]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
blkio: Add more debug-only per-cgroup stats
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98 21/* max queue in one round of service */
abc3c744 22static const int cfq_quantum = 8;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 50#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 51#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 52#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 53
fe094d98
JA
54#define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 56#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 57
e18b890b
CL
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
1da177e4 60
245b2e70 61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 62static struct completion *ioc_gone;
9a11b4ed 63static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
cc09e299 85};
73e9ffdd
RK
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b
JA
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
ae30c286 144 struct cfq_group *orig_cfqg;
6118b70b
JA
145};
146
c0324a02 147/*
718eee05 148 * First index in the service_trees.
c0324a02
CZ
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
c0324a02 152 BE_WORKLOAD = 0,
615f0259
VG
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
c0324a02
CZ
155};
156
718eee05
CZ
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164};
165
cdb16e8f
VG
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
1fa8f6d6
VG
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
25bc6b07 173 unsigned int weight;
1fa8f6d6
VG
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
58ff82f3
VG
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
cdb16e8f
VG
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
dae739eb
VG
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
25fb5169
VG
191 struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
b1c35769 194 atomic_t ref;
25fb5169 195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
22e2c507 206
c0324a02
CZ
207 /*
208 * The priority currently being served
22e2c507 209 */
c0324a02 210 enum wl_prio_t serving_prio;
718eee05
CZ
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
cdb16e8f 213 struct cfq_group *serving_group;
8e550632 214 bool noidle_tree_requires_idle;
a36e71f9
JA
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
22e2c507
JA
223 unsigned int busy_queues;
224
53c583d2
CZ
225 int rq_in_driver;
226 int rq_in_flight[2];
45333d5a
AC
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
25776e35 232 int hw_tag;
e459dd08
CZ
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
1da177e4 241
22e2c507
JA
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
23e018a1 246 struct work_struct unplug_work;
1da177e4 247
22e2c507
JA
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
22e2c507 250
c2dea2d1
VT
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
15c31be4 256
6d048f53 257 sector_t last_position;
1da177e4 258
1da177e4
LT
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
22e2c507 263 unsigned int cfq_fifo_expire[2];
1da177e4
LT
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
22e2c507
JA
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
963b72fc 269 unsigned int cfq_latency;
ae30c286 270 unsigned int cfq_group_isolation;
d9ff4187
AV
271
272 struct list_head cic_list;
1da177e4 273
6118b70b
JA
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
365722bb 278
573412b2 279 unsigned long last_delayed_sync;
25fb5169
VG
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
bb729bc9 283 struct rcu_head rcu;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
65b32a57 290 enum wl_type_t type)
c0324a02 291{
1fa8f6d6
VG
292 if (!cfqg)
293 return NULL;
294
c0324a02 295 if (prio == IDLE_WORKLOAD)
cdb16e8f 296 return &cfqg->service_tree_idle;
c0324a02 297
cdb16e8f 298 return &cfqg->service_trees[prio][type];
c0324a02
CZ
299}
300
3b18152c 301enum cfqq_state_flags {
b0b8d749
JA
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
fe094d98 320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
fe094d98 328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
b029195d 333CFQ_CFQQ_FNS(must_dispatch);
3b18152c 334CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
44f7c160 338CFQ_CFQQ_FNS(slice_new);
91fac317 339CFQ_CFQQ_FNS(sync);
a36e71f9 340CFQ_CFQQ_FNS(coop);
ae54abed 341CFQ_CFQQ_FNS(split_coop);
76280aff 342CFQ_CFQQ_FNS(deep);
f75edf2d 343CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
f26bd1f0
VG
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408{
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
165125e1 413static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 415 struct io_context *, gfp_t);
4ac845a2 416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
417 struct io_context *);
418
419static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 420 bool is_sync)
91fac317 421{
a6151c3a 422 return cic->cfqq[is_sync];
91fac317
VT
423}
424
425static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 426 struct cfq_queue *cfqq, bool is_sync)
91fac317 427{
a6151c3a 428 cic->cfqq[is_sync] = cfqq;
91fac317
VT
429}
430
431/*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
a6151c3a 435static inline bool cfq_bio_sync(struct bio *bio)
91fac317 436{
a6151c3a 437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 438}
1da177e4 439
99f95e52
AM
440/*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
23e018a1 444static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 445{
7b679138
JA
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
23e018a1 448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 449 }
99f95e52
AM
450}
451
165125e1 452static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
453{
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
f04a6424 456 return !cfqd->rq_queued;
99f95e52
AM
457}
458
44f7c160
JA
459/*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
a6151c3a 464static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 465 unsigned short prio)
44f7c160 466{
d9e7620e 467 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 468
d9e7620e
JA
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472}
44f7c160 473
d9e7620e
JA
474static inline int
475cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476{
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
478}
479
25bc6b07
VG
480static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481{
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487}
488
489static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490{
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496}
497
498static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499{
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505}
506
507static void update_min_vdisktime(struct cfq_rb_root *st)
508{
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523}
524
5db5d642
CZ
525/*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
58ff82f3
VG
531static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
5869619c 533{
5db5d642
CZ
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
58ff82f3 537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 538
58ff82f3
VG
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 542 cfq_hist_divisor;
58ff82f3
VG
543 return cfqg->busy_queues_avg[rt];
544}
545
546static inline unsigned
547cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548{
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
552}
553
44f7c160
JA
554static inline void
555cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556{
5db5d642
CZ
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
58ff82f3
VG
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
5db5d642
CZ
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
5db5d642
CZ
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
58ff82f3 577 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
578 low_slice);
579 }
580 }
dae739eb 581 cfqq->slice_start = jiffies;
5db5d642 582 cfqq->slice_end = jiffies + slice;
f75edf2d 583 cfqq->allocated_slice = slice;
7b679138 584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
585}
586
587/*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
a6151c3a 592static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
593{
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600}
601
1da177e4 602/*
5e705374 603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 604 * We choose the request that is closest to the head right now. Distance
e8a99053 605 * behind the head is penalized and only allowed to a certain extent.
1da177e4 606 */
5e705374 607static struct request *
cf7c25cf 608cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 609{
cf7c25cf 610 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 611 unsigned long back_max;
e8a99053
AM
612#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 615
5e705374
JA
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
9c2c38a1 620
5e705374
JA
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
374f84ac
JA
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
1da177e4 629
83096ebf
TH
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
1da177e4 632
1da177e4
LT
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
e8a99053 648 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
e8a99053 655 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
656
657 /* Found required data */
e8a99053
AM
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
5e705374 664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 665 if (d1 < d2)
5e705374 666 return rq1;
e8a99053 667 else if (d2 < d1)
5e705374 668 return rq2;
e8a99053
AM
669 else {
670 if (s1 >= s2)
5e705374 671 return rq1;
e8a99053 672 else
5e705374 673 return rq2;
e8a99053 674 }
1da177e4 675
e8a99053 676 case CFQ_RQ2_WRAP:
5e705374 677 return rq1;
e8a99053 678 case CFQ_RQ1_WRAP:
5e705374
JA
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
5e705374 689 return rq1;
1da177e4 690 else
5e705374 691 return rq2;
1da177e4
LT
692 }
693}
694
498d3aa2
JA
695/*
696 * The below is leftmost cache rbtree addon
697 */
0871714e 698static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 699{
615f0259
VG
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
cc09e299
JA
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
0871714e
JA
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
cc09e299
JA
711}
712
1fa8f6d6
VG
713static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714{
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722}
723
a36e71f9
JA
724static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725{
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728}
729
cc09e299
JA
730static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731{
732 if (root->left == n)
733 root->left = NULL;
a36e71f9 734 rb_erase_init(n, &root->rb);
aa6f6a3d 735 --root->count;
cc09e299
JA
736}
737
1da177e4
LT
738/*
739 * would be nice to take fifo expire time into account as well
740 */
5e705374
JA
741static struct request *
742cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
1da177e4 744{
21183b07
JA
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 747 struct request *next = NULL, *prev = NULL;
1da177e4 748
21183b07 749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
750
751 if (rbprev)
5e705374 752 prev = rb_entry_rq(rbprev);
1da177e4 753
21183b07 754 if (rbnext)
5e705374 755 next = rb_entry_rq(rbnext);
21183b07
JA
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07 760 }
1da177e4 761
cf7c25cf 762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
763}
764
d9e7620e
JA
765static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
1da177e4 767{
d9e7620e
JA
768 /*
769 * just an approximation, should be ok.
770 */
cdb16e8f 771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
773}
774
1fa8f6d6
VG
775static inline s64
776cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777{
778 return cfqg->vdisktime - st->min_vdisktime;
779}
780
781static void
782__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783{
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807}
808
809static void
810cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811{
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
58ff82f3 834 st->total_weight += cfqg->weight;
1fa8f6d6
VG
835}
836
837static void
838cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839{
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
25bc6b07
VG
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
1fa8f6d6
VG
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
25bc6b07 847
1fa8f6d6
VG
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
2868ef7b 852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 853 cfqg->on_st = false;
58ff82f3 854 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 857 cfqg->saved_workload_slice = 0;
9195291e 858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
859}
860
861static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862{
f75edf2d 863 unsigned int slice_used;
dae739eb
VG
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
dae739eb
VG
882 }
883
9a0785b0 884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
885 return slice_used;
886}
887
888static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
812df48d 889 struct cfq_queue *cfqq, bool forced)
dae739eb
VG
890{
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 898
f26bd1f0
VG
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
dae739eb
VG
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
2868ef7b
VG
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
303a3acb 918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
812df48d 919 blkiocg_set_start_empty_time(&cfqg->blkg, forced);
1fa8f6d6
VG
920}
921
25fb5169
VG
922#ifdef CONFIG_CFQ_GROUP_IOSCHED
923static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
924{
925 if (blkg)
926 return container_of(blkg, struct cfq_group, blkg);
927 return NULL;
928}
929
f8d461d6
VG
930void
931cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
932{
933 cfqg_of_blkg(blkg)->weight = weight;
934}
935
25fb5169
VG
936static struct cfq_group *
937cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
938{
939 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
940 struct cfq_group *cfqg = NULL;
941 void *key = cfqd;
942 int i, j;
943 struct cfq_rb_root *st;
22084190
VG
944 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
945 unsigned int major, minor;
25fb5169 946
25fb5169
VG
947 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
948 if (cfqg || !create)
949 goto done;
950
951 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
952 if (!cfqg)
953 goto done;
954
955 cfqg->weight = blkcg->weight;
956 for_each_cfqg_st(cfqg, i, j, st)
957 *st = CFQ_RB_ROOT;
958 RB_CLEAR_NODE(&cfqg->rb_node);
84c124da 959 blkio_group_init(&cfqg->blkg);
25fb5169 960
b1c35769
VG
961 /*
962 * Take the initial reference that will be released on destroy
963 * This can be thought of a joint reference by cgroup and
964 * elevator which will be dropped by either elevator exit
965 * or cgroup deletion path depending on who is exiting first.
966 */
967 atomic_set(&cfqg->ref, 1);
968
25fb5169 969 /* Add group onto cgroup list */
22084190
VG
970 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
971 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
972 MKDEV(major, minor));
25fb5169
VG
973
974 /* Add group on cfqd list */
975 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
976
977done:
25fb5169
VG
978 return cfqg;
979}
980
981/*
982 * Search for the cfq group current task belongs to. If create = 1, then also
983 * create the cfq group if it does not exist. request_queue lock must be held.
984 */
985static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
986{
987 struct cgroup *cgroup;
988 struct cfq_group *cfqg = NULL;
989
990 rcu_read_lock();
991 cgroup = task_cgroup(current, blkio_subsys_id);
992 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
993 if (!cfqg && create)
994 cfqg = &cfqd->root_group;
995 rcu_read_unlock();
996 return cfqg;
997}
998
999static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1000{
1001 /* Currently, all async queues are mapped to root group */
1002 if (!cfq_cfqq_sync(cfqq))
1003 cfqg = &cfqq->cfqd->root_group;
1004
1005 cfqq->cfqg = cfqg;
b1c35769
VG
1006 /* cfqq reference on cfqg */
1007 atomic_inc(&cfqq->cfqg->ref);
1008}
1009
1010static void cfq_put_cfqg(struct cfq_group *cfqg)
1011{
1012 struct cfq_rb_root *st;
1013 int i, j;
1014
1015 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1016 if (!atomic_dec_and_test(&cfqg->ref))
1017 return;
1018 for_each_cfqg_st(cfqg, i, j, st)
1019 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1020 kfree(cfqg);
1021}
1022
1023static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1024{
1025 /* Something wrong if we are trying to remove same group twice */
1026 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1027
1028 hlist_del_init(&cfqg->cfqd_node);
1029
1030 /*
1031 * Put the reference taken at the time of creation so that when all
1032 * queues are gone, group can be destroyed.
