]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
[PATCH] libata: make sure IRQ is cleared after ata_bmdma_freeze()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1
AL
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
1da177e4 203 *
2e9edbf8 204 * Examine the device configuration and tf->flags to calculate
8cbd6df1 205 * the proper read/write commands and protocol to use.
1da177e4
LT
206 *
207 * LOCKING:
208 * caller.
209 */
9a3dccc4 210int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 211{
8cbd6df1
AL
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
9a3dccc4 214 u8 cmd;
1da177e4 215
9a3dccc4 216 int index, fua, lba48, write;
2e9edbf8 217
9a3dccc4 218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 221
8cbd6df1
AL
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
9a3dccc4 224 index = dev->multi_count ? 0 : 8;
8d238e01
AC
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
0565c26d 228 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
229 } else {
230 tf->protocol = ATA_PROT_DMA;
9a3dccc4 231 index = 16;
8cbd6df1 232 }
1da177e4 233
9a3dccc4
TH
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
1da177e4
LT
240}
241
35b649fe
TH
242/**
243 * ata_tf_read_block - Read block address from ATA taskfile
244 * @tf: ATA taskfile of interest
245 * @dev: ATA device @tf belongs to
246 *
247 * LOCKING:
248 * None.
249 *
250 * Read block address from @tf. This function can handle all
251 * three address formats - LBA, LBA48 and CHS. tf->protocol and
252 * flags select the address format to use.
253 *
254 * RETURNS:
255 * Block address read from @tf.
256 */
257u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
258{
259 u64 block = 0;
260
261 if (tf->flags & ATA_TFLAG_LBA) {
262 if (tf->flags & ATA_TFLAG_LBA48) {
263 block |= (u64)tf->hob_lbah << 40;
264 block |= (u64)tf->hob_lbam << 32;
265 block |= tf->hob_lbal << 24;
266 } else
267 block |= (tf->device & 0xf) << 24;
268
269 block |= tf->lbah << 16;
270 block |= tf->lbam << 8;
271 block |= tf->lbal;
272 } else {
273 u32 cyl, head, sect;
274
275 cyl = tf->lbam | (tf->lbah << 8);
276 head = tf->device & 0xf;
277 sect = tf->lbal;
278
279 block = (cyl * dev->heads + head) * dev->sectors + sect;
280 }
281
282 return block;
283}
284
cb95d562
TH
285/**
286 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
287 * @pio_mask: pio_mask
288 * @mwdma_mask: mwdma_mask
289 * @udma_mask: udma_mask
290 *
291 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
292 * unsigned int xfer_mask.
293 *
294 * LOCKING:
295 * None.
296 *
297 * RETURNS:
298 * Packed xfer_mask.
299 */
300static unsigned int ata_pack_xfermask(unsigned int pio_mask,
301 unsigned int mwdma_mask,
302 unsigned int udma_mask)
303{
304 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
305 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
306 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
307}
308
c0489e4e
TH
309/**
310 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
311 * @xfer_mask: xfer_mask to unpack
312 * @pio_mask: resulting pio_mask
313 * @mwdma_mask: resulting mwdma_mask
314 * @udma_mask: resulting udma_mask
315 *
316 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
317 * Any NULL distination masks will be ignored.
318 */
319static void ata_unpack_xfermask(unsigned int xfer_mask,
320 unsigned int *pio_mask,
321 unsigned int *mwdma_mask,
322 unsigned int *udma_mask)
323{
324 if (pio_mask)
325 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
326 if (mwdma_mask)
327 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
328 if (udma_mask)
329 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
330}
331
cb95d562 332static const struct ata_xfer_ent {
be9a50c8 333 int shift, bits;
cb95d562
TH
334 u8 base;
335} ata_xfer_tbl[] = {
336 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
337 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
338 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
339 { -1, },
340};
341
342/**
343 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
344 * @xfer_mask: xfer_mask of interest
345 *
346 * Return matching XFER_* value for @xfer_mask. Only the highest
347 * bit of @xfer_mask is considered.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching XFER_* value, 0 if no match found.
354 */
355static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
356{
357 int highbit = fls(xfer_mask) - 1;
358 const struct ata_xfer_ent *ent;
359
360 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
361 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
362 return ent->base + highbit - ent->shift;
363 return 0;
364}
365
366/**
367 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
368 * @xfer_mode: XFER_* of interest
369 *
370 * Return matching xfer_mask for @xfer_mode.
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Matching xfer_mask, 0 if no match found.
377 */
378static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
379{
380 const struct ata_xfer_ent *ent;
381
382 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
383 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
384 return 1 << (ent->shift + xfer_mode - ent->base);
385 return 0;
386}
387
388/**
389 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
390 * @xfer_mode: XFER_* of interest
391 *
392 * Return matching xfer_shift for @xfer_mode.
393 *
394 * LOCKING:
395 * None.
396 *
397 * RETURNS:
398 * Matching xfer_shift, -1 if no match found.
399 */
400static int ata_xfer_mode2shift(unsigned int xfer_mode)
401{
402 const struct ata_xfer_ent *ent;
403
404 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
405 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
406 return ent->shift;
407 return -1;
408}
409
1da177e4 410/**
1da7b0d0
TH
411 * ata_mode_string - convert xfer_mask to string
412 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
413 *
414 * Determine string which represents the highest speed
1da7b0d0 415 * (highest bit in @modemask).
1da177e4
LT
416 *
417 * LOCKING:
418 * None.
419 *
420 * RETURNS:
421 * Constant C string representing highest speed listed in
1da7b0d0 422 * @mode_mask, or the constant C string "<n/a>".
1da177e4 423 */
1da7b0d0 424static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 425{
75f554bc
TH
426 static const char * const xfer_mode_str[] = {
427 "PIO0",
428 "PIO1",
429 "PIO2",
430 "PIO3",
431 "PIO4",
b352e57d
AC
432 "PIO5",
433 "PIO6",
75f554bc
TH
434 "MWDMA0",
435 "MWDMA1",
436 "MWDMA2",
b352e57d
AC
437 "MWDMA3",
438 "MWDMA4",
75f554bc
TH
439 "UDMA/16",
440 "UDMA/25",
441 "UDMA/33",
442 "UDMA/44",
443 "UDMA/66",
444 "UDMA/100",
445 "UDMA/133",
446 "UDMA7",
447 };
1da7b0d0 448 int highbit;
1da177e4 449
1da7b0d0
TH
450 highbit = fls(xfer_mask) - 1;
451 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
452 return xfer_mode_str[highbit];
1da177e4 453 return "<n/a>";
1da177e4
LT
454}
455
4c360c81
TH
456static const char *sata_spd_string(unsigned int spd)
457{
458 static const char * const spd_str[] = {
459 "1.5 Gbps",
460 "3.0 Gbps",
461 };
462
463 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
464 return "<unknown>";
465 return spd_str[spd - 1];
466}
467
3373efd8 468void ata_dev_disable(struct ata_device *dev)
0b8efb0a 469{
0dd4b21f 470 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 471 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
472 dev->class++;
473 }
474}
475
1da177e4
LT
476/**
477 * ata_pio_devchk - PATA device presence detection
478 * @ap: ATA channel to examine
479 * @device: Device to examine (starting at zero)
480 *
481 * This technique was originally described in
482 * Hale Landis's ATADRVR (www.ata-atapi.com), and
483 * later found its way into the ATA/ATAPI spec.
484 *
485 * Write a pattern to the ATA shadow registers,
486 * and if a device is present, it will respond by
487 * correctly storing and echoing back the
488 * ATA shadow register contents.
489 *
490 * LOCKING:
491 * caller.
492 */
493
494static unsigned int ata_pio_devchk(struct ata_port *ap,
495 unsigned int device)
496{
497 struct ata_ioports *ioaddr = &ap->ioaddr;
498 u8 nsect, lbal;
499
500 ap->ops->dev_select(ap, device);
501
502 outb(0x55, ioaddr->nsect_addr);
503 outb(0xaa, ioaddr->lbal_addr);
504
505 outb(0xaa, ioaddr->nsect_addr);
506 outb(0x55, ioaddr->lbal_addr);
507
508 outb(0x55, ioaddr->nsect_addr);
509 outb(0xaa, ioaddr->lbal_addr);
510
511 nsect = inb(ioaddr->nsect_addr);
512 lbal = inb(ioaddr->lbal_addr);
513
514 if ((nsect == 0x55) && (lbal == 0xaa))
515 return 1; /* we found a device */
516
517 return 0; /* nothing found */
518}
519
520/**
521 * ata_mmio_devchk - PATA device presence detection
522 * @ap: ATA channel to examine
523 * @device: Device to examine (starting at zero)
524 *
525 * This technique was originally described in
526 * Hale Landis's ATADRVR (www.ata-atapi.com), and
527 * later found its way into the ATA/ATAPI spec.
528 *
529 * Write a pattern to the ATA shadow registers,
530 * and if a device is present, it will respond by
531 * correctly storing and echoing back the
532 * ATA shadow register contents.
533 *
534 * LOCKING:
535 * caller.
536 */
537
538static unsigned int ata_mmio_devchk(struct ata_port *ap,
539 unsigned int device)
540{
541 struct ata_ioports *ioaddr = &ap->ioaddr;
542 u8 nsect, lbal;
543
544 ap->ops->dev_select(ap, device);
545
546 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
547 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
548
549 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
550 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
551
552 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
553 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
554
555 nsect = readb((void __iomem *) ioaddr->nsect_addr);
556 lbal = readb((void __iomem *) ioaddr->lbal_addr);
557
558 if ((nsect == 0x55) && (lbal == 0xaa))
559 return 1; /* we found a device */
560
561 return 0; /* nothing found */
562}
563
564/**
565 * ata_devchk - PATA device presence detection
566 * @ap: ATA channel to examine
567 * @device: Device to examine (starting at zero)
568 *
569 * Dispatch ATA device presence detection, depending
570 * on whether we are using PIO or MMIO to talk to the
571 * ATA shadow registers.
572 *
573 * LOCKING:
574 * caller.
575 */
576
577static unsigned int ata_devchk(struct ata_port *ap,
578 unsigned int device)
579{
580 if (ap->flags & ATA_FLAG_MMIO)
581 return ata_mmio_devchk(ap, device);
582 return ata_pio_devchk(ap, device);
583}
584
585/**
586 * ata_dev_classify - determine device type based on ATA-spec signature
587 * @tf: ATA taskfile register set for device to be identified
588 *
589 * Determine from taskfile register contents whether a device is
590 * ATA or ATAPI, as per "Signature and persistence" section
591 * of ATA/PI spec (volume 1, sect 5.14).
592 *
593 * LOCKING:
594 * None.
595 *
596 * RETURNS:
597 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
598 * the event of failure.
599 */
600
057ace5e 601unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
602{
603 /* Apple's open source Darwin code hints that some devices only
604 * put a proper signature into the LBA mid/high registers,
605 * So, we only check those. It's sufficient for uniqueness.
606 */
607
608 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
609 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
610 DPRINTK("found ATA device by sig\n");
611 return ATA_DEV_ATA;
612 }
613
614 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
615 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
616 DPRINTK("found ATAPI device by sig\n");
617 return ATA_DEV_ATAPI;
618 }
619
620 DPRINTK("unknown device\n");
621 return ATA_DEV_UNKNOWN;
622}
623
624/**
625 * ata_dev_try_classify - Parse returned ATA device signature
626 * @ap: ATA channel to examine
627 * @device: Device to examine (starting at zero)
b4dc7623 628 * @r_err: Value of error register on completion
1da177e4
LT
629 *
630 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
631 * an ATA/ATAPI-defined set of values is placed in the ATA
632 * shadow registers, indicating the results of device detection
633 * and diagnostics.
634 *
635 * Select the ATA device, and read the values from the ATA shadow
636 * registers. Then parse according to the Error register value,
637 * and the spec-defined values examined by ata_dev_classify().
638 *
639 * LOCKING:
640 * caller.
b4dc7623
TH
641 *
642 * RETURNS:
643 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
644 */
645
b4dc7623
TH
646static unsigned int
647ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 648{
1da177e4
LT
649 struct ata_taskfile tf;
650 unsigned int class;
651 u8 err;
652
653 ap->ops->dev_select(ap, device);
654
655 memset(&tf, 0, sizeof(tf));
656
1da177e4 657 ap->ops->tf_read(ap, &tf);
0169e284 658 err = tf.feature;
b4dc7623
TH
659 if (r_err)
660 *r_err = err;
1da177e4 661
93590859
AC
662 /* see if device passed diags: if master then continue and warn later */
663 if (err == 0 && device == 0)
664 /* diagnostic fail : do nothing _YET_ */
665 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
666 else if (err == 1)
1da177e4
LT
667 /* do nothing */ ;
668 else if ((device == 0) && (err == 0x81))
669 /* do nothing */ ;
670 else
b4dc7623 671 return ATA_DEV_NONE;
1da177e4 672
b4dc7623 673 /* determine if device is ATA or ATAPI */
1da177e4 674 class = ata_dev_classify(&tf);
b4dc7623 675
1da177e4 676 if (class == ATA_DEV_UNKNOWN)
b4dc7623 677 return ATA_DEV_NONE;
1da177e4 678 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
679 return ATA_DEV_NONE;
680 return class;
1da177e4
LT
681}
682
683/**
6a62a04d 684 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
685 * @id: IDENTIFY DEVICE results we will examine
686 * @s: string into which data is output
687 * @ofs: offset into identify device page
688 * @len: length of string to return. must be an even number.
689 *
690 * The strings in the IDENTIFY DEVICE page are broken up into
691 * 16-bit chunks. Run through the string, and output each
692 * 8-bit chunk linearly, regardless of platform.
693 *
694 * LOCKING:
695 * caller.
696 */
697
6a62a04d
TH
698void ata_id_string(const u16 *id, unsigned char *s,
699 unsigned int ofs, unsigned int len)
1da177e4
LT
700{
701 unsigned int c;
702
703 while (len > 0) {
704 c = id[ofs] >> 8;
705 *s = c;
706 s++;
707
708 c = id[ofs] & 0xff;
709 *s = c;
710 s++;
711
712 ofs++;
713 len -= 2;
714 }
715}
716
0e949ff3 717/**
6a62a04d 718 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
719 * @id: IDENTIFY DEVICE results we will examine
720 * @s: string into which data is output
721 * @ofs: offset into identify device page
722 * @len: length of string to return. must be an odd number.
723 *
6a62a04d 724 * This function is identical to ata_id_string except that it
0e949ff3
TH
725 * trims trailing spaces and terminates the resulting string with
726 * null. @len must be actual maximum length (even number) + 1.
727 *
728 * LOCKING:
729 * caller.
730 */
6a62a04d
TH
731void ata_id_c_string(const u16 *id, unsigned char *s,
732 unsigned int ofs, unsigned int len)
0e949ff3
TH
733{
734 unsigned char *p;
735
736 WARN_ON(!(len & 1));
737
6a62a04d 738 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
739
740 p = s + strnlen(s, len - 1);
741 while (p > s && p[-1] == ' ')
742 p--;
743 *p = '\0';
744}
0baab86b 745
2940740b
TH
746static u64 ata_id_n_sectors(const u16 *id)
747{
748 if (ata_id_has_lba(id)) {
749 if (ata_id_has_lba48(id))
750 return ata_id_u64(id, 100);
751 else
752 return ata_id_u32(id, 60);
753 } else {
754 if (ata_id_current_chs_valid(id))
755 return ata_id_u32(id, 57);
756 else
757 return id[1] * id[3] * id[6];
758 }
759}
760
0baab86b
EF
761/**
762 * ata_noop_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 *
766 * This function performs no actual function.
767 *
768 * May be used as the dev_select() entry in ata_port_operations.
769 *
770 * LOCKING:
771 * caller.
772 */
1da177e4
LT
773void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
774{
775}
776
0baab86b 777
1da177e4
LT
778/**
779 * ata_std_dev_select - Select device 0/1 on ATA bus
780 * @ap: ATA channel to manipulate
781 * @device: ATA device (numbered from zero) to select
782 *
783 * Use the method defined in the ATA specification to
784 * make either device 0, or device 1, active on the
0baab86b
EF
785 * ATA channel. Works with both PIO and MMIO.
786 *
787 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
788 *
789 * LOCKING:
790 * caller.
791 */
792
793void ata_std_dev_select (struct ata_port *ap, unsigned int device)
794{
795 u8 tmp;
796
797 if (device == 0)
798 tmp = ATA_DEVICE_OBS;
799 else
800 tmp = ATA_DEVICE_OBS | ATA_DEV1;
801
802 if (ap->flags & ATA_FLAG_MMIO) {
803 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
804 } else {
805 outb(tmp, ap->ioaddr.device_addr);
806 }
807 ata_pause(ap); /* needed; also flushes, for mmio */
808}
809
810/**
811 * ata_dev_select - Select device 0/1 on ATA bus
812 * @ap: ATA channel to manipulate
813 * @device: ATA device (numbered from zero) to select
814 * @wait: non-zero to wait for Status register BSY bit to clear
815 * @can_sleep: non-zero if context allows sleeping
816 *
817 * Use the method defined in the ATA specification to
818 * make either device 0, or device 1, active on the
819 * ATA channel.
820 *
821 * This is a high-level version of ata_std_dev_select(),
822 * which additionally provides the services of inserting
823 * the proper pauses and status polling, where needed.
824 *
825 * LOCKING:
826 * caller.
827 */
828
829void ata_dev_select(struct ata_port *ap, unsigned int device,
830 unsigned int wait, unsigned int can_sleep)
831{
88574551 832 if (ata_msg_probe(ap))
0dd4b21f 833 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 834 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
835
836 if (wait)
837 ata_wait_idle(ap);
838
839 ap->ops->dev_select(ap, device);
840
841 if (wait) {
842 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
843 msleep(150);
844 ata_wait_idle(ap);
845 }
846}
847
848/**
849 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 850 * @id: IDENTIFY DEVICE page to dump
1da177e4 851 *
0bd3300a
TH
852 * Dump selected 16-bit words from the given IDENTIFY DEVICE
853 * page.
1da177e4
LT
854 *
855 * LOCKING:
856 * caller.
857 */
858
0bd3300a 859static inline void ata_dump_id(const u16 *id)
1da177e4
LT
860{
861 DPRINTK("49==0x%04x "
862 "53==0x%04x "
863 "63==0x%04x "
864 "64==0x%04x "
865 "75==0x%04x \n",
0bd3300a
TH
866 id[49],
867 id[53],
868 id[63],
869 id[64],
870 id[75]);
1da177e4
LT
871 DPRINTK("80==0x%04x "
872 "81==0x%04x "
873 "82==0x%04x "
874 "83==0x%04x "
875 "84==0x%04x \n",
0bd3300a
TH
876 id[80],
877 id[81],
878 id[82],
879 id[83],
880 id[84]);
1da177e4
LT
881 DPRINTK("88==0x%04x "
882 "93==0x%04x\n",
0bd3300a
TH
883 id[88],
884 id[93]);
1da177e4
LT
885}
886
cb95d562
TH
887/**
888 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
889 * @id: IDENTIFY data to compute xfer mask from
890 *
891 * Compute the xfermask for this device. This is not as trivial
892 * as it seems if we must consider early devices correctly.
893 *
894 * FIXME: pre IDE drive timing (do we care ?).
895 *
896 * LOCKING:
897 * None.
898 *
899 * RETURNS:
900 * Computed xfermask
901 */
902static unsigned int ata_id_xfermask(const u16 *id)
903{
904 unsigned int pio_mask, mwdma_mask, udma_mask;
905
906 /* Usual case. Word 53 indicates word 64 is valid */
907 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
908 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
909 pio_mask <<= 3;
910 pio_mask |= 0x7;
911 } else {
912 /* If word 64 isn't valid then Word 51 high byte holds
913 * the PIO timing number for the maximum. Turn it into
914 * a mask.
915 */
46767aeb
AC
916 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
917 if (mode < 5) /* Valid PIO range */
918 pio_mask = (2 << mode) - 1;
919 else
920 pio_mask = 1;
cb95d562
TH
921
922 /* But wait.. there's more. Design your standards by
923 * committee and you too can get a free iordy field to
924 * process. However its the speeds not the modes that
925 * are supported... Note drivers using the timing API
926 * will get this right anyway
927 */
928 }
929
930 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 931
b352e57d
AC
932 if (ata_id_is_cfa(id)) {
933 /*
934 * Process compact flash extended modes
935 */
936 int pio = id[163] & 0x7;
937 int dma = (id[163] >> 3) & 7;
938
939 if (pio)
940 pio_mask |= (1 << 5);
941 if (pio > 1)
942 pio_mask |= (1 << 6);
943 if (dma)
944 mwdma_mask |= (1 << 3);
945 if (dma > 1)
946 mwdma_mask |= (1 << 4);
947 }
948
fb21f0d0
TH
949 udma_mask = 0;
950 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
951 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
952
953 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
954}
955
86e45b6b
TH
956/**
957 * ata_port_queue_task - Queue port_task
958 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
959 * @fn: workqueue function to be scheduled
960 * @data: data value to pass to workqueue function
961 * @delay: delay time for workqueue function
86e45b6b
TH
962 *
963 * Schedule @fn(@data) for execution after @delay jiffies using
964 * port_task. There is one port_task per port and it's the
965 * user(low level driver)'s responsibility to make sure that only
966 * one task is active at any given time.
967 *
968 * libata core layer takes care of synchronization between
969 * port_task and EH. ata_port_queue_task() may be ignored for EH
970 * synchronization.
971 *
972 * LOCKING:
973 * Inherited from caller.
974 */
975void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
976 unsigned long delay)
977{
978 int rc;
979
b51e9e5d 980 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
981 return;
982
983 PREPARE_WORK(&ap->port_task, fn, data);
984
985 if (!delay)
986 rc = queue_work(ata_wq, &ap->port_task);
987 else
988 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
989
990 /* rc == 0 means that another user is using port task */
991 WARN_ON(rc == 0);
992}
993
994/**
995 * ata_port_flush_task - Flush port_task
996 * @ap: The ata_port to flush port_task for
997 *
998 * After this function completes, port_task is guranteed not to
999 * be running or scheduled.
1000 *
1001 * LOCKING:
1002 * Kernel thread context (may sleep)
1003 */
1004void ata_port_flush_task(struct ata_port *ap)
1005{
1006 unsigned long flags;
1007
1008 DPRINTK("ENTER\n");
1009
ba6a1308 1010 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1011 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1012 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1013
1014 DPRINTK("flush #1\n");
1015 flush_workqueue(ata_wq);
1016
1017 /*
1018 * At this point, if a task is running, it's guaranteed to see
1019 * the FLUSH flag; thus, it will never queue pio tasks again.
1020 * Cancel and flush.
1021 */
1022 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1023 if (ata_msg_ctl(ap))
88574551
TH
1024 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1025 __FUNCTION__);
86e45b6b
TH
1026 flush_workqueue(ata_wq);
1027 }
1028
ba6a1308 1029 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1030 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1031 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1032
0dd4b21f
BP
1033 if (ata_msg_ctl(ap))
1034 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1035}
1036
77853bf2 1037void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1038{
77853bf2 1039 struct completion *waiting = qc->private_data;
a2a7a662 1040
a2a7a662 1041 complete(waiting);
a2a7a662
TH
1042}
1043
1044/**
1045 * ata_exec_internal - execute libata internal command
a2a7a662
TH
1046 * @dev: Device to which the command is sent
1047 * @tf: Taskfile registers for the command and the result
d69cf37d 1048 * @cdb: CDB for packet command
a2a7a662
TH
1049 * @dma_dir: Data tranfer direction of the command
1050 * @buf: Data buffer of the command
1051 * @buflen: Length of data buffer
1052 *
1053 * Executes libata internal command with timeout. @tf contains
1054 * command on entry and result on return. Timeout and error
1055 * conditions are reported via return value. No recovery action
1056 * is taken after a command times out. It's caller's duty to
1057 * clean up after timeout.
