]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/ll_rw_blk.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[net-next-2.6.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
93d17d3d 42static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
dd941252
NP
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
f3da54ba
JA
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1da177e4
LT
1072 bqt->busy--;
1073}
1074
1075EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077/**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
165125e1 1095int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1096{
1097 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1098 int tag;
1da177e4 1099
4aff5e23 1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1101 printk(KERN_ERR
040c928c
TH
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1105 BUG();
1106 }
1107
059af497
JA
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1da177e4 1116
059af497 1117 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1da177e4 1122
4aff5e23 1123 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130}
1131
1132EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134/**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
165125e1 1146void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1147{
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
040c928c
TH
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1158 list_del_init(&rq->queuelist);
4aff5e23 1159 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
4aff5e23 1163 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166}
1167
1168EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1da177e4
LT
1170void blk_dump_rq_flags(struct request *rq, char *msg)
1171{
1172 int bit;
1173
4aff5e23
JA
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1da177e4
LT
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
4aff5e23 1183 if (blk_pc_request(rq)) {
1da177e4
LT
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189}
1190
1191EXPORT_SYMBOL(blk_dump_rq_flags);
1192
165125e1 1193void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1194{
9dfa5283
N
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205}
1206EXPORT_SYMBOL(blk_recount_segments);
1207
1208static void blk_recalc_rq_segments(struct request *rq)
1209{
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1da177e4 1214 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
5705f702 1218 struct req_iterator iter;
1da177e4 1219 int high, highprv = 1;
9dfa5283 1220 struct request_queue *q = rq->q;
1da177e4 1221
9dfa5283 1222 if (!rq->bio)
1da177e4
LT
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1228 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
f772b3d9 1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1255 hw_seg_size += bv->bv_len;
9dfa5283 1256 else {
1da177e4 1257new_hw_segment:
9dfa5283
N
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
9dfa5283
N
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1278}
1da177e4 1279
165125e1 1280static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1281 struct bio *nxt)
1282{
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299}
1300
165125e1 1301static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1302 struct bio *nxt)
1303{
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1310 return 0;
32eef964 1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1312 return 0;
1313
1314 return 1;
1315}
1316
1da177e4
LT
1317/*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
165125e1 1321int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1322 struct scatterlist *sglist)
1da177e4
LT
1323{
1324 struct bio_vec *bvec, *bvprv;
5705f702 1325 struct req_iterator iter;
ba951841 1326 struct scatterlist *sg;
5705f702 1327 int nsegs, cluster;
1da177e4
LT
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
ba951841 1336 sg = NULL;
5705f702 1337 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1338 int nbytes = bvec->bv_len;
1da177e4 1339
6c92e699 1340 if (bvprv && cluster) {
f565913e 1341 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1342 goto new_segment;
1da177e4 1343
6c92e699
JA
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1da177e4 1348
f565913e 1349 sg->length += nbytes;
6c92e699 1350 } else {
1da177e4 1351new_segment:
ba951841
JA
1352 if (!sg)
1353 sg = sglist;
7aeacf98
JA
1354 else {
1355 /*
1356 * If the driver previously mapped a shorter
1357 * list, we could see a termination bit
1358 * prematurely unless it fully inits the sg
1359 * table on each mapping. We KNOW that there
1360 * must be more entries here or the driver
1361 * would be buggy, so force clear the
1362 * termination bit to avoid doing a full
1363 * sg_init_table() in drivers for each command.
1364 */
1365 sg->page_link &= ~0x02;
ba951841 1366 sg = sg_next(sg);
7aeacf98 1367 }
6c92e699 1368
642f1490 1369 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1370 nsegs++;
1371 }
1372 bvprv = bvec;
5705f702 1373 } /* segments in rq */
1da177e4 1374
9b61764b
JA
1375 if (sg)
1376 __sg_mark_end(sg);
1377
1da177e4
LT
1378 return nsegs;
1379}
1380
1381EXPORT_SYMBOL(blk_rq_map_sg);
1382
1383/*
1384 * the standard queue merge functions, can be overridden with device
1385 * specific ones if so desired
1386 */
1387
165125e1 1388static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1389 struct request *req,
1390 struct bio *bio)
1391{
1392 int nr_phys_segs = bio_phys_segments(q, bio);
1393
1394 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1395 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1396 if (req == q->last_merge)
1397 q->last_merge = NULL;
1398 return 0;
1399 }
1400
1401 /*
1402 * A hw segment is just getting larger, bump just the phys
1403 * counter.
1404 */
1405 req->nr_phys_segments += nr_phys_segs;
1406 return 1;
1407}
1408
165125e1 1409static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1410 struct request *req,
1411 struct bio *bio)
1412{
1413 int nr_hw_segs = bio_hw_segments(q, bio);
1414 int nr_phys_segs = bio_phys_segments(q, bio);
1415
1416 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1417 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1418 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1419 if (req == q->last_merge)
1420 q->last_merge = NULL;
1421 return 0;
1422 }
1423
1424 /*
1425 * This will form the start of a new hw segment. Bump both
1426 * counters.
1427 */
1428 req->nr_hw_segments += nr_hw_segs;
1429 req->nr_phys_segments += nr_phys_segs;
1430 return 1;
1431}
1432
3001ca77
N
1433static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1434 struct bio *bio)
1da177e4 1435{
defd94b7 1436 unsigned short max_sectors;
1da177e4
LT
1437 int len;
1438
defd94b7
MC
1439 if (unlikely(blk_pc_request(req)))
1440 max_sectors = q->max_hw_sectors;
1441 else
1442 max_sectors = q->max_sectors;
1443
1444 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1445 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1446 if (req == q->last_merge)
1447 q->last_merge = NULL;
1448 return 0;
1449 }
1450 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1451 blk_recount_segments(q, req->biotail);
1452 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1453 blk_recount_segments(q, bio);
1454 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1455 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1456 !BIOVEC_VIRT_OVERSIZE(len)) {
1457 int mergeable = ll_new_mergeable(q, req, bio);
1458
1459 if (mergeable) {
1460 if (req->nr_hw_segments == 1)
1461 req->bio->bi_hw_front_size = len;
1462 if (bio->bi_hw_segments == 1)
1463 bio->bi_hw_back_size = len;
1464 }
1465 return mergeable;
1466 }
1467
1468 return ll_new_hw_segment(q, req, bio);
1469}
1470
165125e1 1471static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1472 struct bio *bio)
1473{
defd94b7 1474 unsigned short max_sectors;
1da177e4
LT
1475 int len;
1476
defd94b7
MC
1477 if (unlikely(blk_pc_request(req)))
1478 max_sectors = q->max_hw_sectors;
1479 else
1480 max_sectors = q->max_sectors;
1481
1482
1483 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1484 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1485 if (req == q->last_merge)
1486 q->last_merge = NULL;
1487 return 0;
1488 }
1489 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1490 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1491 blk_recount_segments(q, bio);
1492 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1493 blk_recount_segments(q, req->bio);
1494 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1495 !BIOVEC_VIRT_OVERSIZE(len)) {
1496 int mergeable = ll_new_mergeable(q, req, bio);
1497
1498 if (mergeable) {
1499 if (bio->bi_hw_segments == 1)
1500 bio->bi_hw_front_size = len;
1501 if (req->nr_hw_segments == 1)
1502 req->biotail->bi_hw_back_size = len;
1503 }
1504 return mergeable;
1505 }
1506
1507 return ll_new_hw_segment(q, req, bio);
1508}
1509
165125e1 1510static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1511 struct request *next)
1512{
dfa1a553
ND
1513 int total_phys_segments;
1514 int total_hw_segments;
1da177e4
LT
1515
1516 /*
1517 * First check if the either of the requests are re-queued
1518 * requests. Can't merge them if they are.
1519 */
1520 if (req->special || next->special)
1521 return 0;
1522
1523 /*
dfa1a553 1524 * Will it become too large?
1da177e4
LT
1525 */
1526 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1527 return 0;
1528
1529 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1530 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1531 total_phys_segments--;
1532
1533 if (total_phys_segments > q->max_phys_segments)
1534 return 0;
1535
1536 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1537 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1538 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1539 /*
1540 * propagate the combined length to the end of the requests
1541 */
1542 if (req->nr_hw_segments == 1)
1543 req->bio->bi_hw_front_size = len;
1544 if (next->nr_hw_segments == 1)
1545 next->biotail->bi_hw_back_size = len;
1546 total_hw_segments--;
1547 }
1548
1549 if (total_hw_segments > q->max_hw_segments)
1550 return 0;
1551
1552 /* Merge is OK... */
1553 req->nr_phys_segments = total_phys_segments;
1554 req->nr_hw_segments = total_hw_segments;
1555 return 1;
1556}
1557
1558/*
1559 * "plug" the device if there are no outstanding requests: this will
1560 * force the transfer to start only after we have put all the requests
1561 * on the list.
1562 *
1563 * This is called with interrupts off and no requests on the queue and
1564 * with the queue lock held.
1565 */
165125e1 1566void blk_plug_device(struct request_queue *q)
1da177e4
LT
1567{
1568 WARN_ON(!irqs_disabled());
1569
1570 /*
1571 * don't plug a stopped queue, it must be paired with blk_start_queue()
1572 * which will restart the queueing
1573 */
7daac490 1574 if (blk_queue_stopped(q))
1da177e4
LT
1575 return;
1576
2056a782 1577 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1578 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1579 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1580 }
1da177e4
LT
1581}
1582
1583EXPORT_SYMBOL(blk_plug_device);
1584
1585/*
1586 * remove the queue from the plugged list, if present. called with
1587 * queue lock held and interrupts disabled.
1588 */
165125e1 1589int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1590{
1591 WARN_ON(!irqs_disabled());
1592
1593 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1594 return 0;
1595
1596 del_timer(&q->unplug_timer);
1597 return 1;
1598}
1599
1600EXPORT_SYMBOL(blk_remove_plug);
1601
1602/*
1603 * remove the plug and let it rip..
1604 */
165125e1 1605void __generic_unplug_device(struct request_queue *q)
1da177e4 1606{
7daac490 1607 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1608 return;
1609
1610 if (!blk_remove_plug(q))
1611 return;
1612
22e2c507 1613 q->request_fn(q);
1da177e4
LT
1614}
1615EXPORT_SYMBOL(__generic_unplug_device);
1616
1617/**
1618 * generic_unplug_device - fire a request queue
165125e1 1619 * @q: The &struct request_queue in question
1da177e4
LT
1620 *
1621 * Description:
1622 * Linux uses plugging to build bigger requests queues before letting
1623 * the device have at them. If a queue is plugged, the I/O scheduler
1624 * is still adding and merging requests on the queue. Once the queue
1625 * gets unplugged, the request_fn defined for the queue is invoked and
1626 * transfers started.
1627 **/
165125e1 1628void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1629{
1630 spin_lock_irq(q->queue_lock);
1631 __generic_unplug_device(q);
1632 spin_unlock_irq(q->queue_lock);
1633}
1634EXPORT_SYMBOL(generic_unplug_device);
1635
1636static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1637 struct page *page)
1638{
165125e1 1639 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1640
1641 /*
1642 * devices don't necessarily have an ->unplug_fn defined
1643 */
2056a782
JA
1644 if (q->unplug_fn) {
1645 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1646 q->rq.count[READ] + q->rq.count[WRITE]);
1647
1da177e4 1648 q->unplug_fn(q);
2056a782 1649 }
1da177e4
LT
1650}
1651
65f27f38 1652static void blk_unplug_work(struct work_struct *work)
1da177e4 1653{
165125e1
JA
1654 struct request_queue *q =
1655 container_of(work, struct request_queue, unplug_work);
1da177e4 1656
2056a782
JA
1657 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1658 q->rq.count[READ] + q->rq.count[WRITE]);
1659
1da177e4
LT
1660 q->unplug_fn(q);
1661}
1662
1663static void blk_unplug_timeout(unsigned long data)
1664{
165125e1 1665 struct request_queue *q = (struct request_queue *)data;
1da177e4 1666
2056a782
JA
1667 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1668 q->rq.count[READ] + q->rq.count[WRITE]);
1669
1da177e4
LT
1670 kblockd_schedule_work(&q->unplug_work);
1671}
1672
1673/**
1674 * blk_start_queue - restart a previously stopped queue
165125e1 1675 * @q: The &struct request_queue in question
1da177e4
LT
1676 *
1677 * Description:
1678 * blk_start_queue() will clear the stop flag on the queue, and call
1679 * the request_fn for the queue if it was in a stopped state when
1680 * entered. Also see blk_stop_queue(). Queue lock must be held.
