]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
pata_sil680: only enable MMIO on Cell blades
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
33267325
TH
90struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
97};
98
99struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
103};
104
105static struct ata_force_ent *ata_force_tbl;
106static int ata_force_tbl_size;
107
108static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
109/* param_buf is thrown away after initialization, disallow read */
110module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
111MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112
418dc1f5 113int atapi_enabled = 1;
1623c81e
JG
114module_param(atapi_enabled, int, 0444);
115MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
116
c5c61bda 117static int atapi_dmadir = 0;
95de719a
AL
118module_param(atapi_dmadir, int, 0444);
119MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120
baf4fdfa
ML
121int atapi_passthru16 = 1;
122module_param(atapi_passthru16, int, 0444);
123MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
124
c3c013a2
JG
125int libata_fua = 0;
126module_param_named(fua, libata_fua, int, 0444);
127MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
128
2dcb407e 129static int ata_ignore_hpa;
1e999736
AC
130module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
131MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132
b3a70601
AC
133static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
134module_param_named(dma, libata_dma_mask, int, 0444);
135MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136
a8601e5f
AM
137static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
138module_param(ata_probe_timeout, int, 0444);
139MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140
6ebe9d86 141int libata_noacpi = 0;
d7d0dad6 142module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 143MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 144
ae8d4ee7
AC
145int libata_allow_tpm = 0;
146module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
147MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
148
1da177e4
LT
149MODULE_AUTHOR("Jeff Garzik");
150MODULE_DESCRIPTION("Library module for ATA devices");
151MODULE_LICENSE("GPL");
152MODULE_VERSION(DRV_VERSION);
153
0baab86b 154
33267325
TH
155/**
156 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 157 * @ap: ATA port of interest
33267325
TH
158 *
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
163 * same effect.
164 *
165 * LOCKING:
166 * EH context.
167 */
168void ata_force_cbl(struct ata_port *ap)
169{
170 int i;
171
172 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
173 const struct ata_force_ent *fe = &ata_force_tbl[i];
174
175 if (fe->port != -1 && fe->port != ap->print_id)
176 continue;
177
178 if (fe->param.cbl == ATA_CBL_NONE)
179 continue;
180
181 ap->cbl = fe->param.cbl;
182 ata_port_printk(ap, KERN_NOTICE,
183 "FORCE: cable set to %s\n", fe->param.name);
184 return;
185 }
186}
187
188/**
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
191 *
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
199 *
200 * LOCKING:
201 * EH context.
202 */
203static void ata_force_spd_limit(struct ata_link *link)
204{
205 int linkno, i;
206
207 if (ata_is_host_link(link))
208 linkno = 15;
209 else
210 linkno = link->pmp;
211
212 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
213 const struct ata_force_ent *fe = &ata_force_tbl[i];
214
215 if (fe->port != -1 && fe->port != link->ap->print_id)
216 continue;
217
218 if (fe->device != -1 && fe->device != linkno)
219 continue;
220
221 if (!fe->param.spd_limit)
222 continue;
223
224 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
225 ata_link_printk(link, KERN_NOTICE,
226 "FORCE: PHY spd limit set to %s\n", fe->param.name);
227 return;
228 }
229}
230
231/**
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
234 *
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
238 *
239 * LOCKING:
240 * EH context.
241 */
242static void ata_force_xfermask(struct ata_device *dev)
243{
244 int devno = dev->link->pmp + dev->devno;
245 int alt_devno = devno;
246 int i;
247
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev->link) && devno == 0)
250 alt_devno = 15;
251
252 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
253 const struct ata_force_ent *fe = &ata_force_tbl[i];
254 unsigned long pio_mask, mwdma_mask, udma_mask;
255
256 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
257 continue;
258
259 if (fe->device != -1 && fe->device != devno &&
260 fe->device != alt_devno)
261 continue;
262
263 if (!fe->param.xfer_mask)
264 continue;
265
266 ata_unpack_xfermask(fe->param.xfer_mask,
267 &pio_mask, &mwdma_mask, &udma_mask);
268 if (udma_mask)
269 dev->udma_mask = udma_mask;
270 else if (mwdma_mask) {
271 dev->udma_mask = 0;
272 dev->mwdma_mask = mwdma_mask;
273 } else {
274 dev->udma_mask = 0;
275 dev->mwdma_mask = 0;
276 dev->pio_mask = pio_mask;
277 }
278
279 ata_dev_printk(dev, KERN_NOTICE,
280 "FORCE: xfer_mask set to %s\n", fe->param.name);
281 return;
282 }
283}
284
285/**
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
288 *
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
292 *
293 * LOCKING:
294 * EH context.
295 */
296static void ata_force_horkage(struct ata_device *dev)
297{
298 int devno = dev->link->pmp + dev->devno;
299 int alt_devno = devno;
300 int i;
301
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev->link) && devno == 0)
304 alt_devno = 15;
305
306 for (i = 0; i < ata_force_tbl_size; i++) {
307 const struct ata_force_ent *fe = &ata_force_tbl[i];
308
309 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
310 continue;
311
312 if (fe->device != -1 && fe->device != devno &&
313 fe->device != alt_devno)
314 continue;
315
316 if (!(~dev->horkage & fe->param.horkage_on) &&
317 !(dev->horkage & fe->param.horkage_off))
318 continue;
319
320 dev->horkage |= fe->param.horkage_on;
321 dev->horkage &= ~fe->param.horkage_off;
322
323 ata_dev_printk(dev, KERN_NOTICE,
324 "FORCE: horkage modified (%s)\n", fe->param.name);
325 }
326}
327
1da177e4
LT
328/**
329 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
330 * @tf: Taskfile to convert
1da177e4 331 * @pmp: Port multiplier port
9977126c
TH
332 * @is_cmd: This FIS is for command
333 * @fis: Buffer into which data will output
1da177e4
LT
334 *
335 * Converts a standard ATA taskfile to a Serial ATA
336 * FIS structure (Register - Host to Device).
337 *
338 * LOCKING:
339 * Inherited from caller.
340 */
9977126c 341void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 342{
9977126c
TH
343 fis[0] = 0x27; /* Register - Host to Device FIS */
344 fis[1] = pmp & 0xf; /* Port multiplier number*/
345 if (is_cmd)
346 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
347
1da177e4
LT
348 fis[2] = tf->command;
349 fis[3] = tf->feature;
350
351 fis[4] = tf->lbal;
352 fis[5] = tf->lbam;
353 fis[6] = tf->lbah;
354 fis[7] = tf->device;
355
356 fis[8] = tf->hob_lbal;
357 fis[9] = tf->hob_lbam;
358 fis[10] = tf->hob_lbah;
359 fis[11] = tf->hob_feature;
360
361 fis[12] = tf->nsect;
362 fis[13] = tf->hob_nsect;
363 fis[14] = 0;
364 fis[15] = tf->ctl;
365
366 fis[16] = 0;
367 fis[17] = 0;
368 fis[18] = 0;
369 fis[19] = 0;
370}
371
372/**
373 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
374 * @fis: Buffer from which data will be input
375 * @tf: Taskfile to output
376 *
e12a1be6 377 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
382
057ace5e 383void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
384{
385 tf->command = fis[2]; /* status */
386 tf->feature = fis[3]; /* error */
387
388 tf->lbal = fis[4];
389 tf->lbam = fis[5];
390 tf->lbah = fis[6];
391 tf->device = fis[7];
392
393 tf->hob_lbal = fis[8];
394 tf->hob_lbam = fis[9];
395 tf->hob_lbah = fis[10];
396
397 tf->nsect = fis[12];
398 tf->hob_nsect = fis[13];
399}
400
8cbd6df1
AL
401static const u8 ata_rw_cmds[] = {
402 /* pio multi */
403 ATA_CMD_READ_MULTI,
404 ATA_CMD_WRITE_MULTI,
405 ATA_CMD_READ_MULTI_EXT,
406 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
407 0,
408 0,
409 0,
410 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
411 /* pio */
412 ATA_CMD_PIO_READ,
413 ATA_CMD_PIO_WRITE,
414 ATA_CMD_PIO_READ_EXT,
415 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
416 0,
417 0,
418 0,
419 0,
8cbd6df1
AL
420 /* dma */
421 ATA_CMD_READ,
422 ATA_CMD_WRITE,
423 ATA_CMD_READ_EXT,
9a3dccc4
TH
424 ATA_CMD_WRITE_EXT,
425 0,
426 0,
427 0,
428 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 429};
1da177e4
LT
430
431/**
8cbd6df1 432 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
433 * @tf: command to examine and configure
434 * @dev: device tf belongs to
1da177e4 435 *
2e9edbf8 436 * Examine the device configuration and tf->flags to calculate
8cbd6df1 437 * the proper read/write commands and protocol to use.
1da177e4
LT
438 *
439 * LOCKING:
440 * caller.
441 */
bd056d7e 442static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 443{
9a3dccc4 444 u8 cmd;
1da177e4 445
9a3dccc4 446 int index, fua, lba48, write;
2e9edbf8 447
9a3dccc4 448 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
449 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
450 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 451
8cbd6df1
AL
452 if (dev->flags & ATA_DFLAG_PIO) {
453 tf->protocol = ATA_PROT_PIO;
9a3dccc4 454 index = dev->multi_count ? 0 : 8;
9af5c9c9 455 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
456 /* Unable to use DMA due to host limitation */
457 tf->protocol = ATA_PROT_PIO;
0565c26d 458 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
459 } else {
460 tf->protocol = ATA_PROT_DMA;
9a3dccc4 461 index = 16;
8cbd6df1 462 }
1da177e4 463
9a3dccc4
TH
464 cmd = ata_rw_cmds[index + fua + lba48 + write];
465 if (cmd) {
466 tf->command = cmd;
467 return 0;
468 }
469 return -1;
1da177e4
LT
470}
471
35b649fe
TH
472/**
473 * ata_tf_read_block - Read block address from ATA taskfile
474 * @tf: ATA taskfile of interest
475 * @dev: ATA device @tf belongs to
476 *
477 * LOCKING:
478 * None.
479 *
480 * Read block address from @tf. This function can handle all
481 * three address formats - LBA, LBA48 and CHS. tf->protocol and
482 * flags select the address format to use.
483 *
484 * RETURNS:
485 * Block address read from @tf.
486 */
487u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
488{
489 u64 block = 0;
490
491 if (tf->flags & ATA_TFLAG_LBA) {
492 if (tf->flags & ATA_TFLAG_LBA48) {
493 block |= (u64)tf->hob_lbah << 40;
494 block |= (u64)tf->hob_lbam << 32;
495 block |= tf->hob_lbal << 24;
496 } else
497 block |= (tf->device & 0xf) << 24;
498
499 block |= tf->lbah << 16;
500 block |= tf->lbam << 8;
501 block |= tf->lbal;
502 } else {
503 u32 cyl, head, sect;
504
505 cyl = tf->lbam | (tf->lbah << 8);
506 head = tf->device & 0xf;
507 sect = tf->lbal;
508
509 block = (cyl * dev->heads + head) * dev->sectors + sect;
510 }
511
512 return block;
513}
514
bd056d7e
TH
515/**
516 * ata_build_rw_tf - Build ATA taskfile for given read/write request
517 * @tf: Target ATA taskfile
518 * @dev: ATA device @tf belongs to
519 * @block: Block address
520 * @n_block: Number of blocks
521 * @tf_flags: RW/FUA etc...
522 * @tag: tag
523 *
524 * LOCKING:
525 * None.
526 *
527 * Build ATA taskfile @tf for read/write request described by
528 * @block, @n_block, @tf_flags and @tag on @dev.
529 *
530 * RETURNS:
531 *
532 * 0 on success, -ERANGE if the request is too large for @dev,
533 * -EINVAL if the request is invalid.
534 */
535int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
536 u64 block, u32 n_block, unsigned int tf_flags,
537 unsigned int tag)
538{
539 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
540 tf->flags |= tf_flags;
541
6d1245bf 542 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
543 /* yay, NCQ */
544 if (!lba_48_ok(block, n_block))
545 return -ERANGE;
546
547 tf->protocol = ATA_PROT_NCQ;
548 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
549
550 if (tf->flags & ATA_TFLAG_WRITE)
551 tf->command = ATA_CMD_FPDMA_WRITE;
552 else
553 tf->command = ATA_CMD_FPDMA_READ;
554
555 tf->nsect = tag << 3;
556 tf->hob_feature = (n_block >> 8) & 0xff;
557 tf->feature = n_block & 0xff;
558
559 tf->hob_lbah = (block >> 40) & 0xff;
560 tf->hob_lbam = (block >> 32) & 0xff;
561 tf->hob_lbal = (block >> 24) & 0xff;
562 tf->lbah = (block >> 16) & 0xff;
563 tf->lbam = (block >> 8) & 0xff;
564 tf->lbal = block & 0xff;
565
566 tf->device = 1 << 6;
567 if (tf->flags & ATA_TFLAG_FUA)
568 tf->device |= 1 << 7;
569 } else if (dev->flags & ATA_DFLAG_LBA) {
570 tf->flags |= ATA_TFLAG_LBA;
571
572 if (lba_28_ok(block, n_block)) {
573 /* use LBA28 */
574 tf->device |= (block >> 24) & 0xf;
575 } else if (lba_48_ok(block, n_block)) {
576 if (!(dev->flags & ATA_DFLAG_LBA48))
577 return -ERANGE;
578
579 /* use LBA48 */
580 tf->flags |= ATA_TFLAG_LBA48;
581
582 tf->hob_nsect = (n_block >> 8) & 0xff;
583
584 tf->hob_lbah = (block >> 40) & 0xff;
585 tf->hob_lbam = (block >> 32) & 0xff;
586 tf->hob_lbal = (block >> 24) & 0xff;
587 } else
588 /* request too large even for LBA48 */
589 return -ERANGE;
590
591 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
592 return -EINVAL;
593
594 tf->nsect = n_block & 0xff;
595
596 tf->lbah = (block >> 16) & 0xff;
597 tf->lbam = (block >> 8) & 0xff;
598 tf->lbal = block & 0xff;
599
600 tf->device |= ATA_LBA;
601 } else {
602 /* CHS */
603 u32 sect, head, cyl, track;
604
605 /* The request -may- be too large for CHS addressing. */
606 if (!lba_28_ok(block, n_block))
607 return -ERANGE;
608
609 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
610 return -EINVAL;
611
612 /* Convert LBA to CHS */
613 track = (u32)block / dev->sectors;
614 cyl = track / dev->heads;
615 head = track % dev->heads;
616 sect = (u32)block % dev->sectors + 1;
617
618 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
619 (u32)block, track, cyl, head, sect);
620
621 /* Check whether the converted CHS can fit.
622 Cylinder: 0-65535
623 Head: 0-15
624 Sector: 1-255*/
625 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
626 return -ERANGE;
627
628 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
629 tf->lbal = sect;
630 tf->lbam = cyl;
631 tf->lbah = cyl >> 8;
632 tf->device |= head;
633 }
634
635 return 0;
636}
637
cb95d562
TH
638/**
639 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
640 * @pio_mask: pio_mask
641 * @mwdma_mask: mwdma_mask
642 * @udma_mask: udma_mask
643 *
644 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
645 * unsigned int xfer_mask.
646 *
647 * LOCKING:
648 * None.
649 *
650 * RETURNS:
651 * Packed xfer_mask.
652 */
7dc951ae
TH
653unsigned long ata_pack_xfermask(unsigned long pio_mask,
654 unsigned long mwdma_mask,
655 unsigned long udma_mask)
cb95d562
TH
656{
657 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
658 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
659 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
660}
661
c0489e4e
TH
662/**
663 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
664 * @xfer_mask: xfer_mask to unpack
665 * @pio_mask: resulting pio_mask
666 * @mwdma_mask: resulting mwdma_mask
667 * @udma_mask: resulting udma_mask
668 *
669 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
670 * Any NULL distination masks will be ignored.
671 */
7dc951ae
TH
672void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
673 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
674{
675 if (pio_mask)
676 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
677 if (mwdma_mask)
678 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
679 if (udma_mask)
680 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
681}
682
cb95d562 683static const struct ata_xfer_ent {
be9a50c8 684 int shift, bits;
cb95d562
TH
685 u8 base;
686} ata_xfer_tbl[] = {
70cd071e
TH
687 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
688 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
689 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
690 { -1, },
691};
692
693/**
694 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
695 * @xfer_mask: xfer_mask of interest
696 *
697 * Return matching XFER_* value for @xfer_mask. Only the highest
698 * bit of @xfer_mask is considered.
699 *
700 * LOCKING:
701 * None.
702 *
703 * RETURNS:
70cd071e 704 * Matching XFER_* value, 0xff if no match found.
cb95d562 705 */
7dc951ae 706u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
707{
708 int highbit = fls(xfer_mask) - 1;
709 const struct ata_xfer_ent *ent;
710
711 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
712 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
713 return ent->base + highbit - ent->shift;
70cd071e 714 return 0xff;
cb95d562
TH
715}
716
717/**
718 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
719 * @xfer_mode: XFER_* of interest
720 *
721 * Return matching xfer_mask for @xfer_mode.
722 *
723 * LOCKING:
724 * None.
725 *
726 * RETURNS:
727 * Matching xfer_mask, 0 if no match found.
728 */
7dc951ae 729unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
730{
731 const struct ata_xfer_ent *ent;
732
733 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
734 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
735 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
736 & ~((1 << ent->shift) - 1);
cb95d562
TH
737 return 0;
738}
739
740/**
741 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
742 * @xfer_mode: XFER_* of interest
743 *
744 * Return matching xfer_shift for @xfer_mode.
745 *
746 * LOCKING:
747 * None.
748 *
749 * RETURNS:
750 * Matching xfer_shift, -1 if no match found.
751 */
7dc951ae 752int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
753{
754 const struct ata_xfer_ent *ent;
755
756 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
757 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
758 return ent->shift;
759 return -1;
760}
761
1da177e4 762/**
1da7b0d0
TH
763 * ata_mode_string - convert xfer_mask to string
764 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
765 *
766 * Determine string which represents the highest speed
1da7b0d0 767 * (highest bit in @modemask).
1da177e4
LT
768 *
769 * LOCKING:
770 * None.
771 *
772 * RETURNS:
773 * Constant C string representing highest speed listed in
1da7b0d0 774 * @mode_mask, or the constant C string "<n/a>".
1da177e4 775 */
7dc951ae 776const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 777{
75f554bc
TH
778 static const char * const xfer_mode_str[] = {
779 "PIO0",
780 "PIO1",
781 "PIO2",
782 "PIO3",
783 "PIO4",
b352e57d
AC
784 "PIO5",
785 "PIO6",
75f554bc
TH
786 "MWDMA0",
787 "MWDMA1",
788 "MWDMA2",
b352e57d
AC
789 "MWDMA3",
790 "MWDMA4",
75f554bc
TH
791 "UDMA/16",
792 "UDMA/25",
793 "UDMA/33",
794 "UDMA/44",
795 "UDMA/66",
796 "UDMA/100",
797 "UDMA/133",
798 "UDMA7",
799 };
1da7b0d0 800 int highbit;
1da177e4 801
1da7b0d0
TH
802 highbit = fls(xfer_mask) - 1;
803 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
804 return xfer_mode_str[highbit];
1da177e4 805 return "<n/a>";
1da177e4
LT
806}
807
4c360c81
TH
808static const char *sata_spd_string(unsigned int spd)
809{
810 static const char * const spd_str[] = {
811 "1.5 Gbps",
812 "3.0 Gbps",
813 };
814
815 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
816 return "<unknown>";
817 return spd_str[spd - 1];
818}
819
3373efd8 820void ata_dev_disable(struct ata_device *dev)
0b8efb0a 821{
09d7f9b0 822 if (ata_dev_enabled(dev)) {
9af5c9c9 823 if (ata_msg_drv(dev->link->ap))
09d7f9b0 824 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 825 ata_acpi_on_disable(dev);
4ae72a1e
TH
826 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
827 ATA_DNXFER_QUIET);
0b8efb0a
TH
828 dev->class++;
829 }
830}
831
ca77329f
KCA
832static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
833{
834 struct ata_link *link = dev->link;
835 struct ata_port *ap = link->ap;
836 u32 scontrol;
837 unsigned int err_mask;
838 int rc;
839
840 /*
841 * disallow DIPM for drivers which haven't set
842 * ATA_FLAG_IPM. This is because when DIPM is enabled,
843 * phy ready will be set in the interrupt status on
844 * state changes, which will cause some drivers to
845 * think there are errors - additionally drivers will
846 * need to disable hot plug.
847 */
848 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
849 ap->pm_policy = NOT_AVAILABLE;
850 return -EINVAL;
851 }
852
853 /*
854 * For DIPM, we will only enable it for the
855 * min_power setting.
856 *
857 * Why? Because Disks are too stupid to know that
858 * If the host rejects a request to go to SLUMBER
859 * they should retry at PARTIAL, and instead it
860 * just would give up. So, for medium_power to
861 * work at all, we need to only allow HIPM.
862 */
863 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
864 if (rc)
865 return rc;
866
867 switch (policy) {
868 case MIN_POWER:
869 /* no restrictions on IPM transitions */
870 scontrol &= ~(0x3 << 8);
871 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
872 if (rc)
873 return rc;
874
875 /* enable DIPM */
876 if (dev->flags & ATA_DFLAG_DIPM)
877 err_mask = ata_dev_set_feature(dev,
878 SETFEATURES_SATA_ENABLE, SATA_DIPM);
879 break;
880 case MEDIUM_POWER:
881 /* allow IPM to PARTIAL */
882 scontrol &= ~(0x1 << 8);
883 scontrol |= (0x2 << 8);
884 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
885 if (rc)
886 return rc;
887
f5456b63
KCA
888 /*
889 * we don't have to disable DIPM since IPM flags
890 * disallow transitions to SLUMBER, which effectively
891 * disable DIPM if it does not support PARTIAL
892 */
ca77329f
KCA
893 break;
894 case NOT_AVAILABLE:
895 case MAX_PERFORMANCE:
896 /* disable all IPM transitions */
897 scontrol |= (0x3 << 8);
898 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
899 if (rc)
900 return rc;
901
f5456b63
KCA
902 /*
903 * we don't have to disable DIPM since IPM flags
904 * disallow all transitions which effectively
905 * disable DIPM anyway.
906 */
ca77329f
KCA
907 break;
908 }
909
910 /* FIXME: handle SET FEATURES failure */
911 (void) err_mask;
912
913 return 0;
914}
915
916/**
917 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
918 * @dev: device to enable power management
919 * @policy: the link power management policy
ca77329f
KCA
920 *
921 * Enable SATA Interface power management. This will enable
922 * Device Interface Power Management (DIPM) for min_power
923 * policy, and then call driver specific callbacks for
924 * enabling Host Initiated Power management.
925 *
926 * Locking: Caller.
927 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
928 */
929void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
930{
931 int rc = 0;
932 struct ata_port *ap = dev->link->ap;
933
934 /* set HIPM first, then DIPM */
935 if (ap->ops->enable_pm)
936 rc = ap->ops->enable_pm(ap, policy);
937 if (rc)
938 goto enable_pm_out;
939 rc = ata_dev_set_dipm(dev, policy);
940
941enable_pm_out:
942 if (rc)
943 ap->pm_policy = MAX_PERFORMANCE;
944 else
945 ap->pm_policy = policy;
946 return /* rc */; /* hopefully we can use 'rc' eventually */
947}
948
1992a5ed 949#ifdef CONFIG_PM
ca77329f
KCA
950/**
951 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 952 * @dev: device to disable power management
ca77329f
KCA
953 *
954 * Disable SATA Interface power management. This will disable
955 * Device Interface Power Management (DIPM) without changing
956 * policy, call driver specific callbacks for disabling Host
957 * Initiated Power management.
958 *
959 * Locking: Caller.
960 * Returns: void
961 */
962static void ata_dev_disable_pm(struct ata_device *dev)
963{
964 struct ata_port *ap = dev->link->ap;
965
966 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
967 if (ap->ops->disable_pm)
968 ap->ops->disable_pm(ap);
969}
1992a5ed 970#endif /* CONFIG_PM */
ca77329f
KCA
971
972void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
973{
974 ap->pm_policy = policy;
975 ap->link.eh_info.action |= ATA_EHI_LPM;
976 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
977 ata_port_schedule_eh(ap);
978}
979
1992a5ed 980#ifdef CONFIG_PM
ca77329f
KCA
981static void ata_lpm_enable(struct ata_host *host)
982{
983 struct ata_link *link;
984 struct ata_port *ap;
985 struct ata_device *dev;
986 int i;
987
988 for (i = 0; i < host->n_ports; i++) {
989 ap = host->ports[i];
990 ata_port_for_each_link(link, ap) {
991 ata_link_for_each_dev(dev, link)
992 ata_dev_disable_pm(dev);
993 }
994 }
995}
996
997static void ata_lpm_disable(struct ata_host *host)
998{
999 int i;
1000
1001 for (i = 0; i < host->n_ports; i++) {
1002 struct ata_port *ap = host->ports[i];
1003 ata_lpm_schedule(ap, ap->pm_policy);
1004 }
1005}
1992a5ed 1006#endif /* CONFIG_PM */
ca77329f
KCA
1007
1008
1da177e4 1009/**
0d5ff566 1010 * ata_devchk - PATA device presence detection
1da177e4
LT
1011 * @ap: ATA channel to examine
1012 * @device: Device to examine (starting at zero)
1013 *
1014 * This technique was originally described in
1015 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1016 * later found its way into the ATA/ATAPI spec.
1017 *
1018 * Write a pattern to the ATA shadow registers,
1019 * and if a device is present, it will respond by
1020 * correctly storing and echoing back the
1021 * ATA shadow register contents.
1022 *
1023 * LOCKING:
1024 * caller.
1025 */
1026
0d5ff566 1027static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
1028{
1029 struct ata_ioports *ioaddr = &ap->ioaddr;
1030 u8 nsect, lbal;
1031
1032 ap->ops->dev_select(ap, device);
1033
0d5ff566
TH
1034 iowrite8(0x55, ioaddr->nsect_addr);
1035 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 1036
0d5ff566
TH
1037 iowrite8(0xaa, ioaddr->nsect_addr);
1038 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 1039
0d5ff566
TH
1040 iowrite8(0x55, ioaddr->nsect_addr);
1041 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 1042
0d5ff566
TH
1043 nsect = ioread8(ioaddr->nsect_addr);
1044 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
1045
1046 if ((nsect == 0x55) && (lbal == 0xaa))
1047 return 1; /* we found a device */
1048
1049 return 0; /* nothing found */
1050}
1051
1da177e4
LT
1052/**
1053 * ata_dev_classify - determine device type based on ATA-spec signature
1054 * @tf: ATA taskfile register set for device to be identified
1055 *
1056 * Determine from taskfile register contents whether a device is
1057 * ATA or ATAPI, as per "Signature and persistence" section
1058 * of ATA/PI spec (volume 1, sect 5.14).
1059 *
1060 * LOCKING:
1061 * None.
1062 *
1063 * RETURNS:
633273a3
TH
1064 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1065 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1066 */
057ace5e 1067unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1068{
1069 /* Apple's open source Darwin code hints that some devices only
1070 * put a proper signature into the LBA mid/high registers,
1071 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1072 *
1073 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1074 * signatures for ATA and ATAPI devices attached on SerialATA,
1075 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1076 * spec has never mentioned about using different signatures
1077 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1078 * Multiplier specification began to use 0x69/0x96 to identify
1079 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1080 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1081 * 0x69/0x96 shortly and described them as reserved for
1082 * SerialATA.
1083 *
1084 * We follow the current spec and consider that 0x69/0x96
1085 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 1086 */
633273a3 1087 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1088 DPRINTK("found ATA device by sig\n");
1089 return ATA_DEV_ATA;
1090 }
1091
633273a3 1092 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1093 DPRINTK("found ATAPI device by sig\n");
1094 return ATA_DEV_ATAPI;
1095 }
1096
633273a3
TH
1097 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1098 DPRINTK("found PMP device by sig\n");
1099 return ATA_DEV_PMP;
1100 }
1101
1102 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 1103 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
1104 return ATA_DEV_SEMB_UNSUP; /* not yet */
1105 }
1106
1da177e4
LT
1107 DPRINTK("unknown device\n");
1108 return ATA_DEV_UNKNOWN;
1109}
1110
1111/**
1112 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
1113 * @dev: ATA device to classify (starting at zero)
1114 * @present: device seems present
b4dc7623 1115 * @r_err: Value of error register on completion
1da177e4
LT
1116 *
1117 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1118 * an ATA/ATAPI-defined set of values is placed in the ATA
1119 * shadow registers, indicating the results of device detection
1120 * and diagnostics.
1121 *
1122 * Select the ATA device, and read the values from the ATA shadow
1123 * registers. Then parse according to the Error register value,
1124 * and the spec-defined values examined by ata_dev_classify().
1125 *
1126 * LOCKING:
1127 * caller.
b4dc7623
TH
1128 *
1129 * RETURNS:
1130 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 1131 */
3f19859e
TH
1132unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1133 u8 *r_err)
1da177e4 1134{
3f19859e 1135 struct ata_port *ap = dev->link->ap;
1da177e4
LT
1136 struct ata_taskfile tf;
1137 unsigned int class;
1138 u8 err;
1139
3f19859e 1140 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
1141
1142 memset(&tf, 0, sizeof(tf));
1143
1da177e4 1144 ap->ops->tf_read(ap, &tf);
0169e284 1145 err = tf.feature;
b4dc7623
TH
1146 if (r_err)
1147 *r_err = err;
1da177e4 1148
c5038fc0
AC
1149 /* see if device passed diags: continue and warn later */
1150 if (err == 0)
93590859 1151 /* diagnostic fail : do nothing _YET_ */
3f19859e 1152 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 1153 else if (err == 1)
1da177e4 1154 /* do nothing */ ;
3f19859e 1155 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
1156 /* do nothing */ ;
1157 else
b4dc7623 1158 return ATA_DEV_NONE;
1da177e4 1159
b4dc7623 1160 /* determine if device is ATA or ATAPI */
1da177e4 1161 class = ata_dev_classify(&tf);
b4dc7623 1162
d7fbee05
TH
1163 if (class == ATA_DEV_UNKNOWN) {
1164 /* If the device failed diagnostic, it's likely to
1165 * have reported incorrect device signature too.
