]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
unify flush_work/flush_work_keventd and rename it to cancel_work_sync
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904{
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930}
931
932/**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941{
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963}
964
965/**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974static u64 ata_hpa_resize(struct ata_device *dev)
975{
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
bd1d5ec6
AM
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
1e999736
AC
988
989 if (hpa_sectors > sectors) {
990 ata_dev_printk(dev, KERN_INFO,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
bd1d5ec6 994 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
995
996 if (ata_ignore_hpa) {
997 if (ata_id_has_lba48(dev->id))
998 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 else
bd1d5ec6
AM
1000 hpa_sectors = ata_set_native_max_address(dev,
1001 hpa_sectors);
1e999736
AC
1002
1003 if (hpa_sectors) {
bd1d5ec6
AM
1004 ata_dev_printk(dev, KERN_INFO, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors);
1e999736
AC
1007 return hpa_sectors;
1008 }
1009 }
1010 }
1011 return sectors;
1012}
1013
2940740b
TH
1014static u64 ata_id_n_sectors(const u16 *id)
1015{
1016 if (ata_id_has_lba(id)) {
1017 if (ata_id_has_lba48(id))
1018 return ata_id_u64(id, 100);
1019 else
1020 return ata_id_u32(id, 60);
1021 } else {
1022 if (ata_id_current_chs_valid(id))
1023 return ata_id_u32(id, 57);
1024 else
1025 return id[1] * id[3] * id[6];
1026 }
1027}
1028
10305f0f
AC
1029/**
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
cc261267 1032 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1033 *
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1038 *
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1041 * presentation.
1042 */
1043
1044void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1045{
1046 unsigned int mask;
1047 u8 mode;
1048
1049 /* Pack the DMA modes */
1050 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1051 if (dev->id[53] & 0x04)
1052 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1053
1054 /* Select the mode in use */
1055 mode = ata_xfer_mask2mode(mask);
1056
1057 if (mode != 0) {
1058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1059 ata_mode_string(mask));
1060 } else {
1061 /* SWDMA perhaps ? */
1062 mode = unknown;
1063 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1064 }
1065
1066 /* Configure the device reporting */
1067 dev->xfer_mode = mode;
1068 dev->xfer_shift = ata_xfer_mode2shift(mode);
1069}
1070
0baab86b
EF
1071/**
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1075 *
1076 * This function performs no actual function.
1077 *
1078 * May be used as the dev_select() entry in ata_port_operations.
1079 *
1080 * LOCKING:
1081 * caller.
1082 */
1da177e4
LT
1083void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1084{
1085}
1086
0baab86b 1087
1da177e4
LT
1088/**
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1092 *
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
0baab86b
EF
1095 * ATA channel. Works with both PIO and MMIO.
1096 *
1097 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
1103void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1104{
1105 u8 tmp;
1106
1107 if (device == 0)
1108 tmp = ATA_DEVICE_OBS;
1109 else
1110 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1111
0d5ff566 1112 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1113 ata_pause(ap); /* needed; also flushes, for mmio */
1114}
1115
1116/**
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1122 *
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1125 * ATA channel.
1126 *
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1130 *
1131 * LOCKING:
1132 * caller.
1133 */
1134
1135void ata_dev_select(struct ata_port *ap, unsigned int device,
1136 unsigned int wait, unsigned int can_sleep)
1137{
88574551 1138 if (ata_msg_probe(ap))
44877b4e
TH
1139 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device, wait);
1da177e4
LT
1141
1142 if (wait)
1143 ata_wait_idle(ap);
1144
1145 ap->ops->dev_select(ap, device);
1146
1147 if (wait) {
1148 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1149 msleep(150);
1150 ata_wait_idle(ap);
1151 }
1152}
1153
1154/**
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1156 * @id: IDENTIFY DEVICE page to dump
1da177e4 1157 *
0bd3300a
TH
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1159 * page.
1da177e4
LT
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164
0bd3300a 1165static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1166{
1167 DPRINTK("49==0x%04x "
1168 "53==0x%04x "
1169 "63==0x%04x "
1170 "64==0x%04x "
1171 "75==0x%04x \n",
0bd3300a
TH
1172 id[49],
1173 id[53],
1174 id[63],
1175 id[64],
1176 id[75]);
1da177e4
LT
1177 DPRINTK("80==0x%04x "
1178 "81==0x%04x "
1179 "82==0x%04x "
1180 "83==0x%04x "
1181 "84==0x%04x \n",
0bd3300a
TH
1182 id[80],
1183 id[81],
1184 id[82],
1185 id[83],
1186 id[84]);
1da177e4
LT
1187 DPRINTK("88==0x%04x "
1188 "93==0x%04x\n",
0bd3300a
TH
1189 id[88],
1190 id[93]);
1da177e4
LT
1191}
1192
cb95d562
TH
1193/**
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1196 *
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1199 *
1200 * FIXME: pre IDE drive timing (do we care ?).
1201 *
1202 * LOCKING:
1203 * None.
1204 *
1205 * RETURNS:
1206 * Computed xfermask
1207 */
1208static unsigned int ata_id_xfermask(const u16 *id)
1209{
1210 unsigned int pio_mask, mwdma_mask, udma_mask;
1211
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1214 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1215 pio_mask <<= 3;
1216 pio_mask |= 0x7;
1217 } else {
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1220 * a mask.
1221 */
7a0f1c8a 1222 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1223 if (mode < 5) /* Valid PIO range */
1224 pio_mask = (2 << mode) - 1;
1225 else
1226 pio_mask = 1;
cb95d562
TH
1227
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1233 */
1234 }
1235
1236 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1237
b352e57d
AC
1238 if (ata_id_is_cfa(id)) {
1239 /*
1240 * Process compact flash extended modes
1241 */
1242 int pio = id[163] & 0x7;
1243 int dma = (id[163] >> 3) & 7;
1244
1245 if (pio)
1246 pio_mask |= (1 << 5);
1247 if (pio > 1)
1248 pio_mask |= (1 << 6);
1249 if (dma)
1250 mwdma_mask |= (1 << 3);
1251 if (dma > 1)
1252 mwdma_mask |= (1 << 4);
1253 }
1254
fb21f0d0
TH
1255 udma_mask = 0;
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1257 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1258
1259 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260}
1261
86e45b6b
TH
1262/**
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
e2a7f77a 1265 * @fn: workqueue function to be scheduled
65f27f38 1266 * @data: data for @fn to use
e2a7f77a 1267 * @delay: delay time for workqueue function
86e45b6b
TH
1268 *
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1273 *
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1276 * synchronization.
1277 *
1278 * LOCKING:
1279 * Inherited from caller.
1280 */
65f27f38 1281void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1282 unsigned long delay)
1283{
1284 int rc;
1285
b51e9e5d 1286 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1287 return;
1288
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
52bad64d 1292 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1293
1294 /* rc == 0 means that another user is using port task */
1295 WARN_ON(rc == 0);
1296}
1297
1298/**
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1301 *
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1304 *
1305 * LOCKING:
1306 * Kernel thread context (may sleep)
1307 */
1308void ata_port_flush_task(struct ata_port *ap)
1309{
1310 unsigned long flags;
1311
1312 DPRINTK("ENTER\n");
1313
ba6a1308 1314 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1315 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1316 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1317
1318 DPRINTK("flush #1\n");
28e53bdd 1319 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1320
1321 /*
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1324 * Cancel and flush.
1325 */
1326 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1327 if (ata_msg_ctl(ap))
88574551
TH
1328 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1329 __FUNCTION__);
28e53bdd 1330 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1331 }
1332
ba6a1308 1333 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1334 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1335 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1336
0dd4b21f
BP
1337 if (ata_msg_ctl(ap))
1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1339}
1340
7102d230 1341static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1342{
77853bf2 1343 struct completion *waiting = qc->private_data;
a2a7a662 1344
a2a7a662 1345 complete(waiting);
a2a7a662
TH
1346}
1347
1348/**
2432697b 1349 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
d69cf37d 1352 * @cdb: CDB for packet command
a2a7a662 1353 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
a2a7a662
TH
1356 *
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1362 *
1363 * LOCKING:
1364 * None. Should be called with kernel context, might sleep.
551e8889
TH
1365 *
1366 * RETURNS:
1367 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1368 */
2432697b
TH
1369unsigned ata_exec_internal_sg(struct ata_device *dev,
1370 struct ata_taskfile *tf, const u8 *cdb,
1371 int dma_dir, struct scatterlist *sg,
1372 unsigned int n_elem)
a2a7a662 1373{
3373efd8 1374 struct ata_port *ap = dev->ap;
a2a7a662
TH
1375 u8 command = tf->command;
1376 struct ata_queued_cmd *qc;
2ab7db1f 1377 unsigned int tag, preempted_tag;
dedaf2b0 1378 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1379 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1380 unsigned long flags;
77853bf2 1381 unsigned int err_mask;
d95a717f 1382 int rc;
a2a7a662 1383
ba6a1308 1384 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1385
e3180499 1386 /* no internal command while frozen */
b51e9e5d 1387 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1388 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1389 return AC_ERR_SYSTEM;
1390 }
1391
2ab7db1f 1392 /* initialize internal qc */
a2a7a662 1393
2ab7db1f
TH
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1398 */
1399 if (ap->ops->error_handler)
1400 tag = ATA_TAG_INTERNAL;
1401 else
1402 tag = 0;
1403
6cec4a39 1404 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1405 BUG();
f69499f4 1406 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1407
1408 qc->tag = tag;
1409 qc->scsicmd = NULL;
1410 qc->ap = ap;
1411 qc->dev = dev;
1412 ata_qc_reinit(qc);
1413
1414 preempted_tag = ap->active_tag;
dedaf2b0
TH
1415 preempted_sactive = ap->sactive;
1416 preempted_qc_active = ap->qc_active;
2ab7db1f 1417 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1418 ap->sactive = 0;
1419 ap->qc_active = 0;
2ab7db1f
TH
1420
1421 /* prepare & issue qc */
a2a7a662 1422 qc->tf = *tf;
d69cf37d
TH
1423 if (cdb)
1424 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1425 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1426 qc->dma_dir = dma_dir;
1427 if (dma_dir != DMA_NONE) {
2432697b
TH
1428 unsigned int i, buflen = 0;
1429
1430 for (i = 0; i < n_elem; i++)
1431 buflen += sg[i].length;
1432
1433 ata_sg_init(qc, sg, n_elem);
49c80429 1434 qc->nbytes = buflen;
a2a7a662
TH
1435 }
1436
77853bf2 1437 qc->private_data = &wait;
a2a7a662
TH
1438 qc->complete_fn = ata_qc_complete_internal;
1439
8e0e694a 1440 ata_qc_issue(qc);
a2a7a662 1441
ba6a1308 1442 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1443
a8601e5f 1444 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1445
1446 ata_port_flush_task(ap);
41ade50c 1447
d95a717f 1448 if (!rc) {
ba6a1308 1449 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1450
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
d95a717f
TH
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
a2a7a662 1455 */
77853bf2 1456 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1457 qc->err_mask |= AC_ERR_TIMEOUT;
1458
1459 if (ap->ops->error_handler)
1460 ata_port_freeze(ap);
1461 else
1462 ata_qc_complete(qc);
f15a1daf 1463
0dd4b21f
BP
1464 if (ata_msg_warn(ap))
1465 ata_dev_printk(dev, KERN_WARNING,
88574551 1466 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1467 }
1468
ba6a1308 1469 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1470 }
1471
d95a717f
TH
1472 /* do post_internal_cmd */
1473 if (ap->ops->post_internal_cmd)
1474 ap->ops->post_internal_cmd(qc);
1475
a51d644a
TH
1476 /* perform minimal error analysis */
1477 if (qc->flags & ATA_QCFLAG_FAILED) {
1478 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1479 qc->err_mask |= AC_ERR_DEV;
1480
1481 if (!qc->err_mask)
1482 qc->err_mask |= AC_ERR_OTHER;
1483
1484 if (qc->err_mask & ~AC_ERR_OTHER)
1485 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1486 }
1487
15869303 1488 /* finish up */
ba6a1308 1489 spin_lock_irqsave(ap->lock, flags);
15869303 1490
e61e0672 1491 *tf = qc->result_tf;
77853bf2
TH
1492 err_mask = qc->err_mask;
1493
1494 ata_qc_free(qc);
2ab7db1f 1495 ap->active_tag = preempted_tag;
dedaf2b0
TH
1496 ap->sactive = preempted_sactive;
1497 ap->qc_active = preempted_qc_active;
77853bf2 1498
1f7dd3e9
TH
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1502 * port.
1503 *
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1507 *
1508 * Kill the following code as soon as those drivers are fixed.
1509 */
198e0fed 1510 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1511 err_mask |= AC_ERR_SYSTEM;
1512 ata_port_probe(ap);
1513 }
1514
ba6a1308 1515 spin_unlock_irqrestore(ap->lock, flags);
15869303 1516
77853bf2 1517 return err_mask;
a2a7a662
TH
1518}
1519
2432697b 1520/**
33480a0e 1521 * ata_exec_internal - execute libata internal command
2432697b
TH
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1528 *
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1531 *
1532 * LOCKING:
1533 * None. Should be called with kernel context, might sleep.
1534 *
1535 * RETURNS:
1536 * Zero on success, AC_ERR_* mask on failure
1537 */
1538unsigned ata_exec_internal(struct ata_device *dev,
1539 struct ata_taskfile *tf, const u8 *cdb,
1540 int dma_dir, void *buf, unsigned int buflen)
1541{
33480a0e
TH
1542 struct scatterlist *psg = NULL, sg;
1543 unsigned int n_elem = 0;
2432697b 1544
33480a0e
TH
1545 if (dma_dir != DMA_NONE) {
1546 WARN_ON(!buf);
1547 sg_init_one(&sg, buf, buflen);
1548 psg = &sg;
1549 n_elem++;
1550 }
2432697b 1551
33480a0e 1552 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1553}
1554
977e6b9f
TH
1555/**
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1559 *
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1562 *
1563 * LOCKING:
1564 * Kernel thread context (may sleep).
1565 *
1566 * RETURNS:
1567 * Zero on success, AC_ERR_* mask on failure
e58eb583 1568 */
77b08fb5 1569unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1570{
1571 struct ata_taskfile tf;
e58eb583
TH
1572
1573 ata_tf_init(dev, &tf);
1574
1575 tf.command = cmd;
1576 tf.flags |= ATA_TFLAG_DEVICE;
1577 tf.protocol = ATA_PROT_NODATA;
1578
977e6b9f 1579 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1580}
1581
1bc4ccff
AC
1582/**
1583 * ata_pio_need_iordy - check if iordy needed
1584 * @adev: ATA device
1585 *
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1588 */
432729f0 1589
1bc4ccff
AC
1590unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1591{
432729f0
AC
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1595 return 0;
432729f0
AC
1596 /* PIO3 and higher it is mandatory */
1597 if (adev->pio_mode > XFER_PIO_2)
1598 return 1;
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev->id))
1bc4ccff 1601 return 1;
432729f0
AC
1602 return 0;
1603}
2e9edbf8 1604
432729f0
AC
1605/**
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1607 * @adev: ATA device
1608 *
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1611 */
1612
1613static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1614{
1bc4ccff 1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1616 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1617 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1618 /* Is the speed faster than the drive allows non IORDY ? */
1619 if (pio) {
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1622 return 3 << ATA_SHIFT_PIO;
1623 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1624 }
1625 }
432729f0 1626 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1627}
1628
1da177e4 1629/**
49016aca 1630 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
bff04647 1633 * @flags: ATA_READID_* flags
fe635c7e 1634 * @id: buffer to read IDENTIFY data into
1da177e4 1635 *
49016aca
TH
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1da177e4
LT
1640 *
1641 * LOCKING:
49016aca
TH
1642 * Kernel thread context (may sleep)
1643 *
1644 * RETURNS:
1645 * 0 on success, -errno otherwise.
1da177e4 1646 */
a9beec95 1647int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1648 unsigned int flags, u16 *id)
1da177e4 1649{
3373efd8 1650 struct ata_port *ap = dev->ap;
49016aca 1651 unsigned int class = *p_class;
a0123703 1652 struct ata_taskfile tf;
49016aca
TH
1653 unsigned int err_mask = 0;
1654 const char *reason;
169439c2 1655 int tried_spinup = 0;
49016aca 1656 int rc;
1da177e4 1657
0dd4b21f 1658 if (ata_msg_ctl(ap))
44877b4e 1659 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1660
49016aca 1661 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1662 retry:
3373efd8 1663 ata_tf_init(dev, &tf);
a0123703 1664
49016aca
TH
1665 switch (class) {
1666 case ATA_DEV_ATA:
a0123703 1667 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1668 break;
1669 case ATA_DEV_ATAPI:
a0123703 1670 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1671 break;
1672 default:
1673 rc = -ENODEV;
1674 reason = "unsupported class";
1675 goto err_out;
1da177e4
LT
1676 }
1677
a0123703 1678 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1679
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1682 */
1683 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1684
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1687 */
1688 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1689
3373efd8 1690 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1691 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1692 if (err_mask) {
800b3996 1693 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1695 ap->print_id, dev->devno);
55a8e2c8
TH
1696 return -ENOENT;
1697 }
1698
49016aca
TH
1699 rc = -EIO;
1700 reason = "I/O error";
1da177e4
LT
1701 goto err_out;
1702 }
1703
49016aca 1704 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1705
49016aca 1706 /* sanity check */
a4f5749b
TH
1707 rc = -EINVAL;
1708 reason = "device reports illegal type";
1709
1710 if (class == ATA_DEV_ATA) {
1711 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1712 goto err_out;
1713 } else {
1714 if (ata_id_is_ata(id))
1715 goto err_out;
49016aca
TH
1716 }
1717
169439c2
ML
1718 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1719 tried_spinup = 1;
1720 /*
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1724 */
1725 ata_tf_init(dev, &tf);
1726 tf.command = ATA_CMD_SET_FEATURES;
1727 tf.feature = SETFEATURES_SPINUP;
1728 tf.protocol = ATA_PROT_NODATA;
1729 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1730 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1731 if (err_mask) {
1732 rc = -EIO;
1733 reason = "SPINUP failed";
1734 goto err_out;
1735 }
1736 /*
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1739 */
1740 if (id[2] == 0x37c8)
1741 goto retry;
1742 }
1743
bff04647 1744 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1745 /*
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1747 * SRST RESET
1748 * IDENTIFY
1749 * INITIALIZE DEVICE PARAMETERS
1750 * anything else..
1751 * Some drives were very specific about that exact sequence.
