]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
blkio: Add io_merged stat
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98 21/* max queue in one round of service */
abc3c744 22static const int cfq_quantum = 8;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 50#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 51#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 52#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 53
fe094d98
JA
54#define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 56#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 57
e18b890b
CL
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
1da177e4 60
245b2e70 61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 62static struct completion *ioc_gone;
9a11b4ed 63static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
cc09e299 85};
73e9ffdd
RK
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b
JA
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
ae30c286 144 struct cfq_group *orig_cfqg;
6118b70b
JA
145};
146
c0324a02 147/*
718eee05 148 * First index in the service_trees.
c0324a02
CZ
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
c0324a02 152 BE_WORKLOAD = 0,
615f0259
VG
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
c0324a02
CZ
155};
156
718eee05
CZ
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164};
165
cdb16e8f
VG
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
1fa8f6d6
VG
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
25bc6b07 173 unsigned int weight;
1fa8f6d6
VG
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
58ff82f3
VG
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
cdb16e8f
VG
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
dae739eb
VG
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
25fb5169
VG
191 struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
b1c35769 194 atomic_t ref;
25fb5169 195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
22e2c507 206
c0324a02
CZ
207 /*
208 * The priority currently being served
22e2c507 209 */
c0324a02 210 enum wl_prio_t serving_prio;
718eee05
CZ
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
cdb16e8f 213 struct cfq_group *serving_group;
8e550632 214 bool noidle_tree_requires_idle;
a36e71f9
JA
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
22e2c507
JA
223 unsigned int busy_queues;
224
53c583d2
CZ
225 int rq_in_driver;
226 int rq_in_flight[2];
45333d5a
AC
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
25776e35 232 int hw_tag;
e459dd08
CZ
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
1da177e4 241
22e2c507
JA
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
23e018a1 246 struct work_struct unplug_work;
1da177e4 247
22e2c507
JA
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
22e2c507 250
c2dea2d1
VT
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
15c31be4 256
6d048f53 257 sector_t last_position;
1da177e4 258
1da177e4
LT
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
22e2c507 263 unsigned int cfq_fifo_expire[2];
1da177e4
LT
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
22e2c507
JA
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
963b72fc 269 unsigned int cfq_latency;
ae30c286 270 unsigned int cfq_group_isolation;
d9ff4187
AV
271
272 struct list_head cic_list;
1da177e4 273
6118b70b
JA
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
365722bb 278
573412b2 279 unsigned long last_delayed_sync;
25fb5169
VG
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
bb729bc9 283 struct rcu_head rcu;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
65b32a57 290 enum wl_type_t type)
c0324a02 291{
1fa8f6d6
VG
292 if (!cfqg)
293 return NULL;
294
c0324a02 295 if (prio == IDLE_WORKLOAD)
cdb16e8f 296 return &cfqg->service_tree_idle;
c0324a02 297
cdb16e8f 298 return &cfqg->service_trees[prio][type];
c0324a02
CZ
299}
300
3b18152c 301enum cfqq_state_flags {
b0b8d749
JA
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
fe094d98 320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
fe094d98 328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
b029195d 333CFQ_CFQQ_FNS(must_dispatch);
3b18152c 334CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
44f7c160 338CFQ_CFQQ_FNS(slice_new);
91fac317 339CFQ_CFQQ_FNS(sync);
a36e71f9 340CFQ_CFQQ_FNS(coop);
ae54abed 341CFQ_CFQQ_FNS(split_coop);
76280aff 342CFQ_CFQQ_FNS(deep);
f75edf2d 343CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
f26bd1f0
VG
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408{
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
165125e1 413static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 415 struct io_context *, gfp_t);
4ac845a2 416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
417 struct io_context *);
418
419static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 420 bool is_sync)
91fac317 421{
a6151c3a 422 return cic->cfqq[is_sync];
91fac317
VT
423}
424
425static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 426 struct cfq_queue *cfqq, bool is_sync)
91fac317 427{
a6151c3a 428 cic->cfqq[is_sync] = cfqq;
91fac317
VT
429}
430
431/*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
a6151c3a 435static inline bool cfq_bio_sync(struct bio *bio)
91fac317 436{
a6151c3a 437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 438}
1da177e4 439
99f95e52
AM
440/*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
23e018a1 444static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 445{
7b679138
JA
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
23e018a1 448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 449 }
99f95e52
AM
450}
451
165125e1 452static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
453{
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
f04a6424 456 return !cfqd->rq_queued;
99f95e52
AM
457}
458
44f7c160
JA