1166 * Assume ATA device if the device seems present but
1167 * device signature is invalid with diagnostic
1168 * failure.
1169 */
1170 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1171 class = ATA_DEV_ATA;
1172 else
1173 class = ATA_DEV_NONE;
1174 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1175 class = ATA_DEV_NONE;
1176
b4dc7623 1177 return class;
1da177e4
LT
1178}
1179
1180/**
6a62a04d 1181 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1182 * @id: IDENTIFY DEVICE results we will examine
1183 * @s: string into which data is output
1184 * @ofs: offset into identify device page
1185 * @len: length of string to return. must be an even number.
1186 *
1187 * The strings in the IDENTIFY DEVICE page are broken up into
1188 * 16-bit chunks. Run through the string, and output each
1189 * 8-bit chunk linearly, regardless of platform.
1190 *
1191 * LOCKING:
1192 * caller.
1193 */
1194
6a62a04d
TH
1195void ata_id_string(const u16 *id, unsigned char *s,
1196 unsigned int ofs, unsigned int len)
1da177e4
LT
1197{
1198 unsigned int c;
1199
1200 while (len > 0) {
1201 c = id[ofs] >> 8;
1202 *s = c;
1203 s++;
1204
1205 c = id[ofs] & 0xff;
1206 *s = c;
1207 s++;
1208
1209 ofs++;
1210 len -= 2;
1211 }
1212}
1213
0e949ff3 1214/**
6a62a04d 1215 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1216 * @id: IDENTIFY DEVICE results we will examine
1217 * @s: string into which data is output
1218 * @ofs: offset into identify device page
1219 * @len: length of string to return. must be an odd number.
1220 *
6a62a04d 1221 * This function is identical to ata_id_string except that it
0e949ff3
TH
1222 * trims trailing spaces and terminates the resulting string with
1223 * null. @len must be actual maximum length (even number) + 1.
1224 *
1225 * LOCKING:
1226 * caller.
1227 */
6a62a04d
TH
1228void ata_id_c_string(const u16 *id, unsigned char *s,
1229 unsigned int ofs, unsigned int len)
0e949ff3
TH
1230{
1231 unsigned char *p;
1232
1233 WARN_ON(!(len & 1));
1234
6a62a04d 1235 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1236
1237 p = s + strnlen(s, len - 1);
1238 while (p > s && p[-1] == ' ')
1239 p--;
1240 *p = '\0';
1241}
0baab86b 1242
db6f8759
TH
1243static u64 ata_id_n_sectors(const u16 *id)
1244{
1245 if (ata_id_has_lba(id)) {
1246 if (ata_id_has_lba48(id))
1247 return ata_id_u64(id, 100);
1248 else
1249 return ata_id_u32(id, 60);
1250 } else {
1251 if (ata_id_current_chs_valid(id))
1252 return ata_id_u32(id, 57);
1253 else
1254 return id[1] * id[3] * id[6];
1255 }
1256}
1257
1e999736
AC
1258static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1259{
1260 u64 sectors = 0;
1261
1262 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1263 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1264 sectors |= (tf->hob_lbal & 0xff) << 24;
1265 sectors |= (tf->lbah & 0xff) << 16;
1266 sectors |= (tf->lbam & 0xff) << 8;
1267 sectors |= (tf->lbal & 0xff);
1268
1269 return ++sectors;
1270}
1271
1272static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1273{
1274 u64 sectors = 0;
1275
1276 sectors |= (tf->device & 0x0f) << 24;
1277 sectors |= (tf->lbah & 0xff) << 16;
1278 sectors |= (tf->lbam & 0xff) << 8;
1279 sectors |= (tf->lbal & 0xff);
1280
1281 return ++sectors;
1282}
1283
1284/**
c728a914
TH
1285 * ata_read_native_max_address - Read native max address
1286 * @dev: target device
1287 * @max_sectors: out parameter for the result native max address
1e999736 1288 *
c728a914
TH
1289 * Perform an LBA48 or LBA28 native size query upon the device in
1290 * question.
1e999736 1291 *
c728a914
TH
1292 * RETURNS:
1293 * 0 on success, -EACCES if command is aborted by the drive.
1294 * -EIO on other errors.
1e999736 1295 */
c728a914 1296static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1297{
c728a914 1298 unsigned int err_mask;
1e999736 1299 struct ata_taskfile tf;
c728a914 1300 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1301
1302 ata_tf_init(dev, &tf);
1303
c728a914 1304 /* always clear all address registers */
1e999736 1305 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1306
c728a914
TH
1307 if (lba48) {
1308 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1309 tf.flags |= ATA_TFLAG_LBA48;
1310 } else
1311 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1312
1e999736 1313 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1314 tf.device |= ATA_LBA;
1315
2b789108 1316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1317 if (err_mask) {
1318 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1319 "max address (err_mask=0x%x)\n", err_mask);
1320 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1321 return -EACCES;
1322 return -EIO;
1323 }
1e999736 1324
c728a914
TH
1325 if (lba48)
1326 *max_sectors = ata_tf_to_lba48(&tf);
1327 else
1328 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1329 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1330 (*max_sectors)--;
c728a914 1331 return 0;
1e999736
AC
1332}
1333
1334/**
c728a914
TH
1335 * ata_set_max_sectors - Set max sectors
1336 * @dev: target device
6b38d1d1 1337 * @new_sectors: new max sectors value to set for the device
1e999736 1338 *
c728a914
TH
1339 * Set max sectors of @dev to @new_sectors.
1340 *
1341 * RETURNS:
1342 * 0 on success, -EACCES if command is aborted or denied (due to
1343 * previous non-volatile SET_MAX) by the drive. -EIO on other
1344 * errors.
1e999736 1345 */
05027adc 1346static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1347{
c728a914 1348 unsigned int err_mask;
1e999736 1349 struct ata_taskfile tf;
c728a914 1350 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1351
1352 new_sectors--;
1353
1354 ata_tf_init(dev, &tf);
1355
1e999736 1356 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1357
1358 if (lba48) {
1359 tf.command = ATA_CMD_SET_MAX_EXT;
1360 tf.flags |= ATA_TFLAG_LBA48;
1361
1362 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1363 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1364 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1365 } else {
c728a914
TH
1366 tf.command = ATA_CMD_SET_MAX;
1367
1e582ba4
TH
1368 tf.device |= (new_sectors >> 24) & 0xf;
1369 }
1370
1e999736 1371 tf.protocol |= ATA_PROT_NODATA;
c728a914 1372 tf.device |= ATA_LBA;
1e999736
AC
1373
1374 tf.lbal = (new_sectors >> 0) & 0xff;
1375 tf.lbam = (new_sectors >> 8) & 0xff;
1376 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1377
2b789108 1378 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1379 if (err_mask) {
1380 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1381 "max address (err_mask=0x%x)\n", err_mask);
1382 if (err_mask == AC_ERR_DEV &&
1383 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1384 return -EACCES;
1385 return -EIO;
1386 }
1387
c728a914 1388 return 0;
1e999736
AC
1389}
1390
1391/**
1392 * ata_hpa_resize - Resize a device with an HPA set
1393 * @dev: Device to resize
1394 *
1395 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1396 * it if required to the full size of the media. The caller must check
1397 * the drive has the HPA feature set enabled.
05027adc
TH
1398 *
1399 * RETURNS:
1400 * 0 on success, -errno on failure.
1e999736 1401 */
05027adc 1402static int ata_hpa_resize(struct ata_device *dev)
1e999736 1403{
05027adc
TH
1404 struct ata_eh_context *ehc = &dev->link->eh_context;
1405 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1406 u64 sectors = ata_id_n_sectors(dev->id);
1407 u64 native_sectors;
c728a914 1408 int rc;
a617c09f 1409
05027adc
TH
1410 /* do we need to do it? */
1411 if (dev->class != ATA_DEV_ATA ||
1412 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1413 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1414 return 0;
1e999736 1415
05027adc
TH
1416 /* read native max address */
1417 rc = ata_read_native_max_address(dev, &native_sectors);
1418 if (rc) {
dda7aba1
TH
1419 /* If device aborted the command or HPA isn't going to
1420 * be unlocked, skip HPA resizing.
05027adc 1421 */
dda7aba1 1422 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1423 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1424 "broken, skipping HPA handling\n");
05027adc
TH
1425 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1426
1427 /* we can continue if device aborted the command */
1428 if (rc == -EACCES)
1429 rc = 0;
1e999736 1430 }
37301a55 1431
05027adc
TH
1432 return rc;
1433 }
1434
1435 /* nothing to do? */
1436 if (native_sectors <= sectors || !ata_ignore_hpa) {
1437 if (!print_info || native_sectors == sectors)
1438 return 0;
1439
1440 if (native_sectors > sectors)
1441 ata_dev_printk(dev, KERN_INFO,
1442 "HPA detected: current %llu, native %llu\n",
1443 (unsigned long long)sectors,
1444 (unsigned long long)native_sectors);
1445 else if (native_sectors < sectors)
1446 ata_dev_printk(dev, KERN_WARNING,
1447 "native sectors (%llu) is smaller than "
1448 "sectors (%llu)\n",
1449 (unsigned long long)native_sectors,
1450 (unsigned long long)sectors);
1451 return 0;
1452 }
1453
1454 /* let's unlock HPA */
1455 rc = ata_set_max_sectors(dev, native_sectors);
1456 if (rc == -EACCES) {
1457 /* if device aborted the command, skip HPA resizing */
1458 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1459 "(%llu -> %llu), skipping HPA handling\n",
1460 (unsigned long long)sectors,
1461 (unsigned long long)native_sectors);
1462 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1463 return 0;
1464 } else if (rc)
1465 return rc;
1466
1467 /* re-read IDENTIFY data */
1468 rc = ata_dev_reread_id(dev, 0);
1469 if (rc) {
1470 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1471 "data after HPA resizing\n");
1472 return rc;
1473 }
1474
1475 if (print_info) {
1476 u64 new_sectors = ata_id_n_sectors(dev->id);
1477 ata_dev_printk(dev, KERN_INFO,
1478 "HPA unlocked: %llu -> %llu, native %llu\n",
1479 (unsigned long long)sectors,
1480 (unsigned long long)new_sectors,
1481 (unsigned long long)native_sectors);
1482 }
1483
1484 return 0;
1e999736
AC
1485}
1486
0baab86b
EF
1487/**
1488 * ata_noop_dev_select - Select device 0/1 on ATA bus
1489 * @ap: ATA channel to manipulate
1490 * @device: ATA device (numbered from zero) to select
1491 *
1492 * This function performs no actual function.
1493 *
1494 * May be used as the dev_select() entry in ata_port_operations.
1495 *
1496 * LOCKING:
1497 * caller.
1498 */
2dcb407e 1499void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1500{
1501}
1502
0baab86b 1503
1da177e4
LT
1504/**
1505 * ata_std_dev_select - Select device 0/1 on ATA bus
1506 * @ap: ATA channel to manipulate
1507 * @device: ATA device (numbered from zero) to select
1508 *
1509 * Use the method defined in the ATA specification to
1510 * make either device 0, or device 1, active on the
0baab86b
EF
1511 * ATA channel. Works with both PIO and MMIO.
1512 *
1513 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1514 *
1515 * LOCKING:
1516 * caller.
1517 */
1518
2dcb407e 1519void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1520{
1521 u8 tmp;
1522
1523 if (device == 0)
1524 tmp = ATA_DEVICE_OBS;
1525 else
1526 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1527
0d5ff566 1528 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1529 ata_pause(ap); /* needed; also flushes, for mmio */
1530}
1531
1532/**
1533 * ata_dev_select - Select device 0/1 on ATA bus
1534 * @ap: ATA channel to manipulate
1535 * @device: ATA device (numbered from zero) to select
1536 * @wait: non-zero to wait for Status register BSY bit to clear
1537 * @can_sleep: non-zero if context allows sleeping
1538 *
1539 * Use the method defined in the ATA specification to
1540 * make either device 0, or device 1, active on the
1541 * ATA channel.
1542 *
1543 * This is a high-level version of ata_std_dev_select(),
1544 * which additionally provides the services of inserting
1545 * the proper pauses and status polling, where needed.
1546 *
1547 * LOCKING:
1548 * caller.
1549 */
1550
1551void ata_dev_select(struct ata_port *ap, unsigned int device,
1552 unsigned int wait, unsigned int can_sleep)
1553{
88574551 1554 if (ata_msg_probe(ap))
44877b4e
TH
1555 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1556 "device %u, wait %u\n", device, wait);
1da177e4
LT
1557
1558 if (wait)
1559 ata_wait_idle(ap);
1560
1561 ap->ops->dev_select(ap, device);
1562
1563 if (wait) {
9af5c9c9 1564 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1565 msleep(150);
1566 ata_wait_idle(ap);
1567 }
1568}
1569
1570/**
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1572 * @id: IDENTIFY DEVICE page to dump
1da177e4 1573 *
0bd3300a
TH
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1575 * page.
1da177e4
LT
1576 *
1577 * LOCKING:
1578 * caller.
1579 */
1580
0bd3300a 1581static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1582{
1583 DPRINTK("49==0x%04x "
1584 "53==0x%04x "
1585 "63==0x%04x "
1586 "64==0x%04x "
1587 "75==0x%04x \n",
0bd3300a
TH
1588 id[49],
1589 id[53],
1590 id[63],
1591 id[64],
1592 id[75]);
1da177e4
LT
1593 DPRINTK("80==0x%04x "
1594 "81==0x%04x "
1595 "82==0x%04x "
1596 "83==0x%04x "
1597 "84==0x%04x \n",
0bd3300a
TH
1598 id[80],
1599 id[81],
1600 id[82],
1601 id[83],
1602 id[84]);
1da177e4
LT
1603 DPRINTK("88==0x%04x "
1604 "93==0x%04x\n",
0bd3300a
TH
1605 id[88],
1606 id[93]);
1da177e4
LT
1607}
1608
cb95d562
TH
1609/**
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1612 *
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1615 *
1616 * FIXME: pre IDE drive timing (do we care ?).
1617 *
1618 * LOCKING:
1619 * None.
1620 *
1621 * RETURNS:
1622 * Computed xfermask
1623 */
7dc951ae 1624unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1625{
7dc951ae 1626 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1627
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1631 pio_mask <<= 3;
1632 pio_mask |= 0x7;
1633 } else {
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1636 * a mask.
1637 */
7a0f1c8a 1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1639 if (mode < 5) /* Valid PIO range */
2dcb407e 1640 pio_mask = (2 << mode) - 1;
46767aeb
AC
1641 else
1642 pio_mask = 1;
cb95d562
TH
1643
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1649 */
1650 }
1651
1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1653
b352e57d
AC
1654 if (ata_id_is_cfa(id)) {
1655 /*
1656 * Process compact flash extended modes
1657 */
1658 int pio = id[163] & 0x7;
1659 int dma = (id[163] >> 3) & 7;
1660
1661 if (pio)
1662 pio_mask |= (1 << 5);
1663 if (pio > 1)
1664 pio_mask |= (1 << 6);
1665 if (dma)
1666 mwdma_mask |= (1 << 3);
1667 if (dma > 1)
1668 mwdma_mask |= (1 << 4);
1669 }
1670
fb21f0d0
TH
1671 udma_mask = 0;
1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1674
1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1676}
1677
86e45b6b 1678/**
442eacc3 1679 * ata_pio_queue_task - Queue port_task
86e45b6b 1680 * @ap: The ata_port to queue port_task for
e2a7f77a 1681 * @fn: workqueue function to be scheduled
65f27f38 1682 * @data: data for @fn to use
e2a7f77a 1683 * @delay: delay time for workqueue function
86e45b6b
TH
1684 *
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1689 *
1690 * libata core layer takes care of synchronization between
442eacc3 1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1692 * synchronization.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
442eacc3
JG
1697static void ata_pio_queue_task(struct ata_port *ap, void *data,
1698 unsigned long delay)
86e45b6b 1699{
65f27f38 1700 ap->port_task_data = data;
86e45b6b 1701
45a66c1c
ON
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1704}
1705
1706/**
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1709 *
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1712 *
1713 * LOCKING:
1714 * Kernel thread context (may sleep)
1715 */
1716void ata_port_flush_task(struct ata_port *ap)
1717{
86e45b6b
TH
1718 DPRINTK("ENTER\n");
1719
45a66c1c 1720 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1721
0dd4b21f 1722 if (ata_msg_ctl(ap))
7f5e4e8d 1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1724}
1725
7102d230 1726static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1727{
77853bf2 1728 struct completion *waiting = qc->private_data;
a2a7a662 1729
a2a7a662 1730 complete(waiting);
a2a7a662
TH
1731}
1732
1733/**
2432697b 1734 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
d69cf37d 1737 * @cdb: CDB for packet command
a2a7a662 1738 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1739 * @sgl: sg list for the data buffer of the command
2432697b 1740 * @n_elem: Number of sg entries
2b789108 1741 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1742 *
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1748 *
1749 * LOCKING:
1750 * None. Should be called with kernel context, might sleep.
551e8889
TH
1751 *
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1754 */
2432697b
TH
1755unsigned ata_exec_internal_sg(struct ata_device *dev,
1756 struct ata_taskfile *tf, const u8 *cdb,
87260216 1757 int dma_dir, struct scatterlist *sgl,
2b789108 1758 unsigned int n_elem, unsigned long timeout)
a2a7a662 1759{
9af5c9c9
TH
1760 struct ata_link *link = dev->link;
1761 struct ata_port *ap = link->ap;
a2a7a662
TH
1762 u8 command = tf->command;
1763 struct ata_queued_cmd *qc;
2ab7db1f 1764 unsigned int tag, preempted_tag;
dedaf2b0 1765 u32 preempted_sactive, preempted_qc_active;
da917d69 1766 int preempted_nr_active_links;
60be6b9a 1767 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1768 unsigned long flags;
77853bf2 1769 unsigned int err_mask;
d95a717f 1770 int rc;
a2a7a662 1771
ba6a1308 1772 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1773
e3180499 1774 /* no internal command while frozen */
b51e9e5d 1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1776 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1777 return AC_ERR_SYSTEM;
1778 }
1779
2ab7db1f 1780 /* initialize internal qc */
a2a7a662 1781
2ab7db1f
TH
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1786 */
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1791
6cec4a39 1792 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1793 BUG();
f69499f4 1794 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1795
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1801
9af5c9c9
TH
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
dedaf2b0 1804 preempted_qc_active = ap->qc_active;
da917d69 1805 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
dedaf2b0 1808 ap->qc_active = 0;
da917d69 1809 ap->nr_active_links = 0;
2ab7db1f
TH
1810
1811 /* prepare & issue qc */
a2a7a662 1812 qc->tf = *tf;
d69cf37d
TH
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
2432697b 1818 unsigned int i, buflen = 0;
87260216 1819 struct scatterlist *sg;
2432697b 1820
87260216
JA
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
2432697b 1823
87260216 1824 ata_sg_init(qc, sgl, n_elem);
49c80429 1825 qc->nbytes = buflen;
a2a7a662
TH
1826 }
1827
77853bf2 1828 qc->private_data = &wait;
a2a7a662
TH
1829 qc->complete_fn = ata_qc_complete_internal;
1830
8e0e694a 1831 ata_qc_issue(qc);
a2a7a662 1832
ba6a1308 1833 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1834
2b789108
TH
1835 if (!timeout)
1836 timeout = ata_probe_timeout * 1000 / HZ;
1837
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1839
1840 ata_port_flush_task(ap);
41ade50c 1841
d95a717f 1842 if (!rc) {
ba6a1308 1843 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1844
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
d95a717f
TH
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
a2a7a662 1849 */
77853bf2 1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1852
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1855 else
1856 ata_qc_complete(qc);
f15a1daf 1857
0dd4b21f
BP
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
88574551 1860 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1861 }
1862
ba6a1308 1863 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1864 }
1865
d95a717f
TH
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1869
a51d644a
TH
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1874
1875 if (!qc->err_mask)
1876 qc->err_mask |= AC_ERR_OTHER;
1877
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1880 }
1881
15869303 1882 /* finish up */
ba6a1308 1883 spin_lock_irqsave(ap->lock, flags);
15869303 1884
e61e0672 1885 *tf = qc->result_tf;
77853bf2
TH
1886 err_mask = qc->err_mask;
1887
1888 ata_qc_free(qc);
9af5c9c9
TH
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
dedaf2b0 1891 ap->qc_active = preempted_qc_active;
da917d69 1892 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1893
1f7dd3e9
TH
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 * port.
1898 *
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1902 *
1903 * Kill the following code as soon as those drivers are fixed.
1904 */
198e0fed 1905 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1906 err_mask |= AC_ERR_SYSTEM;
1907 ata_port_probe(ap);
1908 }
1909
ba6a1308 1910 spin_unlock_irqrestore(ap->lock, flags);
15869303 1911
77853bf2 1912 return err_mask;
a2a7a662
TH
1913}
1914
2432697b 1915/**
33480a0e 1916 * ata_exec_internal - execute libata internal command
2432697b
TH
1917 * @dev: Device to which the command is sent
1918 * @tf: Taskfile registers for the command and the result
1919 * @cdb: CDB for packet command
1920 * @dma_dir: Data tranfer direction of the command
1921 * @buf: Data buffer of the command
1922 * @buflen: Length of data buffer
2b789108 1923 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1924 *
1925 * Wrapper around ata_exec_internal_sg() which takes simple
1926 * buffer instead of sg list.
1927 *
1928 * LOCKING:
1929 * None. Should be called with kernel context, might sleep.
1930 *
1931 * RETURNS:
1932 * Zero on success, AC_ERR_* mask on failure
1933 */
1934unsigned ata_exec_internal(struct ata_device *dev,
1935 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1936 int dma_dir, void *buf, unsigned int buflen,
1937 unsigned long timeout)
2432697b 1938{
33480a0e
TH
1939 struct scatterlist *psg = NULL, sg;
1940 unsigned int n_elem = 0;
2432697b 1941
33480a0e
TH
1942 if (dma_dir != DMA_NONE) {
1943 WARN_ON(!buf);
1944 sg_init_one(&sg, buf, buflen);
1945 psg = &sg;
1946 n_elem++;
1947 }
2432697b 1948
2b789108
TH
1949 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1950 timeout);
2432697b
TH
1951}
1952
977e6b9f
TH
1953/**
1954 * ata_do_simple_cmd - execute simple internal command
1955 * @dev: Device to which the command is sent
1956 * @cmd: Opcode to execute
1957 *
1958 * Execute a 'simple' command, that only consists of the opcode
1959 * 'cmd' itself, without filling any other registers
1960 *
1961 * LOCKING:
1962 * Kernel thread context (may sleep).
1963 *
1964 * RETURNS:
1965 * Zero on success, AC_ERR_* mask on failure
e58eb583 1966 */
77b08fb5 1967unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1968{
1969 struct ata_taskfile tf;
e58eb583
TH
1970
1971 ata_tf_init(dev, &tf);
1972
1973 tf.command = cmd;
1974 tf.flags |= ATA_TFLAG_DEVICE;
1975 tf.protocol = ATA_PROT_NODATA;
1976
2b789108 1977 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1978}
1979
1bc4ccff
AC
1980/**
1981 * ata_pio_need_iordy - check if iordy needed
1982 * @adev: ATA device
1983 *
1984 * Check if the current speed of the device requires IORDY. Used
1985 * by various controllers for chip configuration.
1986 */
a617c09f 1987
1bc4ccff
AC
1988unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1989{
432729f0
AC
1990 /* Controller doesn't support IORDY. Probably a pointless check
1991 as the caller should know this */
9af5c9c9 1992 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1993 return 0;
432729f0
AC
1994 /* PIO3 and higher it is mandatory */
1995 if (adev->pio_mode > XFER_PIO_2)
1996 return 1;
1997 /* We turn it on when possible */
1998 if (ata_id_has_iordy(adev->id))
1bc4ccff 1999 return 1;
432729f0
AC
2000 return 0;
2001}
2e9edbf8 2002
432729f0
AC
2003/**
2004 * ata_pio_mask_no_iordy - Return the non IORDY mask
2005 * @adev: ATA device
2006 *
2007 * Compute the highest mode possible if we are not using iordy. Return
2008 * -1 if no iordy mode is available.
2009 */
a617c09f 2010
432729f0
AC
2011static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2012{
1bc4ccff 2013 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2014 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2015 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2016 /* Is the speed faster than the drive allows non IORDY ? */
2017 if (pio) {
2018 /* This is cycle times not frequency - watch the logic! */
2019 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2020 return 3 << ATA_SHIFT_PIO;
2021 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2022 }
2023 }
432729f0 2024 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2025}
2026
1da177e4 2027/**
49016aca 2028 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2029 * @dev: target device
2030 * @p_class: pointer to class of the target device (may be changed)
bff04647 2031 * @flags: ATA_READID_* flags
fe635c7e 2032 * @id: buffer to read IDENTIFY data into
1da177e4 2033 *
49016aca
TH
2034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2036 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2037 * for pre-ATA4 drives.
1da177e4 2038 *
50a99018 2039 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2040 * now we abort if we hit that case.
50a99018 2041 *
1da177e4 2042 * LOCKING:
49016aca
TH
2043 * Kernel thread context (may sleep)
2044 *
2045 * RETURNS:
2046 * 0 on success, -errno otherwise.
1da177e4 2047 */
a9beec95 2048int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2049 unsigned int flags, u16 *id)
1da177e4 2050{
9af5c9c9 2051 struct ata_port *ap = dev->link->ap;
49016aca 2052 unsigned int class = *p_class;
a0123703 2053 struct ata_taskfile tf;
49016aca
TH
2054 unsigned int err_mask = 0;
2055 const char *reason;
54936f8b 2056 int may_fallback = 1, tried_spinup = 0;
49016aca 2057 int rc;
1da177e4 2058
0dd4b21f 2059 if (ata_msg_ctl(ap))
7f5e4e8d 2060 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2061
49016aca 2062 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 2063 retry:
3373efd8 2064 ata_tf_init(dev, &tf);
a0123703 2065
49016aca
TH
2066 switch (class) {
2067 case ATA_DEV_ATA:
a0123703 2068 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2069 break;
2070 case ATA_DEV_ATAPI:
a0123703 2071 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2072 break;
2073 default:
2074 rc = -ENODEV;
2075 reason = "unsupported class";
2076 goto err_out;
1da177e4
LT
2077 }
2078
a0123703 2079 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2080
2081 /* Some devices choke if TF registers contain garbage. Make
2082 * sure those are properly initialized.
2083 */
2084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2085
2086 /* Device presence detection is unreliable on some
2087 * controllers. Always poll IDENTIFY if available.
2088 */
2089 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2090
3373efd8 2091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 2092 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 2093 if (err_mask) {
800b3996 2094 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2095 ata_dev_printk(dev, KERN_DEBUG,
2096 "NODEV after polling detection\n");
55a8e2c8
TH
2097 return -ENOENT;
2098 }
2099
1ffc151f
TH
2100 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2101 /* Device or controller might have reported
2102 * the wrong device class. Give a shot at the
2103 * other IDENTIFY if the current one is
2104 * aborted by the device.
2105 */
2106 if (may_fallback) {
2107 may_fallback = 0;
2108
2109 if (class == ATA_DEV_ATA)
2110 class = ATA_DEV_ATAPI;
2111 else
2112 class = ATA_DEV_ATA;
2113 goto retry;
2114 }
2115
2116 /* Control reaches here iff the device aborted
2117 * both flavors of IDENTIFYs which happens
2118 * sometimes with phantom devices.
2119 */
2120 ata_dev_printk(dev, KERN_DEBUG,
2121 "both IDENTIFYs aborted, assuming NODEV\n");
2122 return -ENOENT;
54936f8b
TH
2123 }
2124
49016aca
TH
2125 rc = -EIO;
2126 reason = "I/O error";
1da177e4
LT
2127 goto err_out;
2128 }
2129
54936f8b
TH
2130 /* Falling back doesn't make sense if ID data was read
2131 * successfully at least once.
2132 */
2133 may_fallback = 0;
2134
49016aca 2135 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2136
49016aca 2137 /* sanity check */
a4f5749b 2138 rc = -EINVAL;
6070068b 2139 reason = "device reports invalid type";
a4f5749b
TH
2140
2141 if (class == ATA_DEV_ATA) {
2142 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2143 goto err_out;
2144 } else {
2145 if (ata_id_is_ata(id))
2146 goto err_out;
49016aca
TH
2147 }
2148
169439c2
ML
2149 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2150 tried_spinup = 1;
2151 /*
2152 * Drive powered-up in standby mode, and requires a specific
2153 * SET_FEATURES spin-up subcommand before it will accept
2154 * anything other than the original IDENTIFY command.
2155 */
218f3d30 2156 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2157 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2158 rc = -EIO;
2159 reason = "SPINUP failed";
2160 goto err_out;
2161 }
2162 /*
2163 * If the drive initially returned incomplete IDENTIFY info,
2164 * we now must reissue the IDENTIFY command.
2165 */
2166 if (id[2] == 0x37c8)
2167 goto retry;
2168 }
2169
bff04647 2170 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2171 /*
2172 * The exact sequence expected by certain pre-ATA4 drives is:
2173 * SRST RESET
50a99018
AC
2174 * IDENTIFY (optional in early ATA)
2175 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2176 * anything else..
2177 * Some drives were very specific about that exact sequence.
50a99018
AC
2178 *
2179 * Note that ATA4 says lba is mandatory so the second check
2180 * shoud never trigger.
49016aca
TH
2181 */
2182 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2183 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2184 if (err_mask) {
2185 rc = -EIO;
2186 reason = "INIT_DEV_PARAMS failed";
2187 goto err_out;
2188 }
2189
2190 /* current CHS translation info (id[53-58]) might be
2191 * changed. reread the identify device info.