1752 */
1753 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1754 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1755 if (err_mask) {
1756 rc = -EIO;
1757 reason = "INIT_DEV_PARAMS failed";
1758 goto err_out;
1759 }
1760
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1763 */
bff04647 1764 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1765 goto retry;
1766 }
1767 }
1768
1769 *p_class = class;
fe635c7e 1770
49016aca
TH
1771 return 0;
1772
1773 err_out:
88574551 1774 if (ata_msg_warn(ap))
0dd4b21f 1775 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1776 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1777 return rc;
1778}
1779
3373efd8 1780static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1781{
3373efd8 1782 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1783}
1784
a6e6ce8e
TH
1785static void ata_dev_config_ncq(struct ata_device *dev,
1786 char *desc, size_t desc_sz)
1787{
1788 struct ata_port *ap = dev->ap;
1789 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1790
1791 if (!ata_id_has_ncq(dev->id)) {
1792 desc[0] = '\0';
1793 return;
1794 }
6919a0a6
AC
1795 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1796 snprintf(desc, desc_sz, "NCQ (not used)");
1797 return;
1798 }
a6e6ce8e 1799 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1800 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1801 dev->flags |= ATA_DFLAG_NCQ;
1802 }
1803
1804 if (hdepth >= ddepth)
1805 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1806 else
1807 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808}
1809
49016aca 1810/**
ffeae418 1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1812 * @dev: Target device to configure
1813 *
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
49016aca
TH
1816 *
1817 * LOCKING:
ffeae418
TH
1818 * Kernel thread context (may sleep)
1819 *
1820 * RETURNS:
1821 * 0 on success, -errno otherwise
49016aca 1822 */
efdaedc4 1823int ata_dev_configure(struct ata_device *dev)
49016aca 1824{
3373efd8 1825 struct ata_port *ap = dev->ap;
efdaedc4 1826 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1827 const u16 *id = dev->id;
ff8854b2 1828 unsigned int xfer_mask;
b352e57d 1829 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1830 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1831 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1832 int rc;
49016aca 1833
0dd4b21f 1834 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1835 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 __FUNCTION__);
ffeae418 1837 return 0;
49016aca
TH
1838 }
1839
0dd4b21f 1840 if (ata_msg_probe(ap))
44877b4e 1841 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1842
08573a86
KCA
1843 /* set _SDD */
1844 rc = ata_acpi_push_id(ap, dev->devno);
1845 if (rc) {
1846 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1847 rc);
1848 }
1849
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap);
1852
c39f5ebe 1853 /* print device capabilities */
0dd4b21f 1854 if (ata_msg_probe(ap))
88574551
TH
1855 ata_dev_printk(dev, KERN_DEBUG,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1858 __FUNCTION__,
f15a1daf
TH
1859 id[49], id[82], id[83], id[84],
1860 id[85], id[86], id[87], id[88]);
c39f5ebe 1861
208a9933 1862 /* initialize to-be-configured parameters */
ea1dd4e1 1863 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1864 dev->max_sectors = 0;
1865 dev->cdb_len = 0;
1866 dev->n_sectors = 0;
1867 dev->cylinders = 0;
1868 dev->heads = 0;
1869 dev->sectors = 0;
1870
1da177e4
LT
1871 /*
1872 * common ATA, ATAPI feature tests
1873 */
1874
ff8854b2 1875 /* find max transfer mode; for printk only */
1148c3a7 1876 xfer_mask = ata_id_xfermask(id);
1da177e4 1877
0dd4b21f
BP
1878 if (ata_msg_probe(ap))
1879 ata_dump_id(id);
1da177e4
LT
1880
1881 /* ATA-specific feature tests */
1882 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1883 if (ata_id_is_cfa(id)) {
1884 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1885 ata_dev_printk(dev, KERN_WARNING,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
b352e57d
AC
1888 snprintf(revbuf, 7, "CFA");
1889 }
1890 else
1891 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1892
1148c3a7 1893 dev->n_sectors = ata_id_n_sectors(id);
1e999736 1894 dev->n_sectors_boot = dev->n_sectors;
2940740b 1895
3f64f565 1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1897 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1898 sizeof(fwrevbuf));
1899
591a6e8e 1900 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1901 sizeof(modelbuf));
1902
1903 if (dev->id[59] & 0x100)
1904 dev->multi_count = dev->id[59] & 0xff;
1905
1148c3a7 1906 if (ata_id_has_lba(id)) {
4c2d721a 1907 const char *lba_desc;
a6e6ce8e 1908 char ncq_desc[20];
8bf62ece 1909
4c2d721a
TH
1910 lba_desc = "LBA";
1911 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1912 if (ata_id_has_lba48(id)) {
8bf62ece 1913 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1914 lba_desc = "LBA48";
6fc49adb
TH
1915
1916 if (dev->n_sectors >= (1UL << 28) &&
1917 ata_id_has_flush_ext(id))
1918 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1919 }
8bf62ece 1920
1e999736
AC
1921 if (ata_id_hpa_enabled(dev->id))
1922 dev->n_sectors = ata_hpa_resize(dev);
1923
a6e6ce8e
TH
1924 /* config NCQ */
1925 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1926
8bf62ece 1927 /* print device info to dmesg */
3f64f565
EM
1928 if (ata_msg_drv(ap) && print_info) {
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%s: %s, %s, max %s\n",
1931 revbuf, modelbuf, fwrevbuf,
1932 ata_mode_string(xfer_mask));
1933 ata_dev_printk(dev, KERN_INFO,
1934 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1935 (unsigned long long)dev->n_sectors,
3f64f565
EM
1936 dev->multi_count, lba_desc, ncq_desc);
1937 }
ffeae418 1938 } else {
8bf62ece
AL
1939 /* CHS */
1940
1941 /* Default translation */
1148c3a7
TH
1942 dev->cylinders = id[1];
1943 dev->heads = id[3];
1944 dev->sectors = id[6];
8bf62ece 1945
1148c3a7 1946 if (ata_id_current_chs_valid(id)) {
8bf62ece 1947 /* Current CHS translation is valid. */
1148c3a7
TH
1948 dev->cylinders = id[54];
1949 dev->heads = id[55];
1950 dev->sectors = id[56];
8bf62ece
AL
1951 }
1952
1953 /* print device info to dmesg */
3f64f565 1954 if (ata_msg_drv(ap) && print_info) {
88574551 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%s: %s, %s, max %s\n",
1957 revbuf, modelbuf, fwrevbuf,
1958 ata_mode_string(xfer_mask));
a84471fe 1959 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev->n_sectors,
1962 dev->multi_count, dev->cylinders,
1963 dev->heads, dev->sectors);
1964 }
07f6f7d0
AL
1965 }
1966
6e7846e9 1967 dev->cdb_len = 16;
1da177e4
LT
1968 }
1969
1970 /* ATAPI-specific feature tests */
2c13b7ce 1971 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1972 char *cdb_intr_string = "";
1973
1148c3a7 1974 rc = atapi_cdb_len(id);
1da177e4 1975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1976 if (ata_msg_warn(ap))
88574551
TH
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "unsupported CDB len\n");
ffeae418 1979 rc = -EINVAL;
1da177e4
LT
1980 goto err_out_nosup;
1981 }
6e7846e9 1982 dev->cdb_len = (unsigned int) rc;
1da177e4 1983
08a556db 1984 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1985 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1986 cdb_intr_string = ", CDB intr";
1987 }
312f7da2 1988
1da177e4 1989 /* print device info to dmesg */
5afc8142 1990 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1991 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask),
1993 cdb_intr_string);
1da177e4
LT
1994 }
1995
914ed354
TH
1996 /* determine max_sectors */
1997 dev->max_sectors = ATA_MAX_SECTORS;
1998 if (dev->flags & ATA_DFLAG_LBA48)
1999 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2000
93590859
AC
2001 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2004 idiot */
2005 if (print_info) {
2006 ata_dev_printk(dev, KERN_WARNING,
2007"Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev, KERN_WARNING,
2009"fault or invalid emulation. Contact drive vendor for information.\n");
2010 }
2011 }
2012
4b2f3ede 2013 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2014 if (ata_dev_knobble(dev)) {
5afc8142 2015 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2016 ata_dev_printk(dev, KERN_INFO,
2017 "applying bridge limits\n");
5a529139 2018 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2019 dev->max_sectors = ATA_MAX_SECTORS;
2020 }
2021
18d6e9d5 2022 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2023 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 dev->max_sectors);
18d6e9d5 2025
6f23a31d
AL
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2028 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2029
4b2f3ede 2030 if (ap->ops->dev_config)
cd0d3bbc 2031 ap->ops->dev_config(dev);
4b2f3ede 2032
0dd4b21f
BP
2033 if (ata_msg_probe(ap))
2034 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__, ata_chk_status(ap));
ffeae418 2036 return 0;
1da177e4
LT
2037
2038err_out_nosup:
0dd4b21f 2039 if (ata_msg_probe(ap))
88574551
TH
2040 ata_dev_printk(dev, KERN_DEBUG,
2041 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2042 return rc;
1da177e4
LT
2043}
2044
be0d18df 2045/**
2e41e8e6 2046 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2047 * @ap: port
2048 *
2e41e8e6 2049 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2050 * detection.
2051 */
2052
2053int ata_cable_40wire(struct ata_port *ap)
2054{
2055 return ATA_CBL_PATA40;
2056}
2057
2058/**
2e41e8e6 2059 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2060 * @ap: port
2061 *
2e41e8e6 2062 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2063 * detection.
2064 */
2065
2066int ata_cable_80wire(struct ata_port *ap)
2067{
2068 return ATA_CBL_PATA80;
2069}
2070
2071/**
2072 * ata_cable_unknown - return unknown PATA cable.
2073 * @ap: port
2074 *
2075 * Helper method for drivers which have no PATA cable detection.
2076 */
2077
2078int ata_cable_unknown(struct ata_port *ap)
2079{
2080 return ATA_CBL_PATA_UNK;
2081}
2082
2083/**
2084 * ata_cable_sata - return SATA cable type
2085 * @ap: port
2086 *
2087 * Helper method for drivers which have SATA cables
2088 */
2089
2090int ata_cable_sata(struct ata_port *ap)
2091{
2092 return ATA_CBL_SATA;
2093}
2094
1da177e4
LT
2095/**
2096 * ata_bus_probe - Reset and probe ATA bus
2097 * @ap: Bus to probe
2098 *
0cba632b
JG
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2101 * the bus.
2102 *
1da177e4 2103 * LOCKING:
0cba632b 2104 * PCI/etc. bus probe sem.
1da177e4
LT
2105 *
2106 * RETURNS:
96072e69 2107 * Zero on success, negative errno otherwise.
1da177e4
LT
2108 */
2109
80289167 2110int ata_bus_probe(struct ata_port *ap)
1da177e4 2111{
28ca5c57 2112 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2113 int tries[ATA_MAX_DEVICES];
4ae72a1e 2114 int i, rc;
e82cbdb9 2115 struct ata_device *dev;
1da177e4 2116
28ca5c57 2117 ata_port_probe(ap);
c19ba8af 2118
14d2bac1
TH
2119 for (i = 0; i < ATA_MAX_DEVICES; i++)
2120 tries[i] = ATA_PROBE_MAX_TRIES;
2121
2122 retry:
2044470c 2123 /* reset and determine device classes */
52783c5d 2124 ap->ops->phy_reset(ap);
2061a47a 2125
52783c5d
TH
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
c19ba8af 2128
52783c5d
TH
2129 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2130 dev->class != ATA_DEV_UNKNOWN)
2131 classes[dev->devno] = dev->class;
2132 else
2133 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2134
52783c5d 2135 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2136 }
1da177e4 2137
52783c5d 2138 ata_port_probe(ap);
2044470c 2139
b6079ca4
AC
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2142
2143 for (i = 0; i < ATA_MAX_DEVICES; i++)
2144 ap->device[i].pio_mode = XFER_PIO_0;
2145
f31f0cc2
JG
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2148 the slave device */
2149
2150 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2151 dev = &ap->device[i];
28ca5c57 2152
ec573755
TH
2153 if (tries[i])
2154 dev->class = classes[i];
ffeae418 2155
14d2bac1 2156 if (!ata_dev_enabled(dev))
ffeae418 2157 continue;
ffeae418 2158
bff04647
TH
2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 dev->id);
14d2bac1
TH
2161 if (rc)
2162 goto fail;
f31f0cc2
JG
2163 }
2164
be0d18df
AC
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap->ops->cable_detect)
2167 ap->cbl = ap->ops->cable_detect(ap);
2168
f31f0cc2
JG
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2171
2172 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2173 dev = &ap->device[i];
2174 if (!ata_dev_enabled(dev))
2175 continue;
14d2bac1 2176
efdaedc4
TH
2177 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2178 rc = ata_dev_configure(dev);
2179 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2180 if (rc)
2181 goto fail;
1da177e4
LT
2182 }
2183
e82cbdb9 2184 /* configure transfer mode */
3adcebb2 2185 rc = ata_set_mode(ap, &dev);
4ae72a1e 2186 if (rc)
51713d35 2187 goto fail;
1da177e4 2188
e82cbdb9
TH
2189 for (i = 0; i < ATA_MAX_DEVICES; i++)
2190 if (ata_dev_enabled(&ap->device[i]))
2191 return 0;
1da177e4 2192
e82cbdb9
TH
2193 /* no device present, disable port */
2194 ata_port_disable(ap);
1da177e4 2195 ap->ops->port_disable(ap);
96072e69 2196 return -ENODEV;
14d2bac1
TH
2197
2198 fail:
4ae72a1e
TH
2199 tries[dev->devno]--;
2200
14d2bac1
TH
2201 switch (rc) {
2202 case -EINVAL:
4ae72a1e 2203 /* eeek, something went very wrong, give up */
14d2bac1
TH
2204 tries[dev->devno] = 0;
2205 break;
4ae72a1e
TH
2206
2207 case -ENODEV:
2208 /* give it just one more chance */
2209 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2210 case -EIO:
4ae72a1e
TH
2211 if (tries[dev->devno] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2214 */
2215 sata_down_spd_limit(ap);
2216 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2217 }
14d2bac1
TH
2218 }
2219
4ae72a1e 2220 if (!tries[dev->devno])
3373efd8 2221 ata_dev_disable(dev);
ec573755 2222
14d2bac1 2223 goto retry;
1da177e4
LT
2224}
2225
2226/**
0cba632b
JG
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
1da177e4 2229 *
0cba632b
JG
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2232 *
cca3974e 2233 * LOCKING: host lock, or some other form of
0cba632b 2234 * serialization.
1da177e4
LT
2235 */
2236
2237void ata_port_probe(struct ata_port *ap)
2238{
198e0fed 2239 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2240}
2241
3be680b7
TH
2242/**
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2245 *
2246 * This function prints link speed and status of a SATA link.
2247 *
2248 * LOCKING:
2249 * None.
2250 */
43727fbc 2251void sata_print_link_status(struct ata_port *ap)
3be680b7 2252{
6d5f9732 2253 u32 sstatus, scontrol, tmp;
3be680b7 2254
81952c54 2255 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2256 return;
81952c54 2257 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2258
81952c54 2259 if (ata_port_online(ap)) {
3be680b7 2260 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2261 ata_port_printk(ap, KERN_INFO,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2264 } else {
f15a1daf
TH
2265 ata_port_printk(ap, KERN_INFO,
2266 "SATA link down (SStatus %X SControl %X)\n",
2267 sstatus, scontrol);
3be680b7
TH
2268 }
2269}
2270
1da177e4 2271/**
780a87f7
JG
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
1da177e4 2274 *
780a87f7
JG
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
1da177e4
LT
2278 *
2279 * LOCKING:
0cba632b 2280 * PCI/etc. bus probe sem.
1da177e4
LT
2281 *
2282 */
2283void __sata_phy_reset(struct ata_port *ap)
2284{
2285 u32 sstatus;
2286 unsigned long timeout = jiffies + (HZ * 5);
2287
2288 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2289 /* issue phy wake/reset */
81952c54 2290 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 mdelay(1);
1da177e4 2294 }
81952c54
TH
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2297
2298 /* wait for phy to become ready, if necessary */
2299 do {
2300 msleep(200);
81952c54 2301 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2302 if ((sstatus & 0xf) != 1)
2303 break;
2304 } while (time_before(jiffies, timeout));
2305
3be680b7
TH
2306 /* print link status */
2307 sata_print_link_status(ap);
656563e3 2308
3be680b7 2309 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2310 if (!ata_port_offline(ap))
1da177e4 2311 ata_port_probe(ap);
3be680b7 2312 else
1da177e4 2313 ata_port_disable(ap);
1da177e4 2314
198e0fed 2315 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2316 return;
2317
2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 ata_port_disable(ap);
2320 return;
2321 }
2322
2323 ap->cbl = ATA_CBL_SATA;
2324}
2325
2326/**
780a87f7
JG
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
1da177e4 2329 *
780a87f7
JG
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
1da177e4
LT
2332 *
2333 * LOCKING:
0cba632b 2334 * PCI/etc. bus probe sem.
1da177e4
LT
2335 *
2336 */
2337void sata_phy_reset(struct ata_port *ap)
2338{
2339 __sata_phy_reset(ap);
198e0fed 2340 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2341 return;
2342 ata_bus_reset(ap);
2343}
2344
ebdfca6e
AC
2345/**
2346 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2347 * @adev: device
2348 *
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2351 */
2e9edbf8 2352
3373efd8 2353struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2354{
3373efd8 2355 struct ata_port *ap = adev->ap;
ebdfca6e 2356 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2357 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2358 return NULL;
2359 return pair;
2360}
2361
1da177e4 2362/**
780a87f7
JG
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
1da177e4 2365 *
780a87f7
JG
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2369 * on this port.
2370 *
cca3974e 2371 * LOCKING: host lock, or some other form of
780a87f7 2372 * serialization.
1da177e4
LT
2373 */
2374
2375void ata_port_disable(struct ata_port *ap)
2376{
2377 ap->device[0].class = ATA_DEV_NONE;
2378 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2379 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2380}
2381
1c3fae4d 2382/**
3c567b7d 2383 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2384 * @ap: Port to adjust SATA spd limit for
2385 *
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
3c567b7d 2388 * using sata_set_spd().
1c3fae4d
TH
2389 *
2390 * LOCKING:
2391 * Inherited from caller.
2392 *
2393 * RETURNS:
2394 * 0 on success, negative errno on failure
2395 */
3c567b7d 2396int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2397{
81952c54
TH
2398 u32 sstatus, spd, mask;
2399 int rc, highbit;
1c3fae4d 2400
81952c54
TH
2401 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2402 if (rc)
2403 return rc;
1c3fae4d
TH
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
81952c54 2411 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2412 if (spd <= 1)
2413 return -EINVAL;
2414 spd--;
2415 mask &= (1 << spd) - 1;
2416 if (!mask)
2417 return -EINVAL;
2418
2419 ap->sata_spd_limit = mask;
2420
f15a1daf
TH
2421 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask)));
1c3fae4d
TH
2423
2424 return 0;
2425}
2426
3c567b7d 2427static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2428{
2429 u32 spd, limit;
2430
2431 if (ap->sata_spd_limit == UINT_MAX)
2432 limit = 0;
2433 else
2434 limit = fls(ap->sata_spd_limit);
2435
2436 spd = (*scontrol >> 4) & 0xf;
2437 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2438
2439 return spd != limit;
2440}
2441
2442/**
3c567b7d 2443 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2444 * @ap: Port in question
2445 *
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2449 * configuration.
2450 *
2451 * LOCKING:
2452 * Inherited from caller.
2453 *
2454 * RETURNS:
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2456 */
3c567b7d 2457int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2458{
2459 u32 scontrol;
2460
81952c54 2461 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2462 return 0;
2463
3c567b7d 2464 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2465}
2466
2467/**
3c567b7d 2468 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2469 * @ap: Port to set SATA spd for
2470 *
2471 * Set SATA spd of @ap according to sata_spd_limit.
2472 *
2473 * LOCKING:
2474 * Inherited from caller.
2475 *
2476 * RETURNS:
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2478 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2479 */
3c567b7d 2480int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2481{
2482 u32 scontrol;
81952c54 2483 int rc;
1c3fae4d 2484
81952c54
TH
2485 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2486 return rc;
1c3fae4d 2487
3c567b7d 2488 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2489 return 0;
2490
81952c54
TH
2491 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2492 return rc;
2493
1c3fae4d
TH
2494 return 1;
2495}
2496
452503f9
AC
2497/*
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2500 */
2501/*
b352e57d 2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2505 *
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2507 */
2508
2509static const struct ata_timing ata_timing[] = {
2510
2511 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2515
b352e57d
AC
2516 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2518 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2521
2522/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2523
452503f9
AC
2524 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2527
452503f9
AC
2528 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2531
b352e57d
AC
2532 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2534 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2536
2537 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2540
2541/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2542
2543 { 0xFF }
2544};
2545
2546#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2548
2549static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2550{
2551 q->setup = EZ(t->setup * 1000, T);
2552 q->act8b = EZ(t->act8b * 1000, T);
2553 q->rec8b = EZ(t->rec8b * 1000, T);
2554 q->cyc8b = EZ(t->cyc8b * 1000, T);
2555 q->active = EZ(t->active * 1000, T);
2556 q->recover = EZ(t->recover * 1000, T);
2557 q->cycle = EZ(t->cycle * 1000, T);
2558 q->udma = EZ(t->udma * 1000, UT);
2559}
2560
2561void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2562 struct ata_timing *m, unsigned int what)
2563{
2564 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2565 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2566 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2567 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2568 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2569 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2570 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2571 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2572}
2573
2574static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2575{
2576 const struct ata_timing *t;
2577
2578 for (t = ata_timing; t->mode != speed; t++)
91190758 2579 if (t->mode == 0xFF)
452503f9 2580 return NULL;
2e9edbf8 2581 return t;
452503f9
AC
2582}
2583
2584int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2585 struct ata_timing *t, int T, int UT)
2586{
2587 const struct ata_timing *s;
2588 struct ata_timing p;
2589
2590 /*
2e9edbf8 2591 * Find the mode.
75b1f2f8 2592 */
452503f9
AC
2593
2594 if (!(s = ata_timing_find_mode(speed)))
2595 return -EINVAL;
2596
75b1f2f8
AL
2597 memcpy(t, s, sizeof(*s));
2598
452503f9
AC
2599 /*
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2602 */
2603
2604 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2605 memset(&p, 0, sizeof(p));
2606 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2607 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2608 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2609 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2610 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2611 }
2612 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2613 }
2614
2615 /*
2616 * Convert the timing to bus clock counts.
2617 */
2618
75b1f2f8 2619 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2620
2621 /*
c893a3ae
RD
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2625 */
2626
fd3367af 2627 if (speed > XFER_PIO_6) {
452503f9
AC
2628 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2629 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2630 }
2631
2632 /*
c893a3ae 2633 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2634 */
2635
2636 if (t->act8b + t->rec8b < t->cyc8b) {
2637 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2638 t->rec8b = t->cyc8b - t->act8b;
2639 }
2640
2641 if (t->active + t->recover < t->cycle) {
2642 t->active += (t->cycle - (t->active + t->recover)) / 2;
2643 t->recover = t->cycle - t->active;
2644 }
4f701d1e
AC
2645
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t->active + t->recover > t->cycle)
2650 t->cycle = t->active + t->recover;
452503f9
AC
2651
2652 return 0;
2653}
2654
cf176e1a
TH
2655/**
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2657 * @dev: Device to adjust xfer masks
458337db 2658 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2659 *
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2663 *
2664 * LOCKING:
2665 * Inherited from caller.