1681 **/
165125e1 1682void blk_start_queue(struct request_queue *q)
1da177e4 1683{
a038e253
PBG
1684 WARN_ON(!irqs_disabled());
1685
1da177e4
LT
1686 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1687
1688 /*
1689 * one level of recursion is ok and is much faster than kicking
1690 * the unplug handling
1691 */
1692 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1693 q->request_fn(q);
1694 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1695 } else {
1696 blk_plug_device(q);
1697 kblockd_schedule_work(&q->unplug_work);
1698 }
1699}
1700
1701EXPORT_SYMBOL(blk_start_queue);
1702
1703/**
1704 * blk_stop_queue - stop a queue
165125e1 1705 * @q: The &struct request_queue in question
1da177e4
LT
1706 *
1707 * Description:
1708 * The Linux block layer assumes that a block driver will consume all
1709 * entries on the request queue when the request_fn strategy is called.
1710 * Often this will not happen, because of hardware limitations (queue
1711 * depth settings). If a device driver gets a 'queue full' response,
1712 * or if it simply chooses not to queue more I/O at one point, it can
1713 * call this function to prevent the request_fn from being called until
1714 * the driver has signalled it's ready to go again. This happens by calling
1715 * blk_start_queue() to restart queue operations. Queue lock must be held.
1716 **/
165125e1 1717void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1718{
1719 blk_remove_plug(q);
1720 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1721}
1722EXPORT_SYMBOL(blk_stop_queue);
1723
1724/**
1725 * blk_sync_queue - cancel any pending callbacks on a queue
1726 * @q: the queue
1727 *
1728 * Description:
1729 * The block layer may perform asynchronous callback activity
1730 * on a queue, such as calling the unplug function after a timeout.
1731 * A block device may call blk_sync_queue to ensure that any
1732 * such activity is cancelled, thus allowing it to release resources
59c51591 1733 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1734 * that its ->make_request_fn will not re-add plugging prior to calling
1735 * this function.
1736 *
1737 */
1738void blk_sync_queue(struct request_queue *q)
1739{
1740 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1741}
1742EXPORT_SYMBOL(blk_sync_queue);
1743
1744/**
1745 * blk_run_queue - run a single device queue
1746 * @q: The queue to run
1747 */
1748void blk_run_queue(struct request_queue *q)
1749{
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(q->queue_lock, flags);
1753 blk_remove_plug(q);
dac07ec1
JA
1754
1755 /*
1756 * Only recurse once to avoid overrunning the stack, let the unplug
1757 * handling reinvoke the handler shortly if we already got there.
1758 */
1759 if (!elv_queue_empty(q)) {
1760 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1761 q->request_fn(q);
1762 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1763 } else {
1764 blk_plug_device(q);
1765 kblockd_schedule_work(&q->unplug_work);
1766 }
1767 }
1768
1da177e4
LT
1769 spin_unlock_irqrestore(q->queue_lock, flags);
1770}
1771EXPORT_SYMBOL(blk_run_queue);
1772
1773/**
165125e1 1774 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1775 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1776 *
1777 * Description:
1778 * blk_cleanup_queue is the pair to blk_init_queue() or
1779 * blk_queue_make_request(). It should be called when a request queue is
1780 * being released; typically when a block device is being de-registered.
1781 * Currently, its primary task it to free all the &struct request
1782 * structures that were allocated to the queue and the queue itself.
1783 *
1784 * Caveat:
1785 * Hopefully the low level driver will have finished any
1786 * outstanding requests first...
1787 **/
483f4afc 1788static void blk_release_queue(struct kobject *kobj)
1da177e4 1789{
165125e1
JA
1790 struct request_queue *q =
1791 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1792 struct request_list *rl = &q->rq;
1793
1da177e4
LT
1794 blk_sync_queue(q);
1795
1796 if (rl->rq_pool)
1797 mempool_destroy(rl->rq_pool);
1798
1799 if (q->queue_tags)
1800 __blk_queue_free_tags(q);
1801
6c5c9341 1802 blk_trace_shutdown(q);
2056a782 1803
e0bf68dd 1804 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1805 kmem_cache_free(requestq_cachep, q);
1806}
1807
165125e1 1808void blk_put_queue(struct request_queue *q)
483f4afc
AV
1809{
1810 kobject_put(&q->kobj);
1811}
1812EXPORT_SYMBOL(blk_put_queue);
1813
165125e1 1814void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1815{
1816 mutex_lock(&q->sysfs_lock);
1817 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1818 mutex_unlock(&q->sysfs_lock);
1819
1820 if (q->elevator)
1821 elevator_exit(q->elevator);
1822
1823 blk_put_queue(q);
1824}
1825
1da177e4
LT
1826EXPORT_SYMBOL(blk_cleanup_queue);
1827
165125e1 1828static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1829{
1830 struct request_list *rl = &q->rq;
1831
1832 rl->count[READ] = rl->count[WRITE] = 0;
1833 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1834 rl->elvpriv = 0;
1da177e4
LT
1835 init_waitqueue_head(&rl->wait[READ]);
1836 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1837
1946089a
CL
1838 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1839 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1840
1841 if (!rl->rq_pool)
1842 return -ENOMEM;
1843
1844 return 0;
1845}
1846
165125e1 1847struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1848{
1946089a
CL
1849 return blk_alloc_queue_node(gfp_mask, -1);
1850}
1851EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1852
483f4afc
AV
1853static struct kobj_type queue_ktype;
1854
165125e1 1855struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1856{
165125e1 1857 struct request_queue *q;
e0bf68dd 1858 int err;
1946089a 1859
94f6030c
CL
1860 q = kmem_cache_alloc_node(requestq_cachep,
1861 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1862 if (!q)
1863 return NULL;
1864
e0bf68dd
PZ
1865 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1866 q->backing_dev_info.unplug_io_data = q;
1867 err = bdi_init(&q->backing_dev_info);
1868 if (err) {
1869 kmem_cache_free(requestq_cachep, q);
1870 return NULL;
1871 }
1872
1da177e4 1873 init_timer(&q->unplug_timer);
483f4afc 1874
19c38de8 1875 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1876 q->kobj.ktype = &queue_ktype;
1877 kobject_init(&q->kobj);
1da177e4 1878
483f4afc
AV
1879 mutex_init(&q->sysfs_lock);
1880
1da177e4
LT
1881 return q;
1882}
1946089a 1883EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1884
1885/**
1886 * blk_init_queue - prepare a request queue for use with a block device
1887 * @rfn: The function to be called to process requests that have been
1888 * placed on the queue.
1889 * @lock: Request queue spin lock
1890 *
1891 * Description:
1892 * If a block device wishes to use the standard request handling procedures,
1893 * which sorts requests and coalesces adjacent requests, then it must
1894 * call blk_init_queue(). The function @rfn will be called when there
1895 * are requests on the queue that need to be processed. If the device
1896 * supports plugging, then @rfn may not be called immediately when requests
1897 * are available on the queue, but may be called at some time later instead.
1898 * Plugged queues are generally unplugged when a buffer belonging to one
1899 * of the requests on the queue is needed, or due to memory pressure.
1900 *
1901 * @rfn is not required, or even expected, to remove all requests off the
1902 * queue, but only as many as it can handle at a time. If it does leave
1903 * requests on the queue, it is responsible for arranging that the requests
1904 * get dealt with eventually.
1905 *
1906 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1907 * request queue; this lock will be taken also from interrupt context, so irq
1908 * disabling is needed for it.
1da177e4
LT
1909 *
1910 * Function returns a pointer to the initialized request queue, or NULL if
1911 * it didn't succeed.
1912 *
1913 * Note:
1914 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1915 * when the block device is deactivated (such as at module unload).
1916 **/
1946089a 1917
165125e1 1918struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1919{
1946089a
CL
1920 return blk_init_queue_node(rfn, lock, -1);
1921}
1922EXPORT_SYMBOL(blk_init_queue);
1923
165125e1 1924struct request_queue *
1946089a
CL
1925blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1926{
165125e1 1927 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1928
1929 if (!q)
1930 return NULL;
1931
1946089a 1932 q->node = node_id;
8669aafd
AV
1933 if (blk_init_free_list(q)) {
1934 kmem_cache_free(requestq_cachep, q);
1935 return NULL;
1936 }
1da177e4 1937
152587de
JA
1938 /*
1939 * if caller didn't supply a lock, they get per-queue locking with
1940 * our embedded lock
1941 */
1942 if (!lock) {
1943 spin_lock_init(&q->__queue_lock);
1944 lock = &q->__queue_lock;
1945 }
1946
1da177e4 1947 q->request_fn = rfn;
1da177e4
LT
1948 q->prep_rq_fn = NULL;
1949 q->unplug_fn = generic_unplug_device;
1950 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1951 q->queue_lock = lock;
1952
1953 blk_queue_segment_boundary(q, 0xffffffff);
1954
1955 blk_queue_make_request(q, __make_request);
1956 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1957
1958 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1959 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1960
44ec9542
AS
1961 q->sg_reserved_size = INT_MAX;
1962
1da177e4
LT
1963 /*
1964 * all done
1965 */
1966 if (!elevator_init(q, NULL)) {
1967 blk_queue_congestion_threshold(q);
1968 return q;
1969 }
1970
8669aafd 1971 blk_put_queue(q);
1da177e4
LT
1972 return NULL;
1973}
1946089a 1974EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1975
165125e1 1976int blk_get_queue(struct request_queue *q)
1da177e4 1977{
fde6ad22 1978 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1979 kobject_get(&q->kobj);
1da177e4
LT
1980 return 0;
1981 }
1982
1983 return 1;
1984}
1985
1986EXPORT_SYMBOL(blk_get_queue);
1987
165125e1 1988static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1989{
4aff5e23 1990 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1991 elv_put_request(q, rq);
1da177e4
LT
1992 mempool_free(rq, q->rq.rq_pool);
1993}
1994
1ea25ecb 1995static struct request *
165125e1 1996blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1997{
1998 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1999
2000 if (!rq)
2001 return NULL;
2002
2003 /*
4aff5e23 2004 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2005 * see bio.h and blkdev.h
2006 */
49171e5c 2007 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2008
cb98fc8b 2009 if (priv) {
cb78b285 2010 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2011 mempool_free(rq, q->rq.rq_pool);
2012 return NULL;
2013 }
4aff5e23 2014 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2015 }
1da177e4 2016
cb98fc8b 2017 return rq;
1da177e4
LT
2018}
2019
2020/*
2021 * ioc_batching returns true if the ioc is a valid batching request and
2022 * should be given priority access to a request.
2023 */
165125e1 2024static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2025{
2026 if (!ioc)
2027 return 0;
2028
2029 /*
2030 * Make sure the process is able to allocate at least 1 request
2031 * even if the batch times out, otherwise we could theoretically
2032 * lose wakeups.
2033 */
2034 return ioc->nr_batch_requests == q->nr_batching ||
2035 (ioc->nr_batch_requests > 0
2036 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2037}
2038
2039/*
2040 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2041 * will cause the process to be a "batcher" on all queues in the system. This
2042 * is the behaviour we want though - once it gets a wakeup it should be given
2043 * a nice run.