459/*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
a6151c3a 464static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 465 unsigned short prio)
44f7c160 466{
d9e7620e 467 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 468
d9e7620e
JA
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472}
44f7c160 473
d9e7620e
JA
474static inline int
475cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476{
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
478}
479
25bc6b07
VG
480static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481{
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487}
488
489static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490{
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496}
497
498static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499{
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505}
506
507static void update_min_vdisktime(struct cfq_rb_root *st)
508{
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523}
524
5db5d642
CZ
525/*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
58ff82f3
VG
531static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
5869619c 533{
5db5d642
CZ
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
58ff82f3 537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 538
58ff82f3
VG
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 542 cfq_hist_divisor;
58ff82f3
VG
543 return cfqg->busy_queues_avg[rt];
544}
545
546static inline unsigned
547cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548{
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
552}
553
44f7c160
JA
554static inline void
555cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556{
5db5d642
CZ
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
58ff82f3
VG
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
5db5d642
CZ
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
5db5d642
CZ
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
58ff82f3 577 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
578 low_slice);
579 }
580 }
dae739eb 581 cfqq->slice_start = jiffies;
5db5d642 582 cfqq->slice_end = jiffies + slice;
f75edf2d 583 cfqq->allocated_slice = slice;
7b679138 584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
585}
586
587/*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
a6151c3a 592static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
593{
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600}
601
1da177e4 602/*
5e705374 603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 604 * We choose the request that is closest to the head right now. Distance
e8a99053 605 * behind the head is penalized and only allowed to a certain extent.
1da177e4 606 */
5e705374 607static struct request *
cf7c25cf 608cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 609{
cf7c25cf 610 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 611 unsigned long back_max;
e8a99053
AM
612#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 615
5e705374
JA
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
9c2c38a1 620
5e705374
JA
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
374f84ac
JA
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
1da177e4 629
83096ebf
TH
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
1da177e4 632
1da177e4
LT
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
e8a99053 648 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
e8a99053 655 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
656
657 /* Found required data */
e8a99053
AM
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
5e705374 664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 665 if (d1 < d2)
5e705374 666 return rq1;
e8a99053 667 else if (d2 < d1)
5e705374 668 return rq2;
e8a99053
AM
669 else {
670 if (s1 >= s2)
5e705374 671 return rq1;
e8a99053 672 else
5e705374 673 return rq2;
e8a99053 674 }
1da177e4 675
e8a99053 676 case CFQ_RQ2_WRAP:
5e705374 677 return rq1;
e8a99053 678 case CFQ_RQ1_WRAP:
5e705374
JA
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
5e705374 689 return rq1;
1da177e4 690 else
5e705374 691 return rq2;
1da177e4
LT
692 }
693}
694
498d3aa2
JA
695/*
696 * The below is leftmost cache rbtree addon
697 */
0871714e 698static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 699{
615f0259
VG
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
cc09e299
JA
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
0871714e
JA
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
cc09e299
JA
711}
712
1fa8f6d6
VG
713static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714{
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722}
723
a36e71f9
JA
724static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725{
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728}
729
cc09e299
JA
730static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731{
732 if (root->left == n)
733 root->left = NULL;
a36e71f9 734 rb_erase_init(n, &root->rb);
aa6f6a3d 735 --root->count;
cc09e299
JA
736}
737
1da177e4
LT
738/*
739 * would be nice to take fifo expire time into account as well
740 */
5e705374
JA
741static struct request *
742cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
1da177e4 744{
21183b07
JA
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 747 struct request *next = NULL, *prev = NULL;
1da177e4 748
21183b07 749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
750
751 if (rbprev)
5e705374 752 prev = rb_entry_rq(rbprev);
1da177e4 753
21183b07 754 if (rbnext)
5e705374 755 next = rb_entry_rq(rbnext);
21183b07
JA
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07 760 }
1da177e4 761
cf7c25cf 762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
763}
764
d9e7620e
JA
765static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
1da177e4 767{
d9e7620e
JA
768 /*
769 * just an approximation, should be ok.