1033 */
1034 cfq_put_cfqg(cfqg);
1035}
1036
1037static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1038{
1039 struct hlist_node *pos, *n;
1040 struct cfq_group *cfqg;
1041
1042 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1043 /*
1044 * If cgroup removal path got to blk_group first and removed
1045 * it from cgroup list, then it will take care of destroying
1046 * cfqg also.
1047 */
1048 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1049 cfq_destroy_cfqg(cfqd, cfqg);
1050 }
25fb5169 1051}
b1c35769
VG
1052
1053/*
1054 * Blk cgroup controller notification saying that blkio_group object is being
1055 * delinked as associated cgroup object is going away. That also means that
1056 * no new IO will come in this group. So get rid of this group as soon as
1057 * any pending IO in the group is finished.
1058 *
1059 * This function is called under rcu_read_lock(). key is the rcu protected
1060 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1061 * read lock.
1062 *
1063 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1064 * it should not be NULL as even if elevator was exiting, cgroup deltion
1065 * path got to it first.
1066 */
1067void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1068{
1069 unsigned long flags;
1070 struct cfq_data *cfqd = key;
1071
1072 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1073 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1074 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1075}
1076
25fb5169
VG
1077#else /* GROUP_IOSCHED */
1078static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1079{
1080 return &cfqd->root_group;
1081}
1082static inline void
1083cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1084 cfqq->cfqg = cfqg;
1085}
1086
b1c35769
VG
1087static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1088static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1089
25fb5169
VG
1090#endif /* GROUP_IOSCHED */
1091
498d3aa2 1092/*
c0324a02 1093 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1094 * requests waiting to be processed. It is sorted in the order that
1095 * we will service the queues.
1096 */
a36e71f9 1097static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1098 bool add_front)
d9e7620e 1099{
0871714e
JA
1100 struct rb_node **p, *parent;
1101 struct cfq_queue *__cfqq;
d9e7620e 1102 unsigned long rb_key;
c0324a02 1103 struct cfq_rb_root *service_tree;
498d3aa2 1104 int left;
dae739eb 1105 int new_cfqq = 1;
ae30c286
VG
1106 int group_changed = 0;
1107
1108#ifdef CONFIG_CFQ_GROUP_IOSCHED
1109 if (!cfqd->cfq_group_isolation
1110 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1111 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1112 /* Move this cfq to root group */
1113 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1114 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1115 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1116 cfqq->orig_cfqg = cfqq->cfqg;
1117 cfqq->cfqg = &cfqd->root_group;
1118 atomic_inc(&cfqd->root_group.ref);
1119 group_changed = 1;
1120 } else if (!cfqd->cfq_group_isolation
1121 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1122 /* cfqq is sequential now needs to go to its original group */
1123 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1124 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1125 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1126 cfq_put_cfqg(cfqq->cfqg);
1127 cfqq->cfqg = cfqq->orig_cfqg;
1128 cfqq->orig_cfqg = NULL;
1129 group_changed = 1;
1130 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1131 }
1132#endif
d9e7620e 1133
cdb16e8f 1134 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1135 cfqq_type(cfqq));
0871714e
JA
1136 if (cfq_class_idle(cfqq)) {
1137 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1138 parent = rb_last(&service_tree->rb);
0871714e
JA
1139 if (parent && parent != &cfqq->rb_node) {
1140 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1141 rb_key += __cfqq->rb_key;
1142 } else
1143 rb_key += jiffies;
1144 } else if (!add_front) {
b9c8946b
JA
1145 /*
1146 * Get our rb key offset. Subtract any residual slice
1147 * value carried from last service. A negative resid
1148 * count indicates slice overrun, and this should position
1149 * the next service time further away in the tree.
1150 */
edd75ffd 1151 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1152 rb_key -= cfqq->slice_resid;
edd75ffd 1153 cfqq->slice_resid = 0;
48e025e6
CZ
1154 } else {
1155 rb_key = -HZ;
aa6f6a3d 1156 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1157 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1158 }
1da177e4 1159
d9e7620e 1160 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1161 new_cfqq = 0;
99f9628a 1162 /*
d9e7620e 1163 * same position, nothing more to do
99f9628a 1164 */
c0324a02
CZ
1165 if (rb_key == cfqq->rb_key &&
1166 cfqq->service_tree == service_tree)
d9e7620e 1167 return;
1da177e4 1168
aa6f6a3d
CZ
1169 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1170 cfqq->service_tree = NULL;
1da177e4 1171 }
d9e7620e 1172
498d3aa2 1173 left = 1;
0871714e 1174 parent = NULL;
aa6f6a3d
CZ
1175 cfqq->service_tree = service_tree;
1176 p = &service_tree->rb.rb_node;
d9e7620e 1177 while (*p) {
67060e37 1178 struct rb_node **n;
cc09e299 1179
d9e7620e
JA
1180 parent = *p;
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182
0c534e0a 1183 /*
c0324a02 1184 * sort by key, that represents service time.
0c534e0a 1185 */
c0324a02 1186 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1187 n = &(*p)->rb_left;
c0324a02 1188 else {
67060e37 1189 n = &(*p)->rb_right;
cc09e299 1190 left = 0;
c0324a02 1191 }
67060e37
JA
1192
1193 p = n;
d9e7620e
JA
1194 }
1195
cc09e299 1196 if (left)
aa6f6a3d 1197 service_tree->left = &cfqq->rb_node;
cc09e299 1198
d9e7620e
JA
1199 cfqq->rb_key = rb_key;
1200 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1201 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1202 service_tree->count++;
ae30c286 1203 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1204 return;
1fa8f6d6 1205 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1206}
1207
a36e71f9 1208static struct cfq_queue *
f2d1f0ae
JA
1209cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1210 sector_t sector, struct rb_node **ret_parent,
1211 struct rb_node ***rb_link)
a36e71f9 1212{
a36e71f9
JA
1213 struct rb_node **p, *parent;
1214 struct cfq_queue *cfqq = NULL;
1215
1216 parent = NULL;
1217 p = &root->rb_node;
1218 while (*p) {
1219 struct rb_node **n;
1220
1221 parent = *p;
1222 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1223
1224 /*
1225 * Sort strictly based on sector. Smallest to the left,
1226 * largest to the right.
1227 */
2e46e8b2 1228 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1229 n = &(*p)->rb_right;
2e46e8b2 1230 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1231 n = &(*p)->rb_left;
1232 else
1233 break;
1234 p = n;
3ac6c9f8 1235 cfqq = NULL;
a36e71f9
JA
1236 }
1237
1238 *ret_parent = parent;
1239 if (rb_link)
1240 *rb_link = p;
3ac6c9f8 1241 return cfqq;
a36e71f9
JA
1242}
1243
1244static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245{
a36e71f9
JA
1246 struct rb_node **p, *parent;
1247 struct cfq_queue *__cfqq;
1248
f2d1f0ae
JA
1249 if (cfqq->p_root) {
1250 rb_erase(&cfqq->p_node, cfqq->p_root);
1251 cfqq->p_root = NULL;
1252 }
a36e71f9
JA
1253
1254 if (cfq_class_idle(cfqq))
1255 return;
1256 if (!cfqq->next_rq)
1257 return;
1258
f2d1f0ae 1259 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1260 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1261 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1262 if (!__cfqq) {
1263 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1264 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1265 } else
1266 cfqq->p_root = NULL;
a36e71f9
JA
1267}
1268
498d3aa2
JA
1269/*
1270 * Update cfqq's position in the service tree.
1271 */
edd75ffd 1272static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1273{
6d048f53
JA
1274 /*
1275 * Resorting requires the cfqq to be on the RR list already.
1276 */
a36e71f9 1277 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1278 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1279 cfq_prio_tree_add(cfqd, cfqq);
1280 }
6d048f53
JA
1281}
1282
1da177e4
LT
1283/*
1284 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1285 * the pending list according to last request service
1da177e4 1286 */
febffd61 1287static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1288{
7b679138 1289 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1290 BUG_ON(cfq_cfqq_on_rr(cfqq));
1291 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1292 cfqd->busy_queues++;
1293
edd75ffd 1294 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1295}
1296
498d3aa2
JA
1297/*
1298 * Called when the cfqq no longer has requests pending, remove it from
1299 * the service tree.
1300 */
febffd61 1301static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1302{
7b679138 1303 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1304 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1305 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1306
aa6f6a3d
CZ
1307 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1308 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1309 cfqq->service_tree = NULL;
1310 }
f2d1f0ae
JA
1311 if (cfqq->p_root) {
1312 rb_erase(&cfqq->p_node, cfqq->p_root);
1313 cfqq->p_root = NULL;
1314 }
d9e7620e 1315
1fa8f6d6 1316 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1317 BUG_ON(!cfqd->busy_queues);
1318 cfqd->busy_queues--;
1319}
1320
1321/*
1322 * rb tree support functions
1323 */
febffd61 1324static void cfq_del_rq_rb(struct request *rq)
1da177e4 1325{
5e705374 1326 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1327 const int sync = rq_is_sync(rq);
1da177e4 1328
b4878f24
JA
1329 BUG_ON(!cfqq->queued[sync]);
1330 cfqq->queued[sync]--;
1da177e4 1331
5e705374 1332 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1333
f04a6424
VG
1334 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1335 /*
1336 * Queue will be deleted from service tree when we actually
1337 * expire it later. Right now just remove it from prio tree
1338 * as it is empty.
1339 */
1340 if (cfqq->p_root) {
1341 rb_erase(&cfqq->p_node, cfqq->p_root);
1342 cfqq->p_root = NULL;
1343 }
1344 }
1da177e4
LT
1345}
1346
5e705374 1347static void cfq_add_rq_rb(struct request *rq)
1da177e4 1348{
5e705374 1349 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1350 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1351 struct request *__alias, *prev;
1da177e4 1352
5380a101 1353 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1354
1355 /*
1356 * looks a little odd, but the first insert might return an alias.
1357 * if that happens, put the alias on the dispatch list
1358 */
21183b07 1359 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1360 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1361
1362 if (!cfq_cfqq_on_rr(cfqq))
1363 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1364
1365 /*
1366 * check if this request is a better next-serve candidate
1367 */
a36e71f9 1368 prev = cfqq->next_rq;
cf7c25cf 1369 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1370
1371 /*
1372 * adjust priority tree position, if ->next_rq changes
1373 */
1374 if (prev != cfqq->next_rq)
1375 cfq_prio_tree_add(cfqd, cfqq);
1376
5044eed4 1377 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1378}
1379
febffd61 1380static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1381{
5380a101
JA
1382 elv_rb_del(&cfqq->sort_list, rq);
1383 cfqq->queued[rq_is_sync(rq)]--;
cdc1184c
DS
1384 blkiocg_update_request_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
1385 rq_is_sync(rq));
5e705374 1386 cfq_add_rq_rb(rq);
cdc1184c
DS
1387 blkiocg_update_request_add_stats(
1388 &cfqq->cfqg->blkg, &cfqq->cfqd->serving_group->blkg,
1389 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1390}
1391
206dc69b
JA
1392static struct request *
1393cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1394{
206dc69b 1395 struct task_struct *tsk = current;
91fac317 1396 struct cfq_io_context *cic;
206dc69b 1397 struct cfq_queue *cfqq;
1da177e4 1398
4ac845a2 1399 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1400 if (!cic)
1401 return NULL;
1402
1403 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1404 if (cfqq) {
1405 sector_t sector = bio->bi_sector + bio_sectors(bio);
1406
21183b07 1407 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1408 }
1da177e4 1409
1da177e4
LT
1410 return NULL;
1411}
1412
165125e1 1413static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1414{
22e2c507 1415 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1416
53c583d2 1417 cfqd->rq_in_driver++;
7b679138 1418 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1419 cfqd->rq_in_driver);
25776e35 1420
5b93629b 1421 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1422}
1423
165125e1 1424static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1425{
b4878f24
JA
1426 struct cfq_data *cfqd = q->elevator->elevator_data;
1427
53c583d2
CZ
1428 WARN_ON(!cfqd->rq_in_driver);
1429 cfqd->rq_in_driver--;
7b679138 1430 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1431 cfqd->rq_in_driver);
1da177e4
LT
1432}
1433
b4878f24 1434static void cfq_remove_request(struct request *rq)
1da177e4 1435{
5e705374 1436 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1437
5e705374
JA
1438 if (cfqq->next_rq == rq)
1439 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1440
b4878f24 1441 list_del_init(&rq->queuelist);
5e705374 1442 cfq_del_rq_rb(rq);
374f84ac 1443
45333d5a 1444 cfqq->cfqd->rq_queued--;
cdc1184c
DS
1445 blkiocg_update_request_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
1446 rq_is_sync(rq));
374f84ac
JA
1447 if (rq_is_meta(rq)) {
1448 WARN_ON(!cfqq->meta_pending);
1449 cfqq->meta_pending--;
1450 }
1da177e4
LT
1451}
1452
165125e1
JA
1453static int cfq_merge(struct request_queue *q, struct request **req,
1454 struct bio *bio)
1da177e4
LT
1455{
1456 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 struct request *__rq;
1da177e4 1458
206dc69b 1459 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1460 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1461 *req = __rq;
1462 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1463 }
1464
1465 return ELEVATOR_NO_MERGE;
1da177e4
LT
1466}
1467
165125e1 1468static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1469 int type)
1da177e4 1470{
21183b07 1471 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1472 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1473
5e705374 1474 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1475 }
1da177e4
LT
1476}
1477
812d4026
DS
1478static void cfq_bio_merged(struct request_queue *q, struct request *req,
1479 struct bio *bio)
1480{
1481 struct cfq_queue *cfqq = RQ_CFQQ(req);
1482 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, bio_data_dir(bio),
1483 cfq_bio_sync(bio));
1484}
1485
1da177e4 1486static void
165125e1 1487cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1488 struct request *next)
1489{
cf7c25cf 1490 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1491 /*
1492 * reposition in fifo if next is older than rq
1493 */
1494 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1495 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1496 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1497 rq_set_fifo_time(rq, rq_fifo_time(next));
1498 }
22e2c507 1499
cf7c25cf
CZ
1500 if (cfqq->next_rq == next)
1501 cfqq->next_rq = rq;
b4878f24 1502 cfq_remove_request(next);
812d4026
DS
1503 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, rq_data_dir(next),
1504 rq_is_sync(next));
22e2c507
JA
1505}
1506
165125e1 1507static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1508 struct bio *bio)
1509{
1510 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1511 struct cfq_io_context *cic;
da775265 1512 struct cfq_queue *cfqq;
da775265
JA
1513
1514 /*
ec8acb69 1515 * Disallow merge of a sync bio into an async request.