2044 */
165125e1 2045static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2046{
2047 if (!ioc || ioc_batching(q, ioc))
2048 return;
2049
2050 ioc->nr_batch_requests = q->nr_batching;
2051 ioc->last_waited = jiffies;
2052}
2053
165125e1 2054static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2055{
2056 struct request_list *rl = &q->rq;
2057
2058 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2059 blk_clear_queue_congested(q, rw);
1da177e4
LT
2060
2061 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2062 if (waitqueue_active(&rl->wait[rw]))
2063 wake_up(&rl->wait[rw]);
2064
2065 blk_clear_queue_full(q, rw);
2066 }
2067}
2068
2069/*
2070 * A request has just been released. Account for it, update the full and
2071 * congestion status, wake up any waiters. Called under q->queue_lock.
2072 */
165125e1 2073static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2074{
2075 struct request_list *rl = &q->rq;
2076
2077 rl->count[rw]--;
cb98fc8b
TH
2078 if (priv)
2079 rl->elvpriv--;
1da177e4
LT
2080
2081 __freed_request(q, rw);
2082
2083 if (unlikely(rl->starved[rw ^ 1]))
2084 __freed_request(q, rw ^ 1);
1da177e4
LT
2085}
2086
2087#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2088/*
d6344532
NP
2089 * Get a free request, queue_lock must be held.
2090 * Returns NULL on failure, with queue_lock held.
2091 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2092 */
165125e1 2093static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2094 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2095{
2096 struct request *rq = NULL;
2097 struct request_list *rl = &q->rq;
88ee5ef1 2098 struct io_context *ioc = NULL;
7749a8d4 2099 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2100 int may_queue, priv;
2101
7749a8d4 2102 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2103 if (may_queue == ELV_MQUEUE_NO)
2104 goto rq_starved;
2105
2106 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2107 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2108 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2109 /*
2110 * The queue will fill after this allocation, so set
2111 * it as full, and mark this process as "batching".
2112 * This process will be allowed to complete a batch of
2113 * requests, others will be blocked.
2114 */
2115 if (!blk_queue_full(q, rw)) {
2116 ioc_set_batching(q, ioc);
2117 blk_set_queue_full(q, rw);
2118 } else {
2119 if (may_queue != ELV_MQUEUE_MUST
2120 && !ioc_batching(q, ioc)) {
2121 /*
2122 * The queue is full and the allocating
2123 * process is not a "batcher", and not
2124 * exempted by the IO scheduler
2125 */
2126 goto out;
2127 }
2128 }
1da177e4 2129 }
79e2de4b 2130 blk_set_queue_congested(q, rw);
1da177e4
LT
2131 }
2132
082cf69e
JA
2133 /*
2134 * Only allow batching queuers to allocate up to 50% over the defined
2135 * limit of requests, otherwise we could have thousands of requests
2136 * allocated with any setting of ->nr_requests
2137 */
fd782a4a 2138 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2139 goto out;
fd782a4a 2140
1da177e4
LT
2141 rl->count[rw]++;
2142 rl->starved[rw] = 0;
cb98fc8b 2143
64521d1a 2144 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2145 if (priv)
2146 rl->elvpriv++;
2147
1da177e4
LT
2148 spin_unlock_irq(q->queue_lock);
2149
7749a8d4 2150 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2151 if (unlikely(!rq)) {
1da177e4
LT
2152 /*
2153 * Allocation failed presumably due to memory. Undo anything
2154 * we might have messed up.
2155 *
2156 * Allocating task should really be put onto the front of the
2157 * wait queue, but this is pretty rare.
2158 */
2159 spin_lock_irq(q->queue_lock);
cb98fc8b 2160 freed_request(q, rw, priv);
1da177e4
LT
2161
2162 /*
2163 * in the very unlikely event that allocation failed and no
2164 * requests for this direction was pending, mark us starved
2165 * so that freeing of a request in the other direction will
2166 * notice us. another possible fix would be to split the
2167 * rq mempool into READ and WRITE
2168 */
2169rq_starved:
2170 if (unlikely(rl->count[rw] == 0))
2171 rl->starved[rw] = 1;
2172
1da177e4
LT
2173 goto out;
2174 }
2175
88ee5ef1
JA
2176 /*
2177 * ioc may be NULL here, and ioc_batching will be false. That's
2178 * OK, if the queue is under the request limit then requests need
2179 * not count toward the nr_batch_requests limit. There will always
2180 * be some limit enforced by BLK_BATCH_TIME.
2181 */
1da177e4
LT
2182 if (ioc_batching(q, ioc))
2183 ioc->nr_batch_requests--;
2184
2185 rq_init(q, rq);
2056a782
JA
2186
2187 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2188out:
1da177e4
LT
2189 return rq;
2190}
2191
2192/*
2193 * No available requests for this queue, unplug the device and wait for some
2194 * requests to become available.
d6344532
NP
2195 *
2196 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2197 */
165125e1 2198static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2199 struct bio *bio)
1da177e4 2200{
7749a8d4 2201 const int rw = rw_flags & 0x01;
1da177e4
LT
2202 struct request *rq;
2203
7749a8d4 2204 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2205 while (!rq) {
2206 DEFINE_WAIT(wait);
1da177e4
LT
2207 struct request_list *rl = &q->rq;
2208
2209 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2210 TASK_UNINTERRUPTIBLE);
2211
7749a8d4 2212 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2213
2214 if (!rq) {
2215 struct io_context *ioc;
2216
2056a782
JA
2217 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2218
d6344532
NP
2219 __generic_unplug_device(q);
2220 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2221 io_schedule();
2222
2223 /*
2224 * After sleeping, we become a "batching" process and
2225 * will be able to allocate at least one request, and
2226 * up to a big batch of them for a small period time.
2227 * See ioc_batching, ioc_set_batching
2228 */
b5deef90 2229 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2230 ioc_set_batching(q, ioc);
d6344532
NP
2231
2232 spin_lock_irq(q->queue_lock);
1da177e4
LT
2233 }
2234 finish_wait(&rl->wait[rw], &wait);
450991bc 2235 }
1da177e4
LT
2236
2237 return rq;
2238}
2239
165125e1 2240struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2241{
2242 struct request *rq;
2243
2244 BUG_ON(rw != READ && rw != WRITE);
2245
d6344532
NP
2246 spin_lock_irq(q->queue_lock);
2247 if (gfp_mask & __GFP_WAIT) {
22e2c507 2248 rq = get_request_wait(q, rw, NULL);
d6344532 2249 } else {
22e2c507 2250 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2251 if (!rq)
2252 spin_unlock_irq(q->queue_lock);
2253 }
2254 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2255
2256 return rq;
2257}
1da177e4
LT
2258EXPORT_SYMBOL(blk_get_request);
2259
dc72ef4a
JA
2260/**
2261 * blk_start_queueing - initiate dispatch of requests to device
2262 * @q: request queue to kick into gear
2263 *
2264 * This is basically a helper to remove the need to know whether a queue
2265 * is plugged or not if someone just wants to initiate dispatch of requests
2266 * for this queue.
2267 *
2268 * The queue lock must be held with interrupts disabled.
2269 */
165125e1 2270void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2271{
2272 if (!blk_queue_plugged(q))
2273 q->request_fn(q);
2274 else
2275 __generic_unplug_device(q);
2276}
2277EXPORT_SYMBOL(blk_start_queueing);
2278
1da177e4
LT
2279/**
2280 * blk_requeue_request - put a request back on queue
2281 * @q: request queue where request should be inserted
2282 * @rq: request to be inserted
2283 *
2284 * Description:
2285 * Drivers often keep queueing requests until the hardware cannot accept
2286 * more, when that condition happens we need to put the request back
2287 * on the queue. Must be called with queue lock held.
2288 */
165125e1 2289void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2290{
2056a782
JA
2291 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2292
1da177e4
LT
2293 if (blk_rq_tagged(rq))
2294 blk_queue_end_tag(q, rq);
2295
2296 elv_requeue_request(q, rq);
2297}
2298
2299EXPORT_SYMBOL(blk_requeue_request);
2300
2301/**
2302 * blk_insert_request - insert a special request in to a request queue
2303 * @q: request queue where request should be inserted
2304 * @rq: request to be inserted
2305 * @at_head: insert request at head or tail of queue
2306 * @data: private data
1da177e4
LT
2307 *
2308 * Description:
2309 * Many block devices need to execute commands asynchronously, so they don't
2310 * block the whole kernel from preemption during request execution. This is
2311 * accomplished normally by inserting aritficial requests tagged as
2312 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2313 * scheduled for actual execution by the request queue.
2314 *
2315 * We have the option of inserting the head or the tail of the queue.
2316 * Typically we use the tail for new ioctls and so forth. We use the head
2317 * of the queue for things like a QUEUE_FULL message from a device, or a
2318 * host that is unable to accept a particular command.
2319 */
165125e1 2320void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2321 int at_head, void *data)
1da177e4 2322{
867d1191 2323 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2324 unsigned long flags;
2325
2326 /*
2327 * tell I/O scheduler that this isn't a regular read/write (ie it
2328 * must not attempt merges on this) and that it acts as a soft
2329 * barrier
2330 */
4aff5e23
JA
2331 rq->cmd_type = REQ_TYPE_SPECIAL;
2332 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2333
2334 rq->special = data;
2335
2336 spin_lock_irqsave(q->queue_lock, flags);
2337
2338 /*
2339 * If command is tagged, release the tag
2340 */
867d1191
TH
2341 if (blk_rq_tagged(rq))
2342 blk_queue_end_tag(q, rq);
1da177e4 2343
867d1191
TH
2344 drive_stat_acct(rq, rq->nr_sectors, 1);
2345 __elv_add_request(q, rq, where, 0);
dc72ef4a 2346 blk_start_queueing(q);
1da177e4
LT
2347 spin_unlock_irqrestore(q->queue_lock, flags);
2348}
2349
2350EXPORT_SYMBOL(blk_insert_request);
2351
0e75f906
MC
2352static int __blk_rq_unmap_user(struct bio *bio)
2353{
2354 int ret = 0;
2355
2356 if (bio) {
2357 if (bio_flagged(bio, BIO_USER_MAPPED))
2358 bio_unmap_user(bio);
2359 else
2360 ret = bio_uncopy_user(bio);
2361 }
2362
2363 return ret;
2364}
2365
3001ca77
N
2366int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2367 struct bio *bio)
2368{
2369 if (!rq->bio)
2370 blk_rq_bio_prep(q, rq, bio);
2371 else if (!ll_back_merge_fn(q, rq, bio))
2372 return -EINVAL;
2373 else {
2374 rq->biotail->bi_next = bio;
2375 rq->biotail = bio;
2376
2377 rq->data_len += bio->bi_size;
2378 }
2379 return 0;
2380}
2381EXPORT_SYMBOL(blk_rq_append_bio);
2382
165125e1 2383static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2384 void __user *ubuf, unsigned int len)
2385{
2386 unsigned long uaddr;
2387 struct bio *bio, *orig_bio;
2388 int reading, ret;
2389
2390 reading = rq_data_dir(rq) == READ;
2391
2392 /*
2393 * if alignment requirement is satisfied, map in user pages for
2394 * direct dma. else, set up kernel bounce buffers
2395 */
2396 uaddr = (unsigned long) ubuf;
2397 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2398 bio = bio_map_user(q, NULL, uaddr, len, reading);
2399 else
2400 bio = bio_copy_user(q, uaddr, len, reading);
2401
2985259b 2402 if (IS_ERR(bio))
0e75f906 2403 return PTR_ERR(bio);
0e75f906
MC
2404
2405 orig_bio = bio;
2406 blk_queue_bounce(q, &bio);
2985259b 2407
0e75f906
MC
2408 /*
2409 * We link the bounce buffer in and could have to traverse it
2410 * later so we have to get a ref to prevent it from being freed
2411 */
2412 bio_get(bio);
2413
3001ca77
N
2414 ret = blk_rq_append_bio(q, rq, bio);
2415 if (!ret)
2416 return bio->bi_size;
0e75f906 2417
0e75f906 2418 /* if it was boucned we must call the end io function */
6712ecf8 2419 bio_endio(bio, 0);
0e75f906
MC
2420 __blk_rq_unmap_user(orig_bio);
2421 bio_put(bio);
2422 return ret;
2423}
2424
1da177e4
LT
2425/**
2426 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2427 * @q: request queue where request should be inserted
73747aed 2428 * @rq: request structure to fill
1da177e4
LT
2429 * @ubuf: the user buffer
2430 * @len: length of user data
2431 *
2432 * Description:
2433 * Data will be mapped directly for zero copy io, if possible. Otherwise
2434 * a kernel bounce buffer is used.