770 */
cdb16e8f 771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
773}
774
1fa8f6d6
VG
775static inline s64
776cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777{
778 return cfqg->vdisktime - st->min_vdisktime;
779}
780
781static void
782__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783{
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807}
808
809static void
810cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811{
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
58ff82f3 834 st->total_weight += cfqg->weight;
1fa8f6d6
VG
835}
836
837static void
838cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839{
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
25bc6b07
VG
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
1fa8f6d6
VG
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
25bc6b07 847
1fa8f6d6
VG
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
2868ef7b 852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 853 cfqg->on_st = false;
58ff82f3 854 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 857 cfqg->saved_workload_slice = 0;
9195291e 858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
859}
860
861static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862{
f75edf2d 863 unsigned int slice_used;
dae739eb
VG
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
dae739eb
VG
882 }
883
9a0785b0 884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
885 return slice_used;
886}
887
888static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889 struct cfq_queue *cfqq)
890{
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 898
f26bd1f0
VG
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
dae739eb
VG
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
2868ef7b
VG
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
303a3acb 918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
1fa8f6d6
VG
919}
920
25fb5169
VG
921#ifdef CONFIG_CFQ_GROUP_IOSCHED
922static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
923{
924 if (blkg)
925 return container_of(blkg, struct cfq_group, blkg);
926 return NULL;
927}
928
f8d461d6
VG
929void
930cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
931{
932 cfqg_of_blkg(blkg)->weight = weight;
933}
934
25fb5169
VG
935static struct cfq_group *
936cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
937{
938 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
939 struct cfq_group *cfqg = NULL;
940 void *key = cfqd;
941 int i, j;
942 struct cfq_rb_root *st;
22084190
VG
943 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
944 unsigned int major, minor;
25fb5169 945
25fb5169
VG
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
84c124da 958 blkio_group_init(&cfqg->blkg);
25fb5169 959
b1c35769
VG
960 /*
961 * Take the initial reference that will be released on destroy
962 * This can be thought of a joint reference by cgroup and
963 * elevator which will be dropped by either elevator exit
964 * or cgroup deletion path depending on who is exiting first.
965 */
966 atomic_set(&cfqg->ref, 1);
967
25fb5169 968 /* Add group onto cgroup list */
22084190
VG
969 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
970 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
971 MKDEV(major, minor));
25fb5169
VG
972
973 /* Add group on cfqd list */
974 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
975
976done:
25fb5169
VG
977 return cfqg;
978}
979
980/*
981 * Search for the cfq group current task belongs to. If create = 1, then also
982 * create the cfq group if it does not exist. request_queue lock must be held.
983 */
984static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
985{
986 struct cgroup *cgroup;
987 struct cfq_group *cfqg = NULL;
988
989 rcu_read_lock();
990 cgroup = task_cgroup(current, blkio_subsys_id);
991 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
992 if (!cfqg && create)
993 cfqg = &cfqd->root_group;
994 rcu_read_unlock();
995 return cfqg;
996}
997
998static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
999{
1000 /* Currently, all async queues are mapped to root group */
1001 if (!cfq_cfqq_sync(cfqq))
1002 cfqg = &cfqq->cfqd->root_group;
1003
1004 cfqq->cfqg = cfqg;
b1c35769
VG
1005 /* cfqq reference on cfqg */
1006 atomic_inc(&cfqq->cfqg->ref);
1007}
1008
1009static void cfq_put_cfqg(struct cfq_group *cfqg)
1010{
1011 struct cfq_rb_root *st;
1012 int i, j;
1013
1014 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1015 if (!atomic_dec_and_test(&cfqg->ref))
1016 return;
1017 for_each_cfqg_st(cfqg, i, j, st)
1018 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1019 kfree(cfqg);
1020}
1021
1022static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023{
1024 /* Something wrong if we are trying to remove same group twice */
1025 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1026
1027 hlist_del_init(&cfqg->cfqd_node);
1028
1029 /*
1030 * Put the reference taken at the time of creation so that when all
1031 * queues are gone, group can be destroyed.
1032 */
1033 cfq_put_cfqg(cfqg);
1034}
1035
1036static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1037{
1038 struct hlist_node *pos, *n;
1039 struct cfq_group *cfqg;
1040
1041 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1042 /*
1043 * If cgroup removal path got to blk_group first and removed
1044 * it from cgroup list, then it will take care of destroying
1045 * cfqg also.
1046 */
1047 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1048 cfq_destroy_cfqg(cfqd, cfqg);
1049 }
25fb5169 1050}
b1c35769
VG
1051
1052/*
1053 * Blk cgroup controller notification saying that blkio_group object is being
1054 * delinked as associated cgroup object is going away. That also means that
1055 * no new IO will come in this group. So get rid of this group as soon as
1056 * any pending IO in the group is finished.
1057 *
1058 * This function is called under rcu_read_lock(). key is the rcu protected
1059 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1060 * read lock.
1061 *
1062 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1063 * it should not be NULL as even if elevator was exiting, cgroup deltion
1064 * path got to it first.
