548
JA
6325 pci_set_power_state(pdev, PCI_D0);
6326 pci_restore_state(pdev);
553c4aa6 6327
b878ca5d 6328 rc = pcim_enable_device(pdev);
553c4aa6
TH
6329 if (rc) {
6330 dev_printk(KERN_ERR, &pdev->dev,
6331 "failed to enable device after resume (%d)\n", rc);
6332 return rc;
6333 }
6334
9b847548 6335 pci_set_master(pdev);
553c4aa6 6336 return 0;
500530f6
TH
6337}
6338
3c5100c1 6339int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6340{
cca3974e 6341 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6342 int rc = 0;
6343
cca3974e 6344 rc = ata_host_suspend(host, mesg);
500530f6
TH
6345 if (rc)
6346 return rc;
6347
3c5100c1 6348 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6349
6350 return 0;
6351}
6352
6353int ata_pci_device_resume(struct pci_dev *pdev)
6354{
cca3974e 6355 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6356 int rc;
500530f6 6357
553c4aa6
TH
6358 rc = ata_pci_device_do_resume(pdev);
6359 if (rc == 0)
6360 ata_host_resume(host);
6361 return rc;
9b847548 6362}
6ffa01d8
TH
6363#endif /* CONFIG_PM */
6364
1da177e4
LT
6365#endif /* CONFIG_PCI */
6366
33267325
TH
6367static int __init ata_parse_force_one(char **cur,
6368 struct ata_force_ent *force_ent,
6369 const char **reason)
6370{
6371 /* FIXME: Currently, there's no way to tag init const data and
6372 * using __initdata causes build failure on some versions of
6373 * gcc. Once __initdataconst is implemented, add const to the
6374 * following structure.
6375 */
6376 static struct ata_force_param force_tbl[] __initdata = {
6377 { "40c", .cbl = ATA_CBL_PATA40 },
6378 { "80c", .cbl = ATA_CBL_PATA80 },
6379 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6380 { "unk", .cbl = ATA_CBL_PATA_UNK },
6381 { "ign", .cbl = ATA_CBL_PATA_IGN },
6382 { "sata", .cbl = ATA_CBL_SATA },
6383 { "1.5Gbps", .spd_limit = 1 },
6384 { "3.0Gbps", .spd_limit = 2 },
6385 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6386 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6387 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6388 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6389 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6390 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6391 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6392 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6393 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6394 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6395 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6396 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6397 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6398 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6399 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6400 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6401 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6402 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6403 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6404 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6405 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6406 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6407 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6408 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6409 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6410 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6411 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6412 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6413 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6414 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6415 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6416 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6417 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6418 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6419 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6420 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6421 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6422 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6423 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6424 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6425 };
6426 char *start = *cur, *p = *cur;
6427 char *id, *val, *endp;
6428 const struct ata_force_param *match_fp = NULL;
6429 int nr_matches = 0, i;
6430
6431 /* find where this param ends and update *cur */