1058 *
1059 * LOCKING:
1060 * None. Should be called with kernel context, might sleep.
551e8889
TH
1061 *
1062 * RETURNS:
1063 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1064 */
3373efd8 1065unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
1066 struct ata_taskfile *tf, const u8 *cdb,
1067 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1068{
3373efd8 1069 struct ata_port *ap = dev->ap;
a2a7a662
TH
1070 u8 command = tf->command;
1071 struct ata_queued_cmd *qc;
2ab7db1f 1072 unsigned int tag, preempted_tag;
dedaf2b0 1073 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1074 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1075 unsigned long flags;
77853bf2 1076 unsigned int err_mask;
d95a717f 1077 int rc;
a2a7a662 1078
ba6a1308 1079 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1080
e3180499 1081 /* no internal command while frozen */
b51e9e5d 1082 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1083 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1084 return AC_ERR_SYSTEM;
1085 }
1086
2ab7db1f 1087 /* initialize internal qc */
a2a7a662 1088
2ab7db1f
TH
1089 /* XXX: Tag 0 is used for drivers with legacy EH as some
1090 * drivers choke if any other tag is given. This breaks
1091 * ata_tag_internal() test for those drivers. Don't use new
1092 * EH stuff without converting to it.
1093 */
1094 if (ap->ops->error_handler)
1095 tag = ATA_TAG_INTERNAL;
1096 else
1097 tag = 0;
1098
6cec4a39 1099 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1100 BUG();
f69499f4 1101 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1102
1103 qc->tag = tag;
1104 qc->scsicmd = NULL;
1105 qc->ap = ap;
1106 qc->dev = dev;
1107 ata_qc_reinit(qc);
1108
1109 preempted_tag = ap->active_tag;
dedaf2b0
TH
1110 preempted_sactive = ap->sactive;
1111 preempted_qc_active = ap->qc_active;
2ab7db1f 1112 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1113 ap->sactive = 0;
1114 ap->qc_active = 0;
2ab7db1f
TH
1115
1116 /* prepare & issue qc */
a2a7a662 1117 qc->tf = *tf;
d69cf37d
TH
1118 if (cdb)
1119 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1120 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1121 qc->dma_dir = dma_dir;
1122 if (dma_dir != DMA_NONE) {
1123 ata_sg_init_one(qc, buf, buflen);
1124 qc->nsect = buflen / ATA_SECT_SIZE;
1125 }
1126
77853bf2 1127 qc->private_data = &wait;
a2a7a662
TH
1128 qc->complete_fn = ata_qc_complete_internal;
1129
8e0e694a 1130 ata_qc_issue(qc);
a2a7a662 1131
ba6a1308 1132 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1133
a8601e5f 1134 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1135
1136 ata_port_flush_task(ap);
41ade50c 1137
d95a717f 1138 if (!rc) {
ba6a1308 1139 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1140
1141 /* We're racing with irq here. If we lose, the
1142 * following test prevents us from completing the qc
d95a717f
TH
1143 * twice. If we win, the port is frozen and will be
1144 * cleaned up by ->post_internal_cmd().
a2a7a662 1145 */
77853bf2 1146 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1147 qc->err_mask |= AC_ERR_TIMEOUT;
1148
1149 if (ap->ops->error_handler)
1150 ata_port_freeze(ap);
1151 else
1152 ata_qc_complete(qc);
f15a1daf 1153
0dd4b21f
BP
1154 if (ata_msg_warn(ap))
1155 ata_dev_printk(dev, KERN_WARNING,
88574551 1156 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1157 }
1158
ba6a1308 1159 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1160 }
1161
d95a717f
TH
1162 /* do post_internal_cmd */
1163 if (ap->ops->post_internal_cmd)
1164 ap->ops->post_internal_cmd(qc);
1165
1166 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1167 if (ata_msg_warn(ap))
88574551 1168 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1169 "zero err_mask for failed "
88574551 1170 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1171 qc->err_mask |= AC_ERR_OTHER;
1172 }
1173
15869303 1174 /* finish up */
ba6a1308 1175 spin_lock_irqsave(ap->lock, flags);
15869303 1176
e61e0672 1177 *tf = qc->result_tf;
77853bf2
TH
1178 err_mask = qc->err_mask;
1179
1180 ata_qc_free(qc);
2ab7db1f 1181 ap->active_tag = preempted_tag;
dedaf2b0
TH
1182 ap->sactive = preempted_sactive;
1183 ap->qc_active = preempted_qc_active;
77853bf2 1184
1f7dd3e9
TH
1185 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1186 * Until those drivers are fixed, we detect the condition
1187 * here, fail the command with AC_ERR_SYSTEM and reenable the
1188 * port.
1189 *
1190 * Note that this doesn't change any behavior as internal
1191 * command failure results in disabling the device in the
1192 * higher layer for LLDDs without new reset/EH callbacks.
1193 *
1194 * Kill the following code as soon as those drivers are fixed.
1195 */
198e0fed 1196 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1197 err_mask |= AC_ERR_SYSTEM;
1198 ata_port_probe(ap);
1199 }
1200
ba6a1308 1201 spin_unlock_irqrestore(ap->lock, flags);
15869303 1202
77853bf2 1203 return err_mask;
a2a7a662
TH
1204}
1205
977e6b9f
TH
1206/**
1207 * ata_do_simple_cmd - execute simple internal command
1208 * @dev: Device to which the command is sent
1209 * @cmd: Opcode to execute
1210 *
1211 * Execute a 'simple' command, that only consists of the opcode
1212 * 'cmd' itself, without filling any other registers
1213 *
1214 * LOCKING:
1215 * Kernel thread context (may sleep).
1216 *
1217 * RETURNS:
1218 * Zero on success, AC_ERR_* mask on failure
e58eb583 1219 */
77b08fb5 1220unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1221{
1222 struct ata_taskfile tf;
e58eb583
TH
1223
1224 ata_tf_init(dev, &tf);
1225
1226 tf.command = cmd;
1227 tf.flags |= ATA_TFLAG_DEVICE;
1228 tf.protocol = ATA_PROT_NODATA;
1229
977e6b9f 1230 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1231}
1232
1bc4ccff
AC
1233/**
1234 * ata_pio_need_iordy - check if iordy needed
1235 * @adev: ATA device
1236 *
1237 * Check if the current speed of the device requires IORDY. Used
1238 * by various controllers for chip configuration.
1239 */
1240
1241unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1242{
1243 int pio;
1244 int speed = adev->pio_mode - XFER_PIO_0;
1245
1246 if (speed < 2)
1247 return 0;
1248 if (speed > 2)
1249 return 1;
2e9edbf8 1250
1bc4ccff
AC
1251 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1252
1253 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1254 pio = adev->id[ATA_ID_EIDE_PIO];
1255 /* Is the speed faster than the drive allows non IORDY ? */
1256 if (pio) {
1257 /* This is cycle times not frequency - watch the logic! */
1258 if (pio > 240) /* PIO2 is 240nS per cycle */
1259 return 1;
1260 return 0;
1261 }
1262 }
1263 return 0;
1264}
1265
1da177e4 1266/**
49016aca 1267 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1268 * @dev: target device
1269 * @p_class: pointer to class of the target device (may be changed)
bff04647 1270 * @flags: ATA_READID_* flags
fe635c7e 1271 * @id: buffer to read IDENTIFY data into
1da177e4 1272 *
49016aca
TH
1273 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1274 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1275 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1276 * for pre-ATA4 drives.
1da177e4
LT
1277 *
1278 * LOCKING:
49016aca
TH
1279 * Kernel thread context (may sleep)
1280 *
1281 * RETURNS:
1282 * 0 on success, -errno otherwise.
1da177e4 1283 */
a9beec95 1284int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1285 unsigned int flags, u16 *id)
1da177e4 1286{
3373efd8 1287 struct ata_port *ap = dev->ap;
49016aca 1288 unsigned int class = *p_class;
a0123703 1289 struct ata_taskfile tf;
49016aca
TH
1290 unsigned int err_mask = 0;
1291 const char *reason;
1292 int rc;
1da177e4 1293
0dd4b21f 1294 if (ata_msg_ctl(ap))
88574551
TH
1295 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1296 __FUNCTION__, ap->id, dev->devno);
1da177e4 1297
49016aca 1298 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1299
49016aca 1300 retry:
3373efd8 1301 ata_tf_init(dev, &tf);
a0123703 1302
49016aca
TH
1303 switch (class) {
1304 case ATA_DEV_ATA:
a0123703 1305 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1306 break;
1307 case ATA_DEV_ATAPI:
a0123703 1308 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1309 break;
1310 default:
1311 rc = -ENODEV;
1312 reason = "unsupported class";
1313 goto err_out;
1da177e4
LT
1314 }
1315
a0123703 1316 tf.protocol = ATA_PROT_PIO;
1da177e4 1317
55a8e2c8
TH
1318 /* presence detection using polling IDENTIFY? */
1319 if (flags & ATA_READID_DETECT)
1320 tf.flags |= ATA_TFLAG_POLLING;
1321
3373efd8 1322 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1323 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1324 if (err_mask) {
55a8e2c8
TH
1325 if ((flags & ATA_READID_DETECT) &&
1326 (err_mask & AC_ERR_NODEV_HINT)) {
1327 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1328 ap->id, dev->devno);
1329 return -ENOENT;
1330 }
1331
49016aca
TH
1332 rc = -EIO;
1333 reason = "I/O error";
1da177e4
LT
1334 goto err_out;
1335 }
1336
49016aca 1337 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1338
49016aca 1339 /* sanity check */
a4f5749b
TH
1340 rc = -EINVAL;
1341 reason = "device reports illegal type";
1342
1343 if (class == ATA_DEV_ATA) {
1344 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1345 goto err_out;
1346 } else {
1347 if (ata_id_is_ata(id))
1348 goto err_out;
49016aca
TH
1349 }
1350
bff04647 1351 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1352 /*
1353 * The exact sequence expected by certain pre-ATA4 drives is:
1354 * SRST RESET
1355 * IDENTIFY
1356 * INITIALIZE DEVICE PARAMETERS
1357 * anything else..
1358 * Some drives were very specific about that exact sequence.
1359 */
1360 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1361 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1362 if (err_mask) {
1363 rc = -EIO;
1364 reason = "INIT_DEV_PARAMS failed";
1365 goto err_out;
1366 }
1367
1368 /* current CHS translation info (id[53-58]) might be
1369 * changed. reread the identify device info.
1370 */
bff04647 1371 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1372 goto retry;
1373 }
1374 }
1375
1376 *p_class = class;
fe635c7e 1377
49016aca
TH
1378 return 0;
1379
1380 err_out:
88574551 1381 if (ata_msg_warn(ap))
0dd4b21f 1382 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1383 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1384 return rc;
1385}
1386
3373efd8 1387static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1388{
3373efd8 1389 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1390}
1391
a6e6ce8e
TH
1392static void ata_dev_config_ncq(struct ata_device *dev,
1393 char *desc, size_t desc_sz)
1394{
1395 struct ata_port *ap = dev->ap;
1396 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1397
1398 if (!ata_id_has_ncq(dev->id)) {
1399 desc[0] = '\0';
1400 return;
1401 }
6919a0a6
AC
1402 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1403 snprintf(desc, desc_sz, "NCQ (not used)");
1404 return;
1405 }
a6e6ce8e 1406 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1407 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1408 dev->flags |= ATA_DFLAG_NCQ;
1409 }
1410
1411 if (hdepth >= ddepth)
1412 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1413 else
1414 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1415}
1416
e6d902a3
BK
1417static void ata_set_port_max_cmd_len(struct ata_port *ap)
1418{
1419 int i;
1420
cca3974e
JG
1421 if (ap->scsi_host) {
1422 unsigned int len = 0;
1423
e6d902a3 1424 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1425 len = max(len, ap->device[i].cdb_len);
1426
1427 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1428 }
1429}
1430
49016aca 1431/**
ffeae418 1432 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1433 * @dev: Target device to configure
1434 *
1435 * Configure @dev according to @dev->id. Generic and low-level
1436 * driver specific fixups are also applied.
49016aca
TH
1437 *
1438 * LOCKING:
ffeae418
TH
1439 * Kernel thread context (may sleep)
1440 *
1441 * RETURNS:
1442 * 0 on success, -errno otherwise
49016aca 1443 */
efdaedc4 1444int ata_dev_configure(struct ata_device *dev)
49016aca 1445{
3373efd8 1446 struct ata_port *ap = dev->ap;
efdaedc4 1447 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1448 const u16 *id = dev->id;
ff8854b2 1449 unsigned int xfer_mask;
b352e57d 1450 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1451 int rc;
49016aca 1452
0dd4b21f 1453 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1454 ata_dev_printk(dev, KERN_INFO,
1455 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1456 __FUNCTION__, ap->id, dev->devno);
ffeae418 1457 return 0;
49016aca
TH
1458 }
1459
0dd4b21f 1460 if (ata_msg_probe(ap))
88574551
TH
1461 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1462 __FUNCTION__, ap->id, dev->devno);
1da177e4 1463
c39f5ebe 1464 /* print device capabilities */
0dd4b21f 1465 if (ata_msg_probe(ap))
88574551
TH
1466 ata_dev_printk(dev, KERN_DEBUG,
1467 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1468 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1469 __FUNCTION__,
f15a1daf
TH
1470 id[49], id[82], id[83], id[84],
1471 id[85], id[86], id[87], id[88]);
c39f5ebe 1472
208a9933 1473 /* initialize to-be-configured parameters */
ea1dd4e1 1474 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1475 dev->max_sectors = 0;
1476 dev->cdb_len = 0;
1477 dev->n_sectors = 0;
1478 dev->cylinders = 0;
1479 dev->heads = 0;
1480 dev->sectors = 0;
1481
1da177e4
LT
1482 /*
1483 * common ATA, ATAPI feature tests
1484 */
1485
ff8854b2 1486 /* find max transfer mode; for printk only */
1148c3a7 1487 xfer_mask = ata_id_xfermask(id);
1da177e4 1488
0dd4b21f
BP
1489 if (ata_msg_probe(ap))
1490 ata_dump_id(id);
1da177e4
LT
1491
1492 /* ATA-specific feature tests */
1493 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1494 if (ata_id_is_cfa(id)) {
1495 if (id[162] & 1) /* CPRM may make this media unusable */
1496 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1497 ap->id, dev->devno);
1498 snprintf(revbuf, 7, "CFA");
1499 }
1500 else
1501 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1502
1148c3a7 1503 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1504
1148c3a7 1505 if (ata_id_has_lba(id)) {
4c2d721a 1506 const char *lba_desc;
a6e6ce8e 1507 char ncq_desc[20];
8bf62ece 1508
4c2d721a
TH
1509 lba_desc = "LBA";
1510 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1511 if (ata_id_has_lba48(id)) {
8bf62ece 1512 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1513 lba_desc = "LBA48";
6fc49adb
TH
1514
1515 if (dev->n_sectors >= (1UL << 28) &&
1516 ata_id_has_flush_ext(id))
1517 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1518 }
8bf62ece 1519
a6e6ce8e
TH
1520 /* config NCQ */
1521 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1522
8bf62ece 1523 /* print device info to dmesg */
5afc8142 1524 if (ata_msg_drv(ap) && print_info)
b352e57d 1525 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1526 "max %s, %Lu sectors: %s %s\n",
b352e57d 1527 revbuf,
f15a1daf
TH
1528 ata_mode_string(xfer_mask),
1529 (unsigned long long)dev->n_sectors,
a6e6ce8e 1530 lba_desc, ncq_desc);
ffeae418 1531 } else {
8bf62ece
AL
1532 /* CHS */
1533
1534 /* Default translation */
1148c3a7
TH
1535 dev->cylinders = id[1];
1536 dev->heads = id[3];
1537 dev->sectors = id[6];
8bf62ece 1538
1148c3a7 1539 if (ata_id_current_chs_valid(id)) {
8bf62ece 1540 /* Current CHS translation is valid. */
1148c3a7
TH
1541 dev->cylinders = id[54];
1542 dev->heads = id[55];
1543 dev->sectors = id[56];
8bf62ece
AL
1544 }
1545
1546 /* print device info to dmesg */
5afc8142 1547 if (ata_msg_drv(ap) && print_info)
b352e57d 1548 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1549 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1550 revbuf,
f15a1daf
TH
1551 ata_mode_string(xfer_mask),
1552 (unsigned long long)dev->n_sectors,
88574551
TH
1553 dev->cylinders, dev->heads,
1554 dev->sectors);
1da177e4
LT
1555 }
1556
07f6f7d0
AL
1557 if (dev->id[59] & 0x100) {
1558 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1559 if (ata_msg_drv(ap) && print_info)
88574551
TH
1560 ata_dev_printk(dev, KERN_INFO,
1561 "ata%u: dev %u multi count %u\n",
1562 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1563 }
1564
6e7846e9 1565 dev->cdb_len = 16;
1da177e4
LT
1566 }
1567
1568 /* ATAPI-specific feature tests */
2c13b7ce 1569 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1570 char *cdb_intr_string = "";
1571
1148c3a7 1572 rc = atapi_cdb_len(id);
1da177e4 1573 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1574 if (ata_msg_warn(ap))
88574551
TH
1575 ata_dev_printk(dev, KERN_WARNING,
1576 "unsupported CDB len\n");
ffeae418 1577 rc = -EINVAL;
1da177e4
LT
1578 goto err_out_nosup;
1579 }
6e7846e9 1580 dev->cdb_len = (unsigned int) rc;
1da177e4 1581
08a556db 1582 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1583 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1584 cdb_intr_string = ", CDB intr";
1585 }
312f7da2 1586
1da177e4 1587 /* print device info to dmesg */
5afc8142 1588 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1589 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1590 ata_mode_string(xfer_mask),
1591 cdb_intr_string);
1da177e4
LT
1592 }
1593
914ed354
TH
1594 /* determine max_sectors */
1595 dev->max_sectors = ATA_MAX_SECTORS;
1596 if (dev->flags & ATA_DFLAG_LBA48)
1597 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1598
93590859
AC
1599 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1600 /* Let the user know. We don't want to disallow opens for
1601 rescue purposes, or in case the vendor is just a blithering
1602 idiot */
1603 if (print_info) {
1604 ata_dev_printk(dev, KERN_WARNING,
1605"Drive reports diagnostics failure. This may indicate a drive\n");
1606 ata_dev_printk(dev, KERN_WARNING,
1607"fault or invalid emulation. Contact drive vendor for information.\n");
1608 }
1609 }
1610
e6d902a3 1611 ata_set_port_max_cmd_len(ap);
6e7846e9 1612
4b2f3ede 1613 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1614 if (ata_dev_knobble(dev)) {
5afc8142 1615 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1616 ata_dev_printk(dev, KERN_INFO,
1617 "applying bridge limits\n");
5a529139 1618 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1619 dev->max_sectors = ATA_MAX_SECTORS;
1620 }
1621
1622 if (ap->ops->dev_config)
1623 ap->ops->dev_config(ap, dev);
1624
0dd4b21f
BP
1625 if (ata_msg_probe(ap))
1626 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1627 __FUNCTION__, ata_chk_status(ap));
ffeae418 1628 return 0;
1da177e4
LT
1629
1630err_out_nosup:
0dd4b21f 1631 if (ata_msg_probe(ap))
88574551
TH
1632 ata_dev_printk(dev, KERN_DEBUG,
1633 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1634 return rc;
1da177e4
LT
1635}
1636
1637/**
1638 * ata_bus_probe - Reset and probe ATA bus
1639 * @ap: Bus to probe
1640 *
0cba632b
JG
1641 * Master ATA bus probing function. Initiates a hardware-dependent
1642 * bus reset, then attempts to identify any devices found on
1643 * the bus.
1644 *
1da177e4 1645 * LOCKING:
0cba632b 1646 * PCI/etc. bus probe sem.
1da177e4
LT
1647 *
1648 * RETURNS:
96072e69 1649 * Zero on success, negative errno otherwise.
1da177e4
LT
1650 */
1651
80289167 1652int ata_bus_probe(struct ata_port *ap)
1da177e4 1653{
28ca5c57 1654 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1655 int tries[ATA_MAX_DEVICES];
1656 int i, rc, down_xfermask;
e82cbdb9 1657 struct ata_device *dev;
1da177e4 1658
28ca5c57 1659 ata_port_probe(ap);
c19ba8af 1660
14d2bac1
TH
1661 for (i = 0; i < ATA_MAX_DEVICES; i++)
1662 tries[i] = ATA_PROBE_MAX_TRIES;
1663
1664 retry:
1665 down_xfermask = 0;
1666
2044470c 1667 /* reset and determine device classes */
52783c5d 1668 ap->ops->phy_reset(ap);
2061a47a 1669
52783c5d
TH
1670 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1671 dev = &ap->device[i];
c19ba8af 1672
52783c5d
TH
1673 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1674 dev->class != ATA_DEV_UNKNOWN)
1675 classes[dev->devno] = dev->class;
1676 else
1677 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1678
52783c5d 1679 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1680 }
1da177e4 1681
52783c5d 1682 ata_port_probe(ap);
2044470c 1683
b6079ca4
AC
1684 /* after the reset the device state is PIO 0 and the controller
1685 state is undefined. Record the mode */
1686
1687 for (i = 0; i < ATA_MAX_DEVICES; i++)
1688 ap->device[i].pio_mode = XFER_PIO_0;
1689
28ca5c57 1690 /* read IDENTIFY page and configure devices */
1da177e4 1691 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1692 dev = &ap->device[i];
28ca5c57 1693
ec573755
TH
1694 if (tries[i])
1695 dev->class = classes[i];
ffeae418 1696
14d2bac1 1697 if (!ata_dev_enabled(dev))
ffeae418 1698 continue;
ffeae418 1699
bff04647
TH
1700 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1701 dev->id);
14d2bac1
TH
1702 if (rc)
1703 goto fail;
1704
efdaedc4
TH
1705 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1706 rc = ata_dev_configure(dev);
1707 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1708 if (rc)
1709 goto fail;
1da177e4
LT
1710 }
1711
e82cbdb9 1712 /* configure transfer mode */
3adcebb2 1713 rc = ata_set_mode(ap, &dev);
51713d35
TH
1714 if (rc) {
1715 down_xfermask = 1;
1716 goto fail;
e82cbdb9 1717 }
1da177e4 1718
e82cbdb9
TH
1719 for (i = 0; i < ATA_MAX_DEVICES; i++)
1720 if (ata_dev_enabled(&ap->device[i]))
1721 return 0;
1da177e4 1722
e82cbdb9
TH
1723 /* no device present, disable port */
1724 ata_port_disable(ap);
1da177e4 1725 ap->ops->port_disable(ap);
96072e69 1726 return -ENODEV;
14d2bac1
TH
1727
1728 fail:
1729 switch (rc) {
1730 case -EINVAL:
1731 case -ENODEV:
1732 tries[dev->devno] = 0;
1733 break;
1734 case -EIO:
3c567b7d 1735 sata_down_spd_limit(ap);
14d2bac1
TH
1736 /* fall through */
1737 default:
1738 tries[dev->devno]--;
1739 if (down_xfermask &&
3373efd8 1740 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1741 tries[dev->devno] = 0;
1742 }
1743
ec573755 1744 if (!tries[dev->devno]) {
3373efd8
TH
1745 ata_down_xfermask_limit(dev, 1);
1746 ata_dev_disable(dev);
ec573755
TH
1747 }
1748
14d2bac1 1749 goto retry;
1da177e4
LT
1750}
1751
1752/**
0cba632b
JG
1753 * ata_port_probe - Mark port as enabled
1754 * @ap: Port for which we indicate enablement
1da177e4 1755 *
0cba632b
JG
1756 * Modify @ap data structure such that the system
1757 * thinks that the entire port is enabled.