2192 */
bff04647 2193 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2194 goto retry;
2195 }
2196 }
2197
2198 *p_class = class;
fe635c7e 2199
49016aca
TH
2200 return 0;
2201
2202 err_out:
88574551 2203 if (ata_msg_warn(ap))
0dd4b21f 2204 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2205 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2206 return rc;
2207}
2208
3373efd8 2209static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2210{
9af5c9c9
TH
2211 struct ata_port *ap = dev->link->ap;
2212 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2213}
2214
a6e6ce8e
TH
2215static void ata_dev_config_ncq(struct ata_device *dev,
2216 char *desc, size_t desc_sz)
2217{
9af5c9c9 2218 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2219 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2220
2221 if (!ata_id_has_ncq(dev->id)) {
2222 desc[0] = '\0';
2223 return;
2224 }
75683fe7 2225 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2226 snprintf(desc, desc_sz, "NCQ (not used)");
2227 return;
2228 }
a6e6ce8e 2229 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2230 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2231 dev->flags |= ATA_DFLAG_NCQ;
2232 }
2233
2234 if (hdepth >= ddepth)
2235 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2236 else
2237 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2238}
2239
49016aca 2240/**
ffeae418 2241 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2242 * @dev: Target device to configure
2243 *
2244 * Configure @dev according to @dev->id. Generic and low-level
2245 * driver specific fixups are also applied.
49016aca
TH
2246 *
2247 * LOCKING:
ffeae418
TH
2248 * Kernel thread context (may sleep)
2249 *
2250 * RETURNS:
2251 * 0 on success, -errno otherwise
49016aca 2252 */
efdaedc4 2253int ata_dev_configure(struct ata_device *dev)
49016aca 2254{
9af5c9c9
TH
2255 struct ata_port *ap = dev->link->ap;
2256 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2257 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2258 const u16 *id = dev->id;
7dc951ae 2259 unsigned long xfer_mask;
b352e57d 2260 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2261 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2262 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2263 int rc;
49016aca 2264
0dd4b21f 2265 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2266 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2267 __func__);
ffeae418 2268 return 0;
49016aca
TH
2269 }
2270
0dd4b21f 2271 if (ata_msg_probe(ap))
7f5e4e8d 2272 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2273
75683fe7
TH
2274 /* set horkage */
2275 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2276 ata_force_horkage(dev);
75683fe7 2277
6746544c
TH
2278 /* let ACPI work its magic */
2279 rc = ata_acpi_on_devcfg(dev);
2280 if (rc)
2281 return rc;
08573a86 2282
05027adc
TH
2283 /* massage HPA, do it early as it might change IDENTIFY data */
2284 rc = ata_hpa_resize(dev);
2285 if (rc)
2286 return rc;
2287
c39f5ebe 2288 /* print device capabilities */
0dd4b21f 2289 if (ata_msg_probe(ap))
88574551
TH
2290 ata_dev_printk(dev, KERN_DEBUG,
2291 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2292 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2293 __func__,
f15a1daf
TH
2294 id[49], id[82], id[83], id[84],
2295 id[85], id[86], id[87], id[88]);
c39f5ebe 2296
208a9933 2297 /* initialize to-be-configured parameters */
ea1dd4e1 2298 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2299 dev->max_sectors = 0;
2300 dev->cdb_len = 0;
2301 dev->n_sectors = 0;
2302 dev->cylinders = 0;
2303 dev->heads = 0;
2304 dev->sectors = 0;
2305
1da177e4
LT
2306 /*
2307 * common ATA, ATAPI feature tests
2308 */
2309
ff8854b2 2310 /* find max transfer mode; for printk only */
1148c3a7 2311 xfer_mask = ata_id_xfermask(id);
1da177e4 2312
0dd4b21f
BP
2313 if (ata_msg_probe(ap))
2314 ata_dump_id(id);
1da177e4 2315
ef143d57
AL
2316 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2317 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2318 sizeof(fwrevbuf));
2319
2320 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2321 sizeof(modelbuf));
2322
1da177e4
LT
2323 /* ATA-specific feature tests */
2324 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2325 if (ata_id_is_cfa(id)) {
2326 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2327 ata_dev_printk(dev, KERN_WARNING,
2328 "supports DRM functions and may "
2329 "not be fully accessable.\n");
b352e57d 2330 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2331 } else {
2dcb407e 2332 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2333 /* Warn the user if the device has TPM extensions */
2334 if (ata_id_has_tpm(id))
2335 ata_dev_printk(dev, KERN_WARNING,
2336 "supports DRM functions and may "
2337 "not be fully accessable.\n");
2338 }
b352e57d 2339
1148c3a7 2340 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2341
3f64f565
EM
2342 if (dev->id[59] & 0x100)
2343 dev->multi_count = dev->id[59] & 0xff;
2344
1148c3a7 2345 if (ata_id_has_lba(id)) {
4c2d721a 2346 const char *lba_desc;
a6e6ce8e 2347 char ncq_desc[20];
8bf62ece 2348
4c2d721a
TH
2349 lba_desc = "LBA";
2350 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2351 if (ata_id_has_lba48(id)) {
8bf62ece 2352 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2353 lba_desc = "LBA48";
6fc49adb
TH
2354
2355 if (dev->n_sectors >= (1UL << 28) &&
2356 ata_id_has_flush_ext(id))
2357 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2358 }
8bf62ece 2359
a6e6ce8e
TH
2360 /* config NCQ */
2361 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2362
8bf62ece 2363 /* print device info to dmesg */
3f64f565
EM
2364 if (ata_msg_drv(ap) && print_info) {
2365 ata_dev_printk(dev, KERN_INFO,
2366 "%s: %s, %s, max %s\n",
2367 revbuf, modelbuf, fwrevbuf,
2368 ata_mode_string(xfer_mask));
2369 ata_dev_printk(dev, KERN_INFO,
2370 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2371 (unsigned long long)dev->n_sectors,
3f64f565
EM
2372 dev->multi_count, lba_desc, ncq_desc);
2373 }
ffeae418 2374 } else {
8bf62ece
AL
2375 /* CHS */
2376
2377 /* Default translation */
1148c3a7
TH
2378 dev->cylinders = id[1];
2379 dev->heads = id[3];
2380 dev->sectors = id[6];
8bf62ece 2381
1148c3a7 2382 if (ata_id_current_chs_valid(id)) {
8bf62ece 2383 /* Current CHS translation is valid. */
1148c3a7
TH
2384 dev->cylinders = id[54];
2385 dev->heads = id[55];
2386 dev->sectors = id[56];
8bf62ece
AL
2387 }
2388
2389 /* print device info to dmesg */
3f64f565 2390 if (ata_msg_drv(ap) && print_info) {
88574551 2391 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2392 "%s: %s, %s, max %s\n",
2393 revbuf, modelbuf, fwrevbuf,
2394 ata_mode_string(xfer_mask));
a84471fe 2395 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2396 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2397 (unsigned long long)dev->n_sectors,
2398 dev->multi_count, dev->cylinders,
2399 dev->heads, dev->sectors);
2400 }
07f6f7d0
AL
2401 }
2402
6e7846e9 2403 dev->cdb_len = 16;
1da177e4
LT
2404 }
2405
2406 /* ATAPI-specific feature tests */
2c13b7ce 2407 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2408 const char *cdb_intr_string = "";
2409 const char *atapi_an_string = "";
91163006 2410 const char *dma_dir_string = "";
7d77b247 2411 u32 sntf;
08a556db 2412
1148c3a7 2413 rc = atapi_cdb_len(id);
1da177e4 2414 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2415 if (ata_msg_warn(ap))
88574551
TH
2416 ata_dev_printk(dev, KERN_WARNING,
2417 "unsupported CDB len\n");
ffeae418 2418 rc = -EINVAL;
1da177e4
LT
2419 goto err_out_nosup;
2420 }
6e7846e9 2421 dev->cdb_len = (unsigned int) rc;
1da177e4 2422
7d77b247
TH
2423 /* Enable ATAPI AN if both the host and device have
2424 * the support. If PMP is attached, SNTF is required
2425 * to enable ATAPI AN to discern between PHY status
2426 * changed notifications and ATAPI ANs.
9f45cbd3 2427 */
7d77b247
TH
2428 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2429 (!ap->nr_pmp_links ||
2430 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2431 unsigned int err_mask;
2432
9f45cbd3 2433 /* issue SET feature command to turn this on */
218f3d30
JG
2434 err_mask = ata_dev_set_feature(dev,
2435 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2436 if (err_mask)
9f45cbd3 2437 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2438 "failed to enable ATAPI AN "
2439 "(err_mask=0x%x)\n", err_mask);
2440 else {
9f45cbd3 2441 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2442 atapi_an_string = ", ATAPI AN";
2443 }
9f45cbd3
KCA
2444 }
2445
08a556db 2446 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2447 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2448 cdb_intr_string = ", CDB intr";
2449 }
312f7da2 2450
91163006
TH
2451 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2452 dev->flags |= ATA_DFLAG_DMADIR;
2453 dma_dir_string = ", DMADIR";
2454 }
2455
1da177e4 2456 /* print device info to dmesg */
5afc8142 2457 if (ata_msg_drv(ap) && print_info)
ef143d57 2458 ata_dev_printk(dev, KERN_INFO,
91163006 2459 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2460 modelbuf, fwrevbuf,
12436c30 2461 ata_mode_string(xfer_mask),
91163006
TH
2462 cdb_intr_string, atapi_an_string,
2463 dma_dir_string);
1da177e4
LT
2464 }
2465
914ed354
TH
2466 /* determine max_sectors */
2467 dev->max_sectors = ATA_MAX_SECTORS;
2468 if (dev->flags & ATA_DFLAG_LBA48)
2469 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2470
ca77329f
KCA
2471 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2472 if (ata_id_has_hipm(dev->id))
2473 dev->flags |= ATA_DFLAG_HIPM;
2474 if (ata_id_has_dipm(dev->id))
2475 dev->flags |= ATA_DFLAG_DIPM;
2476 }
2477
c5038fc0
AC
2478 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2479 200 sectors */
3373efd8 2480 if (ata_dev_knobble(dev)) {
5afc8142 2481 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2482 ata_dev_printk(dev, KERN_INFO,
2483 "applying bridge limits\n");
5a529139 2484 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2485 dev->max_sectors = ATA_MAX_SECTORS;
2486 }
2487
f8d8e579 2488 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2489 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2490 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2491 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2492 }
f8d8e579 2493
75683fe7 2494 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2495 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2496 dev->max_sectors);
18d6e9d5 2497
ca77329f
KCA
2498 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2499 dev->horkage |= ATA_HORKAGE_IPM;
2500
2501 /* reset link pm_policy for this port to no pm */
2502 ap->pm_policy = MAX_PERFORMANCE;
2503 }
2504
4b2f3ede 2505 if (ap->ops->dev_config)
cd0d3bbc 2506 ap->ops->dev_config(dev);
4b2f3ede 2507
c5038fc0
AC
2508 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2509 /* Let the user know. We don't want to disallow opens for
2510 rescue purposes, or in case the vendor is just a blithering
2511 idiot. Do this after the dev_config call as some controllers
2512 with buggy firmware may want to avoid reporting false device
2513 bugs */
2514
2515 if (print_info) {
2516 ata_dev_printk(dev, KERN_WARNING,
2517"Drive reports diagnostics failure. This may indicate a drive\n");
2518 ata_dev_printk(dev, KERN_WARNING,
2519"fault or invalid emulation. Contact drive vendor for information.\n");
2520 }
2521 }
2522
0dd4b21f
BP
2523 if (ata_msg_probe(ap))
2524 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
7f5e4e8d 2525 __func__, ata_chk_status(ap));
ffeae418 2526 return 0;
1da177e4
LT
2527
2528err_out_nosup:
0dd4b21f 2529 if (ata_msg_probe(ap))
88574551 2530 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2531 "%s: EXIT, err\n", __func__);
ffeae418 2532 return rc;
1da177e4
LT
2533}
2534
be0d18df 2535/**
2e41e8e6 2536 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2537 * @ap: port
2538 *
2e41e8e6 2539 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2540 * detection.
2541 */
2542
2543int ata_cable_40wire(struct ata_port *ap)
2544{
2545 return ATA_CBL_PATA40;
2546}
2547
2548/**
2e41e8e6 2549 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2550 * @ap: port
2551 *
2e41e8e6 2552 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2553 * detection.
2554 */
2555
2556int ata_cable_80wire(struct ata_port *ap)
2557{
2558 return ATA_CBL_PATA80;
2559}
2560
2561/**
2562 * ata_cable_unknown - return unknown PATA cable.
2563 * @ap: port
2564 *
2565 * Helper method for drivers which have no PATA cable detection.
2566 */
2567
2568int ata_cable_unknown(struct ata_port *ap)
2569{
2570 return ATA_CBL_PATA_UNK;
2571}
2572
c88f90c3
TH
2573/**
2574 * ata_cable_ignore - return ignored PATA cable.
2575 * @ap: port
2576 *
2577 * Helper method for drivers which don't use cable type to limit
2578 * transfer mode.
2579 */
2580int ata_cable_ignore(struct ata_port *ap)
2581{
2582 return ATA_CBL_PATA_IGN;
2583}
2584
be0d18df
AC
2585/**
2586 * ata_cable_sata - return SATA cable type
2587 * @ap: port
2588 *
2589 * Helper method for drivers which have SATA cables
2590 */
2591
2592int ata_cable_sata(struct ata_port *ap)
2593{
2594 return ATA_CBL_SATA;
2595}
2596
1da177e4
LT
2597/**
2598 * ata_bus_probe - Reset and probe ATA bus
2599 * @ap: Bus to probe
2600 *
0cba632b
JG
2601 * Master ATA bus probing function. Initiates a hardware-dependent
2602 * bus reset, then attempts to identify any devices found on
2603 * the bus.
2604 *
1da177e4 2605 * LOCKING:
0cba632b 2606 * PCI/etc. bus probe sem.
1da177e4
LT
2607 *
2608 * RETURNS:
96072e69 2609 * Zero on success, negative errno otherwise.
1da177e4
LT
2610 */
2611
80289167 2612int ata_bus_probe(struct ata_port *ap)
1da177e4 2613{
28ca5c57 2614 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2615 int tries[ATA_MAX_DEVICES];
f58229f8 2616 int rc;
e82cbdb9 2617 struct ata_device *dev;
1da177e4 2618
28ca5c57 2619 ata_port_probe(ap);
c19ba8af 2620
f58229f8
TH
2621 ata_link_for_each_dev(dev, &ap->link)
2622 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2623
2624 retry:
cdeab114
TH
2625 ata_link_for_each_dev(dev, &ap->link) {
2626 /* If we issue an SRST then an ATA drive (not ATAPI)
2627 * may change configuration and be in PIO0 timing. If
2628 * we do a hard reset (or are coming from power on)
2629 * this is true for ATA or ATAPI. Until we've set a
2630 * suitable controller mode we should not touch the
2631 * bus as we may be talking too fast.
2632 */
2633 dev->pio_mode = XFER_PIO_0;
2634
2635 /* If the controller has a pio mode setup function
2636 * then use it to set the chipset to rights. Don't
2637 * touch the DMA setup as that will be dealt with when
2638 * configuring devices.
2639 */
2640 if (ap->ops->set_piomode)
2641 ap->ops->set_piomode(ap, dev);
2642 }
2643
2044470c 2644 /* reset and determine device classes */
52783c5d 2645 ap->ops->phy_reset(ap);
2061a47a 2646
f58229f8 2647 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2648 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2649 dev->class != ATA_DEV_UNKNOWN)
2650 classes[dev->devno] = dev->class;
2651 else
2652 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2653
52783c5d 2654 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2655 }
1da177e4 2656
52783c5d 2657 ata_port_probe(ap);
2044470c 2658
f31f0cc2
JG
2659 /* read IDENTIFY page and configure devices. We have to do the identify
2660 specific sequence bass-ackwards so that PDIAG- is released by
2661 the slave device */
2662
f58229f8
TH
2663 ata_link_for_each_dev(dev, &ap->link) {
2664 if (tries[dev->devno])
2665 dev->class = classes[dev->devno];
ffeae418 2666
14d2bac1 2667 if (!ata_dev_enabled(dev))
ffeae418 2668 continue;
ffeae418 2669
bff04647
TH
2670 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2671 dev->id);
14d2bac1
TH
2672 if (rc)
2673 goto fail;
f31f0cc2
JG
2674 }
2675
be0d18df
AC
2676 /* Now ask for the cable type as PDIAG- should have been released */
2677 if (ap->ops->cable_detect)
2678 ap->cbl = ap->ops->cable_detect(ap);
2679
614fe29b
AC
2680 /* We may have SATA bridge glue hiding here irrespective of the
2681 reported cable types and sensed types */
2682 ata_link_for_each_dev(dev, &ap->link) {
2683 if (!ata_dev_enabled(dev))
2684 continue;
2685 /* SATA drives indicate we have a bridge. We don't know which
2686 end of the link the bridge is which is a problem */
2687 if (ata_id_is_sata(dev->id))
2688 ap->cbl = ATA_CBL_SATA;
2689 }
2690
f31f0cc2
JG
2691 /* After the identify sequence we can now set up the devices. We do
2692 this in the normal order so that the user doesn't get confused */
2693
f58229f8 2694 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2695 if (!ata_dev_enabled(dev))
2696 continue;
14d2bac1 2697
9af5c9c9 2698 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2699 rc = ata_dev_configure(dev);
9af5c9c9 2700 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2701 if (rc)
2702 goto fail;
1da177e4
LT
2703 }
2704
e82cbdb9 2705 /* configure transfer mode */
0260731f 2706 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2707 if (rc)
51713d35 2708 goto fail;
1da177e4 2709
f58229f8
TH
2710 ata_link_for_each_dev(dev, &ap->link)
2711 if (ata_dev_enabled(dev))
e82cbdb9 2712 return 0;
1da177e4 2713
e82cbdb9
TH
2714 /* no device present, disable port */
2715 ata_port_disable(ap);
96072e69 2716 return -ENODEV;
14d2bac1
TH
2717
2718 fail:
4ae72a1e
TH
2719 tries[dev->devno]--;
2720
14d2bac1
TH
2721 switch (rc) {
2722 case -EINVAL:
4ae72a1e 2723 /* eeek, something went very wrong, give up */
14d2bac1
TH
2724 tries[dev->devno] = 0;
2725 break;
4ae72a1e
TH
2726
2727 case -ENODEV:
2728 /* give it just one more chance */
2729 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2730 case -EIO:
4ae72a1e
TH
2731 if (tries[dev->devno] == 1) {
2732 /* This is the last chance, better to slow
2733 * down than lose it.
2734 */
936fd732 2735 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2736 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2737 }
14d2bac1
TH
2738 }
2739
4ae72a1e 2740 if (!tries[dev->devno])
3373efd8 2741 ata_dev_disable(dev);
ec573755 2742
14d2bac1 2743 goto retry;
1da177e4
LT
2744}
2745
2746/**
0cba632b
JG
2747 * ata_port_probe - Mark port as enabled
2748 * @ap: Port for which we indicate enablement
1da177e4 2749 *
0cba632b
JG
2750 * Modify @ap data structure such that the system
2751 * thinks that the entire port is enabled.
2752 *
cca3974e 2753 * LOCKING: host lock, or some other form of
0cba632b 2754 * serialization.
1da177e4
LT
2755 */
2756
2757void ata_port_probe(struct ata_port *ap)
2758{
198e0fed 2759 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2760}
2761
3be680b7
TH
2762/**
2763 * sata_print_link_status - Print SATA link status
936fd732 2764 * @link: SATA link to printk link status about
3be680b7
TH
2765 *
2766 * This function prints link speed and status of a SATA link.
2767 *
2768 * LOCKING:
2769 * None.
2770 */
936fd732 2771void sata_print_link_status(struct ata_link *link)
3be680b7 2772{
6d5f9732 2773 u32 sstatus, scontrol, tmp;
3be680b7 2774
936fd732 2775 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2776 return;
936fd732 2777 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2778
936fd732 2779 if (ata_link_online(link)) {
3be680b7 2780 tmp = (sstatus >> 4) & 0xf;
936fd732 2781 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2782 "SATA link up %s (SStatus %X SControl %X)\n",
2783 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2784 } else {
936fd732 2785 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2786 "SATA link down (SStatus %X SControl %X)\n",
2787 sstatus, scontrol);
3be680b7
TH
2788 }
2789}
2790
ebdfca6e
AC
2791/**
2792 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2793 * @adev: device
2794 *
2795 * Obtain the other device on the same cable, or if none is
2796 * present NULL is returned
2797 */
2e9edbf8 2798
3373efd8 2799struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2800{
9af5c9c9
TH
2801 struct ata_link *link = adev->link;
2802 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2803 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2804 return NULL;
2805 return pair;
2806}
2807
1da177e4 2808/**
780a87f7
JG
2809 * ata_port_disable - Disable port.
2810 * @ap: Port to be disabled.
1da177e4 2811 *
780a87f7
JG
2812 * Modify @ap data structure such that the system
2813 * thinks that the entire port is disabled, and should
2814 * never attempt to probe or communicate with devices
2815 * on this port.
2816 *
cca3974e 2817 * LOCKING: host lock, or some other form of
780a87f7 2818 * serialization.
1da177e4
LT
2819 */
2820
2821void ata_port_disable(struct ata_port *ap)
2822{
9af5c9c9
TH
2823 ap->link.device[0].class = ATA_DEV_NONE;
2824 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2825 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2826}
2827
1c3fae4d 2828/**
3c567b7d 2829 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2830 * @link: Link to adjust SATA spd limit for
1c3fae4d 2831 *
936fd732 2832 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2833 * function only adjusts the limit. The change must be applied
3c567b7d 2834 * using sata_set_spd().
1c3fae4d
TH
2835 *
2836 * LOCKING:
2837 * Inherited from caller.
2838 *
2839 * RETURNS:
2840 * 0 on success, negative errno on failure
2841 */
936fd732 2842int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2843{
81952c54
TH
2844 u32 sstatus, spd, mask;
2845 int rc, highbit;
1c3fae4d 2846
936fd732 2847 if (!sata_scr_valid(link))
008a7896
TH
2848 return -EOPNOTSUPP;
2849
2850 /* If SCR can be read, use it to determine the current SPD.
936fd732 2851 * If not, use cached value in link->sata_spd.
008a7896 2852 */
936fd732 2853 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2854 if (rc == 0)
2855 spd = (sstatus >> 4) & 0xf;
2856 else
936fd732 2857 spd = link->sata_spd;
1c3fae4d 2858
936fd732 2859 mask = link->sata_spd_limit;
1c3fae4d
TH
2860 if (mask <= 1)
2861 return -EINVAL;
008a7896
TH
2862
2863 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2864 highbit = fls(mask) - 1;
2865 mask &= ~(1 << highbit);
2866
008a7896
TH
2867 /* Mask off all speeds higher than or equal to the current
2868 * one. Force 1.5Gbps if current SPD is not available.
2869 */
2870 if (spd > 1)
2871 mask &= (1 << (spd - 1)) - 1;
2872 else
2873 mask &= 1;
2874
2875 /* were we already at the bottom? */
1c3fae4d
TH
2876 if (!mask)
2877 return -EINVAL;
2878
936fd732 2879 link->sata_spd_limit = mask;
1c3fae4d 2880
936fd732 2881 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2882 sata_spd_string(fls(mask)));
1c3fae4d
TH
2883
2884 return 0;
2885}
2886
936fd732 2887static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2888{
5270222f
TH
2889 struct ata_link *host_link = &link->ap->link;
2890 u32 limit, target, spd;
1c3fae4d 2891
5270222f
TH
2892 limit = link->sata_spd_limit;
2893
2894 /* Don't configure downstream link faster than upstream link.
2895 * It doesn't speed up anything and some PMPs choke on such
2896 * configuration.
2897 */
2898 if (!ata_is_host_link(link) && host_link->sata_spd)
2899 limit &= (1 << host_link->sata_spd) - 1;
2900
2901 if (limit == UINT_MAX)
2902 target = 0;
1c3fae4d 2903 else
5270222f 2904 target = fls(limit);
1c3fae4d
TH
2905
2906 spd = (*scontrol >> 4) & 0xf;
5270222f 2907 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2908
5270222f 2909 return spd != target;
1c3fae4d
TH
2910}
2911
2912/**
3c567b7d 2913 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2914 * @link: Link in question
1c3fae4d
TH
2915 *
2916 * Test whether the spd limit in SControl matches
936fd732 2917 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2918 * whether hardreset is necessary to apply SATA spd
2919 * configuration.
2920 *
2921 * LOCKING:
2922 * Inherited from caller.
2923 *
2924 * RETURNS:
2925 * 1 if SATA spd configuration is needed, 0 otherwise.
2926 */
936fd732 2927int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2928{
2929 u32 scontrol;
2930
936fd732 2931 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2932 return 1;
1c3fae4d 2933
936fd732 2934 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2935}
2936
2937/**
3c567b7d 2938 * sata_set_spd - set SATA spd according to spd limit
936fd732 2939 * @link: Link to set SATA spd for
1c3fae4d 2940 *
936fd732 2941 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2942 *
2943 * LOCKING:
2944 * Inherited from caller.
2945 *
2946 * RETURNS:
2947 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2948 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2949 */
936fd732 2950int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2951{
2952 u32 scontrol;
81952c54 2953 int rc;
1c3fae4d 2954
936fd732 2955 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2956 return rc;
1c3fae4d 2957
936fd732 2958 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2959 return 0;
2960
936fd732 2961 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2962 return rc;
2963
1c3fae4d
TH
2964 return 1;
2965}
2966
452503f9
AC
2967/*
2968 * This mode timing computation functionality is ported over from
2969 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2970 */
2971/*
b352e57d 2972 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2973 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2974 * for UDMA6, which is currently supported only by Maxtor drives.
2975 *
2976 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2977 */
2978
2979static const struct ata_timing ata_timing[] = {
70cd071e
TH
2980/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2981 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2982 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2983 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2984 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2985 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2987 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2988
70cd071e
TH
2989 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2990 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2991 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2992
70cd071e
TH
2993 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2994 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2995 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2996 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2997 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2998
2999/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
3000 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3001 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3002 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3003 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3004 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3005 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3006 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3007
3008 { 0xFF }
3009};
3010
2dcb407e
JG
3011#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3012#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3013
3014static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3015{
3016 q->setup = EZ(t->setup * 1000, T);
3017 q->act8b = EZ(t->act8b * 1000, T);
3018 q->rec8b = EZ(t->rec8b * 1000, T);
3019 q->cyc8b = EZ(t->cyc8b * 1000, T);
3020 q->active = EZ(t->active * 1000, T);
3021 q->recover = EZ(t->recover * 1000, T);
3022 q->cycle = EZ(t->cycle * 1000, T);
3023 q->udma = EZ(t->udma * 1000, UT);
3024}
3025
3026void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3027 struct ata_timing *m, unsigned int what)
3028{
3029 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3030 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3031 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3032 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3033 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3034 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3035 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3036 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3037}
3038
6357357c 3039const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3040{
70cd071e
TH
3041 const struct ata_timing *t = ata_timing;
3042
3043 while (xfer_mode > t->mode)
3044 t++;
452503f9 3045
70cd071e
TH
3046 if (xfer_mode == t->mode)
3047 return t;
3048 return NULL;
452503f9
AC
3049}
3050
3051int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3052 struct ata_timing *t, int T, int UT)
3053{
3054 const struct ata_timing *s;
3055 struct ata_timing p;
3056
3057 /*
2e9edbf8 3058 * Find the mode.
75b1f2f8 3059 */
452503f9
AC
3060
3061 if (!(s = ata_timing_find_mode(speed)))
3062 return -EINVAL;
3063
75b1f2f8
AL
3064 memcpy(t, s, sizeof(*s));
3065
452503f9
AC
3066 /*
3067 * If the drive is an EIDE drive, it can tell us it needs extended
3068 * PIO/MW_DMA cycle timing.
3069 */
3070
3071 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3072 memset(&p, 0, sizeof(p));
2dcb407e 3073 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
3074 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3075 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 3076 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
3077 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3078 }
3079 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3080 }
3081
3082 /*
3083 * Convert the timing to bus clock counts.
3084 */
3085
75b1f2f8 3086 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3087
3088 /*
c893a3ae
RD
3089 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3090 * S.M.A.R.T * and some other commands. We have to ensure that the
3091 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3092 */
3093
fd3367af 3094 if (speed > XFER_PIO_6) {
452503f9
AC
3095 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3096 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3097 }
3098
3099 /*
c893a3ae 3100 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3101 */
3102
3103 if (t->act8b + t->rec8b < t->cyc8b) {
3104 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3105 t->rec8b = t->cyc8b - t->act8b;
3106 }
3107
3108 if (t->active + t->recover < t->cycle) {
3109 t->active += (t->cycle - (t->active + t->recover)) / 2;
3110 t->recover = t->cycle - t->active;
3111 }
a617c09f 3112
4f701d1e
AC
3113 /* In a few cases quantisation may produce enough errors to
3114 leave t->cycle too low for the sum of active and recovery
3115 if so we must correct this */
3116 if (t->active + t->recover > t->cycle)
3117 t->cycle = t->active + t->recover;
452503f9
AC
3118
3119 return 0;
3120}
3121
a0f79b92
TH
3122/**
3123 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3124 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3125 * @cycle: cycle duration in ns
3126 *
3127 * Return matching xfer mode for @cycle. The returned mode is of
3128 * the transfer type specified by @xfer_shift. If @cycle is too
3129 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3130 * than the fastest known mode, the fasted mode is returned.
3131 *
3132 * LOCKING:
3133 * None.
3134 *
3135 * RETURNS:
3136 * Matching xfer_mode, 0xff if no match found.