da775265 1516 */
91fac317 1517 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1518 return false;
da775265
JA
1519
1520 /*
719d3402
JA
1521 * Lookup the cfqq that this bio will be queued with. Allow
1522 * merge only if rq is queued there.
da775265 1523 */
4ac845a2 1524 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1525 if (!cic)
a6151c3a 1526 return false;
719d3402 1527
91fac317 1528 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1529 return cfqq == RQ_CFQQ(rq);
da775265
JA
1530}
1531
812df48d
DS
1532static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1533{
1534 del_timer(&cfqd->idle_slice_timer);
1535 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1536}
1537
febffd61
JA
1538static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539 struct cfq_queue *cfqq)
22e2c507
JA
1540{
1541 if (cfqq) {
b1ffe737
DS
1542 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1543 cfqd->serving_prio, cfqd->serving_type);
cdc1184c 1544 blkiocg_update_set_active_queue_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1545 cfqq->slice_start = 0;
1546 cfqq->dispatch_start = jiffies;
f75edf2d 1547 cfqq->allocated_slice = 0;
22e2c507 1548 cfqq->slice_end = 0;
2f5cb738
JA
1549 cfqq->slice_dispatch = 0;
1550
2f5cb738 1551 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1552 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1555 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1556
812df48d 1557 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1558 }
1559
1560 cfqd->active_queue = cfqq;
1561}
1562
7b14e3b5
JA
1563/*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566static void
1567__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
812df48d 1568 bool timed_out, bool forced)
7b14e3b5 1569{
7b679138
JA
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
7b14e3b5 1572 if (cfq_cfqq_wait_request(cfqq))
812df48d 1573 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1574
7b14e3b5 1575 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1576 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1577
ae54abed
SL
1578 /*
1579 * If this cfqq is shared between multiple processes, check to
1580 * make sure that those processes are still issuing I/Os within
1581 * the mean seek distance. If not, it may be time to break the
1582 * queues apart again.
1583 */
1584 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1585 cfq_mark_cfqq_split_coop(cfqq);
1586
7b14e3b5 1587 /*
6084cdda 1588 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1589 */
7b679138 1590 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1591 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1592 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1593 }
7b14e3b5 1594
812df48d 1595 cfq_group_served(cfqd, cfqq->cfqg, cfqq, forced);
dae739eb 1596
f04a6424
VG
1597 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1598 cfq_del_cfqq_rr(cfqd, cfqq);
1599
edd75ffd 1600 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1601
1602 if (cfqq == cfqd->active_queue)
1603 cfqd->active_queue = NULL;
1604
dae739eb
VG
1605 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1606 cfqd->grp_service_tree.active = NULL;
1607
7b14e3b5
JA
1608 if (cfqd->active_cic) {
1609 put_io_context(cfqd->active_cic->ioc);
1610 cfqd->active_cic = NULL;
1611 }
7b14e3b5
JA
1612}
1613
812df48d
DS
1614static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out,
1615 bool forced)
7b14e3b5
JA
1616{
1617 struct cfq_queue *cfqq = cfqd->active_queue;
1618
1619 if (cfqq)
812df48d 1620 __cfq_slice_expired(cfqd, cfqq, timed_out, forced);
7b14e3b5
JA
1621}
1622
498d3aa2
JA
1623/*
1624 * Get next queue for service. Unless we have a queue preemption,
1625 * we'll simply select the first cfqq in the service tree.
1626 */
6d048f53 1627static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1628{
c0324a02 1629 struct cfq_rb_root *service_tree =
cdb16e8f 1630 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1631 cfqd->serving_type);
d9e7620e 1632
f04a6424
VG
1633 if (!cfqd->rq_queued)
1634 return NULL;
1635
1fa8f6d6
VG
1636 /* There is nothing to dispatch */
1637 if (!service_tree)
1638 return NULL;
c0324a02
CZ
1639 if (RB_EMPTY_ROOT(&service_tree->rb))
1640 return NULL;
1641 return cfq_rb_first(service_tree);
6d048f53
JA
1642}
1643
f04a6424
VG
1644static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1645{
25fb5169 1646 struct cfq_group *cfqg;
f04a6424
VG
1647 struct cfq_queue *cfqq;
1648 int i, j;
1649 struct cfq_rb_root *st;
1650
1651 if (!cfqd->rq_queued)
1652 return NULL;
1653
25fb5169
VG
1654 cfqg = cfq_get_next_cfqg(cfqd);
1655 if (!cfqg)
1656 return NULL;
1657
f04a6424
VG
1658 for_each_cfqg_st(cfqg, i, j, st)
1659 if ((cfqq = cfq_rb_first(st)) != NULL)
1660 return cfqq;
1661 return NULL;
1662}
1663
498d3aa2
JA
1664/*
1665 * Get and set a new active queue for service.
1666 */
a36e71f9
JA
1667static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1668 struct cfq_queue *cfqq)
6d048f53 1669{
e00ef799 1670 if (!cfqq)
a36e71f9 1671 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1672
22e2c507 1673 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1674 return cfqq;
22e2c507
JA
1675}
1676
d9e7620e
JA
1677static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1678 struct request *rq)
1679{
83096ebf
TH
1680 if (blk_rq_pos(rq) >= cfqd->last_position)
1681 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1682 else
83096ebf 1683 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1684}
1685
b2c18e1e 1686static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1687 struct request *rq)
6d048f53 1688{
e9ce335d 1689 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1690}
1691
a36e71f9
JA
1692static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1693 struct cfq_queue *cur_cfqq)
1694{
f2d1f0ae 1695 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1696 struct rb_node *parent, *node;
1697 struct cfq_queue *__cfqq;
1698 sector_t sector = cfqd->last_position;
1699
1700 if (RB_EMPTY_ROOT(root))
1701 return NULL;
1702
1703 /*
1704 * First, if we find a request starting at the end of the last
1705 * request, choose it.
1706 */
f2d1f0ae 1707 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1708 if (__cfqq)
1709 return __cfqq;
1710
1711 /*
1712 * If the exact sector wasn't found, the parent of the NULL leaf
1713 * will contain the closest sector.
1714 */
1715 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1716 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1717 return __cfqq;
1718
2e46e8b2 1719 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1720 node = rb_next(&__cfqq->p_node);
1721 else
1722 node = rb_prev(&__cfqq->p_node);
1723 if (!node)
1724 return NULL;
1725
1726 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1727 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1728 return __cfqq;
1729
1730 return NULL;
1731}
1732
1733/*
1734 * cfqd - obvious
1735 * cur_cfqq - passed in so that we don't decide that the current queue is
1736 * closely cooperating with itself.
1737 *
1738 * So, basically we're assuming that that cur_cfqq has dispatched at least
1739 * one request, and that cfqd->last_position reflects a position on the disk
1740 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1741 * assumption.
1742 */
1743static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1744 struct cfq_queue *cur_cfqq)
6d048f53 1745{
a36e71f9
JA
1746 struct cfq_queue *cfqq;
1747
39c01b21
DS
1748 if (cfq_class_idle(cur_cfqq))
1749 return NULL;
e6c5bc73
JM
1750 if (!cfq_cfqq_sync(cur_cfqq))
1751 return NULL;
1752 if (CFQQ_SEEKY(cur_cfqq))
1753 return NULL;
1754
b9d8f4c7
GJ
1755 /*
1756 * Don't search priority tree if it's the only queue in the group.
1757 */
1758 if (cur_cfqq->cfqg->nr_cfqq == 1)
1759 return NULL;
1760
6d048f53 1761 /*
d9e7620e
JA
1762 * We should notice if some of the queues are cooperating, eg
1763 * working closely on the same area of the disk. In that case,
1764 * we can group them together and don't waste time idling.
6d048f53 1765 */
a36e71f9
JA
1766 cfqq = cfqq_close(cfqd, cur_cfqq);
1767 if (!cfqq)
1768 return NULL;
1769
8682e1f1
VG
1770 /* If new queue belongs to different cfq_group, don't choose it */
1771 if (cur_cfqq->cfqg != cfqq->cfqg)
1772 return NULL;
1773
df5fe3e8
JM
1774 /*
1775 * It only makes sense to merge sync queues.
1776 */
1777 if (!cfq_cfqq_sync(cfqq))
1778 return NULL;
e6c5bc73
JM
1779 if (CFQQ_SEEKY(cfqq))
1780 return NULL;
df5fe3e8 1781
c0324a02
CZ
1782 /*
1783 * Do not merge queues of different priority classes
1784 */
1785 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1786 return NULL;
1787
a36e71f9 1788 return cfqq;
6d048f53
JA
1789}
1790
a6d44e98
CZ
1791/*
1792 * Determine whether we should enforce idle window for this queue.
1793 */
1794
1795static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1796{
1797 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1798 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1799
f04a6424
VG
1800 BUG_ON(!service_tree);
1801 BUG_ON(!service_tree->count);
1802
a6d44e98
CZ
1803 /* We never do for idle class queues. */
1804 if (prio == IDLE_WORKLOAD)
1805 return false;
1806
1807 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1808 if (cfq_cfqq_idle_window(cfqq) &&
1809 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1810 return true;
1811
1812 /*
1813 * Otherwise, we do only if they are the last ones
1814 * in their service tree.
1815 */
b1ffe737
DS
1816 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1817 return 1;
1818 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1819 service_tree->count);
1820 return 0;
a6d44e98
CZ
1821}
1822
6d048f53 1823static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1824{
1792669c 1825 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1826 struct cfq_io_context *cic;
7b14e3b5
JA
1827 unsigned long sl;
1828
a68bbddb 1829 /*
f7d7b7a7
JA
1830 * SSD device without seek penalty, disable idling. But only do so
1831 * for devices that support queuing, otherwise we still have a problem
1832 * with sync vs async workloads.
a68bbddb 1833 */
f7d7b7a7 1834 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1835 return;
1836
dd67d051 1837 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1838 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1839
1840 /*
1841 * idle is disabled, either manually or by past process history
1842 */
a6d44e98 1843 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1844 return;
1845
7b679138 1846 /*
8e550632 1847 * still active requests from this queue, don't idle
7b679138 1848 */
8e550632 1849 if (cfqq->dispatched)
7b679138
JA
1850 return;
1851
22e2c507
JA
1852 /*
1853 * task has exited, don't wait
1854 */
206dc69b 1855 cic = cfqd->active_cic;
66dac98e 1856 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1857 return;
1858
355b659c
CZ
1859 /*
1860 * If our average think time is larger than the remaining time
1861 * slice, then don't idle. This avoids overrunning the allotted
1862 * time slice.
1863 */
1864 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1865 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1866 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1867 cic->ttime_mean);
355b659c 1868 return;
b1ffe737 1869 }
355b659c 1870
3b18152c 1871 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1872
6d048f53 1873 sl = cfqd->cfq_slice_idle;
206dc69b 1874
7b14e3b5 1875 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
812df48d 1876 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
9481ffdc 1877 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1878}
1879
498d3aa2
JA
1880/*
1881 * Move request from internal lists to the request queue dispatch list.