2666 *
2667 * RETURNS:
2668 * 0 on success, negative errno on failure
2669 */
458337db 2670int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2671{
458337db
TH
2672 char buf[32];
2673 unsigned int orig_mask, xfer_mask;
2674 unsigned int pio_mask, mwdma_mask, udma_mask;
2675 int quiet, highbit;
cf176e1a 2676
458337db
TH
2677 quiet = !!(sel & ATA_DNXFER_QUIET);
2678 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2679
458337db
TH
2680 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2681 dev->mwdma_mask,
2682 dev->udma_mask);
2683 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2684
458337db
TH
2685 switch (sel) {
2686 case ATA_DNXFER_PIO:
2687 highbit = fls(pio_mask) - 1;
2688 pio_mask &= ~(1 << highbit);
2689 break;
2690
2691 case ATA_DNXFER_DMA:
2692 if (udma_mask) {
2693 highbit = fls(udma_mask) - 1;
2694 udma_mask &= ~(1 << highbit);
2695 if (!udma_mask)
2696 return -ENOENT;
2697 } else if (mwdma_mask) {
2698 highbit = fls(mwdma_mask) - 1;
2699 mwdma_mask &= ~(1 << highbit);
2700 if (!mwdma_mask)
2701 return -ENOENT;
2702 }
2703 break;
2704
2705 case ATA_DNXFER_40C:
2706 udma_mask &= ATA_UDMA_MASK_40C;
2707 break;
2708
2709 case ATA_DNXFER_FORCE_PIO0:
2710 pio_mask &= 1;
2711 case ATA_DNXFER_FORCE_PIO:
2712 mwdma_mask = 0;
2713 udma_mask = 0;
2714 break;
2715
458337db
TH
2716 default:
2717 BUG();
2718 }
2719
2720 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2721
2722 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2723 return -ENOENT;
2724
2725 if (!quiet) {
2726 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2727 snprintf(buf, sizeof(buf), "%s:%s",
2728 ata_mode_string(xfer_mask),
2729 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2730 else
2731 snprintf(buf, sizeof(buf), "%s",
2732 ata_mode_string(xfer_mask));
2733
2734 ata_dev_printk(dev, KERN_WARNING,
2735 "limiting speed to %s\n", buf);
2736 }
cf176e1a
TH
2737
2738 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2739 &dev->udma_mask);
2740
cf176e1a 2741 return 0;
cf176e1a
TH
2742}
2743
3373efd8 2744static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2745{
baa1e78a 2746 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2747 unsigned int err_mask;
2748 int rc;
1da177e4 2749
e8384607 2750 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2751 if (dev->xfer_shift == ATA_SHIFT_PIO)
2752 dev->flags |= ATA_DFLAG_PIO;
2753
3373efd8 2754 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2757 err_mask &= ~AC_ERR_DEV;
2758
83206a29 2759 if (err_mask) {
f15a1daf
TH
2760 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2762 return -EIO;
2763 }
1da177e4 2764
baa1e78a 2765 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2766 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2767 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2768 if (rc)
83206a29 2769 return rc;
48a8a14f 2770
23e71c3d
TH
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2773
f15a1daf
TH
2774 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2776 return 0;
1da177e4
LT
2777}
2778
1da177e4 2779/**
04351821 2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2781 * @ap: port on which timings will be programmed
e82cbdb9 2782 * @r_failed_dev: out paramter for failed device
1da177e4 2783 *
04351821
AC
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2787 * returned in @r_failed_dev.
780a87f7 2788 *
1da177e4 2789 * LOCKING:
0cba632b 2790 * PCI/etc. bus probe sem.
e82cbdb9
TH
2791 *
2792 * RETURNS:
2793 * 0 on success, negative errno otherwise
1da177e4 2794 */
04351821
AC
2795
2796int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2797{
e8e0619f 2798 struct ata_device *dev;
e82cbdb9 2799 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2800
3adcebb2 2801
a6d5a51c
TH
2802 /* step 1: calculate xfer_mask */
2803 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2804 unsigned int pio_mask, dma_mask;
a6d5a51c 2805
e8e0619f
TH
2806 dev = &ap->device[i];
2807
e1211e3f 2808 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2809 continue;
2810
3373efd8 2811 ata_dev_xfermask(dev);
1da177e4 2812
acf356b1
TH
2813 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2814 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2815 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2816 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2817
4f65977d 2818 found = 1;
5444a6f4
AC
2819 if (dev->dma_mode)
2820 used_dma = 1;
a6d5a51c 2821 }
4f65977d 2822 if (!found)
e82cbdb9 2823 goto out;
a6d5a51c
TH
2824
2825 /* step 2: always set host PIO timings */
e8e0619f
TH
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 dev = &ap->device[i];
2828 if (!ata_dev_enabled(dev))
2829 continue;
2830
2831 if (!dev->pio_mode) {
f15a1daf 2832 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2833 rc = -EINVAL;
e82cbdb9 2834 goto out;
e8e0619f
TH
2835 }
2836
2837 dev->xfer_mode = dev->pio_mode;
2838 dev->xfer_shift = ATA_SHIFT_PIO;
2839 if (ap->ops->set_piomode)
2840 ap->ops->set_piomode(ap, dev);
2841 }
1da177e4 2842
a6d5a51c 2843 /* step 3: set host DMA timings */
e8e0619f
TH
2844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2845 dev = &ap->device[i];
2846
2847 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2848 continue;
2849
2850 dev->xfer_mode = dev->dma_mode;
2851 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2852 if (ap->ops->set_dmamode)
2853 ap->ops->set_dmamode(ap, dev);
2854 }
1da177e4
LT
2855
2856 /* step 4: update devices' xfer mode */
83206a29 2857 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2858 dev = &ap->device[i];
1da177e4 2859
18d90deb 2860 /* don't update suspended devices' xfer mode */
02670bf3 2861 if (!ata_dev_ready(dev))
83206a29
TH
2862 continue;
2863
3373efd8 2864 rc = ata_dev_set_mode(dev);
5bbc53f4 2865 if (rc)
e82cbdb9 2866 goto out;
83206a29 2867 }
1da177e4 2868
e8e0619f
TH
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
5444a6f4 2871 */
cca3974e 2872 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2873 ap->host->simplex_claimed = ap;
5444a6f4 2874
e8e0619f 2875 /* step5: chip specific finalisation */
1da177e4
LT
2876 if (ap->ops->post_set_mode)
2877 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2878 out:
2879 if (rc)
2880 *r_failed_dev = dev;
2881 return rc;
1da177e4
LT
2882}
2883
04351821
AC
2884/**
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2888 *
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2892 *
2893 * LOCKING:
2894 * PCI/etc. bus probe sem.
2895 *
2896 * RETURNS:
2897 * 0 on success, negative errno otherwise
2898 */
2899int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2900{
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
2903 return ap->ops->set_mode(ap, r_failed_dev);
2904 return ata_do_set_mode(ap, r_failed_dev);
2905}
2906
1fdffbce
JG
2907/**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
cca3974e 2917 * spin_lock_irqsave(host lock)
1fdffbce
JG
2918 */
2919
2920static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922{
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925}
2926
1da177e4
LT
2927/**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
780a87f7
JG
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
d1adc1bb
TH
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
1da177e4 2941 */
d1adc1bb
TH
2942int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2944{
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
1da177e4
LT
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
d1adc1bb 2957 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2958 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
1da177e4
LT
2961
2962 timeout = timer_start + tmout;
d1adc1bb
TH
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
1da177e4
LT
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
d1adc1bb
TH
2969 if (status == 0xff)
2970 return -ENODEV;
2971
1da177e4 2972 if (status & ATA_BUSY) {
f15a1daf 2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
d1adc1bb 2976 return -EBUSY;
1da177e4
LT
2977 }
2978
2979 return 0;
2980}
2981
d4b2bab4
TH
2982/**
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2986 *
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2988 * occurs.
2989 *
2990 * LOCKING:
2991 * Kernel thread context (may sleep).
2992 *
2993 * RETURNS:
2994 * 0 on success, -errno otherwise.
2995 */
2996int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2997{
2998 unsigned long start = jiffies;
2999 int warned = 0;
3000
3001 while (1) {
3002 u8 status = ata_chk_status(ap);
3003 unsigned long now = jiffies;
3004
3005 if (!(status & ATA_BUSY))
3006 return 0;
3007 if (status == 0xff)
3008 return -ENODEV;
3009 if (time_after(now, deadline))
3010 return -EBUSY;
3011
3012 if (!warned && time_after(now, start + 5 * HZ) &&
3013 (deadline - now > 3 * HZ)) {
3014 ata_port_printk(ap, KERN_WARNING,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status);
3017 warned = 1;
3018 }
3019
3020 msleep(50);
3021 }
3022}
3023
3024static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3025 unsigned long deadline)
1da177e4
LT
3026{
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028 unsigned int dev0 = devmask & (1 << 0);
3029 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3030 int rc, ret = 0;
1da177e4
LT
3031
3032 /* if device 0 was found in ata_devchk, wait for its
3033 * BSY bit to clear
3034 */
d4b2bab4
TH
3035 if (dev0) {
3036 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3037 if (rc) {
3038 if (rc != -ENODEV)
3039 return rc;
3040 ret = rc;
3041 }
d4b2bab4 3042 }
1da177e4
LT
3043
3044 /* if device 1 was found in ata_devchk, wait for
3045 * register access, then wait for BSY to clear
3046 */
1da177e4
LT
3047 while (dev1) {
3048 u8 nsect, lbal;
3049
3050 ap->ops->dev_select(ap, 1);
0d5ff566
TH
3051 nsect = ioread8(ioaddr->nsect_addr);
3052 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
3053 if ((nsect == 1) && (lbal == 1))
3054 break;
d4b2bab4
TH
3055 if (time_after(jiffies, deadline))
3056 return -EBUSY;
1da177e4
LT
3057 msleep(50); /* give drive a breather */
3058 }
d4b2bab4
TH
3059 if (dev1) {
3060 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3061 if (rc) {
3062 if (rc != -ENODEV)
3063 return rc;
3064 ret = rc;
3065 }
d4b2bab4 3066 }
1da177e4
LT
3067
3068 /* is all this really necessary? */
3069 ap->ops->dev_select(ap, 0);
3070 if (dev1)
3071 ap->ops->dev_select(ap, 1);
3072 if (dev0)
3073 ap->ops->dev_select(ap, 0);
d4b2bab4 3074
9b89391c 3075 return ret;
1da177e4
LT
3076}
3077
d4b2bab4
TH
3078static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3079 unsigned long deadline)
1da177e4
LT
3080{
3081 struct ata_ioports *ioaddr = &ap->ioaddr;
3082
44877b4e 3083 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3084
3085 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3086 iowrite8(ap->ctl, ioaddr->ctl_addr);
3087 udelay(20); /* FIXME: flush */
3088 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3091
3092 /* spec mandates ">= 2ms" before checking status.
3093 * We wait 150ms, because that was the magic delay used for
3094 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3095 * between when the ATA command register is written, and then
3096 * status is checked. Because waiting for "a while" before
3097 * checking status is fine, post SRST, we perform this magic
3098 * delay here as well.
09c7ad79
AC
3099 *
3100 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3101 */
3102 msleep(150);
3103
2e9edbf8 3104 /* Before we perform post reset processing we want to see if
298a41ca
TH
3105 * the bus shows 0xFF because the odd clown forgets the D7
3106 * pulldown resistor.
3107 */
d1adc1bb 3108 if (ata_check_status(ap) == 0xFF)
9b89391c 3109 return -ENODEV;
09c7ad79 3110
d4b2bab4 3111 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3112}
3113
3114/**
3115 * ata_bus_reset - reset host port and associated ATA channel
3116 * @ap: port to reset
3117 *
3118 * This is typically the first time we actually start issuing
3119 * commands to the ATA channel. We wait for BSY to clear, then
3120 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3121 * result. Determine what devices, if any, are on the channel
3122 * by looking at the device 0/1 error register. Look at the signature
3123 * stored in each device's taskfile registers, to determine if
3124 * the device is ATA or ATAPI.
3125 *
3126 * LOCKING:
0cba632b 3127 * PCI/etc. bus probe sem.
cca3974e 3128 * Obtains host lock.
1da177e4
LT
3129 *
3130 * SIDE EFFECTS:
198e0fed 3131 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3132 */
3133
3134void ata_bus_reset(struct ata_port *ap)
3135{
3136 struct ata_ioports *ioaddr = &ap->ioaddr;
3137 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3138 u8 err;
aec5c3c1 3139 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3140 int rc;
1da177e4 3141
44877b4e 3142 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3143
3144 /* determine if device 0/1 are present */
3145 if (ap->flags & ATA_FLAG_SATA_RESET)
3146 dev0 = 1;
3147 else {
3148 dev0 = ata_devchk(ap, 0);
3149 if (slave_possible)
3150 dev1 = ata_devchk(ap, 1);
3151 }
3152
3153 if (dev0)
3154 devmask |= (1 << 0);
3155 if (dev1)
3156 devmask |= (1 << 1);
3157
3158 /* select device 0 again */
3159 ap->ops->dev_select(ap, 0);
3160
3161 /* issue bus reset */
9b89391c
TH
3162 if (ap->flags & ATA_FLAG_SRST) {
3163 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3164 if (rc && rc != -ENODEV)
aec5c3c1 3165 goto err_out;
9b89391c 3166 }
1da177e4
LT
3167
3168 /*
3169 * determine by signature whether we have ATA or ATAPI devices
3170 */
b4dc7623 3171 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3172 if ((slave_possible) && (err != 0x81))
b4dc7623 3173 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3174
3175 /* re-enable interrupts */
83625006 3176 ap->ops->irq_on(ap);
1da177e4
LT
3177
3178 /* is double-select really necessary? */
3179 if (ap->device[1].class != ATA_DEV_NONE)
3180 ap->ops->dev_select(ap, 1);
3181 if (ap->device[0].class != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 0);
3183
3184 /* if no devices were detected, disable this port */
3185 if ((ap->device[0].class == ATA_DEV_NONE) &&
3186 (ap->device[1].class == ATA_DEV_NONE))
3187 goto err_out;
3188
3189 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3190 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3191 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3192 }
3193
3194 DPRINTK("EXIT\n");
3195 return;
3196
3197err_out:
f15a1daf 3198 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3199 ap->ops->port_disable(ap);
3200
3201 DPRINTK("EXIT\n");
3202}
3203
d7bb4cc7
TH
3204/**
3205 * sata_phy_debounce - debounce SATA phy status
3206 * @ap: ATA port to debounce SATA phy status for
3207 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3208 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3209 *
3210 * Make sure SStatus of @ap reaches stable state, determined by
3211 * holding the same value where DET is not 1 for @duration polled
3212 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3213 * beginning of the stable state. Because DET gets stuck at 1 on
3214 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3215 * until timeout then returns 0 if DET is stable at 1.
3216 *
d4b2bab4
TH
3217 * @timeout is further limited by @deadline. The sooner of the
3218 * two is used.
3219 *
d7bb4cc7
TH
3220 * LOCKING:
3221 * Kernel thread context (may sleep)
3222 *
3223 * RETURNS:
3224 * 0 on success, -errno on failure.
3225 */
d4b2bab4
TH
3226int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3227 unsigned long deadline)
7a7921e8 3228{
d7bb4cc7 3229 unsigned long interval_msec = params[0];
d4b2bab4
TH
3230 unsigned long duration = msecs_to_jiffies(params[1]);
3231 unsigned long last_jiffies, t;
d7bb4cc7
TH
3232 u32 last, cur;
3233 int rc;
3234
d4b2bab4
TH
3235 t = jiffies + msecs_to_jiffies(params[2]);
3236 if (time_before(t, deadline))
3237 deadline = t;
3238
d7bb4cc7
TH
3239 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3240 return rc;
3241 cur &= 0xf;
3242
3243 last = cur;
3244 last_jiffies = jiffies;
3245
3246 while (1) {
3247 msleep(interval_msec);
3248 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3249 return rc;
3250 cur &= 0xf;
3251
3252 /* DET stable? */
3253 if (cur == last) {
d4b2bab4 3254 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3255 continue;
3256 if (time_after(jiffies, last_jiffies + duration))
3257 return 0;
3258 continue;
3259 }
3260
3261 /* unstable, start over */
3262 last = cur;
3263 last_jiffies = jiffies;
3264
d4b2bab4
TH
3265 /* check deadline */
3266 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3267 return -EBUSY;
3268 }
3269}
3270
3271/**
3272 * sata_phy_resume - resume SATA phy
3273 * @ap: ATA port to resume SATA phy for
3274 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3275 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3276 *
3277 * Resume SATA phy of @ap and debounce it.
3278 *
3279 * LOCKING:
3280 * Kernel thread context (may sleep)
3281 *
3282 * RETURNS:
3283 * 0 on success, -errno on failure.
3284 */
d4b2bab4
TH
3285int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3286 unsigned long deadline)
d7bb4cc7
TH
3287{
3288 u32 scontrol;
81952c54
TH
3289 int rc;
3290
3291 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3292 return rc;
7a7921e8 3293
852ee16a 3294 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3295
3296 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3297 return rc;
7a7921e8 3298
d7bb4cc7
TH
3299 /* Some PHYs react badly if SStatus is pounded immediately
3300 * after resuming. Delay 200ms before debouncing.
3301 */
3302 msleep(200);
7a7921e8 3303
d4b2bab4 3304 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3305}
3306
f5914a46
TH
3307/**
3308 * ata_std_prereset - prepare for reset
3309 * @ap: ATA port to be reset
d4b2bab4 3310 * @deadline: deadline jiffies for the operation
f5914a46 3311 *
b8cffc6a
TH
3312 * @ap is about to be reset. Initialize it. Failure from
3313 * prereset makes libata abort whole reset sequence and give up
3314 * that port, so prereset should be best-effort. It does its
3315 * best to prepare for reset sequence but if things go wrong, it
3316 * should just whine, not fail.
f5914a46
TH
3317 *
3318 * LOCKING:
3319 * Kernel thread context (may sleep)
3320 *
3321 * RETURNS:
3322 * 0 on success, -errno otherwise.
3323 */
d4b2bab4 3324int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3325{
3326 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3327 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3328 int rc;
3329
31daabda 3330 /* handle link resume */
28324304
TH
3331 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3332 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3333 ehc->i.action |= ATA_EH_HARDRESET;
3334
f5914a46
TH
3335 /* if we're about to do hardreset, nothing more to do */
3336 if (ehc->i.action & ATA_EH_HARDRESET)
3337 return 0;
3338
3339 /* if SATA, resume phy */
3340 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3341 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3342 /* whine about phy resume failure but proceed */
3343 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3344 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3345 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3346 }
3347
3348 /* Wait for !BSY if the controller can wait for the first D2H
3349 * Reg FIS and we don't know that no device is attached.
3350 */
b8cffc6a
TH
3351 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3352 rc = ata_wait_ready(ap, deadline);
3353 if (rc) {
3354 ata_port_printk(ap, KERN_WARNING, "device not ready "
3355 "(errno=%d), forcing hardreset\n", rc);
3356 ehc->i.action |= ATA_EH_HARDRESET;
3357 }
3358 }
f5914a46
TH
3359
3360 return 0;
3361}
3362
c2bd5804
TH
3363/**
3364 * ata_std_softreset - reset host port via ATA SRST
3365 * @ap: port to reset
c2bd5804 3366 * @classes: resulting classes of attached devices
d4b2bab4 3367 * @deadline: deadline jiffies for the operation
c2bd5804 3368 *
52783c5d 3369 * Reset host port using ATA SRST.
c2bd5804
TH
3370 *
3371 * LOCKING:
3372 * Kernel thread context (may sleep)
3373 *
3374 * RETURNS:
3375 * 0 on success, -errno otherwise.
3376 */
d4b2bab4
TH
3377int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3378 unsigned long deadline)
c2bd5804
TH
3379{
3380 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3381 unsigned int devmask = 0;
3382 int rc;
c2bd5804
TH
3383 u8 err;
3384
3385 DPRINTK("ENTER\n");
3386
81952c54 3387 if (ata_port_offline(ap)) {
3a39746a
TH
3388 classes[0] = ATA_DEV_NONE;
3389 goto out;
3390 }
3391
c2bd5804
TH
3392 /* determine if device 0/1 are present */
3393 if (ata_devchk(ap, 0))
3394 devmask |= (1 << 0);
3395 if (slave_possible && ata_devchk(ap, 1))
3396 devmask |= (1 << 1);
3397
c2bd5804
TH
3398 /* select device 0 again */
3399 ap->ops->dev_select(ap, 0);
3400
3401 /* issue bus reset */
3402 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3403 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3404 /* if link is occupied, -ENODEV too is an error */
3405 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3406 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3407 return rc;
c2bd5804
TH
3408 }
3409
3410 /* determine by signature whether we have ATA or ATAPI devices */
3411 classes[0] = ata_dev_try_classify(ap, 0, &err);
3412 if (slave_possible && err != 0x81)
3413 classes[1] = ata_dev_try_classify(ap, 1, &err);
3414
3a39746a 3415 out:
c2bd5804
TH
3416 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3417 return 0;
3418}
3419
3420/**
b6103f6d 3421 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3422 * @ap: port to reset
b6103f6d 3423 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3424 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3425 *
3426 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3427 *
3428 * LOCKING:
3429 * Kernel thread context (may sleep)
3430 *
3431 * RETURNS:
3432 * 0 on success, -errno otherwise.
3433 */
d4b2bab4
TH
3434int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3435 unsigned long deadline)
c2bd5804 3436{
852ee16a 3437 u32 scontrol;
81952c54 3438 int rc;
852ee16a 3439
c2bd5804
TH
3440 DPRINTK("ENTER\n");
3441
3c567b7d 3442 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3443 /* SATA spec says nothing about how to reconfigure
3444 * spd. To be on the safe side, turn off phy during
3445 * reconfiguration. This works for at least ICH7 AHCI
3446 * and Sil3124.