3137 */
3138u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3139{
3140 u8 base_mode = 0xff, last_mode = 0xff;
3141 const struct ata_xfer_ent *ent;
3142 const struct ata_timing *t;
3143
3144 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3145 if (ent->shift == xfer_shift)
3146 base_mode = ent->base;
3147
3148 for (t = ata_timing_find_mode(base_mode);
3149 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3150 unsigned short this_cycle;
3151
3152 switch (xfer_shift) {
3153 case ATA_SHIFT_PIO:
3154 case ATA_SHIFT_MWDMA:
3155 this_cycle = t->cycle;
3156 break;
3157 case ATA_SHIFT_UDMA:
3158 this_cycle = t->udma;
3159 break;
3160 default:
3161 return 0xff;
3162 }
3163
3164 if (cycle > this_cycle)
3165 break;
3166
3167 last_mode = t->mode;
3168 }
3169
3170 return last_mode;
3171}
3172
cf176e1a
TH
3173/**
3174 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3175 * @dev: Device to adjust xfer masks
458337db 3176 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3177 *
3178 * Adjust xfer masks of @dev downward. Note that this function
3179 * does not apply the change. Invoking ata_set_mode() afterwards
3180 * will apply the limit.
3181 *
3182 * LOCKING:
3183 * Inherited from caller.
3184 *
3185 * RETURNS:
3186 * 0 on success, negative errno on failure
3187 */
458337db 3188int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3189{
458337db 3190 char buf[32];
7dc951ae
TH
3191 unsigned long orig_mask, xfer_mask;
3192 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3193 int quiet, highbit;
cf176e1a 3194
458337db
TH
3195 quiet = !!(sel & ATA_DNXFER_QUIET);
3196 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3197
458337db
TH
3198 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3199 dev->mwdma_mask,
3200 dev->udma_mask);
3201 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3202
458337db
TH
3203 switch (sel) {
3204 case ATA_DNXFER_PIO:
3205 highbit = fls(pio_mask) - 1;
3206 pio_mask &= ~(1 << highbit);
3207 break;
3208
3209 case ATA_DNXFER_DMA:
3210 if (udma_mask) {
3211 highbit = fls(udma_mask) - 1;
3212 udma_mask &= ~(1 << highbit);
3213 if (!udma_mask)
3214 return -ENOENT;
3215 } else if (mwdma_mask) {
3216 highbit = fls(mwdma_mask) - 1;
3217 mwdma_mask &= ~(1 << highbit);
3218 if (!mwdma_mask)
3219 return -ENOENT;
3220 }
3221 break;
3222
3223 case ATA_DNXFER_40C:
3224 udma_mask &= ATA_UDMA_MASK_40C;
3225 break;
3226
3227 case ATA_DNXFER_FORCE_PIO0:
3228 pio_mask &= 1;
3229 case ATA_DNXFER_FORCE_PIO:
3230 mwdma_mask = 0;
3231 udma_mask = 0;
3232 break;
3233
458337db
TH
3234 default:
3235 BUG();
3236 }
3237
3238 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3239
3240 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3241 return -ENOENT;
3242
3243 if (!quiet) {
3244 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3245 snprintf(buf, sizeof(buf), "%s:%s",
3246 ata_mode_string(xfer_mask),
3247 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3248 else
3249 snprintf(buf, sizeof(buf), "%s",
3250 ata_mode_string(xfer_mask));
3251
3252 ata_dev_printk(dev, KERN_WARNING,
3253 "limiting speed to %s\n", buf);
3254 }
cf176e1a
TH
3255
3256 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3257 &dev->udma_mask);
3258
cf176e1a 3259 return 0;
cf176e1a
TH
3260}
3261
3373efd8 3262static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3263{
9af5c9c9 3264 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3265 const char *dev_err_whine = "";
3266 int ign_dev_err = 0;
83206a29
TH
3267 unsigned int err_mask;
3268 int rc;
1da177e4 3269
e8384607 3270 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3271 if (dev->xfer_shift == ATA_SHIFT_PIO)
3272 dev->flags |= ATA_DFLAG_PIO;
3273
3373efd8 3274 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3275
4055dee7
TH
3276 if (err_mask & ~AC_ERR_DEV)
3277 goto fail;
3278
3279 /* revalidate */
3280 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3281 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3282 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3283 if (rc)
3284 return rc;
3285
11750a40
AC
3286 /* Old CFA may refuse this command, which is just fine */
3287 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
4055dee7 3288 ign_dev_err = 1;
2dcb407e 3289
0bc2a79a
AC
3290 /* Some very old devices and some bad newer ones fail any kind of
3291 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3292 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3293 dev->pio_mode <= XFER_PIO_2)
4055dee7 3294 ign_dev_err = 1;
2dcb407e 3295
3acaf94b
AC
3296 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3297 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3298 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3299 dev->dma_mode == XFER_MW_DMA_0 &&
3300 (dev->id[63] >> 8) & 1)
4055dee7 3301 ign_dev_err = 1;
3acaf94b 3302
4055dee7
TH
3303 /* if the device is actually configured correctly, ignore dev err */
3304 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3305 ign_dev_err = 1;
1da177e4 3306
4055dee7
TH
3307 if (err_mask & AC_ERR_DEV) {
3308 if (!ign_dev_err)
3309 goto fail;
3310 else
3311 dev_err_whine = " (device error ignored)";
3312 }
48a8a14f 3313
23e71c3d
TH
3314 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3315 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3316
4055dee7
TH
3317 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3318 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3319 dev_err_whine);
3320
83206a29 3321 return 0;
4055dee7
TH
3322
3323 fail:
3324 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3325 "(err_mask=0x%x)\n", err_mask);
3326 return -EIO;
1da177e4
LT
3327}
3328
1da177e4 3329/**
04351821 3330 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3331 * @link: link on which timings will be programmed
1967b7ff 3332 * @r_failed_dev: out parameter for failed device
1da177e4 3333 *
04351821
AC
3334 * Standard implementation of the function used to tune and set
3335 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3336 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3337 * returned in @r_failed_dev.
780a87f7 3338 *
1da177e4 3339 * LOCKING:
0cba632b 3340 * PCI/etc. bus probe sem.
e82cbdb9
TH
3341 *
3342 * RETURNS:
3343 * 0 on success, negative errno otherwise
1da177e4 3344 */
04351821 3345
0260731f 3346int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3347{
0260731f 3348 struct ata_port *ap = link->ap;
e8e0619f 3349 struct ata_device *dev;
f58229f8 3350 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3351
a6d5a51c 3352 /* step 1: calculate xfer_mask */
f58229f8 3353 ata_link_for_each_dev(dev, link) {
7dc951ae 3354 unsigned long pio_mask, dma_mask;
b3a70601 3355 unsigned int mode_mask;
a6d5a51c 3356
e1211e3f 3357 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3358 continue;
3359
b3a70601
AC
3360 mode_mask = ATA_DMA_MASK_ATA;
3361 if (dev->class == ATA_DEV_ATAPI)
3362 mode_mask = ATA_DMA_MASK_ATAPI;
3363 else if (ata_id_is_cfa(dev->id))
3364 mode_mask = ATA_DMA_MASK_CFA;
3365
3373efd8 3366 ata_dev_xfermask(dev);
33267325 3367 ata_force_xfermask(dev);
1da177e4 3368
acf356b1
TH
3369 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3370 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3371
3372 if (libata_dma_mask & mode_mask)
3373 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3374 else
3375 dma_mask = 0;
3376
acf356b1
TH
3377 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3378 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3379
4f65977d 3380 found = 1;
70cd071e 3381 if (dev->dma_mode != 0xff)
5444a6f4 3382 used_dma = 1;
a6d5a51c 3383 }
4f65977d 3384 if (!found)
e82cbdb9 3385 goto out;
a6d5a51c
TH
3386
3387 /* step 2: always set host PIO timings */
f58229f8 3388 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3389 if (!ata_dev_enabled(dev))
3390 continue;
3391
70cd071e 3392 if (dev->pio_mode == 0xff) {
f15a1daf 3393 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3394 rc = -EINVAL;
e82cbdb9 3395 goto out;
e8e0619f
TH
3396 }
3397
3398 dev->xfer_mode = dev->pio_mode;
3399 dev->xfer_shift = ATA_SHIFT_PIO;
3400 if (ap->ops->set_piomode)
3401 ap->ops->set_piomode(ap, dev);
3402 }
1da177e4 3403
a6d5a51c 3404 /* step 3: set host DMA timings */
f58229f8 3405 ata_link_for_each_dev(dev, link) {
70cd071e 3406 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3407 continue;
3408
3409 dev->xfer_mode = dev->dma_mode;
3410 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3411 if (ap->ops->set_dmamode)
3412 ap->ops->set_dmamode(ap, dev);
3413 }
1da177e4
LT
3414
3415 /* step 4: update devices' xfer mode */
f58229f8 3416 ata_link_for_each_dev(dev, link) {
18d90deb 3417 /* don't update suspended devices' xfer mode */
9666f400 3418 if (!ata_dev_enabled(dev))
83206a29
TH
3419 continue;
3420
3373efd8 3421 rc = ata_dev_set_mode(dev);
5bbc53f4 3422 if (rc)
e82cbdb9 3423 goto out;
83206a29 3424 }
1da177e4 3425
e8e0619f
TH
3426 /* Record simplex status. If we selected DMA then the other
3427 * host channels are not permitted to do so.
5444a6f4 3428 */
cca3974e 3429 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3430 ap->host->simplex_claimed = ap;
5444a6f4 3431
e82cbdb9
TH
3432 out:
3433 if (rc)
3434 *r_failed_dev = dev;
3435 return rc;
1da177e4
LT
3436}
3437
1fdffbce
JG
3438/**
3439 * ata_tf_to_host - issue ATA taskfile to host controller
3440 * @ap: port to which command is being issued
3441 * @tf: ATA taskfile register set
3442 *
3443 * Issues ATA taskfile register set to ATA host controller,
3444 * with proper synchronization with interrupt handler and
3445 * other threads.
3446 *
3447 * LOCKING:
cca3974e 3448 * spin_lock_irqsave(host lock)
1fdffbce
JG
3449 */
3450
3451static inline void ata_tf_to_host(struct ata_port *ap,
3452 const struct ata_taskfile *tf)
3453{
3454 ap->ops->tf_load(ap, tf);
3455 ap->ops->exec_command(ap, tf);
3456}
3457
1da177e4
LT
3458/**
3459 * ata_busy_sleep - sleep until BSY clears, or timeout
3460 * @ap: port containing status register to be polled
3461 * @tmout_pat: impatience timeout
3462 * @tmout: overall timeout
3463 *
780a87f7
JG
3464 * Sleep until ATA Status register bit BSY clears,
3465 * or a timeout occurs.
3466 *
d1adc1bb
TH
3467 * LOCKING:
3468 * Kernel thread context (may sleep).
3469 *
3470 * RETURNS:
3471 * 0 on success, -errno otherwise.
1da177e4 3472 */
d1adc1bb
TH
3473int ata_busy_sleep(struct ata_port *ap,
3474 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3475{
3476 unsigned long timer_start, timeout;
3477 u8 status;
3478
3479 status = ata_busy_wait(ap, ATA_BUSY, 300);
3480 timer_start = jiffies;
3481 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3482 while (status != 0xff && (status & ATA_BUSY) &&
3483 time_before(jiffies, timeout)) {
1da177e4
LT
3484 msleep(50);
3485 status = ata_busy_wait(ap, ATA_BUSY, 3);
3486 }
3487
d1adc1bb 3488 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3489 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3490 "port is slow to respond, please be patient "
3491 "(Status 0x%x)\n", status);
1da177e4
LT
3492
3493 timeout = timer_start + tmout;
d1adc1bb
TH
3494 while (status != 0xff && (status & ATA_BUSY) &&
3495 time_before(jiffies, timeout)) {
1da177e4
LT
3496 msleep(50);
3497 status = ata_chk_status(ap);
3498 }
3499
d1adc1bb
TH
3500 if (status == 0xff)
3501 return -ENODEV;
3502
1da177e4 3503 if (status & ATA_BUSY) {
f15a1daf 3504 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3505 "(%lu secs, Status 0x%x)\n",
3506 tmout / HZ, status);
d1adc1bb 3507 return -EBUSY;
1da177e4
LT
3508 }
3509
3510 return 0;
3511}
3512
88ff6eaf
TH
3513/**
3514 * ata_wait_after_reset - wait before checking status after reset
3515 * @ap: port containing status register to be polled
3516 * @deadline: deadline jiffies for the operation
3517 *
3518 * After reset, we need to pause a while before reading status.
3519 * Also, certain combination of controller and device report 0xff
3520 * for some duration (e.g. until SATA PHY is up and running)
3521 * which is interpreted as empty port in ATA world. This
3522 * function also waits for such devices to get out of 0xff
3523 * status.
3524 *
3525 * LOCKING:
3526 * Kernel thread context (may sleep).
3527 */
3528void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3529{
3530 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3531
3532 if (time_before(until, deadline))
3533 deadline = until;
3534
3535 /* Spec mandates ">= 2ms" before checking status. We wait
3536 * 150ms, because that was the magic delay used for ATAPI
3537 * devices in Hale Landis's ATADRVR, for the period of time
3538 * between when the ATA command register is written, and then
3539 * status is checked. Because waiting for "a while" before
3540 * checking status is fine, post SRST, we perform this magic
3541 * delay here as well.
3542 *
3543 * Old drivers/ide uses the 2mS rule and then waits for ready.
3544 */
3545 msleep(150);
3546
3547 /* Wait for 0xff to clear. Some SATA devices take a long time
3548 * to clear 0xff after reset. For example, HHD424020F7SV00
3549 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3550 * than that.
1974e201
TH
3551 *
3552 * Note that some PATA controllers (pata_ali) explode if
3553 * status register is read more than once when there's no
3554 * device attached.
88ff6eaf 3555 */
1974e201
TH
3556 if (ap->flags & ATA_FLAG_SATA) {
3557 while (1) {
3558 u8 status = ata_chk_status(ap);
88ff6eaf 3559
1974e201
TH
3560 if (status != 0xff || time_after(jiffies, deadline))
3561 return;
88ff6eaf 3562
1974e201
TH
3563 msleep(50);
3564 }
88ff6eaf
TH
3565 }
3566}
3567
d4b2bab4
TH
3568/**
3569 * ata_wait_ready - sleep until BSY clears, or timeout
3570 * @ap: port containing status register to be polled
3571 * @deadline: deadline jiffies for the operation
3572 *
3573 * Sleep until ATA Status register bit BSY clears, or timeout
3574 * occurs.
3575 *
3576 * LOCKING:
3577 * Kernel thread context (may sleep).
3578 *
3579 * RETURNS:
3580 * 0 on success, -errno otherwise.
3581 */
3582int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3583{
3584 unsigned long start = jiffies;
3585 int warned = 0;
3586
3587 while (1) {
3588 u8 status = ata_chk_status(ap);
3589 unsigned long now = jiffies;
3590
3591 if (!(status & ATA_BUSY))
3592 return 0;
936fd732 3593 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3594 return -ENODEV;
3595 if (time_after(now, deadline))
3596 return -EBUSY;
3597
3598 if (!warned && time_after(now, start + 5 * HZ) &&
3599 (deadline - now > 3 * HZ)) {
3600 ata_port_printk(ap, KERN_WARNING,
3601 "port is slow to respond, please be patient "
3602 "(Status 0x%x)\n", status);
3603 warned = 1;
3604 }
3605
3606 msleep(50);
3607 }
3608}
3609
3610static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3611 unsigned long deadline)
1da177e4
LT
3612{
3613 struct ata_ioports *ioaddr = &ap->ioaddr;
3614 unsigned int dev0 = devmask & (1 << 0);
3615 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3616 int rc, ret = 0;
1da177e4
LT
3617
3618 /* if device 0 was found in ata_devchk, wait for its
3619 * BSY bit to clear
3620 */
d4b2bab4
TH
3621 if (dev0) {
3622 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3623 if (rc) {
3624 if (rc != -ENODEV)
3625 return rc;
3626 ret = rc;
3627 }
d4b2bab4 3628 }
1da177e4 3629
e141d999
TH
3630 /* if device 1 was found in ata_devchk, wait for register
3631 * access briefly, then wait for BSY to clear.
1da177e4 3632 */
e141d999
TH
3633 if (dev1) {
3634 int i;
1da177e4
LT
3635
3636 ap->ops->dev_select(ap, 1);
e141d999
TH
3637
3638 /* Wait for register access. Some ATAPI devices fail
3639 * to set nsect/lbal after reset, so don't waste too
3640 * much time on it. We're gonna wait for !BSY anyway.
3641 */
3642 for (i = 0; i < 2; i++) {
3643 u8 nsect, lbal;
3644
3645 nsect = ioread8(ioaddr->nsect_addr);
3646 lbal = ioread8(ioaddr->lbal_addr);
3647 if ((nsect == 1) && (lbal == 1))
3648 break;
3649 msleep(50); /* give drive a breather */
3650 }
3651
d4b2bab4 3652 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3653 if (rc) {
3654 if (rc != -ENODEV)
3655 return rc;
3656 ret = rc;
3657 }
d4b2bab4 3658 }
1da177e4
LT
3659
3660 /* is all this really necessary? */
3661 ap->ops->dev_select(ap, 0);
3662 if (dev1)
3663 ap->ops->dev_select(ap, 1);
3664 if (dev0)
3665 ap->ops->dev_select(ap, 0);
d4b2bab4 3666
9b89391c 3667 return ret;
1da177e4
LT
3668}
3669
d4b2bab4
TH
3670static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3671 unsigned long deadline)
1da177e4
LT
3672{
3673 struct ata_ioports *ioaddr = &ap->ioaddr;
3674
44877b4e 3675 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3676
3677 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3678 iowrite8(ap->ctl, ioaddr->ctl_addr);
3679 udelay(20); /* FIXME: flush */
3680 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3681 udelay(20); /* FIXME: flush */
3682 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3683
88ff6eaf
TH
3684 /* wait a while before checking status */
3685 ata_wait_after_reset(ap, deadline);
1da177e4 3686
2e9edbf8 3687 /* Before we perform post reset processing we want to see if
298a41ca
TH
3688 * the bus shows 0xFF because the odd clown forgets the D7
3689 * pulldown resistor.
3690 */
150981b0 3691 if (ata_chk_status(ap) == 0xFF)
9b89391c 3692 return -ENODEV;
09c7ad79 3693
d4b2bab4 3694 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3695}
3696
3697/**
3698 * ata_bus_reset - reset host port and associated ATA channel
3699 * @ap: port to reset
3700 *
3701 * This is typically the first time we actually start issuing
3702 * commands to the ATA channel. We wait for BSY to clear, then
3703 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3704 * result. Determine what devices, if any, are on the channel
3705 * by looking at the device 0/1 error register. Look at the signature
3706 * stored in each device's taskfile registers, to determine if
3707 * the device is ATA or ATAPI.
3708 *
3709 * LOCKING:
0cba632b 3710 * PCI/etc. bus probe sem.
cca3974e 3711 * Obtains host lock.
1da177e4
LT
3712 *
3713 * SIDE EFFECTS:
198e0fed 3714 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3715 */
3716
3717void ata_bus_reset(struct ata_port *ap)
3718{
9af5c9c9 3719 struct ata_device *device = ap->link.device;
1da177e4
LT
3720 struct ata_ioports *ioaddr = &ap->ioaddr;
3721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3722 u8 err;
aec5c3c1 3723 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3724 int rc;
1da177e4 3725
44877b4e 3726 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3727
3728 /* determine if device 0/1 are present */
3729 if (ap->flags & ATA_FLAG_SATA_RESET)
3730 dev0 = 1;
3731 else {
3732 dev0 = ata_devchk(ap, 0);
3733 if (slave_possible)
3734 dev1 = ata_devchk(ap, 1);
3735 }
3736
3737 if (dev0)
3738 devmask |= (1 << 0);
3739 if (dev1)
3740 devmask |= (1 << 1);
3741
3742 /* select device 0 again */
3743 ap->ops->dev_select(ap, 0);
3744
3745 /* issue bus reset */
9b89391c
TH
3746 if (ap->flags & ATA_FLAG_SRST) {
3747 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3748 if (rc && rc != -ENODEV)
aec5c3c1 3749 goto err_out;
9b89391c 3750 }
1da177e4
LT
3751
3752 /*
3753 * determine by signature whether we have ATA or ATAPI devices
3754 */
3f19859e 3755 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3756 if ((slave_possible) && (err != 0x81))
3f19859e 3757 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3758
1da177e4 3759 /* is double-select really necessary? */
9af5c9c9 3760 if (device[1].class != ATA_DEV_NONE)
1da177e4 3761 ap->ops->dev_select(ap, 1);
9af5c9c9 3762 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3763 ap->ops->dev_select(ap, 0);
3764
3765 /* if no devices were detected, disable this port */
9af5c9c9
TH
3766 if ((device[0].class == ATA_DEV_NONE) &&
3767 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3768 goto err_out;
3769
3770 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3771 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3772 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3773 }
3774
3775 DPRINTK("EXIT\n");
3776 return;
3777
3778err_out:
f15a1daf 3779 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3780 ata_port_disable(ap);
1da177e4
LT
3781
3782 DPRINTK("EXIT\n");
3783}
3784
d7bb4cc7 3785/**
936fd732
TH
3786 * sata_link_debounce - debounce SATA phy status
3787 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3788 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3789 * @deadline: deadline jiffies for the operation
d7bb4cc7 3790 *
936fd732 3791* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3792 * holding the same value where DET is not 1 for @duration polled
3793 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3794 * beginning of the stable state. Because DET gets stuck at 1 on
3795 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3796 * until timeout then returns 0 if DET is stable at 1.
3797 *
d4b2bab4
TH
3798 * @timeout is further limited by @deadline. The sooner of the
3799 * two is used.
3800 *
d7bb4cc7
TH
3801 * LOCKING:
3802 * Kernel thread context (may sleep)
3803 *
3804 * RETURNS:
3805 * 0 on success, -errno on failure.
3806 */
936fd732
TH
3807int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3808 unsigned long deadline)
7a7921e8 3809{
d7bb4cc7 3810 unsigned long interval_msec = params[0];
d4b2bab4
TH
3811 unsigned long duration = msecs_to_jiffies(params[1]);
3812 unsigned long last_jiffies, t;
d7bb4cc7
TH
3813 u32 last, cur;
3814 int rc;
3815
d4b2bab4
TH
3816 t = jiffies + msecs_to_jiffies(params[2]);
3817 if (time_before(t, deadline))
3818 deadline = t;
3819
936fd732 3820 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3821 return rc;
3822 cur &= 0xf;
3823
3824 last = cur;
3825 last_jiffies = jiffies;
3826
3827 while (1) {
3828 msleep(interval_msec);
936fd732 3829 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3830 return rc;
3831 cur &= 0xf;
3832
3833 /* DET stable? */
3834 if (cur == last) {
d4b2bab4 3835 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3836 continue;
3837 if (time_after(jiffies, last_jiffies + duration))
3838 return 0;
3839 continue;
3840 }
3841
3842 /* unstable, start over */
3843 last = cur;
3844 last_jiffies = jiffies;
3845
f1545154
TH
3846 /* Check deadline. If debouncing failed, return
3847 * -EPIPE to tell upper layer to lower link speed.
3848 */
d4b2bab4 3849 if (time_after(jiffies, deadline))
f1545154 3850 return -EPIPE;
d7bb4cc7
TH
3851 }
3852}
3853
3854/**
936fd732
TH
3855 * sata_link_resume - resume SATA link
3856 * @link: ATA link to resume SATA
d7bb4cc7 3857 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3858 * @deadline: deadline jiffies for the operation
d7bb4cc7 3859 *
936fd732 3860 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3861 *
3862 * LOCKING:
3863 * Kernel thread context (may sleep)
3864 *
3865 * RETURNS:
3866 * 0 on success, -errno on failure.
3867 */
936fd732
TH
3868int sata_link_resume(struct ata_link *link, const unsigned long *params,
3869 unsigned long deadline)
d7bb4cc7
TH
3870{
3871 u32 scontrol;
81952c54
TH
3872 int rc;
3873
936fd732 3874 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3875 return rc;
7a7921e8 3876
852ee16a 3877 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3878
936fd732 3879 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3880 return rc;
7a7921e8 3881
d7bb4cc7
TH
3882 /* Some PHYs react badly if SStatus is pounded immediately
3883 * after resuming. Delay 200ms before debouncing.
3884 */
3885 msleep(200);
7a7921e8 3886
936fd732 3887 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3888}
3889
f5914a46
TH
3890/**
3891 * ata_std_prereset - prepare for reset
cc0680a5 3892 * @link: ATA link to be reset
d4b2bab4 3893 * @deadline: deadline jiffies for the operation
f5914a46 3894 *
cc0680a5 3895 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3896 * prereset makes libata abort whole reset sequence and give up
3897 * that port, so prereset should be best-effort. It does its
3898 * best to prepare for reset sequence but if things go wrong, it
3899 * should just whine, not fail.
f5914a46
TH
3900 *
3901 * LOCKING:
3902 * Kernel thread context (may sleep)
3903 *
3904 * RETURNS:
3905 * 0 on success, -errno otherwise.
3906 */
cc0680a5 3907int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3908{
cc0680a5 3909 struct ata_port *ap = link->ap;
936fd732 3910 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3911 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3912 int rc;
3913
31daabda 3914 /* handle link resume */
28324304 3915 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3916 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3917 ehc->i.action |= ATA_EH_HARDRESET;
3918
633273a3
TH
3919 /* Some PMPs don't work with only SRST, force hardreset if PMP
3920 * is supported.
3921 */
3922 if (ap->flags & ATA_FLAG_PMP)
3923 ehc->i.action |= ATA_EH_HARDRESET;
3924
f5914a46
TH
3925 /* if we're about to do hardreset, nothing more to do */
3926 if (ehc->i.action & ATA_EH_HARDRESET)
3927 return 0;
3928
936fd732 3929 /* if SATA, resume link */
a16abc0b 3930 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3931 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3932 /* whine about phy resume failure but proceed */
3933 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3934 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3935 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3936 }
3937
3938 /* Wait for !BSY if the controller can wait for the first D2H
3939 * Reg FIS and we don't know that no device is attached.
3940 */
0c88758b 3941 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3942 rc = ata_wait_ready(ap, deadline);
6dffaf61 3943 if (rc && rc != -ENODEV) {
cc0680a5 3944 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3945 "(errno=%d), forcing hardreset\n", rc);
3946 ehc->i.action |= ATA_EH_HARDRESET;
3947 }
3948 }
f5914a46
TH
3949
3950 return 0;
3951}
3952
c2bd5804
TH
3953/**
3954 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3955 * @link: ATA link to reset
c2bd5804 3956 * @classes: resulting classes of attached devices
d4b2bab4 3957 * @deadline: deadline jiffies for the operation
c2bd5804 3958 *
52783c5d 3959 * Reset host port using ATA SRST.
c2bd5804
TH
3960 *
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3963 *
3964 * RETURNS:
3965 * 0 on success, -errno otherwise.
3966 */
cc0680a5 3967int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3968 unsigned long deadline)
c2bd5804 3969{
cc0680a5 3970 struct ata_port *ap = link->ap;
c2bd5804 3971 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3972 unsigned int devmask = 0;
3973 int rc;
c2bd5804
TH
3974 u8 err;
3975
3976 DPRINTK("ENTER\n");
3977
936fd732 3978 if (ata_link_offline(link)) {
3a39746a
TH
3979 classes[0] = ATA_DEV_NONE;
3980 goto out;
3981 }
3982
c2bd5804
TH
3983 /* determine if device 0/1 are present */
3984 if (ata_devchk(ap, 0))
3985 devmask |= (1 << 0);
3986 if (slave_possible && ata_devchk(ap, 1))
3987 devmask |= (1 << 1);
3988
c2bd5804
TH
3989 /* select device 0 again */
3990 ap->ops->dev_select(ap, 0);
3991
3992 /* issue bus reset */
3993 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3994 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3995 /* if link is occupied, -ENODEV too is an error */
936fd732 3996 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3997 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3998 return rc;
c2bd5804
TH
3999 }
4000
4001 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
4002 classes[0] = ata_dev_try_classify(&link->device[0],
4003 devmask & (1 << 0), &err);
c2bd5804 4004 if (slave_possible && err != 0x81)
3f19859e
TH
4005 classes[1] = ata_dev_try_classify(&link->device[1],
4006 devmask & (1 << 1), &err);
c2bd5804 4007
3a39746a 4008 out:
c2bd5804
TH
4009 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
4010 return 0;
4011}
4012
4013/**
cc0680a5
TH
4014 * sata_link_hardreset - reset link via SATA phy reset
4015 * @link: link to reset
b6103f6d 4016 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 4017 * @deadline: deadline jiffies for the operation
c2bd5804 4018 *
cc0680a5 4019 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
4020 *
4021 * LOCKING:
4022 * Kernel thread context (may sleep)
4023 *
4024 * RETURNS:
4025 * 0 on success, -errno otherwise.
4026 */
cc0680a5 4027int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 4028 unsigned long deadline)
c2bd5804 4029{
852ee16a 4030 u32 scontrol;
81952c54 4031 int rc;
852ee16a 4032
c2bd5804
TH
4033 DPRINTK("ENTER\n");
4034
936fd732 4035 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4036 /* SATA spec says nothing about how to reconfigure
4037 * spd. To be on the safe side, turn off phy during
4038 * reconfiguration. This works for at least ICH7 AHCI
4039 * and Sil3124.
4040 */
936fd732 4041 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4042 goto out;
81952c54 4043
a34b6fc0 4044 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4045
936fd732 4046 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4047 goto out;
1c3fae4d 4048
936fd732 4049 sata_set_spd(link);
1c3fae4d
TH
4050 }
4051
4052 /* issue phy wake/reset */
936fd732 4053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4054 goto out;
81952c54 4055
852ee16a 4056 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4057
936fd732 4058 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4059 goto out;
c2bd5804 4060
1c3fae4d 4061 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4062 * 10.4.2 says at least 1 ms.
4063 */
4064 msleep(1);
4065
936fd732
TH
4066 /* bring link back */
4067 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
4068 out:
4069 DPRINTK("EXIT, rc=%d\n", rc);
4070 return rc;
4071}
4072
4073/**
4074 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 4075 * @link: link to reset
b6103f6d 4076 * @class: resulting class of attached device
d4b2bab4 4077 * @deadline: deadline jiffies for the operation
b6103f6d
TH
4078 *
4079 * SATA phy-reset host port using DET bits of SControl register,
4080 * wait for !BSY and classify the attached device.