1065 */
1066void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1067{
1068 unsigned long flags;
1069 struct cfq_data *cfqd = key;
1070
1071 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1072 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1073 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1074}
1075
25fb5169
VG
1076#else /* GROUP_IOSCHED */
1077static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1078{
1079 return &cfqd->root_group;
1080}
1081static inline void
1082cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1083 cfqq->cfqg = cfqg;
1084}
1085
b1c35769
VG
1086static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1087static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1088
25fb5169
VG
1089#endif /* GROUP_IOSCHED */
1090
498d3aa2 1091/*
c0324a02 1092 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1093 * requests waiting to be processed. It is sorted in the order that
1094 * we will service the queues.
1095 */
a36e71f9 1096static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1097 bool add_front)
d9e7620e 1098{
0871714e
JA
1099 struct rb_node **p, *parent;
1100 struct cfq_queue *__cfqq;
d9e7620e 1101 unsigned long rb_key;
c0324a02 1102 struct cfq_rb_root *service_tree;
498d3aa2 1103 int left;
dae739eb 1104 int new_cfqq = 1;
ae30c286
VG
1105 int group_changed = 0;
1106
1107#ifdef CONFIG_CFQ_GROUP_IOSCHED
1108 if (!cfqd->cfq_group_isolation
1109 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1110 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1111 /* Move this cfq to root group */
1112 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1113 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1114 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1115 cfqq->orig_cfqg = cfqq->cfqg;
1116 cfqq->cfqg = &cfqd->root_group;
1117 atomic_inc(&cfqd->root_group.ref);
1118 group_changed = 1;
1119 } else if (!cfqd->cfq_group_isolation
1120 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1121 /* cfqq is sequential now needs to go to its original group */
1122 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1123 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1124 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1125 cfq_put_cfqg(cfqq->cfqg);
1126 cfqq->cfqg = cfqq->orig_cfqg;
1127 cfqq->orig_cfqg = NULL;
1128 group_changed = 1;
1129 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1130 }
1131#endif
d9e7620e 1132
cdb16e8f 1133 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1134 cfqq_type(cfqq));
0871714e
JA
1135 if (cfq_class_idle(cfqq)) {
1136 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1137 parent = rb_last(&service_tree->rb);
0871714e
JA
1138 if (parent && parent != &cfqq->rb_node) {
1139 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1140 rb_key += __cfqq->rb_key;
1141 } else
1142 rb_key += jiffies;
1143 } else if (!add_front) {
b9c8946b
JA
1144 /*
1145 * Get our rb key offset. Subtract any residual slice
1146 * value carried from last service. A negative resid
1147 * count indicates slice overrun, and this should position
1148 * the next service time further away in the tree.
1149 */
edd75ffd 1150 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1151 rb_key -= cfqq->slice_resid;
edd75ffd 1152 cfqq->slice_resid = 0;
48e025e6
CZ
1153 } else {
1154 rb_key = -HZ;
aa6f6a3d 1155 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1156 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1157 }
1da177e4 1158
d9e7620e 1159 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1160 new_cfqq = 0;
99f9628a 1161 /*
d9e7620e 1162 * same position, nothing more to do
99f9628a 1163 */
c0324a02
CZ
1164 if (rb_key == cfqq->rb_key &&
1165 cfqq->service_tree == service_tree)
d9e7620e 1166 return;
1da177e4 1167
aa6f6a3d
CZ
1168 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1169 cfqq->service_tree = NULL;
1da177e4 1170 }
d9e7620e 1171
498d3aa2 1172 left = 1;
0871714e 1173 parent = NULL;
aa6f6a3d
CZ
1174 cfqq->service_tree = service_tree;
1175 p = &service_tree->rb.rb_node;
d9e7620e 1176 while (*p) {
67060e37 1177 struct rb_node **n;
cc09e299 1178
d9e7620e
JA
1179 parent = *p;
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181
0c534e0a 1182 /*
c0324a02 1183 * sort by key, that represents service time.
0c534e0a 1184 */
c0324a02 1185 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1186 n = &(*p)->rb_left;
c0324a02 1187 else {
67060e37 1188 n = &(*p)->rb_right;
cc09e299 1189 left = 0;
c0324a02 1190 }
67060e37
JA
1191
1192 p = n;
d9e7620e
JA
1193 }
1194
cc09e299 1195 if (left)
aa6f6a3d 1196 service_tree->left = &cfqq->rb_node;
cc09e299 1197
d9e7620e
JA
1198 cfqq->rb_key = rb_key;
1199 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1200 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1201 service_tree->count++;
ae30c286 1202 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1203 return;
1fa8f6d6 1204 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1205}
1206
a36e71f9 1207static struct cfq_queue *
f2d1f0ae
JA
1208cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1209 sector_t sector, struct rb_node **ret_parent,
1210 struct rb_node ***rb_link)
a36e71f9 1211{
a36e71f9
JA
1212 struct rb_node **p, *parent;
1213 struct cfq_queue *cfqq = NULL;
1214
1215 parent = NULL;
1216 p = &root->rb_node;
1217 while (*p) {
1218 struct rb_node **n;
1219
1220 parent = *p;
1221 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1222
1223 /*
1224 * Sort strictly based on sector. Smallest to the left,
1225 * largest to the right.