3447 */
81952c54 3448 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3449 goto out;
81952c54 3450
a34b6fc0 3451 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3452
3453 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3454 goto out;
1c3fae4d 3455
3c567b7d 3456 sata_set_spd(ap);
1c3fae4d
TH
3457 }
3458
3459 /* issue phy wake/reset */
81952c54 3460 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3461 goto out;
81952c54 3462
852ee16a 3463 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3464
3465 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3466 goto out;
c2bd5804 3467
1c3fae4d 3468 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3469 * 10.4.2 says at least 1 ms.
3470 */
3471 msleep(1);
3472
1c3fae4d 3473 /* bring phy back */
d4b2bab4 3474 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3475 out:
3476 DPRINTK("EXIT, rc=%d\n", rc);
3477 return rc;
3478}
3479
3480/**
3481 * sata_std_hardreset - reset host port via SATA phy reset
3482 * @ap: port to reset
3483 * @class: resulting class of attached device
d4b2bab4 3484 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3485 *
3486 * SATA phy-reset host port using DET bits of SControl register,
3487 * wait for !BSY and classify the attached device.
3488 *
3489 * LOCKING:
3490 * Kernel thread context (may sleep)
3491 *
3492 * RETURNS:
3493 * 0 on success, -errno otherwise.
3494 */
d4b2bab4
TH
3495int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3496 unsigned long deadline)
b6103f6d
TH
3497{
3498 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3499 int rc;
3500
3501 DPRINTK("ENTER\n");
3502
3503 /* do hardreset */
d4b2bab4 3504 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3505 if (rc) {
3506 ata_port_printk(ap, KERN_ERR,
3507 "COMRESET failed (errno=%d)\n", rc);
3508 return rc;
3509 }
c2bd5804 3510
c2bd5804 3511 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3512 if (ata_port_offline(ap)) {
c2bd5804
TH
3513 *class = ATA_DEV_NONE;
3514 DPRINTK("EXIT, link offline\n");
3515 return 0;
3516 }
3517
34fee227
TH
3518 /* wait a while before checking status, see SRST for more info */
3519 msleep(150);
3520
d4b2bab4 3521 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3522 /* link occupied, -ENODEV too is an error */
3523 if (rc) {
f15a1daf 3524 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
c2bd5804
TH
3527 }
3528
3a39746a
TH
3529 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3530
c2bd5804
TH
3531 *class = ata_dev_try_classify(ap, 0, NULL);
3532
3533 DPRINTK("EXIT, class=%u\n", *class);
3534 return 0;
3535}
3536
3537/**
3538 * ata_std_postreset - standard postreset callback
3539 * @ap: the target ata_port
3540 * @classes: classes of attached devices
3541 *
3542 * This function is invoked after a successful reset. Note that
3543 * the device might have been reset more than once using
3544 * different reset methods before postreset is invoked.
c2bd5804 3545 *
c2bd5804
TH
3546 * LOCKING:
3547 * Kernel thread context (may sleep)
3548 */
3549void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3550{
dc2b3515
TH
3551 u32 serror;
3552
c2bd5804
TH
3553 DPRINTK("ENTER\n");
3554
c2bd5804 3555 /* print link status */
81952c54 3556 sata_print_link_status(ap);
c2bd5804 3557
dc2b3515
TH
3558 /* clear SError */
3559 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3560 sata_scr_write(ap, SCR_ERROR, serror);
3561
3a39746a 3562 /* re-enable interrupts */
83625006
AI
3563 if (!ap->ops->error_handler)
3564 ap->ops->irq_on(ap);
c2bd5804
TH
3565
3566 /* is double-select really necessary? */
3567 if (classes[0] != ATA_DEV_NONE)
3568 ap->ops->dev_select(ap, 1);
3569 if (classes[1] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 0);
3571
3a39746a
TH
3572 /* bail out if no device is present */
3573 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3574 DPRINTK("EXIT, no device\n");
3575 return;
3576 }
3577
3578 /* set up device control */
0d5ff566
TH
3579 if (ap->ioaddr.ctl_addr)
3580 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3581
3582 DPRINTK("EXIT\n");
3583}
3584
623a3128
TH
3585/**
3586 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3587 * @dev: device to compare against
3588 * @new_class: class of the new device
3589 * @new_id: IDENTIFY page of the new device
3590 *
3591 * Compare @new_class and @new_id against @dev and determine
3592 * whether @dev is the device indicated by @new_class and
3593 * @new_id.
3594 *
3595 * LOCKING:
3596 * None.
3597 *
3598 * RETURNS:
3599 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3600 */
3373efd8
TH
3601static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3602 const u16 *new_id)
623a3128
TH
3603{
3604 const u16 *old_id = dev->id;
a0cf733b
TH
3605 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3606 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3607 u64 new_n_sectors;
3608
3609 if (dev->class != new_class) {
f15a1daf
TH
3610 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3611 dev->class, new_class);
623a3128
TH
3612 return 0;
3613 }
3614
a0cf733b
TH
3615 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3616 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3617 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3618 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3619 new_n_sectors = ata_id_n_sectors(new_id);
3620
3621 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3622 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3623 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3624 return 0;
3625 }
3626
3627 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3628 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3629 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3630 return 0;
3631 }
3632
3633 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3634 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3635 "%llu != %llu\n",
3636 (unsigned long long)dev->n_sectors,
3637 (unsigned long long)new_n_sectors);
1e999736
AC
3638 /* Are we the boot time size - if so we appear to be the
3639 same disk at this point and our HPA got reapplied */
3640 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3641 && ata_id_hpa_enabled(new_id))
3642 return 1;
623a3128
TH
3643 return 0;
3644 }
3645
3646 return 1;
3647}
3648
3649/**
3650 * ata_dev_revalidate - Revalidate ATA device
623a3128 3651 * @dev: device to revalidate
bff04647 3652 * @readid_flags: read ID flags
623a3128
TH
3653 *
3654 * Re-read IDENTIFY page and make sure @dev is still attached to
3655 * the port.
3656 *
3657 * LOCKING:
3658 * Kernel thread context (may sleep)
3659 *
3660 * RETURNS:
3661 * 0 on success, negative errno otherwise
3662 */
bff04647 3663int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3664{
5eb45c02 3665 unsigned int class = dev->class;
f15a1daf 3666 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3667 int rc;
3668
5eb45c02
TH
3669 if (!ata_dev_enabled(dev)) {
3670 rc = -ENODEV;
3671 goto fail;
3672 }
623a3128 3673
fe635c7e 3674 /* read ID data */
bff04647 3675 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3676 if (rc)
3677 goto fail;
3678
3679 /* is the device still there? */
3373efd8 3680 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3681 rc = -ENODEV;
3682 goto fail;
3683 }
3684
fe635c7e 3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3686
3687 /* configure device according to the new ID */
efdaedc4 3688 rc = ata_dev_configure(dev);
5eb45c02
TH
3689 if (rc == 0)
3690 return 0;
623a3128
TH
3691
3692 fail:
f15a1daf 3693 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3694 return rc;
3695}
3696
6919a0a6
AC
3697struct ata_blacklist_entry {
3698 const char *model_num;
3699 const char *model_rev;
3700 unsigned long horkage;
3701};
3702
3703static const struct ata_blacklist_entry ata_device_blacklist [] = {
3704 /* Devices with DMA related problems under Linux */
3705 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3706 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3707 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3708 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3709 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3711 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3712 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3713 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3714 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3715 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3716 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3717 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3718 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3719 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3720 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3721 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3722 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3723 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3724 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3725 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3726 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3727 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3728 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3729 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3730 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3731 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3732 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3733 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3734
18d6e9d5 3735 /* Weird ATAPI devices */
6f23a31d
AL
3736 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3737 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3738
6919a0a6
AC
3739 /* Devices we expect to fail diagnostics */
3740
3741 /* Devices where NCQ should be avoided */
3742 /* NCQ is slow */
3743 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3744 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3745 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3746 /* NCQ is broken */
3747 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3748 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3749 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3750 /* Blacklist entries taken from Silicon Image 3124/3132
3751 Windows driver .inf file - also several Linux problem reports */
3752 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3753 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3754 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3755
3756 /* Devices with NCQ limits */
3757
3758 /* End Marker */
3759 { }
1da177e4 3760};
2e9edbf8 3761
6919a0a6 3762unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3763{
8bfa79fc
TH
3764 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3765 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3766 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3767
8bfa79fc
TH
3768 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3769 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3770
6919a0a6 3771 while (ad->model_num) {
8bfa79fc 3772 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3773 if (ad->model_rev == NULL)
3774 return ad->horkage;
8bfa79fc 3775 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3776 return ad->horkage;
f4b15fef 3777 }
6919a0a6 3778 ad++;
f4b15fef 3779 }
1da177e4
LT
3780 return 0;
3781}
3782
6919a0a6
AC
3783static int ata_dma_blacklisted(const struct ata_device *dev)
3784{
3785 /* We don't support polling DMA.
3786 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3787 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3788 */
3789 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3790 (dev->flags & ATA_DFLAG_CDB_INTR))
3791 return 1;
3792 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3793}
3794
a6d5a51c
TH
3795/**
3796 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3797 * @dev: Device to compute xfermask for
3798 *
acf356b1
TH
3799 * Compute supported xfermask of @dev and store it in
3800 * dev->*_mask. This function is responsible for applying all
3801 * known limits including host controller limits, device
3802 * blacklist, etc...
a6d5a51c
TH
3803 *
3804 * LOCKING:
3805 * None.
a6d5a51c 3806 */
3373efd8 3807static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3808{
3373efd8 3809 struct ata_port *ap = dev->ap;
cca3974e 3810 struct ata_host *host = ap->host;
a6d5a51c 3811 unsigned long xfer_mask;
1da177e4 3812
37deecb5 3813 /* controller modes available */
565083e1
TH
3814 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3815 ap->mwdma_mask, ap->udma_mask);
3816
8343f889 3817 /* drive modes available */
37deecb5
TH
3818 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3819 dev->mwdma_mask, dev->udma_mask);
3820 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3821
b352e57d
AC
3822 /*
3823 * CFA Advanced TrueIDE timings are not allowed on a shared
3824 * cable
3825 */
3826 if (ata_dev_pair(dev)) {
3827 /* No PIO5 or PIO6 */
3828 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3829 /* No MWDMA3 or MWDMA 4 */
3830 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3831 }
3832
37deecb5
TH
3833 if (ata_dma_blacklisted(dev)) {
3834 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3835 ata_dev_printk(dev, KERN_WARNING,
3836 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3837 }
a6d5a51c 3838
14d66ab7
PV
3839 if ((host->flags & ATA_HOST_SIMPLEX) &&
3840 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3841 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3842 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3843 "other device, disabling DMA\n");
5444a6f4 3844 }
565083e1 3845
e424675f
JG
3846 if (ap->flags & ATA_FLAG_NO_IORDY)
3847 xfer_mask &= ata_pio_mask_no_iordy(dev);
3848
5444a6f4 3849 if (ap->ops->mode_filter)
a76b62ca 3850 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3851
8343f889
RH
3852 /* Apply cable rule here. Don't apply it early because when
3853 * we handle hot plug the cable type can itself change.
3854 * Check this last so that we know if the transfer rate was
3855 * solely limited by the cable.
3856 * Unknown or 80 wire cables reported host side are checked
3857 * drive side as well. Cases where we know a 40wire cable
3858 * is used safely for 80 are not checked here.
3859 */
3860 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3861 /* UDMA/44 or higher would be available */
3862 if((ap->cbl == ATA_CBL_PATA40) ||
3863 (ata_drive_40wire(dev->id) &&
3864 (ap->cbl == ATA_CBL_PATA_UNK ||
3865 ap->cbl == ATA_CBL_PATA80))) {
3866 ata_dev_printk(dev, KERN_WARNING,
3867 "limited to UDMA/33 due to 40-wire cable\n");
3868 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3869 }
3870
565083e1
TH
3871 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3872 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3873}
3874
1da177e4
LT
3875/**
3876 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3877 * @dev: Device to which command will be sent
3878 *
780a87f7
JG
3879 * Issue SET FEATURES - XFER MODE command to device @dev
3880 * on port @ap.
3881 *
1da177e4 3882 * LOCKING:
0cba632b 3883 * PCI/etc. bus probe sem.
83206a29
TH
3884 *
3885 * RETURNS:
3886 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3887 */
3888
3373efd8 3889static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3890{
a0123703 3891 struct ata_taskfile tf;
83206a29 3892 unsigned int err_mask;
1da177e4
LT
3893
3894 /* set up set-features taskfile */
3895 DPRINTK("set features - xfer mode\n");
3896
3373efd8 3897 ata_tf_init(dev, &tf);
a0123703
TH
3898 tf.command = ATA_CMD_SET_FEATURES;
3899 tf.feature = SETFEATURES_XFER;
3900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3901 tf.protocol = ATA_PROT_NODATA;
3902 tf.nsect = dev->xfer_mode;
1da177e4 3903
3373efd8 3904 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3905
83206a29
TH
3906 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3907 return err_mask;
1da177e4
LT
3908}
3909
8bf62ece
AL
3910/**
3911 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3912 * @dev: Device to which command will be sent
e2a7f77a
RD
3913 * @heads: Number of heads (taskfile parameter)
3914 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3915 *
3916 * LOCKING:
6aff8f1f
TH
3917 * Kernel thread context (may sleep)
3918 *
3919 * RETURNS:
3920 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3921 */
3373efd8
TH
3922static unsigned int ata_dev_init_params(struct ata_device *dev,
3923 u16 heads, u16 sectors)
8bf62ece 3924{
a0123703 3925 struct ata_taskfile tf;
6aff8f1f 3926 unsigned int err_mask;
8bf62ece
AL
3927
3928 /* Number of sectors per track 1-255. Number of heads 1-16 */
3929 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3930 return AC_ERR_INVALID;
8bf62ece
AL
3931
3932 /* set up init dev params taskfile */
3933 DPRINTK("init dev params \n");
3934
3373efd8 3935 ata_tf_init(dev, &tf);
a0123703
TH
3936 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3937 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3938 tf.protocol = ATA_PROT_NODATA;
3939 tf.nsect = sectors;
3940 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3941
3373efd8 3942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3943
6aff8f1f
TH
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3945 return err_mask;
8bf62ece
AL
3946}
3947
1da177e4 3948/**
0cba632b
JG
3949 * ata_sg_clean - Unmap DMA memory associated with command
3950 * @qc: Command containing DMA memory to be released
3951 *
3952 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3953 *
3954 * LOCKING:
cca3974e 3955 * spin_lock_irqsave(host lock)
1da177e4 3956 */
70e6ad0c 3957void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3958{
3959 struct ata_port *ap = qc->ap;
cedc9a47 3960 struct scatterlist *sg = qc->__sg;
1da177e4 3961 int dir = qc->dma_dir;
cedc9a47 3962 void *pad_buf = NULL;
1da177e4 3963
a4631474
TH
3964 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3965 WARN_ON(sg == NULL);
1da177e4
LT
3966
3967 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3968 WARN_ON(qc->n_elem > 1);
1da177e4 3969
2c13b7ce 3970 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3971
cedc9a47
JG
3972 /* if we padded the buffer out to 32-bit bound, and data
3973 * xfer direction is from-device, we must copy from the
3974 * pad buffer back into the supplied buffer
3975 */
3976 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3977 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3978
3979 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3980 if (qc->n_elem)
2f1f610b 3981 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3982 /* restore last sg */
3983 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3984 if (pad_buf) {
3985 struct scatterlist *psg = &qc->pad_sgent;
3986 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3987 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3988 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3989 }
3990 } else {
2e242fa9 3991 if (qc->n_elem)
2f1f610b 3992 dma_unmap_single(ap->dev,
e1410f2d
JG
3993 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3994 dir);
cedc9a47
JG
3995 /* restore sg */
3996 sg->length += qc->pad_len;
3997 if (pad_buf)
3998 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3999 pad_buf, qc->pad_len);
4000 }
1da177e4
LT
4001
4002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4003 qc->__sg = NULL;
1da177e4
LT
4004}
4005
4006/**
4007 * ata_fill_sg - Fill PCI IDE PRD table
4008 * @qc: Metadata associated with taskfile to be transferred
4009 *
780a87f7
JG
4010 * Fill PCI IDE PRD (scatter-gather) table with segments
4011 * associated with the current disk command.
4012 *
1da177e4 4013 * LOCKING:
cca3974e 4014 * spin_lock_irqsave(host lock)
1da177e4
LT
4015 *
4016 */
4017static void ata_fill_sg(struct ata_queued_cmd *qc)
4018{
1da177e4 4019 struct ata_port *ap = qc->ap;
cedc9a47
JG
4020 struct scatterlist *sg;
4021 unsigned int idx;
1da177e4 4022
a4631474 4023 WARN_ON(qc->__sg == NULL);
f131883e 4024 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4025
4026 idx = 0;
cedc9a47 4027 ata_for_each_sg(sg, qc) {
1da177e4
LT
4028 u32 addr, offset;
4029 u32 sg_len, len;
4030
4031 /* determine if physical DMA addr spans 64K boundary.
4032 * Note h/w doesn't support 64-bit, so we unconditionally
4033 * truncate dma_addr_t to u32.
4034 */
4035 addr = (u32) sg_dma_address(sg);
4036 sg_len = sg_dma_len(sg);
4037
4038 while (sg_len) {
4039 offset = addr & 0xffff;
4040 len = sg_len;
4041 if ((offset + sg_len) > 0x10000)
4042 len = 0x10000 - offset;
4043
4044 ap->prd[idx].addr = cpu_to_le32(addr);
4045 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4046 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4047
4048 idx++;
4049 sg_len -= len;
4050 addr += len;
4051 }
4052 }
4053
4054 if (idx)
4055 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4056}
4057/**
4058 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4059 * @qc: Metadata associated with taskfile to check
4060 *
780a87f7
JG
4061 * Allow low-level driver to filter ATA PACKET commands, returning
4062 * a status indicating whether or not it is OK to use DMA for the
4063 * supplied PACKET command.
4064 *
1da177e4 4065 * LOCKING:
cca3974e 4066 * spin_lock_irqsave(host lock)
0cba632b 4067 *
1da177e4
LT
4068 * RETURNS: 0 when ATAPI DMA can be used
4069 * nonzero otherwise
4070 */
4071int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4072{
4073 struct ata_port *ap = qc->ap;
4074 int rc = 0; /* Assume ATAPI DMA is OK by default */
4075
6f23a31d
AL
4076 /* some drives can only do ATAPI DMA on read/write */
4077 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4078 struct scsi_cmnd *cmd = qc->scsicmd;
4079 u8 *scsicmd = cmd->cmnd;
4080
4081 switch (scsicmd[0]) {
4082 case READ_10:
4083 case WRITE_10:
4084 case READ_12:
4085 case WRITE_12:
4086 case READ_6:
4087 case WRITE_6:
4088 /* atapi dma maybe ok */
4089 break;
4090 default:
4091 /* turn off atapi dma */
4092 return 1;
4093 }
4094 }
4095
1da177e4
LT
4096 if (ap->ops->check_atapi_dma)
4097 rc = ap->ops->check_atapi_dma(qc);
4098
4099 return rc;
4100}
4101/**
4102 * ata_qc_prep - Prepare taskfile for submission
4103 * @qc: Metadata associated with taskfile to be prepared
4104 *
780a87f7
JG
4105 * Prepare ATA taskfile for submission.
4106 *
1da177e4 4107 * LOCKING:
cca3974e 4108 * spin_lock_irqsave(host lock)
1da177e4
LT
4109 */
4110void ata_qc_prep(struct ata_queued_cmd *qc)
4111{
4112 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4113 return;
4114
4115 ata_fill_sg(qc);
4116}
4117
e46834cd
BK
4118void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4119
0cba632b
JG
4120/**
4121 * ata_sg_init_one - Associate command with memory buffer
4122 * @qc: Command to be associated
4123 * @buf: Memory buffer
4124 * @buflen: Length of memory buffer, in bytes.
4125 *
4126 * Initialize the data-related elements of queued_cmd @qc
4127 * to point to a single memory buffer, @buf of byte length @buflen.
4128 *
4129 * LOCKING:
cca3974e 4130 * spin_lock_irqsave(host lock)
0cba632b
JG
4131 */
4132
1da177e4
LT
4133void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4134{
1da177e4
LT
4135 qc->flags |= ATA_QCFLAG_SINGLE;
4136
cedc9a47 4137 qc->__sg = &qc->sgent;
1da177e4 4138 qc->n_elem = 1;
cedc9a47 4139 qc->orig_n_elem = 1;
1da177e4 4140 qc->buf_virt = buf;
233277ca 4141 qc->nbytes = buflen;
1da177e4 4142
61c0596c 4143 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4144}
4145
0cba632b
JG
4146/**
4147 * ata_sg_init - Associate command with scatter-gather table.
4148 * @qc: Command to be associated
4149 * @sg: Scatter-gather table.
4150 * @n_elem: Number of elements in s/g table.
4151 *
4152 * Initialize the data-related elements of queued_cmd @qc
4153 * to point to a scatter-gather table @sg, containing @n_elem
4154 * elements.