4081 *
4082 * LOCKING:
4083 * Kernel thread context (may sleep)
4084 *
4085 * RETURNS:
4086 * 0 on success, -errno otherwise.
4087 */
cc0680a5 4088int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 4089 unsigned long deadline)
b6103f6d 4090{
cc0680a5 4091 struct ata_port *ap = link->ap;
936fd732 4092 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
4093 int rc;
4094
4095 DPRINTK("ENTER\n");
4096
4097 /* do hardreset */
cc0680a5 4098 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 4099 if (rc) {
cc0680a5 4100 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
4101 "COMRESET failed (errno=%d)\n", rc);
4102 return rc;
4103 }
c2bd5804 4104
c2bd5804 4105 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 4106 if (ata_link_offline(link)) {
c2bd5804
TH
4107 *class = ATA_DEV_NONE;
4108 DPRINTK("EXIT, link offline\n");
4109 return 0;
4110 }
4111
88ff6eaf
TH
4112 /* wait a while before checking status */
4113 ata_wait_after_reset(ap, deadline);
34fee227 4114
633273a3
TH
4115 /* If PMP is supported, we have to do follow-up SRST. Note
4116 * that some PMPs don't send D2H Reg FIS after hardreset at
4117 * all if the first port is empty. Wait for it just for a
4118 * second and request follow-up SRST.
4119 */
4120 if (ap->flags & ATA_FLAG_PMP) {
4121 ata_wait_ready(ap, jiffies + HZ);
4122 return -EAGAIN;
4123 }
4124
d4b2bab4 4125 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
4126 /* link occupied, -ENODEV too is an error */
4127 if (rc) {
cc0680a5 4128 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
4129 "COMRESET failed (errno=%d)\n", rc);
4130 return rc;
c2bd5804
TH
4131 }
4132
3a39746a
TH
4133 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4134
3f19859e 4135 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
4136
4137 DPRINTK("EXIT, class=%u\n", *class);
4138 return 0;
4139}
4140
4141/**
4142 * ata_std_postreset - standard postreset callback
cc0680a5 4143 * @link: the target ata_link
c2bd5804
TH
4144 * @classes: classes of attached devices
4145 *
4146 * This function is invoked after a successful reset. Note that
4147 * the device might have been reset more than once using
4148 * different reset methods before postreset is invoked.
c2bd5804 4149 *
c2bd5804
TH
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4152 */
cc0680a5 4153void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4154{
cc0680a5 4155 struct ata_port *ap = link->ap;
dc2b3515
TH
4156 u32 serror;
4157
c2bd5804
TH
4158 DPRINTK("ENTER\n");
4159
c2bd5804 4160 /* print link status */
936fd732 4161 sata_print_link_status(link);
c2bd5804 4162
dc2b3515 4163 /* clear SError */
936fd732
TH
4164 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4165 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 4166 link->eh_info.serror = 0;
dc2b3515 4167
c2bd5804
TH
4168 /* is double-select really necessary? */
4169 if (classes[0] != ATA_DEV_NONE)
4170 ap->ops->dev_select(ap, 1);
4171 if (classes[1] != ATA_DEV_NONE)
4172 ap->ops->dev_select(ap, 0);
4173
3a39746a
TH
4174 /* bail out if no device is present */
4175 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4176 DPRINTK("EXIT, no device\n");
4177 return;
4178 }
4179
4180 /* set up device control */
0d5ff566
TH
4181 if (ap->ioaddr.ctl_addr)
4182 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
4183
4184 DPRINTK("EXIT\n");
4185}
4186
623a3128
TH
4187/**
4188 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4189 * @dev: device to compare against
4190 * @new_class: class of the new device
4191 * @new_id: IDENTIFY page of the new device
4192 *
4193 * Compare @new_class and @new_id against @dev and determine
4194 * whether @dev is the device indicated by @new_class and
4195 * @new_id.
4196 *
4197 * LOCKING:
4198 * None.
4199 *
4200 * RETURNS:
4201 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4202 */
3373efd8
TH
4203static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4204 const u16 *new_id)
623a3128
TH
4205{
4206 const u16 *old_id = dev->id;
a0cf733b
TH
4207 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4208 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4209
4210 if (dev->class != new_class) {
f15a1daf
TH
4211 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4212 dev->class, new_class);
623a3128
TH
4213 return 0;
4214 }
4215
a0cf733b
TH
4216 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4217 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4218 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4219 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4220
4221 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4222 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4223 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4224 return 0;
4225 }
4226
4227 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4228 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4229 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4230 return 0;
4231 }
4232
623a3128
TH
4233 return 1;
4234}
4235
4236/**
fe30911b 4237 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4238 * @dev: target ATA device
bff04647 4239 * @readid_flags: read ID flags
623a3128
TH
4240 *
4241 * Re-read IDENTIFY page and make sure @dev is still attached to
4242 * the port.
4243 *
4244 * LOCKING:
4245 * Kernel thread context (may sleep)
4246 *
4247 * RETURNS:
4248 * 0 on success, negative errno otherwise
4249 */
fe30911b 4250int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4251{
5eb45c02 4252 unsigned int class = dev->class;
9af5c9c9 4253 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4254 int rc;
4255
fe635c7e 4256 /* read ID data */
bff04647 4257 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4258 if (rc)
fe30911b 4259 return rc;
623a3128
TH
4260
4261 /* is the device still there? */
fe30911b
TH
4262 if (!ata_dev_same_device(dev, class, id))
4263 return -ENODEV;
623a3128 4264
fe635c7e 4265 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4266 return 0;
4267}
4268
4269/**
4270 * ata_dev_revalidate - Revalidate ATA device
4271 * @dev: device to revalidate
422c9daa 4272 * @new_class: new class code
fe30911b
TH
4273 * @readid_flags: read ID flags
4274 *
4275 * Re-read IDENTIFY page, make sure @dev is still attached to the
4276 * port and reconfigure it according to the new IDENTIFY page.
4277 *
4278 * LOCKING:
4279 * Kernel thread context (may sleep)
4280 *
4281 * RETURNS:
4282 * 0 on success, negative errno otherwise
4283 */
422c9daa
TH
4284int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4285 unsigned int readid_flags)
fe30911b 4286{
6ddcd3b0 4287 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4288 int rc;
4289
4290 if (!ata_dev_enabled(dev))
4291 return -ENODEV;
4292
422c9daa
TH
4293 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4294 if (ata_class_enabled(new_class) &&
4295 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4296 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4297 dev->class, new_class);
4298 rc = -ENODEV;
4299 goto fail;
4300 }
4301
fe30911b
TH
4302 /* re-read ID */
4303 rc = ata_dev_reread_id(dev, readid_flags);
4304 if (rc)
4305 goto fail;
623a3128
TH
4306
4307 /* configure device according to the new ID */
efdaedc4 4308 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4309 if (rc)
4310 goto fail;
4311
4312 /* verify n_sectors hasn't changed */
b54eebd6
TH
4313 if (dev->class == ATA_DEV_ATA && n_sectors &&
4314 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4315 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4316 "%llu != %llu\n",
4317 (unsigned long long)n_sectors,
4318 (unsigned long long)dev->n_sectors);
8270bec4
TH
4319
4320 /* restore original n_sectors */
4321 dev->n_sectors = n_sectors;
4322
6ddcd3b0
TH
4323 rc = -ENODEV;
4324 goto fail;
4325 }
4326
4327 return 0;
623a3128
TH
4328
4329 fail:
f15a1daf 4330 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4331 return rc;
4332}
4333
6919a0a6
AC
4334struct ata_blacklist_entry {
4335 const char *model_num;
4336 const char *model_rev;
4337 unsigned long horkage;
4338};
4339
4340static const struct ata_blacklist_entry ata_device_blacklist [] = {
4341 /* Devices with DMA related problems under Linux */
4342 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4343 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4344 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4345 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4346 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4347 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4348 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4349 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4350 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4351 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4352 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4353 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4354 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4355 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4356 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4357 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4358 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4359 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4360 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4361 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4362 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4363 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4364 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4365 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4366 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4367 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4368 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4369 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4370 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4371 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4372 /* Odd clown on sil3726/4726 PMPs */
4373 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4374 ATA_HORKAGE_SKIP_PM },
6919a0a6 4375
18d6e9d5 4376 /* Weird ATAPI devices */
40a1d531 4377 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4378
6919a0a6
AC
4379 /* Devices we expect to fail diagnostics */
4380
4381 /* Devices where NCQ should be avoided */
4382 /* NCQ is slow */
2dcb407e 4383 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4384 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4385 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4386 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4387 /* NCQ is broken */
539cc7c7 4388 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4389 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4390 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4391 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4392
36e337d0
RH
4393 /* Blacklist entries taken from Silicon Image 3124/3132
4394 Windows driver .inf file - also several Linux problem reports */
4395 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4396 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4397 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4398
16c55b03
TH
4399 /* devices which puke on READ_NATIVE_MAX */
4400 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4401 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4402 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4403 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4404
93328e11
AC
4405 /* Devices which report 1 sector over size HPA */
4406 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4407 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4408 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4409
6bbfd53d
AC
4410 /* Devices which get the IVB wrong */
4411 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4412 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4413 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4414 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4415 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4416
6919a0a6
AC
4417 /* End Marker */
4418 { }
1da177e4 4419};
2e9edbf8 4420
741b7763 4421static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4422{
4423 const char *p;
4424 int len;
4425
4426 /*
4427 * check for trailing wildcard: *\0
4428 */
4429 p = strchr(patt, wildchar);
4430 if (p && ((*(p + 1)) == 0))
4431 len = p - patt;
317b50b8 4432 else {
539cc7c7 4433 len = strlen(name);
317b50b8
AP
4434 if (!len) {
4435 if (!*patt)
4436 return 0;
4437 return -1;
4438 }
4439 }
539cc7c7
JG
4440
4441 return strncmp(patt, name, len);
4442}
4443
75683fe7 4444static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4445{
8bfa79fc
TH
4446 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4447 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4448 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4449
8bfa79fc
TH
4450 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4451 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4452
6919a0a6 4453 while (ad->model_num) {
539cc7c7 4454 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4455 if (ad->model_rev == NULL)
4456 return ad->horkage;
539cc7c7 4457 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4458 return ad->horkage;
f4b15fef 4459 }
6919a0a6 4460 ad++;
f4b15fef 4461 }
1da177e4
LT
4462 return 0;
4463}
4464
6919a0a6
AC
4465static int ata_dma_blacklisted(const struct ata_device *dev)
4466{
4467 /* We don't support polling DMA.
4468 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4469 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4470 */
9af5c9c9 4471 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4472 (dev->flags & ATA_DFLAG_CDB_INTR))
4473 return 1;
75683fe7 4474 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4475}
4476
6bbfd53d
AC
4477/**
4478 * ata_is_40wire - check drive side detection
4479 * @dev: device
4480 *
4481 * Perform drive side detection decoding, allowing for device vendors
4482 * who can't follow the documentation.
4483 */
4484
4485static int ata_is_40wire(struct ata_device *dev)
4486{
4487 if (dev->horkage & ATA_HORKAGE_IVB)
4488 return ata_drive_40wire_relaxed(dev->id);
4489 return ata_drive_40wire(dev->id);
4490}
4491
a6d5a51c
TH
4492/**
4493 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4494 * @dev: Device to compute xfermask for
4495 *
acf356b1
TH
4496 * Compute supported xfermask of @dev and store it in
4497 * dev->*_mask. This function is responsible for applying all
4498 * known limits including host controller limits, device
4499 * blacklist, etc...
a6d5a51c
TH
4500 *
4501 * LOCKING:
4502 * None.
a6d5a51c 4503 */
3373efd8 4504static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4505{
9af5c9c9
TH
4506 struct ata_link *link = dev->link;
4507 struct ata_port *ap = link->ap;
cca3974e 4508 struct ata_host *host = ap->host;
a6d5a51c 4509 unsigned long xfer_mask;
1da177e4 4510
37deecb5 4511 /* controller modes available */
565083e1
TH
4512 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4513 ap->mwdma_mask, ap->udma_mask);
4514
8343f889 4515 /* drive modes available */
37deecb5
TH
4516 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4517 dev->mwdma_mask, dev->udma_mask);
4518 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4519
b352e57d
AC
4520 /*
4521 * CFA Advanced TrueIDE timings are not allowed on a shared
4522 * cable
4523 */
4524 if (ata_dev_pair(dev)) {
4525 /* No PIO5 or PIO6 */
4526 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4527 /* No MWDMA3 or MWDMA 4 */
4528 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4529 }
4530
37deecb5
TH
4531 if (ata_dma_blacklisted(dev)) {
4532 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4533 ata_dev_printk(dev, KERN_WARNING,
4534 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4535 }
a6d5a51c 4536
14d66ab7 4537 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4538 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4539 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4540 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4541 "other device, disabling DMA\n");
5444a6f4 4542 }
565083e1 4543
e424675f
JG
4544 if (ap->flags & ATA_FLAG_NO_IORDY)
4545 xfer_mask &= ata_pio_mask_no_iordy(dev);
4546
5444a6f4 4547 if (ap->ops->mode_filter)
a76b62ca 4548 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4549
8343f889
RH
4550 /* Apply cable rule here. Don't apply it early because when
4551 * we handle hot plug the cable type can itself change.
4552 * Check this last so that we know if the transfer rate was
4553 * solely limited by the cable.
4554 * Unknown or 80 wire cables reported host side are checked
4555 * drive side as well. Cases where we know a 40wire cable
4556 * is used safely for 80 are not checked here.
4557 */
4558 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4559 /* UDMA/44 or higher would be available */
2dcb407e 4560 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4561 (ata_is_40wire(dev) &&
2dcb407e
JG
4562 (ap->cbl == ATA_CBL_PATA_UNK ||
4563 ap->cbl == ATA_CBL_PATA80))) {
4564 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4565 "limited to UDMA/33 due to 40-wire cable\n");
4566 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4567 }
4568
565083e1
TH
4569 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4570 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4571}
4572
1da177e4
LT
4573/**
4574 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4575 * @dev: Device to which command will be sent
4576 *
780a87f7
JG
4577 * Issue SET FEATURES - XFER MODE command to device @dev
4578 * on port @ap.
4579 *
1da177e4 4580 * LOCKING:
0cba632b 4581 * PCI/etc. bus probe sem.
83206a29
TH
4582 *
4583 * RETURNS:
4584 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4585 */
4586
3373efd8 4587static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4588{
a0123703 4589 struct ata_taskfile tf;
83206a29 4590 unsigned int err_mask;
1da177e4
LT
4591
4592 /* set up set-features taskfile */
4593 DPRINTK("set features - xfer mode\n");
4594
464cf177
TH
4595 /* Some controllers and ATAPI devices show flaky interrupt
4596 * behavior after setting xfer mode. Use polling instead.
4597 */
3373efd8 4598 ata_tf_init(dev, &tf);
a0123703
TH
4599 tf.command = ATA_CMD_SET_FEATURES;
4600 tf.feature = SETFEATURES_XFER;
464cf177 4601 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4602 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4603 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4604 if (ata_pio_need_iordy(dev))
4605 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4606 /* If the device has IORDY and the controller does not - turn it off */
4607 else if (ata_id_has_iordy(dev->id))
11b7becc 4608 tf.nsect = 0x01;
b9f8ab2d
AC
4609 else /* In the ancient relic department - skip all of this */
4610 return 0;
1da177e4 4611
2b789108 4612 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4613
4614 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4615 return err_mask;
4616}
9f45cbd3 4617/**
218f3d30 4618 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4619 * @dev: Device to which command will be sent
4620 * @enable: Whether to enable or disable the feature
218f3d30 4621 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4622 *
4623 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4624 * on port @ap with sector count
9f45cbd3
KCA
4625 *
4626 * LOCKING:
4627 * PCI/etc. bus probe sem.
4628 *
4629 * RETURNS:
4630 * 0 on success, AC_ERR_* mask otherwise.
4631 */
218f3d30
JG
4632static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4633 u8 feature)
9f45cbd3
KCA
4634{
4635 struct ata_taskfile tf;
4636 unsigned int err_mask;
4637
4638 /* set up set-features taskfile */
4639 DPRINTK("set features - SATA features\n");
4640
4641 ata_tf_init(dev, &tf);
4642 tf.command = ATA_CMD_SET_FEATURES;
4643 tf.feature = enable;
4644 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4645 tf.protocol = ATA_PROT_NODATA;
218f3d30 4646 tf.nsect = feature;
9f45cbd3 4647
2b789108 4648 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4649
83206a29
TH
4650 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4651 return err_mask;
1da177e4
LT
4652}
4653
8bf62ece
AL
4654/**
4655 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4656 * @dev: Device to which command will be sent
e2a7f77a
RD
4657 * @heads: Number of heads (taskfile parameter)
4658 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4659 *
4660 * LOCKING:
6aff8f1f
TH
4661 * Kernel thread context (may sleep)
4662 *
4663 * RETURNS:
4664 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4665 */
3373efd8
TH
4666static unsigned int ata_dev_init_params(struct ata_device *dev,
4667 u16 heads, u16 sectors)
8bf62ece 4668{
a0123703 4669 struct ata_taskfile tf;
6aff8f1f 4670 unsigned int err_mask;
8bf62ece
AL
4671
4672 /* Number of sectors per track 1-255. Number of heads 1-16 */
4673 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4674 return AC_ERR_INVALID;
8bf62ece
AL
4675
4676 /* set up init dev params taskfile */
4677 DPRINTK("init dev params \n");
4678
3373efd8 4679 ata_tf_init(dev, &tf);
a0123703
TH
4680 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4681 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4682 tf.protocol = ATA_PROT_NODATA;
4683 tf.nsect = sectors;
4684 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4685
2b789108 4686 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4687 /* A clean abort indicates an original or just out of spec drive
4688 and we should continue as we issue the setup based on the
4689 drive reported working geometry */
4690 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4691 err_mask = 0;
8bf62ece 4692
6aff8f1f
TH
4693 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4694 return err_mask;
8bf62ece
AL
4695}
4696
1da177e4 4697/**
0cba632b
JG
4698 * ata_sg_clean - Unmap DMA memory associated with command
4699 * @qc: Command containing DMA memory to be released
4700 *
4701 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4702 *
4703 * LOCKING:
cca3974e 4704 * spin_lock_irqsave(host lock)
1da177e4 4705 */
70e6ad0c 4706void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4707{
4708 struct ata_port *ap = qc->ap;
ff2aeb1e 4709 struct scatterlist *sg = qc->sg;
1da177e4
LT
4710 int dir = qc->dma_dir;
4711
a4631474 4712 WARN_ON(sg == NULL);
1da177e4 4713
dde20207 4714 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4715
dde20207
JB
4716 if (qc->n_elem)
4717 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
1da177e4
LT
4718
4719 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4720 qc->sg = NULL;
1da177e4
LT
4721}
4722
4723/**
4724 * ata_fill_sg - Fill PCI IDE PRD table
4725 * @qc: Metadata associated with taskfile to be transferred
4726 *
780a87f7
JG
4727 * Fill PCI IDE PRD (scatter-gather) table with segments
4728 * associated with the current disk command.
4729 *
1da177e4 4730 * LOCKING:
cca3974e 4731 * spin_lock_irqsave(host lock)
1da177e4
LT
4732 *
4733 */
4734static void ata_fill_sg(struct ata_queued_cmd *qc)
4735{
1da177e4 4736 struct ata_port *ap = qc->ap;
cedc9a47 4737 struct scatterlist *sg;
ff2aeb1e 4738 unsigned int si, pi;
1da177e4 4739
ff2aeb1e
TH
4740 pi = 0;
4741 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1da177e4
LT
4742 u32 addr, offset;
4743 u32 sg_len, len;
4744
4745 /* determine if physical DMA addr spans 64K boundary.
4746 * Note h/w doesn't support 64-bit, so we unconditionally
4747 * truncate dma_addr_t to u32.
4748 */
4749 addr = (u32) sg_dma_address(sg);
4750 sg_len = sg_dma_len(sg);
4751
4752 while (sg_len) {
4753 offset = addr & 0xffff;
4754 len = sg_len;
4755 if ((offset + sg_len) > 0x10000)
4756 len = 0x10000 - offset;
4757
ff2aeb1e
TH
4758 ap->prd[pi].addr = cpu_to_le32(addr);
4759 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4760 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
1da177e4 4761
ff2aeb1e 4762 pi++;
1da177e4
LT
4763 sg_len -= len;
4764 addr += len;
4765 }
4766 }
4767
ff2aeb1e 4768 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
1da177e4 4769}
b9a4197e 4770
d26fc955
AC
4771/**
4772 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4773 * @qc: Metadata associated with taskfile to be transferred
4774 *
4775 * Fill PCI IDE PRD (scatter-gather) table with segments
4776 * associated with the current disk command. Perform the fill
4777 * so that we avoid writing any length 64K records for
4778 * controllers that don't follow the spec.
4779 *
4780 * LOCKING:
4781 * spin_lock_irqsave(host lock)
4782 *
4783 */
4784static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4785{
4786 struct ata_port *ap = qc->ap;
4787 struct scatterlist *sg;
ff2aeb1e 4788 unsigned int si, pi;
d26fc955 4789
ff2aeb1e
TH
4790 pi = 0;
4791 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d26fc955
AC
4792 u32 addr, offset;
4793 u32 sg_len, len, blen;
4794
2dcb407e 4795 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4796 * Note h/w doesn't support 64-bit, so we unconditionally
4797 * truncate dma_addr_t to u32.
4798 */
4799 addr = (u32) sg_dma_address(sg);
4800 sg_len = sg_dma_len(sg);
4801
4802 while (sg_len) {
4803 offset = addr & 0xffff;
4804 len = sg_len;
4805 if ((offset + sg_len) > 0x10000)
4806 len = 0x10000 - offset;
4807
4808 blen = len & 0xffff;
ff2aeb1e 4809 ap->prd[pi].addr = cpu_to_le32(addr);
d26fc955
AC
4810 if (blen == 0) {
4811 /* Some PATA chipsets like the CS5530 can't
4812 cope with 0x0000 meaning 64K as the spec says */
ff2aeb1e 4813 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
d26fc955 4814 blen = 0x8000;
ff2aeb1e 4815 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
d26fc955 4816 }
ff2aeb1e
TH
4817 ap->prd[pi].flags_len = cpu_to_le32(blen);
4818 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
d26fc955 4819
ff2aeb1e 4820 pi++;
d26fc955
AC
4821 sg_len -= len;
4822 addr += len;
4823 }
4824 }
4825
ff2aeb1e 4826 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
d26fc955
AC
4827}
4828
1da177e4
LT
4829/**
4830 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4831 * @qc: Metadata associated with taskfile to check
4832 *
780a87f7
JG
4833 * Allow low-level driver to filter ATA PACKET commands, returning
4834 * a status indicating whether or not it is OK to use DMA for the
4835 * supplied PACKET command.
4836 *
1da177e4 4837 * LOCKING:
cca3974e 4838 * spin_lock_irqsave(host lock)
0cba632b 4839 *
1da177e4
LT
4840 * RETURNS: 0 when ATAPI DMA can be used
4841 * nonzero otherwise
4842 */
4843int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4844{
4845 struct ata_port *ap = qc->ap;
b9a4197e
TH
4846
4847 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4848 * few ATAPI devices choke on such DMA requests.
4849 */
4850 if (unlikely(qc->nbytes & 15))
4851 return 1;
6f23a31d 4852
1da177e4 4853 if (ap->ops->check_atapi_dma)
b9a4197e 4854 return ap->ops->check_atapi_dma(qc);
1da177e4 4855
b9a4197e 4856 return 0;
1da177e4 4857}
b9a4197e 4858
31cc23b3
TH
4859/**
4860 * ata_std_qc_defer - Check whether a qc needs to be deferred
4861 * @qc: ATA command in question
4862 *
4863 * Non-NCQ commands cannot run with any other command, NCQ or
4864 * not. As upper layer only knows the queue depth, we are
4865 * responsible for maintaining exclusion. This function checks
4866 * whether a new command @qc can be issued.
4867 *
4868 * LOCKING:
4869 * spin_lock_irqsave(host lock)
4870 *
4871 * RETURNS:
4872 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4873 */
4874int ata_std_qc_defer(struct ata_queued_cmd *qc)
4875{
4876 struct ata_link *link = qc->dev->link;
4877
4878 if (qc->tf.protocol == ATA_PROT_NCQ) {
4879 if (!ata_tag_valid(link->active_tag))
4880 return 0;
4881 } else {
4882 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4883 return 0;
4884 }
4885
4886 return ATA_DEFER_LINK;
4887}
4888
1da177e4
LT
4889/**
4890 * ata_qc_prep - Prepare taskfile for submission
4891 * @qc: Metadata associated with taskfile to be prepared
4892 *
780a87f7
JG
4893 * Prepare ATA taskfile for submission.
4894 *
1da177e4 4895 * LOCKING:
cca3974e 4896 * spin_lock_irqsave(host lock)
1da177e4
LT
4897 */
4898void ata_qc_prep(struct ata_queued_cmd *qc)
4899{
4900 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4901 return;
4902
4903 ata_fill_sg(qc);
4904}
4905
d26fc955
AC
4906/**
4907 * ata_dumb_qc_prep - Prepare taskfile for submission
4908 * @qc: Metadata associated with taskfile to be prepared
4909 *
4910 * Prepare ATA taskfile for submission.
4911 *
4912 * LOCKING:
4913 * spin_lock_irqsave(host lock)
4914 */
4915void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4916{
4917 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4918 return;
4919
4920 ata_fill_sg_dumb(qc);
4921}
4922
e46834cd
BK
4923void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4924
0cba632b
JG
4925/**
4926 * ata_sg_init - Associate command with scatter-gather table.
4927 * @qc: Command to be associated
4928 * @sg: Scatter-gather table.
4929 * @n_elem: Number of elements in s/g table.
4930 *
4931 * Initialize the data-related elements of queued_cmd @qc
4932 * to point to a scatter-gather table @sg, containing @n_elem
4933 * elements.
4934 *
4935 * LOCKING:
cca3974e 4936 * spin_lock_irqsave(host lock)
0cba632b 4937 */
1da177e4
LT
4938void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4939 unsigned int n_elem)
4940{
ff2aeb1e 4941 qc->sg = sg;
1da177e4 4942 qc->n_elem = n_elem;
ff2aeb1e 4943 qc->cursg = qc->sg;
1da177e4
LT
4944}
4945
ff2aeb1e
TH
4946/**
4947 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4948 * @qc: Command with scatter-gather table to be mapped.
4949 *
4950 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4951 *
4952 * LOCKING:
4953 * spin_lock_irqsave(host lock)
4954 *
4955 * RETURNS:
4956 * Zero on success, negative on error.
4957 *
4958 */
4959static int ata_sg_setup(struct ata_queued_cmd *qc)
4960{
4961 struct ata_port *ap = qc->ap;
dde20207 4962 unsigned int n_elem;
ff2aeb1e
TH
4963
4964 VPRINTK("ENTER, ata%u\n", ap->print_id);
4965
dde20207
JB
4966 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4967 if (n_elem < 1)
4968 return -1;
ff2aeb1e 4969
dde20207 4970 DPRINTK("%d sg elements mapped\n", n_elem);
1da177e4 4971
dde20207 4972 qc->n_elem = n_elem;
f92a2636 4973 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4
LT
4974
4975 return 0;
4976}
4977
0baab86b 4978/**
c893a3ae 4979 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4980 * @buf: Buffer to swap
4981 * @buf_words: Number of 16-bit words in buffer.
4982 *
4983 * Swap halves of 16-bit words if needed to convert from
4984 * little-endian byte order to native cpu byte order, or
4985 * vice-versa.
4986 *
4987 * LOCKING:
6f0ef4fa 4988 * Inherited from caller.
0baab86b 4989 */
1da177e4
LT
4990void swap_buf_le16(u16 *buf, unsigned int buf_words)
4991{
4992#ifdef __BIG_ENDIAN
4993 unsigned int i;
4994
4995 for (i = 0; i < buf_words; i++)
4996 buf[i] = le16_to_cpu(buf[i]);
4997#endif /* __BIG_ENDIAN */
4998}
4999
6ae4cfb5 5000/**
0d5ff566 5001 * ata_data_xfer - Transfer data by PIO
55dba312 5002 * @dev: device to target
6ae4cfb5
AL
5003 * @buf: data buffer
5004 * @buflen: buffer length
0affa456 5005 * @rw: read/write
6ae4cfb5
AL
5006 *
5007 * Transfer data from/to the device data register by PIO.
5008 *
5009 * LOCKING:
5010 * Inherited from caller.
55dba312
TH
5011 *
5012 * RETURNS:
5013 * Bytes consumed.
6ae4cfb5 5014 */
55dba312
TH
5015unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5016 unsigned int buflen, int rw)
1da177e4 5017{
55dba312
TH
5018 struct ata_port *ap = dev->link->ap;
5019 void __iomem *data_addr = ap->ioaddr.data_addr;
6ae4cfb5 5020 unsigned int words = buflen >> 1;
1da177e4 5021
6ae4cfb5 5022 /* Transfer multiple of 2 bytes */
55dba312
TH
5023 if (rw == READ)
5024 ioread16_rep(data_addr, buf, words);
1da177e4 5025 else
55dba312 5026 iowrite16_rep(data_addr, buf, words);
6ae4cfb5
AL
5027
5028 /* Transfer trailing 1 byte, if any. */
5029 if (unlikely(buflen & 0x01)) {
4ca4e439 5030 __le16 align_buf[1] = { 0 };
6ae4cfb5
AL
5031 unsigned char *trailing_buf = buf + buflen - 1;
5032
55dba312
TH
5033 if (rw == READ) {
5034 align_buf[0] = cpu_to_le16(ioread16(data_addr));
6ae4cfb5 5035 memcpy(trailing_buf, align_buf, 1);
55dba312
TH
5036 } else {
5037 memcpy(align_buf, trailing_buf, 1);
5038 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
6ae4cfb5 5039 }
55dba312 5040 words++;
6ae4cfb5 5041 }
55dba312
TH
5042
5043 return words << 1;
1da177e4
LT
5044}
5045
75e99585 5046/**
0d5ff566 5047 * ata_data_xfer_noirq - Transfer data by PIO
55dba312 5048 * @dev: device to target
75e99585
AC
5049 * @buf: data buffer
5050 * @buflen: buffer length
0affa456 5051 * @rw: read/write
75e99585 5052 *
88574551 5053 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5054 * transfer with interrupts disabled.