1226 */
2e46e8b2 1227 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1228 n = &(*p)->rb_right;
2e46e8b2 1229 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1230 n = &(*p)->rb_left;
1231 else
1232 break;
1233 p = n;
3ac6c9f8 1234 cfqq = NULL;
a36e71f9
JA
1235 }
1236
1237 *ret_parent = parent;
1238 if (rb_link)
1239 *rb_link = p;
3ac6c9f8 1240 return cfqq;
a36e71f9
JA
1241}
1242
1243static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1244{
a36e71f9
JA
1245 struct rb_node **p, *parent;
1246 struct cfq_queue *__cfqq;
1247
f2d1f0ae
JA
1248 if (cfqq->p_root) {
1249 rb_erase(&cfqq->p_node, cfqq->p_root);
1250 cfqq->p_root = NULL;
1251 }
a36e71f9
JA
1252
1253 if (cfq_class_idle(cfqq))
1254 return;
1255 if (!cfqq->next_rq)
1256 return;
1257
f2d1f0ae 1258 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1259 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1260 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1261 if (!__cfqq) {
1262 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1263 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1264 } else
1265 cfqq->p_root = NULL;
a36e71f9
JA
1266}
1267
498d3aa2
JA
1268/*
1269 * Update cfqq's position in the service tree.
1270 */
edd75ffd 1271static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1272{
6d048f53
JA
1273 /*
1274 * Resorting requires the cfqq to be on the RR list already.
1275 */
a36e71f9 1276 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1277 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1278 cfq_prio_tree_add(cfqd, cfqq);
1279 }
6d048f53
JA
1280}
1281
1da177e4
LT
1282/*
1283 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1284 * the pending list according to last request service
1da177e4 1285 */
febffd61 1286static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1287{
7b679138 1288 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1289 BUG_ON(cfq_cfqq_on_rr(cfqq));
1290 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1291 cfqd->busy_queues++;
1292
edd75ffd 1293 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1294}
1295
498d3aa2
JA
1296/*
1297 * Called when the cfqq no longer has requests pending, remove it from
1298 * the service tree.
1299 */
febffd61 1300static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1301{
7b679138 1302 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1303 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1304 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1305
aa6f6a3d
CZ
1306 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1307 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1308 cfqq->service_tree = NULL;
1309 }
f2d1f0ae
JA
1310 if (cfqq->p_root) {
1311 rb_erase(&cfqq->p_node, cfqq->p_root);
1312 cfqq->p_root = NULL;
1313 }
d9e7620e 1314
1fa8f6d6 1315 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1316 BUG_ON(!cfqd->busy_queues);
1317 cfqd->busy_queues--;
1318}
1319
1320/*
1321 * rb tree support functions
1322 */
febffd61 1323static void cfq_del_rq_rb(struct request *rq)
1da177e4 1324{
5e705374 1325 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1326 const int sync = rq_is_sync(rq);
1da177e4 1327
b4878f24
JA
1328 BUG_ON(!cfqq->queued[sync]);
1329 cfqq->queued[sync]--;
1da177e4 1330
5e705374 1331 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1332
f04a6424
VG
1333 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1334 /*
1335 * Queue will be deleted from service tree when we actually
1336 * expire it later. Right now just remove it from prio tree
1337 * as it is empty.
1338 */
1339 if (cfqq->p_root) {
1340 rb_erase(&cfqq->p_node, cfqq->p_root);
1341 cfqq->p_root = NULL;
1342 }
1343 }
1da177e4
LT
1344}
1345
5e705374 1346static void cfq_add_rq_rb(struct request *rq)
1da177e4 1347{
5e705374 1348 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1349 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1350 struct request *__alias, *prev;
1da177e4 1351
5380a101 1352 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1353
1354 /*
1355 * looks a little odd, but the first insert might return an alias.