1758 *
cca3974e 1759 * LOCKING: host lock, or some other form of
0cba632b 1760 * serialization.
1da177e4
LT
1761 */
1762
1763void ata_port_probe(struct ata_port *ap)
1764{
198e0fed 1765 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1766}
1767
3be680b7
TH
1768/**
1769 * sata_print_link_status - Print SATA link status
1770 * @ap: SATA port to printk link status about
1771 *
1772 * This function prints link speed and status of a SATA link.
1773 *
1774 * LOCKING:
1775 * None.
1776 */
1777static void sata_print_link_status(struct ata_port *ap)
1778{
6d5f9732 1779 u32 sstatus, scontrol, tmp;
3be680b7 1780
81952c54 1781 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1782 return;
81952c54 1783 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1784
81952c54 1785 if (ata_port_online(ap)) {
3be680b7 1786 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1787 ata_port_printk(ap, KERN_INFO,
1788 "SATA link up %s (SStatus %X SControl %X)\n",
1789 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1790 } else {
f15a1daf
TH
1791 ata_port_printk(ap, KERN_INFO,
1792 "SATA link down (SStatus %X SControl %X)\n",
1793 sstatus, scontrol);
3be680b7
TH
1794 }
1795}
1796
1da177e4 1797/**
780a87f7
JG
1798 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1799 * @ap: SATA port associated with target SATA PHY.
1da177e4 1800 *
780a87f7
JG
1801 * This function issues commands to standard SATA Sxxx
1802 * PHY registers, to wake up the phy (and device), and
1803 * clear any reset condition.
1da177e4
LT
1804 *
1805 * LOCKING:
0cba632b 1806 * PCI/etc. bus probe sem.
1da177e4
LT
1807 *
1808 */
1809void __sata_phy_reset(struct ata_port *ap)
1810{
1811 u32 sstatus;
1812 unsigned long timeout = jiffies + (HZ * 5);
1813
1814 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1815 /* issue phy wake/reset */
81952c54 1816 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1817 /* Couldn't find anything in SATA I/II specs, but
1818 * AHCI-1.1 10.4.2 says at least 1 ms. */
1819 mdelay(1);
1da177e4 1820 }
81952c54
TH
1821 /* phy wake/clear reset */
1822 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1823
1824 /* wait for phy to become ready, if necessary */
1825 do {
1826 msleep(200);
81952c54 1827 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1828 if ((sstatus & 0xf) != 1)
1829 break;
1830 } while (time_before(jiffies, timeout));
1831
3be680b7
TH
1832 /* print link status */
1833 sata_print_link_status(ap);
656563e3 1834
3be680b7 1835 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1836 if (!ata_port_offline(ap))
1da177e4 1837 ata_port_probe(ap);
3be680b7 1838 else
1da177e4 1839 ata_port_disable(ap);
1da177e4 1840
198e0fed 1841 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1842 return;
1843
1844 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1845 ata_port_disable(ap);
1846 return;
1847 }
1848
1849 ap->cbl = ATA_CBL_SATA;
1850}
1851
1852/**
780a87f7
JG
1853 * sata_phy_reset - Reset SATA bus.
1854 * @ap: SATA port associated with target SATA PHY.
1da177e4 1855 *
780a87f7
JG
1856 * This function resets the SATA bus, and then probes
1857 * the bus for devices.
1da177e4
LT
1858 *
1859 * LOCKING:
0cba632b 1860 * PCI/etc. bus probe sem.
1da177e4
LT
1861 *
1862 */
1863void sata_phy_reset(struct ata_port *ap)
1864{
1865 __sata_phy_reset(ap);
198e0fed 1866 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1867 return;
1868 ata_bus_reset(ap);
1869}
1870
ebdfca6e
AC
1871/**
1872 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1873 * @adev: device
1874 *
1875 * Obtain the other device on the same cable, or if none is
1876 * present NULL is returned
1877 */
2e9edbf8 1878
3373efd8 1879struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1880{
3373efd8 1881 struct ata_port *ap = adev->ap;
ebdfca6e 1882 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1883 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1884 return NULL;
1885 return pair;
1886}
1887
1da177e4 1888/**
780a87f7
JG
1889 * ata_port_disable - Disable port.
1890 * @ap: Port to be disabled.
1da177e4 1891 *
780a87f7
JG
1892 * Modify @ap data structure such that the system
1893 * thinks that the entire port is disabled, and should
1894 * never attempt to probe or communicate with devices
1895 * on this port.
1896 *
cca3974e 1897 * LOCKING: host lock, or some other form of
780a87f7 1898 * serialization.
1da177e4
LT
1899 */
1900
1901void ata_port_disable(struct ata_port *ap)
1902{
1903 ap->device[0].class = ATA_DEV_NONE;
1904 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1905 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1906}
1907
1c3fae4d 1908/**
3c567b7d 1909 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1910 * @ap: Port to adjust SATA spd limit for
1911 *
1912 * Adjust SATA spd limit of @ap downward. Note that this
1913 * function only adjusts the limit. The change must be applied
3c567b7d 1914 * using sata_set_spd().
1c3fae4d
TH
1915 *
1916 * LOCKING:
1917 * Inherited from caller.
1918 *
1919 * RETURNS:
1920 * 0 on success, negative errno on failure
1921 */
3c567b7d 1922int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1923{
81952c54
TH
1924 u32 sstatus, spd, mask;
1925 int rc, highbit;
1c3fae4d 1926
81952c54
TH
1927 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1928 if (rc)
1929 return rc;
1c3fae4d
TH
1930
1931 mask = ap->sata_spd_limit;
1932 if (mask <= 1)
1933 return -EINVAL;
1934 highbit = fls(mask) - 1;
1935 mask &= ~(1 << highbit);
1936
81952c54 1937 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1938 if (spd <= 1)
1939 return -EINVAL;
1940 spd--;
1941 mask &= (1 << spd) - 1;
1942 if (!mask)
1943 return -EINVAL;
1944
1945 ap->sata_spd_limit = mask;
1946
f15a1daf
TH
1947 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1948 sata_spd_string(fls(mask)));
1c3fae4d
TH
1949
1950 return 0;
1951}
1952
3c567b7d 1953static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1954{
1955 u32 spd, limit;
1956
1957 if (ap->sata_spd_limit == UINT_MAX)
1958 limit = 0;
1959 else
1960 limit = fls(ap->sata_spd_limit);
1961
1962 spd = (*scontrol >> 4) & 0xf;
1963 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1964
1965 return spd != limit;
1966}
1967
1968/**
3c567b7d 1969 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1970 * @ap: Port in question
1971 *
1972 * Test whether the spd limit in SControl matches
1973 * @ap->sata_spd_limit. This function is used to determine
1974 * whether hardreset is necessary to apply SATA spd
1975 * configuration.
1976 *
1977 * LOCKING:
1978 * Inherited from caller.
1979 *
1980 * RETURNS:
1981 * 1 if SATA spd configuration is needed, 0 otherwise.
1982 */
3c567b7d 1983int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1984{
1985 u32 scontrol;
1986
81952c54 1987 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1988 return 0;
1989
3c567b7d 1990 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1991}
1992
1993/**
3c567b7d 1994 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1995 * @ap: Port to set SATA spd for
1996 *
1997 * Set SATA spd of @ap according to sata_spd_limit.
1998 *
1999 * LOCKING:
2000 * Inherited from caller.
2001 *
2002 * RETURNS:
2003 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2004 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2005 */
3c567b7d 2006int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2007{
2008 u32 scontrol;
81952c54 2009 int rc;
1c3fae4d 2010
81952c54
TH
2011 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2012 return rc;
1c3fae4d 2013
3c567b7d 2014 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2015 return 0;
2016
81952c54
TH
2017 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2018 return rc;
2019
1c3fae4d
TH
2020 return 1;
2021}
2022
452503f9
AC
2023/*
2024 * This mode timing computation functionality is ported over from
2025 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2026 */
2027/*
b352e57d 2028 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2029 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2030 * for UDMA6, which is currently supported only by Maxtor drives.
2031 *
2032 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2033 */
2034
2035static const struct ata_timing ata_timing[] = {
2036
2037 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2038 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2039 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2040 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2041
b352e57d
AC
2042 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2043 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2044 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2045 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2046 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2047
2048/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2049
452503f9
AC
2050 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2051 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2052 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2053
452503f9
AC
2054 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2055 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2056 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2057
b352e57d
AC
2058 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2059 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2060 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2061 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2062
2063 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2064 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2065 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2066
2067/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2068
2069 { 0xFF }
2070};
2071
2072#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2073#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2074
2075static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2076{
2077 q->setup = EZ(t->setup * 1000, T);
2078 q->act8b = EZ(t->act8b * 1000, T);
2079 q->rec8b = EZ(t->rec8b * 1000, T);
2080 q->cyc8b = EZ(t->cyc8b * 1000, T);
2081 q->active = EZ(t->active * 1000, T);
2082 q->recover = EZ(t->recover * 1000, T);
2083 q->cycle = EZ(t->cycle * 1000, T);
2084 q->udma = EZ(t->udma * 1000, UT);
2085}
2086
2087void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2088 struct ata_timing *m, unsigned int what)
2089{
2090 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2091 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2092 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2093 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2094 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2095 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2096 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2097 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2098}
2099
2100static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2101{
2102 const struct ata_timing *t;
2103
2104 for (t = ata_timing; t->mode != speed; t++)
91190758 2105 if (t->mode == 0xFF)
452503f9 2106 return NULL;
2e9edbf8 2107 return t;
452503f9
AC
2108}
2109
2110int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2111 struct ata_timing *t, int T, int UT)
2112{
2113 const struct ata_timing *s;
2114 struct ata_timing p;
2115
2116 /*
2e9edbf8 2117 * Find the mode.
75b1f2f8 2118 */
452503f9
AC
2119
2120 if (!(s = ata_timing_find_mode(speed)))
2121 return -EINVAL;
2122
75b1f2f8
AL
2123 memcpy(t, s, sizeof(*s));
2124
452503f9
AC
2125 /*
2126 * If the drive is an EIDE drive, it can tell us it needs extended
2127 * PIO/MW_DMA cycle timing.
2128 */
2129
2130 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2131 memset(&p, 0, sizeof(p));
2132 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2133 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2134 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2135 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2136 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2137 }
2138 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2139 }
2140
2141 /*
2142 * Convert the timing to bus clock counts.
2143 */
2144
75b1f2f8 2145 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2146
2147 /*
c893a3ae
RD
2148 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2149 * S.M.A.R.T * and some other commands. We have to ensure that the
2150 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2151 */
2152
2153 if (speed > XFER_PIO_4) {
2154 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2155 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2156 }
2157
2158 /*
c893a3ae 2159 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2160 */
2161
2162 if (t->act8b + t->rec8b < t->cyc8b) {
2163 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2164 t->rec8b = t->cyc8b - t->act8b;
2165 }
2166
2167 if (t->active + t->recover < t->cycle) {
2168 t->active += (t->cycle - (t->active + t->recover)) / 2;
2169 t->recover = t->cycle - t->active;
2170 }
2171
2172 return 0;
2173}
2174
cf176e1a
TH
2175/**
2176 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2177 * @dev: Device to adjust xfer masks
2178 * @force_pio0: Force PIO0
2179 *
2180 * Adjust xfer masks of @dev downward. Note that this function
2181 * does not apply the change. Invoking ata_set_mode() afterwards
2182 * will apply the limit.
2183 *
2184 * LOCKING:
2185 * Inherited from caller.
2186 *
2187 * RETURNS:
2188 * 0 on success, negative errno on failure
2189 */
3373efd8 2190int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2191{
2192 unsigned long xfer_mask;
2193 int highbit;
2194
2195 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2196 dev->udma_mask);
2197
2198 if (!xfer_mask)
2199 goto fail;
2200 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2201 if (xfer_mask & ATA_MASK_UDMA)
2202 xfer_mask &= ~ATA_MASK_MWDMA;
2203
2204 highbit = fls(xfer_mask) - 1;
2205 xfer_mask &= ~(1 << highbit);
2206 if (force_pio0)
2207 xfer_mask &= 1 << ATA_SHIFT_PIO;
2208 if (!xfer_mask)
2209 goto fail;
2210
2211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2212 &dev->udma_mask);
2213
f15a1daf
TH
2214 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2215 ata_mode_string(xfer_mask));
cf176e1a
TH
2216
2217 return 0;
2218
2219 fail:
2220 return -EINVAL;
2221}
2222
3373efd8 2223static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2224{
baa1e78a 2225 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2226 unsigned int err_mask;
2227 int rc;
1da177e4 2228
e8384607 2229 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2230 if (dev->xfer_shift == ATA_SHIFT_PIO)
2231 dev->flags |= ATA_DFLAG_PIO;
2232
3373efd8 2233 err_mask = ata_dev_set_xfermode(dev);
83206a29 2234 if (err_mask) {
f15a1daf
TH
2235 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2236 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2237 return -EIO;
2238 }
1da177e4 2239
baa1e78a 2240 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2241 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2242 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2243 if (rc)
83206a29 2244 return rc;
48a8a14f 2245
23e71c3d
TH
2246 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2247 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2248
f15a1daf
TH
2249 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2250 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2251 return 0;
1da177e4
LT
2252}
2253
1da177e4
LT
2254/**
2255 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2256 * @ap: port on which timings will be programmed
e82cbdb9 2257 * @r_failed_dev: out paramter for failed device
1da177e4 2258 *
e82cbdb9
TH
2259 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2260 * ata_set_mode() fails, pointer to the failing device is
2261 * returned in @r_failed_dev.
780a87f7 2262 *
1da177e4 2263 * LOCKING:
0cba632b 2264 * PCI/etc. bus probe sem.
e82cbdb9
TH
2265 *
2266 * RETURNS:
2267 * 0 on success, negative errno otherwise
1da177e4 2268 */
1ad8e7f9 2269int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2270{
e8e0619f 2271 struct ata_device *dev;
e82cbdb9 2272 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2273
3adcebb2
TH
2274 /* has private set_mode? */
2275 if (ap->ops->set_mode) {
2276 /* FIXME: make ->set_mode handle no device case and
2277 * return error code and failing device on failure.
2278 */
2279 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2280 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2281 ap->ops->set_mode(ap);
2282 break;
2283 }
2284 }
2285 return 0;
2286 }
2287
a6d5a51c
TH
2288 /* step 1: calculate xfer_mask */
2289 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2290 unsigned int pio_mask, dma_mask;
a6d5a51c 2291
e8e0619f
TH
2292 dev = &ap->device[i];
2293
e1211e3f 2294 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2295 continue;
2296
3373efd8 2297 ata_dev_xfermask(dev);
1da177e4 2298
acf356b1
TH
2299 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2300 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2301 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2302 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2303
4f65977d 2304 found = 1;
5444a6f4
AC
2305 if (dev->dma_mode)
2306 used_dma = 1;
a6d5a51c 2307 }
4f65977d 2308 if (!found)
e82cbdb9 2309 goto out;
a6d5a51c
TH
2310
2311 /* step 2: always set host PIO timings */
e8e0619f
TH
2312 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2313 dev = &ap->device[i];
2314 if (!ata_dev_enabled(dev))
2315 continue;
2316
2317 if (!dev->pio_mode) {
f15a1daf 2318 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2319 rc = -EINVAL;
e82cbdb9 2320 goto out;
e8e0619f
TH
2321 }
2322
2323 dev->xfer_mode = dev->pio_mode;
2324 dev->xfer_shift = ATA_SHIFT_PIO;
2325 if (ap->ops->set_piomode)
2326 ap->ops->set_piomode(ap, dev);
2327 }
1da177e4 2328
a6d5a51c 2329 /* step 3: set host DMA timings */
e8e0619f
TH
2330 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2331 dev = &ap->device[i];
2332
2333 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2334 continue;
2335
2336 dev->xfer_mode = dev->dma_mode;
2337 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2338 if (ap->ops->set_dmamode)
2339 ap->ops->set_dmamode(ap, dev);
2340 }
1da177e4
LT
2341
2342 /* step 4: update devices' xfer mode */
83206a29 2343 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2344 dev = &ap->device[i];
1da177e4 2345
02670bf3
TH
2346 /* don't udpate suspended devices' xfer mode */
2347 if (!ata_dev_ready(dev))
83206a29
TH
2348 continue;
2349
3373efd8 2350 rc = ata_dev_set_mode(dev);
5bbc53f4 2351 if (rc)
e82cbdb9 2352 goto out;
83206a29 2353 }
1da177e4 2354
e8e0619f
TH
2355 /* Record simplex status. If we selected DMA then the other
2356 * host channels are not permitted to do so.
5444a6f4 2357 */
cca3974e
JG
2358 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2359 ap->host->simplex_claimed = 1;
5444a6f4 2360
e8e0619f 2361 /* step5: chip specific finalisation */
1da177e4
LT
2362 if (ap->ops->post_set_mode)
2363 ap->ops->post_set_mode(ap);
2364
e82cbdb9
TH
2365 out:
2366 if (rc)
2367 *r_failed_dev = dev;
2368 return rc;
1da177e4
LT
2369}
2370
1fdffbce
JG
2371/**
2372 * ata_tf_to_host - issue ATA taskfile to host controller
2373 * @ap: port to which command is being issued
2374 * @tf: ATA taskfile register set
2375 *
2376 * Issues ATA taskfile register set to ATA host controller,
2377 * with proper synchronization with interrupt handler and
2378 * other threads.
2379 *
2380 * LOCKING:
cca3974e 2381 * spin_lock_irqsave(host lock)
1fdffbce
JG
2382 */
2383
2384static inline void ata_tf_to_host(struct ata_port *ap,
2385 const struct ata_taskfile *tf)
2386{
2387 ap->ops->tf_load(ap, tf);
2388 ap->ops->exec_command(ap, tf);
2389}
2390
1da177e4
LT
2391/**
2392 * ata_busy_sleep - sleep until BSY clears, or timeout
2393 * @ap: port containing status register to be polled
2394 * @tmout_pat: impatience timeout
2395 * @tmout: overall timeout
2396 *
780a87f7
JG
2397 * Sleep until ATA Status register bit BSY clears,
2398 * or a timeout occurs.
2399 *
d1adc1bb
TH
2400 * LOCKING:
2401 * Kernel thread context (may sleep).
2402 *
2403 * RETURNS:
2404 * 0 on success, -errno otherwise.
1da177e4 2405 */
d1adc1bb
TH
2406int ata_busy_sleep(struct ata_port *ap,
2407 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2408{
2409 unsigned long timer_start, timeout;
2410 u8 status;
2411
2412 status = ata_busy_wait(ap, ATA_BUSY, 300);
2413 timer_start = jiffies;
2414 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2415 while (status != 0xff && (status & ATA_BUSY) &&
2416 time_before(jiffies, timeout)) {
1da177e4
LT
2417 msleep(50);
2418 status = ata_busy_wait(ap, ATA_BUSY, 3);
2419 }
2420
d1adc1bb 2421 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2422 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2423 "port is slow to respond, please be patient "
2424 "(Status 0x%x)\n", status);
1da177e4
LT
2425
2426 timeout = timer_start + tmout;
d1adc1bb
TH
2427 while (status != 0xff && (status & ATA_BUSY) &&
2428 time_before(jiffies, timeout)) {
1da177e4
LT
2429 msleep(50);
2430 status = ata_chk_status(ap);
2431 }
2432
d1adc1bb
TH
2433 if (status == 0xff)
2434 return -ENODEV;
2435
1da177e4 2436 if (status & ATA_BUSY) {
f15a1daf 2437 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2438 "(%lu secs, Status 0x%x)\n",
2439 tmout / HZ, status);
d1adc1bb 2440 return -EBUSY;
1da177e4
LT
2441 }
2442
2443 return 0;
2444}
2445
2446static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2447{
2448 struct ata_ioports *ioaddr = &ap->ioaddr;
2449 unsigned int dev0 = devmask & (1 << 0);
2450 unsigned int dev1 = devmask & (1 << 1);
2451 unsigned long timeout;
2452
2453 /* if device 0 was found in ata_devchk, wait for its
2454 * BSY bit to clear
2455 */
2456 if (dev0)
2457 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2458
2459 /* if device 1 was found in ata_devchk, wait for
2460 * register access, then wait for BSY to clear
2461 */
2462 timeout = jiffies + ATA_TMOUT_BOOT;
2463 while (dev1) {
2464 u8 nsect, lbal;
2465
2466 ap->ops->dev_select(ap, 1);
2467 if (ap->flags & ATA_FLAG_MMIO) {
2468 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2469 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2470 } else {
2471 nsect = inb(ioaddr->nsect_addr);
2472 lbal = inb(ioaddr->lbal_addr);
2473 }
2474 if ((nsect == 1) && (lbal == 1))
2475 break;
2476 if (time_after(jiffies, timeout)) {
2477 dev1 = 0;
2478 break;
2479 }
2480 msleep(50); /* give drive a breather */
2481 }
2482 if (dev1)
2483 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2484
2485 /* is all this really necessary? */
2486 ap->ops->dev_select(ap, 0);
2487 if (dev1)
2488 ap->ops->dev_select(ap, 1);
2489 if (dev0)
2490 ap->ops->dev_select(ap, 0);
2491}
2492
1da177e4
LT
2493static unsigned int ata_bus_softreset(struct ata_port *ap,
2494 unsigned int devmask)
2495{
2496 struct ata_ioports *ioaddr = &ap->ioaddr;
2497
2498 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2499
2500 /* software reset. causes dev0 to be selected */
2501 if (ap->flags & ATA_FLAG_MMIO) {
2502 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2503 udelay(20); /* FIXME: flush */
2504 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2505 udelay(20); /* FIXME: flush */
2506 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2507 } else {
2508 outb(ap->ctl, ioaddr->ctl_addr);
2509 udelay(10);
2510 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2511 udelay(10);
2512 outb(ap->ctl, ioaddr->ctl_addr);
2513 }
2514
2515 /* spec mandates ">= 2ms" before checking status.
2516 * We wait 150ms, because that was the magic delay used for
2517 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2518 * between when the ATA command register is written, and then
2519 * status is checked. Because waiting for "a while" before
2520 * checking status is fine, post SRST, we perform this magic
2521 * delay here as well.
09c7ad79
AC
2522 *
2523 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2524 */
2525 msleep(150);
2526
2e9edbf8 2527 /* Before we perform post reset processing we want to see if
298a41ca
TH
2528 * the bus shows 0xFF because the odd clown forgets the D7
2529 * pulldown resistor.
2530 */
d1adc1bb
TH
2531 if (ata_check_status(ap) == 0xFF)
2532 return 0;
09c7ad79 2533
1da177e4
LT
2534 ata_bus_post_reset(ap, devmask);
2535
2536 return 0;
2537}
2538
2539/**
2540 * ata_bus_reset - reset host port and associated ATA channel
2541 * @ap: port to reset
2542 *
2543 * This is typically the first time we actually start issuing
2544 * commands to the ATA channel. We wait for BSY to clear, then
2545 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2546 * result. Determine what devices, if any, are on the channel
2547 * by looking at the device 0/1 error register. Look at the signature
2548 * stored in each device's taskfile registers, to determine if
2549 * the device is ATA or ATAPI.