5055 *
5056 * LOCKING:
5057 * Inherited from caller.
55dba312
TH
5058 *
5059 * RETURNS:
5060 * Bytes consumed.
75e99585 5061 */
55dba312
TH
5062unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5063 unsigned int buflen, int rw)
75e99585
AC
5064{
5065 unsigned long flags;
55dba312
TH
5066 unsigned int consumed;
5067
75e99585 5068 local_irq_save(flags);
55dba312 5069 consumed = ata_data_xfer(dev, buf, buflen, rw);
75e99585 5070 local_irq_restore(flags);
55dba312
TH
5071
5072 return consumed;
75e99585
AC
5073}
5074
5075
6ae4cfb5 5076/**
5a5dbd18 5077 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5078 * @qc: Command on going
5079 *
5a5dbd18 5080 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5081 *
5082 * LOCKING:
5083 * Inherited from caller.
5084 */
5085
1da177e4
LT
5086static void ata_pio_sector(struct ata_queued_cmd *qc)
5087{
5088 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5089 struct ata_port *ap = qc->ap;
5090 struct page *page;
5091 unsigned int offset;
5092 unsigned char *buf;
5093
5a5dbd18 5094 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5095 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5096
45711f1a 5097 page = sg_page(qc->cursg);
87260216 5098 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5099
5100 /* get the current page and offset */
5101 page = nth_page(page, (offset >> PAGE_SHIFT));
5102 offset %= PAGE_SIZE;
5103
1da177e4
LT
5104 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5105
91b8b313
AL
5106 if (PageHighMem(page)) {
5107 unsigned long flags;
5108
a6b2c5d4 5109 /* FIXME: use a bounce buffer */
91b8b313
AL
5110 local_irq_save(flags);
5111 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5112
91b8b313 5113 /* do the actual data transfer */
5a5dbd18 5114 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5115
91b8b313
AL
5116 kunmap_atomic(buf, KM_IRQ0);
5117 local_irq_restore(flags);
5118 } else {
5119 buf = page_address(page);
5a5dbd18 5120 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5121 }
1da177e4 5122
5a5dbd18
ML
5123 qc->curbytes += qc->sect_size;
5124 qc->cursg_ofs += qc->sect_size;
1da177e4 5125
87260216
JA
5126 if (qc->cursg_ofs == qc->cursg->length) {
5127 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5128 qc->cursg_ofs = 0;
5129 }
1da177e4 5130}
1da177e4 5131
07f6f7d0 5132/**
5a5dbd18 5133 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5134 * @qc: Command on going
5135 *
5a5dbd18 5136 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5137 * ATA device for the DRQ request.
5138 *
5139 * LOCKING:
5140 * Inherited from caller.
5141 */
1da177e4 5142
07f6f7d0
AL
5143static void ata_pio_sectors(struct ata_queued_cmd *qc)
5144{
5145 if (is_multi_taskfile(&qc->tf)) {
5146 /* READ/WRITE MULTIPLE */
5147 unsigned int nsect;
5148
587005de 5149 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5150
5a5dbd18 5151 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5152 qc->dev->multi_count);
07f6f7d0
AL
5153 while (nsect--)
5154 ata_pio_sector(qc);
5155 } else
5156 ata_pio_sector(qc);
4cc980b3
AL
5157
5158 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5159}
5160
c71c1857
AL
5161/**
5162 * atapi_send_cdb - Write CDB bytes to hardware
5163 * @ap: Port to which ATAPI device is attached.
5164 * @qc: Taskfile currently active
5165 *
5166 * When device has indicated its readiness to accept
5167 * a CDB, this function is called. Send the CDB.
5168 *
5169 * LOCKING:
5170 * caller.
5171 */
5172
5173static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5174{
5175 /* send SCSI cdb */
5176 DPRINTK("send cdb\n");
db024d53 5177 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5178
a6b2c5d4 5179 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5180 ata_altstatus(ap); /* flush */
5181
5182 switch (qc->tf.protocol) {
0dc36888 5183 case ATAPI_PROT_PIO:
c71c1857
AL
5184 ap->hsm_task_state = HSM_ST;
5185 break;
0dc36888 5186 case ATAPI_PROT_NODATA:
c71c1857
AL
5187 ap->hsm_task_state = HSM_ST_LAST;
5188 break;
0dc36888 5189 case ATAPI_PROT_DMA:
c71c1857
AL
5190 ap->hsm_task_state = HSM_ST_LAST;
5191 /* initiate bmdma */
5192 ap->ops->bmdma_start(qc);
5193 break;
5194 }
1da177e4
LT
5195}
5196
6ae4cfb5
AL
5197/**
5198 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5199 * @qc: Command on going
5200 * @bytes: number of bytes
5201 *
5202 * Transfer Transfer data from/to the ATAPI device.
5203 *
5204 * LOCKING:
5205 * Inherited from caller.
5206 *
5207 */
140b5e59 5208static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4 5209{
56c819df 5210 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
1da177e4 5211 struct ata_port *ap = qc->ap;
56c819df
TH
5212 struct ata_device *dev = qc->dev;
5213 struct ata_eh_info *ehi = &dev->link->eh_info;
140b5e59 5214 struct scatterlist *sg;
1da177e4
LT
5215 struct page *page;
5216 unsigned char *buf;
56c819df 5217 unsigned int offset, count, consumed;
1da177e4
LT
5218
5219next_sg:
140b5e59
TH
5220 sg = qc->cursg;
5221 if (unlikely(!sg)) {
fa2fc7f4
JB
5222 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5223 "buf=%u cur=%u bytes=%u",
5224 qc->nbytes, qc->curbytes, bytes);
5225 return -1;
140b5e59 5226 }
1da177e4 5227
45711f1a 5228 page = sg_page(sg);
1da177e4
LT
5229 offset = sg->offset + qc->cursg_ofs;
5230
5231 /* get the current page and offset */
5232 page = nth_page(page, (offset >> PAGE_SHIFT));
5233 offset %= PAGE_SIZE;
5234
6952df03 5235 /* don't overrun current sg */
32529e01 5236 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5237
5238 /* don't cross page boundaries */
5239 count = min(count, (unsigned int)PAGE_SIZE - offset);
5240
7282aa4b
AL
5241 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5242
91b8b313
AL
5243 if (PageHighMem(page)) {
5244 unsigned long flags;
5245
a6b2c5d4 5246 /* FIXME: use bounce buffer */
91b8b313
AL
5247 local_irq_save(flags);
5248 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5249
91b8b313 5250 /* do the actual data transfer */
56c819df 5251 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
7282aa4b 5252
91b8b313
AL
5253 kunmap_atomic(buf, KM_IRQ0);
5254 local_irq_restore(flags);
5255 } else {
5256 buf = page_address(page);
56c819df 5257 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
91b8b313 5258 }
1da177e4 5259
56c819df 5260 bytes -= min(bytes, consumed);
1da177e4
LT
5261 qc->curbytes += count;
5262 qc->cursg_ofs += count;
5263
32529e01 5264 if (qc->cursg_ofs == sg->length) {
87260216 5265 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5266 qc->cursg_ofs = 0;
5267 }
5268
56c819df
TH
5269 /* consumed can be larger than count only for the last transfer */
5270 WARN_ON(qc->cursg && count != consumed);
5271
563a6e1f 5272 if (bytes)
1da177e4 5273 goto next_sg;
140b5e59 5274 return 0;
1da177e4
LT
5275}
5276
6ae4cfb5
AL
5277/**
5278 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5279 * @qc: Command on going
5280 *
5281 * Transfer Transfer data from/to the ATAPI device.
5282 *
5283 * LOCKING:
5284 * Inherited from caller.
6ae4cfb5
AL
5285 */
5286
1da177e4
LT
5287static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5288{
5289 struct ata_port *ap = qc->ap;
5290 struct ata_device *dev = qc->dev;
56c819df 5291 struct ata_eh_info *ehi = &dev->link->eh_info;
1da177e4
LT
5292 unsigned int ireason, bc_lo, bc_hi, bytes;
5293 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5294
eec4c3f3
AL
5295 /* Abuse qc->result_tf for temp storage of intermediate TF
5296 * here to save some kernel stack usage.
5297 * For normal completion, qc->result_tf is not relevant. For
5298 * error, qc->result_tf is later overwritten by ata_qc_complete().
5299 * So, the correctness of qc->result_tf is not affected.
5300 */
5301 ap->ops->tf_read(ap, &qc->result_tf);
5302 ireason = qc->result_tf.nsect;
5303 bc_lo = qc->result_tf.lbam;
5304 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5305 bytes = (bc_hi << 8) | bc_lo;
5306
5307 /* shall be cleared to zero, indicating xfer of data */
0106372d 5308 if (unlikely(ireason & (1 << 0)))
56c819df 5309 goto atapi_check;
1da177e4
LT
5310
5311 /* make sure transfer direction matches expected */
5312 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
0106372d 5313 if (unlikely(do_write != i_write))
56c819df 5314 goto atapi_check;
0106372d
AL
5315
5316 if (unlikely(!bytes))
56c819df 5317 goto atapi_check;
1da177e4 5318
44877b4e 5319 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5320
56c819df 5321 if (unlikely(__atapi_pio_bytes(qc, bytes)))
140b5e59 5322 goto err_out;
4cc980b3 5323 ata_altstatus(ap); /* flush */
1da177e4
LT
5324
5325 return;
5326
56c819df
TH
5327 atapi_check:
5328 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5329 ireason, bytes);
5330 err_out:
11a56d24 5331 qc->err_mask |= AC_ERR_HSM;
14be71f4 5332 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5333}
5334
5335/**
c234fb00
AL
5336 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5337 * @ap: the target ata_port
5338 * @qc: qc on going
1da177e4 5339 *
c234fb00
AL
5340 * RETURNS:
5341 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5342 */
c234fb00
AL
5343
5344static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5345{
c234fb00
AL
5346 if (qc->tf.flags & ATA_TFLAG_POLLING)
5347 return 1;
1da177e4 5348
c234fb00
AL
5349 if (ap->hsm_task_state == HSM_ST_FIRST) {
5350 if (qc->tf.protocol == ATA_PROT_PIO &&
5351 (qc->tf.flags & ATA_TFLAG_WRITE))
5352 return 1;
1da177e4 5353
405e66b3 5354 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5355 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5356 return 1;
fe79e683
AL
5357 }
5358
c234fb00
AL
5359 return 0;
5360}
1da177e4 5361
c17ea20d
TH
5362/**
5363 * ata_hsm_qc_complete - finish a qc running on standard HSM
5364 * @qc: Command to complete
5365 * @in_wq: 1 if called from workqueue, 0 otherwise
5366 *
5367 * Finish @qc which is running on standard HSM.
5368 *
5369 * LOCKING:
cca3974e 5370 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5371 * Otherwise, none on entry and grabs host lock.
5372 */
5373static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5374{
5375 struct ata_port *ap = qc->ap;
5376 unsigned long flags;
5377
5378 if (ap->ops->error_handler) {
5379 if (in_wq) {
ba6a1308 5380 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5381
cca3974e
JG
5382 /* EH might have kicked in while host lock is
5383 * released.
c17ea20d
TH
5384 */
5385 qc = ata_qc_from_tag(ap, qc->tag);
5386 if (qc) {
5387 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5388 ap->ops->irq_on(ap);
c17ea20d
TH
5389 ata_qc_complete(qc);
5390 } else
5391 ata_port_freeze(ap);
5392 }
5393
ba6a1308 5394 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5395 } else {
5396 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5397 ata_qc_complete(qc);
5398 else
5399 ata_port_freeze(ap);
5400 }
5401 } else {
5402 if (in_wq) {
ba6a1308 5403 spin_lock_irqsave(ap->lock, flags);
83625006 5404 ap->ops->irq_on(ap);
c17ea20d 5405 ata_qc_complete(qc);
ba6a1308 5406 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5407 } else
5408 ata_qc_complete(qc);
5409 }
5410}
5411
bb5cb290
AL
5412/**
5413 * ata_hsm_move - move the HSM to the next state.
5414 * @ap: the target ata_port
5415 * @qc: qc on going
5416 * @status: current device status
5417 * @in_wq: 1 if called from workqueue, 0 otherwise
5418 *
5419 * RETURNS:
5420 * 1 when poll next status needed, 0 otherwise.
5421 */
9a1004d0
TH
5422int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5423 u8 status, int in_wq)
e2cec771 5424{
bb5cb290
AL
5425 unsigned long flags = 0;
5426 int poll_next;
5427
6912ccd5
AL
5428 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5429
bb5cb290
AL
5430 /* Make sure ata_qc_issue_prot() does not throw things
5431 * like DMA polling into the workqueue. Notice that
5432 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5433 */
c234fb00 5434 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5435
e2cec771 5436fsm_start:
999bb6f4 5437 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5438 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5439
e2cec771
AL
5440 switch (ap->hsm_task_state) {
5441 case HSM_ST_FIRST:
bb5cb290
AL
5442 /* Send first data block or PACKET CDB */
5443
5444 /* If polling, we will stay in the work queue after
5445 * sending the data. Otherwise, interrupt handler
5446 * takes over after sending the data.
5447 */
5448 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5449
e2cec771 5450 /* check device status */
3655d1d3
AL
5451 if (unlikely((status & ATA_DRQ) == 0)) {
5452 /* handle BSY=0, DRQ=0 as error */
5453 if (likely(status & (ATA_ERR | ATA_DF)))
5454 /* device stops HSM for abort/error */
5455 qc->err_mask |= AC_ERR_DEV;
5456 else
5457 /* HSM violation. Let EH handle this */
5458 qc->err_mask |= AC_ERR_HSM;
5459
14be71f4 5460 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5461 goto fsm_start;
1da177e4
LT
5462 }
5463
71601958
AL
5464 /* Device should not ask for data transfer (DRQ=1)
5465 * when it finds something wrong.
eee6c32f
AL
5466 * We ignore DRQ here and stop the HSM by
5467 * changing hsm_task_state to HSM_ST_ERR and
5468 * let the EH abort the command or reset the device.
71601958
AL
5469 */
5470 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5471 /* Some ATAPI tape drives forget to clear the ERR bit
5472 * when doing the next command (mostly request sense).
5473 * We ignore ERR here to workaround and proceed sending
5474 * the CDB.
5475 */
5476 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5477 ata_port_printk(ap, KERN_WARNING,
5478 "DRQ=1 with device error, "
5479 "dev_stat 0x%X\n", status);
5480 qc->err_mask |= AC_ERR_HSM;
5481 ap->hsm_task_state = HSM_ST_ERR;
5482 goto fsm_start;
5483 }
71601958 5484 }
1da177e4 5485
bb5cb290
AL
5486 /* Send the CDB (atapi) or the first data block (ata pio out).
5487 * During the state transition, interrupt handler shouldn't
5488 * be invoked before the data transfer is complete and
5489 * hsm_task_state is changed. Hence, the following locking.
5490 */
5491 if (in_wq)
ba6a1308 5492 spin_lock_irqsave(ap->lock, flags);
1da177e4 5493
bb5cb290
AL
5494 if (qc->tf.protocol == ATA_PROT_PIO) {
5495 /* PIO data out protocol.
5496 * send first data block.
5497 */
0565c26d 5498
bb5cb290
AL
5499 /* ata_pio_sectors() might change the state
5500 * to HSM_ST_LAST. so, the state is changed here
5501 * before ata_pio_sectors().
5502 */
5503 ap->hsm_task_state = HSM_ST;
5504 ata_pio_sectors(qc);
bb5cb290
AL
5505 } else
5506 /* send CDB */
5507 atapi_send_cdb(ap, qc);
5508
5509 if (in_wq)
ba6a1308 5510 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5511
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5514 */
e2cec771 5515 break;
1c848984 5516
e2cec771
AL
5517 case HSM_ST:
5518 /* complete command or read/write the data register */
0dc36888 5519 if (qc->tf.protocol == ATAPI_PROT_PIO) {
e2cec771
AL
5520 /* ATAPI PIO protocol */
5521 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5522 /* No more data to transfer or device error.
5523 * Device error will be tagged in HSM_ST_LAST.
5524 */
e2cec771
AL
5525 ap->hsm_task_state = HSM_ST_LAST;
5526 goto fsm_start;
5527 }
1da177e4 5528
71601958
AL
5529 /* Device should not ask for data transfer (DRQ=1)
5530 * when it finds something wrong.
eee6c32f
AL
5531 * We ignore DRQ here and stop the HSM by
5532 * changing hsm_task_state to HSM_ST_ERR and
5533 * let the EH abort the command or reset the device.
71601958
AL
5534 */
5535 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5536 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5537 "device error, dev_stat 0x%X\n",
5538 status);
3655d1d3 5539 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5540 ap->hsm_task_state = HSM_ST_ERR;
5541 goto fsm_start;
71601958 5542 }
1da177e4 5543
e2cec771 5544 atapi_pio_bytes(qc);
7fb6ec28 5545
e2cec771
AL
5546 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5547 /* bad ireason reported by device */
5548 goto fsm_start;
1da177e4 5549
e2cec771
AL
5550 } else {
5551 /* ATA PIO protocol */
5552 if (unlikely((status & ATA_DRQ) == 0)) {
5553 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5554 if (likely(status & (ATA_ERR | ATA_DF)))
5555 /* device stops HSM for abort/error */
5556 qc->err_mask |= AC_ERR_DEV;
5557 else
55a8e2c8
TH
5558 /* HSM violation. Let EH handle this.
5559 * Phantom devices also trigger this
5560 * condition. Mark hint.
5561 */
5562 qc->err_mask |= AC_ERR_HSM |
5563 AC_ERR_NODEV_HINT;
3655d1d3 5564
e2cec771
AL
5565 ap->hsm_task_state = HSM_ST_ERR;
5566 goto fsm_start;
5567 }
1da177e4 5568
eee6c32f
AL
5569 /* For PIO reads, some devices may ask for
5570 * data transfer (DRQ=1) alone with ERR=1.
5571 * We respect DRQ here and transfer one
5572 * block of junk data before changing the
5573 * hsm_task_state to HSM_ST_ERR.
5574 *
5575 * For PIO writes, ERR=1 DRQ=1 doesn't make
5576 * sense since the data block has been
5577 * transferred to the device.
71601958
AL
5578 */
5579 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5580 /* data might be corrputed */
5581 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5582
5583 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5584 ata_pio_sectors(qc);
eee6c32f
AL
5585 status = ata_wait_idle(ap);
5586 }
5587
3655d1d3
AL
5588 if (status & (ATA_BUSY | ATA_DRQ))
5589 qc->err_mask |= AC_ERR_HSM;
5590
eee6c32f
AL
5591 /* ata_pio_sectors() might change the
5592 * state to HSM_ST_LAST. so, the state
5593 * is changed after ata_pio_sectors().
5594 */
5595 ap->hsm_task_state = HSM_ST_ERR;
5596 goto fsm_start;
71601958
AL
5597 }
5598
e2cec771
AL
5599 ata_pio_sectors(qc);
5600
5601 if (ap->hsm_task_state == HSM_ST_LAST &&
5602 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5603 /* all data read */
52a32205 5604 status = ata_wait_idle(ap);
e2cec771
AL
5605 goto fsm_start;
5606 }
5607 }
5608
bb5cb290 5609 poll_next = 1;
1da177e4
LT
5610 break;
5611
14be71f4 5612 case HSM_ST_LAST:
6912ccd5
AL
5613 if (unlikely(!ata_ok(status))) {
5614 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5615 ap->hsm_task_state = HSM_ST_ERR;
5616 goto fsm_start;
5617 }
5618
5619 /* no more data to transfer */
4332a771 5620 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5621 ap->print_id, qc->dev->devno, status);
e2cec771 5622
6912ccd5
AL
5623 WARN_ON(qc->err_mask);
5624
e2cec771 5625 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5626
e2cec771 5627 /* complete taskfile transaction */
c17ea20d 5628 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5629
5630 poll_next = 0;
1da177e4
LT
5631 break;
5632
14be71f4 5633 case HSM_ST_ERR:
e2cec771
AL
5634 /* make sure qc->err_mask is available to
5635 * know what's wrong and recover
5636 */
5637 WARN_ON(qc->err_mask == 0);
5638
5639 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5640
999bb6f4 5641 /* complete taskfile transaction */
c17ea20d 5642 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5643
5644 poll_next = 0;
e2cec771
AL
5645 break;
5646 default:
bb5cb290 5647 poll_next = 0;
6912ccd5 5648 BUG();
1da177e4
LT
5649 }
5650
bb5cb290 5651 return poll_next;
1da177e4
LT
5652}
5653
65f27f38 5654static void ata_pio_task(struct work_struct *work)
8061f5f0 5655{
65f27f38
DH
5656 struct ata_port *ap =
5657 container_of(work, struct ata_port, port_task.work);
5658 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5659 u8 status;
a1af3734 5660 int poll_next;
8061f5f0 5661
7fb6ec28 5662fsm_start:
a1af3734 5663 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5664
a1af3734
AL
5665 /*
5666 * This is purely heuristic. This is a fast path.
5667 * Sometimes when we enter, BSY will be cleared in
5668 * a chk-status or two. If not, the drive is probably seeking
5669 * or something. Snooze for a couple msecs, then
5670 * chk-status again. If still busy, queue delayed work.
5671 */
5672 status = ata_busy_wait(ap, ATA_BUSY, 5);
5673 if (status & ATA_BUSY) {
5674 msleep(2);
5675 status = ata_busy_wait(ap, ATA_BUSY, 10);
5676 if (status & ATA_BUSY) {
442eacc3 5677 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5678 return;
5679 }
8061f5f0
TH
5680 }
5681
a1af3734
AL
5682 /* move the HSM */
5683 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5684
a1af3734
AL
5685 /* another command or interrupt handler
5686 * may be running at this point.
5687 */
5688 if (poll_next)
7fb6ec28 5689 goto fsm_start;
8061f5f0
TH
5690}
5691
1da177e4
LT
5692/**
5693 * ata_qc_new - Request an available ATA command, for queueing
5694 * @ap: Port associated with device @dev
5695 * @dev: Device from whom we request an available command structure
5696 *
5697 * LOCKING:
0cba632b 5698 * None.
1da177e4
LT
5699 */
5700
5701static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5702{
5703 struct ata_queued_cmd *qc = NULL;
5704 unsigned int i;
5705
e3180499 5706 /* no command while frozen */
b51e9e5d 5707 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5708 return NULL;
5709
2ab7db1f
TH
5710 /* the last tag is reserved for internal command. */
5711 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5712 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5713 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5714 break;
5715 }
5716
5717 if (qc)
5718 qc->tag = i;
5719
5720 return qc;
5721}
5722
5723/**
5724 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5725 * @dev: Device from whom we request an available command structure
5726 *
5727 * LOCKING:
0cba632b 5728 * None.
1da177e4
LT
5729 */
5730
3373efd8 5731struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5732{
9af5c9c9 5733 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5734 struct ata_queued_cmd *qc;
5735
5736 qc = ata_qc_new(ap);
5737 if (qc) {
1da177e4
LT
5738 qc->scsicmd = NULL;
5739 qc->ap = ap;
5740 qc->dev = dev;
1da177e4 5741
2c13b7ce 5742 ata_qc_reinit(qc);
1da177e4
LT
5743 }
5744
5745 return qc;
5746}
5747
1da177e4
LT
5748/**
5749 * ata_qc_free - free unused ata_queued_cmd
5750 * @qc: Command to complete
5751 *
5752 * Designed to free unused ata_queued_cmd object
5753 * in case something prevents using it.
5754 *
5755 * LOCKING:
cca3974e 5756 * spin_lock_irqsave(host lock)
1da177e4
LT
5757 */
5758void ata_qc_free(struct ata_queued_cmd *qc)
5759{
4ba946e9
TH
5760 struct ata_port *ap = qc->ap;
5761 unsigned int tag;
5762
a4631474 5763 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5764
4ba946e9
TH
5765 qc->flags = 0;
5766 tag = qc->tag;
5767 if (likely(ata_tag_valid(tag))) {
4ba946e9 5768 qc->tag = ATA_TAG_POISON;
6cec4a39 5769 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5770 }
1da177e4
LT
5771}
5772
76014427 5773void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5774{
dedaf2b0 5775 struct ata_port *ap = qc->ap;
9af5c9c9 5776 struct ata_link *link = qc->dev->link;
dedaf2b0 5777
a4631474
TH
5778 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5779 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5780
5781 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5782 ata_sg_clean(qc);
5783
7401abf2 5784 /* command should be marked inactive atomically with qc completion */
da917d69 5785 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5786 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5787 if (!link->sactive)
5788 ap->nr_active_links--;
5789 } else {
9af5c9c9 5790 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5791 ap->nr_active_links--;
5792 }
5793
5794 /* clear exclusive status */
5795 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5796 ap->excl_link == link))
5797 ap->excl_link = NULL;
7401abf2 5798
3f3791d3
AL
5799 /* atapi: mark qc as inactive to prevent the interrupt handler
5800 * from completing the command twice later, before the error handler
5801 * is called. (when rc != 0 and atapi request sense is needed)
5802 */
5803 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5804 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5805
1da177e4 5806 /* call completion callback */
77853bf2 5807 qc->complete_fn(qc);
1da177e4
LT
5808}
5809
39599a53
TH
5810static void fill_result_tf(struct ata_queued_cmd *qc)
5811{
5812 struct ata_port *ap = qc->ap;
5813
39599a53 5814 qc->result_tf.flags = qc->tf.flags;
4742d54f 5815 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5816}
5817
00115e0f
TH
5818static void ata_verify_xfer(struct ata_queued_cmd *qc)
5819{
5820 struct ata_device *dev = qc->dev;
5821
5822 if (ata_tag_internal(qc->tag))
5823 return;
5824
5825 if (ata_is_nodata(qc->tf.protocol))
5826 return;
5827
5828 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5829 return;
5830
5831 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5832}
5833
f686bcb8
TH
5834/**
5835 * ata_qc_complete - Complete an active ATA command
5836 * @qc: Command to complete
5837 * @err_mask: ATA Status register contents
5838 *
5839 * Indicate to the mid and upper layers that an ATA
5840 * command has completed, with either an ok or not-ok status.
5841 *
5842 * LOCKING:
cca3974e 5843 * spin_lock_irqsave(host lock)
f686bcb8
TH
5844 */
5845void ata_qc_complete(struct ata_queued_cmd *qc)
5846{
5847 struct ata_port *ap = qc->ap;
5848
5849 /* XXX: New EH and old EH use different mechanisms to
5850 * synchronize EH with regular execution path.
5851 *
5852 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5853 * Normal execution path is responsible for not accessing a
5854 * failed qc. libata core enforces the rule by returning NULL
5855 * from ata_qc_from_tag() for failed qcs.
5856 *
5857 * Old EH depends on ata_qc_complete() nullifying completion
5858 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5859 * not synchronize with interrupt handler. Only PIO task is
5860 * taken care of.
5861 */
5862 if (ap->ops->error_handler) {
4dbfa39b
TH
5863 struct ata_device *dev = qc->dev;
5864 struct ata_eh_info *ehi = &dev->link->eh_info;
5865
b51e9e5d 5866 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5867
5868 if (unlikely(qc->err_mask))
5869 qc->flags |= ATA_QCFLAG_FAILED;
5870
5871 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5872 if (!ata_tag_internal(qc->tag)) {
5873 /* always fill result TF for failed qc */
39599a53 5874 fill_result_tf(qc);
f686bcb8
TH
5875 ata_qc_schedule_eh(qc);
5876 return;
5877 }
5878 }
5879
5880 /* read result TF if requested */
5881 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5882 fill_result_tf(qc);
f686bcb8 5883
4dbfa39b
TH
5884 /* Some commands need post-processing after successful
5885 * completion.
5886 */
5887 switch (qc->tf.command) {
5888 case ATA_CMD_SET_FEATURES:
5889 if (qc->tf.feature != SETFEATURES_WC_ON &&
5890 qc->tf.feature != SETFEATURES_WC_OFF)
5891 break;
5892 /* fall through */
5893 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5894 case ATA_CMD_SET_MULTI: /* multi_count changed */
5895 /* revalidate device */
5896 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5897 ata_port_schedule_eh(ap);
5898 break;
054a5fba
TH
5899
5900 case ATA_CMD_SLEEP:
5901 dev->flags |= ATA_DFLAG_SLEEPING;
5902 break;
4dbfa39b
TH
5903 }
5904
00115e0f
TH
5905 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5906 ata_verify_xfer(qc);
5907
f686bcb8
TH
5908 __ata_qc_complete(qc);
5909 } else {
5910 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5911 return;
5912
5913 /* read result TF if failed or requested */
5914 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5915 fill_result_tf(qc);
f686bcb8
TH
5916
5917 __ata_qc_complete(qc);
5918 }
5919}
5920
dedaf2b0
TH
5921/**
5922 * ata_qc_complete_multiple - Complete multiple qcs successfully
5923 * @ap: port in question
5924 * @qc_active: new qc_active mask
5925 * @finish_qc: LLDD callback invoked before completing a qc
5926 *
5927 * Complete in-flight commands. This functions is meant to be
5928 * called from low-level driver's interrupt routine to complete
5929 * requests normally. ap->qc_active and @qc_active is compared
5930 * and commands are completed accordingly.
5931 *
5932 * LOCKING:
cca3974e 5933 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5934 *
5935 * RETURNS:
5936 * Number of completed commands on success, -errno otherwise.