1356 * if that happens, put the alias on the dispatch list
1357 */
21183b07 1358 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1359 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1360
1361 if (!cfq_cfqq_on_rr(cfqq))
1362 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1363
1364 /*
1365 * check if this request is a better next-serve candidate
1366 */
a36e71f9 1367 prev = cfqq->next_rq;
cf7c25cf 1368 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1369
1370 /*
1371 * adjust priority tree position, if ->next_rq changes
1372 */
1373 if (prev != cfqq->next_rq)
1374 cfq_prio_tree_add(cfqd, cfqq);
1375
5044eed4 1376 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1377}
1378
febffd61 1379static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1380{
5380a101
JA
1381 elv_rb_del(&cfqq->sort_list, rq);
1382 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1383 cfq_add_rq_rb(rq);
1da177e4
LT
1384}
1385
206dc69b
JA
1386static struct request *
1387cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1388{
206dc69b 1389 struct task_struct *tsk = current;
91fac317 1390 struct cfq_io_context *cic;
206dc69b 1391 struct cfq_queue *cfqq;
1da177e4 1392
4ac845a2 1393 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1394 if (!cic)
1395 return NULL;
1396
1397 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1398 if (cfqq) {
1399 sector_t sector = bio->bi_sector + bio_sectors(bio);
1400
21183b07 1401 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1402 }
1da177e4 1403
1da177e4
LT
1404 return NULL;
1405}
1406
165125e1 1407static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1408{
22e2c507 1409 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1410
53c583d2 1411 cfqd->rq_in_driver++;
7b679138 1412 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1413 cfqd->rq_in_driver);
25776e35 1414
5b93629b 1415 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1416}
1417
165125e1 1418static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1419{
b4878f24
JA
1420 struct cfq_data *cfqd = q->elevator->elevator_data;
1421
53c583d2
CZ
1422 WARN_ON(!cfqd->rq_in_driver);
1423 cfqd->rq_in_driver--;
7b679138 1424 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1425 cfqd->rq_in_driver);
1da177e4
LT
1426}
1427
b4878f24 1428static void cfq_remove_request(struct request *rq)
1da177e4 1429{
5e705374 1430 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1431
5e705374
JA
1432 if (cfqq->next_rq == rq)
1433 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1434
b4878f24 1435 list_del_init(&rq->queuelist);
5e705374 1436 cfq_del_rq_rb(rq);
374f84ac 1437
45333d5a 1438 cfqq->cfqd->rq_queued--;
374f84ac
JA
1439 if (rq_is_meta(rq)) {
1440 WARN_ON(!cfqq->meta_pending);
1441 cfqq->meta_pending--;
1442 }
1da177e4
LT
1443}
1444
165125e1
JA
1445static int cfq_merge(struct request_queue *q, struct request **req,
1446 struct bio *bio)
1da177e4
LT
1447{
1448 struct cfq_data *cfqd = q->elevator->elevator_data;
1449 struct request *__rq;
1da177e4 1450
206dc69b 1451 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1452 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1453 *req = __rq;
1454 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1455 }
1456
1457 return ELEVATOR_NO_MERGE;
1da177e4
LT
1458}
1459
165125e1 1460static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1461 int type)
1da177e4 1462{
21183b07 1463 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1464 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1465
5e705374 1466 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1467 }
1da177e4
LT
1468}
1469
812d4026
DS
1470static void cfq_bio_merged(struct request_queue *q, struct request *req,
1471 struct bio *bio)
1472{
1473 struct cfq_queue *cfqq = RQ_CFQQ(req);
1474 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, bio_data_dir(bio),
1475 cfq_bio_sync(bio));
1476}
1477
1da177e4 1478static void
165125e1 1479cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1480 struct request *next)
1481{
cf7c25cf 1482 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1483 /*
1484 * reposition in fifo if next is older than rq
1485 */
1486 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1487 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1488 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1489 rq_set_fifo_time(rq, rq_fifo_time(next));
1490 }
22e2c507 1491
cf7c25cf
CZ
1492 if (cfqq->next_rq == next)
1493 cfqq->next_rq = rq;
b4878f24 1494 cfq_remove_request(next);
812d4026
DS
1495 blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, rq_data_dir(next),
1496 rq_is_sync(next));
22e2c507
JA
1497}
1498
165125e1 1499static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1500 struct bio *bio)
1501{
1502 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1503 struct cfq_io_context *cic;
da775265 1504 struct cfq_queue *cfqq;
da775265
JA
1505
1506 /*
ec8acb69 1507 * Disallow merge of a sync bio into an async request.
da775265 1508 */
91fac317 1509 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1510 return false;
da775265
JA
1511
1512 /*
719d3402
JA
1513 * Lookup the cfqq that this bio will be queued with. Allow
1514 * merge only if rq is queued there.