2550 *
2551 * LOCKING:
0cba632b 2552 * PCI/etc. bus probe sem.
cca3974e 2553 * Obtains host lock.
1da177e4
LT
2554 *
2555 * SIDE EFFECTS:
198e0fed 2556 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2557 */
2558
2559void ata_bus_reset(struct ata_port *ap)
2560{
2561 struct ata_ioports *ioaddr = &ap->ioaddr;
2562 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2563 u8 err;
aec5c3c1 2564 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2565
2566 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2567
2568 /* determine if device 0/1 are present */
2569 if (ap->flags & ATA_FLAG_SATA_RESET)
2570 dev0 = 1;
2571 else {
2572 dev0 = ata_devchk(ap, 0);
2573 if (slave_possible)
2574 dev1 = ata_devchk(ap, 1);
2575 }
2576
2577 if (dev0)
2578 devmask |= (1 << 0);
2579 if (dev1)
2580 devmask |= (1 << 1);
2581
2582 /* select device 0 again */
2583 ap->ops->dev_select(ap, 0);
2584
2585 /* issue bus reset */
2586 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2587 if (ata_bus_softreset(ap, devmask))
2588 goto err_out;
1da177e4
LT
2589
2590 /*
2591 * determine by signature whether we have ATA or ATAPI devices
2592 */
b4dc7623 2593 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2594 if ((slave_possible) && (err != 0x81))
b4dc7623 2595 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2596
2597 /* re-enable interrupts */
2598 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2599 ata_irq_on(ap);
2600
2601 /* is double-select really necessary? */
2602 if (ap->device[1].class != ATA_DEV_NONE)
2603 ap->ops->dev_select(ap, 1);
2604 if (ap->device[0].class != ATA_DEV_NONE)
2605 ap->ops->dev_select(ap, 0);
2606
2607 /* if no devices were detected, disable this port */
2608 if ((ap->device[0].class == ATA_DEV_NONE) &&
2609 (ap->device[1].class == ATA_DEV_NONE))
2610 goto err_out;
2611
2612 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2613 /* set up device control for ATA_FLAG_SATA_RESET */
2614 if (ap->flags & ATA_FLAG_MMIO)
2615 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2616 else
2617 outb(ap->ctl, ioaddr->ctl_addr);
2618 }
2619
2620 DPRINTK("EXIT\n");
2621 return;
2622
2623err_out:
f15a1daf 2624 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2625 ap->ops->port_disable(ap);
2626
2627 DPRINTK("EXIT\n");
2628}
2629
d7bb4cc7
TH
2630/**
2631 * sata_phy_debounce - debounce SATA phy status
2632 * @ap: ATA port to debounce SATA phy status for
2633 * @params: timing parameters { interval, duratinon, timeout } in msec
2634 *
2635 * Make sure SStatus of @ap reaches stable state, determined by
2636 * holding the same value where DET is not 1 for @duration polled
2637 * every @interval, before @timeout. Timeout constraints the
2638 * beginning of the stable state. Because, after hot unplugging,
2639 * DET gets stuck at 1 on some controllers, this functions waits
2640 * until timeout then returns 0 if DET is stable at 1.
2641 *
2642 * LOCKING:
2643 * Kernel thread context (may sleep)
2644 *
2645 * RETURNS:
2646 * 0 on success, -errno on failure.
2647 */
2648int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2649{
d7bb4cc7
TH
2650 unsigned long interval_msec = params[0];
2651 unsigned long duration = params[1] * HZ / 1000;
2652 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2653 unsigned long last_jiffies;
2654 u32 last, cur;
2655 int rc;
2656
2657 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2658 return rc;
2659 cur &= 0xf;
2660
2661 last = cur;
2662 last_jiffies = jiffies;
2663
2664 while (1) {
2665 msleep(interval_msec);
2666 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2667 return rc;
2668 cur &= 0xf;
2669
2670 /* DET stable? */
2671 if (cur == last) {
2672 if (cur == 1 && time_before(jiffies, timeout))
2673 continue;
2674 if (time_after(jiffies, last_jiffies + duration))
2675 return 0;
2676 continue;
2677 }
2678
2679 /* unstable, start over */
2680 last = cur;
2681 last_jiffies = jiffies;
2682
2683 /* check timeout */
2684 if (time_after(jiffies, timeout))
2685 return -EBUSY;
2686 }
2687}
2688
2689/**
2690 * sata_phy_resume - resume SATA phy
2691 * @ap: ATA port to resume SATA phy for
2692 * @params: timing parameters { interval, duratinon, timeout } in msec
2693 *
2694 * Resume SATA phy of @ap and debounce it.
2695 *
2696 * LOCKING:
2697 * Kernel thread context (may sleep)
2698 *
2699 * RETURNS:
2700 * 0 on success, -errno on failure.
2701 */
2702int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2703{
2704 u32 scontrol;
81952c54
TH
2705 int rc;
2706
2707 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2708 return rc;
7a7921e8 2709
852ee16a 2710 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2711
2712 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2713 return rc;
7a7921e8 2714
d7bb4cc7
TH
2715 /* Some PHYs react badly if SStatus is pounded immediately
2716 * after resuming. Delay 200ms before debouncing.
2717 */
2718 msleep(200);
7a7921e8 2719
d7bb4cc7 2720 return sata_phy_debounce(ap, params);
7a7921e8
TH
2721}
2722
f5914a46
TH
2723static void ata_wait_spinup(struct ata_port *ap)
2724{
2725 struct ata_eh_context *ehc = &ap->eh_context;
2726 unsigned long end, secs;
2727 int rc;
2728
2729 /* first, debounce phy if SATA */
2730 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2731 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2732
2733 /* if debounced successfully and offline, no need to wait */
2734 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2735 return;
2736 }
2737
2738 /* okay, let's give the drive time to spin up */
2739 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2740 secs = ((end - jiffies) + HZ - 1) / HZ;
2741
2742 if (time_after(jiffies, end))
2743 return;
2744
2745 if (secs > 5)
2746 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2747 "(%lu secs)\n", secs);
2748
2749 schedule_timeout_uninterruptible(end - jiffies);
2750}
2751
2752/**
2753 * ata_std_prereset - prepare for reset
2754 * @ap: ATA port to be reset
2755 *
2756 * @ap is about to be reset. Initialize it.
2757 *
2758 * LOCKING:
2759 * Kernel thread context (may sleep)
2760 *
2761 * RETURNS:
2762 * 0 on success, -errno otherwise.
2763 */
2764int ata_std_prereset(struct ata_port *ap)
2765{
2766 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2767 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2768 int rc;
2769
28324304
TH
2770 /* handle link resume & hotplug spinup */
2771 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2772 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2773 ehc->i.action |= ATA_EH_HARDRESET;
2774
2775 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2776 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2777 ata_wait_spinup(ap);
f5914a46
TH
2778
2779 /* if we're about to do hardreset, nothing more to do */
2780 if (ehc->i.action & ATA_EH_HARDRESET)
2781 return 0;
2782
2783 /* if SATA, resume phy */
2784 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2785 rc = sata_phy_resume(ap, timing);
2786 if (rc && rc != -EOPNOTSUPP) {
2787 /* phy resume failed */
2788 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2789 "link for reset (errno=%d)\n", rc);
2790 return rc;
2791 }
2792 }
2793
2794 /* Wait for !BSY if the controller can wait for the first D2H
2795 * Reg FIS and we don't know that no device is attached.
2796 */
2797 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2798 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2799
2800 return 0;
2801}
2802
c2bd5804
TH
2803/**
2804 * ata_std_softreset - reset host port via ATA SRST
2805 * @ap: port to reset
c2bd5804
TH
2806 * @classes: resulting classes of attached devices
2807 *
52783c5d 2808 * Reset host port using ATA SRST.
c2bd5804
TH
2809 *
2810 * LOCKING:
2811 * Kernel thread context (may sleep)
2812 *
2813 * RETURNS:
2814 * 0 on success, -errno otherwise.
2815 */
2bf2cb26 2816int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2817{
2818 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2819 unsigned int devmask = 0, err_mask;
2820 u8 err;
2821
2822 DPRINTK("ENTER\n");
2823
81952c54 2824 if (ata_port_offline(ap)) {
3a39746a
TH
2825 classes[0] = ATA_DEV_NONE;
2826 goto out;
2827 }
2828
c2bd5804
TH
2829 /* determine if device 0/1 are present */
2830 if (ata_devchk(ap, 0))
2831 devmask |= (1 << 0);
2832 if (slave_possible && ata_devchk(ap, 1))
2833 devmask |= (1 << 1);
2834
c2bd5804
TH
2835 /* select device 0 again */
2836 ap->ops->dev_select(ap, 0);
2837
2838 /* issue bus reset */
2839 DPRINTK("about to softreset, devmask=%x\n", devmask);
2840 err_mask = ata_bus_softreset(ap, devmask);
2841 if (err_mask) {
f15a1daf
TH
2842 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2843 err_mask);
c2bd5804
TH
2844 return -EIO;
2845 }
2846
2847 /* determine by signature whether we have ATA or ATAPI devices */
2848 classes[0] = ata_dev_try_classify(ap, 0, &err);
2849 if (slave_possible && err != 0x81)
2850 classes[1] = ata_dev_try_classify(ap, 1, &err);
2851
3a39746a 2852 out:
c2bd5804
TH
2853 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2854 return 0;
2855}
2856
2857/**
b6103f6d 2858 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 2859 * @ap: port to reset
b6103f6d 2860 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
2861 *
2862 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2863 *
2864 * LOCKING:
2865 * Kernel thread context (may sleep)
2866 *
2867 * RETURNS:
2868 * 0 on success, -errno otherwise.
2869 */
b6103f6d 2870int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 2871{
852ee16a 2872 u32 scontrol;
81952c54 2873 int rc;
852ee16a 2874
c2bd5804
TH
2875 DPRINTK("ENTER\n");
2876
3c567b7d 2877 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2878 /* SATA spec says nothing about how to reconfigure
2879 * spd. To be on the safe side, turn off phy during
2880 * reconfiguration. This works for at least ICH7 AHCI
2881 * and Sil3124.
2882 */
81952c54 2883 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2884 goto out;
81952c54 2885
a34b6fc0 2886 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2887
2888 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 2889 goto out;
1c3fae4d 2890
3c567b7d 2891 sata_set_spd(ap);
1c3fae4d
TH
2892 }
2893
2894 /* issue phy wake/reset */
81952c54 2895 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2896 goto out;
81952c54 2897
852ee16a 2898 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2899
2900 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 2901 goto out;
c2bd5804 2902
1c3fae4d 2903 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2904 * 10.4.2 says at least 1 ms.
2905 */
2906 msleep(1);
2907
1c3fae4d 2908 /* bring phy back */
b6103f6d
TH
2909 rc = sata_phy_resume(ap, timing);
2910 out:
2911 DPRINTK("EXIT, rc=%d\n", rc);
2912 return rc;
2913}
2914
2915/**
2916 * sata_std_hardreset - reset host port via SATA phy reset
2917 * @ap: port to reset
2918 * @class: resulting class of attached device
2919 *
2920 * SATA phy-reset host port using DET bits of SControl register,
2921 * wait for !BSY and classify the attached device.
2922 *
2923 * LOCKING:
2924 * Kernel thread context (may sleep)
2925 *
2926 * RETURNS:
2927 * 0 on success, -errno otherwise.
2928 */
2929int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2930{
2931 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2932 int rc;
2933
2934 DPRINTK("ENTER\n");
2935
2936 /* do hardreset */
2937 rc = sata_port_hardreset(ap, timing);
2938 if (rc) {
2939 ata_port_printk(ap, KERN_ERR,
2940 "COMRESET failed (errno=%d)\n", rc);
2941 return rc;
2942 }
c2bd5804 2943
c2bd5804 2944 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2945 if (ata_port_offline(ap)) {
c2bd5804
TH
2946 *class = ATA_DEV_NONE;
2947 DPRINTK("EXIT, link offline\n");
2948 return 0;
2949 }
2950
2951 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2952 ata_port_printk(ap, KERN_ERR,
2953 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2954 return -EIO;
2955 }
2956
3a39746a
TH
2957 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2958
c2bd5804
TH
2959 *class = ata_dev_try_classify(ap, 0, NULL);
2960
2961 DPRINTK("EXIT, class=%u\n", *class);
2962 return 0;
2963}
2964
2965/**
2966 * ata_std_postreset - standard postreset callback
2967 * @ap: the target ata_port
2968 * @classes: classes of attached devices
2969 *
2970 * This function is invoked after a successful reset. Note that
2971 * the device might have been reset more than once using
2972 * different reset methods before postreset is invoked.
c2bd5804 2973 *
c2bd5804
TH
2974 * LOCKING:
2975 * Kernel thread context (may sleep)
2976 */
2977void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2978{
dc2b3515
TH
2979 u32 serror;
2980
c2bd5804
TH
2981 DPRINTK("ENTER\n");
2982
c2bd5804 2983 /* print link status */
81952c54 2984 sata_print_link_status(ap);
c2bd5804 2985
dc2b3515
TH
2986 /* clear SError */
2987 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2988 sata_scr_write(ap, SCR_ERROR, serror);
2989
3a39746a 2990 /* re-enable interrupts */
e3180499
TH
2991 if (!ap->ops->error_handler) {
2992 /* FIXME: hack. create a hook instead */
2993 if (ap->ioaddr.ctl_addr)
2994 ata_irq_on(ap);
2995 }
c2bd5804
TH
2996
2997 /* is double-select really necessary? */
2998 if (classes[0] != ATA_DEV_NONE)
2999 ap->ops->dev_select(ap, 1);
3000 if (classes[1] != ATA_DEV_NONE)
3001 ap->ops->dev_select(ap, 0);
3002
3a39746a
TH
3003 /* bail out if no device is present */
3004 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3005 DPRINTK("EXIT, no device\n");
3006 return;
3007 }
3008
3009 /* set up device control */
3010 if (ap->ioaddr.ctl_addr) {
3011 if (ap->flags & ATA_FLAG_MMIO)
3012 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3013 else
3014 outb(ap->ctl, ap->ioaddr.ctl_addr);
3015 }
c2bd5804
TH
3016
3017 DPRINTK("EXIT\n");
3018}
3019
623a3128
TH
3020/**
3021 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3022 * @dev: device to compare against
3023 * @new_class: class of the new device
3024 * @new_id: IDENTIFY page of the new device
3025 *
3026 * Compare @new_class and @new_id against @dev and determine
3027 * whether @dev is the device indicated by @new_class and
3028 * @new_id.
3029 *
3030 * LOCKING:
3031 * None.
3032 *
3033 * RETURNS:
3034 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3035 */
3373efd8
TH
3036static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3037 const u16 *new_id)
623a3128
TH
3038{
3039 const u16 *old_id = dev->id;
3040 unsigned char model[2][41], serial[2][21];
3041 u64 new_n_sectors;
3042
3043 if (dev->class != new_class) {
f15a1daf
TH
3044 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3045 dev->class, new_class);
623a3128
TH
3046 return 0;
3047 }
3048
3049 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3050 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3051 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3052 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3053 new_n_sectors = ata_id_n_sectors(new_id);
3054
3055 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3056 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3057 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3058 return 0;
3059 }
3060
3061 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3062 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3063 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3064 return 0;
3065 }
3066
3067 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3068 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3069 "%llu != %llu\n",
3070 (unsigned long long)dev->n_sectors,
3071 (unsigned long long)new_n_sectors);
623a3128
TH
3072 return 0;
3073 }
3074
3075 return 1;
3076}
3077
3078/**
3079 * ata_dev_revalidate - Revalidate ATA device
623a3128 3080 * @dev: device to revalidate
bff04647 3081 * @readid_flags: read ID flags
623a3128
TH
3082 *
3083 * Re-read IDENTIFY page and make sure @dev is still attached to
3084 * the port.
3085 *
3086 * LOCKING:
3087 * Kernel thread context (may sleep)
3088 *
3089 * RETURNS:
3090 * 0 on success, negative errno otherwise
3091 */
bff04647 3092int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3093{
5eb45c02 3094 unsigned int class = dev->class;
f15a1daf 3095 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3096 int rc;
3097
5eb45c02
TH
3098 if (!ata_dev_enabled(dev)) {
3099 rc = -ENODEV;
3100 goto fail;
3101 }
623a3128 3102
fe635c7e 3103 /* read ID data */
bff04647 3104 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3105 if (rc)
3106 goto fail;
3107
3108 /* is the device still there? */
3373efd8 3109 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3110 rc = -ENODEV;
3111 goto fail;
3112 }
3113
fe635c7e 3114 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3115
3116 /* configure device according to the new ID */
efdaedc4 3117 rc = ata_dev_configure(dev);
5eb45c02
TH
3118 if (rc == 0)
3119 return 0;
623a3128
TH
3120
3121 fail:
f15a1daf 3122 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3123 return rc;
3124}
3125
6919a0a6
AC
3126struct ata_blacklist_entry {
3127 const char *model_num;
3128 const char *model_rev;
3129 unsigned long horkage;
3130};
3131
3132static const struct ata_blacklist_entry ata_device_blacklist [] = {
3133 /* Devices with DMA related problems under Linux */
3134 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3135 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3136 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3137 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3138 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3139 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3140 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3141 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3142 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3143 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3144 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3145 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3146 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3147 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3148 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3149 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3150 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3151 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3152 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3153 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3154 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3155 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3156 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3157 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3158 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3159 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3160 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3161 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3162 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3163 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3164
3165 /* Devices we expect to fail diagnostics */
3166
3167 /* Devices where NCQ should be avoided */
3168 /* NCQ is slow */
3169 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3170
3171 /* Devices with NCQ limits */
3172
3173 /* End Marker */
3174 { }
1da177e4 3175};
2e9edbf8 3176
f4b15fef
AC
3177static int ata_strim(char *s, size_t len)
3178{
3179 len = strnlen(s, len);
3180
3181 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3182 while ((len > 0) && (s[len - 1] == ' ')) {
3183 len--;
3184 s[len] = 0;
3185 }
3186 return len;
3187}
1da177e4 3188
6919a0a6 3189unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3190{
f4b15fef
AC
3191 unsigned char model_num[40];
3192 unsigned char model_rev[16];
3193 unsigned int nlen, rlen;
6919a0a6 3194 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3195
f4b15fef
AC
3196 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3197 sizeof(model_num));
3198 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3199 sizeof(model_rev));
3200 nlen = ata_strim(model_num, sizeof(model_num));
3201 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3202
6919a0a6
AC
3203 while (ad->model_num) {
3204 if (!strncmp(ad->model_num, model_num, nlen)) {
3205 if (ad->model_rev == NULL)
3206 return ad->horkage;
3207 if (!strncmp(ad->model_rev, model_rev, rlen))
3208 return ad->horkage;
f4b15fef 3209 }
6919a0a6 3210 ad++;
f4b15fef 3211 }
1da177e4
LT
3212 return 0;
3213}
3214
6919a0a6
AC
3215static int ata_dma_blacklisted(const struct ata_device *dev)
3216{
3217 /* We don't support polling DMA.
3218 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3219 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3220 */
3221 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3222 (dev->flags & ATA_DFLAG_CDB_INTR))
3223 return 1;
3224 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3225}
3226
a6d5a51c
TH
3227/**
3228 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3229 * @dev: Device to compute xfermask for
3230 *
acf356b1
TH
3231 * Compute supported xfermask of @dev and store it in
3232 * dev->*_mask. This function is responsible for applying all
3233 * known limits including host controller limits, device
3234 * blacklist, etc...
a6d5a51c
TH
3235 *
3236 * LOCKING:
3237 * None.
a6d5a51c 3238 */
3373efd8 3239static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3240{
3373efd8 3241 struct ata_port *ap = dev->ap;
cca3974e 3242 struct ata_host *host = ap->host;
a6d5a51c 3243 unsigned long xfer_mask;
1da177e4 3244
37deecb5 3245 /* controller modes available */
565083e1
TH
3246 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3247 ap->mwdma_mask, ap->udma_mask);
3248
3249 /* Apply cable rule here. Don't apply it early because when
3250 * we handle hot plug the cable type can itself change.
3251 */
3252 if (ap->cbl == ATA_CBL_PATA40)
3253 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3254 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3255 * host side are checked drive side as well. Cases where we know a
3256 * 40wire cable is used safely for 80 are not checked here.
3257 */
3258 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3259 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3260
1da177e4 3261
37deecb5
TH
3262 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3263 dev->mwdma_mask, dev->udma_mask);
3264 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3265
b352e57d
AC
3266 /*
3267 * CFA Advanced TrueIDE timings are not allowed on a shared
3268 * cable
3269 */
3270 if (ata_dev_pair(dev)) {
3271 /* No PIO5 or PIO6 */
3272 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3273 /* No MWDMA3 or MWDMA 4 */
3274 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3275 }
3276
37deecb5
TH
3277 if (ata_dma_blacklisted(dev)) {
3278 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3279 ata_dev_printk(dev, KERN_WARNING,
3280 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3281 }
a6d5a51c 3282
cca3974e 3283 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3284 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3285 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3286 "other device, disabling DMA\n");
5444a6f4 3287 }
565083e1 3288
5444a6f4
AC
3289 if (ap->ops->mode_filter)
3290 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3291
565083e1
TH
3292 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3293 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3294}
3295
1da177e4
LT
3296/**
3297 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3298 * @dev: Device to which command will be sent
3299 *
780a87f7
JG
3300 * Issue SET FEATURES - XFER MODE command to device @dev
3301 * on port @ap.
3302 *
1da177e4 3303 * LOCKING:
0cba632b 3304 * PCI/etc. bus probe sem.