5937 */
5938int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5939 void (*finish_qc)(struct ata_queued_cmd *))
5940{
5941 int nr_done = 0;
5942 u32 done_mask;
5943 int i;
5944
5945 done_mask = ap->qc_active ^ qc_active;
5946
5947 if (unlikely(done_mask & qc_active)) {
5948 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5949 "(%08x->%08x)\n", ap->qc_active, qc_active);
5950 return -EINVAL;
5951 }
5952
5953 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5954 struct ata_queued_cmd *qc;
5955
5956 if (!(done_mask & (1 << i)))
5957 continue;
5958
5959 if ((qc = ata_qc_from_tag(ap, i))) {
5960 if (finish_qc)
5961 finish_qc(qc);
5962 ata_qc_complete(qc);
5963 nr_done++;
5964 }
5965 }
5966
5967 return nr_done;
5968}
5969
1da177e4
LT
5970/**
5971 * ata_qc_issue - issue taskfile to device
5972 * @qc: command to issue to device
5973 *
5974 * Prepare an ATA command to submission to device.
5975 * This includes mapping the data into a DMA-able
5976 * area, filling in the S/G table, and finally
5977 * writing the taskfile to hardware, starting the command.
5978 *
5979 * LOCKING:
cca3974e 5980 * spin_lock_irqsave(host lock)
1da177e4 5981 */
8e0e694a 5982void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5983{
5984 struct ata_port *ap = qc->ap;
9af5c9c9 5985 struct ata_link *link = qc->dev->link;
405e66b3 5986 u8 prot = qc->tf.protocol;
1da177e4 5987
dedaf2b0
TH
5988 /* Make sure only one non-NCQ command is outstanding. The
5989 * check is skipped for old EH because it reuses active qc to
5990 * request ATAPI sense.
5991 */
9af5c9c9 5992 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5993
1973a023 5994 if (ata_is_ncq(prot)) {
9af5c9c9 5995 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5996
5997 if (!link->sactive)
5998 ap->nr_active_links++;
9af5c9c9 5999 link->sactive |= 1 << qc->tag;
dedaf2b0 6000 } else {
9af5c9c9 6001 WARN_ON(link->sactive);
da917d69
TH
6002
6003 ap->nr_active_links++;
9af5c9c9 6004 link->active_tag = qc->tag;
dedaf2b0
TH
6005 }
6006
e4a70e76 6007 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 6008 ap->qc_active |= 1 << qc->tag;
e4a70e76 6009
f92a2636
TH
6010 /* We guarantee to LLDs that they will have at least one
6011 * non-zero sg if the command is a data command.
6012 */
ff2aeb1e 6013 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 6014
405e66b3 6015 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 6016 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
6017 if (ata_sg_setup(qc))
6018 goto sg_err;
1da177e4 6019
054a5fba
TH
6020 /* if device is sleeping, schedule softreset and abort the link */
6021 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6022 link->eh_info.action |= ATA_EH_SOFTRESET;
6023 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6024 ata_link_abort(link);
6025 return;
6026 }
6027
1da177e4
LT
6028 ap->ops->qc_prep(qc);
6029
8e0e694a
TH
6030 qc->err_mask |= ap->ops->qc_issue(qc);
6031 if (unlikely(qc->err_mask))
6032 goto err;
6033 return;
1da177e4 6034
8e436af9 6035sg_err:
8e0e694a
TH
6036 qc->err_mask |= AC_ERR_SYSTEM;
6037err:
6038 ata_qc_complete(qc);
1da177e4
LT
6039}
6040
6041/**
6042 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6043 * @qc: command to issue to device
6044 *
6045 * Using various libata functions and hooks, this function
6046 * starts an ATA command. ATA commands are grouped into
6047 * classes called "protocols", and issuing each type of protocol
6048 * is slightly different.
6049 *
0baab86b
EF
6050 * May be used as the qc_issue() entry in ata_port_operations.
6051 *
1da177e4 6052 * LOCKING:
cca3974e 6053 * spin_lock_irqsave(host lock)
1da177e4
LT
6054 *
6055 * RETURNS:
9a3d9eb0 6056 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6057 */
6058
9a3d9eb0 6059unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6060{
6061 struct ata_port *ap = qc->ap;
6062
e50362ec
AL
6063 /* Use polling pio if the LLD doesn't handle
6064 * interrupt driven pio and atapi CDB interrupt.
6065 */
6066 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6067 switch (qc->tf.protocol) {
6068 case ATA_PROT_PIO:
e3472cbe 6069 case ATA_PROT_NODATA:
0dc36888
TH
6070 case ATAPI_PROT_PIO:
6071 case ATAPI_PROT_NODATA:
e50362ec
AL
6072 qc->tf.flags |= ATA_TFLAG_POLLING;
6073 break;
0dc36888 6074 case ATAPI_PROT_DMA:
e50362ec 6075 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6076 /* see ata_dma_blacklisted() */
e50362ec
AL
6077 BUG();
6078 break;
6079 default:
6080 break;
6081 }
6082 }
6083
312f7da2 6084 /* select the device */
1da177e4
LT
6085 ata_dev_select(ap, qc->dev->devno, 1, 0);
6086
312f7da2 6087 /* start the command */
1da177e4
LT
6088 switch (qc->tf.protocol) {
6089 case ATA_PROT_NODATA:
312f7da2
AL
6090 if (qc->tf.flags & ATA_TFLAG_POLLING)
6091 ata_qc_set_polling(qc);
6092
e5338254 6093 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6094 ap->hsm_task_state = HSM_ST_LAST;
6095
6096 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6097 ata_pio_queue_task(ap, qc, 0);
312f7da2 6098
1da177e4
LT
6099 break;
6100
6101 case ATA_PROT_DMA:
587005de 6102 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6103
1da177e4
LT
6104 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6105 ap->ops->bmdma_setup(qc); /* set up bmdma */
6106 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6107 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6108 break;
6109
312f7da2
AL
6110 case ATA_PROT_PIO:
6111 if (qc->tf.flags & ATA_TFLAG_POLLING)
6112 ata_qc_set_polling(qc);
1da177e4 6113
e5338254 6114 ata_tf_to_host(ap, &qc->tf);
312f7da2 6115
54f00389
AL
6116 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6117 /* PIO data out protocol */
6118 ap->hsm_task_state = HSM_ST_FIRST;
442eacc3 6119 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6120
6121 /* always send first data block using
e27486db 6122 * the ata_pio_task() codepath.
54f00389 6123 */
312f7da2 6124 } else {
54f00389
AL
6125 /* PIO data in protocol */
6126 ap->hsm_task_state = HSM_ST;
6127
6128 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6129 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6130
6131 /* if polling, ata_pio_task() handles the rest.
6132 * otherwise, interrupt handler takes over from here.
6133 */
312f7da2
AL
6134 }
6135
1da177e4
LT
6136 break;
6137
0dc36888
TH
6138 case ATAPI_PROT_PIO:
6139 case ATAPI_PROT_NODATA:
312f7da2
AL
6140 if (qc->tf.flags & ATA_TFLAG_POLLING)
6141 ata_qc_set_polling(qc);
6142
e5338254 6143 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6144
312f7da2
AL
6145 ap->hsm_task_state = HSM_ST_FIRST;
6146
6147 /* send cdb by polling if no cdb interrupt */
6148 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6149 (qc->tf.flags & ATA_TFLAG_POLLING))
442eacc3 6150 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6151 break;
6152
0dc36888 6153 case ATAPI_PROT_DMA:
587005de 6154 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6155
1da177e4
LT
6156 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6157 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6158 ap->hsm_task_state = HSM_ST_FIRST;
6159
6160 /* send cdb by polling if no cdb interrupt */
6161 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
442eacc3 6162 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6163 break;
6164
6165 default:
6166 WARN_ON(1);
9a3d9eb0 6167 return AC_ERR_SYSTEM;
1da177e4
LT
6168 }
6169
6170 return 0;
6171}
6172
1da177e4
LT
6173/**
6174 * ata_host_intr - Handle host interrupt for given (port, task)
6175 * @ap: Port on which interrupt arrived (possibly...)
6176 * @qc: Taskfile currently active in engine
6177 *
6178 * Handle host interrupt for given queued command. Currently,
6179 * only DMA interrupts are handled. All other commands are
6180 * handled via polling with interrupts disabled (nIEN bit).
6181 *
6182 * LOCKING:
cca3974e 6183 * spin_lock_irqsave(host lock)
1da177e4
LT
6184 *
6185 * RETURNS:
6186 * One if interrupt was handled, zero if not (shared irq).
6187 */
6188
2dcb407e
JG
6189inline unsigned int ata_host_intr(struct ata_port *ap,
6190 struct ata_queued_cmd *qc)
1da177e4 6191{
9af5c9c9 6192 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6193 u8 status, host_stat = 0;
1da177e4 6194
312f7da2 6195 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6196 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6197
312f7da2
AL
6198 /* Check whether we are expecting interrupt in this state */
6199 switch (ap->hsm_task_state) {
6200 case HSM_ST_FIRST:
6912ccd5
AL
6201 /* Some pre-ATAPI-4 devices assert INTRQ
6202 * at this state when ready to receive CDB.
6203 */
1da177e4 6204
312f7da2 6205 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6206 * The flag was turned on only for atapi devices. No
6207 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6208 */
6209 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6210 goto idle_irq;
1da177e4 6211 break;
312f7da2
AL
6212 case HSM_ST_LAST:
6213 if (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6214 qc->tf.protocol == ATAPI_PROT_DMA) {
312f7da2
AL
6215 /* check status of DMA engine */
6216 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6217 VPRINTK("ata%u: host_stat 0x%X\n",
6218 ap->print_id, host_stat);
312f7da2
AL
6219
6220 /* if it's not our irq... */
6221 if (!(host_stat & ATA_DMA_INTR))
6222 goto idle_irq;
6223
6224 /* before we do anything else, clear DMA-Start bit */
6225 ap->ops->bmdma_stop(qc);
a4f16610
AL
6226
6227 if (unlikely(host_stat & ATA_DMA_ERR)) {
6228 /* error when transfering data to/from memory */
6229 qc->err_mask |= AC_ERR_HOST_BUS;
6230 ap->hsm_task_state = HSM_ST_ERR;
6231 }
312f7da2
AL
6232 }
6233 break;
6234 case HSM_ST:
6235 break;
1da177e4
LT
6236 default:
6237 goto idle_irq;
6238 }
6239
312f7da2
AL
6240 /* check altstatus */
6241 status = ata_altstatus(ap);
6242 if (status & ATA_BUSY)
6243 goto idle_irq;
1da177e4 6244
312f7da2
AL
6245 /* check main status, clearing INTRQ */
6246 status = ata_chk_status(ap);
6247 if (unlikely(status & ATA_BUSY))
6248 goto idle_irq;
1da177e4 6249
312f7da2
AL
6250 /* ack bmdma irq events */
6251 ap->ops->irq_clear(ap);
1da177e4 6252
bb5cb290 6253 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6254
6255 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6256 qc->tf.protocol == ATAPI_PROT_DMA))
ea54763f
TH
6257 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6258
1da177e4
LT
6259 return 1; /* irq handled */
6260
6261idle_irq:
6262 ap->stats.idle_irq++;
6263
6264#ifdef ATA_IRQ_TRAP
6265 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6266 ata_chk_status(ap);
6267 ap->ops->irq_clear(ap);
f15a1daf 6268 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6269 return 1;
1da177e4
LT
6270 }
6271#endif
6272 return 0; /* irq not handled */
6273}
6274
6275/**
6276 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6277 * @irq: irq line (unused)
cca3974e 6278 * @dev_instance: pointer to our ata_host information structure
1da177e4 6279 *
0cba632b
JG
6280 * Default interrupt handler for PCI IDE devices. Calls
6281 * ata_host_intr() for each port that is not disabled.
6282 *
1da177e4 6283 * LOCKING:
cca3974e 6284 * Obtains host lock during operation.
1da177e4
LT
6285 *
6286 * RETURNS:
0cba632b 6287 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6288 */
6289
2dcb407e 6290irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6291{
cca3974e 6292 struct ata_host *host = dev_instance;
1da177e4
LT
6293 unsigned int i;
6294 unsigned int handled = 0;
6295 unsigned long flags;
6296
6297 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6298 spin_lock_irqsave(&host->lock, flags);
1da177e4 6299
cca3974e 6300 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6301 struct ata_port *ap;
6302
cca3974e 6303 ap = host->ports[i];
c1389503 6304 if (ap &&
029f5468 6305 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6306 struct ata_queued_cmd *qc;
6307
9af5c9c9 6308 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6309 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6310 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6311 handled |= ata_host_intr(ap, qc);
6312 }
6313 }
6314
cca3974e 6315 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6316
6317 return IRQ_RETVAL(handled);
6318}
6319
34bf2170
TH
6320/**
6321 * sata_scr_valid - test whether SCRs are accessible
936fd732 6322 * @link: ATA link to test SCR accessibility for
34bf2170 6323 *
936fd732 6324 * Test whether SCRs are accessible for @link.
34bf2170
TH
6325 *
6326 * LOCKING:
6327 * None.
6328 *
6329 * RETURNS:
6330 * 1 if SCRs are accessible, 0 otherwise.
6331 */
936fd732 6332int sata_scr_valid(struct ata_link *link)
34bf2170 6333{
936fd732
TH
6334 struct ata_port *ap = link->ap;
6335
a16abc0b 6336 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6337}
6338
6339/**
6340 * sata_scr_read - read SCR register of the specified port
936fd732 6341 * @link: ATA link to read SCR for
34bf2170
TH
6342 * @reg: SCR to read
6343 * @val: Place to store read value
6344 *
936fd732 6345 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6346 * guaranteed to succeed if @link is ap->link, the cable type of
6347 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6348 *
6349 * LOCKING:
633273a3 6350 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6351 *
6352 * RETURNS:
6353 * 0 on success, negative errno on failure.
6354 */
936fd732 6355int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6356{
633273a3
TH
6357 if (ata_is_host_link(link)) {
6358 struct ata_port *ap = link->ap;
936fd732 6359
633273a3
TH
6360 if (sata_scr_valid(link))
6361 return ap->ops->scr_read(ap, reg, val);
6362 return -EOPNOTSUPP;
6363 }
6364
6365 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6366}
6367
6368/**
6369 * sata_scr_write - write SCR register of the specified port
936fd732 6370 * @link: ATA link to write SCR for
34bf2170
TH
6371 * @reg: SCR to write
6372 * @val: value to write
6373 *
936fd732 6374 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6375 * guaranteed to succeed if @link is ap->link, the cable type of
6376 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6377 *
6378 * LOCKING:
633273a3 6379 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6380 *
6381 * RETURNS:
6382 * 0 on success, negative errno on failure.
6383 */
936fd732 6384int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6385{
633273a3
TH
6386 if (ata_is_host_link(link)) {
6387 struct ata_port *ap = link->ap;
6388
6389 if (sata_scr_valid(link))
6390 return ap->ops->scr_write(ap, reg, val);
6391 return -EOPNOTSUPP;
6392 }
936fd732 6393
633273a3 6394 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6395}
6396
6397/**
6398 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6399 * @link: ATA link to write SCR for
34bf2170
TH
6400 * @reg: SCR to write
6401 * @val: value to write
6402 *
6403 * This function is identical to sata_scr_write() except that this
6404 * function performs flush after writing to the register.
6405 *
6406 * LOCKING:
633273a3 6407 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6408 *
6409 * RETURNS:
6410 * 0 on success, negative errno on failure.
6411 */
936fd732 6412int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6413{
633273a3
TH
6414 if (ata_is_host_link(link)) {
6415 struct ata_port *ap = link->ap;
6416 int rc;
da3dbb17 6417
633273a3
TH
6418 if (sata_scr_valid(link)) {
6419 rc = ap->ops->scr_write(ap, reg, val);
6420 if (rc == 0)
6421 rc = ap->ops->scr_read(ap, reg, &val);
6422 return rc;
6423 }
6424 return -EOPNOTSUPP;
34bf2170 6425 }
633273a3
TH
6426
6427 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6428}
6429
6430/**
936fd732
TH
6431 * ata_link_online - test whether the given link is online
6432 * @link: ATA link to test
34bf2170 6433 *
936fd732
TH
6434 * Test whether @link is online. Note that this function returns
6435 * 0 if online status of @link cannot be obtained, so
6436 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6437 *
6438 * LOCKING:
6439 * None.
6440 *
6441 * RETURNS:
6442 * 1 if the port online status is available and online.
6443 */
936fd732 6444int ata_link_online(struct ata_link *link)
34bf2170
TH
6445{
6446 u32 sstatus;
6447
936fd732
TH
6448 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6449 (sstatus & 0xf) == 0x3)
34bf2170
TH
6450 return 1;
6451 return 0;
6452}
6453
6454/**
936fd732
TH
6455 * ata_link_offline - test whether the given link is offline
6456 * @link: ATA link to test
34bf2170 6457 *
936fd732
TH
6458 * Test whether @link is offline. Note that this function
6459 * returns 0 if offline status of @link cannot be obtained, so
6460 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6461 *
6462 * LOCKING:
6463 * None.
6464 *
6465 * RETURNS:
6466 * 1 if the port offline status is available and offline.
6467 */
936fd732 6468int ata_link_offline(struct ata_link *link)
34bf2170
TH
6469{
6470 u32 sstatus;
6471
936fd732
TH
6472 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6473 (sstatus & 0xf) != 0x3)
34bf2170
TH
6474 return 1;
6475 return 0;
6476}
0baab86b 6477
77b08fb5 6478int ata_flush_cache(struct ata_device *dev)
9b847548 6479{
977e6b9f 6480 unsigned int err_mask;
9b847548
JA
6481 u8 cmd;
6482
6483 if (!ata_try_flush_cache(dev))
6484 return 0;
6485
6fc49adb 6486 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6487 cmd = ATA_CMD_FLUSH_EXT;
6488 else
6489 cmd = ATA_CMD_FLUSH;
6490
4f34337b
AC
6491 /* This is wrong. On a failed flush we get back the LBA of the lost
6492 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6493 a further flush command to continue the writeback until it
4f34337b 6494 does not error */
977e6b9f
TH
6495 err_mask = ata_do_simple_cmd(dev, cmd);
6496 if (err_mask) {
6497 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6498 return -EIO;
6499 }
6500
6501 return 0;
9b847548
JA
6502}
6503
6ffa01d8 6504#ifdef CONFIG_PM
cca3974e
JG
6505static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6506 unsigned int action, unsigned int ehi_flags,
6507 int wait)
500530f6
TH
6508{
6509 unsigned long flags;
6510 int i, rc;
6511
cca3974e
JG
6512 for (i = 0; i < host->n_ports; i++) {
6513 struct ata_port *ap = host->ports[i];
e3667ebf 6514 struct ata_link *link;
500530f6
TH
6515
6516 /* Previous resume operation might still be in
6517 * progress. Wait for PM_PENDING to clear.
6518 */
6519 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6520 ata_port_wait_eh(ap);
6521 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6522 }
6523
6524 /* request PM ops to EH */
6525 spin_lock_irqsave(ap->lock, flags);
6526
6527 ap->pm_mesg = mesg;
6528 if (wait) {
6529 rc = 0;
6530 ap->pm_result = &rc;
6531 }
6532
6533 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6534 __ata_port_for_each_link(link, ap) {
6535 link->eh_info.action |= action;
6536 link->eh_info.flags |= ehi_flags;
6537 }
500530f6
TH
6538
6539 ata_port_schedule_eh(ap);
6540
6541 spin_unlock_irqrestore(ap->lock, flags);
6542
6543 /* wait and check result */
6544 if (wait) {
6545 ata_port_wait_eh(ap);
6546 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6547 if (rc)
6548 return rc;
6549 }
6550 }
6551
6552 return 0;
6553}
6554
6555/**
cca3974e
JG
6556 * ata_host_suspend - suspend host
6557 * @host: host to suspend
500530f6
TH
6558 * @mesg: PM message
6559 *
cca3974e 6560 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6561 * function requests EH to perform PM operations and waits for EH
6562 * to finish.
6563 *
6564 * LOCKING:
6565 * Kernel thread context (may sleep).
6566 *
6567 * RETURNS:
6568 * 0 on success, -errno on failure.
6569 */
cca3974e 6570int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6571{
9666f400 6572 int rc;
500530f6 6573
ca77329f
KCA
6574 /*
6575 * disable link pm on all ports before requesting
6576 * any pm activity
6577 */
6578 ata_lpm_enable(host);
6579
cca3974e 6580 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
6581 if (rc == 0)
6582 host->dev->power.power_state = mesg;
500530f6
TH
6583 return rc;
6584}
6585
6586/**
cca3974e
JG
6587 * ata_host_resume - resume host
6588 * @host: host to resume
500530f6 6589 *
cca3974e 6590 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6591 * function requests EH to perform PM operations and returns.
6592 * Note that all resume operations are performed parallely.
6593 *
6594 * LOCKING:
6595 * Kernel thread context (may sleep).
6596 */
cca3974e 6597void ata_host_resume(struct ata_host *host)
500530f6 6598{
cca3974e
JG
6599 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6600 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 6601 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6602
6603 /* reenable link pm */
6604 ata_lpm_disable(host);
500530f6 6605}
6ffa01d8 6606#endif
500530f6 6607
c893a3ae
RD
6608/**
6609 * ata_port_start - Set port up for dma.
6610 * @ap: Port to initialize
6611 *
6612 * Called just after data structures for each port are
6613 * initialized. Allocates space for PRD table.
6614 *
6615 * May be used as the port_start() entry in ata_port_operations.
6616 *
6617 * LOCKING:
6618 * Inherited from caller.
6619 */
f0d36efd 6620int ata_port_start(struct ata_port *ap)
1da177e4 6621{
2f1f610b 6622 struct device *dev = ap->dev;
1da177e4 6623
f0d36efd
TH
6624 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6625 GFP_KERNEL);
1da177e4
LT
6626 if (!ap->prd)
6627 return -ENOMEM;
6628
1da177e4
LT
6629 return 0;
6630}
6631
3ef3b43d
TH
6632/**
6633 * ata_dev_init - Initialize an ata_device structure
6634 * @dev: Device structure to initialize
6635 *
6636 * Initialize @dev in preparation for probing.
6637 *
6638 * LOCKING:
6639 * Inherited from caller.
6640 */
6641void ata_dev_init(struct ata_device *dev)
6642{
9af5c9c9
TH
6643 struct ata_link *link = dev->link;
6644 struct ata_port *ap = link->ap;
72fa4b74
TH
6645 unsigned long flags;
6646
5a04bf4b 6647 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6648 link->sata_spd_limit = link->hw_sata_spd_limit;
6649 link->sata_spd = 0;
5a04bf4b 6650
72fa4b74
TH
6651 /* High bits of dev->flags are used to record warm plug
6652 * requests which occur asynchronously. Synchronize using
cca3974e 6653 * host lock.
72fa4b74 6654 */
ba6a1308 6655 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6656 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6657 dev->horkage = 0;
ba6a1308 6658 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6659
72fa4b74
TH
6660 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6661 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6662 dev->pio_mask = UINT_MAX;
6663 dev->mwdma_mask = UINT_MAX;
6664 dev->udma_mask = UINT_MAX;
6665}
6666
4fb37a25
TH
6667/**
6668 * ata_link_init - Initialize an ata_link structure
6669 * @ap: ATA port link is attached to
6670 * @link: Link structure to initialize
8989805d 6671 * @pmp: Port multiplier port number
4fb37a25
TH
6672 *
6673 * Initialize @link.
6674 *
6675 * LOCKING:
6676 * Kernel thread context (may sleep)
6677 */
fb7fd614 6678void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6679{
6680 int i;
6681
6682 /* clear everything except for devices */
6683 memset(link, 0, offsetof(struct ata_link, device[0]));
6684
6685 link->ap = ap;
8989805d 6686 link->pmp = pmp;
4fb37a25
TH
6687 link->active_tag = ATA_TAG_POISON;
6688 link->hw_sata_spd_limit = UINT_MAX;
6689
6690 /* can't use iterator, ap isn't initialized yet */
6691 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6692 struct ata_device *dev = &link->device[i];
6693
6694 dev->link = link;
6695 dev->devno = dev - link->device;
6696 ata_dev_init(dev);
6697 }
6698}
6699
6700/**
6701 * sata_link_init_spd - Initialize link->sata_spd_limit
6702 * @link: Link to configure sata_spd_limit for
6703 *
6704 * Initialize @link->[hw_]sata_spd_limit to the currently
6705 * configured value.
6706 *
6707 * LOCKING:
6708 * Kernel thread context (may sleep).
6709 *
6710 * RETURNS:
6711 * 0 on success, -errno on failure.
6712 */
fb7fd614 6713int sata_link_init_spd(struct ata_link *link)
4fb37a25 6714{
33267325
TH
6715 u32 scontrol;
6716 u8 spd;
4fb37a25
TH
6717 int rc;
6718
6719 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6720 if (rc)
6721 return rc;
6722
6723 spd = (scontrol >> 4) & 0xf;
6724 if (spd)
6725 link->hw_sata_spd_limit &= (1 << spd) - 1;
6726
33267325
TH
6727 ata_force_spd_limit(link);
6728
4fb37a25
TH
6729 link->sata_spd_limit = link->hw_sata_spd_limit;
6730
6731 return 0;
6732}
6733
1da177e4 6734/**
f3187195
TH
6735 * ata_port_alloc - allocate and initialize basic ATA port resources
6736 * @host: ATA host this allocated port belongs to
1da177e4 6737 *
f3187195
TH
6738 * Allocate and initialize basic ATA port resources.
6739 *
6740 * RETURNS:
6741 * Allocate ATA port on success, NULL on failure.
0cba632b 6742 *
1da177e4 6743 * LOCKING:
f3187195 6744 * Inherited from calling layer (may sleep).
1da177e4 6745 */
f3187195 6746struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6747{
f3187195 6748 struct ata_port *ap;
1da177e4 6749
f3187195
TH
6750 DPRINTK("ENTER\n");
6751
6752 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6753 if (!ap)
6754 return NULL;
6755
f4d6d004 6756 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6757 ap->lock = &host->lock;
198e0fed 6758 ap->flags = ATA_FLAG_DISABLED;
f3187195 6759 ap->print_id = -1;
1da177e4 6760 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6761 ap->host = host;
f3187195 6762 ap->dev = host->dev;
1da177e4 6763 ap->last_ctl = 0xFF;
bd5d825c
BP
6764
6765#if defined(ATA_VERBOSE_DEBUG)
6766 /* turn on all debugging levels */
6767 ap->msg_enable = 0x00FF;
6768#elif defined(ATA_DEBUG)
6769 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6770#else
0dd4b21f 6771 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6772#endif
1da177e4 6773
442eacc3 6774 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
65f27f38
DH
6775 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6776 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6777 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6778 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6779 init_timer_deferrable(&ap->fastdrain_timer);
6780 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6781 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6782
838df628 6783 ap->cbl = ATA_CBL_NONE;
838df628 6784
8989805d 6785 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6786
6787#ifdef ATA_IRQ_TRAP
6788 ap->stats.unhandled_irq = 1;
6789 ap->stats.idle_irq = 1;
6790#endif
1da177e4 6791 return ap;
1da177e4
LT
6792}
6793
f0d36efd
TH
6794static void ata_host_release(struct device *gendev, void *res)
6795{
6796 struct ata_host *host = dev_get_drvdata(gendev);
6797 int i;
6798
1aa506e4
TH
6799 for (i = 0; i < host->n_ports; i++) {
6800 struct ata_port *ap = host->ports[i];
6801
4911487a
TH
6802 if (!ap)
6803 continue;
6804
6805 if (ap->scsi_host)
1aa506e4
TH
6806 scsi_host_put(ap->scsi_host);
6807
633273a3 6808 kfree(ap->pmp_link);
4911487a 6809 kfree(ap);
1aa506e4
TH
6810 host->ports[i] = NULL;
6811 }
6812
1aa56cca 6813 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6814}
6815
f3187195
TH
6816/**
6817 * ata_host_alloc - allocate and init basic ATA host resources
6818 * @dev: generic device this host is associated with
6819 * @max_ports: maximum number of ATA ports associated with this host
6820 *
6821 * Allocate and initialize basic ATA host resources. LLD calls
6822 * this function to allocate a host, initializes it fully and
6823 * attaches it using ata_host_register().
6824 *
6825 * @max_ports ports are allocated and host->n_ports is
6826 * initialized to @max_ports. The caller is allowed to decrease
6827 * host->n_ports before calling ata_host_register(). The unused
6828 * ports will be automatically freed on registration.
6829 *
6830 * RETURNS:
6831 * Allocate ATA host on success, NULL on failure.
6832 *
6833 * LOCKING:
6834 * Inherited from calling layer (may sleep).
6835 */
6836struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6837{
6838 struct ata_host *host;
6839 size_t sz;
6840 int i;
6841
6842 DPRINTK("ENTER\n");
6843
6844 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6845 return NULL;
6846
6847 /* alloc a container for our list of ATA ports (buses) */
6848 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6849 /* alloc a container for our list of ATA ports (buses) */
6850 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6851 if (!host)
6852 goto err_out;
6853
6854 devres_add(dev, host);
6855 dev_set_drvdata(dev, host);
6856
6857 spin_lock_init(&host->lock);
6858 host->dev = dev;
6859 host->n_ports = max_ports;
6860
6861 /* allocate ports bound to this host */
6862 for (i = 0; i < max_ports; i++) {
6863 struct ata_port *ap;
6864
6865 ap = ata_port_alloc(host);
6866 if (!ap)
6867 goto err_out;
6868
6869 ap->port_no = i;
6870 host->ports[i] = ap;
6871 }
6872
6873 devres_remove_group(dev, NULL);
6874 return host;
6875
6876 err_out:
6877 devres_release_group(dev, NULL);
6878 return NULL;
6879}
6880
f5cda257
TH
6881/**
6882 * ata_host_alloc_pinfo - alloc host and init with port_info array
6883 * @dev: generic device this host is associated with
6884 * @ppi: array of ATA port_info to initialize host with
6885 * @n_ports: number of ATA ports attached to this host
6886 *
6887 * Allocate ATA host and initialize with info from @ppi. If NULL
6888 * terminated, @ppi may contain fewer entries than @n_ports. The
6889 * last entry will be used for the remaining ports.