6432 while (*p != '\0' && *p != ',')
6433 p++;
6434
6435 if (*p == '\0')
6436 *cur = p;
6437 else
6438 *cur = p + 1;
6439
6440 *p = '\0';
6441
6442 /* parse */
6443 p = strchr(start, ':');
6444 if (!p) {
6445 val = strstrip(start);
6446 goto parse_val;
6447 }
6448 *p = '\0';
6449
6450 id = strstrip(start);
6451 val = strstrip(p + 1);
6452
6453 /* parse id */
6454 p = strchr(id, '.');
6455 if (p) {
6456 *p++ = '\0';
6457 force_ent->device = simple_strtoul(p, &endp, 10);
6458 if (p == endp || *endp != '\0') {
6459 *reason = "invalid device";
6460 return -EINVAL;
6461 }
6462 }
6463
6464 force_ent->port = simple_strtoul(id, &endp, 10);
6465 if (p == endp || *endp != '\0') {
6466 *reason = "invalid port/link";
6467 return -EINVAL;
6468 }
6469
6470 parse_val:
6471 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6472 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6473 const struct ata_force_param *fp = &force_tbl[i];
6474
6475 if (strncasecmp(val, fp->name, strlen(val)))
6476 continue;
6477
6478 nr_matches++;
6479 match_fp = fp;
6480
6481 if (strcasecmp(val, fp->name) == 0) {
6482 nr_matches = 1;
6483 break;
6484 }
6485 }
6486
6487 if (!nr_matches) {
6488 *reason = "unknown value";
6489 return -EINVAL;
6490 }
6491 if (nr_matches > 1) {
6492 *reason = "ambigious value";
6493 return -EINVAL;
6494 }
6495
6496 force_ent->param = *match_fp;
6497
6498 return 0;
6499}
6500
6501static void __init ata_parse_force_param(void)
6502{
6503 int idx = 0, size = 1;
6504 int last_port = -1, last_device = -1;
6505 char *p, *cur, *next;
6506
6507 /* calculate maximum number of params and allocate force_tbl */
6508 for (p = ata_force_param_buf; *p; p++)
6509 if (*p == ',')
6510 size++;
6511
6512 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6513 if (!ata_force_tbl) {
6514 printk(KERN_WARNING "ata: failed to extend force table, "
6515 "libata.force ignored\n");
6516 return;
6517 }
6518
6519 /* parse and populate the table */
6520 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6521 const char *reason = "";
6522 struct ata_force_ent te = { .port = -1, .device = -1 };
6523
6524 next = cur;
6525 if (ata_parse_force_one(&next, &te, &reason)) {
6526 printk(KERN_WARNING "ata: failed to parse force "
6527 "parameter \"%s\" (%s)\n",
6528 cur, reason);
6529 continue;
6530 }
6531
6532 if (te.port == -1) {
6533 te.port = last_port;
6534 te.device = last_device;
6535 }
6536
6537 ata_force_tbl[idx++] = te;
6538
6539 last_port = te.port;
6540 last_device = te.device;
6541 }
6542
6543 ata_force_tbl_size = idx;
6544}
1da177e4 6545
1da177e4
LT
6546static int __init ata_init(void)
6547{
270390e1
TH
6548 int rc = -ENOMEM;
6549
33267325
TH
6550 ata_parse_force_param();
6551
453b07ac 6552 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04 6553 if (!ata_aux_wq)
270390e1
TH
6554 goto fail;
6555
6556 rc = ata_sff_init();
6557 if (rc)
6558 goto fail;
453b07ac 6559
1da177e4
LT
6560 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6561 return 0;
49ea3b04 6562
270390e1 6563fail:
49ea3b04 6564 kfree(ata_force_tbl);
270390e1
TH
6565 if (ata_aux_wq)
6566 destroy_workqueue(ata_aux_wq);
6567 return rc;
1da177e4
LT
6568}
6569
6570static void __exit ata_exit(void)
6571{
270390e1 6572 ata_sff_exit();
33267325 6573 kfree(ata_force_tbl);
453b07ac 6574 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6575}
6576
a4625085 6577subsys_initcall(ata_init);
1da177e4
LT
6578module_exit(ata_exit);
6579
9990b6f3 6580static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6581
6582int ata_ratelimit(void)
6583{
9990b6f3 6584 return __ratelimit(&ratelimit);
67846b30
JG
6585}
6586
c22daff4
TH
6587/**
6588 * ata_wait_register - wait until register value changes
6589 * @reg: IO-mapped register
6590 * @mask: Mask to apply to read register value
6591 * @val: Wait condition
341c2c95
TH
6592 * @interval: polling interval in milliseconds
6593 * @timeout: timeout in milliseconds
c22daff4
TH
6594 *
6595 * Waiting for some bits of register to change is a common
6596 * operation for ATA controllers. This function reads 32bit LE
6597 * IO-mapped register @reg and tests for the following condition.
6598 *
6599 * (*@reg & mask) != val
6600 *
6601 * If the condition is met, it returns; otherwise, the process is
6602 * repeated after @interval_msec until timeout.
6603 *
6604 * LOCKING:
6605 * Kernel thread context (may sleep)
6606 *
6607 * RETURNS:
6608 * The final register value.