83206a29
TH
3305 *
3306 * RETURNS:
3307 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3308 */
3309
3373efd8 3310static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3311{
a0123703 3312 struct ata_taskfile tf;
83206a29 3313 unsigned int err_mask;
1da177e4
LT
3314
3315 /* set up set-features taskfile */
3316 DPRINTK("set features - xfer mode\n");
3317
3373efd8 3318 ata_tf_init(dev, &tf);
a0123703
TH
3319 tf.command = ATA_CMD_SET_FEATURES;
3320 tf.feature = SETFEATURES_XFER;
3321 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3322 tf.protocol = ATA_PROT_NODATA;
3323 tf.nsect = dev->xfer_mode;
1da177e4 3324
3373efd8 3325 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3326
83206a29
TH
3327 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3328 return err_mask;
1da177e4
LT
3329}
3330
8bf62ece
AL
3331/**
3332 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3333 * @dev: Device to which command will be sent
e2a7f77a
RD
3334 * @heads: Number of heads (taskfile parameter)
3335 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3336 *
3337 * LOCKING:
6aff8f1f
TH
3338 * Kernel thread context (may sleep)
3339 *
3340 * RETURNS:
3341 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3342 */
3373efd8
TH
3343static unsigned int ata_dev_init_params(struct ata_device *dev,
3344 u16 heads, u16 sectors)
8bf62ece 3345{
a0123703 3346 struct ata_taskfile tf;
6aff8f1f 3347 unsigned int err_mask;
8bf62ece
AL
3348
3349 /* Number of sectors per track 1-255. Number of heads 1-16 */
3350 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3351 return AC_ERR_INVALID;
8bf62ece
AL
3352
3353 /* set up init dev params taskfile */
3354 DPRINTK("init dev params \n");
3355
3373efd8 3356 ata_tf_init(dev, &tf);
a0123703
TH
3357 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3358 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3359 tf.protocol = ATA_PROT_NODATA;
3360 tf.nsect = sectors;
3361 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3362
3373efd8 3363 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3364
6aff8f1f
TH
3365 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3366 return err_mask;
8bf62ece
AL
3367}
3368
1da177e4 3369/**
0cba632b
JG
3370 * ata_sg_clean - Unmap DMA memory associated with command
3371 * @qc: Command containing DMA memory to be released
3372 *
3373 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3374 *
3375 * LOCKING:
cca3974e 3376 * spin_lock_irqsave(host lock)
1da177e4
LT
3377 */
3378
3379static void ata_sg_clean(struct ata_queued_cmd *qc)
3380{
3381 struct ata_port *ap = qc->ap;
cedc9a47 3382 struct scatterlist *sg = qc->__sg;
1da177e4 3383 int dir = qc->dma_dir;
cedc9a47 3384 void *pad_buf = NULL;
1da177e4 3385
a4631474
TH
3386 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3387 WARN_ON(sg == NULL);
1da177e4
LT
3388
3389 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3390 WARN_ON(qc->n_elem > 1);
1da177e4 3391
2c13b7ce 3392 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3393
cedc9a47
JG
3394 /* if we padded the buffer out to 32-bit bound, and data
3395 * xfer direction is from-device, we must copy from the
3396 * pad buffer back into the supplied buffer
3397 */
3398 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3399 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3400
3401 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3402 if (qc->n_elem)
2f1f610b 3403 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3404 /* restore last sg */
3405 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3406 if (pad_buf) {
3407 struct scatterlist *psg = &qc->pad_sgent;
3408 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3409 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3410 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3411 }
3412 } else {
2e242fa9 3413 if (qc->n_elem)
2f1f610b 3414 dma_unmap_single(ap->dev,
e1410f2d
JG
3415 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3416 dir);
cedc9a47
JG
3417 /* restore sg */
3418 sg->length += qc->pad_len;
3419 if (pad_buf)
3420 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3421 pad_buf, qc->pad_len);
3422 }
1da177e4
LT
3423
3424 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3425 qc->__sg = NULL;
1da177e4
LT
3426}
3427
3428/**
3429 * ata_fill_sg - Fill PCI IDE PRD table
3430 * @qc: Metadata associated with taskfile to be transferred
3431 *
780a87f7
JG
3432 * Fill PCI IDE PRD (scatter-gather) table with segments
3433 * associated with the current disk command.
3434 *
1da177e4 3435 * LOCKING:
cca3974e 3436 * spin_lock_irqsave(host lock)
1da177e4
LT
3437 *
3438 */
3439static void ata_fill_sg(struct ata_queued_cmd *qc)
3440{
1da177e4 3441 struct ata_port *ap = qc->ap;
cedc9a47
JG
3442 struct scatterlist *sg;
3443 unsigned int idx;
1da177e4 3444
a4631474 3445 WARN_ON(qc->__sg == NULL);
f131883e 3446 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3447
3448 idx = 0;
cedc9a47 3449 ata_for_each_sg(sg, qc) {
1da177e4
LT
3450 u32 addr, offset;
3451 u32 sg_len, len;
3452
3453 /* determine if physical DMA addr spans 64K boundary.
3454 * Note h/w doesn't support 64-bit, so we unconditionally
3455 * truncate dma_addr_t to u32.
3456 */
3457 addr = (u32) sg_dma_address(sg);
3458 sg_len = sg_dma_len(sg);
3459
3460 while (sg_len) {
3461 offset = addr & 0xffff;
3462 len = sg_len;
3463 if ((offset + sg_len) > 0x10000)
3464 len = 0x10000 - offset;
3465
3466 ap->prd[idx].addr = cpu_to_le32(addr);
3467 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3468 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3469
3470 idx++;
3471 sg_len -= len;
3472 addr += len;
3473 }
3474 }
3475
3476 if (idx)
3477 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3478}
3479/**
3480 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3481 * @qc: Metadata associated with taskfile to check
3482 *
780a87f7
JG
3483 * Allow low-level driver to filter ATA PACKET commands, returning
3484 * a status indicating whether or not it is OK to use DMA for the
3485 * supplied PACKET command.
3486 *
1da177e4 3487 * LOCKING:
cca3974e 3488 * spin_lock_irqsave(host lock)
0cba632b 3489 *
1da177e4
LT
3490 * RETURNS: 0 when ATAPI DMA can be used
3491 * nonzero otherwise
3492 */
3493int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3494{
3495 struct ata_port *ap = qc->ap;
3496 int rc = 0; /* Assume ATAPI DMA is OK by default */
3497
3498 if (ap->ops->check_atapi_dma)
3499 rc = ap->ops->check_atapi_dma(qc);
3500
3501 return rc;
3502}
3503/**
3504 * ata_qc_prep - Prepare taskfile for submission
3505 * @qc: Metadata associated with taskfile to be prepared
3506 *
780a87f7
JG
3507 * Prepare ATA taskfile for submission.
3508 *
1da177e4 3509 * LOCKING:
cca3974e 3510 * spin_lock_irqsave(host lock)
1da177e4
LT
3511 */
3512void ata_qc_prep(struct ata_queued_cmd *qc)
3513{
3514 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3515 return;
3516
3517 ata_fill_sg(qc);
3518}
3519
e46834cd
BK
3520void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3521
0cba632b
JG
3522/**
3523 * ata_sg_init_one - Associate command with memory buffer
3524 * @qc: Command to be associated
3525 * @buf: Memory buffer
3526 * @buflen: Length of memory buffer, in bytes.
3527 *
3528 * Initialize the data-related elements of queued_cmd @qc
3529 * to point to a single memory buffer, @buf of byte length @buflen.
3530 *
3531 * LOCKING:
cca3974e 3532 * spin_lock_irqsave(host lock)
0cba632b
JG
3533 */
3534
1da177e4
LT
3535void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3536{
1da177e4
LT
3537 qc->flags |= ATA_QCFLAG_SINGLE;
3538
cedc9a47 3539 qc->__sg = &qc->sgent;
1da177e4 3540 qc->n_elem = 1;
cedc9a47 3541 qc->orig_n_elem = 1;
1da177e4 3542 qc->buf_virt = buf;
233277ca 3543 qc->nbytes = buflen;
1da177e4 3544
61c0596c 3545 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3546}
3547
0cba632b
JG
3548/**
3549 * ata_sg_init - Associate command with scatter-gather table.
3550 * @qc: Command to be associated
3551 * @sg: Scatter-gather table.
3552 * @n_elem: Number of elements in s/g table.
3553 *
3554 * Initialize the data-related elements of queued_cmd @qc
3555 * to point to a scatter-gather table @sg, containing @n_elem
3556 * elements.
3557 *
3558 * LOCKING:
cca3974e 3559 * spin_lock_irqsave(host lock)
0cba632b
JG
3560 */
3561
1da177e4
LT
3562void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3563 unsigned int n_elem)
3564{
3565 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3566 qc->__sg = sg;
1da177e4 3567 qc->n_elem = n_elem;
cedc9a47 3568 qc->orig_n_elem = n_elem;
1da177e4
LT
3569}
3570
3571/**
0cba632b
JG
3572 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3573 * @qc: Command with memory buffer to be mapped.
3574 *
3575 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3576 *
3577 * LOCKING:
cca3974e 3578 * spin_lock_irqsave(host lock)
1da177e4
LT
3579 *
3580 * RETURNS:
0cba632b 3581 * Zero on success, negative on error.
1da177e4
LT
3582 */
3583
3584static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3585{
3586 struct ata_port *ap = qc->ap;
3587 int dir = qc->dma_dir;
cedc9a47 3588 struct scatterlist *sg = qc->__sg;
1da177e4 3589 dma_addr_t dma_address;
2e242fa9 3590 int trim_sg = 0;
1da177e4 3591
cedc9a47
JG
3592 /* we must lengthen transfers to end on a 32-bit boundary */
3593 qc->pad_len = sg->length & 3;
3594 if (qc->pad_len) {
3595 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3596 struct scatterlist *psg = &qc->pad_sgent;
3597
a4631474 3598 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3599
3600 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3601
3602 if (qc->tf.flags & ATA_TFLAG_WRITE)
3603 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3604 qc->pad_len);
3605
3606 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3607 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3608 /* trim sg */
3609 sg->length -= qc->pad_len;
2e242fa9
TH
3610 if (sg->length == 0)
3611 trim_sg = 1;
cedc9a47
JG
3612
3613 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3614 sg->length, qc->pad_len);
3615 }
3616
2e242fa9
TH
3617 if (trim_sg) {
3618 qc->n_elem--;
e1410f2d
JG
3619 goto skip_map;
3620 }
3621
2f1f610b 3622 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3623 sg->length, dir);
537a95d9
TH
3624 if (dma_mapping_error(dma_address)) {
3625 /* restore sg */
3626 sg->length += qc->pad_len;
1da177e4 3627 return -1;
537a95d9 3628 }
1da177e4
LT
3629
3630 sg_dma_address(sg) = dma_address;
32529e01 3631 sg_dma_len(sg) = sg->length;
1da177e4 3632
2e242fa9 3633skip_map:
1da177e4
LT
3634 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3635 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3636
3637 return 0;
3638}
3639
3640/**
0cba632b
JG
3641 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3642 * @qc: Command with scatter-gather table to be mapped.
3643 *
3644 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3645 *
3646 * LOCKING:
cca3974e 3647 * spin_lock_irqsave(host lock)
1da177e4
LT
3648 *
3649 * RETURNS:
0cba632b 3650 * Zero on success, negative on error.
1da177e4
LT
3651 *
3652 */
3653
3654static int ata_sg_setup(struct ata_queued_cmd *qc)
3655{
3656 struct ata_port *ap = qc->ap;
cedc9a47
JG
3657 struct scatterlist *sg = qc->__sg;
3658 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3659 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3660
3661 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3662 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3663
cedc9a47
JG
3664 /* we must lengthen transfers to end on a 32-bit boundary */
3665 qc->pad_len = lsg->length & 3;
3666 if (qc->pad_len) {
3667 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3668 struct scatterlist *psg = &qc->pad_sgent;
3669 unsigned int offset;
3670
a4631474 3671 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3672
3673 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3674
3675 /*
3676 * psg->page/offset are used to copy to-be-written
3677 * data in this function or read data in ata_sg_clean.
3678 */
3679 offset = lsg->offset + lsg->length - qc->pad_len;
3680 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3681 psg->offset = offset_in_page(offset);
3682
3683 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3684 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3685 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3686 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3687 }
3688
3689 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3690 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3691 /* trim last sg */
3692 lsg->length -= qc->pad_len;
e1410f2d
JG
3693 if (lsg->length == 0)
3694 trim_sg = 1;
cedc9a47
JG
3695
3696 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3697 qc->n_elem - 1, lsg->length, qc->pad_len);
3698 }
3699
e1410f2d
JG
3700 pre_n_elem = qc->n_elem;
3701 if (trim_sg && pre_n_elem)
3702 pre_n_elem--;
3703
3704 if (!pre_n_elem) {
3705 n_elem = 0;
3706 goto skip_map;
3707 }
3708
1da177e4 3709 dir = qc->dma_dir;
2f1f610b 3710 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3711 if (n_elem < 1) {
3712 /* restore last sg */
3713 lsg->length += qc->pad_len;
1da177e4 3714 return -1;
537a95d9 3715 }
1da177e4
LT
3716
3717 DPRINTK("%d sg elements mapped\n", n_elem);
3718
e1410f2d 3719skip_map:
1da177e4
LT
3720 qc->n_elem = n_elem;
3721
3722 return 0;
3723}
3724
0baab86b 3725/**
c893a3ae 3726 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3727 * @buf: Buffer to swap
3728 * @buf_words: Number of 16-bit words in buffer.
3729 *
3730 * Swap halves of 16-bit words if needed to convert from
3731 * little-endian byte order to native cpu byte order, or
3732 * vice-versa.
3733 *
3734 * LOCKING:
6f0ef4fa 3735 * Inherited from caller.
0baab86b 3736 */
1da177e4
LT
3737void swap_buf_le16(u16 *buf, unsigned int buf_words)
3738{
3739#ifdef __BIG_ENDIAN
3740 unsigned int i;
3741
3742 for (i = 0; i < buf_words; i++)
3743 buf[i] = le16_to_cpu(buf[i]);
3744#endif /* __BIG_ENDIAN */
3745}
3746
6ae4cfb5
AL
3747/**
3748 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3749 * @adev: device for this I/O
6ae4cfb5
AL
3750 * @buf: data buffer
3751 * @buflen: buffer length
344babaa 3752 * @write_data: read/write
6ae4cfb5
AL
3753 *
3754 * Transfer data from/to the device data register by MMIO.
3755 *
3756 * LOCKING:
3757 * Inherited from caller.
6ae4cfb5
AL
3758 */
3759
88574551 3760void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3761 unsigned int buflen, int write_data)
1da177e4 3762{
a6b2c5d4 3763 struct ata_port *ap = adev->ap;
1da177e4
LT
3764 unsigned int i;
3765 unsigned int words = buflen >> 1;
3766 u16 *buf16 = (u16 *) buf;
3767 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3768
6ae4cfb5 3769 /* Transfer multiple of 2 bytes */
1da177e4
LT
3770 if (write_data) {
3771 for (i = 0; i < words; i++)
3772 writew(le16_to_cpu(buf16[i]), mmio);
3773 } else {
3774 for (i = 0; i < words; i++)
3775 buf16[i] = cpu_to_le16(readw(mmio));
3776 }
6ae4cfb5
AL
3777
3778 /* Transfer trailing 1 byte, if any. */
3779 if (unlikely(buflen & 0x01)) {
3780 u16 align_buf[1] = { 0 };
3781 unsigned char *trailing_buf = buf + buflen - 1;
3782
3783 if (write_data) {
3784 memcpy(align_buf, trailing_buf, 1);
3785 writew(le16_to_cpu(align_buf[0]), mmio);
3786 } else {
3787 align_buf[0] = cpu_to_le16(readw(mmio));
3788 memcpy(trailing_buf, align_buf, 1);
3789 }
3790 }
1da177e4
LT
3791}
3792
6ae4cfb5
AL
3793/**
3794 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3795 * @adev: device to target
6ae4cfb5
AL
3796 * @buf: data buffer
3797 * @buflen: buffer length
344babaa 3798 * @write_data: read/write
6ae4cfb5
AL
3799 *
3800 * Transfer data from/to the device data register by PIO.
3801 *
3802 * LOCKING:
3803 * Inherited from caller.
6ae4cfb5
AL
3804 */
3805
88574551 3806void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3807 unsigned int buflen, int write_data)
1da177e4 3808{
a6b2c5d4 3809 struct ata_port *ap = adev->ap;
6ae4cfb5 3810 unsigned int words = buflen >> 1;
1da177e4 3811
6ae4cfb5 3812 /* Transfer multiple of 2 bytes */
1da177e4 3813 if (write_data)
6ae4cfb5 3814 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3815 else
6ae4cfb5
AL
3816 insw(ap->ioaddr.data_addr, buf, words);
3817
3818 /* Transfer trailing 1 byte, if any. */
3819 if (unlikely(buflen & 0x01)) {
3820 u16 align_buf[1] = { 0 };
3821 unsigned char *trailing_buf = buf + buflen - 1;
3822
3823 if (write_data) {
3824 memcpy(align_buf, trailing_buf, 1);
3825 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3826 } else {
3827 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3828 memcpy(trailing_buf, align_buf, 1);
3829 }
3830 }
1da177e4
LT
3831}
3832
75e99585
AC
3833/**
3834 * ata_pio_data_xfer_noirq - Transfer data by PIO
3835 * @adev: device to target
3836 * @buf: data buffer
3837 * @buflen: buffer length
3838 * @write_data: read/write
3839 *
88574551 3840 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3841 * transfer with interrupts disabled.
3842 *
3843 * LOCKING:
3844 * Inherited from caller.
3845 */
3846
3847void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3848 unsigned int buflen, int write_data)
3849{
3850 unsigned long flags;
3851 local_irq_save(flags);
3852 ata_pio_data_xfer(adev, buf, buflen, write_data);
3853 local_irq_restore(flags);
3854}
3855
3856
6ae4cfb5
AL
3857/**
3858 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3859 * @qc: Command on going
3860 *
3861 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3862 *
3863 * LOCKING:
3864 * Inherited from caller.
3865 */
3866
1da177e4
LT
3867static void ata_pio_sector(struct ata_queued_cmd *qc)
3868{
3869 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3870 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3871 struct ata_port *ap = qc->ap;
3872 struct page *page;
3873 unsigned int offset;
3874 unsigned char *buf;
3875
3876 if (qc->cursect == (qc->nsect - 1))
14be71f4 3877 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3878
3879 page = sg[qc->cursg].page;
3880 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3881
3882 /* get the current page and offset */
3883 page = nth_page(page, (offset >> PAGE_SHIFT));
3884 offset %= PAGE_SIZE;
3885
1da177e4
LT
3886 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3887
91b8b313
AL
3888 if (PageHighMem(page)) {
3889 unsigned long flags;
3890
a6b2c5d4 3891 /* FIXME: use a bounce buffer */
91b8b313
AL
3892 local_irq_save(flags);
3893 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3894
91b8b313 3895 /* do the actual data transfer */
a6b2c5d4 3896 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3897
91b8b313
AL
3898 kunmap_atomic(buf, KM_IRQ0);
3899 local_irq_restore(flags);
3900 } else {
3901 buf = page_address(page);
a6b2c5d4 3902 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3903 }
1da177e4
LT
3904
3905 qc->cursect++;
3906 qc->cursg_ofs++;
3907
32529e01 3908 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3909 qc->cursg++;
3910 qc->cursg_ofs = 0;
3911 }
1da177e4 3912}
1da177e4 3913
07f6f7d0
AL
3914/**
3915 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3916 * @qc: Command on going
3917 *
c81e29b4 3918 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3919 * ATA device for the DRQ request.
3920 *
3921 * LOCKING:
3922 * Inherited from caller.
3923 */
1da177e4 3924
07f6f7d0
AL
3925static void ata_pio_sectors(struct ata_queued_cmd *qc)
3926{
3927 if (is_multi_taskfile(&qc->tf)) {
3928 /* READ/WRITE MULTIPLE */
3929 unsigned int nsect;
3930
587005de 3931 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3932
07f6f7d0
AL
3933 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3934 while (nsect--)
3935 ata_pio_sector(qc);
3936 } else
3937 ata_pio_sector(qc);
3938}
3939
c71c1857
AL
3940/**
3941 * atapi_send_cdb - Write CDB bytes to hardware
3942 * @ap: Port to which ATAPI device is attached.
3943 * @qc: Taskfile currently active
3944 *
3945 * When device has indicated its readiness to accept
3946 * a CDB, this function is called. Send the CDB.
3947 *
3948 * LOCKING:
3949 * caller.
3950 */
3951
3952static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3953{
3954 /* send SCSI cdb */
3955 DPRINTK("send cdb\n");
db024d53 3956 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3957
a6b2c5d4 3958 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3959 ata_altstatus(ap); /* flush */
3960
3961 switch (qc->tf.protocol) {
3962 case ATA_PROT_ATAPI:
3963 ap->hsm_task_state = HSM_ST;
3964 break;
3965 case ATA_PROT_ATAPI_NODATA:
3966 ap->hsm_task_state = HSM_ST_LAST;
3967 break;
3968 case ATA_PROT_ATAPI_DMA:
3969 ap->hsm_task_state = HSM_ST_LAST;
3970 /* initiate bmdma */
3971 ap->ops->bmdma_start(qc);
3972 break;
3973 }
1da177e4
LT
3974}
3975
6ae4cfb5
AL
3976/**
3977 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3978 * @qc: Command on going
3979 * @bytes: number of bytes
3980 *
3981 * Transfer Transfer data from/to the ATAPI device.
3982 *
3983 * LOCKING:
3984 * Inherited from caller.
3985 *
3986 */
3987
1da177e4
LT
3988static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3989{
3990 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3991 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3992 struct ata_port *ap = qc->ap;
3993 struct page *page;
3994 unsigned char *buf;
3995 unsigned int offset, count;
3996
563a6e1f 3997 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3998 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3999
4000next_sg:
563a6e1f 4001 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4002 /*
563a6e1f
AL
4003 * The end of qc->sg is reached and the device expects
4004 * more data to transfer. In order not to overrun qc->sg
4005 * and fulfill length specified in the byte count register,
4006 * - for read case, discard trailing data from the device
4007 * - for write case, padding zero data to the device
4008 */
4009 u16 pad_buf[1] = { 0 };
4010 unsigned int words = bytes >> 1;
4011 unsigned int i;
4012
4013 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4014 ata_dev_printk(qc->dev, KERN_WARNING,
4015 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4016
4017 for (i = 0; i < words; i++)
a6b2c5d4 4018 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4019
14be71f4 4020 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4021 return;
4022 }
4023
cedc9a47 4024 sg = &qc->__sg[qc->cursg];
1da177e4 4025
1da177e4
LT
4026 page = sg->page;
4027 offset = sg->offset + qc->cursg_ofs;
4028
4029 /* get the current page and offset */
4030 page = nth_page(page, (offset >> PAGE_SHIFT));
4031 offset %= PAGE_SIZE;
4032
6952df03 4033 /* don't overrun current sg */
32529e01 4034 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4035
4036 /* don't cross page boundaries */
4037 count = min(count, (unsigned int)PAGE_SIZE - offset);
4038
7282aa4b
AL
4039 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4040
91b8b313
AL
4041 if (PageHighMem(page)) {
4042 unsigned long flags;
4043
a6b2c5d4 4044 /* FIXME: use bounce buffer */
91b8b313
AL
4045 local_irq_save(flags);
4046 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4047
91b8b313 4048 /* do the actual data transfer */
a6b2c5d4 4049 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4050
91b8b313
AL
4051 kunmap_atomic(buf, KM_IRQ0);
4052 local_irq_restore(flags);
4053 } else {
4054 buf = page_address(page);
a6b2c5d4 4055 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4056 }
1da177e4
LT
4057
4058 bytes -= count;
4059 qc->curbytes += count;
4060 qc->cursg_ofs += count;
4061
32529e01 4062 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4063 qc->cursg++;
4064 qc->cursg_ofs = 0;
4065 }
4066
563a6e1f 4067 if (bytes)
1da177e4 4068 goto next_sg;
1da177e4
LT
4069}
4070
6ae4cfb5
AL
4071/**
4072 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4073 * @qc: Command on going
4074 *
4075 * Transfer Transfer data from/to the ATAPI device.
4076 *
4077 * LOCKING:
4078 * Inherited from caller.
6ae4cfb5
AL
4079 */
4080
1da177e4
LT
4081static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4082{
4083 struct ata_port *ap = qc->ap;
4084 struct ata_device *dev = qc->dev;
4085 unsigned int ireason, bc_lo, bc_hi, bytes;
4086 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4087
eec4c3f3
AL
4088 /* Abuse qc->result_tf for temp storage of intermediate TF
4089 * here to save some kernel stack usage.
4090 * For normal completion, qc->result_tf is not relevant. For
4091 * error, qc->result_tf is later overwritten by ata_qc_complete().
4092 * So, the correctness of qc->result_tf is not affected.