1882 */
165125e1 1883static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1884{
3ed9a296 1885 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1886 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1887
7b679138
JA
1888 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1889
06d21886 1890 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1891 cfq_remove_request(rq);
6d048f53 1892 cfqq->dispatched++;
5380a101 1893 elv_dispatch_sort(q, rq);
3ed9a296 1894
53c583d2 1895 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
84c124da
DS
1896 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1897 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1898}
1899
1900/*
1901 * return expired entry, or NULL to just start from scratch in rbtree
1902 */
febffd61 1903static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1904{
30996f40 1905 struct request *rq = NULL;
1da177e4 1906
3b18152c 1907 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1908 return NULL;
cb887411
JA
1909
1910 cfq_mark_cfqq_fifo_expire(cfqq);
1911
89850f7e
JA
1912 if (list_empty(&cfqq->fifo))
1913 return NULL;
1da177e4 1914
89850f7e 1915 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1916 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1917 rq = NULL;
1da177e4 1918
30996f40 1919 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1920 return rq;
1da177e4
LT
1921}
1922
22e2c507
JA
1923static inline int
1924cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1925{
1926 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1927
22e2c507 1928 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1929
22e2c507 1930 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1931}
1932
df5fe3e8
JM
1933/*
1934 * Must be called with the queue_lock held.
1935 */
1936static int cfqq_process_refs(struct cfq_queue *cfqq)
1937{
1938 int process_refs, io_refs;
1939
1940 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1941 process_refs = atomic_read(&cfqq->ref) - io_refs;
1942 BUG_ON(process_refs < 0);
1943 return process_refs;
1944}
1945
1946static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1947{
e6c5bc73 1948 int process_refs, new_process_refs;
df5fe3e8
JM
1949 struct cfq_queue *__cfqq;
1950
1951 /* Avoid a circular list and skip interim queue merges */
1952 while ((__cfqq = new_cfqq->new_cfqq)) {
1953 if (__cfqq == cfqq)
1954 return;
1955 new_cfqq = __cfqq;
1956 }
1957
1958 process_refs = cfqq_process_refs(cfqq);
1959 /*
1960 * If the process for the cfqq has gone away, there is no
1961 * sense in merging the queues.
1962 */
1963 if (process_refs == 0)
1964 return;
1965
e6c5bc73
JM
1966 /*
1967 * Merge in the direction of the lesser amount of work.
1968 */
1969 new_process_refs = cfqq_process_refs(new_cfqq);
1970 if (new_process_refs >= process_refs) {
1971 cfqq->new_cfqq = new_cfqq;
1972 atomic_add(process_refs, &new_cfqq->ref);
1973 } else {
1974 new_cfqq->new_cfqq = cfqq;
1975 atomic_add(new_process_refs, &cfqq->ref);
1976 }
df5fe3e8
JM
1977}
1978
cdb16e8f 1979static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1980 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1981{
1982 struct cfq_queue *queue;
1983 int i;
1984 bool key_valid = false;
1985 unsigned long lowest_key = 0;
1986 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1987
65b32a57
VG
1988 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1989 /* select the one with lowest rb_key */
1990 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1991 if (queue &&
1992 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1993 lowest_key = queue->rb_key;
1994 cur_best = i;
1995 key_valid = true;
1996 }
1997 }
1998
1999 return cur_best;
2000}
2001
cdb16e8f 2002static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2003{
718eee05
CZ
2004 unsigned slice;
2005 unsigned count;
cdb16e8f 2006 struct cfq_rb_root *st;
58ff82f3 2007 unsigned group_slice;
718eee05 2008
1fa8f6d6
VG
2009 if (!cfqg) {
2010 cfqd->serving_prio = IDLE_WORKLOAD;
2011 cfqd->workload_expires = jiffies + 1;
2012 return;
2013 }
2014
718eee05 2015 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2016 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2017 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2018 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2019 cfqd->serving_prio = BE_WORKLOAD;
2020 else {
2021 cfqd->serving_prio = IDLE_WORKLOAD;
2022 cfqd->workload_expires = jiffies + 1;
2023 return;
2024 }
2025
2026 /*
2027 * For RT and BE, we have to choose also the type
2028 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2029 * expiration time
2030 */
65b32a57 2031 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2032 count = st->count;
718eee05
CZ
2033
2034 /*
65b32a57 2035 * check workload expiration, and that we still have other queues ready
718eee05 2036 */
65b32a57 2037 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2038 return;
2039
2040 /* otherwise select new workload type */
2041 cfqd->serving_type =
65b32a57
VG
2042 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2043 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2044 count = st->count;
718eee05
CZ
2045
2046 /*
2047 * the workload slice is computed as a fraction of target latency
2048 * proportional to the number of queues in that workload, over
2049 * all the queues in the same priority class
2050 */
58ff82f3
VG
2051 group_slice = cfq_group_slice(cfqd, cfqg);
2052
2053 slice = group_slice * count /
2054 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2055 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2056
f26bd1f0
VG
2057 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2058 unsigned int tmp;
2059
2060 /*
2061 * Async queues are currently system wide. Just taking
2062 * proportion of queues with-in same group will lead to higher
2063 * async ratio system wide as generally root group is going
2064 * to have higher weight. A more accurate thing would be to
2065 * calculate system wide asnc/sync ratio.
2066 */
2067 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2068 tmp = tmp/cfqd->busy_queues;
2069 slice = min_t(unsigned, slice, tmp);
2070
718eee05
CZ
2071 /* async workload slice is scaled down according to
2072 * the sync/async slice ratio. */
2073 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2074 } else
718eee05
CZ
2075 /* sync workload slice is at least 2 * cfq_slice_idle */
2076 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2077
2078 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2079 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2080 cfqd->workload_expires = jiffies + slice;
8e550632 2081 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2082}
2083
1fa8f6d6
VG
2084static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2085{
2086 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2087 struct cfq_group *cfqg;
1fa8f6d6
VG
2088
2089 if (RB_EMPTY_ROOT(&st->rb))
2090 return NULL;
25bc6b07
VG
2091 cfqg = cfq_rb_first_group(st);
2092 st->active = &cfqg->rb_node;
2093 update_min_vdisktime(st);
2094 return cfqg;
1fa8f6d6
VG
2095}
2096
cdb16e8f
VG
2097static void cfq_choose_cfqg(struct cfq_data *cfqd)
2098{
1fa8f6d6
VG
2099 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2100
2101 cfqd->serving_group = cfqg;
dae739eb
VG
2102
2103 /* Restore the workload type data */
2104 if (cfqg->saved_workload_slice) {
2105 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2106 cfqd->serving_type = cfqg->saved_workload;
2107 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2108 } else
2109 cfqd->workload_expires = jiffies - 1;
2110
1fa8f6d6 2111 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2112}
2113
22e2c507 2114/*
498d3aa2
JA
2115 * Select a queue for service. If we have a current active queue,
2116 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2117 */
1b5ed5e1 2118static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2119{
a36e71f9 2120 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2121
22e2c507
JA
2122 cfqq = cfqd->active_queue;
2123 if (!cfqq)
2124 goto new_queue;
1da177e4 2125
f04a6424
VG
2126 if (!cfqd->rq_queued)
2127 return NULL;
c244bb50
VG
2128
2129 /*
2130 * We were waiting for group to get backlogged. Expire the queue
2131 */
2132 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2133 goto expire;
2134
22e2c507 2135 /*
6d048f53 2136 * The active queue has run out of time, expire it and select new.
22e2c507 2137 */
7667aa06
VG
2138 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2139 /*
2140 * If slice had not expired at the completion of last request
2141 * we might not have turned on wait_busy flag. Don't expire
2142 * the queue yet. Allow the group to get backlogged.
2143 *
2144 * The very fact that we have used the slice, that means we
2145 * have been idling all along on this queue and it should be
2146 * ok to wait for this request to complete.
2147 */
82bbbf28
VG
2148 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2149 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2150 cfqq = NULL;
7667aa06 2151 goto keep_queue;
82bbbf28 2152 } else
7667aa06
VG
2153 goto expire;
2154 }
1da177e4 2155
22e2c507 2156 /*
6d048f53
JA
2157 * The active queue has requests and isn't expired, allow it to
2158 * dispatch.
22e2c507 2159 */
dd67d051 2160 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2161 goto keep_queue;
6d048f53 2162
a36e71f9
JA
2163 /*
2164 * If another queue has a request waiting within our mean seek
2165 * distance, let it run. The expire code will check for close
2166 * cooperators and put the close queue at the front of the service
df5fe3e8 2167 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2168 */
b3b6d040 2169 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2170 if (new_cfqq) {
2171 if (!cfqq->new_cfqq)
2172 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2173 goto expire;
df5fe3e8 2174 }
a36e71f9 2175
6d048f53
JA
2176 /*
2177 * No requests pending. If the active queue still has requests in
2178 * flight or is idling for a new request, allow either of these
2179 * conditions to happen (or time out) before selecting a new queue.
2180 */
cc197479 2181 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2182 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2183 cfqq = NULL;
2184 goto keep_queue;
22e2c507
JA
2185 }
2186
3b18152c 2187expire:
812df48d 2188 cfq_slice_expired(cfqd, 0, false);
3b18152c 2189new_queue:
718eee05
CZ
2190 /*
2191 * Current queue expired. Check if we have to switch to a new
2192 * service tree
2193 */
2194 if (!new_cfqq)
cdb16e8f 2195 cfq_choose_cfqg(cfqd);
718eee05 2196
a36e71f9 2197 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2198keep_queue:
3b18152c 2199 return cfqq;
22e2c507
JA
2200}
2201
febffd61 2202static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2203{
2204 int dispatched = 0;
2205
2206 while (cfqq->next_rq) {
2207 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2208 dispatched++;
2209 }
2210
2211 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2212
2213 /* By default cfqq is not expired if it is empty. Do it explicitly */
812df48d 2214 __cfq_slice_expired(cfqq->cfqd, cfqq, 0, true);
d9e7620e
JA
2215 return dispatched;
2216}
2217
498d3aa2
JA
2218/*
2219 * Drain our current requests. Used for barriers and when switching
2220 * io schedulers on-the-fly.
2221 */
d9e7620e 2222static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2223{
0871714e 2224 struct cfq_queue *cfqq;
d9e7620e 2225 int dispatched = 0;
cdb16e8f 2226
f04a6424
VG
2227 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2228 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2229
812df48d 2230 cfq_slice_expired(cfqd, 0, true);
1b5ed5e1
TH
2231 BUG_ON(cfqd->busy_queues);
2232
6923715a 2233 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2234 return dispatched;
2235}
2236
abc3c744
SL
2237static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2238 struct cfq_queue *cfqq)
2239{
2240 /* the queue hasn't finished any request, can't estimate */
2241 if (cfq_cfqq_slice_new(cfqq))
2242 return 1;
2243 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2244 cfqq->slice_end))
2245 return 1;
2246
2247 return 0;
2248}
2249
0b182d61 2250static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2251{
2f5cb738 2252 unsigned int max_dispatch;
22e2c507 2253
5ad531db
JA
2254 /*
2255 * Drain async requests before we start sync IO
2256 */
53c583d2 2257 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2258 return false;
5ad531db 2259
2f5cb738
JA
2260 /*
2261 * If this is an async queue and we have sync IO in flight, let it wait
2262 */
53c583d2 2263 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2264 return false;
2f5cb738 2265
abc3c744 2266 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2267 if (cfq_class_idle(cfqq))
2268 max_dispatch = 1;
b4878f24 2269
2f5cb738
JA
2270 /*
2271 * Does this cfqq already have too much IO in flight?
2272 */
2273 if (cfqq->dispatched >= max_dispatch) {
2274 /*
2275 * idle queue must always only have a single IO in flight
2276 */
3ed9a296 2277 if (cfq_class_idle(cfqq))
0b182d61 2278 return false;
3ed9a296 2279
2f5cb738
JA
2280 /*
2281 * We have other queues, don't allow more IO from this one
2282 */
abc3c744 2283 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2284 return false;
9ede209e 2285
365722bb 2286 /*
474b18cc 2287 * Sole queue user, no limit
365722bb 2288 */
abc3c744
SL
2289 if (cfqd->busy_queues == 1)
2290 max_dispatch = -1;
2291 else
2292 /*
2293 * Normally we start throttling cfqq when cfq_quantum/2
2294 * requests have been dispatched. But we can drive
2295 * deeper queue depths at the beginning of slice
2296 * subjected to upper limit of cfq_quantum.
2297 * */
2298 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2299 }
2300
2301 /*
2302 * Async queues must wait a bit before being allowed dispatch.