2435 *
2436 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2437 * still in process context.
2438 *
2439 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2440 * before being submitted to the device, as pages mapped may be out of
2441 * reach. It's the callers responsibility to make sure this happens. The
2442 * original bio must be passed back in to blk_rq_unmap_user() for proper
2443 * unmapping.
2444 */
165125e1
JA
2445int blk_rq_map_user(struct request_queue *q, struct request *rq,
2446 void __user *ubuf, unsigned long len)
1da177e4 2447{
0e75f906 2448 unsigned long bytes_read = 0;
8e5cfc45 2449 struct bio *bio = NULL;
0e75f906 2450 int ret;
1da177e4 2451
defd94b7 2452 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2453 return -EINVAL;
2454 if (!len || !ubuf)
2455 return -EINVAL;
1da177e4 2456
0e75f906
MC
2457 while (bytes_read != len) {
2458 unsigned long map_len, end, start;
1da177e4 2459
0e75f906
MC
2460 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2461 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2462 >> PAGE_SHIFT;
2463 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2464
0e75f906
MC
2465 /*
2466 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2467 * pages. If this happens we just lower the requested
2468 * mapping len by a page so that we can fit
2469 */
2470 if (end - start > BIO_MAX_PAGES)
2471 map_len -= PAGE_SIZE;
1da177e4 2472
0e75f906
MC
2473 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2474 if (ret < 0)
2475 goto unmap_rq;
8e5cfc45
JA
2476 if (!bio)
2477 bio = rq->bio;
0e75f906
MC
2478 bytes_read += ret;
2479 ubuf += ret;
1da177e4
LT
2480 }
2481
0e75f906
MC
2482 rq->buffer = rq->data = NULL;
2483 return 0;
2484unmap_rq:
8e5cfc45 2485 blk_rq_unmap_user(bio);
0e75f906 2486 return ret;
1da177e4
LT
2487}
2488
2489EXPORT_SYMBOL(blk_rq_map_user);
2490
f1970baf
JB
2491/**
2492 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2493 * @q: request queue where request should be inserted
2494 * @rq: request to map data to
2495 * @iov: pointer to the iovec
2496 * @iov_count: number of elements in the iovec
af9997e4 2497 * @len: I/O byte count
f1970baf
JB
2498 *
2499 * Description:
2500 * Data will be mapped directly for zero copy io, if possible. Otherwise
2501 * a kernel bounce buffer is used.
2502 *
2503 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2504 * still in process context.
2505 *
2506 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2507 * before being submitted to the device, as pages mapped may be out of
2508 * reach. It's the callers responsibility to make sure this happens. The
2509 * original bio must be passed back in to blk_rq_unmap_user() for proper
2510 * unmapping.
2511 */
165125e1 2512int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2513 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2514{
2515 struct bio *bio;
2516
2517 if (!iov || iov_count <= 0)
2518 return -EINVAL;
2519
2520 /* we don't allow misaligned data like bio_map_user() does. If the
2521 * user is using sg, they're expected to know the alignment constraints
2522 * and respect them accordingly */
2523 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2524 if (IS_ERR(bio))
2525 return PTR_ERR(bio);
2526
0e75f906 2527 if (bio->bi_size != len) {
6712ecf8 2528 bio_endio(bio, 0);
0e75f906
MC
2529 bio_unmap_user(bio);
2530 return -EINVAL;
2531 }
2532
2533 bio_get(bio);
f1970baf
JB
2534 blk_rq_bio_prep(q, rq, bio);
2535 rq->buffer = rq->data = NULL;
f1970baf
JB
2536 return 0;
2537}
2538
2539EXPORT_SYMBOL(blk_rq_map_user_iov);
2540
1da177e4
LT
2541/**
2542 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2543 * @bio: start of bio list
1da177e4
LT
2544 *
2545 * Description:
8e5cfc45
JA
2546 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2547 * supply the original rq->bio from the blk_rq_map_user() return, since
2548 * the io completion may have changed rq->bio.
1da177e4 2549 */
8e5cfc45 2550int blk_rq_unmap_user(struct bio *bio)
1da177e4 2551{
8e5cfc45 2552 struct bio *mapped_bio;
48785bb9 2553 int ret = 0, ret2;
1da177e4 2554
8e5cfc45
JA
2555 while (bio) {
2556 mapped_bio = bio;
2557 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2558 mapped_bio = bio->bi_private;
1da177e4 2559
48785bb9
JA
2560 ret2 = __blk_rq_unmap_user(mapped_bio);
2561 if (ret2 && !ret)
2562 ret = ret2;
2563
8e5cfc45
JA
2564 mapped_bio = bio;
2565 bio = bio->bi_next;
2566 bio_put(mapped_bio);
0e75f906 2567 }
48785bb9
JA
2568
2569 return ret;
1da177e4
LT
2570}
2571
2572EXPORT_SYMBOL(blk_rq_unmap_user);
2573
df46b9a4
MC
2574/**
2575 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2576 * @q: request queue where request should be inserted
73747aed 2577 * @rq: request to fill
df46b9a4
MC
2578 * @kbuf: the kernel buffer
2579 * @len: length of user data
73747aed 2580 * @gfp_mask: memory allocation flags
df46b9a4 2581 */
165125e1 2582int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2583 unsigned int len, gfp_t gfp_mask)
df46b9a4 2584{
df46b9a4
MC
2585 struct bio *bio;
2586
defd94b7 2587 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2588 return -EINVAL;
2589 if (!len || !kbuf)
2590 return -EINVAL;
df46b9a4
MC
2591
2592 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2593 if (IS_ERR(bio))
2594 return PTR_ERR(bio);
df46b9a4 2595
dd1cab95
JA
2596 if (rq_data_dir(rq) == WRITE)
2597 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2598
dd1cab95 2599 blk_rq_bio_prep(q, rq, bio);
821de3a2 2600 blk_queue_bounce(q, &rq->bio);
dd1cab95 2601 rq->buffer = rq->data = NULL;
dd1cab95 2602 return 0;
df46b9a4
MC
2603}
2604
2605EXPORT_SYMBOL(blk_rq_map_kern);
2606
73747aed
CH
2607/**
2608 * blk_execute_rq_nowait - insert a request into queue for execution
2609 * @q: queue to insert the request in
2610 * @bd_disk: matching gendisk
2611 * @rq: request to insert
2612 * @at_head: insert request at head or tail of queue
2613 * @done: I/O completion handler
2614 *
2615 * Description:
2616 * Insert a fully prepared request at the back of the io scheduler queue
2617 * for execution. Don't wait for completion.
2618 */
165125e1 2619void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2620 struct request *rq, int at_head,
8ffdc655 2621 rq_end_io_fn *done)
f1970baf
JB
2622{
2623 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2624
2625 rq->rq_disk = bd_disk;
4aff5e23 2626 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2627 rq->end_io = done;
4c5d0bbd
AM
2628 WARN_ON(irqs_disabled());
2629 spin_lock_irq(q->queue_lock);
2630 __elv_add_request(q, rq, where, 1);
2631 __generic_unplug_device(q);
2632 spin_unlock_irq(q->queue_lock);
f1970baf 2633}
6e39b69e
MC
2634EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2635
1da177e4
LT
2636/**
2637 * blk_execute_rq - insert a request into queue for execution
2638 * @q: queue to insert the request in
2639 * @bd_disk: matching gendisk
2640 * @rq: request to insert
994ca9a1 2641 * @at_head: insert request at head or tail of queue
1da177e4
LT
2642 *
2643 * Description:
2644 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2645 * for execution and wait for completion.
1da177e4 2646 */
165125e1 2647int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2648 struct request *rq, int at_head)
1da177e4 2649{
60be6b9a 2650 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2651 char sense[SCSI_SENSE_BUFFERSIZE];
2652 int err = 0;
2653
1da177e4
LT
2654 /*
2655 * we need an extra reference to the request, so we can look at
2656 * it after io completion
2657 */
2658 rq->ref_count++;
2659
2660 if (!rq->sense) {
2661 memset(sense, 0, sizeof(sense));
2662 rq->sense = sense;
2663 rq->sense_len = 0;
2664 }
2665
c00895ab 2666 rq->end_io_data = &wait;
994ca9a1 2667 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2668 wait_for_completion(&wait);
1da177e4
LT
2669
2670 if (rq->errors)
2671 err = -EIO;
2672
2673 return err;
2674}
2675
2676EXPORT_SYMBOL(blk_execute_rq);
2677
fd5d8062
JA
2678static void bio_end_empty_barrier(struct bio *bio, int err)
2679{
2680 if (err)
2681 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2682
2683 complete(bio->bi_private);
2684}
2685
1da177e4
LT
2686/**
2687 * blkdev_issue_flush - queue a flush
2688 * @bdev: blockdev to issue flush for
2689 * @error_sector: error sector
2690 *
2691 * Description:
2692 * Issue a flush for the block device in question. Caller can supply
2693 * room for storing the error offset in case of a flush error, if they
2694 * wish to. Caller must run wait_for_completion() on its own.
2695 */
2696int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2697{
fd5d8062 2698 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2699 struct request_queue *q;
fd5d8062
JA
2700 struct bio *bio;
2701 int ret;
1da177e4
LT
2702
2703 if (bdev->bd_disk == NULL)
2704 return -ENXIO;
2705
2706 q = bdev_get_queue(bdev);
2707 if (!q)
2708 return -ENXIO;
1da177e4 2709
fd5d8062
JA
2710 bio = bio_alloc(GFP_KERNEL, 0);
2711 if (!bio)
2712 return -ENOMEM;
2713
2714 bio->bi_end_io = bio_end_empty_barrier;
2715 bio->bi_private = &wait;
2716 bio->bi_bdev = bdev;
2717 submit_bio(1 << BIO_RW_BARRIER, bio);
2718
2719 wait_for_completion(&wait);
2720
2721 /*
2722 * The driver must store the error location in ->bi_sector, if
2723 * it supports it. For non-stacked drivers, this should be copied
2724 * from rq->sector.
2725 */
2726 if (error_sector)
2727 *error_sector = bio->bi_sector;
2728
2729 ret = 0;
2730 if (!bio_flagged(bio, BIO_UPTODATE))
2731 ret = -EIO;
2732
2733 bio_put(bio);
2734 return ret;
1da177e4
LT
2735}
2736
2737EXPORT_SYMBOL(blkdev_issue_flush);
2738
93d17d3d 2739static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2740{
2741 int rw = rq_data_dir(rq);
2742
2743 if (!blk_fs_request(rq) || !rq->rq_disk)
2744 return;
2745
d72d904a 2746 if (!new_io) {
a362357b 2747 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2748 } else {
1da177e4
LT
2749 disk_round_stats(rq->rq_disk);
2750 rq->rq_disk->in_flight++;
2751 }
2752}
2753
2754/*
2755 * add-request adds a request to the linked list.
2756 * queue lock is held and interrupts disabled, as we muck with the
2757 * request queue list.
2758 */
165125e1 2759static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2760{
2761 drive_stat_acct(req, req->nr_sectors, 1);
2762
1da177e4
LT
2763 /*
2764 * elevator indicated where it wants this request to be
2765 * inserted at elevator_merge time
2766 */
2767 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2768}
2769
2770/*
2771 * disk_round_stats() - Round off the performance stats on a struct
2772 * disk_stats.