4093 */
4094 ap->ops->tf_read(ap, &qc->result_tf);
4095 ireason = qc->result_tf.nsect;
4096 bc_lo = qc->result_tf.lbam;
4097 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4098 bytes = (bc_hi << 8) | bc_lo;
4099
4100 /* shall be cleared to zero, indicating xfer of data */
4101 if (ireason & (1 << 0))
4102 goto err_out;
4103
4104 /* make sure transfer direction matches expected */
4105 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4106 if (do_write != i_write)
4107 goto err_out;
4108
312f7da2
AL
4109 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4110
1da177e4
LT
4111 __atapi_pio_bytes(qc, bytes);
4112
4113 return;
4114
4115err_out:
f15a1daf 4116 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4117 qc->err_mask |= AC_ERR_HSM;
14be71f4 4118 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4119}
4120
4121/**
c234fb00
AL
4122 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4123 * @ap: the target ata_port
4124 * @qc: qc on going
1da177e4 4125 *
c234fb00
AL
4126 * RETURNS:
4127 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4128 */
c234fb00
AL
4129
4130static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4131{
c234fb00
AL
4132 if (qc->tf.flags & ATA_TFLAG_POLLING)
4133 return 1;
1da177e4 4134
c234fb00
AL
4135 if (ap->hsm_task_state == HSM_ST_FIRST) {
4136 if (qc->tf.protocol == ATA_PROT_PIO &&
4137 (qc->tf.flags & ATA_TFLAG_WRITE))
4138 return 1;
1da177e4 4139
c234fb00
AL
4140 if (is_atapi_taskfile(&qc->tf) &&
4141 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4142 return 1;
fe79e683
AL
4143 }
4144
c234fb00
AL
4145 return 0;
4146}
1da177e4 4147
c17ea20d
TH
4148/**
4149 * ata_hsm_qc_complete - finish a qc running on standard HSM
4150 * @qc: Command to complete
4151 * @in_wq: 1 if called from workqueue, 0 otherwise
4152 *
4153 * Finish @qc which is running on standard HSM.
4154 *
4155 * LOCKING:
cca3974e 4156 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4157 * Otherwise, none on entry and grabs host lock.
4158 */
4159static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4160{
4161 struct ata_port *ap = qc->ap;
4162 unsigned long flags;
4163
4164 if (ap->ops->error_handler) {
4165 if (in_wq) {
ba6a1308 4166 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4167
cca3974e
JG
4168 /* EH might have kicked in while host lock is
4169 * released.
c17ea20d
TH
4170 */
4171 qc = ata_qc_from_tag(ap, qc->tag);
4172 if (qc) {
4173 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4174 ata_irq_on(ap);
4175 ata_qc_complete(qc);
4176 } else
4177 ata_port_freeze(ap);
4178 }
4179
ba6a1308 4180 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4181 } else {
4182 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4183 ata_qc_complete(qc);
4184 else
4185 ata_port_freeze(ap);
4186 }
4187 } else {
4188 if (in_wq) {
ba6a1308 4189 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4190 ata_irq_on(ap);
4191 ata_qc_complete(qc);
ba6a1308 4192 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4193 } else
4194 ata_qc_complete(qc);
4195 }
1da177e4 4196
c81e29b4 4197 ata_altstatus(ap); /* flush */
c17ea20d
TH
4198}
4199
bb5cb290
AL
4200/**
4201 * ata_hsm_move - move the HSM to the next state.
4202 * @ap: the target ata_port
4203 * @qc: qc on going
4204 * @status: current device status
4205 * @in_wq: 1 if called from workqueue, 0 otherwise
4206 *
4207 * RETURNS:
4208 * 1 when poll next status needed, 0 otherwise.
4209 */
9a1004d0
TH
4210int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4211 u8 status, int in_wq)
e2cec771 4212{
bb5cb290
AL
4213 unsigned long flags = 0;
4214 int poll_next;
4215
6912ccd5
AL
4216 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4217
bb5cb290
AL
4218 /* Make sure ata_qc_issue_prot() does not throw things
4219 * like DMA polling into the workqueue. Notice that
4220 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4221 */
c234fb00 4222 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4223
e2cec771 4224fsm_start:
999bb6f4
AL
4225 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4226 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4227
e2cec771
AL
4228 switch (ap->hsm_task_state) {
4229 case HSM_ST_FIRST:
bb5cb290
AL
4230 /* Send first data block or PACKET CDB */
4231
4232 /* If polling, we will stay in the work queue after
4233 * sending the data. Otherwise, interrupt handler
4234 * takes over after sending the data.
4235 */
4236 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4237
e2cec771 4238 /* check device status */
3655d1d3
AL
4239 if (unlikely((status & ATA_DRQ) == 0)) {
4240 /* handle BSY=0, DRQ=0 as error */
4241 if (likely(status & (ATA_ERR | ATA_DF)))
4242 /* device stops HSM for abort/error */
4243 qc->err_mask |= AC_ERR_DEV;
4244 else
4245 /* HSM violation. Let EH handle this */
4246 qc->err_mask |= AC_ERR_HSM;
4247
14be71f4 4248 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4249 goto fsm_start;
1da177e4
LT
4250 }
4251
71601958
AL
4252 /* Device should not ask for data transfer (DRQ=1)
4253 * when it finds something wrong.
eee6c32f
AL
4254 * We ignore DRQ here and stop the HSM by
4255 * changing hsm_task_state to HSM_ST_ERR and
4256 * let the EH abort the command or reset the device.
71601958
AL
4257 */
4258 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4259 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4260 ap->id, status);
3655d1d3 4261 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4262 ap->hsm_task_state = HSM_ST_ERR;
4263 goto fsm_start;
71601958 4264 }
1da177e4 4265
bb5cb290
AL
4266 /* Send the CDB (atapi) or the first data block (ata pio out).
4267 * During the state transition, interrupt handler shouldn't
4268 * be invoked before the data transfer is complete and
4269 * hsm_task_state is changed. Hence, the following locking.
4270 */
4271 if (in_wq)
ba6a1308 4272 spin_lock_irqsave(ap->lock, flags);
1da177e4 4273
bb5cb290
AL
4274 if (qc->tf.protocol == ATA_PROT_PIO) {
4275 /* PIO data out protocol.
4276 * send first data block.
4277 */
0565c26d 4278
bb5cb290
AL
4279 /* ata_pio_sectors() might change the state
4280 * to HSM_ST_LAST. so, the state is changed here
4281 * before ata_pio_sectors().
4282 */
4283 ap->hsm_task_state = HSM_ST;
4284 ata_pio_sectors(qc);
4285 ata_altstatus(ap); /* flush */
4286 } else
4287 /* send CDB */
4288 atapi_send_cdb(ap, qc);
4289
4290 if (in_wq)
ba6a1308 4291 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4292
4293 /* if polling, ata_pio_task() handles the rest.
4294 * otherwise, interrupt handler takes over from here.
4295 */
e2cec771 4296 break;
1c848984 4297
e2cec771
AL
4298 case HSM_ST:
4299 /* complete command or read/write the data register */
4300 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4301 /* ATAPI PIO protocol */
4302 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4303 /* No more data to transfer or device error.
4304 * Device error will be tagged in HSM_ST_LAST.
4305 */
e2cec771
AL
4306 ap->hsm_task_state = HSM_ST_LAST;
4307 goto fsm_start;
4308 }
1da177e4 4309
71601958
AL
4310 /* Device should not ask for data transfer (DRQ=1)
4311 * when it finds something wrong.
eee6c32f
AL
4312 * We ignore DRQ here and stop the HSM by
4313 * changing hsm_task_state to HSM_ST_ERR and
4314 * let the EH abort the command or reset the device.
71601958
AL
4315 */
4316 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4317 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4318 ap->id, status);
3655d1d3 4319 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4320 ap->hsm_task_state = HSM_ST_ERR;
4321 goto fsm_start;
71601958 4322 }
1da177e4 4323
e2cec771 4324 atapi_pio_bytes(qc);
7fb6ec28 4325
e2cec771
AL
4326 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4327 /* bad ireason reported by device */
4328 goto fsm_start;
1da177e4 4329
e2cec771
AL
4330 } else {
4331 /* ATA PIO protocol */
4332 if (unlikely((status & ATA_DRQ) == 0)) {
4333 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4334 if (likely(status & (ATA_ERR | ATA_DF)))
4335 /* device stops HSM for abort/error */
4336 qc->err_mask |= AC_ERR_DEV;
4337 else
55a8e2c8
TH
4338 /* HSM violation. Let EH handle this.
4339 * Phantom devices also trigger this
4340 * condition. Mark hint.
4341 */
4342 qc->err_mask |= AC_ERR_HSM |
4343 AC_ERR_NODEV_HINT;
3655d1d3 4344
e2cec771
AL
4345 ap->hsm_task_state = HSM_ST_ERR;
4346 goto fsm_start;
4347 }
1da177e4 4348
eee6c32f
AL
4349 /* For PIO reads, some devices may ask for
4350 * data transfer (DRQ=1) alone with ERR=1.
4351 * We respect DRQ here and transfer one
4352 * block of junk data before changing the
4353 * hsm_task_state to HSM_ST_ERR.
4354 *
4355 * For PIO writes, ERR=1 DRQ=1 doesn't make
4356 * sense since the data block has been
4357 * transferred to the device.
71601958
AL
4358 */
4359 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4360 /* data might be corrputed */
4361 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4362
4363 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4364 ata_pio_sectors(qc);
4365 ata_altstatus(ap);
4366 status = ata_wait_idle(ap);
4367 }
4368
3655d1d3
AL
4369 if (status & (ATA_BUSY | ATA_DRQ))
4370 qc->err_mask |= AC_ERR_HSM;
4371
eee6c32f
AL
4372 /* ata_pio_sectors() might change the
4373 * state to HSM_ST_LAST. so, the state
4374 * is changed after ata_pio_sectors().
4375 */
4376 ap->hsm_task_state = HSM_ST_ERR;
4377 goto fsm_start;
71601958
AL
4378 }
4379
e2cec771
AL
4380 ata_pio_sectors(qc);
4381
4382 if (ap->hsm_task_state == HSM_ST_LAST &&
4383 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4384 /* all data read */
4385 ata_altstatus(ap);
52a32205 4386 status = ata_wait_idle(ap);
e2cec771
AL
4387 goto fsm_start;
4388 }
4389 }
4390
4391 ata_altstatus(ap); /* flush */
bb5cb290 4392 poll_next = 1;
1da177e4
LT
4393 break;
4394
14be71f4 4395 case HSM_ST_LAST:
6912ccd5
AL
4396 if (unlikely(!ata_ok(status))) {
4397 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4398 ap->hsm_task_state = HSM_ST_ERR;
4399 goto fsm_start;
4400 }
4401
4402 /* no more data to transfer */
4332a771
AL
4403 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4404 ap->id, qc->dev->devno, status);
e2cec771 4405
6912ccd5
AL
4406 WARN_ON(qc->err_mask);
4407
e2cec771 4408 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4409
e2cec771 4410 /* complete taskfile transaction */
c17ea20d 4411 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4412
4413 poll_next = 0;
1da177e4
LT
4414 break;
4415
14be71f4 4416 case HSM_ST_ERR:
e2cec771
AL
4417 /* make sure qc->err_mask is available to
4418 * know what's wrong and recover
4419 */
4420 WARN_ON(qc->err_mask == 0);
4421
4422 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4423
999bb6f4 4424 /* complete taskfile transaction */
c17ea20d 4425 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4426
4427 poll_next = 0;
e2cec771
AL
4428 break;
4429 default:
bb5cb290 4430 poll_next = 0;
6912ccd5 4431 BUG();
1da177e4
LT
4432 }
4433
bb5cb290 4434 return poll_next;
1da177e4
LT
4435}
4436
1da177e4 4437static void ata_pio_task(void *_data)
8061f5f0 4438{
c91af2c8
TH
4439 struct ata_queued_cmd *qc = _data;
4440 struct ata_port *ap = qc->ap;
8061f5f0 4441 u8 status;
a1af3734 4442 int poll_next;
8061f5f0 4443
7fb6ec28 4444fsm_start:
a1af3734 4445 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4446
a1af3734
AL
4447 /*
4448 * This is purely heuristic. This is a fast path.
4449 * Sometimes when we enter, BSY will be cleared in
4450 * a chk-status or two. If not, the drive is probably seeking
4451 * or something. Snooze for a couple msecs, then
4452 * chk-status again. If still busy, queue delayed work.
4453 */
4454 status = ata_busy_wait(ap, ATA_BUSY, 5);
4455 if (status & ATA_BUSY) {
4456 msleep(2);
4457 status = ata_busy_wait(ap, ATA_BUSY, 10);
4458 if (status & ATA_BUSY) {
31ce6dae 4459 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4460 return;
4461 }
8061f5f0
TH
4462 }
4463
a1af3734
AL
4464 /* move the HSM */
4465 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4466
a1af3734
AL
4467 /* another command or interrupt handler
4468 * may be running at this point.
4469 */
4470 if (poll_next)
7fb6ec28 4471 goto fsm_start;
8061f5f0
TH
4472}
4473
1da177e4
LT
4474/**
4475 * ata_qc_new - Request an available ATA command, for queueing
4476 * @ap: Port associated with device @dev
4477 * @dev: Device from whom we request an available command structure
4478 *
4479 * LOCKING:
0cba632b 4480 * None.
1da177e4
LT
4481 */
4482
4483static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4484{
4485 struct ata_queued_cmd *qc = NULL;
4486 unsigned int i;
4487
e3180499 4488 /* no command while frozen */
b51e9e5d 4489 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4490 return NULL;
4491
2ab7db1f
TH
4492 /* the last tag is reserved for internal command. */
4493 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4494 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4495 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4496 break;
4497 }
4498
4499 if (qc)
4500 qc->tag = i;
4501
4502 return qc;
4503}
4504
4505/**
4506 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4507 * @dev: Device from whom we request an available command structure
4508 *
4509 * LOCKING:
0cba632b 4510 * None.
1da177e4
LT
4511 */
4512
3373efd8 4513struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4514{
3373efd8 4515 struct ata_port *ap = dev->ap;
1da177e4
LT
4516 struct ata_queued_cmd *qc;
4517
4518 qc = ata_qc_new(ap);
4519 if (qc) {
1da177e4
LT
4520 qc->scsicmd = NULL;
4521 qc->ap = ap;
4522 qc->dev = dev;
1da177e4 4523
2c13b7ce 4524 ata_qc_reinit(qc);
1da177e4
LT
4525 }
4526
4527 return qc;
4528}
4529
1da177e4
LT
4530/**
4531 * ata_qc_free - free unused ata_queued_cmd
4532 * @qc: Command to complete
4533 *
4534 * Designed to free unused ata_queued_cmd object
4535 * in case something prevents using it.
4536 *
4537 * LOCKING:
cca3974e 4538 * spin_lock_irqsave(host lock)
1da177e4
LT
4539 */
4540void ata_qc_free(struct ata_queued_cmd *qc)
4541{
4ba946e9
TH
4542 struct ata_port *ap = qc->ap;
4543 unsigned int tag;
4544
a4631474 4545 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4546
4ba946e9
TH
4547 qc->flags = 0;
4548 tag = qc->tag;
4549 if (likely(ata_tag_valid(tag))) {
4ba946e9 4550 qc->tag = ATA_TAG_POISON;
6cec4a39 4551 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4552 }
1da177e4
LT
4553}
4554
76014427 4555void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4556{
dedaf2b0
TH
4557 struct ata_port *ap = qc->ap;
4558
a4631474
TH
4559 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4560 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4561
4562 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4563 ata_sg_clean(qc);
4564
7401abf2 4565 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4566 if (qc->tf.protocol == ATA_PROT_NCQ)
4567 ap->sactive &= ~(1 << qc->tag);
4568 else
4569 ap->active_tag = ATA_TAG_POISON;
7401abf2 4570
3f3791d3
AL
4571 /* atapi: mark qc as inactive to prevent the interrupt handler
4572 * from completing the command twice later, before the error handler
4573 * is called. (when rc != 0 and atapi request sense is needed)
4574 */
4575 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4576 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4577
1da177e4 4578 /* call completion callback */
77853bf2 4579 qc->complete_fn(qc);
1da177e4
LT
4580}
4581
39599a53
TH
4582static void fill_result_tf(struct ata_queued_cmd *qc)
4583{
4584 struct ata_port *ap = qc->ap;
4585
4586 ap->ops->tf_read(ap, &qc->result_tf);
4587 qc->result_tf.flags = qc->tf.flags;
4588}
4589
f686bcb8
TH
4590/**
4591 * ata_qc_complete - Complete an active ATA command
4592 * @qc: Command to complete
4593 * @err_mask: ATA Status register contents
4594 *
4595 * Indicate to the mid and upper layers that an ATA
4596 * command has completed, with either an ok or not-ok status.
4597 *
4598 * LOCKING:
cca3974e 4599 * spin_lock_irqsave(host lock)
f686bcb8
TH
4600 */
4601void ata_qc_complete(struct ata_queued_cmd *qc)
4602{
4603 struct ata_port *ap = qc->ap;
4604
4605 /* XXX: New EH and old EH use different mechanisms to
4606 * synchronize EH with regular execution path.
4607 *
4608 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4609 * Normal execution path is responsible for not accessing a
4610 * failed qc. libata core enforces the rule by returning NULL
4611 * from ata_qc_from_tag() for failed qcs.
4612 *
4613 * Old EH depends on ata_qc_complete() nullifying completion
4614 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4615 * not synchronize with interrupt handler. Only PIO task is
4616 * taken care of.
4617 */
4618 if (ap->ops->error_handler) {
b51e9e5d 4619 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4620
4621 if (unlikely(qc->err_mask))
4622 qc->flags |= ATA_QCFLAG_FAILED;
4623
4624 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4625 if (!ata_tag_internal(qc->tag)) {
4626 /* always fill result TF for failed qc */
39599a53 4627 fill_result_tf(qc);
f686bcb8
TH
4628 ata_qc_schedule_eh(qc);
4629 return;
4630 }
4631 }
4632
4633 /* read result TF if requested */
4634 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4635 fill_result_tf(qc);
f686bcb8
TH
4636
4637 __ata_qc_complete(qc);
4638 } else {
4639 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4640 return;
4641
4642 /* read result TF if failed or requested */
4643 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4644 fill_result_tf(qc);
f686bcb8
TH
4645
4646 __ata_qc_complete(qc);
4647 }
4648}
4649
dedaf2b0
TH
4650/**
4651 * ata_qc_complete_multiple - Complete multiple qcs successfully
4652 * @ap: port in question
4653 * @qc_active: new qc_active mask
4654 * @finish_qc: LLDD callback invoked before completing a qc
4655 *
4656 * Complete in-flight commands. This functions is meant to be
4657 * called from low-level driver's interrupt routine to complete
4658 * requests normally. ap->qc_active and @qc_active is compared
4659 * and commands are completed accordingly.
4660 *
4661 * LOCKING:
cca3974e 4662 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4663 *
4664 * RETURNS:
4665 * Number of completed commands on success, -errno otherwise.
4666 */
4667int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4668 void (*finish_qc)(struct ata_queued_cmd *))
4669{
4670 int nr_done = 0;
4671 u32 done_mask;
4672 int i;
4673
4674 done_mask = ap->qc_active ^ qc_active;
4675
4676 if (unlikely(done_mask & qc_active)) {
4677 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4678 "(%08x->%08x)\n", ap->qc_active, qc_active);
4679 return -EINVAL;
4680 }
4681
4682 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4683 struct ata_queued_cmd *qc;
4684
4685 if (!(done_mask & (1 << i)))
4686 continue;
4687
4688 if ((qc = ata_qc_from_tag(ap, i))) {
4689 if (finish_qc)
4690 finish_qc(qc);
4691 ata_qc_complete(qc);
4692 nr_done++;
4693 }
4694 }
4695
4696 return nr_done;
4697}
4698
1da177e4
LT
4699static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4700{
4701 struct ata_port *ap = qc->ap;
4702
4703 switch (qc->tf.protocol) {
3dc1d881 4704 case ATA_PROT_NCQ:
1da177e4
LT
4705 case ATA_PROT_DMA:
4706 case ATA_PROT_ATAPI_DMA:
4707 return 1;
4708
4709 case ATA_PROT_ATAPI:
4710 case ATA_PROT_PIO:
1da177e4
LT
4711 if (ap->flags & ATA_FLAG_PIO_DMA)
4712 return 1;
4713
4714 /* fall through */
4715
4716 default:
4717 return 0;
4718 }
4719
4720 /* never reached */
4721}
4722
4723/**
4724 * ata_qc_issue - issue taskfile to device
4725 * @qc: command to issue to device
4726 *
4727 * Prepare an ATA command to submission to device.
4728 * This includes mapping the data into a DMA-able
4729 * area, filling in the S/G table, and finally
4730 * writing the taskfile to hardware, starting the command.
4731 *
4732 * LOCKING:
cca3974e 4733 * spin_lock_irqsave(host lock)
1da177e4 4734 */
8e0e694a 4735void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4736{
4737 struct ata_port *ap = qc->ap;
4738
dedaf2b0
TH
4739 /* Make sure only one non-NCQ command is outstanding. The
4740 * check is skipped for old EH because it reuses active qc to
4741 * request ATAPI sense.
4742 */
4743 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4744
4745 if (qc->tf.protocol == ATA_PROT_NCQ) {
4746 WARN_ON(ap->sactive & (1 << qc->tag));
4747 ap->sactive |= 1 << qc->tag;
4748 } else {
4749 WARN_ON(ap->sactive);
4750 ap->active_tag = qc->tag;
4751 }
4752
e4a70e76 4753 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4754 ap->qc_active |= 1 << qc->tag;
e4a70e76 4755
1da177e4
LT
4756 if (ata_should_dma_map(qc)) {
4757 if (qc->flags & ATA_QCFLAG_SG) {
4758 if (ata_sg_setup(qc))
8e436af9 4759 goto sg_err;
1da177e4
LT
4760 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4761 if (ata_sg_setup_one(qc))
8e436af9 4762 goto sg_err;
1da177e4
LT
4763 }
4764 } else {
4765 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4766 }
4767
4768 ap->ops->qc_prep(qc);
4769
8e0e694a
TH
4770 qc->err_mask |= ap->ops->qc_issue(qc);
4771 if (unlikely(qc->err_mask))
4772 goto err;
4773 return;
1da177e4 4774
8e436af9
TH
4775sg_err:
4776 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4777 qc->err_mask |= AC_ERR_SYSTEM;
4778err:
4779 ata_qc_complete(qc);
1da177e4
LT
4780}
4781
4782/**
4783 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4784 * @qc: command to issue to device
4785 *
4786 * Using various libata functions and hooks, this function
4787 * starts an ATA command. ATA commands are grouped into
4788 * classes called "protocols", and issuing each type of protocol
4789 * is slightly different.
4790 *
0baab86b
EF
4791 * May be used as the qc_issue() entry in ata_port_operations.
4792 *
1da177e4 4793 * LOCKING:
cca3974e 4794 * spin_lock_irqsave(host lock)
1da177e4
LT
4795 *
4796 * RETURNS:
9a3d9eb0 4797 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4798 */
4799
9a3d9eb0 4800unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4801{
4802 struct ata_port *ap = qc->ap;
4803
e50362ec
AL
4804 /* Use polling pio if the LLD doesn't handle
4805 * interrupt driven pio and atapi CDB interrupt.