6609 */
6610u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6611 unsigned long interval, unsigned long timeout)
c22daff4 6612{
341c2c95 6613 unsigned long deadline;
c22daff4
TH
6614 u32 tmp;
6615
6616 tmp = ioread32(reg);
6617
6618 /* Calculate timeout _after_ the first read to make sure
6619 * preceding writes reach the controller before starting to
6620 * eat away the timeout.
6621 */
341c2c95 6622 deadline = ata_deadline(jiffies, timeout);
c22daff4 6623
341c2c95
TH
6624 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6625 msleep(interval);
c22daff4
TH
6626 tmp = ioread32(reg);
6627 }
6628
6629 return tmp;
6630}
6631
dd5b06c4
TH
6632/*
6633 * Dummy port_ops
6634 */
182d7bba 6635static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6636{
182d7bba 6637 return AC_ERR_SYSTEM;
dd5b06c4
TH
6638}
6639
182d7bba 6640static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6641{
182d7bba 6642 /* truly dummy */
dd5b06c4
TH
6643}
6644
029cfd6b 6645struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6646 .qc_prep = ata_noop_qc_prep,
6647 .qc_issue = ata_dummy_qc_issue,
182d7bba 6648 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6649};
6650
21b0ad4f
TH
6651const struct ata_port_info ata_dummy_port_info = {
6652 .port_ops = &ata_dummy_port_ops,
6653};
6654
1da177e4
LT
6655/*
6656 * libata is essentially a library of internal helper functions for
6657 * low-level ATA host controller drivers. As such, the API/ABI is
6658 * likely to change as new drivers are added and updated.
6659 * Do not depend on ABI/API stability.
6660 */
e9c83914
TH
6661EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6662EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6663EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6664EXPORT_SYMBOL_GPL(ata_base_port_ops);
6665EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6666EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6667EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6668EXPORT_SYMBOL_GPL(ata_link_next);
6669EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6670EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6671EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6672EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6673EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6674EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6675EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6676EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6677EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6678EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6679EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6680EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6681EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6682EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6683EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6684EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6685EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6686EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6687EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6688EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6689EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6690EXPORT_SYMBOL_GPL(ata_mode_string);
6691EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6692EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6693EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6694EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6695EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6696EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6697EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6698EXPORT_SYMBOL_GPL(sata_link_debounce);
6699EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6700EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6701EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6702EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6703EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6704EXPORT_SYMBOL_GPL(ata_dev_classify);
6705EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6706EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6707EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6708EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6709EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6710EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6711EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6712EXPORT_SYMBOL_GPL(sata_scr_valid);
6713EXPORT_SYMBOL_GPL(sata_scr_read);
6714EXPORT_SYMBOL_GPL(sata_scr_write);
6715EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6716EXPORT_SYMBOL_GPL(ata_link_online);
6717EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6718#ifdef CONFIG_PM
cca3974e
JG
6719EXPORT_SYMBOL_GPL(ata_host_suspend);
6720EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6721#endif /* CONFIG_PM */
6a62a04d
TH
6722EXPORT_SYMBOL_GPL(ata_id_string);
6723EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6724EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6725EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6726
1bc4ccff 6727EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6728EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6729EXPORT_SYMBOL_GPL(ata_timing_compute);
6730EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6731EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6732
1da177e4
LT
6733#ifdef CONFIG_PCI
6734EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6735EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6736#ifdef CONFIG_PM
500530f6
TH
6737EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6738EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6739EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6740EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6741#endif /* CONFIG_PM */
1da177e4 6742#endif /* CONFIG_PCI */
9b847548 6743
b64bbc39
TH
6744EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6745EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6746EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6747EXPORT_SYMBOL_GPL(ata_port_desc);
6748#ifdef CONFIG_PCI
6749EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6750#endif /* CONFIG_PCI */
7b70fc03 6751EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6752EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6753EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6754EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6755EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6756EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6757EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6758EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6759EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6760EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6761EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6762EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6763
6764EXPORT_SYMBOL_GPL(ata_cable_40wire);
6765EXPORT_SYMBOL_GPL(ata_cable_80wire);
6766EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6767EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6768EXPORT_SYMBOL_GPL(ata_cable_sata);