2773 *
2774 * The average IO queue length and utilisation statistics are maintained
2775 * by observing the current state of the queue length and the amount of
2776 * time it has been in this state for.
2777 *
2778 * Normally, that accounting is done on IO completion, but that can result
2779 * in more than a second's worth of IO being accounted for within any one
2780 * second, leading to >100% utilisation. To deal with that, we call this
2781 * function to do a round-off before returning the results when reading
2782 * /proc/diskstats. This accounts immediately for all queue usage up to
2783 * the current jiffies and restarts the counters again.
2784 */
2785void disk_round_stats(struct gendisk *disk)
2786{
2787 unsigned long now = jiffies;
2788
b2982649
KC
2789 if (now == disk->stamp)
2790 return;
1da177e4 2791
20e5c81f
KC
2792 if (disk->in_flight) {
2793 __disk_stat_add(disk, time_in_queue,
2794 disk->in_flight * (now - disk->stamp));
2795 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2796 }
1da177e4 2797 disk->stamp = now;
1da177e4
LT
2798}
2799
3eaf840e
JNN
2800EXPORT_SYMBOL_GPL(disk_round_stats);
2801
1da177e4
LT
2802/*
2803 * queue lock must be held
2804 */
165125e1 2805void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2806{
1da177e4
LT
2807 if (unlikely(!q))
2808 return;
2809 if (unlikely(--req->ref_count))
2810 return;
2811
8922e16c
TH
2812 elv_completed_request(q, req);
2813
1da177e4
LT
2814 /*
2815 * Request may not have originated from ll_rw_blk. if not,
2816 * it didn't come out of our reserved rq pools
2817 */
49171e5c 2818 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2819 int rw = rq_data_dir(req);
4aff5e23 2820 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2821
1da177e4 2822 BUG_ON(!list_empty(&req->queuelist));
9817064b 2823 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2824
2825 blk_free_request(q, req);
cb98fc8b 2826 freed_request(q, rw, priv);
1da177e4
LT
2827 }
2828}
2829
6e39b69e
MC
2830EXPORT_SYMBOL_GPL(__blk_put_request);
2831
1da177e4
LT
2832void blk_put_request(struct request *req)
2833{
8922e16c 2834 unsigned long flags;
165125e1 2835 struct request_queue *q = req->q;
8922e16c 2836
1da177e4 2837 /*
8922e16c
TH
2838 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2839 * following if (q) test.
1da177e4 2840 */
8922e16c 2841 if (q) {
1da177e4
LT
2842 spin_lock_irqsave(q->queue_lock, flags);
2843 __blk_put_request(q, req);
2844 spin_unlock_irqrestore(q->queue_lock, flags);
2845 }
2846}
2847
2848EXPORT_SYMBOL(blk_put_request);
2849
2850/**
2851 * blk_end_sync_rq - executes a completion event on a request
2852 * @rq: request to complete
fddfdeaf 2853 * @error: end io status of the request
1da177e4 2854 */
8ffdc655 2855void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2856{
c00895ab 2857 struct completion *waiting = rq->end_io_data;
1da177e4 2858
c00895ab 2859 rq->end_io_data = NULL;
1da177e4
LT
2860 __blk_put_request(rq->q, rq);
2861
2862 /*
2863 * complete last, if this is a stack request the process (and thus
2864 * the rq pointer) could be invalid right after this complete()
2865 */
2866 complete(waiting);
2867}
2868EXPORT_SYMBOL(blk_end_sync_rq);
2869
1da177e4
LT
2870/*
2871 * Has to be called with the request spinlock acquired
2872 */
165125e1 2873static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2874 struct request *next)
2875{
2876 if (!rq_mergeable(req) || !rq_mergeable(next))
2877 return 0;
2878
2879 /*
d6e05edc 2880 * not contiguous
1da177e4
LT
2881 */
2882 if (req->sector + req->nr_sectors != next->sector)
2883 return 0;
2884
2885 if (rq_data_dir(req) != rq_data_dir(next)
2886 || req->rq_disk != next->rq_disk
c00895ab 2887 || next->special)
1da177e4
LT
2888 return 0;
2889
2890 /*
2891 * If we are allowed to merge, then append bio list
2892 * from next to rq and release next. merge_requests_fn
2893 * will have updated segment counts, update sector
2894 * counts here.
2895 */
1aa4f24f 2896 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2897 return 0;
2898
2899 /*
2900 * At this point we have either done a back merge
2901 * or front merge. We need the smaller start_time of
2902 * the merged requests to be the current request
2903 * for accounting purposes.
2904 */
2905 if (time_after(req->start_time, next->start_time))
2906 req->start_time = next->start_time;
2907
2908 req->biotail->bi_next = next->bio;
2909 req->biotail = next->biotail;
2910
2911 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2912
2913 elv_merge_requests(q, req, next);
2914
2915 if (req->rq_disk) {
2916 disk_round_stats(req->rq_disk);
2917 req->rq_disk->in_flight--;
2918 }
2919
22e2c507
JA
2920 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2921
1da177e4
LT
2922 __blk_put_request(q, next);
2923 return 1;
2924}
2925
165125e1
JA
2926static inline int attempt_back_merge(struct request_queue *q,
2927 struct request *rq)
1da177e4
LT
2928{
2929 struct request *next = elv_latter_request(q, rq);
2930
2931 if (next)
2932 return attempt_merge(q, rq, next);
2933
2934 return 0;
2935}
2936
165125e1
JA
2937static inline int attempt_front_merge(struct request_queue *q,
2938 struct request *rq)
1da177e4
LT
2939{
2940 struct request *prev = elv_former_request(q, rq);
2941
2942 if (prev)
2943 return attempt_merge(q, prev, rq);
2944
2945 return 0;
2946}
2947
52d9e675
TH
2948static void init_request_from_bio(struct request *req, struct bio *bio)
2949{
4aff5e23 2950 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2951
2952 /*
2953 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2954 */
2955 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2956 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2957
2958 /*
2959 * REQ_BARRIER implies no merging, but lets make it explicit
2960 */
2961 if (unlikely(bio_barrier(bio)))
4aff5e23 2962 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2963
b31dc66a 2964 if (bio_sync(bio))
4aff5e23 2965 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2966 if (bio_rw_meta(bio))
2967 req->cmd_flags |= REQ_RW_META;
b31dc66a 2968
52d9e675
TH
2969 req->errors = 0;
2970 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2971 req->ioprio = bio_prio(bio);
52d9e675 2972 req->start_time = jiffies;
bc1c56fd 2973 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2974}
2975
165125e1 2976static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2977{
450991bc 2978 struct request *req;
51da90fc
JA
2979 int el_ret, nr_sectors, barrier, err;
2980 const unsigned short prio = bio_prio(bio);
2981 const int sync = bio_sync(bio);
7749a8d4 2982 int rw_flags;
1da177e4 2983
1da177e4 2984 nr_sectors = bio_sectors(bio);
1da177e4
LT
2985
2986 /*
2987 * low level driver can indicate that it wants pages above a
2988 * certain limit bounced to low memory (ie for highmem, or even
2989 * ISA dma in theory)
2990 */
2991 blk_queue_bounce(q, &bio);
2992
1da177e4 2993 barrier = bio_barrier(bio);
797e7dbb 2994 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2995 err = -EOPNOTSUPP;
2996 goto end_io;
2997 }
2998
1da177e4
LT
2999 spin_lock_irq(q->queue_lock);
3000
450991bc 3001 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
3002 goto get_rq;
3003
3004 el_ret = elv_merge(q, &req, bio);
3005 switch (el_ret) {
3006 case ELEVATOR_BACK_MERGE:
3007 BUG_ON(!rq_mergeable(req));
3008
1aa4f24f 3009 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
3010 break;
3011
2056a782
JA
3012 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3013
1da177e4
LT
3014 req->biotail->bi_next = bio;
3015 req->biotail = bio;
3016 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3017 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3018 drive_stat_acct(req, nr_sectors, 0);
3019 if (!attempt_back_merge(q, req))
2e662b65 3020 elv_merged_request(q, req, el_ret);
1da177e4
LT
3021 goto out;
3022
3023 case ELEVATOR_FRONT_MERGE:
3024 BUG_ON(!rq_mergeable(req));
3025
1aa4f24f 3026 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3027 break;
3028
2056a782
JA
3029 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3030
1da177e4
LT
3031 bio->bi_next = req->bio;
3032 req->bio = bio;
3033
3034 /*
3035 * may not be valid. if the low level driver said
3036 * it didn't need a bounce buffer then it better
3037 * not touch req->buffer either...
3038 */
3039 req->buffer = bio_data(bio);
51da90fc
JA
3040 req->current_nr_sectors = bio_cur_sectors(bio);
3041 req->hard_cur_sectors = req->current_nr_sectors;
3042 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3043 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3044 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3045 drive_stat_acct(req, nr_sectors, 0);
3046 if (!attempt_front_merge(q, req))
2e662b65 3047 elv_merged_request(q, req, el_ret);
1da177e4
LT
3048 goto out;
3049
450991bc 3050 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3051 default:
450991bc 3052 ;
1da177e4
LT
3053 }
3054
450991bc 3055get_rq:
7749a8d4
JA
3056 /*
3057 * This sync check and mask will be re-done in init_request_from_bio(),
3058 * but we need to set it earlier to expose the sync flag to the
3059 * rq allocator and io schedulers.
3060 */
3061 rw_flags = bio_data_dir(bio);
3062 if (sync)
3063 rw_flags |= REQ_RW_SYNC;
3064
1da177e4 3065 /*
450991bc 3066 * Grab a free request. This is might sleep but can not fail.
d6344532 3067 * Returns with the queue unlocked.
450991bc 3068 */
7749a8d4 3069 req = get_request_wait(q, rw_flags, bio);
d6344532 3070
450991bc
NP
3071 /*
3072 * After dropping the lock and possibly sleeping here, our request
3073 * may now be mergeable after it had proven unmergeable (above).
3074 * We don't worry about that case for efficiency. It won't happen
3075 * often, and the elevators are able to handle it.
1da177e4 3076 */
52d9e675 3077 init_request_from_bio(req, bio);
1da177e4 3078
450991bc
NP
3079 spin_lock_irq(q->queue_lock);
3080 if (elv_queue_empty(q))
3081 blk_plug_device(q);
1da177e4
LT
3082 add_request(q, req);
3083out:
4a534f93 3084 if (sync)
1da177e4
LT
3085 __generic_unplug_device(q);
3086
3087 spin_unlock_irq(q->queue_lock);
3088 return 0;
3089
3090end_io:
6712ecf8 3091 bio_endio(bio, err);
1da177e4
LT
3092 return 0;
3093}
3094
3095/*
3096 * If bio->bi_dev is a partition, remap the location
3097 */
3098static inline void blk_partition_remap(struct bio *bio)
3099{
3100 struct block_device *bdev = bio->bi_bdev;
3101
bf2de6f5 3102 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3103 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3104 const int rw = bio_data_dir(bio);
3105
3106 p->sectors[rw] += bio_sectors(bio);
3107 p->ios[rw]++;
1da177e4 3108
1da177e4
LT
3109 bio->bi_sector += p->start_sect;
3110 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3111
3112 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3113 bdev->bd_dev, bio->bi_sector,
3114 bio->bi_sector - p->start_sect);
1da177e4
LT
3115 }
3116}
3117
1da177e4
LT
3118static void handle_bad_sector(struct bio *bio)
3119{
3120 char b[BDEVNAME_SIZE];
3121
3122 printk(KERN_INFO "attempt to access beyond end of device\n");
3123 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3124 bdevname(bio->bi_bdev, b),
3125 bio->bi_rw,
3126 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3127 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3128
3129 set_bit(BIO_EOF, &bio->bi_flags);
3130}
3131
c17bb495
AM
3132#ifdef CONFIG_FAIL_MAKE_REQUEST
3133
3134static DECLARE_FAULT_ATTR(fail_make_request);
3135
3136static int __init setup_fail_make_request(char *str)
3137{
3138 return setup_fault_attr(&fail_make_request, str);
3139}
3140__setup("fail_make_request=", setup_fail_make_request);
3141
3142static int should_fail_request(struct bio *bio)
3143{
3144 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3145 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3146 return should_fail(&fail_make_request, bio->bi_size);
3147
3148 return 0;
3149}
3150
3151static int __init fail_make_request_debugfs(void)
3152{
3153 return init_fault_attr_dentries(&fail_make_request,
3154 "fail_make_request");
3155}
3156
3157late_initcall(fail_make_request_debugfs);
3158
3159#else /* CONFIG_FAIL_MAKE_REQUEST */
3160
3161static inline int should_fail_request(struct bio *bio)
3162{
3163 return 0;
3164}
3165
3166#endif /* CONFIG_FAIL_MAKE_REQUEST */
3167
c07e2b41
JA
3168/*
3169 * Check whether this bio extends beyond the end of the device.