2303 * We also ramp up the dispatch depth gradually for async IO,
2304 * based on the last sync IO we serviced
2305 */
963b72fc 2306 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2307 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2308 unsigned int depth;
365722bb 2309
61f0c1dc 2310 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2311 if (!depth && !cfqq->dispatched)
2312 depth = 1;
8e296755
JA
2313 if (depth < max_dispatch)
2314 max_dispatch = depth;
2f5cb738 2315 }
3ed9a296 2316
0b182d61
JA
2317 /*
2318 * If we're below the current max, allow a dispatch
2319 */
2320 return cfqq->dispatched < max_dispatch;
2321}
2322
2323/*
2324 * Dispatch a request from cfqq, moving them to the request queue
2325 * dispatch list.
2326 */
2327static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2328{
2329 struct request *rq;
2330
2331 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2332
2333 if (!cfq_may_dispatch(cfqd, cfqq))
2334 return false;
2335
2336 /*
2337 * follow expired path, else get first next available
2338 */
2339 rq = cfq_check_fifo(cfqq);
2340 if (!rq)
2341 rq = cfqq->next_rq;
2342
2343 /*
2344 * insert request into driver dispatch list
2345 */
2346 cfq_dispatch_insert(cfqd->queue, rq);
2347
2348 if (!cfqd->active_cic) {
2349 struct cfq_io_context *cic = RQ_CIC(rq);
2350
2351 atomic_long_inc(&cic->ioc->refcount);
2352 cfqd->active_cic = cic;
2353 }
2354
2355 return true;
2356}
2357
2358/*
2359 * Find the cfqq that we need to service and move a request from that to the
2360 * dispatch list
2361 */
2362static int cfq_dispatch_requests(struct request_queue *q, int force)
2363{
2364 struct cfq_data *cfqd = q->elevator->elevator_data;
2365 struct cfq_queue *cfqq;
2366
2367 if (!cfqd->busy_queues)
2368 return 0;
2369
2370 if (unlikely(force))
2371 return cfq_forced_dispatch(cfqd);
2372
2373 cfqq = cfq_select_queue(cfqd);
2374 if (!cfqq)
8e296755
JA
2375 return 0;
2376
2f5cb738 2377 /*
0b182d61 2378 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2379 */
0b182d61
JA
2380 if (!cfq_dispatch_request(cfqd, cfqq))
2381 return 0;
2382
2f5cb738 2383 cfqq->slice_dispatch++;
b029195d 2384 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2385
2f5cb738
JA
2386 /*
2387 * expire an async queue immediately if it has used up its slice. idle
2388 * queue always expire after 1 dispatch round.
2389 */
2390 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2391 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2392 cfq_class_idle(cfqq))) {
2393 cfqq->slice_end = jiffies + 1;
812df48d 2394 cfq_slice_expired(cfqd, 0, false);
1da177e4
LT
2395 }
2396
b217a903 2397 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
812df48d
DS
2398 /*
2399 * This is needed since we don't exactly match the mod_timer() and
2400 * del_timer() calls in CFQ.
2401 */
2402 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
2f5cb738 2403 return 1;
1da177e4
LT
2404}
2405
1da177e4 2406/*
5e705374
JA
2407 * task holds one reference to the queue, dropped when task exits. each rq
2408 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2409 *
b1c35769 2410 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2411 * queue lock must be held here.
2412 */
2413static void cfq_put_queue(struct cfq_queue *cfqq)
2414{
22e2c507 2415 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2416 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2417
2418 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2419
2420 if (!atomic_dec_and_test(&cfqq->ref))
2421 return;
2422
7b679138 2423 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2424 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2425 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2426 cfqg = cfqq->cfqg;
878eaddd 2427 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2428
28f95cbc 2429 if (unlikely(cfqd->active_queue == cfqq)) {
812df48d 2430 __cfq_slice_expired(cfqd, cfqq, 0, false);
23e018a1 2431 cfq_schedule_dispatch(cfqd);
28f95cbc 2432 }
22e2c507 2433
f04a6424 2434 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2435 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2436 cfq_put_cfqg(cfqg);
878eaddd
VG
2437 if (orig_cfqg)
2438 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2439}
2440
d6de8be7
JA
2441/*
2442 * Must always be called with the rcu_read_lock() held
2443 */
07416d29
JA
2444static void
2445__call_for_each_cic(struct io_context *ioc,
2446 void (*func)(struct io_context *, struct cfq_io_context *))
2447{
2448 struct cfq_io_context *cic;
2449 struct hlist_node *n;
2450
2451 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2452 func(ioc, cic);
2453}
2454
4ac845a2 2455/*
34e6bbf2 2456 * Call func for each cic attached to this ioc.
4ac845a2 2457 */
34e6bbf2 2458static void
4ac845a2
JA
2459call_for_each_cic(struct io_context *ioc,
2460 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2461{
4ac845a2 2462 rcu_read_lock();
07416d29 2463 __call_for_each_cic(ioc, func);
4ac845a2 2464 rcu_read_unlock();
34e6bbf2
FC
2465}
2466
2467static void cfq_cic_free_rcu(struct rcu_head *head)
2468{
2469 struct cfq_io_context *cic;
2470
2471 cic = container_of(head, struct cfq_io_context, rcu_head);
2472
2473 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2474 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2475
9a11b4ed
JA
2476 if (ioc_gone) {
2477 /*
2478 * CFQ scheduler is exiting, grab exit lock and check
2479 * the pending io context count. If it hits zero,
2480 * complete ioc_gone and set it back to NULL
2481 */
2482 spin_lock(&ioc_gone_lock);
245b2e70 2483 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2484 complete(ioc_gone);
2485 ioc_gone = NULL;
2486 }
2487 spin_unlock(&ioc_gone_lock);
2488 }
34e6bbf2 2489}
4ac845a2 2490
34e6bbf2
FC
2491static void cfq_cic_free(struct cfq_io_context *cic)
2492{
2493 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2494}
2495
2496static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2497{
2498 unsigned long flags;
2499
2500 BUG_ON(!cic->dead_key);
2501
2502 spin_lock_irqsave(&ioc->lock, flags);
2503 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2504 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2505 spin_unlock_irqrestore(&ioc->lock, flags);
2506
34e6bbf2 2507 cfq_cic_free(cic);
4ac845a2
JA
2508}
2509
d6de8be7
JA
2510/*
2511 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2512 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2513 * and ->trim() which is called with the task lock held
2514 */
4ac845a2
JA
2515static void cfq_free_io_context(struct io_context *ioc)
2516{
4ac845a2 2517 /*
34e6bbf2
FC
2518 * ioc->refcount is zero here, or we are called from elv_unregister(),
2519 * so no more cic's are allowed to be linked into this ioc. So it
2520 * should be ok to iterate over the known list, we will see all cic's
2521 * since no new ones are added.
4ac845a2 2522 */
07416d29 2523 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2524}
2525
89850f7e 2526static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2527{
df5fe3e8
JM
2528 struct cfq_queue *__cfqq, *next;
2529
28f95cbc 2530 if (unlikely(cfqq == cfqd->active_queue)) {
812df48d 2531 __cfq_slice_expired(cfqd, cfqq, 0, false);
23e018a1 2532 cfq_schedule_dispatch(cfqd);
28f95cbc 2533 }
22e2c507 2534
df5fe3e8
JM
2535 /*
2536 * If this queue was scheduled to merge with another queue, be
2537 * sure to drop the reference taken on that queue (and others in
2538 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2539 */
2540 __cfqq = cfqq->new_cfqq;
2541 while (__cfqq) {
2542 if (__cfqq == cfqq) {
2543 WARN(1, "cfqq->new_cfqq loop detected\n");
2544 break;
2545 }
2546 next = __cfqq->new_cfqq;
2547 cfq_put_queue(__cfqq);
2548 __cfqq = next;
2549 }
2550
89850f7e
JA
2551 cfq_put_queue(cfqq);
2552}
22e2c507 2553
89850f7e
JA
2554static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2555 struct cfq_io_context *cic)
2556{
4faa3c81
FC
2557 struct io_context *ioc = cic->ioc;
2558
fc46379d 2559 list_del_init(&cic->queue_list);
4ac845a2
JA
2560
2561 /*
2562 * Make sure key == NULL is seen for dead queues
2563 */
fc46379d 2564 smp_wmb();
4ac845a2 2565 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2566 cic->key = NULL;
2567
4faa3c81
FC
2568 if (ioc->ioc_data == cic)
2569 rcu_assign_pointer(ioc->ioc_data, NULL);
2570
ff6657c6
JA
2571 if (cic->cfqq[BLK_RW_ASYNC]) {
2572 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2573 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2574 }
2575
ff6657c6
JA
2576 if (cic->cfqq[BLK_RW_SYNC]) {
2577 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2578 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2579 }
89850f7e
JA
2580}
2581
4ac845a2
JA
2582static void cfq_exit_single_io_context(struct io_context *ioc,
2583 struct cfq_io_context *cic)
89850f7e
JA
2584{
2585 struct cfq_data *cfqd = cic->key;
2586
89850f7e 2587 if (cfqd) {
165125e1 2588 struct request_queue *q = cfqd->queue;
4ac845a2 2589 unsigned long flags;
89850f7e 2590
4ac845a2 2591 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2592
2593 /*
2594 * Ensure we get a fresh copy of the ->key to prevent
2595 * race between exiting task and queue
2596 */
2597 smp_read_barrier_depends();
2598 if (cic->key)
2599 __cfq_exit_single_io_context(cfqd, cic);
2600
4ac845a2 2601 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2602 }
1da177e4
LT
2603}
2604
498d3aa2
JA
2605/*
2606 * The process that ioc belongs to has exited, we need to clean up
2607 * and put the internal structures we have that belongs to that process.
2608 */
e2d74ac0 2609static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2610{
4ac845a2 2611 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2612}
2613
22e2c507 2614static struct cfq_io_context *
8267e268 2615cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2616{
b5deef90 2617 struct cfq_io_context *cic;
1da177e4 2618
94f6030c
CL
2619 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2620 cfqd->queue->node);
1da177e4 2621 if (cic) {
22e2c507 2622 cic->last_end_request = jiffies;
553698f9 2623 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2624 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2625 cic->dtor = cfq_free_io_context;
2626 cic->exit = cfq_exit_io_context;
245b2e70 2627 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2628 }
2629
2630 return cic;
2631}
2632
fd0928df 2633static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2634{
2635 struct task_struct *tsk = current;
2636 int ioprio_class;
2637
3b18152c 2638 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2639 return;
2640
fd0928df 2641 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2642 switch (ioprio_class) {
fe094d98
JA
2643 default:
2644 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2645 case IOPRIO_CLASS_NONE:
2646 /*
6d63c275 2647 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2648 */
2649 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2650 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2651 break;
2652 case IOPRIO_CLASS_RT:
2653 cfqq->ioprio = task_ioprio(ioc);
2654 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2655 break;
2656 case IOPRIO_CLASS_BE:
2657 cfqq->ioprio = task_ioprio(ioc);
2658 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2659 break;
2660 case IOPRIO_CLASS_IDLE:
2661 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2662 cfqq->ioprio = 7;
2663 cfq_clear_cfqq_idle_window(cfqq);
2664 break;
22e2c507
JA
2665 }
2666
2667 /*
2668 * keep track of original prio settings in case we have to temporarily
2669 * elevate the priority of this queue
2670 */
2671 cfqq->org_ioprio = cfqq->ioprio;
2672 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2673 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2674}
2675
febffd61 2676static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2677{
478a82b0
AV
2678 struct cfq_data *cfqd = cic->key;
2679 struct cfq_queue *cfqq;
c1b707d2 2680 unsigned long flags;
35e6077c 2681
caaa5f9f
JA
2682 if (unlikely(!cfqd))
2683 return;
2684
c1b707d2 2685 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2686
ff6657c6 2687 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2688 if (cfqq) {
2689 struct cfq_queue *new_cfqq;
ff6657c6
JA
2690 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2691 GFP_ATOMIC);
caaa5f9f 2692 if (new_cfqq) {
ff6657c6 2693 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2694 cfq_put_queue(cfqq);
2695 }
22e2c507 2696 }
caaa5f9f 2697
ff6657c6 2698 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2699 if (cfqq)
2700 cfq_mark_cfqq_prio_changed(cfqq);
2701
c1b707d2 2702 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2703}
2704
fc46379d 2705static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2706{
4ac845a2 2707 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2708 ioc->ioprio_changed = 0;
22e2c507
JA
2709}
2710
d5036d77 2711static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2712 pid_t pid, bool is_sync)
d5036d77
JA
2713{
2714 RB_CLEAR_NODE(&cfqq->rb_node);
2715 RB_CLEAR_NODE(&cfqq->p_node);
2716 INIT_LIST_HEAD(&cfqq->fifo);
2717
2718 atomic_set(&cfqq->ref, 0);
2719 cfqq->cfqd = cfqd;
2720
2721 cfq_mark_cfqq_prio_changed(cfqq);
2722
2723 if (is_sync) {
2724 if (!cfq_class_idle(cfqq))
2725 cfq_mark_cfqq_idle_window(cfqq);
2726 cfq_mark_cfqq_sync(cfqq);
2727 }
2728 cfqq->pid = pid;
2729}
2730
24610333
VG
2731#ifdef CONFIG_CFQ_GROUP_IOSCHED
2732static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2733{
2734 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2735 struct cfq_data *cfqd = cic->key;
2736 unsigned long flags;
2737 struct request_queue *q;
2738
2739 if (unlikely(!cfqd))
2740 return;
2741
2742 q = cfqd->queue;
2743
2744 spin_lock_irqsave(q->queue_lock, flags);
2745
2746 if (sync_cfqq) {
2747 /*
2748 * Drop reference to sync queue. A new sync queue will be
2749 * assigned in new group upon arrival of a fresh request.