4155 *
4156 * LOCKING:
cca3974e 4157 * spin_lock_irqsave(host lock)
0cba632b
JG
4158 */
4159
1da177e4
LT
4160void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4161 unsigned int n_elem)
4162{
4163 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4164 qc->__sg = sg;
1da177e4 4165 qc->n_elem = n_elem;
cedc9a47 4166 qc->orig_n_elem = n_elem;
1da177e4
LT
4167}
4168
4169/**
0cba632b
JG
4170 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4171 * @qc: Command with memory buffer to be mapped.
4172 *
4173 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4174 *
4175 * LOCKING:
cca3974e 4176 * spin_lock_irqsave(host lock)
1da177e4
LT
4177 *
4178 * RETURNS:
0cba632b 4179 * Zero on success, negative on error.
1da177e4
LT
4180 */
4181
4182static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4183{
4184 struct ata_port *ap = qc->ap;
4185 int dir = qc->dma_dir;
cedc9a47 4186 struct scatterlist *sg = qc->__sg;
1da177e4 4187 dma_addr_t dma_address;
2e242fa9 4188 int trim_sg = 0;
1da177e4 4189
cedc9a47
JG
4190 /* we must lengthen transfers to end on a 32-bit boundary */
4191 qc->pad_len = sg->length & 3;
4192 if (qc->pad_len) {
4193 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4194 struct scatterlist *psg = &qc->pad_sgent;
4195
a4631474 4196 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4197
4198 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4199
4200 if (qc->tf.flags & ATA_TFLAG_WRITE)
4201 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4202 qc->pad_len);
4203
4204 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4205 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4206 /* trim sg */
4207 sg->length -= qc->pad_len;
2e242fa9
TH
4208 if (sg->length == 0)
4209 trim_sg = 1;
cedc9a47
JG
4210
4211 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4212 sg->length, qc->pad_len);
4213 }
4214
2e242fa9
TH
4215 if (trim_sg) {
4216 qc->n_elem--;
e1410f2d
JG
4217 goto skip_map;
4218 }
4219
2f1f610b 4220 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4221 sg->length, dir);
537a95d9
TH
4222 if (dma_mapping_error(dma_address)) {
4223 /* restore sg */
4224 sg->length += qc->pad_len;
1da177e4 4225 return -1;
537a95d9 4226 }
1da177e4
LT
4227
4228 sg_dma_address(sg) = dma_address;
32529e01 4229 sg_dma_len(sg) = sg->length;
1da177e4 4230
2e242fa9 4231skip_map:
1da177e4
LT
4232 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4233 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4234
4235 return 0;
4236}
4237
4238/**
0cba632b
JG
4239 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4240 * @qc: Command with scatter-gather table to be mapped.
4241 *
4242 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4243 *
4244 * LOCKING:
cca3974e 4245 * spin_lock_irqsave(host lock)
1da177e4
LT
4246 *
4247 * RETURNS:
0cba632b 4248 * Zero on success, negative on error.
1da177e4
LT
4249 *
4250 */
4251
4252static int ata_sg_setup(struct ata_queued_cmd *qc)
4253{
4254 struct ata_port *ap = qc->ap;
cedc9a47
JG
4255 struct scatterlist *sg = qc->__sg;
4256 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4257 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4258
44877b4e 4259 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4260 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4261
cedc9a47
JG
4262 /* we must lengthen transfers to end on a 32-bit boundary */
4263 qc->pad_len = lsg->length & 3;
4264 if (qc->pad_len) {
4265 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4266 struct scatterlist *psg = &qc->pad_sgent;
4267 unsigned int offset;
4268
a4631474 4269 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4270
4271 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4272
4273 /*
4274 * psg->page/offset are used to copy to-be-written
4275 * data in this function or read data in ata_sg_clean.
4276 */
4277 offset = lsg->offset + lsg->length - qc->pad_len;
4278 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4279 psg->offset = offset_in_page(offset);
4280
4281 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4282 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4283 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4284 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4285 }
4286
4287 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4288 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4289 /* trim last sg */
4290 lsg->length -= qc->pad_len;
e1410f2d
JG
4291 if (lsg->length == 0)
4292 trim_sg = 1;
cedc9a47
JG
4293
4294 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4295 qc->n_elem - 1, lsg->length, qc->pad_len);
4296 }
4297
e1410f2d
JG
4298 pre_n_elem = qc->n_elem;
4299 if (trim_sg && pre_n_elem)
4300 pre_n_elem--;
4301
4302 if (!pre_n_elem) {
4303 n_elem = 0;
4304 goto skip_map;
4305 }
4306
1da177e4 4307 dir = qc->dma_dir;
2f1f610b 4308 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4309 if (n_elem < 1) {
4310 /* restore last sg */
4311 lsg->length += qc->pad_len;
1da177e4 4312 return -1;
537a95d9 4313 }
1da177e4
LT
4314
4315 DPRINTK("%d sg elements mapped\n", n_elem);
4316
e1410f2d 4317skip_map:
1da177e4
LT
4318 qc->n_elem = n_elem;
4319
4320 return 0;
4321}
4322
0baab86b 4323/**
c893a3ae 4324 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4325 * @buf: Buffer to swap
4326 * @buf_words: Number of 16-bit words in buffer.
4327 *
4328 * Swap halves of 16-bit words if needed to convert from
4329 * little-endian byte order to native cpu byte order, or
4330 * vice-versa.
4331 *
4332 * LOCKING:
6f0ef4fa 4333 * Inherited from caller.
0baab86b 4334 */
1da177e4
LT
4335void swap_buf_le16(u16 *buf, unsigned int buf_words)
4336{
4337#ifdef __BIG_ENDIAN
4338 unsigned int i;
4339
4340 for (i = 0; i < buf_words; i++)
4341 buf[i] = le16_to_cpu(buf[i]);
4342#endif /* __BIG_ENDIAN */
4343}
4344
6ae4cfb5 4345/**
0d5ff566 4346 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4347 * @adev: device to target
6ae4cfb5
AL
4348 * @buf: data buffer
4349 * @buflen: buffer length
344babaa 4350 * @write_data: read/write
6ae4cfb5
AL
4351 *
4352 * Transfer data from/to the device data register by PIO.
4353 *
4354 * LOCKING:
4355 * Inherited from caller.
6ae4cfb5 4356 */
0d5ff566
TH
4357void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4358 unsigned int buflen, int write_data)
1da177e4 4359{
a6b2c5d4 4360 struct ata_port *ap = adev->ap;
6ae4cfb5 4361 unsigned int words = buflen >> 1;
1da177e4 4362
6ae4cfb5 4363 /* Transfer multiple of 2 bytes */
1da177e4 4364 if (write_data)
0d5ff566 4365 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4366 else
0d5ff566 4367 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4368
4369 /* Transfer trailing 1 byte, if any. */
4370 if (unlikely(buflen & 0x01)) {
4371 u16 align_buf[1] = { 0 };
4372 unsigned char *trailing_buf = buf + buflen - 1;
4373
4374 if (write_data) {
4375 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4376 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4377 } else {
0d5ff566 4378 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4379 memcpy(trailing_buf, align_buf, 1);
4380 }
4381 }
1da177e4
LT
4382}
4383
75e99585 4384/**
0d5ff566 4385 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4386 * @adev: device to target
4387 * @buf: data buffer
4388 * @buflen: buffer length
4389 * @write_data: read/write
4390 *
88574551 4391 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4392 * transfer with interrupts disabled.
4393 *
4394 * LOCKING:
4395 * Inherited from caller.
4396 */
0d5ff566
TH
4397void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4398 unsigned int buflen, int write_data)
75e99585
AC
4399{
4400 unsigned long flags;
4401 local_irq_save(flags);
0d5ff566 4402 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4403 local_irq_restore(flags);
4404}
4405
4406
6ae4cfb5 4407/**
5a5dbd18 4408 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4409 * @qc: Command on going
4410 *
5a5dbd18 4411 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4412 *
4413 * LOCKING:
4414 * Inherited from caller.
4415 */
4416
1da177e4
LT
4417static void ata_pio_sector(struct ata_queued_cmd *qc)
4418{
4419 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4420 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4421 struct ata_port *ap = qc->ap;
4422 struct page *page;
4423 unsigned int offset;
4424 unsigned char *buf;
4425
5a5dbd18 4426 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4427 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4428
4429 page = sg[qc->cursg].page;
726f0785 4430 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4431
4432 /* get the current page and offset */
4433 page = nth_page(page, (offset >> PAGE_SHIFT));
4434 offset %= PAGE_SIZE;
4435
1da177e4
LT
4436 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4437
91b8b313
AL
4438 if (PageHighMem(page)) {
4439 unsigned long flags;
4440
a6b2c5d4 4441 /* FIXME: use a bounce buffer */
91b8b313
AL
4442 local_irq_save(flags);
4443 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4444
91b8b313 4445 /* do the actual data transfer */
5a5dbd18 4446 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4447
91b8b313
AL
4448 kunmap_atomic(buf, KM_IRQ0);
4449 local_irq_restore(flags);
4450 } else {
4451 buf = page_address(page);
5a5dbd18 4452 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4453 }
1da177e4 4454
5a5dbd18
ML
4455 qc->curbytes += qc->sect_size;
4456 qc->cursg_ofs += qc->sect_size;
1da177e4 4457
726f0785 4458 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4459 qc->cursg++;
4460 qc->cursg_ofs = 0;
4461 }
1da177e4 4462}
1da177e4 4463
07f6f7d0 4464/**
5a5dbd18 4465 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4466 * @qc: Command on going
4467 *
5a5dbd18 4468 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4469 * ATA device for the DRQ request.
4470 *
4471 * LOCKING:
4472 * Inherited from caller.
4473 */
1da177e4 4474
07f6f7d0
AL
4475static void ata_pio_sectors(struct ata_queued_cmd *qc)
4476{
4477 if (is_multi_taskfile(&qc->tf)) {
4478 /* READ/WRITE MULTIPLE */
4479 unsigned int nsect;
4480
587005de 4481 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4482
5a5dbd18 4483 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4484 qc->dev->multi_count);
07f6f7d0
AL
4485 while (nsect--)
4486 ata_pio_sector(qc);
4487 } else
4488 ata_pio_sector(qc);
4489}
4490
c71c1857
AL
4491/**
4492 * atapi_send_cdb - Write CDB bytes to hardware
4493 * @ap: Port to which ATAPI device is attached.
4494 * @qc: Taskfile currently active
4495 *
4496 * When device has indicated its readiness to accept
4497 * a CDB, this function is called. Send the CDB.
4498 *
4499 * LOCKING:
4500 * caller.
4501 */
4502
4503static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4504{
4505 /* send SCSI cdb */
4506 DPRINTK("send cdb\n");
db024d53 4507 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4508
a6b2c5d4 4509 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4510 ata_altstatus(ap); /* flush */
4511
4512 switch (qc->tf.protocol) {
4513 case ATA_PROT_ATAPI:
4514 ap->hsm_task_state = HSM_ST;
4515 break;
4516 case ATA_PROT_ATAPI_NODATA:
4517 ap->hsm_task_state = HSM_ST_LAST;
4518 break;
4519 case ATA_PROT_ATAPI_DMA:
4520 ap->hsm_task_state = HSM_ST_LAST;
4521 /* initiate bmdma */
4522 ap->ops->bmdma_start(qc);
4523 break;
4524 }
1da177e4
LT
4525}
4526
6ae4cfb5
AL
4527/**
4528 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4529 * @qc: Command on going
4530 * @bytes: number of bytes
4531 *
4532 * Transfer Transfer data from/to the ATAPI device.
4533 *
4534 * LOCKING:
4535 * Inherited from caller.
4536 *
4537 */
4538
1da177e4
LT
4539static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4540{
4541 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4542 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4543 struct ata_port *ap = qc->ap;
4544 struct page *page;
4545 unsigned char *buf;
4546 unsigned int offset, count;
4547
563a6e1f 4548 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4549 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4550
4551next_sg:
563a6e1f 4552 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4553 /*
563a6e1f
AL
4554 * The end of qc->sg is reached and the device expects
4555 * more data to transfer. In order not to overrun qc->sg
4556 * and fulfill length specified in the byte count register,
4557 * - for read case, discard trailing data from the device
4558 * - for write case, padding zero data to the device
4559 */
4560 u16 pad_buf[1] = { 0 };
4561 unsigned int words = bytes >> 1;
4562 unsigned int i;
4563
4564 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4565 ata_dev_printk(qc->dev, KERN_WARNING,
4566 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4567
4568 for (i = 0; i < words; i++)
a6b2c5d4 4569 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4570
14be71f4 4571 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4572 return;
4573 }
4574
cedc9a47 4575 sg = &qc->__sg[qc->cursg];
1da177e4 4576
1da177e4
LT
4577 page = sg->page;
4578 offset = sg->offset + qc->cursg_ofs;
4579
4580 /* get the current page and offset */
4581 page = nth_page(page, (offset >> PAGE_SHIFT));
4582 offset %= PAGE_SIZE;
4583
6952df03 4584 /* don't overrun current sg */
32529e01 4585 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4586
4587 /* don't cross page boundaries */
4588 count = min(count, (unsigned int)PAGE_SIZE - offset);
4589
7282aa4b
AL
4590 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4591
91b8b313
AL
4592 if (PageHighMem(page)) {
4593 unsigned long flags;
4594
a6b2c5d4 4595 /* FIXME: use bounce buffer */
91b8b313
AL
4596 local_irq_save(flags);
4597 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4598
91b8b313 4599 /* do the actual data transfer */
a6b2c5d4 4600 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4601
91b8b313
AL
4602 kunmap_atomic(buf, KM_IRQ0);
4603 local_irq_restore(flags);
4604 } else {
4605 buf = page_address(page);
a6b2c5d4 4606 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4607 }
1da177e4
LT
4608
4609 bytes -= count;
4610 qc->curbytes += count;
4611 qc->cursg_ofs += count;
4612
32529e01 4613 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4614 qc->cursg++;
4615 qc->cursg_ofs = 0;
4616 }
4617
563a6e1f 4618 if (bytes)
1da177e4 4619 goto next_sg;
1da177e4
LT
4620}
4621
6ae4cfb5
AL
4622/**
4623 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4624 * @qc: Command on going
4625 *
4626 * Transfer Transfer data from/to the ATAPI device.
4627 *
4628 * LOCKING:
4629 * Inherited from caller.
6ae4cfb5
AL
4630 */
4631
1da177e4
LT
4632static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4633{
4634 struct ata_port *ap = qc->ap;
4635 struct ata_device *dev = qc->dev;
4636 unsigned int ireason, bc_lo, bc_hi, bytes;
4637 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4638
eec4c3f3
AL
4639 /* Abuse qc->result_tf for temp storage of intermediate TF
4640 * here to save some kernel stack usage.
4641 * For normal completion, qc->result_tf is not relevant. For
4642 * error, qc->result_tf is later overwritten by ata_qc_complete().
4643 * So, the correctness of qc->result_tf is not affected.
4644 */
4645 ap->ops->tf_read(ap, &qc->result_tf);
4646 ireason = qc->result_tf.nsect;
4647 bc_lo = qc->result_tf.lbam;
4648 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4649 bytes = (bc_hi << 8) | bc_lo;
4650
4651 /* shall be cleared to zero, indicating xfer of data */
4652 if (ireason & (1 << 0))
4653 goto err_out;
4654
4655 /* make sure transfer direction matches expected */
4656 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4657 if (do_write != i_write)
4658 goto err_out;
4659
44877b4e 4660 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4661
1da177e4
LT
4662 __atapi_pio_bytes(qc, bytes);
4663
4664 return;
4665
4666err_out:
f15a1daf 4667 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4668 qc->err_mask |= AC_ERR_HSM;
14be71f4 4669 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4670}
4671
4672/**
c234fb00
AL
4673 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4674 * @ap: the target ata_port
4675 * @qc: qc on going
1da177e4 4676 *
c234fb00
AL
4677 * RETURNS:
4678 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4679 */
c234fb00
AL
4680
4681static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4682{
c234fb00
AL
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
4684 return 1;
1da177e4 4685
c234fb00
AL
4686 if (ap->hsm_task_state == HSM_ST_FIRST) {
4687 if (qc->tf.protocol == ATA_PROT_PIO &&
4688 (qc->tf.flags & ATA_TFLAG_WRITE))
4689 return 1;
1da177e4 4690
c234fb00
AL
4691 if (is_atapi_taskfile(&qc->tf) &&
4692 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4693 return 1;
fe79e683
AL
4694 }
4695
c234fb00
AL
4696 return 0;
4697}
1da177e4 4698
c17ea20d
TH
4699/**
4700 * ata_hsm_qc_complete - finish a qc running on standard HSM
4701 * @qc: Command to complete
4702 * @in_wq: 1 if called from workqueue, 0 otherwise
4703 *
4704 * Finish @qc which is running on standard HSM.
4705 *
4706 * LOCKING:
cca3974e 4707 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4708 * Otherwise, none on entry and grabs host lock.
4709 */
4710static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4711{
4712 struct ata_port *ap = qc->ap;
4713 unsigned long flags;
4714
4715 if (ap->ops->error_handler) {
4716 if (in_wq) {
ba6a1308 4717 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4718
cca3974e
JG
4719 /* EH might have kicked in while host lock is
4720 * released.
c17ea20d
TH
4721 */
4722 qc = ata_qc_from_tag(ap, qc->tag);
4723 if (qc) {
4724 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4725 ap->ops->irq_on(ap);
c17ea20d
TH
4726 ata_qc_complete(qc);
4727 } else
4728 ata_port_freeze(ap);
4729 }
4730
ba6a1308 4731 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4732 } else {
4733 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4734 ata_qc_complete(qc);
4735 else
4736 ata_port_freeze(ap);
4737 }
4738 } else {
4739 if (in_wq) {
ba6a1308 4740 spin_lock_irqsave(ap->lock, flags);
83625006 4741 ap->ops->irq_on(ap);
c17ea20d 4742 ata_qc_complete(qc);
ba6a1308 4743 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4744 } else
4745 ata_qc_complete(qc);
4746 }
1da177e4 4747
c81e29b4 4748 ata_altstatus(ap); /* flush */
c17ea20d
TH
4749}
4750
bb5cb290
AL
4751/**
4752 * ata_hsm_move - move the HSM to the next state.
4753 * @ap: the target ata_port
4754 * @qc: qc on going
4755 * @status: current device status
4756 * @in_wq: 1 if called from workqueue, 0 otherwise
4757 *
4758 * RETURNS:
4759 * 1 when poll next status needed, 0 otherwise.
4760 */
9a1004d0
TH
4761int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4762 u8 status, int in_wq)
e2cec771 4763{
bb5cb290
AL
4764 unsigned long flags = 0;
4765 int poll_next;
4766
6912ccd5
AL
4767 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4768
bb5cb290
AL
4769 /* Make sure ata_qc_issue_prot() does not throw things
4770 * like DMA polling into the workqueue. Notice that
4771 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4772 */
c234fb00 4773 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4774
e2cec771 4775fsm_start:
999bb6f4 4776 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4777 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4778
e2cec771
AL
4779 switch (ap->hsm_task_state) {
4780 case HSM_ST_FIRST:
bb5cb290
AL
4781 /* Send first data block or PACKET CDB */
4782
4783 /* If polling, we will stay in the work queue after
4784 * sending the data. Otherwise, interrupt handler
4785 * takes over after sending the data.
4786 */
4787 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4788
e2cec771 4789 /* check device status */
3655d1d3
AL
4790 if (unlikely((status & ATA_DRQ) == 0)) {
4791 /* handle BSY=0, DRQ=0 as error */
4792 if (likely(status & (ATA_ERR | ATA_DF)))
4793 /* device stops HSM for abort/error */
4794 qc->err_mask |= AC_ERR_DEV;
4795 else
4796 /* HSM violation. Let EH handle this */
4797 qc->err_mask |= AC_ERR_HSM;
4798
14be71f4 4799 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4800 goto fsm_start;
1da177e4
LT
4801 }
4802
71601958
AL
4803 /* Device should not ask for data transfer (DRQ=1)
4804 * when it finds something wrong.
eee6c32f
AL
4805 * We ignore DRQ here and stop the HSM by
4806 * changing hsm_task_state to HSM_ST_ERR and
4807 * let the EH abort the command or reset the device.
71601958
AL
4808 */
4809 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4810 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4811 "error, dev_stat 0x%X\n", status);
3655d1d3 4812 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4813 ap->hsm_task_state = HSM_ST_ERR;
4814 goto fsm_start;
71601958 4815 }
1da177e4 4816
bb5cb290
AL
4817 /* Send the CDB (atapi) or the first data block (ata pio out).
4818 * During the state transition, interrupt handler shouldn't
4819 * be invoked before the data transfer is complete and
4820 * hsm_task_state is changed. Hence, the following locking.
4821 */
4822 if (in_wq)
ba6a1308 4823 spin_lock_irqsave(ap->lock, flags);
1da177e4 4824
bb5cb290
AL
4825 if (qc->tf.protocol == ATA_PROT_PIO) {
4826 /* PIO data out protocol.
4827 * send first data block.
4828 */
0565c26d 4829
bb5cb290
AL
4830 /* ata_pio_sectors() might change the state
4831 * to HSM_ST_LAST. so, the state is changed here
4832 * before ata_pio_sectors().