3170 */
3171static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3172{
3173 sector_t maxsector;
3174
3175 if (!nr_sectors)
3176 return 0;
3177
3178 /* Test device or partition size, when known. */
3179 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3180 if (maxsector) {
3181 sector_t sector = bio->bi_sector;
3182
3183 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3184 /*
3185 * This may well happen - the kernel calls bread()
3186 * without checking the size of the device, e.g., when
3187 * mounting a device.
3188 */
3189 handle_bad_sector(bio);
3190 return 1;
3191 }
3192 }
3193
3194 return 0;
3195}
3196
1da177e4
LT
3197/**
3198 * generic_make_request: hand a buffer to its device driver for I/O
3199 * @bio: The bio describing the location in memory and on the device.
3200 *
3201 * generic_make_request() is used to make I/O requests of block
3202 * devices. It is passed a &struct bio, which describes the I/O that needs
3203 * to be done.
3204 *
3205 * generic_make_request() does not return any status. The
3206 * success/failure status of the request, along with notification of
3207 * completion, is delivered asynchronously through the bio->bi_end_io
3208 * function described (one day) else where.
3209 *
3210 * The caller of generic_make_request must make sure that bi_io_vec
3211 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3212 * set to describe the device address, and the
3213 * bi_end_io and optionally bi_private are set to describe how
3214 * completion notification should be signaled.
3215 *
3216 * generic_make_request and the drivers it calls may use bi_next if this
3217 * bio happens to be merged with someone else, and may change bi_dev and
3218 * bi_sector for remaps as it sees fit. So the values of these fields
3219 * should NOT be depended on after the call to generic_make_request.
3220 */
d89d8796 3221static inline void __generic_make_request(struct bio *bio)
1da177e4 3222{
165125e1 3223 struct request_queue *q;
5ddfe969 3224 sector_t old_sector;
1da177e4 3225 int ret, nr_sectors = bio_sectors(bio);
2056a782 3226 dev_t old_dev;
1da177e4
LT
3227
3228 might_sleep();
1da177e4 3229
c07e2b41
JA
3230 if (bio_check_eod(bio, nr_sectors))
3231 goto end_io;
1da177e4
LT
3232
3233 /*
3234 * Resolve the mapping until finished. (drivers are
3235 * still free to implement/resolve their own stacking
3236 * by explicitly returning 0)
3237 *
3238 * NOTE: we don't repeat the blk_size check for each new device.
3239 * Stacking drivers are expected to know what they are doing.
3240 */
5ddfe969 3241 old_sector = -1;
2056a782 3242 old_dev = 0;
1da177e4
LT
3243 do {
3244 char b[BDEVNAME_SIZE];
3245
3246 q = bdev_get_queue(bio->bi_bdev);
3247 if (!q) {
3248 printk(KERN_ERR
3249 "generic_make_request: Trying to access "
3250 "nonexistent block-device %s (%Lu)\n",
3251 bdevname(bio->bi_bdev, b),
3252 (long long) bio->bi_sector);
3253end_io:
6712ecf8 3254 bio_endio(bio, -EIO);
1da177e4
LT
3255 break;
3256 }
3257
4fa253f3 3258 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3259 printk("bio too big device %s (%u > %u)\n",
3260 bdevname(bio->bi_bdev, b),
3261 bio_sectors(bio),
3262 q->max_hw_sectors);
3263 goto end_io;
3264 }
3265
fde6ad22 3266 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3267 goto end_io;
3268
c17bb495
AM
3269 if (should_fail_request(bio))
3270 goto end_io;
3271
1da177e4
LT
3272 /*
3273 * If this device has partitions, remap block n
3274 * of partition p to block n+start(p) of the disk.
3275 */
3276 blk_partition_remap(bio);
3277
5ddfe969 3278 if (old_sector != -1)
4fa253f3 3279 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3280 old_sector);
2056a782
JA
3281
3282 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3283
5ddfe969 3284 old_sector = bio->bi_sector;
2056a782
JA
3285 old_dev = bio->bi_bdev->bd_dev;
3286
c07e2b41
JA
3287 if (bio_check_eod(bio, nr_sectors))
3288 goto end_io;
5ddfe969 3289
1da177e4
LT
3290 ret = q->make_request_fn(q, bio);
3291 } while (ret);
3292}
3293
d89d8796
NB
3294/*
3295 * We only want one ->make_request_fn to be active at a time,
3296 * else stack usage with stacked devices could be a problem.
3297 * So use current->bio_{list,tail} to keep a list of requests
3298 * submited by a make_request_fn function.
3299 * current->bio_tail is also used as a flag to say if
3300 * generic_make_request is currently active in this task or not.
3301 * If it is NULL, then no make_request is active. If it is non-NULL,
3302 * then a make_request is active, and new requests should be added
3303 * at the tail
3304 */
3305void generic_make_request(struct bio *bio)
3306{
3307 if (current->bio_tail) {
3308 /* make_request is active */
3309 *(current->bio_tail) = bio;
3310 bio->bi_next = NULL;
3311 current->bio_tail = &bio->bi_next;
3312 return;
3313 }
3314 /* following loop may be a bit non-obvious, and so deserves some
3315 * explanation.
3316 * Before entering the loop, bio->bi_next is NULL (as all callers
3317 * ensure that) so we have a list with a single bio.
3318 * We pretend that we have just taken it off a longer list, so
3319 * we assign bio_list to the next (which is NULL) and bio_tail
3320 * to &bio_list, thus initialising the bio_list of new bios to be
3321 * added. __generic_make_request may indeed add some more bios
3322 * through a recursive call to generic_make_request. If it
3323 * did, we find a non-NULL value in bio_list and re-enter the loop
3324 * from the top. In this case we really did just take the bio
3325 * of the top of the list (no pretending) and so fixup bio_list and
3326 * bio_tail or bi_next, and call into __generic_make_request again.
3327 *
3328 * The loop was structured like this to make only one call to
3329 * __generic_make_request (which is important as it is large and
3330 * inlined) and to keep the structure simple.
3331 */
3332 BUG_ON(bio->bi_next);
3333 do {
3334 current->bio_list = bio->bi_next;
3335 if (bio->bi_next == NULL)
3336 current->bio_tail = &current->bio_list;
3337 else
3338 bio->bi_next = NULL;
3339 __generic_make_request(bio);
3340 bio = current->bio_list;
3341 } while (bio);
3342 current->bio_tail = NULL; /* deactivate */
3343}
3344
1da177e4
LT
3345EXPORT_SYMBOL(generic_make_request);
3346
3347/**
3348 * submit_bio: submit a bio to the block device layer for I/O
3349 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3350 * @bio: The &struct bio which describes the I/O
3351 *
3352 * submit_bio() is very similar in purpose to generic_make_request(), and
3353 * uses that function to do most of the work. Both are fairly rough
3354 * interfaces, @bio must be presetup and ready for I/O.
3355 *
3356 */
3357void submit_bio(int rw, struct bio *bio)
3358{
3359 int count = bio_sectors(bio);
3360
22e2c507 3361 bio->bi_rw |= rw;
1da177e4 3362
bf2de6f5
JA
3363 /*
3364 * If it's a regular read/write or a barrier with data attached,
3365 * go through the normal accounting stuff before submission.
3366 */
3367 if (!bio_empty_barrier(bio)) {
3368
3369 BIO_BUG_ON(!bio->bi_size);
3370 BIO_BUG_ON(!bio->bi_io_vec);
3371
3372 if (rw & WRITE) {
3373 count_vm_events(PGPGOUT, count);
3374 } else {
3375 task_io_account_read(bio->bi_size);
3376 count_vm_events(PGPGIN, count);
3377 }
3378
3379 if (unlikely(block_dump)) {
3380 char b[BDEVNAME_SIZE];
3381 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3382 current->comm, task_pid_nr(current),
bf2de6f5
JA
3383 (rw & WRITE) ? "WRITE" : "READ",
3384 (unsigned long long)bio->bi_sector,
3385 bdevname(bio->bi_bdev,b));
3386 }
1da177e4
LT
3387 }
3388
3389 generic_make_request(bio);
3390}
3391
3392EXPORT_SYMBOL(submit_bio);
3393
93d17d3d 3394static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3395{
3396 if (blk_fs_request(rq)) {
3397 rq->hard_sector += nsect;
3398 rq->hard_nr_sectors -= nsect;
3399
3400 /*
3401 * Move the I/O submission pointers ahead if required.
3402 */
3403 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3404 (rq->sector <= rq->hard_sector)) {
3405 rq->sector = rq->hard_sector;
3406 rq->nr_sectors = rq->hard_nr_sectors;
3407 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3408 rq->current_nr_sectors = rq->hard_cur_sectors;
3409 rq->buffer = bio_data(rq->bio);
3410 }
3411
3412 /*
3413 * if total number of sectors is less than the first segment
3414 * size, something has gone terribly wrong
3415 */
3416 if (rq->nr_sectors < rq->current_nr_sectors) {
3417 printk("blk: request botched\n");
3418 rq->nr_sectors = rq->current_nr_sectors;
3419 }
3420 }
3421}
3422
3423static int __end_that_request_first(struct request *req, int uptodate,
3424 int nr_bytes)
3425{
3426 int total_bytes, bio_nbytes, error, next_idx = 0;
3427 struct bio *bio;
3428
2056a782
JA
3429 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3430
1da177e4
LT
3431 /*
3432 * extend uptodate bool to allow < 0 value to be direct io error
3433 */
3434 error = 0;
3435 if (end_io_error(uptodate))
3436 error = !uptodate ? -EIO : uptodate;
3437
3438 /*
3439 * for a REQ_BLOCK_PC request, we want to carry any eventual
3440 * sense key with us all the way through
3441 */
3442 if (!blk_pc_request(req))
3443 req->errors = 0;
3444
3445 if (!uptodate) {
4aff5e23 3446 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3447 printk("end_request: I/O error, dev %s, sector %llu\n",
3448 req->rq_disk ? req->rq_disk->disk_name : "?",
3449 (unsigned long long)req->sector);
3450 }
3451
d72d904a 3452 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3453 const int rw = rq_data_dir(req);
3454
53e86061 3455 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3456 }
3457
1da177e4
LT
3458 total_bytes = bio_nbytes = 0;
3459 while ((bio = req->bio) != NULL) {
3460 int nbytes;
3461
bf2de6f5
JA
3462 /*
3463 * For an empty barrier request, the low level driver must
3464 * store a potential error location in ->sector. We pass
3465 * that back up in ->bi_sector.