2750 */
2751 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2752 cic_set_cfqq(cic, NULL, 1);
2753 cfq_put_queue(sync_cfqq);
2754 }
2755
2756 spin_unlock_irqrestore(q->queue_lock, flags);
2757}
2758
2759static void cfq_ioc_set_cgroup(struct io_context *ioc)
2760{
2761 call_for_each_cic(ioc, changed_cgroup);
2762 ioc->cgroup_changed = 0;
2763}
2764#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2765
22e2c507 2766static struct cfq_queue *
a6151c3a 2767cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2768 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2769{
22e2c507 2770 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2771 struct cfq_io_context *cic;
cdb16e8f 2772 struct cfq_group *cfqg;
22e2c507
JA
2773
2774retry:
cdb16e8f 2775 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2776 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2777 /* cic always exists here */
2778 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2779
6118b70b
JA
2780 /*
2781 * Always try a new alloc if we fell back to the OOM cfqq
2782 * originally, since it should just be a temporary situation.
2783 */
2784 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2785 cfqq = NULL;
22e2c507
JA
2786 if (new_cfqq) {
2787 cfqq = new_cfqq;
2788 new_cfqq = NULL;
2789 } else if (gfp_mask & __GFP_WAIT) {
2790 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2791 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2792 gfp_mask | __GFP_ZERO,
94f6030c 2793 cfqd->queue->node);
22e2c507 2794 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2795 if (new_cfqq)
2796 goto retry;
22e2c507 2797 } else {
94f6030c
CL
2798 cfqq = kmem_cache_alloc_node(cfq_pool,
2799 gfp_mask | __GFP_ZERO,
2800 cfqd->queue->node);
22e2c507
JA
2801 }
2802
6118b70b
JA
2803 if (cfqq) {
2804 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2805 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2806 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2807 cfq_log_cfqq(cfqd, cfqq, "alloced");
2808 } else
2809 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2810 }
2811
2812 if (new_cfqq)
2813 kmem_cache_free(cfq_pool, new_cfqq);
2814
22e2c507
JA
2815 return cfqq;
2816}
2817
c2dea2d1
VT
2818static struct cfq_queue **
2819cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2820{
fe094d98 2821 switch (ioprio_class) {
c2dea2d1
VT
2822 case IOPRIO_CLASS_RT:
2823 return &cfqd->async_cfqq[0][ioprio];
2824 case IOPRIO_CLASS_BE:
2825 return &cfqd->async_cfqq[1][ioprio];
2826 case IOPRIO_CLASS_IDLE:
2827 return &cfqd->async_idle_cfqq;
2828 default:
2829 BUG();
2830 }
2831}
2832
15c31be4 2833static struct cfq_queue *
a6151c3a 2834cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2835 gfp_t gfp_mask)
2836{
fd0928df
JA
2837 const int ioprio = task_ioprio(ioc);
2838 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2839 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2840 struct cfq_queue *cfqq = NULL;
2841
c2dea2d1
VT
2842 if (!is_sync) {
2843 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2844 cfqq = *async_cfqq;
2845 }
2846
6118b70b 2847 if (!cfqq)
fd0928df 2848 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2849
2850 /*
2851 * pin the queue now that it's allocated, scheduler exit will prune it
2852 */
c2dea2d1 2853 if (!is_sync && !(*async_cfqq)) {
15c31be4 2854 atomic_inc(&cfqq->ref);
c2dea2d1 2855 *async_cfqq = cfqq;
15c31be4
JA
2856 }
2857
2858 atomic_inc(&cfqq->ref);
2859 return cfqq;
2860}
2861
498d3aa2
JA
2862/*
2863 * We drop cfq io contexts lazily, so we may find a dead one.
2864 */
dbecf3ab 2865static void
4ac845a2
JA
2866cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2867 struct cfq_io_context *cic)
dbecf3ab 2868{
4ac845a2
JA
2869 unsigned long flags;
2870
fc46379d 2871 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2872
4ac845a2
JA
2873 spin_lock_irqsave(&ioc->lock, flags);
2874
4faa3c81 2875 BUG_ON(ioc->ioc_data == cic);
597bc485 2876
4ac845a2 2877 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2878 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2879 spin_unlock_irqrestore(&ioc->lock, flags);
2880
2881 cfq_cic_free(cic);
dbecf3ab
OH
2882}
2883
e2d74ac0 2884static struct cfq_io_context *
4ac845a2 2885cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2886{
e2d74ac0 2887 struct cfq_io_context *cic;
d6de8be7 2888 unsigned long flags;
4ac845a2 2889 void *k;
e2d74ac0 2890
91fac317
VT
2891 if (unlikely(!ioc))
2892 return NULL;
2893
d6de8be7
JA
2894 rcu_read_lock();
2895
597bc485
JA
2896 /*
2897 * we maintain a last-hit cache, to avoid browsing over the tree
2898 */
4ac845a2 2899 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2900 if (cic && cic->key == cfqd) {
2901 rcu_read_unlock();
597bc485 2902 return cic;
d6de8be7 2903 }
597bc485 2904
4ac845a2 2905 do {
4ac845a2
JA
2906 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2907 rcu_read_unlock();
2908 if (!cic)
2909 break;
be3b0753
OH
2910 /* ->key must be copied to avoid race with cfq_exit_queue() */
2911 k = cic->key;
2912 if (unlikely(!k)) {
4ac845a2 2913 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2914 rcu_read_lock();
4ac845a2 2915 continue;
dbecf3ab 2916 }
e2d74ac0 2917
d6de8be7 2918 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2919 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2920 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2921 break;
2922 } while (1);
e2d74ac0 2923
4ac845a2 2924 return cic;
e2d74ac0
JA
2925}
2926
4ac845a2
JA
2927/*
2928 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2929 * the process specific cfq io context when entered from the block layer.
2930 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2931 */
febffd61
JA
2932static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2933 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2934{
0261d688 2935 unsigned long flags;
4ac845a2 2936 int ret;
e2d74ac0 2937
4ac845a2
JA
2938 ret = radix_tree_preload(gfp_mask);
2939 if (!ret) {
2940 cic->ioc = ioc;
2941 cic->key = cfqd;
e2d74ac0 2942
4ac845a2
JA
2943 spin_lock_irqsave(&ioc->lock, flags);
2944 ret = radix_tree_insert(&ioc->radix_root,
2945 (unsigned long) cfqd, cic);
ffc4e759
JA
2946 if (!ret)
2947 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2948 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2949
4ac845a2
JA
2950 radix_tree_preload_end();
2951
2952 if (!ret) {
2953 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2954 list_add(&cic->queue_list, &cfqd->cic_list);
2955 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2956 }
e2d74ac0
JA
2957 }
2958
4ac845a2
JA
2959 if (ret)
2960 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2961
4ac845a2 2962 return ret;
e2d74ac0
JA
2963}
2964
1da177e4
LT
2965/*
2966 * Setup general io context and cfq io context. There can be several cfq
2967 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2968 * than one device managed by cfq.
1da177e4
LT
2969 */
2970static struct cfq_io_context *
e2d74ac0 2971cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2972{
22e2c507 2973 struct io_context *ioc = NULL;
1da177e4 2974 struct cfq_io_context *cic;
1da177e4 2975
22e2c507 2976 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2977
b5deef90 2978 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2979 if (!ioc)
2980 return NULL;
2981
4ac845a2 2982 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2983 if (cic)
2984 goto out;
1da177e4 2985
e2d74ac0
JA
2986 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2987 if (cic == NULL)
2988 goto err;
1da177e4 2989
4ac845a2
JA
2990 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2991 goto err_free;
2992
1da177e4 2993out:
fc46379d
JA
2994 smp_read_barrier_depends();
2995 if (unlikely(ioc->ioprio_changed))
2996 cfq_ioc_set_ioprio(ioc);
2997
24610333
VG
2998#ifdef CONFIG_CFQ_GROUP_IOSCHED
2999 if (unlikely(ioc->cgroup_changed))
3000 cfq_ioc_set_cgroup(ioc);
3001#endif
1da177e4 3002 return cic;
4ac845a2
JA
3003err_free:
3004 cfq_cic_free(cic);
1da177e4
LT
3005err:
3006 put_io_context(ioc);
3007 return NULL;
3008}
3009
22e2c507
JA
3010static void
3011cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3012{
aaf1228d
JA
3013 unsigned long elapsed = jiffies - cic->last_end_request;
3014 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3015
22e2c507
JA
3016 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3017 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3018 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3019}
1da177e4 3020
206dc69b 3021static void
b2c18e1e 3022cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3023 struct request *rq)
206dc69b 3024{
3dde36dd 3025 sector_t sdist = 0;
41647e7a 3026 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3027 if (cfqq->last_request_pos) {
3028 if (cfqq->last_request_pos < blk_rq_pos(rq))
3029 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3030 else
3031 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3032 }
206dc69b 3033
3dde36dd 3034 cfqq->seek_history <<= 1;
41647e7a
CZ
3035 if (blk_queue_nonrot(cfqd->queue))
3036 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3037 else
3038 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3039}
1da177e4 3040
22e2c507
JA
3041/*
3042 * Disable idle window if the process thinks too long or seeks so much that
3043 * it doesn't matter
3044 */
3045static void
3046cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3047 struct cfq_io_context *cic)
3048{
7b679138 3049 int old_idle, enable_idle;
1be92f2f 3050
0871714e
JA
3051 /*
3052 * Don't idle for async or idle io prio class
3053 */
3054 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3055 return;
3056
c265a7f4 3057 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3058
76280aff
CZ
3059 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3060 cfq_mark_cfqq_deep(cfqq);
3061
66dac98e 3062 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3063 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3064 enable_idle = 0;
3065 else if (sample_valid(cic->ttime_samples)) {
718eee05 3066 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3067 enable_idle = 0;
3068 else
3069 enable_idle = 1;
1da177e4
LT
3070 }
3071
7b679138
JA
3072 if (old_idle != enable_idle) {
3073 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3074 if (enable_idle)
3075 cfq_mark_cfqq_idle_window(cfqq);
3076 else
3077 cfq_clear_cfqq_idle_window(cfqq);
3078 }
22e2c507 3079}
1da177e4 3080
22e2c507
JA
3081/*
3082 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3083 * no or if we aren't sure, a 1 will cause a preempt.
3084 */
a6151c3a 3085static bool
22e2c507 3086cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3087 struct request *rq)
22e2c507 3088{
6d048f53 3089 struct cfq_queue *cfqq;
22e2c507 3090
6d048f53
JA
3091 cfqq = cfqd->active_queue;
3092 if (!cfqq)
a6151c3a 3093 return false;
22e2c507 3094
6d048f53 3095 if (cfq_class_idle(new_cfqq))
a6151c3a 3096 return false;
22e2c507
JA
3097
3098 if (cfq_class_idle(cfqq))
a6151c3a 3099 return true;
1e3335de 3100
875feb63
DS
3101 /*
3102 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3103 */
3104 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3105 return false;
3106
374f84ac
JA
3107 /*
3108 * if the new request is sync, but the currently running queue is
3109 * not, let the sync request have priority.
3110 */
5e705374 3111 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3112 return true;
1e3335de 3113
8682e1f1
VG
3114 if (new_cfqq->cfqg != cfqq->cfqg)
3115 return false;
3116
3117 if (cfq_slice_used(cfqq))
3118 return true;
3119
3120 /* Allow preemption only if we are idling on sync-noidle tree */
3121 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3122 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3123 new_cfqq->service_tree->count == 2 &&
3124 RB_EMPTY_ROOT(&cfqq->sort_list))
3125 return true;
3126
374f84ac
JA
3127 /*
3128 * So both queues are sync. Let the new request get disk time if
3129 * it's a metadata request and the current queue is doing regular IO.
3130 */
3131 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3132 return true;
22e2c507 3133
3a9a3f6c
DS
3134 /*
3135 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3136 */
3137 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3138 return true;
3a9a3f6c 3139
1e3335de 3140 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3141 return false;
1e3335de
JA
3142
3143 /*
3144 * if this request is as-good as one we would expect from the
3145 * current cfqq, let it preempt
3146 */
e9ce335d 3147 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3148 return true;
1e3335de 3149
a6151c3a 3150 return false;
22e2c507
JA
3151}
3152
3153/*
3154 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3155 * let it have half of its nominal slice.