4833 */
4834 ap->hsm_task_state = HSM_ST;
4835 ata_pio_sectors(qc);
4836 ata_altstatus(ap); /* flush */
4837 } else
4838 /* send CDB */
4839 atapi_send_cdb(ap, qc);
4840
4841 if (in_wq)
ba6a1308 4842 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4843
4844 /* if polling, ata_pio_task() handles the rest.
4845 * otherwise, interrupt handler takes over from here.
4846 */
e2cec771 4847 break;
1c848984 4848
e2cec771
AL
4849 case HSM_ST:
4850 /* complete command or read/write the data register */
4851 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4852 /* ATAPI PIO protocol */
4853 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4854 /* No more data to transfer or device error.
4855 * Device error will be tagged in HSM_ST_LAST.
4856 */
e2cec771
AL
4857 ap->hsm_task_state = HSM_ST_LAST;
4858 goto fsm_start;
4859 }
1da177e4 4860
71601958
AL
4861 /* Device should not ask for data transfer (DRQ=1)
4862 * when it finds something wrong.
eee6c32f
AL
4863 * We ignore DRQ here and stop the HSM by
4864 * changing hsm_task_state to HSM_ST_ERR and
4865 * let the EH abort the command or reset the device.
71601958
AL
4866 */
4867 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4868 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4869 "device error, dev_stat 0x%X\n",
4870 status);
3655d1d3 4871 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4872 ap->hsm_task_state = HSM_ST_ERR;
4873 goto fsm_start;
71601958 4874 }
1da177e4 4875
e2cec771 4876 atapi_pio_bytes(qc);
7fb6ec28 4877
e2cec771
AL
4878 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4879 /* bad ireason reported by device */
4880 goto fsm_start;
1da177e4 4881
e2cec771
AL
4882 } else {
4883 /* ATA PIO protocol */
4884 if (unlikely((status & ATA_DRQ) == 0)) {
4885 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4886 if (likely(status & (ATA_ERR | ATA_DF)))
4887 /* device stops HSM for abort/error */
4888 qc->err_mask |= AC_ERR_DEV;
4889 else
55a8e2c8
TH
4890 /* HSM violation. Let EH handle this.
4891 * Phantom devices also trigger this
4892 * condition. Mark hint.
4893 */
4894 qc->err_mask |= AC_ERR_HSM |
4895 AC_ERR_NODEV_HINT;
3655d1d3 4896
e2cec771
AL
4897 ap->hsm_task_state = HSM_ST_ERR;
4898 goto fsm_start;
4899 }
1da177e4 4900
eee6c32f
AL
4901 /* For PIO reads, some devices may ask for
4902 * data transfer (DRQ=1) alone with ERR=1.
4903 * We respect DRQ here and transfer one
4904 * block of junk data before changing the
4905 * hsm_task_state to HSM_ST_ERR.
4906 *
4907 * For PIO writes, ERR=1 DRQ=1 doesn't make
4908 * sense since the data block has been
4909 * transferred to the device.
71601958
AL
4910 */
4911 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4912 /* data might be corrputed */
4913 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4914
4915 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4916 ata_pio_sectors(qc);
4917 ata_altstatus(ap);
4918 status = ata_wait_idle(ap);
4919 }
4920
3655d1d3
AL
4921 if (status & (ATA_BUSY | ATA_DRQ))
4922 qc->err_mask |= AC_ERR_HSM;
4923
eee6c32f
AL
4924 /* ata_pio_sectors() might change the
4925 * state to HSM_ST_LAST. so, the state
4926 * is changed after ata_pio_sectors().
4927 */
4928 ap->hsm_task_state = HSM_ST_ERR;
4929 goto fsm_start;
71601958
AL
4930 }
4931
e2cec771
AL
4932 ata_pio_sectors(qc);
4933
4934 if (ap->hsm_task_state == HSM_ST_LAST &&
4935 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4936 /* all data read */
4937 ata_altstatus(ap);
52a32205 4938 status = ata_wait_idle(ap);
e2cec771
AL
4939 goto fsm_start;
4940 }
4941 }
4942
4943 ata_altstatus(ap); /* flush */
bb5cb290 4944 poll_next = 1;
1da177e4
LT
4945 break;
4946
14be71f4 4947 case HSM_ST_LAST:
6912ccd5
AL
4948 if (unlikely(!ata_ok(status))) {
4949 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4950 ap->hsm_task_state = HSM_ST_ERR;
4951 goto fsm_start;
4952 }
4953
4954 /* no more data to transfer */
4332a771 4955 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4956 ap->print_id, qc->dev->devno, status);
e2cec771 4957
6912ccd5
AL
4958 WARN_ON(qc->err_mask);
4959
e2cec771 4960 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4961
e2cec771 4962 /* complete taskfile transaction */
c17ea20d 4963 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4964
4965 poll_next = 0;
1da177e4
LT
4966 break;
4967
14be71f4 4968 case HSM_ST_ERR:
e2cec771
AL
4969 /* make sure qc->err_mask is available to
4970 * know what's wrong and recover
4971 */
4972 WARN_ON(qc->err_mask == 0);
4973
4974 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4975
999bb6f4 4976 /* complete taskfile transaction */
c17ea20d 4977 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4978
4979 poll_next = 0;
e2cec771
AL
4980 break;
4981 default:
bb5cb290 4982 poll_next = 0;
6912ccd5 4983 BUG();
1da177e4
LT
4984 }
4985
bb5cb290 4986 return poll_next;
1da177e4
LT
4987}
4988
65f27f38 4989static void ata_pio_task(struct work_struct *work)
8061f5f0 4990{
65f27f38
DH
4991 struct ata_port *ap =
4992 container_of(work, struct ata_port, port_task.work);
4993 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4994 u8 status;
a1af3734 4995 int poll_next;
8061f5f0 4996
7fb6ec28 4997fsm_start:
a1af3734 4998 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4999
a1af3734
AL
5000 /*
5001 * This is purely heuristic. This is a fast path.
5002 * Sometimes when we enter, BSY will be cleared in
5003 * a chk-status or two. If not, the drive is probably seeking
5004 * or something. Snooze for a couple msecs, then
5005 * chk-status again. If still busy, queue delayed work.
5006 */
5007 status = ata_busy_wait(ap, ATA_BUSY, 5);
5008 if (status & ATA_BUSY) {
5009 msleep(2);
5010 status = ata_busy_wait(ap, ATA_BUSY, 10);
5011 if (status & ATA_BUSY) {
31ce6dae 5012 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5013 return;
5014 }
8061f5f0
TH
5015 }
5016
a1af3734
AL
5017 /* move the HSM */
5018 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5019
a1af3734
AL
5020 /* another command or interrupt handler
5021 * may be running at this point.
5022 */
5023 if (poll_next)
7fb6ec28 5024 goto fsm_start;
8061f5f0
TH
5025}
5026
1da177e4
LT
5027/**
5028 * ata_qc_new - Request an available ATA command, for queueing
5029 * @ap: Port associated with device @dev
5030 * @dev: Device from whom we request an available command structure
5031 *
5032 * LOCKING:
0cba632b 5033 * None.
1da177e4
LT
5034 */
5035
5036static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5037{
5038 struct ata_queued_cmd *qc = NULL;
5039 unsigned int i;
5040
e3180499 5041 /* no command while frozen */
b51e9e5d 5042 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5043 return NULL;
5044
2ab7db1f
TH
5045 /* the last tag is reserved for internal command. */
5046 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5047 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5048 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5049 break;
5050 }
5051
5052 if (qc)
5053 qc->tag = i;
5054
5055 return qc;
5056}
5057
5058/**
5059 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5060 * @dev: Device from whom we request an available command structure
5061 *
5062 * LOCKING:
0cba632b 5063 * None.
1da177e4
LT
5064 */
5065
3373efd8 5066struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5067{
3373efd8 5068 struct ata_port *ap = dev->ap;
1da177e4
LT
5069 struct ata_queued_cmd *qc;
5070
5071 qc = ata_qc_new(ap);
5072 if (qc) {
1da177e4
LT
5073 qc->scsicmd = NULL;
5074 qc->ap = ap;
5075 qc->dev = dev;
1da177e4 5076
2c13b7ce 5077 ata_qc_reinit(qc);
1da177e4
LT
5078 }
5079
5080 return qc;
5081}
5082
1da177e4
LT
5083/**
5084 * ata_qc_free - free unused ata_queued_cmd
5085 * @qc: Command to complete
5086 *
5087 * Designed to free unused ata_queued_cmd object
5088 * in case something prevents using it.
5089 *
5090 * LOCKING:
cca3974e 5091 * spin_lock_irqsave(host lock)
1da177e4
LT
5092 */
5093void ata_qc_free(struct ata_queued_cmd *qc)
5094{
4ba946e9
TH
5095 struct ata_port *ap = qc->ap;
5096 unsigned int tag;
5097
a4631474 5098 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5099
4ba946e9
TH
5100 qc->flags = 0;
5101 tag = qc->tag;
5102 if (likely(ata_tag_valid(tag))) {
4ba946e9 5103 qc->tag = ATA_TAG_POISON;
6cec4a39 5104 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5105 }
1da177e4
LT
5106}
5107
76014427 5108void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5109{
dedaf2b0
TH
5110 struct ata_port *ap = qc->ap;
5111
a4631474
TH
5112 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5113 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5114
5115 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5116 ata_sg_clean(qc);
5117
7401abf2 5118 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5119 if (qc->tf.protocol == ATA_PROT_NCQ)
5120 ap->sactive &= ~(1 << qc->tag);
5121 else
5122 ap->active_tag = ATA_TAG_POISON;
7401abf2 5123
3f3791d3
AL
5124 /* atapi: mark qc as inactive to prevent the interrupt handler
5125 * from completing the command twice later, before the error handler
5126 * is called. (when rc != 0 and atapi request sense is needed)
5127 */
5128 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5129 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5130
1da177e4 5131 /* call completion callback */
77853bf2 5132 qc->complete_fn(qc);
1da177e4
LT
5133}
5134
39599a53
TH
5135static void fill_result_tf(struct ata_queued_cmd *qc)
5136{
5137 struct ata_port *ap = qc->ap;
5138
39599a53 5139 qc->result_tf.flags = qc->tf.flags;
4742d54f 5140 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5141}
5142
f686bcb8
TH
5143/**
5144 * ata_qc_complete - Complete an active ATA command
5145 * @qc: Command to complete
5146 * @err_mask: ATA Status register contents
5147 *
5148 * Indicate to the mid and upper layers that an ATA
5149 * command has completed, with either an ok or not-ok status.
5150 *
5151 * LOCKING:
cca3974e 5152 * spin_lock_irqsave(host lock)
f686bcb8
TH
5153 */
5154void ata_qc_complete(struct ata_queued_cmd *qc)
5155{
5156 struct ata_port *ap = qc->ap;
5157
5158 /* XXX: New EH and old EH use different mechanisms to
5159 * synchronize EH with regular execution path.
5160 *
5161 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5162 * Normal execution path is responsible for not accessing a
5163 * failed qc. libata core enforces the rule by returning NULL
5164 * from ata_qc_from_tag() for failed qcs.
5165 *
5166 * Old EH depends on ata_qc_complete() nullifying completion
5167 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5168 * not synchronize with interrupt handler. Only PIO task is
5169 * taken care of.
5170 */
5171 if (ap->ops->error_handler) {
b51e9e5d 5172 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5173
5174 if (unlikely(qc->err_mask))
5175 qc->flags |= ATA_QCFLAG_FAILED;
5176
5177 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5178 if (!ata_tag_internal(qc->tag)) {
5179 /* always fill result TF for failed qc */
39599a53 5180 fill_result_tf(qc);
f686bcb8
TH
5181 ata_qc_schedule_eh(qc);
5182 return;
5183 }
5184 }
5185
5186 /* read result TF if requested */
5187 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5188 fill_result_tf(qc);
f686bcb8
TH
5189
5190 __ata_qc_complete(qc);
5191 } else {
5192 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5193 return;
5194
5195 /* read result TF if failed or requested */
5196 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5197 fill_result_tf(qc);
f686bcb8
TH
5198
5199 __ata_qc_complete(qc);
5200 }
5201}
5202
dedaf2b0
TH
5203/**
5204 * ata_qc_complete_multiple - Complete multiple qcs successfully
5205 * @ap: port in question
5206 * @qc_active: new qc_active mask
5207 * @finish_qc: LLDD callback invoked before completing a qc
5208 *
5209 * Complete in-flight commands. This functions is meant to be
5210 * called from low-level driver's interrupt routine to complete
5211 * requests normally. ap->qc_active and @qc_active is compared
5212 * and commands are completed accordingly.
5213 *
5214 * LOCKING:
cca3974e 5215 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5216 *
5217 * RETURNS:
5218 * Number of completed commands on success, -errno otherwise.
5219 */
5220int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5221 void (*finish_qc)(struct ata_queued_cmd *))
5222{
5223 int nr_done = 0;
5224 u32 done_mask;
5225 int i;
5226
5227 done_mask = ap->qc_active ^ qc_active;
5228
5229 if (unlikely(done_mask & qc_active)) {
5230 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5231 "(%08x->%08x)\n", ap->qc_active, qc_active);
5232 return -EINVAL;
5233 }
5234
5235 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5236 struct ata_queued_cmd *qc;
5237
5238 if (!(done_mask & (1 << i)))
5239 continue;
5240
5241 if ((qc = ata_qc_from_tag(ap, i))) {
5242 if (finish_qc)
5243 finish_qc(qc);
5244 ata_qc_complete(qc);
5245 nr_done++;
5246 }
5247 }
5248
5249 return nr_done;
5250}
5251
1da177e4
LT
5252static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5253{
5254 struct ata_port *ap = qc->ap;
5255
5256 switch (qc->tf.protocol) {
3dc1d881 5257 case ATA_PROT_NCQ:
1da177e4
LT
5258 case ATA_PROT_DMA:
5259 case ATA_PROT_ATAPI_DMA:
5260 return 1;
5261
5262 case ATA_PROT_ATAPI:
5263 case ATA_PROT_PIO:
1da177e4
LT
5264 if (ap->flags & ATA_FLAG_PIO_DMA)
5265 return 1;
5266
5267 /* fall through */
5268
5269 default:
5270 return 0;
5271 }
5272
5273 /* never reached */
5274}
5275
5276/**
5277 * ata_qc_issue - issue taskfile to device
5278 * @qc: command to issue to device
5279 *
5280 * Prepare an ATA command to submission to device.
5281 * This includes mapping the data into a DMA-able
5282 * area, filling in the S/G table, and finally
5283 * writing the taskfile to hardware, starting the command.
5284 *
5285 * LOCKING:
cca3974e 5286 * spin_lock_irqsave(host lock)
1da177e4 5287 */
8e0e694a 5288void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5289{
5290 struct ata_port *ap = qc->ap;
5291
dedaf2b0
TH
5292 /* Make sure only one non-NCQ command is outstanding. The
5293 * check is skipped for old EH because it reuses active qc to
5294 * request ATAPI sense.
5295 */
5296 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5297
5298 if (qc->tf.protocol == ATA_PROT_NCQ) {
5299 WARN_ON(ap->sactive & (1 << qc->tag));
5300 ap->sactive |= 1 << qc->tag;
5301 } else {
5302 WARN_ON(ap->sactive);
5303 ap->active_tag = qc->tag;
5304 }
5305
e4a70e76 5306 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5307 ap->qc_active |= 1 << qc->tag;
e4a70e76 5308
1da177e4
LT
5309 if (ata_should_dma_map(qc)) {
5310 if (qc->flags & ATA_QCFLAG_SG) {
5311 if (ata_sg_setup(qc))
8e436af9 5312 goto sg_err;
1da177e4
LT
5313 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5314 if (ata_sg_setup_one(qc))
8e436af9 5315 goto sg_err;
1da177e4
LT
5316 }
5317 } else {
5318 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5319 }
5320
5321 ap->ops->qc_prep(qc);
5322
8e0e694a
TH
5323 qc->err_mask |= ap->ops->qc_issue(qc);
5324 if (unlikely(qc->err_mask))
5325 goto err;
5326 return;
1da177e4 5327
8e436af9
TH
5328sg_err:
5329 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5330 qc->err_mask |= AC_ERR_SYSTEM;
5331err:
5332 ata_qc_complete(qc);
1da177e4
LT
5333}
5334
5335/**
5336 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5337 * @qc: command to issue to device
5338 *
5339 * Using various libata functions and hooks, this function
5340 * starts an ATA command. ATA commands are grouped into
5341 * classes called "protocols", and issuing each type of protocol
5342 * is slightly different.
5343 *
0baab86b
EF
5344 * May be used as the qc_issue() entry in ata_port_operations.
5345 *
1da177e4 5346 * LOCKING:
cca3974e 5347 * spin_lock_irqsave(host lock)
1da177e4
LT
5348 *
5349 * RETURNS:
9a3d9eb0 5350 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5351 */
5352
9a3d9eb0 5353unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5354{
5355 struct ata_port *ap = qc->ap;
5356
e50362ec
AL
5357 /* Use polling pio if the LLD doesn't handle
5358 * interrupt driven pio and atapi CDB interrupt.
5359 */
5360 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5361 switch (qc->tf.protocol) {
5362 case ATA_PROT_PIO:
e3472cbe 5363 case ATA_PROT_NODATA:
e50362ec
AL
5364 case ATA_PROT_ATAPI:
5365 case ATA_PROT_ATAPI_NODATA:
5366 qc->tf.flags |= ATA_TFLAG_POLLING;
5367 break;
5368 case ATA_PROT_ATAPI_DMA:
5369 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5370 /* see ata_dma_blacklisted() */
e50362ec
AL
5371 BUG();
5372 break;
5373 default:
5374 break;
5375 }
5376 }
5377
3d3cca37
TH
5378 /* Some controllers show flaky interrupt behavior after
5379 * setting xfer mode. Use polling instead.
5380 */
5381 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5382 qc->tf.feature == SETFEATURES_XFER) &&
5383 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5384 qc->tf.flags |= ATA_TFLAG_POLLING;
5385
312f7da2 5386 /* select the device */
1da177e4
LT
5387 ata_dev_select(ap, qc->dev->devno, 1, 0);
5388
312f7da2 5389 /* start the command */
1da177e4
LT
5390 switch (qc->tf.protocol) {
5391 case ATA_PROT_NODATA:
312f7da2
AL
5392 if (qc->tf.flags & ATA_TFLAG_POLLING)
5393 ata_qc_set_polling(qc);
5394
e5338254 5395 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5396 ap->hsm_task_state = HSM_ST_LAST;
5397
5398 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5399 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5400
1da177e4
LT
5401 break;
5402
5403 case ATA_PROT_DMA:
587005de 5404 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5405
1da177e4
LT
5406 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5407 ap->ops->bmdma_setup(qc); /* set up bmdma */
5408 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5409 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5410 break;
5411
312f7da2
AL
5412 case ATA_PROT_PIO:
5413 if (qc->tf.flags & ATA_TFLAG_POLLING)
5414 ata_qc_set_polling(qc);
1da177e4 5415
e5338254 5416 ata_tf_to_host(ap, &qc->tf);
312f7da2 5417
54f00389
AL
5418 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5419 /* PIO data out protocol */
5420 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5421 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5422
5423 /* always send first data block using
e27486db 5424 * the ata_pio_task() codepath.
54f00389 5425 */
312f7da2 5426 } else {
54f00389
AL
5427 /* PIO data in protocol */
5428 ap->hsm_task_state = HSM_ST;
5429
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5431 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5432
5433 /* if polling, ata_pio_task() handles the rest.
5434 * otherwise, interrupt handler takes over from here.
5435 */
312f7da2
AL
5436 }
5437
1da177e4
LT
5438 break;
5439
1da177e4 5440 case ATA_PROT_ATAPI:
1da177e4 5441 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5442 if (qc->tf.flags & ATA_TFLAG_POLLING)
5443 ata_qc_set_polling(qc);
5444
e5338254 5445 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5446
312f7da2
AL
5447 ap->hsm_task_state = HSM_ST_FIRST;
5448
5449 /* send cdb by polling if no cdb interrupt */
5450 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5451 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5452 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5453 break;
5454
5455 case ATA_PROT_ATAPI_DMA:
587005de 5456 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5457
1da177e4
LT
5458 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5459 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5460 ap->hsm_task_state = HSM_ST_FIRST;
5461
5462 /* send cdb by polling if no cdb interrupt */
5463 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5464 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5465 break;
5466
5467 default:
5468 WARN_ON(1);
9a3d9eb0 5469 return AC_ERR_SYSTEM;
1da177e4
LT
5470 }
5471
5472 return 0;
5473}
5474
1da177e4
LT
5475/**
5476 * ata_host_intr - Handle host interrupt for given (port, task)
5477 * @ap: Port on which interrupt arrived (possibly...)
5478 * @qc: Taskfile currently active in engine
5479 *
5480 * Handle host interrupt for given queued command. Currently,
5481 * only DMA interrupts are handled. All other commands are
5482 * handled via polling with interrupts disabled (nIEN bit).
5483 *
5484 * LOCKING:
cca3974e 5485 * spin_lock_irqsave(host lock)
1da177e4
LT
5486 *
5487 * RETURNS:
5488 * One if interrupt was handled, zero if not (shared irq).