3466 */
3467 if (blk_empty_barrier(req))
3468 bio->bi_sector = req->sector;
3469
1da177e4
LT
3470 if (nr_bytes >= bio->bi_size) {
3471 req->bio = bio->bi_next;
3472 nbytes = bio->bi_size;
5bb23a68 3473 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3474 next_idx = 0;
3475 bio_nbytes = 0;
3476 } else {
3477 int idx = bio->bi_idx + next_idx;
3478
3479 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3480 blk_dump_rq_flags(req, "__end_that");
3481 printk("%s: bio idx %d >= vcnt %d\n",
3482 __FUNCTION__,
3483 bio->bi_idx, bio->bi_vcnt);
3484 break;
3485 }
3486
3487 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3488 BIO_BUG_ON(nbytes > bio->bi_size);
3489
3490 /*
3491 * not a complete bvec done
3492 */
3493 if (unlikely(nbytes > nr_bytes)) {
3494 bio_nbytes += nr_bytes;
3495 total_bytes += nr_bytes;
3496 break;
3497 }
3498
3499 /*
3500 * advance to the next vector
3501 */
3502 next_idx++;
3503 bio_nbytes += nbytes;
3504 }
3505
3506 total_bytes += nbytes;
3507 nr_bytes -= nbytes;
3508
3509 if ((bio = req->bio)) {
3510 /*
3511 * end more in this run, or just return 'not-done'
3512 */
3513 if (unlikely(nr_bytes <= 0))
3514 break;
3515 }
3516 }
3517
3518 /*
3519 * completely done
3520 */
3521 if (!req->bio)
3522 return 0;
3523
3524 /*
3525 * if the request wasn't completed, update state
3526 */
3527 if (bio_nbytes) {
5bb23a68 3528 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3529 bio->bi_idx += next_idx;
3530 bio_iovec(bio)->bv_offset += nr_bytes;
3531 bio_iovec(bio)->bv_len -= nr_bytes;
3532 }
3533
3534 blk_recalc_rq_sectors(req, total_bytes >> 9);
3535 blk_recalc_rq_segments(req);
3536 return 1;
3537}
3538
3539/**
3540 * end_that_request_first - end I/O on a request
3541 * @req: the request being processed
3542 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3543 * @nr_sectors: number of sectors to end I/O on
3544 *
3545 * Description:
3546 * Ends I/O on a number of sectors attached to @req, and sets it up
3547 * for the next range of segments (if any) in the cluster.
3548 *
3549 * Return:
3550 * 0 - we are done with this request, call end_that_request_last()
3551 * 1 - still buffers pending for this request
3552 **/
3553int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3554{
3555 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3556}
3557
3558EXPORT_SYMBOL(end_that_request_first);
3559
3560/**
3561 * end_that_request_chunk - end I/O on a request
3562 * @req: the request being processed
3563 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3564 * @nr_bytes: number of bytes to complete
3565 *
3566 * Description:
3567 * Ends I/O on a number of bytes attached to @req, and sets it up
3568 * for the next range of segments (if any). Like end_that_request_first(),
3569 * but deals with bytes instead of sectors.
3570 *
3571 * Return:
3572 * 0 - we are done with this request, call end_that_request_last()
3573 * 1 - still buffers pending for this request
3574 **/
3575int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3576{
3577 return __end_that_request_first(req, uptodate, nr_bytes);
3578}
3579
3580EXPORT_SYMBOL(end_that_request_chunk);
3581
ff856bad
JA
3582/*
3583 * splice the completion data to a local structure and hand off to
3584 * process_completion_queue() to complete the requests
3585 */
3586static void blk_done_softirq(struct softirq_action *h)
3587{
626ab0e6 3588 struct list_head *cpu_list, local_list;
ff856bad
JA
3589
3590 local_irq_disable();
3591 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3592 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3593 local_irq_enable();
3594
3595 while (!list_empty(&local_list)) {
3596 struct request *rq = list_entry(local_list.next, struct request, donelist);
3597
3598 list_del_init(&rq->donelist);
3599 rq->q->softirq_done_fn(rq);
3600 }
3601}
3602
db47d475 3603static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3604 void *hcpu)
3605{
3606 /*
3607 * If a CPU goes away, splice its entries to the current CPU
3608 * and trigger a run of the softirq
3609 */
8bb78442 3610 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3611 int cpu = (unsigned long) hcpu;
3612
3613 local_irq_disable();
3614 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3615 &__get_cpu_var(blk_cpu_done));
3616 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3617 local_irq_enable();
3618 }
3619
3620 return NOTIFY_OK;
3621}
3622
3623
db47d475 3624static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3625 .notifier_call = blk_cpu_notify,
3626};
3627
ff856bad
JA
3628/**
3629 * blk_complete_request - end I/O on a request
3630 * @req: the request being processed
3631 *
3632 * Description:
3633 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3634 * unless the driver actually implements this in its completion callback
4fa253f3 3635 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3636 * through a softirq handler. The user must have registered a completion
3637 * callback through blk_queue_softirq_done().
3638 **/
3639
3640void blk_complete_request(struct request *req)
3641{
3642 struct list_head *cpu_list;
3643 unsigned long flags;
3644
3645 BUG_ON(!req->q->softirq_done_fn);
3646
3647 local_irq_save(flags);
3648
3649 cpu_list = &__get_cpu_var(blk_cpu_done);
3650 list_add_tail(&req->donelist, cpu_list);
3651 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3652
3653 local_irq_restore(flags);
3654}
3655
3656EXPORT_SYMBOL(blk_complete_request);
3657
1da177e4
LT
3658/*
3659 * queue lock must be held
3660 */
8ffdc655 3661void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3662{
3663 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3664 int error;
3665
3666 /*
3667 * extend uptodate bool to allow < 0 value to be direct io error
3668 */
3669 error = 0;
3670 if (end_io_error(uptodate))
3671 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3672
3673 if (unlikely(laptop_mode) && blk_fs_request(req))
3674 laptop_io_completion();
3675
fd0ff8aa
JA
3676 /*
3677 * Account IO completion. bar_rq isn't accounted as a normal
3678 * IO on queueing nor completion. Accounting the containing
3679 * request is enough.
3680 */
3681 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3682 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3683 const int rw = rq_data_dir(req);
3684
3685 __disk_stat_inc(disk, ios[rw]);
3686 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3687 disk_round_stats(disk);
3688 disk->in_flight--;
3689 }
3690 if (req->end_io)
8ffdc655 3691 req->end_io(req, error);
1da177e4
LT
3692 else
3693 __blk_put_request(req->q, req);
3694}
3695
3696EXPORT_SYMBOL(end_that_request_last);
3697
a0cd1285
JA
3698static inline void __end_request(struct request *rq, int uptodate,
3699 unsigned int nr_bytes, int dequeue)
1da177e4 3700{
a0cd1285
JA
3701 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3702 if (dequeue)
3703 blkdev_dequeue_request(rq);
3704 add_disk_randomness(rq->rq_disk);
3705 end_that_request_last(rq, uptodate);
1da177e4
LT
3706 }
3707}
3708
a0cd1285
JA
3709static unsigned int rq_byte_size(struct request *rq)
3710{
3711 if (blk_fs_request(rq))
3712 return rq->hard_nr_sectors << 9;
3713
3714 return rq->data_len;
3715}
3716
3717/**
3718 * end_queued_request - end all I/O on a queued request
3719 * @rq: the request being processed
3720 * @uptodate: error value or 0/1 uptodate flag
3721 *
3722 * Description:
3723 * Ends all I/O on a request, and removes it from the block layer queues.
3724 * Not suitable for normal IO completion, unless the driver still has
3725 * the request attached to the block layer.
3726 *
3727 **/
3728void end_queued_request(struct request *rq, int uptodate)
3729{
3730 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3731}
3732EXPORT_SYMBOL(end_queued_request);
3733
3734/**
3735 * end_dequeued_request - end all I/O on a dequeued request
3736 * @rq: the request being processed
3737 * @uptodate: error value or 0/1 uptodate flag
3738 *
3739 * Description:
3740 * Ends all I/O on a request. The request must already have been
3741 * dequeued using blkdev_dequeue_request(), as is normally the case
3742 * for most drivers.
3743 *
3744 **/
3745void end_dequeued_request(struct request *rq, int uptodate)
3746{
3747 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3748}
3749EXPORT_SYMBOL(end_dequeued_request);
3750
3751
3752/**
3753 * end_request - end I/O on the current segment of the request
8f731f7d 3754 * @req: the request being processed
a0cd1285
JA
3755 * @uptodate: error value or 0/1 uptodate flag
3756 *
3757 * Description:
3758 * Ends I/O on the current segment of a request. If that is the only
3759 * remaining segment, the request is also completed and freed.
3760 *
3761 * This is a remnant of how older block drivers handled IO completions.
3762 * Modern drivers typically end IO on the full request in one go, unless
3763 * they have a residual value to account for. For that case this function
3764 * isn't really useful, unless the residual just happens to be the
3765 * full current segment. In other words, don't use this function in new
3766 * code. Either use end_request_completely(), or the
3767 * end_that_request_chunk() (along with end_that_request_last()) for
3768 * partial completions.
3769 *
3770 **/
3771void end_request(struct request *req, int uptodate)
3772{
3773 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3774}
1da177e4
LT
3775EXPORT_SYMBOL(end_request);
3776
66846572
N
3777static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3778 struct bio *bio)
1da177e4 3779{
4aff5e23
JA
3780 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3781 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3782
3783 rq->nr_phys_segments = bio_phys_segments(q, bio);
3784 rq->nr_hw_segments = bio_hw_segments(q, bio);
3785 rq->current_nr_sectors = bio_cur_sectors(bio);
3786 rq->hard_cur_sectors = rq->current_nr_sectors;
3787 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3788 rq->buffer = bio_data(bio);
0e75f906 3789 rq->data_len = bio->bi_size;
1da177e4
LT
3790
3791 rq->bio = rq->biotail = bio;
1da177e4 3792
66846572
N
3793 if (bio->bi_bdev)
3794 rq->rq_disk = bio->bi_bdev->bd_disk;
3795}
1da177e4
LT
3796
3797int kblockd_schedule_work(struct work_struct *work)
3798{
3799 return queue_work(kblockd_workqueue, work);
3800}
3801
3802EXPORT_SYMBOL(kblockd_schedule_work);
3803
19a75d83 3804void kblockd_flush_work(struct work_struct *work)
1da177e4 3805{
28e53bdd 3806 cancel_work_sync(work);
1da177e4 3807}
19a75d83 3808EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3809
3810int __init blk_dev_init(void)
3811{
ff856bad
JA
3812 int i;
3813
1da177e4
LT
3814 kblockd_workqueue = create_workqueue("kblockd");
3815 if (!kblockd_workqueue)
3816 panic("Failed to create kblockd\n");
3817
3818 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3819 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3820
3821 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3822 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3823
3824 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3825 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3826
0a945022 3827 for_each_possible_cpu(i)
ff856bad
JA
3828 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3829
3830 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3831 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3832
f772b3d9
VT
3833 blk_max_low_pfn = max_low_pfn - 1;
3834 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3835
3836 return 0;
3837}
3838
3839/*
3840 * IO Context helper functions
3841 */
3842void put_io_context(struct io_context *ioc)
3843{
3844 if (ioc == NULL)
3845 return;
3846
3847 BUG_ON(atomic_read(&ioc->refcount) == 0);
3848
3849 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3850 struct cfq_io_context *cic;
3851
334e94de 3852 rcu_read_lock();
1da177e4
LT
3853 if (ioc->aic && ioc->aic->dtor)
3854 ioc->aic->dtor(ioc->aic);
e2d74ac0 3855 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3856 struct rb_node *n = rb_first(&ioc->cic_root);
3857
3858 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3859 cic->dtor(ioc);
3860 }
334e94de 3861 rcu_read_unlock();
1da177e4
LT
3862
3863 kmem_cache_free(iocontext_cachep, ioc);
3864 }
3865}
3866EXPORT_SYMBOL(put_io_context);
3867
3868/* Called by the exitting task */
3869void exit_io_context(void)
3870{
1da177e4 3871 struct io_context *ioc;
e2d74ac0 3872 struct cfq_io_context *cic;
1da177e4 3873
22e2c507 3874 task_lock(current);
1da177e4
LT
3875 ioc = current->io_context;
3876 current->io_context = NULL;
22e2c507 3877 task_unlock(current);
1da177e4 3878
25034d7a 3879 ioc->task = NULL;
1da177e4
LT
3880 if (ioc->aic && ioc->aic->exit)
3881 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3882 if (ioc->cic_root.rb_node != NULL) {
3883 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3884 cic->exit(ioc);
3885 }
25034d7a 3886
1da177e4
LT
3887 put_io_context(ioc);
3888}
3889
3890/*
3891 * If the current task has no IO context then create one and initialise it.
fb3cc432 3892 * Otherwise, return its existing IO context.