3156 */
3157static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3158{
7b679138 3159 cfq_log_cfqq(cfqd, cfqq, "preempt");
812df48d 3160 cfq_slice_expired(cfqd, 1, false);
22e2c507 3161
bf572256
JA
3162 /*
3163 * Put the new queue at the front of the of the current list,
3164 * so we know that it will be selected next.
3165 */
3166 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3167
3168 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3169
44f7c160
JA
3170 cfqq->slice_end = 0;
3171 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3172}
3173
22e2c507 3174/*
5e705374 3175 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3176 * something we should do about it
3177 */
3178static void
5e705374
JA
3179cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3180 struct request *rq)
22e2c507 3181{
5e705374 3182 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3183
45333d5a 3184 cfqd->rq_queued++;
374f84ac
JA
3185 if (rq_is_meta(rq))
3186 cfqq->meta_pending++;
3187
9c2c38a1 3188 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3189 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3190 cfq_update_idle_window(cfqd, cfqq, cic);
3191
b2c18e1e 3192 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3193
3194 if (cfqq == cfqd->active_queue) {
3195 /*
b029195d
JA
3196 * Remember that we saw a request from this process, but
3197 * don't start queuing just yet. Otherwise we risk seeing lots
3198 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3199 * and merging. If the request is already larger than a single
3200 * page, let it rip immediately. For that case we assume that
2d870722
JA
3201 * merging is already done. Ditto for a busy system that
3202 * has other work pending, don't risk delaying until the
3203 * idle timer unplug to continue working.
22e2c507 3204 */
d6ceb25e 3205 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3206 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3207 cfqd->busy_queues > 1) {
812df48d 3208 cfq_del_timer(cfqd, cfqq);
554554f6 3209 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3210 __blk_run_queue(cfqd->queue);
3211 } else
3212 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3213 }
5e705374 3214 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3215 /*
3216 * not the active queue - expire current slice if it is
3217 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3218 * has some old slice time left and is of higher priority or
3219 * this new queue is RT and the current one is BE
22e2c507
JA
3220 */
3221 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3222 __blk_run_queue(cfqd->queue);
22e2c507 3223 }
1da177e4
LT
3224}
3225
165125e1 3226static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3227{
b4878f24 3228 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3229 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3230
7b679138 3231 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3232 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3233
30996f40 3234 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3235 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3236 cfq_add_rq_rb(rq);
22e2c507 3237
cdc1184c
DS
3238 blkiocg_update_request_add_stats(&cfqq->cfqg->blkg,
3239 &cfqd->serving_group->blkg, rq_data_dir(rq),
3240 rq_is_sync(rq));
5e705374 3241 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3242}
3243
45333d5a
AC
3244/*
3245 * Update hw_tag based on peak queue depth over 50 samples under
3246 * sufficient load.
3247 */
3248static void cfq_update_hw_tag(struct cfq_data *cfqd)
3249{
1a1238a7
SL
3250 struct cfq_queue *cfqq = cfqd->active_queue;
3251
53c583d2
CZ
3252 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3253 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3254
3255 if (cfqd->hw_tag == 1)
3256 return;
45333d5a
AC
3257
3258 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3259 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3260 return;
3261
1a1238a7
SL
3262 /*
3263 * If active queue hasn't enough requests and can idle, cfq might not
3264 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3265 * case
3266 */
3267 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3268 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3269 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3270 return;
3271
45333d5a
AC
3272 if (cfqd->hw_tag_samples++ < 50)
3273 return;
3274
e459dd08 3275 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3276 cfqd->hw_tag = 1;
3277 else
3278 cfqd->hw_tag = 0;
45333d5a
AC
3279}
3280
7667aa06
VG
3281static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3282{
3283 struct cfq_io_context *cic = cfqd->active_cic;
3284
3285 /* If there are other queues in the group, don't wait */
3286 if (cfqq->cfqg->nr_cfqq > 1)
3287 return false;
3288
3289 if (cfq_slice_used(cfqq))
3290 return true;
3291
3292 /* if slice left is less than think time, wait busy */
3293 if (cic && sample_valid(cic->ttime_samples)
3294 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3295 return true;
3296
3297 /*
3298 * If think times is less than a jiffy than ttime_mean=0 and above
3299 * will not be true. It might happen that slice has not expired yet
3300 * but will expire soon (4-5 ns) during select_queue(). To cover the
3301 * case where think time is less than a jiffy, mark the queue wait
3302 * busy if only 1 jiffy is left in the slice.
3303 */
3304 if (cfqq->slice_end - jiffies == 1)
3305 return true;
3306
3307 return false;
3308}
3309
165125e1 3310static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3311{
5e705374 3312 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3313 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3314 const int sync = rq_is_sync(rq);
b4878f24 3315 unsigned long now;
1da177e4 3316
b4878f24 3317 now = jiffies;
2868ef7b 3318 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3319
45333d5a
AC
3320 cfq_update_hw_tag(cfqd);
3321
53c583d2 3322 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3323 WARN_ON(!cfqq->dispatched);
53c583d2 3324 cfqd->rq_in_driver--;
6d048f53 3325 cfqq->dispatched--;
84c124da
DS
3326 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3327 rq_io_start_time_ns(rq), rq_data_dir(rq),
3328 rq_is_sync(rq));
1da177e4 3329
53c583d2 3330 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3331
365722bb 3332 if (sync) {
5e705374 3333 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3334 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3335 cfqd->last_delayed_sync = now;
365722bb 3336 }
caaa5f9f
JA
3337
3338 /*
3339 * If this is the active queue, check if it needs to be expired,
3340 * or if we want to idle in case it has no pending requests.
3341 */
3342 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3343 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3344
44f7c160
JA
3345 if (cfq_cfqq_slice_new(cfqq)) {
3346 cfq_set_prio_slice(cfqd, cfqq);
3347 cfq_clear_cfqq_slice_new(cfqq);
3348 }
f75edf2d
VG
3349
3350 /*
7667aa06
VG
3351 * Should we wait for next request to come in before we expire
3352 * the queue.
f75edf2d 3353 */
7667aa06 3354 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3355 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3356 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3357 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3358 }
3359
a36e71f9 3360 /*
8e550632
CZ
3361 * Idling is not enabled on:
3362 * - expired queues
3363 * - idle-priority queues
3364 * - async queues
3365 * - queues with still some requests queued
3366 * - when there is a close cooperator
a36e71f9 3367 */
0871714e 3368 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
812df48d 3369 cfq_slice_expired(cfqd, 1, false);
8e550632
CZ
3370 else if (sync && cfqq_empty &&
3371 !cfq_close_cooperator(cfqd, cfqq)) {
3372 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3373 /*
3374 * Idling is enabled for SYNC_WORKLOAD.
3375 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3376 * only if we processed at least one !rq_noidle request
3377 */
3378 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3379 || cfqd->noidle_tree_requires_idle
3380 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3381 cfq_arm_slice_timer(cfqd);
3382 }
caaa5f9f 3383 }
6d048f53 3384
53c583d2 3385 if (!cfqd->rq_in_driver)
23e018a1 3386 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3387}
3388
22e2c507
JA
3389/*
3390 * we temporarily boost lower priority queues if they are holding fs exclusive
3391 * resources. they are boosted to normal prio (CLASS_BE/4)
3392 */
3393static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3394{
22e2c507
JA
3395 if (has_fs_excl()) {
3396 /*
3397 * boost idle prio on transactions that would lock out other
3398 * users of the filesystem
3399 */
3400 if (cfq_class_idle(cfqq))
3401 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3402 if (cfqq->ioprio > IOPRIO_NORM)
3403 cfqq->ioprio = IOPRIO_NORM;
3404 } else {
3405 /*
dddb7451 3406 * unboost the queue (if needed)
22e2c507 3407 */
dddb7451
CZ
3408 cfqq->ioprio_class = cfqq->org_ioprio_class;
3409 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3410 }
22e2c507 3411}
1da177e4 3412
89850f7e 3413static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3414{
1b379d8d 3415 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3416 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3417 return ELV_MQUEUE_MUST;
3b18152c 3418 }
1da177e4 3419
22e2c507 3420 return ELV_MQUEUE_MAY;
22e2c507
JA
3421}
3422
165125e1 3423static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3424{
3425 struct cfq_data *cfqd = q->elevator->elevator_data;
3426 struct task_struct *tsk = current;
91fac317 3427 struct cfq_io_context *cic;
22e2c507
JA
3428 struct cfq_queue *cfqq;
3429
3430 /*
3431 * don't force setup of a queue from here, as a call to may_queue
3432 * does not necessarily imply that a request actually will be queued.
3433 * so just lookup a possibly existing queue, or return 'may queue'
3434 * if that fails
3435 */
4ac845a2 3436 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3437 if (!cic)
3438 return ELV_MQUEUE_MAY;
3439
b0b78f81 3440 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3441 if (cfqq) {
fd0928df 3442 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3443 cfq_prio_boost(cfqq);
3444
89850f7e 3445 return __cfq_may_queue(cfqq);
22e2c507
JA
3446 }
3447
3448 return ELV_MQUEUE_MAY;
1da177e4
LT
3449}
3450
1da177e4
LT
3451/*
3452 * queue lock held here
3453 */
bb37b94c 3454static void cfq_put_request(struct request *rq)
1da177e4 3455{
5e705374 3456 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3457
5e705374 3458 if (cfqq) {
22e2c507 3459 const int rw = rq_data_dir(rq);
1da177e4 3460
22e2c507
JA
3461 BUG_ON(!cfqq->allocated[rw]);
3462 cfqq->allocated[rw]--;
1da177e4 3463
5e705374 3464 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3465
1da177e4 3466 rq->elevator_private = NULL;
5e705374 3467 rq->elevator_private2 = NULL;
1da177e4 3468
1da177e4
LT
3469 cfq_put_queue(cfqq);
3470 }
3471}
3472
df5fe3e8
JM
3473static struct cfq_queue *
3474cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3475 struct cfq_queue *cfqq)
3476{
3477 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3478 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3479 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3480 cfq_put_queue(cfqq);
3481 return cic_to_cfqq(cic, 1);
3482}
3483
e6c5bc73
JM
3484/*
3485 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3486 * was the last process referring to said cfqq.
3487 */
3488static struct cfq_queue *
3489split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3490{
3491 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3492 cfqq->pid = current->pid;
3493 cfq_clear_cfqq_coop(cfqq);
ae54abed 3494 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3495 return cfqq;
3496 }
3497
3498 cic_set_cfqq(cic, NULL, 1);
3499 cfq_put_queue(cfqq);
3500 return NULL;
3501}
1da177e4 3502/*
22e2c507 3503 * Allocate cfq data structures associated with this request.
1da177e4 3504 */
22e2c507 3505static int
165125e1 3506cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3507{
3508 struct cfq_data *cfqd = q->elevator->elevator_data;
3509 struct cfq_io_context *cic;
3510 const int rw = rq_data_dir(rq);
a6151c3a 3511 const bool is_sync = rq_is_sync(rq);
22e2c507 3512 struct cfq_queue *cfqq;
1da177e4
LT
3513 unsigned long flags;
3514
3515 might_sleep_if(gfp_mask & __GFP_WAIT);
3516
e2d74ac0 3517 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3518
1da177e4
LT
3519 spin_lock_irqsave(q->queue_lock, flags);
3520
22e2c507
JA
3521 if (!cic)
3522 goto queue_fail;
3523
e6c5bc73 3524new_queue:
91fac317 3525 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3526 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3527 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3528 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3529 } else {
e6c5bc73
JM
3530 /*
3531 * If the queue was seeky for too long, break it apart.
3532 */
ae54abed 3533 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3534 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3535 cfqq = split_cfqq(cic, cfqq);
3536 if (!cfqq)
3537 goto new_queue;
3538 }
3539
df5fe3e8
JM
3540 /*
3541 * Check to see if this queue is scheduled to merge with
3542 * another, closely cooperating queue. The merging of
3543 * queues happens here as it must be done in process context.
3544 * The reference on new_cfqq was taken in merge_cfqqs.