6890 *
6891 * RETURNS:
6892 * Allocate ATA host on success, NULL on failure.
6893 *
6894 * LOCKING:
6895 * Inherited from calling layer (may sleep).
6896 */
6897struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6898 const struct ata_port_info * const * ppi,
6899 int n_ports)
6900{
6901 const struct ata_port_info *pi;
6902 struct ata_host *host;
6903 int i, j;
6904
6905 host = ata_host_alloc(dev, n_ports);
6906 if (!host)
6907 return NULL;
6908
6909 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6910 struct ata_port *ap = host->ports[i];
6911
6912 if (ppi[j])
6913 pi = ppi[j++];
6914
6915 ap->pio_mask = pi->pio_mask;
6916 ap->mwdma_mask = pi->mwdma_mask;
6917 ap->udma_mask = pi->udma_mask;
6918 ap->flags |= pi->flags;
0c88758b 6919 ap->link.flags |= pi->link_flags;
f5cda257
TH
6920 ap->ops = pi->port_ops;
6921
6922 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6923 host->ops = pi->port_ops;
6924 if (!host->private_data && pi->private_data)
6925 host->private_data = pi->private_data;
6926 }
6927
6928 return host;
6929}
6930
32ebbc0c
TH
6931static void ata_host_stop(struct device *gendev, void *res)
6932{
6933 struct ata_host *host = dev_get_drvdata(gendev);
6934 int i;
6935
6936 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6937
6938 for (i = 0; i < host->n_ports; i++) {
6939 struct ata_port *ap = host->ports[i];
6940
6941 if (ap->ops->port_stop)
6942 ap->ops->port_stop(ap);
6943 }
6944
6945 if (host->ops->host_stop)
6946 host->ops->host_stop(host);
6947}
6948
ecef7253
TH
6949/**
6950 * ata_host_start - start and freeze ports of an ATA host
6951 * @host: ATA host to start ports for
6952 *
6953 * Start and then freeze ports of @host. Started status is
6954 * recorded in host->flags, so this function can be called
6955 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6956 * once. If host->ops isn't initialized yet, its set to the
6957 * first non-dummy port ops.
ecef7253
TH
6958 *
6959 * LOCKING:
6960 * Inherited from calling layer (may sleep).
6961 *
6962 * RETURNS:
6963 * 0 if all ports are started successfully, -errno otherwise.
6964 */
6965int ata_host_start(struct ata_host *host)
6966{
32ebbc0c
TH
6967 int have_stop = 0;
6968 void *start_dr = NULL;
ecef7253
TH
6969 int i, rc;
6970
6971 if (host->flags & ATA_HOST_STARTED)
6972 return 0;
6973
6974 for (i = 0; i < host->n_ports; i++) {
6975 struct ata_port *ap = host->ports[i];
6976
f3187195
TH
6977 if (!host->ops && !ata_port_is_dummy(ap))
6978 host->ops = ap->ops;
6979
32ebbc0c
TH
6980 if (ap->ops->port_stop)
6981 have_stop = 1;
6982 }
6983
6984 if (host->ops->host_stop)
6985 have_stop = 1;
6986
6987 if (have_stop) {
6988 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6989 if (!start_dr)
6990 return -ENOMEM;
6991 }
6992
6993 for (i = 0; i < host->n_ports; i++) {
6994 struct ata_port *ap = host->ports[i];
6995
ecef7253
TH
6996 if (ap->ops->port_start) {
6997 rc = ap->ops->port_start(ap);
6998 if (rc) {
0f9fe9b7 6999 if (rc != -ENODEV)
0f757743
AM
7000 dev_printk(KERN_ERR, host->dev,
7001 "failed to start port %d "
7002 "(errno=%d)\n", i, rc);
ecef7253
TH
7003 goto err_out;
7004 }
7005 }
ecef7253
TH
7006 ata_eh_freeze_port(ap);
7007 }
7008
32ebbc0c
TH
7009 if (start_dr)
7010 devres_add(host->dev, start_dr);
ecef7253
TH
7011 host->flags |= ATA_HOST_STARTED;
7012 return 0;
7013
7014 err_out:
7015 while (--i >= 0) {
7016 struct ata_port *ap = host->ports[i];
7017
7018 if (ap->ops->port_stop)
7019 ap->ops->port_stop(ap);
7020 }
32ebbc0c 7021 devres_free(start_dr);
ecef7253
TH
7022 return rc;
7023}
7024
b03732f0 7025/**
cca3974e
JG
7026 * ata_sas_host_init - Initialize a host struct
7027 * @host: host to initialize
7028 * @dev: device host is attached to
7029 * @flags: host flags
7030 * @ops: port_ops
b03732f0
BK
7031 *
7032 * LOCKING:
7033 * PCI/etc. bus probe sem.
7034 *
7035 */
f3187195 7036/* KILLME - the only user left is ipr */
cca3974e
JG
7037void ata_host_init(struct ata_host *host, struct device *dev,
7038 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7039{
cca3974e
JG
7040 spin_lock_init(&host->lock);
7041 host->dev = dev;
7042 host->flags = flags;
7043 host->ops = ops;
b03732f0
BK
7044}
7045
f3187195
TH
7046/**
7047 * ata_host_register - register initialized ATA host
7048 * @host: ATA host to register
7049 * @sht: template for SCSI host
7050 *
7051 * Register initialized ATA host. @host is allocated using
7052 * ata_host_alloc() and fully initialized by LLD. This function
7053 * starts ports, registers @host with ATA and SCSI layers and
7054 * probe registered devices.
7055 *
7056 * LOCKING:
7057 * Inherited from calling layer (may sleep).
7058 *
7059 * RETURNS:
7060 * 0 on success, -errno otherwise.
7061 */
7062int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7063{
7064 int i, rc;
7065
7066 /* host must have been started */
7067 if (!(host->flags & ATA_HOST_STARTED)) {
7068 dev_printk(KERN_ERR, host->dev,
7069 "BUG: trying to register unstarted host\n");
7070 WARN_ON(1);
7071 return -EINVAL;
7072 }
7073
7074 /* Blow away unused ports. This happens when LLD can't
7075 * determine the exact number of ports to allocate at
7076 * allocation time.
7077 */
7078 for (i = host->n_ports; host->ports[i]; i++)
7079 kfree(host->ports[i]);
7080
7081 /* give ports names and add SCSI hosts */
7082 for (i = 0; i < host->n_ports; i++)
7083 host->ports[i]->print_id = ata_print_id++;
7084
7085 rc = ata_scsi_add_hosts(host, sht);
7086 if (rc)
7087 return rc;
7088
fafbae87
TH
7089 /* associate with ACPI nodes */
7090 ata_acpi_associate(host);
7091
f3187195
TH
7092 /* set cable, sata_spd_limit and report */
7093 for (i = 0; i < host->n_ports; i++) {
7094 struct ata_port *ap = host->ports[i];
f3187195
TH
7095 unsigned long xfer_mask;
7096
7097 /* set SATA cable type if still unset */
7098 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7099 ap->cbl = ATA_CBL_SATA;
7100
7101 /* init sata_spd_limit to the current value */
4fb37a25 7102 sata_link_init_spd(&ap->link);
f3187195 7103
cbcdd875 7104 /* print per-port info to dmesg */
f3187195
TH
7105 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7106 ap->udma_mask);
7107
abf6e8ed 7108 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7109 ata_port_printk(ap, KERN_INFO,
7110 "%cATA max %s %s\n",
a16abc0b 7111 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7112 ata_mode_string(xfer_mask),
cbcdd875 7113 ap->link.eh_info.desc);
abf6e8ed
TH
7114 ata_ehi_clear_desc(&ap->link.eh_info);
7115 } else
f3187195
TH
7116 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7117 }
7118
7119 /* perform each probe synchronously */
7120 DPRINTK("probe begin\n");
7121 for (i = 0; i < host->n_ports; i++) {
7122 struct ata_port *ap = host->ports[i];
f3187195
TH
7123
7124 /* probe */
7125 if (ap->ops->error_handler) {
9af5c9c9 7126 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7127 unsigned long flags;
7128
7129 ata_port_probe(ap);
7130
7131 /* kick EH for boot probing */
7132 spin_lock_irqsave(ap->lock, flags);
7133
f58229f8
TH
7134 ehi->probe_mask =
7135 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7136 ehi->action |= ATA_EH_SOFTRESET;
7137 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7138
f4d6d004 7139 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7140 ap->pflags |= ATA_PFLAG_LOADING;
7141 ata_port_schedule_eh(ap);
7142
7143 spin_unlock_irqrestore(ap->lock, flags);
7144
7145 /* wait for EH to finish */
7146 ata_port_wait_eh(ap);
7147 } else {
7148 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7149 rc = ata_bus_probe(ap);
7150 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7151
7152 if (rc) {
7153 /* FIXME: do something useful here?
7154 * Current libata behavior will
7155 * tear down everything when
7156 * the module is removed
7157 * or the h/w is unplugged.
7158 */
7159 }
7160 }
7161 }
7162
7163 /* probes are done, now scan each port's disk(s) */
7164 DPRINTK("host probe begin\n");
7165 for (i = 0; i < host->n_ports; i++) {
7166 struct ata_port *ap = host->ports[i];
7167
1ae46317 7168 ata_scsi_scan_host(ap, 1);
ca77329f 7169 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7170 }
7171
7172 return 0;
7173}
7174
f5cda257
TH
7175/**
7176 * ata_host_activate - start host, request IRQ and register it
7177 * @host: target ATA host
7178 * @irq: IRQ to request
7179 * @irq_handler: irq_handler used when requesting IRQ
7180 * @irq_flags: irq_flags used when requesting IRQ
7181 * @sht: scsi_host_template to use when registering the host
7182 *
7183 * After allocating an ATA host and initializing it, most libata
7184 * LLDs perform three steps to activate the host - start host,
7185 * request IRQ and register it. This helper takes necessasry
7186 * arguments and performs the three steps in one go.
7187 *
3d46b2e2
PM
7188 * An invalid IRQ skips the IRQ registration and expects the host to
7189 * have set polling mode on the port. In this case, @irq_handler
7190 * should be NULL.
7191 *
f5cda257
TH
7192 * LOCKING:
7193 * Inherited from calling layer (may sleep).
7194 *
7195 * RETURNS:
7196 * 0 on success, -errno otherwise.
7197 */
7198int ata_host_activate(struct ata_host *host, int irq,
7199 irq_handler_t irq_handler, unsigned long irq_flags,
7200 struct scsi_host_template *sht)
7201{
cbcdd875 7202 int i, rc;
f5cda257
TH
7203
7204 rc = ata_host_start(host);
7205 if (rc)
7206 return rc;
7207
3d46b2e2
PM
7208 /* Special case for polling mode */
7209 if (!irq) {
7210 WARN_ON(irq_handler);
7211 return ata_host_register(host, sht);
7212 }
7213
f5cda257
TH
7214 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7215 dev_driver_string(host->dev), host);
7216 if (rc)
7217 return rc;
7218
cbcdd875
TH
7219 for (i = 0; i < host->n_ports; i++)
7220 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7221
f5cda257
TH
7222 rc = ata_host_register(host, sht);
7223 /* if failed, just free the IRQ and leave ports alone */
7224 if (rc)
7225 devm_free_irq(host->dev, irq, host);
7226
7227 return rc;
7228}
7229
720ba126
TH
7230/**
7231 * ata_port_detach - Detach ATA port in prepration of device removal
7232 * @ap: ATA port to be detached
7233 *
7234 * Detach all ATA devices and the associated SCSI devices of @ap;
7235 * then, remove the associated SCSI host. @ap is guaranteed to
7236 * be quiescent on return from this function.
7237 *
7238 * LOCKING:
7239 * Kernel thread context (may sleep).
7240 */
741b7763 7241static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7242{
7243 unsigned long flags;
41bda9c9 7244 struct ata_link *link;
f58229f8 7245 struct ata_device *dev;
720ba126
TH
7246
7247 if (!ap->ops->error_handler)
c3cf30a9 7248 goto skip_eh;
720ba126
TH
7249
7250 /* tell EH we're leaving & flush EH */
ba6a1308 7251 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7252 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7253 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7254
7255 ata_port_wait_eh(ap);
7256
7f9ad9b8
TH
7257 /* EH is now guaranteed to see UNLOADING - EH context belongs
7258 * to us. Disable all existing devices.
720ba126 7259 */
41bda9c9
TH
7260 ata_port_for_each_link(link, ap) {
7261 ata_link_for_each_dev(dev, link)
7262 ata_dev_disable(dev);
7263 }
720ba126 7264
720ba126
TH
7265 /* Final freeze & EH. All in-flight commands are aborted. EH
7266 * will be skipped and retrials will be terminated with bad
7267 * target.
7268 */
ba6a1308 7269 spin_lock_irqsave(ap->lock, flags);
720ba126 7270 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7271 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7272
7273 ata_port_wait_eh(ap);
45a66c1c 7274 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7275
c3cf30a9 7276 skip_eh:
720ba126 7277 /* remove the associated SCSI host */
cca3974e 7278 scsi_remove_host(ap->scsi_host);
720ba126
TH
7279}
7280
0529c159
TH
7281/**
7282 * ata_host_detach - Detach all ports of an ATA host
7283 * @host: Host to detach
7284 *
7285 * Detach all ports of @host.
7286 *
7287 * LOCKING:
7288 * Kernel thread context (may sleep).
7289 */
7290void ata_host_detach(struct ata_host *host)
7291{
7292 int i;
7293
7294 for (i = 0; i < host->n_ports; i++)
7295 ata_port_detach(host->ports[i]);
562f0c2d
TH
7296
7297 /* the host is dead now, dissociate ACPI */
7298 ata_acpi_dissociate(host);
0529c159
TH
7299}
7300
1da177e4
LT
7301/**
7302 * ata_std_ports - initialize ioaddr with standard port offsets.
7303 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7304 *
7305 * Utility function which initializes data_addr, error_addr,
7306 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7307 * device_addr, status_addr, and command_addr to standard offsets
7308 * relative to cmd_addr.
7309 *
7310 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7311 */
0baab86b 7312
1da177e4
LT
7313void ata_std_ports(struct ata_ioports *ioaddr)
7314{
7315 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7316 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7317 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7318 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7319 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7320 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7321 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7322 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7323 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7324 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7325}
7326
0baab86b 7327
374b1873
JG
7328#ifdef CONFIG_PCI
7329
1da177e4
LT
7330/**
7331 * ata_pci_remove_one - PCI layer callback for device removal
7332 * @pdev: PCI device that was removed
7333 *
b878ca5d
TH
7334 * PCI layer indicates to libata via this hook that hot-unplug or
7335 * module unload event has occurred. Detach all ports. Resource
7336 * release is handled via devres.
1da177e4
LT
7337 *
7338 * LOCKING:
7339 * Inherited from PCI layer (may sleep).
7340 */
f0d36efd 7341void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7342{
2855568b 7343 struct device *dev = &pdev->dev;
cca3974e 7344 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7345
b878ca5d 7346 ata_host_detach(host);
1da177e4
LT
7347}
7348
7349/* move to PCI subsystem */
057ace5e 7350int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7351{
7352 unsigned long tmp = 0;
7353
7354 switch (bits->width) {
7355 case 1: {
7356 u8 tmp8 = 0;
7357 pci_read_config_byte(pdev, bits->reg, &tmp8);
7358 tmp = tmp8;
7359 break;
7360 }
7361 case 2: {
7362 u16 tmp16 = 0;
7363 pci_read_config_word(pdev, bits->reg, &tmp16);
7364 tmp = tmp16;
7365 break;
7366 }
7367 case 4: {
7368 u32 tmp32 = 0;
7369 pci_read_config_dword(pdev, bits->reg, &tmp32);
7370 tmp = tmp32;
7371 break;
7372 }
7373
7374 default:
7375 return -EINVAL;
7376 }
7377
7378 tmp &= bits->mask;
7379
7380 return (tmp == bits->val) ? 1 : 0;
7381}
9b847548 7382
6ffa01d8 7383#ifdef CONFIG_PM
3c5100c1 7384void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7385{
7386 pci_save_state(pdev);
4c90d971 7387 pci_disable_device(pdev);
500530f6 7388
3a2d5b70 7389 if (mesg.event & PM_EVENT_SLEEP)
500530f6 7390 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7391}
7392
553c4aa6 7393int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7394{
553c4aa6
TH
7395 int rc;
7396
9b847548
JA
7397 pci_set_power_state(pdev, PCI_D0);
7398 pci_restore_state(pdev);
553c4aa6 7399
b878ca5d 7400 rc = pcim_enable_device(pdev);
553c4aa6
TH
7401 if (rc) {
7402 dev_printk(KERN_ERR, &pdev->dev,
7403 "failed to enable device after resume (%d)\n", rc);
7404 return rc;
7405 }
7406
9b847548 7407 pci_set_master(pdev);
553c4aa6 7408 return 0;
500530f6
TH
7409}
7410
3c5100c1 7411int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7412{
cca3974e 7413 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7414 int rc = 0;
7415
cca3974e 7416 rc = ata_host_suspend(host, mesg);
500530f6
TH
7417 if (rc)
7418 return rc;
7419
3c5100c1 7420 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7421
7422 return 0;
7423}
7424
7425int ata_pci_device_resume(struct pci_dev *pdev)
7426{
cca3974e 7427 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7428 int rc;
500530f6 7429
553c4aa6
TH
7430 rc = ata_pci_device_do_resume(pdev);
7431 if (rc == 0)
7432 ata_host_resume(host);
7433 return rc;
9b847548 7434}
6ffa01d8
TH
7435#endif /* CONFIG_PM */
7436
1da177e4
LT
7437#endif /* CONFIG_PCI */
7438
33267325
TH
7439static int __init ata_parse_force_one(char **cur,
7440 struct ata_force_ent *force_ent,
7441 const char **reason)
7442{
7443 /* FIXME: Currently, there's no way to tag init const data and
7444 * using __initdata causes build failure on some versions of
7445 * gcc. Once __initdataconst is implemented, add const to the
7446 * following structure.
7447 */
7448 static struct ata_force_param force_tbl[] __initdata = {
7449 { "40c", .cbl = ATA_CBL_PATA40 },
7450 { "80c", .cbl = ATA_CBL_PATA80 },
7451 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7452 { "unk", .cbl = ATA_CBL_PATA_UNK },
7453 { "ign", .cbl = ATA_CBL_PATA_IGN },
7454 { "sata", .cbl = ATA_CBL_SATA },
7455 { "1.5Gbps", .spd_limit = 1 },
7456 { "3.0Gbps", .spd_limit = 2 },
7457 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7458 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7459 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7460 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7461 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7462 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7463 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7464 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7465 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7466 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7467 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7468 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7469 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7470 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7471 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7472 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7473 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7474 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7475 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7476 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7477 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7478 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7479 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7480 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7481 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7482 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7483 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7484 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7485 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7486 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7487 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7488 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7489 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7490 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7491 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7492 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7493 };
7494 char *start = *cur, *p = *cur;
7495 char *id, *val, *endp;
7496 const struct ata_force_param *match_fp = NULL;
7497 int nr_matches = 0, i;
7498
7499 /* find where this param ends and update *cur */
7500 while (*p != '\0' && *p != ',')
7501 p++;
7502
7503 if (*p == '\0')
7504 *cur = p;
7505 else
7506 *cur = p + 1;
7507
7508 *p = '\0';
7509
7510 /* parse */
7511 p = strchr(start, ':');
7512 if (!p) {
7513 val = strstrip(start);
7514 goto parse_val;
7515 }
7516 *p = '\0';
7517
7518 id = strstrip(start);
7519 val = strstrip(p + 1);
7520
7521 /* parse id */
7522 p = strchr(id, '.');
7523 if (p) {
7524 *p++ = '\0';
7525 force_ent->device = simple_strtoul(p, &endp, 10);
7526 if (p == endp || *endp != '\0') {
7527 *reason = "invalid device";
7528 return -EINVAL;
7529 }
7530 }
7531
7532 force_ent->port = simple_strtoul(id, &endp, 10);
7533 if (p == endp || *endp != '\0') {
7534 *reason = "invalid port/link";
7535 return -EINVAL;
7536 }
7537
7538 parse_val:
7539 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7540 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7541 const struct ata_force_param *fp = &force_tbl[i];
7542
7543 if (strncasecmp(val, fp->name, strlen(val)))
7544 continue;
7545
7546 nr_matches++;
7547 match_fp = fp;
7548
7549 if (strcasecmp(val, fp->name) == 0) {
7550 nr_matches = 1;
7551 break;
7552 }
7553 }
7554
7555 if (!nr_matches) {
7556 *reason = "unknown value";
7557 return -EINVAL;
7558 }
7559 if (nr_matches > 1) {
7560 *reason = "ambigious value";
7561 return -EINVAL;
7562 }
7563
7564 force_ent->param = *match_fp;
7565
7566 return 0;
7567}
7568
7569static void __init ata_parse_force_param(void)
7570{
7571 int idx = 0, size = 1;
7572 int last_port = -1, last_device = -1;
7573 char *p, *cur, *next;
7574
7575 /* calculate maximum number of params and allocate force_tbl */
7576 for (p = ata_force_param_buf; *p; p++)
7577 if (*p == ',')
7578 size++;
7579
7580 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7581 if (!ata_force_tbl) {
7582 printk(KERN_WARNING "ata: failed to extend force table, "
7583 "libata.force ignored\n");
7584 return;
7585 }
7586
7587 /* parse and populate the table */
7588 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7589 const char *reason = "";
7590 struct ata_force_ent te = { .port = -1, .device = -1 };
7591
7592 next = cur;
7593 if (ata_parse_force_one(&next, &te, &reason)) {
7594 printk(KERN_WARNING "ata: failed to parse force "
7595 "parameter \"%s\" (%s)\n",
7596 cur, reason);
7597 continue;
7598 }
7599
7600 if (te.port == -1) {
7601 te.port = last_port;
7602 te.device = last_device;
7603 }
7604
7605 ata_force_tbl[idx++] = te;
7606
7607 last_port = te.port;
7608 last_device = te.device;
7609 }
7610
7611 ata_force_tbl_size = idx;
7612}
1da177e4 7613
1da177e4
LT
7614static int __init ata_init(void)
7615{
a8601e5f 7616 ata_probe_timeout *= HZ;
33267325
TH
7617
7618 ata_parse_force_param();
7619
1da177e4
LT
7620 ata_wq = create_workqueue("ata");
7621 if (!ata_wq)
7622 return -ENOMEM;
7623
453b07ac
TH
7624 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7625 if (!ata_aux_wq) {
7626 destroy_workqueue(ata_wq);
7627 return -ENOMEM;
7628 }
7629
1da177e4
LT
7630 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7631 return 0;
7632}
7633
7634static void __exit ata_exit(void)
7635{
33267325 7636 kfree(ata_force_tbl);
1da177e4 7637 destroy_workqueue(ata_wq);
453b07ac 7638 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7639}
7640
a4625085 7641subsys_initcall(ata_init);
1da177e4
LT
7642module_exit(ata_exit);
7643
67846b30 7644static unsigned long ratelimit_time;
34af946a 7645static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7646
7647int ata_ratelimit(void)
7648{
7649 int rc;
7650 unsigned long flags;
7651
7652 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7653
7654 if (time_after(jiffies, ratelimit_time)) {
7655 rc = 1;
7656 ratelimit_time = jiffies + (HZ/5);
7657 } else
7658 rc = 0;
7659
7660 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7661
7662 return rc;
7663}
7664
c22daff4
TH
7665/**
7666 * ata_wait_register - wait until register value changes
7667 * @reg: IO-mapped register
7668 * @mask: Mask to apply to read register value
7669 * @val: Wait condition
7670 * @interval_msec: polling interval in milliseconds
7671 * @timeout_msec: timeout in milliseconds
7672 *
7673 * Waiting for some bits of register to change is a common
7674 * operation for ATA controllers. This function reads 32bit LE
7675 * IO-mapped register @reg and tests for the following condition.
7676 *
7677 * (*@reg & mask) != val
7678 *
7679 * If the condition is met, it returns; otherwise, the process is
7680 * repeated after @interval_msec until timeout.
7681 *
7682 * LOCKING:
7683 * Kernel thread context (may sleep)
7684 *
7685 * RETURNS:
7686 * The final register value.
7687 */
7688u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7689 unsigned long interval_msec,
7690 unsigned long timeout_msec)
7691{
7692 unsigned long timeout;
7693 u32 tmp;
7694
7695 tmp = ioread32(reg);
7696
7697 /* Calculate timeout _after_ the first read to make sure
7698 * preceding writes reach the controller before starting to
7699 * eat away the timeout.
7700 */
7701 timeout = jiffies + (timeout_msec * HZ) / 1000;
7702
7703 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7704 msleep(interval_msec);
7705 tmp = ioread32(reg);
7706 }
7707
7708 return tmp;
7709}
7710
dd5b06c4
TH
7711/*
7712 * Dummy port_ops
7713 */
7714static void ata_dummy_noret(struct ata_port *ap) { }
7715static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7716static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7717
7718static u8 ata_dummy_check_status(struct ata_port *ap)
7719{
7720 return ATA_DRDY;
7721}
7722
7723static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7724{
7725 return AC_ERR_SYSTEM;
7726}
7727
7728const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7729 .check_status = ata_dummy_check_status,
7730 .check_altstatus = ata_dummy_check_status,
7731 .dev_select = ata_noop_dev_select,
7732 .qc_prep = ata_noop_qc_prep,
7733 .qc_issue = ata_dummy_qc_issue,
7734 .freeze = ata_dummy_noret,
7735 .thaw = ata_dummy_noret,
7736 .error_handler = ata_dummy_noret,
7737 .post_internal_cmd = ata_dummy_qc_noret,
7738 .irq_clear = ata_dummy_noret,
7739 .port_start = ata_dummy_ret0,
7740 .port_stop = ata_dummy_noret,
7741};
7742
21b0ad4f
TH
7743const struct ata_port_info ata_dummy_port_info = {
7744 .port_ops = &ata_dummy_port_ops,
7745};
7746
1da177e4
LT
7747/*
7748 * libata is essentially a library of internal helper functions for
7749 * low-level ATA host controller drivers. As such, the API/ABI is
7750 * likely to change as new drivers are added and updated.
7751 * Do not depend on ABI/API stability.
7752 */
e9c83914
TH
7753EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7754EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7755EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7756EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7757EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7758EXPORT_SYMBOL_GPL(ata_std_bios_param);
7759EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7760EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7761EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7762EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7763EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7764EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7765EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7766EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7767EXPORT_SYMBOL_GPL(ata_sg_init);
9a1004d0 7768EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7769EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7770EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7771EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7772EXPORT_SYMBOL_GPL(ata_tf_load);
7773EXPORT_SYMBOL_GPL(ata_tf_read);
7774EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7775EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7776EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7777EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7778EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7779EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7780EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7781EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7782EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7783EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7784EXPORT_SYMBOL_GPL(ata_mode_string);
7785EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4
LT
7786EXPORT_SYMBOL_GPL(ata_check_status);
7787EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7788EXPORT_SYMBOL_GPL(ata_exec_command);
7789EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7790EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7791EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7792EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7793EXPORT_SYMBOL_GPL(ata_data_xfer);
7794EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7795EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7796EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7797EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7798EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7799EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7800EXPORT_SYMBOL_GPL(ata_bmdma_start);
7801EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7802EXPORT_SYMBOL_GPL(ata_bmdma_status);
7803EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7804EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7805EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7806EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7807EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7808EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7809EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7810EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7811EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7812EXPORT_SYMBOL_GPL(sata_link_debounce);
7813EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7814EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7815EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7816EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7817EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7818EXPORT_SYMBOL_GPL(sata_std_hardreset);
7819EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7820EXPORT_SYMBOL_GPL(ata_dev_classify);
7821EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7822EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7823EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7824EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7825EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7826EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7827EXPORT_SYMBOL_GPL(ata_wait_ready);
1da177e4
LT
7828EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7829EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7830EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7831EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7832EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7833EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7834EXPORT_SYMBOL_GPL(sata_scr_valid);
7835EXPORT_SYMBOL_GPL(sata_scr_read);
7836EXPORT_SYMBOL_GPL(sata_scr_write);
7837EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7838EXPORT_SYMBOL_GPL(ata_link_online);
7839EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7840#ifdef CONFIG_PM
cca3974e
JG
7841EXPORT_SYMBOL_GPL(ata_host_suspend);
7842EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7843#endif /* CONFIG_PM */
6a62a04d
TH
7844EXPORT_SYMBOL_GPL(ata_id_string);
7845EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
7846EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7847
1bc4ccff 7848EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7849EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7850EXPORT_SYMBOL_GPL(ata_timing_compute);
7851EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7852EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7853
1da177e4
LT
7854#ifdef CONFIG_PCI
7855EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7856EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7857EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7858EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
4e6b79fa 7859EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
1da177e4
LT
7860EXPORT_SYMBOL_GPL(ata_pci_init_one);
7861EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7862#ifdef CONFIG_PM
500530f6
TH
7863EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7864EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7865EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7866EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7867#endif /* CONFIG_PM */
67951ade
AC
7868EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7869EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7870#endif /* CONFIG_PCI */
9b847548 7871
31f88384 7872EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7873EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7874EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7875EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7876EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7877
b64bbc39
TH
7878EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7879EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7880EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7881EXPORT_SYMBOL_GPL(ata_port_desc);
7882#ifdef CONFIG_PCI
7883EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7884#endif /* CONFIG_PCI */
7b70fc03 7885EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7886EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7887EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7888EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7889EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7890EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7891EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7892EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7893EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7894EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7895EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7896EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7897
7898EXPORT_SYMBOL_GPL(ata_cable_40wire);
7899EXPORT_SYMBOL_GPL(ata_cable_80wire);
7900EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7901EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7902EXPORT_SYMBOL_GPL(ata_cable_sata);