da775265 1515 */
4ac845a2 1516 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1517 if (!cic)
a6151c3a 1518 return false;
719d3402 1519
91fac317 1520 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1521 return cfqq == RQ_CFQQ(rq);
da775265
JA
1522}
1523
febffd61
JA
1524static void __cfq_set_active_queue(struct cfq_data *cfqd,
1525 struct cfq_queue *cfqq)
22e2c507
JA
1526{
1527 if (cfqq) {
b1ffe737
DS
1528 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1529 cfqd->serving_prio, cfqd->serving_type);
dae739eb
VG
1530 cfqq->slice_start = 0;
1531 cfqq->dispatch_start = jiffies;
f75edf2d 1532 cfqq->allocated_slice = 0;
22e2c507 1533 cfqq->slice_end = 0;
2f5cb738
JA
1534 cfqq->slice_dispatch = 0;
1535
2f5cb738 1536 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1537 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1538 cfq_clear_cfqq_must_alloc_slice(cfqq);
1539 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1540 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1541
1542 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1543 }
1544
1545 cfqd->active_queue = cfqq;
1546}
1547
7b14e3b5
JA
1548/*
1549 * current cfqq expired its slice (or was too idle), select new one
1550 */
1551static void
1552__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1553 bool timed_out)
7b14e3b5 1554{
7b679138
JA
1555 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1556
7b14e3b5
JA
1557 if (cfq_cfqq_wait_request(cfqq))
1558 del_timer(&cfqd->idle_slice_timer);
1559
7b14e3b5 1560 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1561 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1562
ae54abed
SL
1563 /*
1564 * If this cfqq is shared between multiple processes, check to
1565 * make sure that those processes are still issuing I/Os within
1566 * the mean seek distance. If not, it may be time to break the
1567 * queues apart again.
1568 */
1569 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1570 cfq_mark_cfqq_split_coop(cfqq);
1571
7b14e3b5 1572 /*
6084cdda 1573 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1574 */
7b679138 1575 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1576 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1577 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1578 }
7b14e3b5 1579
dae739eb
VG
1580 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1581
f04a6424
VG
1582 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1583 cfq_del_cfqq_rr(cfqd, cfqq);
1584
edd75ffd 1585 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1586
1587 if (cfqq == cfqd->active_queue)
1588 cfqd->active_queue = NULL;
1589
dae739eb
VG
1590 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1591 cfqd->grp_service_tree.active = NULL;
1592
7b14e3b5
JA
1593 if (cfqd->active_cic) {
1594 put_io_context(cfqd->active_cic->ioc);
1595 cfqd->active_cic = NULL;
1596 }
7b14e3b5
JA
1597}
1598
a6151c3a 1599static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1600{
1601 struct cfq_queue *cfqq = cfqd->active_queue;
1602
1603 if (cfqq)
6084cdda 1604 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1605}
1606
498d3aa2
JA
1607/*
1608 * Get next queue for service. Unless we have a queue preemption,
1609 * we'll simply select the first cfqq in the service tree.
1610 */
6d048f53 1611static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1612{
c0324a02 1613 struct cfq_rb_root *service_tree =
cdb16e8f 1614 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1615 cfqd->serving_type);
d9e7620e 1616
f04a6424
VG
1617 if (!cfqd->rq_queued)
1618 return NULL;
1619
1fa8f6d6
VG
1620 /* There is nothing to dispatch */
1621 if (!service_tree)
1622 return NULL;
c0324a02
CZ
1623 if (RB_EMPTY_ROOT(&service_tree->rb))
1624 return NULL;
1625 return cfq_rb_first(service_tree);
6d048f53
JA
1626}
1627
f04a6424
VG
1628static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1629{
25fb5169 1630 struct cfq_group *cfqg;
f04a6424
VG
1631 struct cfq_queue *cfqq;
1632 int i, j;
1633 struct cfq_rb_root *st;
1634
1635 if (!cfqd->rq_queued)
1636 return NULL;
1637
25fb5169
VG
1638 cfqg = cfq_get_next_cfqg(cfqd);
1639 if (!cfqg)
1640 return NULL;
1641
f04a6424
VG
1642 for_each_cfqg_st(cfqg, i, j, st)
1643 if ((cfqq = cfq_rb_first(st)) != NULL)
1644 return cfqq;
1645 return NULL;
1646}
1647
498d3aa2
JA
1648/*
1649 * Get and set a new active queue for service.