3545 */
3546 if (cfqq->new_cfqq)
3547 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3548 }
1da177e4
LT
3549
3550 cfqq->allocated[rw]++;
22e2c507 3551 atomic_inc(&cfqq->ref);
1da177e4 3552
5e705374 3553 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3554
5e705374
JA
3555 rq->elevator_private = cic;
3556 rq->elevator_private2 = cfqq;
3557 return 0;
1da177e4 3558
22e2c507
JA
3559queue_fail:
3560 if (cic)
3561 put_io_context(cic->ioc);
89850f7e 3562
23e018a1 3563 cfq_schedule_dispatch(cfqd);
1da177e4 3564 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3565 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3566 return 1;
3567}
3568
65f27f38 3569static void cfq_kick_queue(struct work_struct *work)
22e2c507 3570{
65f27f38 3571 struct cfq_data *cfqd =
23e018a1 3572 container_of(work, struct cfq_data, unplug_work);
165125e1 3573 struct request_queue *q = cfqd->queue;
22e2c507 3574
40bb54d1 3575 spin_lock_irq(q->queue_lock);
a7f55792 3576 __blk_run_queue(cfqd->queue);
40bb54d1 3577 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3578}
3579
3580/*
3581 * Timer running if the active_queue is currently idling inside its time slice
3582 */
3583static void cfq_idle_slice_timer(unsigned long data)
3584{
3585 struct cfq_data *cfqd = (struct cfq_data *) data;
3586 struct cfq_queue *cfqq;
3587 unsigned long flags;
3c6bd2f8 3588 int timed_out = 1;
22e2c507 3589
7b679138
JA
3590 cfq_log(cfqd, "idle timer fired");
3591
22e2c507
JA
3592 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3593
fe094d98
JA
3594 cfqq = cfqd->active_queue;
3595 if (cfqq) {
3c6bd2f8
JA
3596 timed_out = 0;
3597
b029195d
JA
3598 /*
3599 * We saw a request before the queue expired, let it through
3600 */
3601 if (cfq_cfqq_must_dispatch(cfqq))
3602 goto out_kick;
3603
22e2c507
JA
3604 /*
3605 * expired
3606 */
44f7c160 3607 if (cfq_slice_used(cfqq))
22e2c507
JA
3608 goto expire;
3609
3610 /*
3611 * only expire and reinvoke request handler, if there are
3612 * other queues with pending requests
3613 */
caaa5f9f 3614 if (!cfqd->busy_queues)
22e2c507 3615 goto out_cont;
22e2c507
JA
3616
3617 /*
3618 * not expired and it has a request pending, let it dispatch
3619 */
75e50984 3620 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3621 goto out_kick;
76280aff
CZ
3622
3623 /*
3624 * Queue depth flag is reset only when the idle didn't succeed
3625 */
3626 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3627 }
3628expire:
812df48d 3629 cfq_slice_expired(cfqd, timed_out, false);
22e2c507 3630out_kick:
23e018a1 3631 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3632out_cont:
3633 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3634}
3635
3b18152c
JA
3636static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3637{
3638 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3639 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3640}
22e2c507 3641
c2dea2d1
VT
3642static void cfq_put_async_queues(struct cfq_data *cfqd)
3643{
3644 int i;
3645
3646 for (i = 0; i < IOPRIO_BE_NR; i++) {
3647 if (cfqd->async_cfqq[0][i])
3648 cfq_put_queue(cfqd->async_cfqq[0][i]);
3649 if (cfqd->async_cfqq[1][i])
3650 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3651 }
2389d1ef
ON
3652
3653 if (cfqd->async_idle_cfqq)
3654 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3655}
3656
bb729bc9
JA
3657static void cfq_cfqd_free(struct rcu_head *head)
3658{
3659 kfree(container_of(head, struct cfq_data, rcu));
3660}
3661
b374d18a 3662static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3663{
22e2c507 3664 struct cfq_data *cfqd = e->elevator_data;
165125e1 3665 struct request_queue *q = cfqd->queue;
22e2c507 3666
3b18152c 3667 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3668
d9ff4187 3669 spin_lock_irq(q->queue_lock);
e2d74ac0 3670
d9ff4187 3671 if (cfqd->active_queue)
812df48d 3672 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, false);
e2d74ac0
JA
3673
3674 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3675 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3676 struct cfq_io_context,
3677 queue_list);
89850f7e
JA
3678
3679 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3680 }
e2d74ac0 3681
c2dea2d1 3682 cfq_put_async_queues(cfqd);
b1c35769
VG
3683 cfq_release_cfq_groups(cfqd);
3684 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3685
d9ff4187 3686 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3687
3688 cfq_shutdown_timer_wq(cfqd);
3689
b1c35769 3690 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3691 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3692}
3693
165125e1 3694static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3695{
3696 struct cfq_data *cfqd;
718eee05 3697 int i, j;
cdb16e8f 3698 struct cfq_group *cfqg;
615f0259 3699 struct cfq_rb_root *st;
1da177e4 3700
94f6030c 3701 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3702 if (!cfqd)
bc1c1169 3703 return NULL;
1da177e4 3704
1fa8f6d6
VG
3705 /* Init root service tree */
3706 cfqd->grp_service_tree = CFQ_RB_ROOT;
3707
cdb16e8f
VG
3708 /* Init root group */
3709 cfqg = &cfqd->root_group;
615f0259
VG
3710 for_each_cfqg_st(cfqg, i, j, st)
3711 *st = CFQ_RB_ROOT;
1fa8f6d6 3712 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3713
25bc6b07
VG
3714 /* Give preference to root group over other groups */
3715 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3716
25fb5169 3717#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3718 /*
3719 * Take a reference to root group which we never drop. This is just
3720 * to make sure that cfq_put_cfqg() does not try to kfree root group
3721 */
3722 atomic_set(&cfqg->ref, 1);
22084190
VG
3723 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3724 0);
25fb5169 3725#endif
26a2ac00
JA
3726 /*
3727 * Not strictly needed (since RB_ROOT just clears the node and we
3728 * zeroed cfqd on alloc), but better be safe in case someone decides
3729 * to add magic to the rb code
3730 */
3731 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3732 cfqd->prio_trees[i] = RB_ROOT;
3733
6118b70b
JA
3734 /*
3735 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3736 * Grab a permanent reference to it, so that the normal code flow
3737 * will not attempt to free it.
3738 */
3739 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3740 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3741 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3742
d9ff4187 3743 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3744
1da177e4 3745 cfqd->queue = q;
1da177e4 3746
22e2c507
JA
3747 init_timer(&cfqd->idle_slice_timer);
3748 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3749 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3750
23e018a1 3751 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3752
1da177e4 3753 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3754 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3755 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3756 cfqd->cfq_back_max = cfq_back_max;
3757 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3758 cfqd->cfq_slice[0] = cfq_slice_async;
3759 cfqd->cfq_slice[1] = cfq_slice_sync;
3760 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3761 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3762 cfqd->cfq_latency = 1;
ae30c286 3763 cfqd->cfq_group_isolation = 0;
e459dd08 3764 cfqd->hw_tag = -1;
edc71131
CZ
3765 /*
3766 * we optimistically start assuming sync ops weren't delayed in last
3767 * second, in order to have larger depth for async operations.
3768 */
573412b2 3769 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3770 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3771 return cfqd;
1da177e4
LT
3772}
3773
3774static void cfq_slab_kill(void)
3775{
d6de8be7
JA
3776 /*
3777 * Caller already ensured that pending RCU callbacks are completed,
3778 * so we should have no busy allocations at this point.
3779 */
1da177e4
LT
3780 if (cfq_pool)
3781 kmem_cache_destroy(cfq_pool);
3782 if (cfq_ioc_pool)
3783 kmem_cache_destroy(cfq_ioc_pool);
3784}
3785
3786static int __init cfq_slab_setup(void)
3787{
0a31bd5f 3788 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3789 if (!cfq_pool)
3790 goto fail;
3791
34e6bbf2 3792 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3793 if (!cfq_ioc_pool)
3794 goto fail;
3795
3796 return 0;
3797fail:
3798 cfq_slab_kill();
3799 return -ENOMEM;
3800}
3801
1da177e4
LT
3802/*
3803 * sysfs parts below -->
3804 */
1da177e4
LT
3805static ssize_t
3806cfq_var_show(unsigned int var, char *page)
3807{
3808 return sprintf(page, "%d\n", var);
3809}
3810
3811static ssize_t
3812cfq_var_store(unsigned int *var, const char *page, size_t count)
3813{
3814 char *p = (char *) page;
3815
3816 *var = simple_strtoul(p, &p, 10);
3817 return count;
3818}
3819
1da177e4 3820#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3821static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3822{ \
3d1ab40f 3823 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3824 unsigned int __data = __VAR; \
3825 if (__CONV) \
3826 __data = jiffies_to_msecs(__data); \
3827 return cfq_var_show(__data, (page)); \
3828}
3829SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3830SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3831SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3832SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3833SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3834SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3835SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3836SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3837SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3838SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3839SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3840#undef SHOW_FUNCTION
3841
3842#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3843static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3844{ \
3d1ab40f 3845 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3846 unsigned int __data; \
3847 int ret = cfq_var_store(&__data, (page), count); \
3848 if (__data < (MIN)) \
3849 __data = (MIN); \
3850 else if (__data > (MAX)) \
3851 __data = (MAX); \
3852 if (__CONV) \
3853 *(__PTR) = msecs_to_jiffies(__data); \
3854 else \
3855 *(__PTR) = __data; \
3856 return ret; \
3857}
3858STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3859STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3860 UINT_MAX, 1);
3861STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3862 UINT_MAX, 1);
e572ec7e 3863STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3864STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3865 UINT_MAX, 0);
22e2c507
JA
3866STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3867STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3868STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3869STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3870 UINT_MAX, 0);
963b72fc 3871STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3872STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3873#undef STORE_FUNCTION
3874
e572ec7e
AV
3875#define CFQ_ATTR(name) \
3876 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3877
3878static struct elv_fs_entry cfq_attrs[] = {
3879 CFQ_ATTR(quantum),
e572ec7e
AV
3880 CFQ_ATTR(fifo_expire_sync),
3881 CFQ_ATTR(fifo_expire_async),
3882 CFQ_ATTR(back_seek_max),
3883 CFQ_ATTR(back_seek_penalty),
3884 CFQ_ATTR(slice_sync),
3885 CFQ_ATTR(slice_async),
3886 CFQ_ATTR(slice_async_rq),
3887 CFQ_ATTR(slice_idle),
963b72fc 3888 CFQ_ATTR(low_latency),
ae30c286 3889 CFQ_ATTR(group_isolation),
e572ec7e 3890 __ATTR_NULL
1da177e4
LT
3891};
3892
1da177e4
LT
3893static struct elevator_type iosched_cfq = {
3894 .ops = {
3895 .elevator_merge_fn = cfq_merge,
3896 .elevator_merged_fn = cfq_merged_request,
3897 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3898 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3899 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3900 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3901 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3902 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3903 .elevator_deactivate_req_fn = cfq_deactivate_request,
3904 .elevator_queue_empty_fn = cfq_queue_empty,
3905 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3906 .elevator_former_req_fn = elv_rb_former_request,
3907 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3908 .elevator_set_req_fn = cfq_set_request,
3909 .elevator_put_req_fn = cfq_put_request,
3910 .elevator_may_queue_fn = cfq_may_queue,
3911 .elevator_init_fn = cfq_init_queue,
3912 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3913 .trim = cfq_free_io_context,
1da177e4 3914 },
3d1ab40f 3915 .elevator_attrs = cfq_attrs,
1da177e4
LT
3916 .elevator_name = "cfq",
3917 .elevator_owner = THIS_MODULE,
3918};
3919
3e252066
VG
3920#ifdef CONFIG_CFQ_GROUP_IOSCHED
3921static struct blkio_policy_type blkio_policy_cfq = {
3922 .ops = {
3923 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3924 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3925 },
3926};
3927#else
3928static struct blkio_policy_type blkio_policy_cfq;
3929#endif
3930
1da177e4
LT
3931static int __init cfq_init(void)
3932{
22e2c507
JA
3933 /*
3934 * could be 0 on HZ < 1000 setups
3935 */
3936 if (!cfq_slice_async)
3937 cfq_slice_async = 1;
3938 if (!cfq_slice_idle)
3939 cfq_slice_idle = 1;
3940
1da177e4
LT
3941 if (cfq_slab_setup())
3942 return -ENOMEM;
3943
2fdd82bd 3944 elv_register(&iosched_cfq);
3e252066 3945 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3946
2fdd82bd 3947 return 0;
1da177e4
LT
3948}
3949
3950static void __exit cfq_exit(void)
3951{
6e9a4738 3952 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3953 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3954 elv_unregister(&iosched_cfq);
334e94de 3955 ioc_gone = &all_gone;
fba82272
OH
3956 /* ioc_gone's update must be visible before reading ioc_count */
3957 smp_wmb();
d6de8be7
JA
3958
3959 /*
3960 * this also protects us from entering cfq_slab_kill() with
3961 * pending RCU callbacks
3962 */
245b2e70 3963 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3964 wait_for_completion(&all_gone);
83521d3e 3965 cfq_slab_kill();
1da177e4
LT
3966}
3967
3968module_init(cfq_init);
3969module_exit(cfq_exit);
3970
3971MODULE_AUTHOR("Jens Axboe");
3972MODULE_LICENSE("GPL");
3973MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");