5489 */
5490
5491inline unsigned int ata_host_intr (struct ata_port *ap,
5492 struct ata_queued_cmd *qc)
5493{
ea54763f 5494 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5495 u8 status, host_stat = 0;
1da177e4 5496
312f7da2 5497 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5498 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5499
312f7da2
AL
5500 /* Check whether we are expecting interrupt in this state */
5501 switch (ap->hsm_task_state) {
5502 case HSM_ST_FIRST:
6912ccd5
AL
5503 /* Some pre-ATAPI-4 devices assert INTRQ
5504 * at this state when ready to receive CDB.
5505 */
1da177e4 5506
312f7da2
AL
5507 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5508 * The flag was turned on only for atapi devices.
5509 * No need to check is_atapi_taskfile(&qc->tf) again.
5510 */
5511 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5512 goto idle_irq;
1da177e4 5513 break;
312f7da2
AL
5514 case HSM_ST_LAST:
5515 if (qc->tf.protocol == ATA_PROT_DMA ||
5516 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5517 /* check status of DMA engine */
5518 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5519 VPRINTK("ata%u: host_stat 0x%X\n",
5520 ap->print_id, host_stat);
312f7da2
AL
5521
5522 /* if it's not our irq... */
5523 if (!(host_stat & ATA_DMA_INTR))
5524 goto idle_irq;
5525
5526 /* before we do anything else, clear DMA-Start bit */
5527 ap->ops->bmdma_stop(qc);
a4f16610
AL
5528
5529 if (unlikely(host_stat & ATA_DMA_ERR)) {
5530 /* error when transfering data to/from memory */
5531 qc->err_mask |= AC_ERR_HOST_BUS;
5532 ap->hsm_task_state = HSM_ST_ERR;
5533 }
312f7da2
AL
5534 }
5535 break;
5536 case HSM_ST:
5537 break;
1da177e4
LT
5538 default:
5539 goto idle_irq;
5540 }
5541
312f7da2
AL
5542 /* check altstatus */
5543 status = ata_altstatus(ap);
5544 if (status & ATA_BUSY)
5545 goto idle_irq;
1da177e4 5546
312f7da2
AL
5547 /* check main status, clearing INTRQ */
5548 status = ata_chk_status(ap);
5549 if (unlikely(status & ATA_BUSY))
5550 goto idle_irq;
1da177e4 5551
312f7da2
AL
5552 /* ack bmdma irq events */
5553 ap->ops->irq_clear(ap);
1da177e4 5554
bb5cb290 5555 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5556
5557 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5558 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5559 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5560
1da177e4
LT
5561 return 1; /* irq handled */
5562
5563idle_irq:
5564 ap->stats.idle_irq++;
5565
5566#ifdef ATA_IRQ_TRAP
5567 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5568 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5569 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5570 return 1;
1da177e4
LT
5571 }
5572#endif
5573 return 0; /* irq not handled */
5574}
5575
5576/**
5577 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5578 * @irq: irq line (unused)
cca3974e 5579 * @dev_instance: pointer to our ata_host information structure
1da177e4 5580 *
0cba632b
JG
5581 * Default interrupt handler for PCI IDE devices. Calls
5582 * ata_host_intr() for each port that is not disabled.
5583 *
1da177e4 5584 * LOCKING:
cca3974e 5585 * Obtains host lock during operation.
1da177e4
LT
5586 *
5587 * RETURNS:
0cba632b 5588 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5589 */
5590
7d12e780 5591irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5592{
cca3974e 5593 struct ata_host *host = dev_instance;
1da177e4
LT
5594 unsigned int i;
5595 unsigned int handled = 0;
5596 unsigned long flags;
5597
5598 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5599 spin_lock_irqsave(&host->lock, flags);
1da177e4 5600
cca3974e 5601 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5602 struct ata_port *ap;
5603
cca3974e 5604 ap = host->ports[i];
c1389503 5605 if (ap &&
029f5468 5606 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5607 struct ata_queued_cmd *qc;
5608
5609 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5610 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5611 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5612 handled |= ata_host_intr(ap, qc);
5613 }
5614 }
5615
cca3974e 5616 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5617
5618 return IRQ_RETVAL(handled);
5619}
5620
34bf2170
TH
5621/**
5622 * sata_scr_valid - test whether SCRs are accessible
5623 * @ap: ATA port to test SCR accessibility for
5624 *
5625 * Test whether SCRs are accessible for @ap.
5626 *
5627 * LOCKING:
5628 * None.
5629 *
5630 * RETURNS:
5631 * 1 if SCRs are accessible, 0 otherwise.
5632 */
5633int sata_scr_valid(struct ata_port *ap)
5634{
5635 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5636}
5637
5638/**
5639 * sata_scr_read - read SCR register of the specified port
5640 * @ap: ATA port to read SCR for
5641 * @reg: SCR to read
5642 * @val: Place to store read value
5643 *
5644 * Read SCR register @reg of @ap into *@val. This function is
5645 * guaranteed to succeed if the cable type of the port is SATA
5646 * and the port implements ->scr_read.
5647 *
5648 * LOCKING:
5649 * None.
5650 *
5651 * RETURNS:
5652 * 0 on success, negative errno on failure.
5653 */
5654int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5655{
5656 if (sata_scr_valid(ap)) {
5657 *val = ap->ops->scr_read(ap, reg);
5658 return 0;
5659 }
5660 return -EOPNOTSUPP;
5661}
5662
5663/**
5664 * sata_scr_write - write SCR register of the specified port
5665 * @ap: ATA port to write SCR for
5666 * @reg: SCR to write
5667 * @val: value to write
5668 *
5669 * Write @val to SCR register @reg of @ap. This function is
5670 * guaranteed to succeed if the cable type of the port is SATA
5671 * and the port implements ->scr_read.
5672 *
5673 * LOCKING:
5674 * None.
5675 *
5676 * RETURNS:
5677 * 0 on success, negative errno on failure.
5678 */
5679int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5680{
5681 if (sata_scr_valid(ap)) {
5682 ap->ops->scr_write(ap, reg, val);
5683 return 0;
5684 }
5685 return -EOPNOTSUPP;
5686}
5687
5688/**
5689 * sata_scr_write_flush - write SCR register of the specified port and flush
5690 * @ap: ATA port to write SCR for
5691 * @reg: SCR to write
5692 * @val: value to write
5693 *
5694 * This function is identical to sata_scr_write() except that this
5695 * function performs flush after writing to the register.
5696 *
5697 * LOCKING:
5698 * None.
5699 *
5700 * RETURNS:
5701 * 0 on success, negative errno on failure.
5702 */
5703int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5704{
5705 if (sata_scr_valid(ap)) {
5706 ap->ops->scr_write(ap, reg, val);
5707 ap->ops->scr_read(ap, reg);
5708 return 0;
5709 }
5710 return -EOPNOTSUPP;
5711}
5712
5713/**
5714 * ata_port_online - test whether the given port is online
5715 * @ap: ATA port to test
5716 *
5717 * Test whether @ap is online. Note that this function returns 0
5718 * if online status of @ap cannot be obtained, so
5719 * ata_port_online(ap) != !ata_port_offline(ap).
5720 *
5721 * LOCKING:
5722 * None.
5723 *
5724 * RETURNS:
5725 * 1 if the port online status is available and online.
5726 */
5727int ata_port_online(struct ata_port *ap)
5728{
5729 u32 sstatus;
5730
5731 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5732 return 1;
5733 return 0;
5734}
5735
5736/**
5737 * ata_port_offline - test whether the given port is offline
5738 * @ap: ATA port to test
5739 *
5740 * Test whether @ap is offline. Note that this function returns
5741 * 0 if offline status of @ap cannot be obtained, so
5742 * ata_port_online(ap) != !ata_port_offline(ap).
5743 *
5744 * LOCKING:
5745 * None.
5746 *
5747 * RETURNS:
5748 * 1 if the port offline status is available and offline.
5749 */
5750int ata_port_offline(struct ata_port *ap)
5751{
5752 u32 sstatus;
5753
5754 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5755 return 1;
5756 return 0;
5757}
0baab86b 5758
77b08fb5 5759int ata_flush_cache(struct ata_device *dev)
9b847548 5760{
977e6b9f 5761 unsigned int err_mask;
9b847548
JA
5762 u8 cmd;
5763
5764 if (!ata_try_flush_cache(dev))
5765 return 0;
5766
6fc49adb 5767 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5768 cmd = ATA_CMD_FLUSH_EXT;
5769 else
5770 cmd = ATA_CMD_FLUSH;
5771
977e6b9f
TH
5772 err_mask = ata_do_simple_cmd(dev, cmd);
5773 if (err_mask) {
5774 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5775 return -EIO;
5776 }
5777
5778 return 0;
9b847548
JA
5779}
5780
6ffa01d8 5781#ifdef CONFIG_PM
cca3974e
JG
5782static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5783 unsigned int action, unsigned int ehi_flags,
5784 int wait)
500530f6
TH
5785{
5786 unsigned long flags;
5787 int i, rc;
5788
cca3974e
JG
5789 for (i = 0; i < host->n_ports; i++) {
5790 struct ata_port *ap = host->ports[i];
500530f6
TH
5791
5792 /* Previous resume operation might still be in
5793 * progress. Wait for PM_PENDING to clear.
5794 */
5795 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5796 ata_port_wait_eh(ap);
5797 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5798 }
5799
5800 /* request PM ops to EH */
5801 spin_lock_irqsave(ap->lock, flags);
5802
5803 ap->pm_mesg = mesg;
5804 if (wait) {
5805 rc = 0;
5806 ap->pm_result = &rc;
5807 }
5808
5809 ap->pflags |= ATA_PFLAG_PM_PENDING;
5810 ap->eh_info.action |= action;
5811 ap->eh_info.flags |= ehi_flags;
5812
5813 ata_port_schedule_eh(ap);
5814
5815 spin_unlock_irqrestore(ap->lock, flags);
5816
5817 /* wait and check result */
5818 if (wait) {
5819 ata_port_wait_eh(ap);
5820 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5821 if (rc)
5822 return rc;
5823 }
5824 }
5825
5826 return 0;
5827}
5828
5829/**
cca3974e
JG
5830 * ata_host_suspend - suspend host
5831 * @host: host to suspend
500530f6
TH
5832 * @mesg: PM message
5833 *
cca3974e 5834 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5835 * function requests EH to perform PM operations and waits for EH
5836 * to finish.
5837 *
5838 * LOCKING:
5839 * Kernel thread context (may sleep).
5840 *
5841 * RETURNS:
5842 * 0 on success, -errno on failure.
5843 */
cca3974e 5844int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5845{
5846 int i, j, rc;
5847
cca3974e 5848 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5849 if (rc)
5850 goto fail;
5851
5852 /* EH is quiescent now. Fail if we have any ready device.
5853 * This happens if hotplug occurs between completion of device
5854 * suspension and here.
5855 */
cca3974e
JG
5856 for (i = 0; i < host->n_ports; i++) {
5857 struct ata_port *ap = host->ports[i];
500530f6
TH
5858
5859 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5860 struct ata_device *dev = &ap->device[j];
5861
5862 if (ata_dev_ready(dev)) {
5863 ata_port_printk(ap, KERN_WARNING,
5864 "suspend failed, device %d "
5865 "still active\n", dev->devno);
5866 rc = -EBUSY;
5867 goto fail;
5868 }
5869 }
5870 }
5871
cca3974e 5872 host->dev->power.power_state = mesg;
500530f6
TH
5873 return 0;
5874
5875 fail:
cca3974e 5876 ata_host_resume(host);
500530f6
TH
5877 return rc;
5878}
5879
5880/**
cca3974e
JG
5881 * ata_host_resume - resume host
5882 * @host: host to resume
500530f6 5883 *
cca3974e 5884 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5885 * function requests EH to perform PM operations and returns.
5886 * Note that all resume operations are performed parallely.
5887 *
5888 * LOCKING:
5889 * Kernel thread context (may sleep).
5890 */
cca3974e 5891void ata_host_resume(struct ata_host *host)
500530f6 5892{
cca3974e
JG
5893 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5894 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5895 host->dev->power.power_state = PMSG_ON;
500530f6 5896}
6ffa01d8 5897#endif
500530f6 5898
c893a3ae
RD
5899/**
5900 * ata_port_start - Set port up for dma.
5901 * @ap: Port to initialize
5902 *
5903 * Called just after data structures for each port are
5904 * initialized. Allocates space for PRD table.
5905 *
5906 * May be used as the port_start() entry in ata_port_operations.
5907 *
5908 * LOCKING:
5909 * Inherited from caller.
5910 */
f0d36efd 5911int ata_port_start(struct ata_port *ap)
1da177e4 5912{
2f1f610b 5913 struct device *dev = ap->dev;
6037d6bb 5914 int rc;
1da177e4 5915
f0d36efd
TH
5916 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5917 GFP_KERNEL);
1da177e4
LT
5918 if (!ap->prd)
5919 return -ENOMEM;
5920
6037d6bb 5921 rc = ata_pad_alloc(ap, dev);
f0d36efd 5922 if (rc)
6037d6bb 5923 return rc;
1da177e4 5924
f0d36efd
TH
5925 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5926 (unsigned long long)ap->prd_dma);
1da177e4
LT
5927 return 0;
5928}
5929
3ef3b43d
TH
5930/**
5931 * ata_dev_init - Initialize an ata_device structure
5932 * @dev: Device structure to initialize
5933 *
5934 * Initialize @dev in preparation for probing.
5935 *
5936 * LOCKING:
5937 * Inherited from caller.
5938 */
5939void ata_dev_init(struct ata_device *dev)
5940{
5941 struct ata_port *ap = dev->ap;
72fa4b74
TH
5942 unsigned long flags;
5943
5a04bf4b
TH
5944 /* SATA spd limit is bound to the first device */
5945 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5946
72fa4b74
TH
5947 /* High bits of dev->flags are used to record warm plug
5948 * requests which occur asynchronously. Synchronize using
cca3974e 5949 * host lock.
72fa4b74 5950 */
ba6a1308 5951 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5952 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5953 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5954
72fa4b74
TH
5955 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5956 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5957 dev->pio_mask = UINT_MAX;
5958 dev->mwdma_mask = UINT_MAX;
5959 dev->udma_mask = UINT_MAX;
5960}
5961
1da177e4 5962/**
f3187195
TH
5963 * ata_port_alloc - allocate and initialize basic ATA port resources
5964 * @host: ATA host this allocated port belongs to
1da177e4 5965 *
f3187195
TH
5966 * Allocate and initialize basic ATA port resources.
5967 *
5968 * RETURNS:
5969 * Allocate ATA port on success, NULL on failure.
0cba632b 5970 *
1da177e4 5971 * LOCKING:
f3187195 5972 * Inherited from calling layer (may sleep).
1da177e4 5973 */
f3187195 5974struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5975{
f3187195 5976 struct ata_port *ap;
1da177e4
LT
5977 unsigned int i;
5978
f3187195
TH
5979 DPRINTK("ENTER\n");
5980
5981 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5982 if (!ap)
5983 return NULL;
5984
cca3974e 5985 ap->lock = &host->lock;
198e0fed 5986 ap->flags = ATA_FLAG_DISABLED;
f3187195 5987 ap->print_id = -1;
1da177e4 5988 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5989 ap->host = host;
f3187195
TH
5990 ap->dev = host->dev;
5991
5a04bf4b 5992 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5993 ap->active_tag = ATA_TAG_POISON;
5994 ap->last_ctl = 0xFF;
bd5d825c
BP
5995
5996#if defined(ATA_VERBOSE_DEBUG)
5997 /* turn on all debugging levels */
5998 ap->msg_enable = 0x00FF;
5999#elif defined(ATA_DEBUG)
6000 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6001#else
0dd4b21f 6002 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6003#endif
1da177e4 6004
65f27f38
DH
6005 INIT_DELAYED_WORK(&ap->port_task, NULL);
6006 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6007 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6008 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6009 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6010
838df628 6011 ap->cbl = ATA_CBL_NONE;
838df628 6012
acf356b1
TH
6013 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6014 struct ata_device *dev = &ap->device[i];
38d87234 6015 dev->ap = ap;
72fa4b74 6016 dev->devno = i;
3ef3b43d 6017 ata_dev_init(dev);
acf356b1 6018 }
1da177e4
LT
6019
6020#ifdef ATA_IRQ_TRAP
6021 ap->stats.unhandled_irq = 1;
6022 ap->stats.idle_irq = 1;
6023#endif
1da177e4 6024 return ap;
1da177e4
LT
6025}
6026
f0d36efd
TH
6027static void ata_host_release(struct device *gendev, void *res)
6028{
6029 struct ata_host *host = dev_get_drvdata(gendev);
6030 int i;
6031
6032 for (i = 0; i < host->n_ports; i++) {
6033 struct ata_port *ap = host->ports[i];
6034
ecef7253
TH
6035 if (!ap)
6036 continue;
6037
6038 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6039 ap->ops->port_stop(ap);
f0d36efd
TH
6040 }
6041
ecef7253 6042 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6043 host->ops->host_stop(host);
1aa56cca 6044
1aa506e4
TH
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6047
4911487a
TH
6048 if (!ap)
6049 continue;
6050
6051 if (ap->scsi_host)
1aa506e4
TH
6052 scsi_host_put(ap->scsi_host);
6053
4911487a 6054 kfree(ap);
1aa506e4
TH
6055 host->ports[i] = NULL;
6056 }
6057
1aa56cca 6058 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6059}
6060
f3187195
TH
6061/**
6062 * ata_host_alloc - allocate and init basic ATA host resources
6063 * @dev: generic device this host is associated with
6064 * @max_ports: maximum number of ATA ports associated with this host
6065 *
6066 * Allocate and initialize basic ATA host resources. LLD calls
6067 * this function to allocate a host, initializes it fully and
6068 * attaches it using ata_host_register().
6069 *
6070 * @max_ports ports are allocated and host->n_ports is
6071 * initialized to @max_ports. The caller is allowed to decrease
6072 * host->n_ports before calling ata_host_register(). The unused
6073 * ports will be automatically freed on registration.
6074 *
6075 * RETURNS:
6076 * Allocate ATA host on success, NULL on failure.
6077 *
6078 * LOCKING:
6079 * Inherited from calling layer (may sleep).
6080 */
6081struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6082{
6083 struct ata_host *host;
6084 size_t sz;
6085 int i;
6086
6087 DPRINTK("ENTER\n");
6088
6089 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6090 return NULL;
6091
6092 /* alloc a container for our list of ATA ports (buses) */
6093 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6094 /* alloc a container for our list of ATA ports (buses) */
6095 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6096 if (!host)
6097 goto err_out;
6098
6099 devres_add(dev, host);
6100 dev_set_drvdata(dev, host);
6101
6102 spin_lock_init(&host->lock);
6103 host->dev = dev;
6104 host->n_ports = max_ports;
6105
6106 /* allocate ports bound to this host */
6107 for (i = 0; i < max_ports; i++) {
6108 struct ata_port *ap;
6109
6110 ap = ata_port_alloc(host);
6111 if (!ap)
6112 goto err_out;
6113
6114 ap->port_no = i;
6115 host->ports[i] = ap;
6116 }
6117
6118 devres_remove_group(dev, NULL);
6119 return host;
6120
6121 err_out:
6122 devres_release_group(dev, NULL);
6123 return NULL;
6124}
6125
f5cda257
TH
6126/**
6127 * ata_host_alloc_pinfo - alloc host and init with port_info array
6128 * @dev: generic device this host is associated with
6129 * @ppi: array of ATA port_info to initialize host with
6130 * @n_ports: number of ATA ports attached to this host
6131 *
6132 * Allocate ATA host and initialize with info from @ppi. If NULL
6133 * terminated, @ppi may contain fewer entries than @n_ports. The
6134 * last entry will be used for the remaining ports.
6135 *
6136 * RETURNS:
6137 * Allocate ATA host on success, NULL on failure.
6138 *
6139 * LOCKING:
6140 * Inherited from calling layer (may sleep).
6141 */
6142struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6143 const struct ata_port_info * const * ppi,
6144 int n_ports)
6145{
6146 const struct ata_port_info *pi;
6147 struct ata_host *host;
6148 int i, j;
6149
6150 host = ata_host_alloc(dev, n_ports);
6151 if (!host)
6152 return NULL;
6153
6154 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6155 struct ata_port *ap = host->ports[i];
6156
6157 if (ppi[j])
6158 pi = ppi[j++];
6159
6160 ap->pio_mask = pi->pio_mask;
6161 ap->mwdma_mask = pi->mwdma_mask;
6162 ap->udma_mask = pi->udma_mask;
6163 ap->flags |= pi->flags;
6164 ap->ops = pi->port_ops;
6165
6166 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6167 host->ops = pi->port_ops;
6168 if (!host->private_data && pi->private_data)
6169 host->private_data = pi->private_data;
6170 }
6171
6172 return host;
6173}
6174
ecef7253
TH
6175/**
6176 * ata_host_start - start and freeze ports of an ATA host
6177 * @host: ATA host to start ports for
6178 *
6179 * Start and then freeze ports of @host. Started status is
6180 * recorded in host->flags, so this function can be called
6181 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6182 * once. If host->ops isn't initialized yet, its set to the
6183 * first non-dummy port ops.
ecef7253
TH
6184 *
6185 * LOCKING:
6186 * Inherited from calling layer (may sleep).
6187 *
6188 * RETURNS:
6189 * 0 if all ports are started successfully, -errno otherwise.