1da177e4 3893 *
fb3cc432
NP
3894 * This returned IO context doesn't have a specifically elevated refcount,
3895 * but since the current task itself holds a reference, the context can be
3896 * used in general code, so long as it stays within `current` context.
1da177e4 3897 */
b5deef90 3898static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3899{
3900 struct task_struct *tsk = current;
1da177e4
LT
3901 struct io_context *ret;
3902
1da177e4 3903 ret = tsk->io_context;
fb3cc432
NP
3904 if (likely(ret))
3905 return ret;
1da177e4 3906
b5deef90 3907 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3908 if (ret) {
3909 atomic_set(&ret->refcount, 1);
22e2c507 3910 ret->task = current;
fc46379d 3911 ret->ioprio_changed = 0;
1da177e4
LT
3912 ret->last_waited = jiffies; /* doesn't matter... */
3913 ret->nr_batch_requests = 0; /* because this is 0 */
3914 ret->aic = NULL;
e2d74ac0 3915 ret->cic_root.rb_node = NULL;
4e521c27 3916 ret->ioc_data = NULL;
9f83e45e
ON
3917 /* make sure set_task_ioprio() sees the settings above */
3918 smp_wmb();
fb3cc432
NP
3919 tsk->io_context = ret;
3920 }
1da177e4 3921
fb3cc432
NP
3922 return ret;
3923}
1da177e4 3924
fb3cc432
NP
3925/*
3926 * If the current task has no IO context then create one and initialise it.
3927 * If it does have a context, take a ref on it.
3928 *
3929 * This is always called in the context of the task which submitted the I/O.
3930 */
b5deef90 3931struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3932{
3933 struct io_context *ret;
b5deef90 3934 ret = current_io_context(gfp_flags, node);
fb3cc432 3935 if (likely(ret))
1da177e4 3936 atomic_inc(&ret->refcount);
1da177e4
LT
3937 return ret;
3938}
3939EXPORT_SYMBOL(get_io_context);
3940
3941void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3942{
3943 struct io_context *src = *psrc;
3944 struct io_context *dst = *pdst;
3945
3946 if (src) {
3947 BUG_ON(atomic_read(&src->refcount) == 0);
3948 atomic_inc(&src->refcount);
3949 put_io_context(dst);
3950 *pdst = src;
3951 }
3952}
3953EXPORT_SYMBOL(copy_io_context);
3954
3955void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3956{
3957 struct io_context *temp;
3958 temp = *ioc1;
3959 *ioc1 = *ioc2;
3960 *ioc2 = temp;
3961}
3962EXPORT_SYMBOL(swap_io_context);
3963
3964/*
3965 * sysfs parts below
3966 */
3967struct queue_sysfs_entry {
3968 struct attribute attr;
3969 ssize_t (*show)(struct request_queue *, char *);
3970 ssize_t (*store)(struct request_queue *, const char *, size_t);
3971};
3972
3973static ssize_t
3974queue_var_show(unsigned int var, char *page)
3975{
3976 return sprintf(page, "%d\n", var);
3977}
3978
3979static ssize_t
3980queue_var_store(unsigned long *var, const char *page, size_t count)
3981{
3982 char *p = (char *) page;
3983
3984 *var = simple_strtoul(p, &p, 10);
3985 return count;
3986}
3987
3988static ssize_t queue_requests_show(struct request_queue *q, char *page)
3989{
3990 return queue_var_show(q->nr_requests, (page));
3991}
3992
3993static ssize_t
3994queue_requests_store(struct request_queue *q, const char *page, size_t count)
3995{
3996 struct request_list *rl = &q->rq;
c981ff9f
AV
3997 unsigned long nr;
3998 int ret = queue_var_store(&nr, page, count);
3999 if (nr < BLKDEV_MIN_RQ)
4000 nr = BLKDEV_MIN_RQ;
1da177e4 4001
c981ff9f
AV
4002 spin_lock_irq(q->queue_lock);
4003 q->nr_requests = nr;
1da177e4
LT
4004 blk_queue_congestion_threshold(q);
4005
4006 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 4007 blk_set_queue_congested(q, READ);
1da177e4 4008 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 4009 blk_clear_queue_congested(q, READ);
1da177e4
LT
4010
4011 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4012 blk_set_queue_congested(q, WRITE);
1da177e4 4013 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4014 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4015
4016 if (rl->count[READ] >= q->nr_requests) {
4017 blk_set_queue_full(q, READ);
4018 } else if (rl->count[READ]+1 <= q->nr_requests) {
4019 blk_clear_queue_full(q, READ);
4020 wake_up(&rl->wait[READ]);
4021 }
4022
4023 if (rl->count[WRITE] >= q->nr_requests) {
4024 blk_set_queue_full(q, WRITE);
4025 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4026 blk_clear_queue_full(q, WRITE);
4027 wake_up(&rl->wait[WRITE]);
4028 }
c981ff9f 4029 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4030 return ret;
4031}
4032
4033static ssize_t queue_ra_show(struct request_queue *q, char *page)
4034{
4035 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4036
4037 return queue_var_show(ra_kb, (page));
4038}
4039
4040static ssize_t
4041queue_ra_store(struct request_queue *q, const char *page, size_t count)
4042{
4043 unsigned long ra_kb;
4044 ssize_t ret = queue_var_store(&ra_kb, page, count);
4045
4046 spin_lock_irq(q->queue_lock);
1da177e4
LT
4047 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4048 spin_unlock_irq(q->queue_lock);
4049
4050 return ret;
4051}
4052
4053static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4054{
4055 int max_sectors_kb = q->max_sectors >> 1;
4056
4057 return queue_var_show(max_sectors_kb, (page));
4058}
4059
4060static ssize_t
4061queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4062{
4063 unsigned long max_sectors_kb,
4064 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4065 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4066 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4067
4068 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4069 return -EINVAL;
4070 /*
4071 * Take the queue lock to update the readahead and max_sectors
4072 * values synchronously:
4073 */
4074 spin_lock_irq(q->queue_lock);
1da177e4
LT
4075 q->max_sectors = max_sectors_kb << 1;
4076 spin_unlock_irq(q->queue_lock);
4077
4078 return ret;
4079}
4080
4081static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4082{
4083 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4084
4085 return queue_var_show(max_hw_sectors_kb, (page));
4086}
4087
563063a8
JA
4088static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4089{
4090 return queue_var_show(q->max_phys_segments, page);
4091}
4092
4093static ssize_t queue_max_segments_store(struct request_queue *q,
4094 const char *page, size_t count)
4095{
4096 unsigned long segments;
4097 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4098
563063a8
JA
4099 spin_lock_irq(q->queue_lock);
4100 q->max_phys_segments = segments;
4101 spin_unlock_irq(q->queue_lock);
1da177e4 4102
563063a8
JA
4103 return ret;
4104}
1da177e4
LT
4105static struct queue_sysfs_entry queue_requests_entry = {
4106 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4107 .show = queue_requests_show,
4108 .store = queue_requests_store,
4109};
4110
4111static struct queue_sysfs_entry queue_ra_entry = {
4112 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4113 .show = queue_ra_show,
4114 .store = queue_ra_store,
4115};
4116
4117static struct queue_sysfs_entry queue_max_sectors_entry = {
4118 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4119 .show = queue_max_sectors_show,
4120 .store = queue_max_sectors_store,
4121};
4122
4123static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4124 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4125 .show = queue_max_hw_sectors_show,
4126};
4127
563063a8
JA
4128static struct queue_sysfs_entry queue_max_segments_entry = {
4129 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4130 .show = queue_max_segments_show,
4131 .store = queue_max_segments_store,
4132};
4133
1da177e4
LT
4134static struct queue_sysfs_entry queue_iosched_entry = {
4135 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4136 .show = elv_iosched_show,
4137 .store = elv_iosched_store,
4138};
4139
4140static struct attribute *default_attrs[] = {
4141 &queue_requests_entry.attr,
4142 &queue_ra_entry.attr,
4143 &queue_max_hw_sectors_entry.attr,
4144 &queue_max_sectors_entry.attr,
563063a8 4145 &queue_max_segments_entry.attr,
1da177e4
LT
4146 &queue_iosched_entry.attr,
4147 NULL,
4148};
4149
4150#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4151
4152static ssize_t
4153queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4154{
4155 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4156 struct request_queue *q =
4157 container_of(kobj, struct request_queue, kobj);
483f4afc 4158 ssize_t res;
1da177e4 4159
1da177e4 4160 if (!entry->show)
6c1852a0 4161 return -EIO;
483f4afc
AV
4162 mutex_lock(&q->sysfs_lock);
4163 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4164 mutex_unlock(&q->sysfs_lock);
4165 return -ENOENT;
4166 }
4167 res = entry->show(q, page);
4168 mutex_unlock(&q->sysfs_lock);
4169 return res;
1da177e4
LT
4170}
4171
4172static ssize_t
4173queue_attr_store(struct kobject *kobj, struct attribute *attr,
4174 const char *page, size_t length)
4175{
4176 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4177 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4178
4179 ssize_t res;
1da177e4 4180
1da177e4 4181 if (!entry->store)
6c1852a0 4182 return -EIO;
483f4afc
AV
4183 mutex_lock(&q->sysfs_lock);
4184 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4185 mutex_unlock(&q->sysfs_lock);
4186 return -ENOENT;
4187 }
4188 res = entry->store(q, page, length);
4189 mutex_unlock(&q->sysfs_lock);
4190 return res;
1da177e4
LT
4191}
4192
4193static struct sysfs_ops queue_sysfs_ops = {
4194 .show = queue_attr_show,
4195 .store = queue_attr_store,
4196};
4197
93d17d3d 4198static struct kobj_type queue_ktype = {
1da177e4
LT
4199 .sysfs_ops = &queue_sysfs_ops,
4200 .default_attrs = default_attrs,
483f4afc 4201 .release = blk_release_queue,
1da177e4
LT
4202};
4203
4204int blk_register_queue(struct gendisk *disk)
4205{
4206 int ret;
4207
165125e1 4208 struct request_queue *q = disk->queue;
1da177e4
LT
4209
4210 if (!q || !q->request_fn)
4211 return -ENXIO;
4212
4213 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4214
483f4afc 4215 ret = kobject_add(&q->kobj);
1da177e4
LT
4216 if (ret < 0)
4217 return ret;
4218
483f4afc
AV
4219 kobject_uevent(&q->kobj, KOBJ_ADD);
4220
1da177e4
LT
4221 ret = elv_register_queue(q);
4222 if (ret) {
483f4afc
AV
4223 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4224 kobject_del(&q->kobj);
1da177e4
LT
4225 return ret;
4226 }
4227
4228 return 0;
4229}
4230
4231void blk_unregister_queue(struct gendisk *disk)
4232{
165125e1 4233 struct request_queue *q = disk->queue;
1da177e4
LT
4234
4235 if (q && q->request_fn) {
4236 elv_unregister_queue(q);
4237
483f4afc
AV
4238 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4239 kobject_del(&q->kobj);
1da177e4
LT
4240 kobject_put(&disk->kobj);
4241 }
4242}