4806 */
4807 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4808 switch (qc->tf.protocol) {
4809 case ATA_PROT_PIO:
4810 case ATA_PROT_ATAPI:
4811 case ATA_PROT_ATAPI_NODATA:
4812 qc->tf.flags |= ATA_TFLAG_POLLING;
4813 break;
4814 case ATA_PROT_ATAPI_DMA:
4815 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4816 /* see ata_dma_blacklisted() */
e50362ec
AL
4817 BUG();
4818 break;
4819 default:
4820 break;
4821 }
4822 }
4823
3d3cca37
TH
4824 /* Some controllers show flaky interrupt behavior after
4825 * setting xfer mode. Use polling instead.
4826 */
4827 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4828 qc->tf.feature == SETFEATURES_XFER) &&
4829 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4830 qc->tf.flags |= ATA_TFLAG_POLLING;
4831
312f7da2 4832 /* select the device */
1da177e4
LT
4833 ata_dev_select(ap, qc->dev->devno, 1, 0);
4834
312f7da2 4835 /* start the command */
1da177e4
LT
4836 switch (qc->tf.protocol) {
4837 case ATA_PROT_NODATA:
312f7da2
AL
4838 if (qc->tf.flags & ATA_TFLAG_POLLING)
4839 ata_qc_set_polling(qc);
4840
e5338254 4841 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4842 ap->hsm_task_state = HSM_ST_LAST;
4843
4844 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4845 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4846
1da177e4
LT
4847 break;
4848
4849 case ATA_PROT_DMA:
587005de 4850 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4851
1da177e4
LT
4852 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4853 ap->ops->bmdma_setup(qc); /* set up bmdma */
4854 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4855 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4856 break;
4857
312f7da2
AL
4858 case ATA_PROT_PIO:
4859 if (qc->tf.flags & ATA_TFLAG_POLLING)
4860 ata_qc_set_polling(qc);
1da177e4 4861
e5338254 4862 ata_tf_to_host(ap, &qc->tf);
312f7da2 4863
54f00389
AL
4864 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4865 /* PIO data out protocol */
4866 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4867 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4868
4869 /* always send first data block using
e27486db 4870 * the ata_pio_task() codepath.
54f00389 4871 */
312f7da2 4872 } else {
54f00389
AL
4873 /* PIO data in protocol */
4874 ap->hsm_task_state = HSM_ST;
4875
4876 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4877 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4878
4879 /* if polling, ata_pio_task() handles the rest.
4880 * otherwise, interrupt handler takes over from here.
4881 */
312f7da2
AL
4882 }
4883
1da177e4
LT
4884 break;
4885
1da177e4 4886 case ATA_PROT_ATAPI:
1da177e4 4887 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4888 if (qc->tf.flags & ATA_TFLAG_POLLING)
4889 ata_qc_set_polling(qc);
4890
e5338254 4891 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4892
312f7da2
AL
4893 ap->hsm_task_state = HSM_ST_FIRST;
4894
4895 /* send cdb by polling if no cdb interrupt */
4896 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4897 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4898 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4899 break;
4900
4901 case ATA_PROT_ATAPI_DMA:
587005de 4902 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4903
1da177e4
LT
4904 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4905 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4906 ap->hsm_task_state = HSM_ST_FIRST;
4907
4908 /* send cdb by polling if no cdb interrupt */
4909 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4910 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4911 break;
4912
4913 default:
4914 WARN_ON(1);
9a3d9eb0 4915 return AC_ERR_SYSTEM;
1da177e4
LT
4916 }
4917
4918 return 0;
4919}
4920
1da177e4
LT
4921/**
4922 * ata_host_intr - Handle host interrupt for given (port, task)
4923 * @ap: Port on which interrupt arrived (possibly...)
4924 * @qc: Taskfile currently active in engine
4925 *
4926 * Handle host interrupt for given queued command. Currently,
4927 * only DMA interrupts are handled. All other commands are
4928 * handled via polling with interrupts disabled (nIEN bit).
4929 *
4930 * LOCKING:
cca3974e 4931 * spin_lock_irqsave(host lock)
1da177e4
LT
4932 *
4933 * RETURNS:
4934 * One if interrupt was handled, zero if not (shared irq).
4935 */
4936
4937inline unsigned int ata_host_intr (struct ata_port *ap,
4938 struct ata_queued_cmd *qc)
4939{
ea54763f 4940 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 4941 u8 status, host_stat = 0;
1da177e4 4942
312f7da2
AL
4943 VPRINTK("ata%u: protocol %d task_state %d\n",
4944 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4945
312f7da2
AL
4946 /* Check whether we are expecting interrupt in this state */
4947 switch (ap->hsm_task_state) {
4948 case HSM_ST_FIRST:
6912ccd5
AL
4949 /* Some pre-ATAPI-4 devices assert INTRQ
4950 * at this state when ready to receive CDB.
4951 */
1da177e4 4952
312f7da2
AL
4953 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4954 * The flag was turned on only for atapi devices.
4955 * No need to check is_atapi_taskfile(&qc->tf) again.
4956 */
4957 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4958 goto idle_irq;
1da177e4 4959 break;
312f7da2
AL
4960 case HSM_ST_LAST:
4961 if (qc->tf.protocol == ATA_PROT_DMA ||
4962 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4963 /* check status of DMA engine */
4964 host_stat = ap->ops->bmdma_status(ap);
4965 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4966
4967 /* if it's not our irq... */
4968 if (!(host_stat & ATA_DMA_INTR))
4969 goto idle_irq;
4970
4971 /* before we do anything else, clear DMA-Start bit */
4972 ap->ops->bmdma_stop(qc);
a4f16610
AL
4973
4974 if (unlikely(host_stat & ATA_DMA_ERR)) {
4975 /* error when transfering data to/from memory */
4976 qc->err_mask |= AC_ERR_HOST_BUS;
4977 ap->hsm_task_state = HSM_ST_ERR;
4978 }
312f7da2
AL
4979 }
4980 break;
4981 case HSM_ST:
4982 break;
1da177e4
LT
4983 default:
4984 goto idle_irq;
4985 }
4986
312f7da2
AL
4987 /* check altstatus */
4988 status = ata_altstatus(ap);
4989 if (status & ATA_BUSY)
4990 goto idle_irq;
1da177e4 4991
312f7da2
AL
4992 /* check main status, clearing INTRQ */
4993 status = ata_chk_status(ap);
4994 if (unlikely(status & ATA_BUSY))
4995 goto idle_irq;
1da177e4 4996
312f7da2
AL
4997 /* ack bmdma irq events */
4998 ap->ops->irq_clear(ap);
1da177e4 4999
bb5cb290 5000 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5001
5002 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5003 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5004 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5005
1da177e4
LT
5006 return 1; /* irq handled */
5007
5008idle_irq:
5009 ap->stats.idle_irq++;
5010
5011#ifdef ATA_IRQ_TRAP
5012 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5013 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5014 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5015 return 1;
1da177e4
LT
5016 }
5017#endif
5018 return 0; /* irq not handled */
5019}
5020
5021/**
5022 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5023 * @irq: irq line (unused)
cca3974e 5024 * @dev_instance: pointer to our ata_host information structure
1da177e4 5025 *
0cba632b
JG
5026 * Default interrupt handler for PCI IDE devices. Calls
5027 * ata_host_intr() for each port that is not disabled.
5028 *
1da177e4 5029 * LOCKING:
cca3974e 5030 * Obtains host lock during operation.
1da177e4
LT
5031 *
5032 * RETURNS:
0cba632b 5033 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5034 */
5035
7d12e780 5036irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5037{
cca3974e 5038 struct ata_host *host = dev_instance;
1da177e4
LT
5039 unsigned int i;
5040 unsigned int handled = 0;
5041 unsigned long flags;
5042
5043 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5044 spin_lock_irqsave(&host->lock, flags);
1da177e4 5045
cca3974e 5046 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5047 struct ata_port *ap;
5048
cca3974e 5049 ap = host->ports[i];
c1389503 5050 if (ap &&
029f5468 5051 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5052 struct ata_queued_cmd *qc;
5053
5054 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5055 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5056 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5057 handled |= ata_host_intr(ap, qc);
5058 }
5059 }
5060
cca3974e 5061 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5062
5063 return IRQ_RETVAL(handled);
5064}
5065
34bf2170
TH
5066/**
5067 * sata_scr_valid - test whether SCRs are accessible
5068 * @ap: ATA port to test SCR accessibility for
5069 *
5070 * Test whether SCRs are accessible for @ap.
5071 *
5072 * LOCKING:
5073 * None.
5074 *
5075 * RETURNS:
5076 * 1 if SCRs are accessible, 0 otherwise.
5077 */
5078int sata_scr_valid(struct ata_port *ap)
5079{
5080 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5081}
5082
5083/**
5084 * sata_scr_read - read SCR register of the specified port
5085 * @ap: ATA port to read SCR for
5086 * @reg: SCR to read
5087 * @val: Place to store read value
5088 *
5089 * Read SCR register @reg of @ap into *@val. This function is
5090 * guaranteed to succeed if the cable type of the port is SATA
5091 * and the port implements ->scr_read.
5092 *
5093 * LOCKING:
5094 * None.
5095 *
5096 * RETURNS:
5097 * 0 on success, negative errno on failure.
5098 */
5099int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5100{
5101 if (sata_scr_valid(ap)) {
5102 *val = ap->ops->scr_read(ap, reg);
5103 return 0;
5104 }
5105 return -EOPNOTSUPP;
5106}
5107
5108/**
5109 * sata_scr_write - write SCR register of the specified port
5110 * @ap: ATA port to write SCR for
5111 * @reg: SCR to write
5112 * @val: value to write
5113 *
5114 * Write @val to SCR register @reg of @ap. This function is
5115 * guaranteed to succeed if the cable type of the port is SATA
5116 * and the port implements ->scr_read.
5117 *
5118 * LOCKING:
5119 * None.
5120 *
5121 * RETURNS:
5122 * 0 on success, negative errno on failure.
5123 */
5124int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5125{
5126 if (sata_scr_valid(ap)) {
5127 ap->ops->scr_write(ap, reg, val);
5128 return 0;
5129 }
5130 return -EOPNOTSUPP;
5131}
5132
5133/**
5134 * sata_scr_write_flush - write SCR register of the specified port and flush
5135 * @ap: ATA port to write SCR for
5136 * @reg: SCR to write
5137 * @val: value to write
5138 *
5139 * This function is identical to sata_scr_write() except that this
5140 * function performs flush after writing to the register.
5141 *
5142 * LOCKING:
5143 * None.
5144 *
5145 * RETURNS:
5146 * 0 on success, negative errno on failure.
5147 */
5148int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5149{
5150 if (sata_scr_valid(ap)) {
5151 ap->ops->scr_write(ap, reg, val);
5152 ap->ops->scr_read(ap, reg);
5153 return 0;
5154 }
5155 return -EOPNOTSUPP;
5156}
5157
5158/**
5159 * ata_port_online - test whether the given port is online
5160 * @ap: ATA port to test
5161 *
5162 * Test whether @ap is online. Note that this function returns 0
5163 * if online status of @ap cannot be obtained, so
5164 * ata_port_online(ap) != !ata_port_offline(ap).
5165 *
5166 * LOCKING:
5167 * None.
5168 *
5169 * RETURNS:
5170 * 1 if the port online status is available and online.
5171 */
5172int ata_port_online(struct ata_port *ap)
5173{
5174 u32 sstatus;
5175
5176 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5177 return 1;
5178 return 0;
5179}
5180
5181/**
5182 * ata_port_offline - test whether the given port is offline
5183 * @ap: ATA port to test
5184 *
5185 * Test whether @ap is offline. Note that this function returns
5186 * 0 if offline status of @ap cannot be obtained, so
5187 * ata_port_online(ap) != !ata_port_offline(ap).
5188 *
5189 * LOCKING:
5190 * None.
5191 *
5192 * RETURNS:
5193 * 1 if the port offline status is available and offline.
5194 */
5195int ata_port_offline(struct ata_port *ap)
5196{
5197 u32 sstatus;
5198
5199 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5200 return 1;
5201 return 0;
5202}
0baab86b 5203
77b08fb5 5204int ata_flush_cache(struct ata_device *dev)
9b847548 5205{
977e6b9f 5206 unsigned int err_mask;
9b847548
JA
5207 u8 cmd;
5208
5209 if (!ata_try_flush_cache(dev))
5210 return 0;
5211
6fc49adb 5212 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5213 cmd = ATA_CMD_FLUSH_EXT;
5214 else
5215 cmd = ATA_CMD_FLUSH;
5216
977e6b9f
TH
5217 err_mask = ata_do_simple_cmd(dev, cmd);
5218 if (err_mask) {
5219 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5220 return -EIO;
5221 }
5222
5223 return 0;
9b847548
JA
5224}
5225
cca3974e
JG
5226static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5227 unsigned int action, unsigned int ehi_flags,
5228 int wait)
500530f6
TH
5229{
5230 unsigned long flags;
5231 int i, rc;
5232
cca3974e
JG
5233 for (i = 0; i < host->n_ports; i++) {
5234 struct ata_port *ap = host->ports[i];
500530f6
TH
5235
5236 /* Previous resume operation might still be in
5237 * progress. Wait for PM_PENDING to clear.
5238 */
5239 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5240 ata_port_wait_eh(ap);
5241 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5242 }
5243
5244 /* request PM ops to EH */
5245 spin_lock_irqsave(ap->lock, flags);
5246
5247 ap->pm_mesg = mesg;
5248 if (wait) {
5249 rc = 0;
5250 ap->pm_result = &rc;
5251 }
5252
5253 ap->pflags |= ATA_PFLAG_PM_PENDING;
5254 ap->eh_info.action |= action;
5255 ap->eh_info.flags |= ehi_flags;
5256
5257 ata_port_schedule_eh(ap);
5258
5259 spin_unlock_irqrestore(ap->lock, flags);
5260
5261 /* wait and check result */
5262 if (wait) {
5263 ata_port_wait_eh(ap);
5264 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5265 if (rc)
5266 return rc;
5267 }
5268 }
5269
5270 return 0;
5271}
5272
5273/**
cca3974e
JG
5274 * ata_host_suspend - suspend host
5275 * @host: host to suspend
500530f6
TH
5276 * @mesg: PM message
5277 *
cca3974e 5278 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5279 * function requests EH to perform PM operations and waits for EH
5280 * to finish.
5281 *
5282 * LOCKING:
5283 * Kernel thread context (may sleep).
5284 *
5285 * RETURNS:
5286 * 0 on success, -errno on failure.
5287 */
cca3974e 5288int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5289{
5290 int i, j, rc;
5291
cca3974e 5292 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5293 if (rc)
5294 goto fail;
5295
5296 /* EH is quiescent now. Fail if we have any ready device.
5297 * This happens if hotplug occurs between completion of device
5298 * suspension and here.
5299 */
cca3974e
JG
5300 for (i = 0; i < host->n_ports; i++) {
5301 struct ata_port *ap = host->ports[i];
500530f6
TH
5302
5303 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5304 struct ata_device *dev = &ap->device[j];
5305
5306 if (ata_dev_ready(dev)) {
5307 ata_port_printk(ap, KERN_WARNING,
5308 "suspend failed, device %d "
5309 "still active\n", dev->devno);
5310 rc = -EBUSY;
5311 goto fail;
5312 }
5313 }
5314 }
5315
cca3974e 5316 host->dev->power.power_state = mesg;
500530f6
TH
5317 return 0;
5318
5319 fail:
cca3974e 5320 ata_host_resume(host);
500530f6
TH
5321 return rc;
5322}
5323
5324/**
cca3974e
JG
5325 * ata_host_resume - resume host
5326 * @host: host to resume
500530f6 5327 *
cca3974e 5328 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5329 * function requests EH to perform PM operations and returns.
5330 * Note that all resume operations are performed parallely.
5331 *
5332 * LOCKING:
5333 * Kernel thread context (may sleep).
5334 */
cca3974e 5335void ata_host_resume(struct ata_host *host)
500530f6 5336{
cca3974e
JG
5337 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5338 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5339 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5340}
5341
c893a3ae
RD
5342/**
5343 * ata_port_start - Set port up for dma.
5344 * @ap: Port to initialize
5345 *
5346 * Called just after data structures for each port are
5347 * initialized. Allocates space for PRD table.
5348 *
5349 * May be used as the port_start() entry in ata_port_operations.
5350 *
5351 * LOCKING:
5352 * Inherited from caller.
5353 */
5354
1da177e4
LT
5355int ata_port_start (struct ata_port *ap)
5356{
2f1f610b 5357 struct device *dev = ap->dev;
6037d6bb 5358 int rc;
1da177e4
LT
5359
5360 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5361 if (!ap->prd)
5362 return -ENOMEM;
5363
6037d6bb
JG
5364 rc = ata_pad_alloc(ap, dev);
5365 if (rc) {
cedc9a47 5366 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5367 return rc;
cedc9a47
JG
5368 }
5369
1da177e4
LT
5370 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5371
5372 return 0;
5373}
5374
0baab86b
EF
5375
5376/**
5377 * ata_port_stop - Undo ata_port_start()
5378 * @ap: Port to shut down
5379 *
5380 * Frees the PRD table.
5381 *
5382 * May be used as the port_stop() entry in ata_port_operations.
5383 *
5384 * LOCKING:
6f0ef4fa 5385 * Inherited from caller.
0baab86b
EF
5386 */
5387
1da177e4
LT
5388void ata_port_stop (struct ata_port *ap)
5389{
2f1f610b 5390 struct device *dev = ap->dev;
1da177e4
LT
5391
5392 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5393 ata_pad_free(ap, dev);
1da177e4
LT
5394}
5395
cca3974e 5396void ata_host_stop (struct ata_host *host)
aa8f0dc6 5397{
cca3974e
JG
5398 if (host->mmio_base)
5399 iounmap(host->mmio_base);
aa8f0dc6
JG
5400}
5401
3ef3b43d
TH
5402/**
5403 * ata_dev_init - Initialize an ata_device structure
5404 * @dev: Device structure to initialize
5405 *
5406 * Initialize @dev in preparation for probing.
5407 *
5408 * LOCKING:
5409 * Inherited from caller.
5410 */
5411void ata_dev_init(struct ata_device *dev)
5412{
5413 struct ata_port *ap = dev->ap;
72fa4b74
TH
5414 unsigned long flags;
5415
5a04bf4b
TH
5416 /* SATA spd limit is bound to the first device */
5417 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5418
72fa4b74
TH
5419 /* High bits of dev->flags are used to record warm plug
5420 * requests which occur asynchronously. Synchronize using
cca3974e 5421 * host lock.
72fa4b74 5422 */
ba6a1308 5423 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5424 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5425 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5426
72fa4b74
TH
5427 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5428 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5429 dev->pio_mask = UINT_MAX;
5430 dev->mwdma_mask = UINT_MAX;
5431 dev->udma_mask = UINT_MAX;
5432}
5433
1da177e4 5434/**
155a8a9c 5435 * ata_port_init - Initialize an ata_port structure
1da177e4 5436 * @ap: Structure to initialize
cca3974e 5437 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5438 * @ent: Probe information provided by low-level driver
5439 * @port_no: Port number associated with this ata_port
5440 *
155a8a9c 5441 * Initialize a new ata_port structure.
0cba632b 5442 *
1da177e4 5443 * LOCKING:
0cba632b 5444 * Inherited from caller.
1da177e4 5445 */
cca3974e 5446void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5447 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5448{
5449 unsigned int i;
5450
cca3974e 5451 ap->lock = &host->lock;
198e0fed 5452 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5453 ap->id = ata_unique_id++;
1da177e4 5454 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5455 ap->host = host;
2f1f610b 5456 ap->dev = ent->dev;
1da177e4 5457 ap->port_no = port_no;
fea63e38
TH
5458 if (port_no == 1 && ent->pinfo2) {
5459 ap->pio_mask = ent->pinfo2->pio_mask;
5460 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5461 ap->udma_mask = ent->pinfo2->udma_mask;
5462 ap->flags |= ent->pinfo2->flags;
5463 ap->ops = ent->pinfo2->port_ops;
5464 } else {
5465 ap->pio_mask = ent->pio_mask;
5466 ap->mwdma_mask = ent->mwdma_mask;
5467 ap->udma_mask = ent->udma_mask;
5468 ap->flags |= ent->port_flags;
5469 ap->ops = ent->port_ops;
5470 }
5a04bf4b 5471 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5472 ap->active_tag = ATA_TAG_POISON;
5473 ap->last_ctl = 0xFF;
bd5d825c
BP
5474
5475#if defined(ATA_VERBOSE_DEBUG)
5476 /* turn on all debugging levels */
5477 ap->msg_enable = 0x00FF;
5478#elif defined(ATA_DEBUG)
5479 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5480#else
0dd4b21f 5481 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5482#endif
1da177e4 5483
86e45b6b 5484 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5485 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5486 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5487 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5488 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5489
838df628
TH
5490 /* set cable type */
5491 ap->cbl = ATA_CBL_NONE;
5492 if (ap->flags & ATA_FLAG_SATA)
5493 ap->cbl = ATA_CBL_SATA;
5494
acf356b1
TH
5495 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5496 struct ata_device *dev = &ap->device[i];
38d87234 5497 dev->ap = ap;
72fa4b74 5498 dev->devno = i;
3ef3b43d 5499 ata_dev_init(dev);
acf356b1 5500 }
1da177e4
LT
5501
5502#ifdef ATA_IRQ_TRAP
5503 ap->stats.unhandled_irq = 1;
5504 ap->stats.idle_irq = 1;
5505#endif
5506
5507 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5508}
5509
155a8a9c 5510/**
4608c160
TH
5511 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5512 * @ap: ATA port to initialize SCSI host for
5513 * @shost: SCSI host associated with @ap
155a8a9c 5514 *
4608c160 5515 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5516 *
5517 * LOCKING:
5518 * Inherited from caller.
5519 */
4608c160 5520static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5521{
cca3974e 5522 ap->scsi_host = shost;
155a8a9c 5523
4608c160
TH
5524 shost->unique_id = ap->id;
5525 shost->max_id = 16;
5526 shost->max_lun = 1;
5527 shost->max_channel = 1;
5528 shost->max_cmd_len = 12;
155a8a9c
BK
5529}
5530
1da177e4 5531/**
996139f1 5532 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5533 * @ent: Information provided by low-level driver
cca3974e 5534 * @host: Collections of ports to which we add
1da177e4
LT
5535 * @port_no: Port number associated with this host
5536 *
0cba632b
JG
5537 * Attach low-level ATA driver to system.
5538 *
1da177e4 5539 * LOCKING:
0cba632b 5540 * PCI/etc. bus probe sem.
1da177e4
LT
5541 *
5542 * RETURNS:
0cba632b 5543 * New ata_port on success, for NULL on error.
1da177e4 5544 */
996139f1 5545static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5546 struct ata_host *host,
1da177e4
LT
5547 unsigned int port_no)
5548{
996139f1 5549 struct Scsi_Host *shost;
1da177e4 5550 struct ata_port *ap;
1da177e4
LT
5551
5552 DPRINTK("ENTER\n");
aec5c3c1 5553
52783c5d 5554 if (!ent->port_ops->error_handler &&
cca3974e 5555 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5556 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5557 port_no);
5558 return NULL;
5559 }
5560
996139f1
JG
5561 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5562 if (!shost)
1da177e4
LT
5563 return NULL;
5564
996139f1 5565 shost->transportt = &ata_scsi_transport_template;
30afc84c 5566
996139f1 5567 ap = ata_shost_to_port(shost);
1da177e4 5568
cca3974e 5569 ata_port_init(ap, host, ent, port_no);
996139f1 5570 ata_port_init_shost(ap, shost);
1da177e4 5571
1da177e4 5572 return ap;
1da177e4
LT
5573}
5574
b03732f0 5575/**
cca3974e
JG
5576 * ata_sas_host_init - Initialize a host struct
5577 * @host: host to initialize
5578 * @dev: device host is attached to
5579 * @flags: host flags
5580 * @ops: port_ops
b03732f0
BK
5581 *
5582 * LOCKING:
5583 * PCI/etc. bus probe sem.