6190 */
6191int ata_host_start(struct ata_host *host)
6192{
6193 int i, rc;
6194
6195 if (host->flags & ATA_HOST_STARTED)
6196 return 0;
6197
6198 for (i = 0; i < host->n_ports; i++) {
6199 struct ata_port *ap = host->ports[i];
6200
f3187195
TH
6201 if (!host->ops && !ata_port_is_dummy(ap))
6202 host->ops = ap->ops;
6203
ecef7253
TH
6204 if (ap->ops->port_start) {
6205 rc = ap->ops->port_start(ap);
6206 if (rc) {
6207 ata_port_printk(ap, KERN_ERR, "failed to "
6208 "start port (errno=%d)\n", rc);
6209 goto err_out;
6210 }
6211 }
6212
6213 ata_eh_freeze_port(ap);
6214 }
6215
6216 host->flags |= ATA_HOST_STARTED;
6217 return 0;
6218
6219 err_out:
6220 while (--i >= 0) {
6221 struct ata_port *ap = host->ports[i];
6222
6223 if (ap->ops->port_stop)
6224 ap->ops->port_stop(ap);
6225 }
6226 return rc;
6227}
6228
b03732f0 6229/**
cca3974e
JG
6230 * ata_sas_host_init - Initialize a host struct
6231 * @host: host to initialize
6232 * @dev: device host is attached to
6233 * @flags: host flags
6234 * @ops: port_ops
b03732f0
BK
6235 *
6236 * LOCKING:
6237 * PCI/etc. bus probe sem.
6238 *
6239 */
f3187195 6240/* KILLME - the only user left is ipr */
cca3974e
JG
6241void ata_host_init(struct ata_host *host, struct device *dev,
6242 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6243{
cca3974e
JG
6244 spin_lock_init(&host->lock);
6245 host->dev = dev;
6246 host->flags = flags;
6247 host->ops = ops;
b03732f0
BK
6248}
6249
f3187195
TH
6250/**
6251 * ata_host_register - register initialized ATA host
6252 * @host: ATA host to register
6253 * @sht: template for SCSI host
6254 *
6255 * Register initialized ATA host. @host is allocated using
6256 * ata_host_alloc() and fully initialized by LLD. This function
6257 * starts ports, registers @host with ATA and SCSI layers and
6258 * probe registered devices.
6259 *
6260 * LOCKING:
6261 * Inherited from calling layer (may sleep).
6262 *
6263 * RETURNS:
6264 * 0 on success, -errno otherwise.
6265 */
6266int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6267{
6268 int i, rc;
6269
6270 /* host must have been started */
6271 if (!(host->flags & ATA_HOST_STARTED)) {
6272 dev_printk(KERN_ERR, host->dev,
6273 "BUG: trying to register unstarted host\n");
6274 WARN_ON(1);
6275 return -EINVAL;
6276 }
6277
6278 /* Blow away unused ports. This happens when LLD can't
6279 * determine the exact number of ports to allocate at
6280 * allocation time.
6281 */
6282 for (i = host->n_ports; host->ports[i]; i++)
6283 kfree(host->ports[i]);
6284
6285 /* give ports names and add SCSI hosts */
6286 for (i = 0; i < host->n_ports; i++)
6287 host->ports[i]->print_id = ata_print_id++;
6288
6289 rc = ata_scsi_add_hosts(host, sht);
6290 if (rc)
6291 return rc;
6292
6293 /* set cable, sata_spd_limit and report */
6294 for (i = 0; i < host->n_ports; i++) {
6295 struct ata_port *ap = host->ports[i];
6296 int irq_line;
6297 u32 scontrol;
6298 unsigned long xfer_mask;
6299
6300 /* set SATA cable type if still unset */
6301 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6302 ap->cbl = ATA_CBL_SATA;
6303
6304 /* init sata_spd_limit to the current value */
6305 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6306 int spd = (scontrol >> 4) & 0xf;
6307 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6308 }
6309 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6310
6311 /* report the secondary IRQ for second channel legacy */
6312 irq_line = host->irq;
6313 if (i == 1 && host->irq2)
6314 irq_line = host->irq2;
6315
6316 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6317 ap->udma_mask);
6318
6319 /* print per-port info to dmesg */
6320 if (!ata_port_is_dummy(ap))
6321 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6322 "ctl 0x%p bmdma 0x%p irq %d\n",
6323 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6324 ata_mode_string(xfer_mask),
6325 ap->ioaddr.cmd_addr,
6326 ap->ioaddr.ctl_addr,
6327 ap->ioaddr.bmdma_addr,
6328 irq_line);
6329 else
6330 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6331 }
6332
6333 /* perform each probe synchronously */
6334 DPRINTK("probe begin\n");
6335 for (i = 0; i < host->n_ports; i++) {
6336 struct ata_port *ap = host->ports[i];
6337 int rc;
6338
6339 /* probe */
6340 if (ap->ops->error_handler) {
6341 struct ata_eh_info *ehi = &ap->eh_info;
6342 unsigned long flags;
6343
6344 ata_port_probe(ap);
6345
6346 /* kick EH for boot probing */
6347 spin_lock_irqsave(ap->lock, flags);
6348
6349 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6350 ehi->action |= ATA_EH_SOFTRESET;
6351 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6352
6353 ap->pflags |= ATA_PFLAG_LOADING;
6354 ata_port_schedule_eh(ap);
6355
6356 spin_unlock_irqrestore(ap->lock, flags);
6357
6358 /* wait for EH to finish */
6359 ata_port_wait_eh(ap);
6360 } else {
6361 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6362 rc = ata_bus_probe(ap);
6363 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6364
6365 if (rc) {
6366 /* FIXME: do something useful here?
6367 * Current libata behavior will
6368 * tear down everything when
6369 * the module is removed
6370 * or the h/w is unplugged.
6371 */
6372 }
6373 }
6374 }
6375
6376 /* probes are done, now scan each port's disk(s) */
6377 DPRINTK("host probe begin\n");
6378 for (i = 0; i < host->n_ports; i++) {
6379 struct ata_port *ap = host->ports[i];
6380
6381 ata_scsi_scan_host(ap);
6382 }
6383
6384 return 0;
6385}
6386
f5cda257
TH
6387/**
6388 * ata_host_activate - start host, request IRQ and register it
6389 * @host: target ATA host
6390 * @irq: IRQ to request
6391 * @irq_handler: irq_handler used when requesting IRQ
6392 * @irq_flags: irq_flags used when requesting IRQ
6393 * @sht: scsi_host_template to use when registering the host
6394 *
6395 * After allocating an ATA host and initializing it, most libata
6396 * LLDs perform three steps to activate the host - start host,
6397 * request IRQ and register it. This helper takes necessasry
6398 * arguments and performs the three steps in one go.
6399 *
6400 * LOCKING:
6401 * Inherited from calling layer (may sleep).
6402 *
6403 * RETURNS:
6404 * 0 on success, -errno otherwise.
6405 */
6406int ata_host_activate(struct ata_host *host, int irq,
6407 irq_handler_t irq_handler, unsigned long irq_flags,
6408 struct scsi_host_template *sht)
6409{
6410 int rc;
6411
6412 rc = ata_host_start(host);
6413 if (rc)
6414 return rc;
6415
6416 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6417 dev_driver_string(host->dev), host);
6418 if (rc)
6419 return rc;
6420
6421 rc = ata_host_register(host, sht);
6422 /* if failed, just free the IRQ and leave ports alone */
6423 if (rc)
6424 devm_free_irq(host->dev, irq, host);
6425
6426 return rc;
6427}
6428
720ba126
TH
6429/**
6430 * ata_port_detach - Detach ATA port in prepration of device removal
6431 * @ap: ATA port to be detached
6432 *
6433 * Detach all ATA devices and the associated SCSI devices of @ap;
6434 * then, remove the associated SCSI host. @ap is guaranteed to
6435 * be quiescent on return from this function.
6436 *
6437 * LOCKING:
6438 * Kernel thread context (may sleep).
6439 */
6440void ata_port_detach(struct ata_port *ap)
6441{
6442 unsigned long flags;
6443 int i;
6444
6445 if (!ap->ops->error_handler)
c3cf30a9 6446 goto skip_eh;
720ba126
TH
6447
6448 /* tell EH we're leaving & flush EH */
ba6a1308 6449 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6450 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6451 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6452
6453 ata_port_wait_eh(ap);
6454
6455 /* EH is now guaranteed to see UNLOADING, so no new device
6456 * will be attached. Disable all existing devices.
6457 */
ba6a1308 6458 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6459
6460 for (i = 0; i < ATA_MAX_DEVICES; i++)
6461 ata_dev_disable(&ap->device[i]);
6462
ba6a1308 6463 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6464
6465 /* Final freeze & EH. All in-flight commands are aborted. EH
6466 * will be skipped and retrials will be terminated with bad
6467 * target.
6468 */
ba6a1308 6469 spin_lock_irqsave(ap->lock, flags);
720ba126 6470 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6471 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6472
6473 ata_port_wait_eh(ap);
6474
6475 /* Flush hotplug task. The sequence is similar to
6476 * ata_port_flush_task().
6477 */
28e53bdd 6478 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6479 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6480 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6481
c3cf30a9 6482 skip_eh:
720ba126 6483 /* remove the associated SCSI host */
cca3974e 6484 scsi_remove_host(ap->scsi_host);
720ba126
TH
6485}
6486
0529c159
TH
6487/**
6488 * ata_host_detach - Detach all ports of an ATA host
6489 * @host: Host to detach
6490 *
6491 * Detach all ports of @host.
6492 *
6493 * LOCKING:
6494 * Kernel thread context (may sleep).
6495 */
6496void ata_host_detach(struct ata_host *host)
6497{
6498 int i;
6499
6500 for (i = 0; i < host->n_ports; i++)
6501 ata_port_detach(host->ports[i]);
6502}
6503
1da177e4
LT
6504/**
6505 * ata_std_ports - initialize ioaddr with standard port offsets.
6506 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6507 *
6508 * Utility function which initializes data_addr, error_addr,
6509 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6510 * device_addr, status_addr, and command_addr to standard offsets
6511 * relative to cmd_addr.
6512 *
6513 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6514 */
0baab86b 6515
1da177e4
LT
6516void ata_std_ports(struct ata_ioports *ioaddr)
6517{
6518 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6519 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6520 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6521 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6522 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6523 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6524 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6525 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6526 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6527 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6528}
6529
0baab86b 6530
374b1873
JG
6531#ifdef CONFIG_PCI
6532
1da177e4
LT
6533/**
6534 * ata_pci_remove_one - PCI layer callback for device removal
6535 * @pdev: PCI device that was removed
6536 *
b878ca5d
TH
6537 * PCI layer indicates to libata via this hook that hot-unplug or
6538 * module unload event has occurred. Detach all ports. Resource
6539 * release is handled via devres.
1da177e4
LT
6540 *
6541 * LOCKING:
6542 * Inherited from PCI layer (may sleep).
6543 */
f0d36efd 6544void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6545{
6546 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6547 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6548
b878ca5d 6549 ata_host_detach(host);
1da177e4
LT
6550}
6551
6552/* move to PCI subsystem */
057ace5e 6553int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6554{
6555 unsigned long tmp = 0;
6556
6557 switch (bits->width) {
6558 case 1: {
6559 u8 tmp8 = 0;
6560 pci_read_config_byte(pdev, bits->reg, &tmp8);
6561 tmp = tmp8;
6562 break;
6563 }
6564 case 2: {
6565 u16 tmp16 = 0;
6566 pci_read_config_word(pdev, bits->reg, &tmp16);
6567 tmp = tmp16;
6568 break;
6569 }
6570 case 4: {
6571 u32 tmp32 = 0;
6572 pci_read_config_dword(pdev, bits->reg, &tmp32);
6573 tmp = tmp32;
6574 break;
6575 }
6576
6577 default:
6578 return -EINVAL;
6579 }
6580
6581 tmp &= bits->mask;
6582
6583 return (tmp == bits->val) ? 1 : 0;
6584}
9b847548 6585
6ffa01d8 6586#ifdef CONFIG_PM
3c5100c1 6587void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6588{
6589 pci_save_state(pdev);
4c90d971 6590 pci_disable_device(pdev);
500530f6 6591
4c90d971 6592 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6593 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6594}
6595
553c4aa6 6596int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6597{
553c4aa6
TH
6598 int rc;
6599
9b847548
JA
6600 pci_set_power_state(pdev, PCI_D0);
6601 pci_restore_state(pdev);
553c4aa6 6602
b878ca5d 6603 rc = pcim_enable_device(pdev);
553c4aa6
TH
6604 if (rc) {
6605 dev_printk(KERN_ERR, &pdev->dev,
6606 "failed to enable device after resume (%d)\n", rc);
6607 return rc;
6608 }
6609
9b847548 6610 pci_set_master(pdev);
553c4aa6 6611 return 0;
500530f6
TH
6612}
6613
3c5100c1 6614int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6615{
cca3974e 6616 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6617 int rc = 0;
6618
cca3974e 6619 rc = ata_host_suspend(host, mesg);
500530f6
TH
6620 if (rc)
6621 return rc;
6622
3c5100c1 6623 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6624
6625 return 0;
6626}
6627
6628int ata_pci_device_resume(struct pci_dev *pdev)
6629{
cca3974e 6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6631 int rc;
500530f6 6632
553c4aa6
TH
6633 rc = ata_pci_device_do_resume(pdev);
6634 if (rc == 0)
6635 ata_host_resume(host);
6636 return rc;
9b847548 6637}
6ffa01d8
TH
6638#endif /* CONFIG_PM */
6639
1da177e4
LT
6640#endif /* CONFIG_PCI */
6641
6642
1da177e4
LT
6643static int __init ata_init(void)
6644{
a8601e5f 6645 ata_probe_timeout *= HZ;
1da177e4
LT
6646 ata_wq = create_workqueue("ata");
6647 if (!ata_wq)
6648 return -ENOMEM;
6649
453b07ac
TH
6650 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6651 if (!ata_aux_wq) {
6652 destroy_workqueue(ata_wq);
6653 return -ENOMEM;
6654 }
6655
1da177e4
LT
6656 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6657 return 0;
6658}
6659
6660static void __exit ata_exit(void)
6661{
6662 destroy_workqueue(ata_wq);
453b07ac 6663 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6664}
6665
a4625085 6666subsys_initcall(ata_init);
1da177e4
LT
6667module_exit(ata_exit);
6668
67846b30 6669static unsigned long ratelimit_time;
34af946a 6670static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6671
6672int ata_ratelimit(void)
6673{
6674 int rc;
6675 unsigned long flags;
6676
6677 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6678
6679 if (time_after(jiffies, ratelimit_time)) {
6680 rc = 1;
6681 ratelimit_time = jiffies + (HZ/5);
6682 } else
6683 rc = 0;
6684
6685 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6686
6687 return rc;
6688}
6689
c22daff4
TH
6690/**
6691 * ata_wait_register - wait until register value changes
6692 * @reg: IO-mapped register
6693 * @mask: Mask to apply to read register value
6694 * @val: Wait condition
6695 * @interval_msec: polling interval in milliseconds
6696 * @timeout_msec: timeout in milliseconds
6697 *
6698 * Waiting for some bits of register to change is a common
6699 * operation for ATA controllers. This function reads 32bit LE
6700 * IO-mapped register @reg and tests for the following condition.
6701 *
6702 * (*@reg & mask) != val
6703 *
6704 * If the condition is met, it returns; otherwise, the process is
6705 * repeated after @interval_msec until timeout.
6706 *
6707 * LOCKING:
6708 * Kernel thread context (may sleep)
6709 *
6710 * RETURNS:
6711 * The final register value.
6712 */
6713u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6714 unsigned long interval_msec,
6715 unsigned long timeout_msec)
6716{
6717 unsigned long timeout;
6718 u32 tmp;
6719
6720 tmp = ioread32(reg);
6721
6722 /* Calculate timeout _after_ the first read to make sure
6723 * preceding writes reach the controller before starting to
6724 * eat away the timeout.
6725 */
6726 timeout = jiffies + (timeout_msec * HZ) / 1000;
6727
6728 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6729 msleep(interval_msec);
6730 tmp = ioread32(reg);
6731 }
6732
6733 return tmp;
6734}
6735
dd5b06c4
TH
6736/*
6737 * Dummy port_ops
6738 */
6739static void ata_dummy_noret(struct ata_port *ap) { }
6740static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6741static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6742
6743static u8 ata_dummy_check_status(struct ata_port *ap)
6744{
6745 return ATA_DRDY;
6746}
6747
6748static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6749{
6750 return AC_ERR_SYSTEM;
6751}
6752
6753const struct ata_port_operations ata_dummy_port_ops = {
6754 .port_disable = ata_port_disable,
6755 .check_status = ata_dummy_check_status,
6756 .check_altstatus = ata_dummy_check_status,
6757 .dev_select = ata_noop_dev_select,
6758 .qc_prep = ata_noop_qc_prep,
6759 .qc_issue = ata_dummy_qc_issue,
6760 .freeze = ata_dummy_noret,
6761 .thaw = ata_dummy_noret,
6762 .error_handler = ata_dummy_noret,
6763 .post_internal_cmd = ata_dummy_qc_noret,
6764 .irq_clear = ata_dummy_noret,
6765 .port_start = ata_dummy_ret0,
6766 .port_stop = ata_dummy_noret,
6767};
6768
21b0ad4f
TH
6769const struct ata_port_info ata_dummy_port_info = {
6770 .port_ops = &ata_dummy_port_ops,
6771};
6772
1da177e4
LT
6773/*
6774 * libata is essentially a library of internal helper functions for
6775 * low-level ATA host controller drivers. As such, the API/ABI is
6776 * likely to change as new drivers are added and updated.
6777 * Do not depend on ABI/API stability.
6778 */
6779
e9c83914
TH
6780EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6781EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6782EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6783EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6784EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6785EXPORT_SYMBOL_GPL(ata_std_bios_param);
6786EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6787EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6788EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6789EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6790EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6791EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6792EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6793EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6794EXPORT_SYMBOL_GPL(ata_sg_init);
6795EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6796EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6797EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6798EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6799EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6800EXPORT_SYMBOL_GPL(ata_tf_load);
6801EXPORT_SYMBOL_GPL(ata_tf_read);
6802EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6803EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6804EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6805EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6806EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6807EXPORT_SYMBOL_GPL(ata_check_status);
6808EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6809EXPORT_SYMBOL_GPL(ata_exec_command);
6810EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6811EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6812EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6813EXPORT_SYMBOL_GPL(ata_data_xfer);
6814EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6815EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6816EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6817EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6818EXPORT_SYMBOL_GPL(ata_bmdma_start);
6819EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6820EXPORT_SYMBOL_GPL(ata_bmdma_status);
6821EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6822EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6823EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6824EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6825EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6826EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6827EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6828EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6829EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6830EXPORT_SYMBOL_GPL(sata_phy_debounce);
6831EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6832EXPORT_SYMBOL_GPL(sata_phy_reset);
6833EXPORT_SYMBOL_GPL(__sata_phy_reset);
6834EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6835EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6836EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6837EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6838EXPORT_SYMBOL_GPL(sata_std_hardreset);
6839EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6840EXPORT_SYMBOL_GPL(ata_dev_classify);
6841EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6842EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6843EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6844EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6845EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6846EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6847EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6848EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6849EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6850EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6851EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6852EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6853EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6854EXPORT_SYMBOL_GPL(sata_scr_valid);
6855EXPORT_SYMBOL_GPL(sata_scr_read);
6856EXPORT_SYMBOL_GPL(sata_scr_write);
6857EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6858EXPORT_SYMBOL_GPL(ata_port_online);
6859EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6860#ifdef CONFIG_PM
cca3974e
JG
6861EXPORT_SYMBOL_GPL(ata_host_suspend);
6862EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6863#endif /* CONFIG_PM */
6a62a04d
TH
6864EXPORT_SYMBOL_GPL(ata_id_string);
6865EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6866EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6867EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6868EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6869
1bc4ccff 6870EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6871EXPORT_SYMBOL_GPL(ata_timing_compute);
6872EXPORT_SYMBOL_GPL(ata_timing_merge);
6873
1da177e4
LT
6874#ifdef CONFIG_PCI
6875EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6876EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
21b0ad4f 6877EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6878EXPORT_SYMBOL_GPL(ata_pci_init_one);
6879EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6880#ifdef CONFIG_PM
500530f6
TH
6881EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6882EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6883EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6884EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6885#endif /* CONFIG_PM */
67951ade
AC
6886EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6887EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6888#endif /* CONFIG_PCI */
9b847548 6889
6ffa01d8 6890#ifdef CONFIG_PM
9b847548
JA
6891EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6892EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6893#endif /* CONFIG_PM */
ece1d636 6894
ece1d636 6895EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6896EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6897EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6898EXPORT_SYMBOL_GPL(ata_port_freeze);
6899EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6900EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6901EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6902EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6903EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6904EXPORT_SYMBOL_GPL(ata_irq_on);
6905EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6906EXPORT_SYMBOL_GPL(ata_irq_ack);
6907EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6908EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6909
6910EXPORT_SYMBOL_GPL(ata_cable_40wire);
6911EXPORT_SYMBOL_GPL(ata_cable_80wire);
6912EXPORT_SYMBOL_GPL(ata_cable_unknown);
6913EXPORT_SYMBOL_GPL(ata_cable_sata);