5584 *
5585 */
5586
cca3974e
JG
5587void ata_host_init(struct ata_host *host, struct device *dev,
5588 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5589{
cca3974e
JG
5590 spin_lock_init(&host->lock);
5591 host->dev = dev;
5592 host->flags = flags;
5593 host->ops = ops;
b03732f0
BK
5594}
5595
1da177e4 5596/**
0cba632b
JG
5597 * ata_device_add - Register hardware device with ATA and SCSI layers
5598 * @ent: Probe information describing hardware device to be registered
5599 *
5600 * This function processes the information provided in the probe
5601 * information struct @ent, allocates the necessary ATA and SCSI
5602 * host information structures, initializes them, and registers
5603 * everything with requisite kernel subsystems.
5604 *
5605 * This function requests irqs, probes the ATA bus, and probes
5606 * the SCSI bus.
1da177e4
LT
5607 *
5608 * LOCKING:
0cba632b 5609 * PCI/etc. bus probe sem.
1da177e4
LT
5610 *
5611 * RETURNS:
0cba632b 5612 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5613 */
057ace5e 5614int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5615{
6d0500df 5616 unsigned int i;
1da177e4 5617 struct device *dev = ent->dev;
cca3974e 5618 struct ata_host *host;
39b07ce6 5619 int rc;
1da177e4
LT
5620
5621 DPRINTK("ENTER\n");
02f076aa
AC
5622
5623 if (ent->irq == 0) {
5624 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5625 return 0;
5626 }
1da177e4 5627 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5628 host = kzalloc(sizeof(struct ata_host) +
5629 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5630 if (!host)
1da177e4 5631 return 0;
1da177e4 5632
cca3974e
JG
5633 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5634 host->n_ports = ent->n_ports;
5635 host->irq = ent->irq;
5636 host->irq2 = ent->irq2;
5637 host->mmio_base = ent->mmio_base;
5638 host->private_data = ent->private_data;
1da177e4
LT
5639
5640 /* register each port bound to this device */
cca3974e 5641 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5642 struct ata_port *ap;
5643 unsigned long xfer_mode_mask;
2ec7df04 5644 int irq_line = ent->irq;
1da177e4 5645
cca3974e 5646 ap = ata_port_add(ent, host, i);
c38778c3 5647 host->ports[i] = ap;
1da177e4
LT
5648 if (!ap)
5649 goto err_out;
5650
dd5b06c4
TH
5651 /* dummy? */
5652 if (ent->dummy_port_mask & (1 << i)) {
5653 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5654 ap->ops = &ata_dummy_port_ops;
5655 continue;
5656 }
5657
5658 /* start port */
5659 rc = ap->ops->port_start(ap);
5660 if (rc) {
cca3974e
JG
5661 host->ports[i] = NULL;
5662 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5663 goto err_out;
5664 }
5665
2ec7df04
AC
5666 /* Report the secondary IRQ for second channel legacy */
5667 if (i == 1 && ent->irq2)
5668 irq_line = ent->irq2;
5669
1da177e4
LT
5670 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5671 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5672 (ap->pio_mask << ATA_SHIFT_PIO);
5673
5674 /* print per-port info to dmesg */
f15a1daf 5675 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5676 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5677 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5678 ata_mode_string(xfer_mode_mask),
5679 ap->ioaddr.cmd_addr,
5680 ap->ioaddr.ctl_addr,
5681 ap->ioaddr.bmdma_addr,
2ec7df04 5682 irq_line);
1da177e4 5683
0f0a3ad3
TH
5684 /* freeze port before requesting IRQ */
5685 ata_eh_freeze_port(ap);
1da177e4
LT
5686 }
5687
2ec7df04 5688 /* obtain irq, that may be shared between channels */
39b07ce6 5689 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5690 DRV_NAME, host);
39b07ce6
JG
5691 if (rc) {
5692 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5693 ent->irq, rc);
1da177e4 5694 goto err_out;
39b07ce6 5695 }
1da177e4 5696
2ec7df04
AC
5697 /* do we have a second IRQ for the other channel, eg legacy mode */
5698 if (ent->irq2) {
5699 /* We will get weird core code crashes later if this is true
5700 so trap it now */
5701 BUG_ON(ent->irq == ent->irq2);
5702
5703 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5704 DRV_NAME, host);
2ec7df04
AC
5705 if (rc) {
5706 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5707 ent->irq2, rc);
5708 goto err_out_free_irq;
5709 }
5710 }
5711
1da177e4
LT
5712 /* perform each probe synchronously */
5713 DPRINTK("probe begin\n");
cca3974e
JG
5714 for (i = 0; i < host->n_ports; i++) {
5715 struct ata_port *ap = host->ports[i];
5a04bf4b 5716 u32 scontrol;
1da177e4
LT
5717 int rc;
5718
5a04bf4b
TH
5719 /* init sata_spd_limit to the current value */
5720 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5721 int spd = (scontrol >> 4) & 0xf;
5722 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5723 }
5724 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5725
cca3974e 5726 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5727 if (rc) {
f15a1daf 5728 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5729 /* FIXME: do something useful here */
5730 /* FIXME: handle unconditional calls to
5731 * scsi_scan_host and ata_host_remove, below,
5732 * at the very least
5733 */
5734 }
3e706399 5735
52783c5d 5736 if (ap->ops->error_handler) {
1cdaf534 5737 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5738 unsigned long flags;
5739
5740 ata_port_probe(ap);
5741
5742 /* kick EH for boot probing */
ba6a1308 5743 spin_lock_irqsave(ap->lock, flags);
3e706399 5744
1cdaf534
TH
5745 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5746 ehi->action |= ATA_EH_SOFTRESET;
5747 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5748
b51e9e5d 5749 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5750 ata_port_schedule_eh(ap);
5751
ba6a1308 5752 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5753
5754 /* wait for EH to finish */
5755 ata_port_wait_eh(ap);
5756 } else {
5757 DPRINTK("ata%u: bus probe begin\n", ap->id);
5758 rc = ata_bus_probe(ap);
5759 DPRINTK("ata%u: bus probe end\n", ap->id);
5760
5761 if (rc) {
5762 /* FIXME: do something useful here?
5763 * Current libata behavior will
5764 * tear down everything when
5765 * the module is removed
5766 * or the h/w is unplugged.
5767 */
5768 }
5769 }
1da177e4
LT
5770 }
5771
5772 /* probes are done, now scan each port's disk(s) */
c893a3ae 5773 DPRINTK("host probe begin\n");
cca3974e
JG
5774 for (i = 0; i < host->n_ports; i++) {
5775 struct ata_port *ap = host->ports[i];
1da177e4 5776
644dd0cc 5777 ata_scsi_scan_host(ap);
1da177e4
LT
5778 }
5779
cca3974e 5780 dev_set_drvdata(dev, host);
1da177e4
LT
5781
5782 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5783 return ent->n_ports; /* success */
5784
2ec7df04 5785err_out_free_irq:
cca3974e 5786 free_irq(ent->irq, host);
1da177e4 5787err_out:
cca3974e
JG
5788 for (i = 0; i < host->n_ports; i++) {
5789 struct ata_port *ap = host->ports[i];
77f3f879
TH
5790 if (ap) {
5791 ap->ops->port_stop(ap);
cca3974e 5792 scsi_host_put(ap->scsi_host);
77f3f879 5793 }
1da177e4 5794 }
6d0500df 5795
cca3974e 5796 kfree(host);
1da177e4
LT
5797 VPRINTK("EXIT, returning 0\n");
5798 return 0;
5799}
5800
720ba126
TH
5801/**
5802 * ata_port_detach - Detach ATA port in prepration of device removal
5803 * @ap: ATA port to be detached
5804 *
5805 * Detach all ATA devices and the associated SCSI devices of @ap;
5806 * then, remove the associated SCSI host. @ap is guaranteed to
5807 * be quiescent on return from this function.
5808 *
5809 * LOCKING:
5810 * Kernel thread context (may sleep).
5811 */
5812void ata_port_detach(struct ata_port *ap)
5813{
5814 unsigned long flags;
5815 int i;
5816
5817 if (!ap->ops->error_handler)
c3cf30a9 5818 goto skip_eh;
720ba126
TH
5819
5820 /* tell EH we're leaving & flush EH */
ba6a1308 5821 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5822 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5823 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5824
5825 ata_port_wait_eh(ap);
5826
5827 /* EH is now guaranteed to see UNLOADING, so no new device
5828 * will be attached. Disable all existing devices.
5829 */
ba6a1308 5830 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5831
5832 for (i = 0; i < ATA_MAX_DEVICES; i++)
5833 ata_dev_disable(&ap->device[i]);
5834
ba6a1308 5835 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5836
5837 /* Final freeze & EH. All in-flight commands are aborted. EH
5838 * will be skipped and retrials will be terminated with bad
5839 * target.
5840 */
ba6a1308 5841 spin_lock_irqsave(ap->lock, flags);
720ba126 5842 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5843 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5844
5845 ata_port_wait_eh(ap);
5846
5847 /* Flush hotplug task. The sequence is similar to
5848 * ata_port_flush_task().
5849 */
5850 flush_workqueue(ata_aux_wq);
5851 cancel_delayed_work(&ap->hotplug_task);
5852 flush_workqueue(ata_aux_wq);
5853
c3cf30a9 5854 skip_eh:
720ba126 5855 /* remove the associated SCSI host */
cca3974e 5856 scsi_remove_host(ap->scsi_host);
720ba126
TH
5857}
5858
17b14451 5859/**
cca3974e
JG
5860 * ata_host_remove - PCI layer callback for device removal
5861 * @host: ATA host set that was removed
17b14451 5862 *
2e9edbf8 5863 * Unregister all objects associated with this host set. Free those
17b14451
AC
5864 * objects.
5865 *
5866 * LOCKING:
5867 * Inherited from calling layer (may sleep).
5868 */
5869
cca3974e 5870void ata_host_remove(struct ata_host *host)
17b14451 5871{
17b14451
AC
5872 unsigned int i;
5873
cca3974e
JG
5874 for (i = 0; i < host->n_ports; i++)
5875 ata_port_detach(host->ports[i]);
17b14451 5876
cca3974e
JG
5877 free_irq(host->irq, host);
5878 if (host->irq2)
5879 free_irq(host->irq2, host);
17b14451 5880
cca3974e
JG
5881 for (i = 0; i < host->n_ports; i++) {
5882 struct ata_port *ap = host->ports[i];
17b14451 5883
cca3974e 5884 ata_scsi_release(ap->scsi_host);
17b14451
AC
5885
5886 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5887 struct ata_ioports *ioaddr = &ap->ioaddr;
5888
2ec7df04
AC
5889 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5890 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5891 release_region(ATA_PRIMARY_CMD, 8);
5892 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5893 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5894 }
5895
cca3974e 5896 scsi_host_put(ap->scsi_host);
17b14451
AC
5897 }
5898
cca3974e
JG
5899 if (host->ops->host_stop)
5900 host->ops->host_stop(host);
17b14451 5901
cca3974e 5902 kfree(host);
17b14451
AC
5903}
5904
1da177e4
LT
5905/**
5906 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 5907 * @shost: libata host to be unloaded
1da177e4
LT
5908 *
5909 * Performs all duties necessary to shut down a libata port...
5910 * Kill port kthread, disable port, and release resources.
5911 *
5912 * LOCKING:
5913 * Inherited from SCSI layer.
5914 *
5915 * RETURNS:
5916 * One.
5917 */
5918
cca3974e 5919int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 5920{
cca3974e 5921 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
5922
5923 DPRINTK("ENTER\n");
5924
5925 ap->ops->port_disable(ap);
6543bc07 5926 ap->ops->port_stop(ap);
1da177e4
LT
5927
5928 DPRINTK("EXIT\n");
5929 return 1;
5930}
5931
f6d950e2
BK
5932struct ata_probe_ent *
5933ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5934{
5935 struct ata_probe_ent *probe_ent;
5936
5937 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5938 if (!probe_ent) {
5939 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5940 kobject_name(&(dev->kobj)));
5941 return NULL;
5942 }
5943
5944 INIT_LIST_HEAD(&probe_ent->node);
5945 probe_ent->dev = dev;
5946
5947 probe_ent->sht = port->sht;
cca3974e 5948 probe_ent->port_flags = port->flags;
f6d950e2
BK
5949 probe_ent->pio_mask = port->pio_mask;
5950 probe_ent->mwdma_mask = port->mwdma_mask;
5951 probe_ent->udma_mask = port->udma_mask;
5952 probe_ent->port_ops = port->port_ops;
d639ca94 5953 probe_ent->private_data = port->private_data;
f6d950e2
BK
5954
5955 return probe_ent;
5956}
5957
1da177e4
LT
5958/**
5959 * ata_std_ports - initialize ioaddr with standard port offsets.
5960 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5961 *
5962 * Utility function which initializes data_addr, error_addr,
5963 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5964 * device_addr, status_addr, and command_addr to standard offsets
5965 * relative to cmd_addr.
5966 *
5967 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5968 */
0baab86b 5969
1da177e4
LT
5970void ata_std_ports(struct ata_ioports *ioaddr)
5971{
5972 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5973 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5974 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5975 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5976 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5977 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5978 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5979 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5980 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5981 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5982}
5983
0baab86b 5984
374b1873
JG
5985#ifdef CONFIG_PCI
5986
cca3974e 5987void ata_pci_host_stop (struct ata_host *host)
374b1873 5988{
cca3974e 5989 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 5990
cca3974e 5991 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
5992}
5993
1da177e4
LT
5994/**
5995 * ata_pci_remove_one - PCI layer callback for device removal
5996 * @pdev: PCI device that was removed
5997 *
5998 * PCI layer indicates to libata via this hook that
6f0ef4fa 5999 * hot-unplug or module unload event has occurred.
1da177e4
LT
6000 * Handle this by unregistering all objects associated
6001 * with this PCI device. Free those objects. Then finally
6002 * release PCI resources and disable device.
6003 *
6004 * LOCKING:
6005 * Inherited from PCI layer (may sleep).
6006 */
6007
6008void ata_pci_remove_one (struct pci_dev *pdev)
6009{
6010 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6011 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6012
cca3974e 6013 ata_host_remove(host);
f0eb62b8 6014
1da177e4
LT
6015 pci_release_regions(pdev);
6016 pci_disable_device(pdev);
6017 dev_set_drvdata(dev, NULL);
6018}
6019
6020/* move to PCI subsystem */
057ace5e 6021int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6022{
6023 unsigned long tmp = 0;
6024
6025 switch (bits->width) {
6026 case 1: {
6027 u8 tmp8 = 0;
6028 pci_read_config_byte(pdev, bits->reg, &tmp8);
6029 tmp = tmp8;
6030 break;
6031 }
6032 case 2: {
6033 u16 tmp16 = 0;
6034 pci_read_config_word(pdev, bits->reg, &tmp16);
6035 tmp = tmp16;
6036 break;
6037 }
6038 case 4: {
6039 u32 tmp32 = 0;
6040 pci_read_config_dword(pdev, bits->reg, &tmp32);
6041 tmp = tmp32;
6042 break;
6043 }
6044
6045 default:
6046 return -EINVAL;
6047 }
6048
6049 tmp &= bits->mask;
6050
6051 return (tmp == bits->val) ? 1 : 0;
6052}
9b847548 6053
3c5100c1 6054void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6055{
6056 pci_save_state(pdev);
500530f6 6057
3c5100c1 6058 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6059 pci_disable_device(pdev);
6060 pci_set_power_state(pdev, PCI_D3hot);
6061 }
9b847548
JA
6062}
6063
500530f6 6064void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
6065{
6066 pci_set_power_state(pdev, PCI_D0);
6067 pci_restore_state(pdev);
6068 pci_enable_device(pdev);
6069 pci_set_master(pdev);
500530f6
TH
6070}
6071
3c5100c1 6072int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6073{
cca3974e 6074 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6075 int rc = 0;
6076
cca3974e 6077 rc = ata_host_suspend(host, mesg);
500530f6
TH
6078 if (rc)
6079 return rc;
6080
3c5100c1 6081 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6082
6083 return 0;
6084}
6085
6086int ata_pci_device_resume(struct pci_dev *pdev)
6087{
cca3974e 6088 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6089
6090 ata_pci_device_do_resume(pdev);
cca3974e 6091 ata_host_resume(host);
9b847548
JA
6092 return 0;
6093}
1da177e4
LT
6094#endif /* CONFIG_PCI */
6095
6096
1da177e4
LT
6097static int __init ata_init(void)
6098{
a8601e5f 6099 ata_probe_timeout *= HZ;
1da177e4
LT
6100 ata_wq = create_workqueue("ata");
6101 if (!ata_wq)
6102 return -ENOMEM;
6103
453b07ac
TH
6104 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6105 if (!ata_aux_wq) {
6106 destroy_workqueue(ata_wq);
6107 return -ENOMEM;
6108 }
6109
1da177e4
LT
6110 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6111 return 0;
6112}
6113
6114static void __exit ata_exit(void)
6115{
6116 destroy_workqueue(ata_wq);
453b07ac 6117 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6118}
6119
a4625085 6120subsys_initcall(ata_init);
1da177e4
LT
6121module_exit(ata_exit);
6122
67846b30 6123static unsigned long ratelimit_time;
34af946a 6124static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6125
6126int ata_ratelimit(void)
6127{
6128 int rc;
6129 unsigned long flags;
6130
6131 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6132
6133 if (time_after(jiffies, ratelimit_time)) {
6134 rc = 1;
6135 ratelimit_time = jiffies + (HZ/5);
6136 } else
6137 rc = 0;
6138
6139 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6140
6141 return rc;
6142}
6143
c22daff4
TH
6144/**
6145 * ata_wait_register - wait until register value changes
6146 * @reg: IO-mapped register
6147 * @mask: Mask to apply to read register value
6148 * @val: Wait condition
6149 * @interval_msec: polling interval in milliseconds
6150 * @timeout_msec: timeout in milliseconds
6151 *
6152 * Waiting for some bits of register to change is a common
6153 * operation for ATA controllers. This function reads 32bit LE
6154 * IO-mapped register @reg and tests for the following condition.
6155 *
6156 * (*@reg & mask) != val
6157 *
6158 * If the condition is met, it returns; otherwise, the process is
6159 * repeated after @interval_msec until timeout.
6160 *
6161 * LOCKING:
6162 * Kernel thread context (may sleep)
6163 *
6164 * RETURNS:
6165 * The final register value.
6166 */
6167u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6168 unsigned long interval_msec,
6169 unsigned long timeout_msec)
6170{
6171 unsigned long timeout;
6172 u32 tmp;
6173
6174 tmp = ioread32(reg);
6175
6176 /* Calculate timeout _after_ the first read to make sure
6177 * preceding writes reach the controller before starting to
6178 * eat away the timeout.
6179 */
6180 timeout = jiffies + (timeout_msec * HZ) / 1000;
6181
6182 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6183 msleep(interval_msec);
6184 tmp = ioread32(reg);
6185 }
6186
6187 return tmp;
6188}
6189
dd5b06c4
TH
6190/*
6191 * Dummy port_ops
6192 */
6193static void ata_dummy_noret(struct ata_port *ap) { }
6194static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6195static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6196
6197static u8 ata_dummy_check_status(struct ata_port *ap)
6198{
6199 return ATA_DRDY;
6200}
6201
6202static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6203{
6204 return AC_ERR_SYSTEM;
6205}
6206
6207const struct ata_port_operations ata_dummy_port_ops = {
6208 .port_disable = ata_port_disable,
6209 .check_status = ata_dummy_check_status,
6210 .check_altstatus = ata_dummy_check_status,
6211 .dev_select = ata_noop_dev_select,
6212 .qc_prep = ata_noop_qc_prep,
6213 .qc_issue = ata_dummy_qc_issue,
6214 .freeze = ata_dummy_noret,
6215 .thaw = ata_dummy_noret,
6216 .error_handler = ata_dummy_noret,
6217 .post_internal_cmd = ata_dummy_qc_noret,
6218 .irq_clear = ata_dummy_noret,
6219 .port_start = ata_dummy_ret0,
6220 .port_stop = ata_dummy_noret,
6221};
6222
1da177e4
LT
6223/*
6224 * libata is essentially a library of internal helper functions for
6225 * low-level ATA host controller drivers. As such, the API/ABI is
6226 * likely to change as new drivers are added and updated.
6227 * Do not depend on ABI/API stability.
6228 */
6229
e9c83914
TH
6230EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6231EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6232EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6233EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6234EXPORT_SYMBOL_GPL(ata_std_bios_param);
6235EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6236EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6237EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6238EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6239EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6240EXPORT_SYMBOL_GPL(ata_sg_init);
6241EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6242EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6243EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6244EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6245EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6246EXPORT_SYMBOL_GPL(ata_tf_load);
6247EXPORT_SYMBOL_GPL(ata_tf_read);
6248EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6249EXPORT_SYMBOL_GPL(ata_std_dev_select);
6250EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6251EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6252EXPORT_SYMBOL_GPL(ata_check_status);
6253EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6254EXPORT_SYMBOL_GPL(ata_exec_command);
6255EXPORT_SYMBOL_GPL(ata_port_start);
6256EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6257EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6258EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6259EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6260EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6261EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6262EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6263EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6264EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6265EXPORT_SYMBOL_GPL(ata_bmdma_start);
6266EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6267EXPORT_SYMBOL_GPL(ata_bmdma_status);
6268EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6269EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6270EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6271EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6272EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6273EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6274EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6275EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6276EXPORT_SYMBOL_GPL(sata_phy_debounce);
6277EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6278EXPORT_SYMBOL_GPL(sata_phy_reset);
6279EXPORT_SYMBOL_GPL(__sata_phy_reset);
6280EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6281EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6282EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6283EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6284EXPORT_SYMBOL_GPL(sata_std_hardreset);
6285EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6286EXPORT_SYMBOL_GPL(ata_dev_classify);
6287EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6288EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6289EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6290EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6291EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6292EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6293EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6294EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6295EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6296EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6297EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6298EXPORT_SYMBOL_GPL(ata_scsi_release);
6299EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6300EXPORT_SYMBOL_GPL(sata_scr_valid);
6301EXPORT_SYMBOL_GPL(sata_scr_read);
6302EXPORT_SYMBOL_GPL(sata_scr_write);
6303EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6304EXPORT_SYMBOL_GPL(ata_port_online);
6305EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6306EXPORT_SYMBOL_GPL(ata_host_suspend);
6307EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6308EXPORT_SYMBOL_GPL(ata_id_string);
6309EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6310EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6311EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6312
1bc4ccff 6313EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6314EXPORT_SYMBOL_GPL(ata_timing_compute);
6315EXPORT_SYMBOL_GPL(ata_timing_merge);
6316
1da177e4
LT
6317#ifdef CONFIG_PCI
6318EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6319EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6320EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6321EXPORT_SYMBOL_GPL(ata_pci_init_one);
6322EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6323EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6324EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6325EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6326EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6327EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6328EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6329#endif /* CONFIG_PCI */
9b847548 6330
9b847548
JA
6331EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6332EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6333
ece1d636 6334EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6335EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6336EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6337EXPORT_SYMBOL_GPL(ata_port_freeze);
6338EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6339EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6340EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6341EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6342EXPORT_SYMBOL_GPL(ata_do_eh);