1650 */
a36e71f9
JA
1651static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1652 struct cfq_queue *cfqq)
6d048f53 1653{
e00ef799 1654 if (!cfqq)
a36e71f9 1655 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1656
22e2c507 1657 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1658 return cfqq;
22e2c507
JA
1659}
1660
d9e7620e
JA
1661static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1662 struct request *rq)
1663{
83096ebf
TH
1664 if (blk_rq_pos(rq) >= cfqd->last_position)
1665 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1666 else
83096ebf 1667 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1668}
1669
b2c18e1e 1670static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1671 struct request *rq)
6d048f53 1672{
e9ce335d 1673 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1674}
1675
a36e71f9
JA
1676static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1677 struct cfq_queue *cur_cfqq)
1678{
f2d1f0ae 1679 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1680 struct rb_node *parent, *node;
1681 struct cfq_queue *__cfqq;
1682 sector_t sector = cfqd->last_position;
1683
1684 if (RB_EMPTY_ROOT(root))
1685 return NULL;
1686
1687 /*
1688 * First, if we find a request starting at the end of the last
1689 * request, choose it.
1690 */
f2d1f0ae 1691 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1692 if (__cfqq)
1693 return __cfqq;
1694
1695 /*
1696 * If the exact sector wasn't found, the parent of the NULL leaf
1697 * will contain the closest sector.
1698 */
1699 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1701 return __cfqq;
1702
2e46e8b2 1703 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1704 node = rb_next(&__cfqq->p_node);
1705 else
1706 node = rb_prev(&__cfqq->p_node);
1707 if (!node)
1708 return NULL;
1709
1710 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1711 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1712 return __cfqq;
1713
1714 return NULL;
1715}
1716
1717/*
1718 * cfqd - obvious
1719 * cur_cfqq - passed in so that we don't decide that the current queue is
1720 * closely cooperating with itself.
1721 *
1722 * So, basically we're assuming that that cur_cfqq has dispatched at least
1723 * one request, and that cfqd->last_position reflects a position on the disk
1724 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1725 * assumption.
1726 */
1727static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1728 struct cfq_queue *cur_cfqq)
6d048f53 1729{
a36e71f9
JA
1730 struct cfq_queue *cfqq;
1731
39c01b21
DS
1732 if (cfq_class_idle(cur_cfqq))
1733 return NULL;
e6c5bc73
JM
1734 if (!cfq_cfqq_sync(cur_cfqq))
1735 return NULL;
1736 if (CFQQ_SEEKY(cur_cfqq))
1737 return NULL;
1738
b9d8f4c7
GJ
1739 /*
1740 * Don't search priority tree if it's the only queue in the group.
1741 */
1742 if (cur_cfqq->cfqg->nr_cfqq == 1)
1743 return NULL;
1744
6d048f53 1745 /*
d9e7620e
JA
1746 * We should notice if some of the queues are cooperating, eg
1747 * working closely on the same area of the disk. In that case,
1748 * we can group them together and don't waste time idling.
6d048f53 1749 */
a36e71f9
JA
1750 cfqq = cfqq_close(cfqd, cur_cfqq);
1751 if (!cfqq)
1752 return NULL;
1753
8682e1f1
VG
1754 /* If new queue belongs to different cfq_group, don't choose it */
1755 if (cur_cfqq->cfqg != cfqq->cfqg)
1756 return NULL;
1757
df5fe3e8
JM
1758 /*
1759 * It only makes sense to merge sync queues.
1760 */
1761 if (!cfq_cfqq_sync(cfqq))
1762 return NULL;
e6c5bc73
JM
1763 if (CFQQ_SEEKY(cfqq))
1764 return NULL;
df5fe3e8 1765
c0324a02
CZ
1766 /*
1767 * Do not merge queues of different priority classes
1768 */
1769 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1770 return NULL;
1771
a36e71f9 1772 return cfqq;
6d048f53
JA
1773}
1774
a6d44e98
CZ
1775/*
1776 * Determine whether we should enforce idle window for this queue.
1777 */
1778
1779static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1780{
1781 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1782 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1783
f04a6424
VG
1784 BUG_ON(!service_tree);
1785 BUG_ON(!service_tree->count);
1786
a6d44e98
CZ
1787 /* We never do for idle class queues. */
1788 if (prio == IDLE_WORKLOAD)
1789 return false;
1790
1791 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1792 if (cfq_cfqq_idle_window(cfqq) &&
1793 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1794 return true;
1795
1796 /*
1797 * Otherwise, we do only if they are the last ones
1798 * in their service tree.
1799 */
b1ffe737
DS
1800 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1801 return 1;
1802 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1803 service_tree->count);
1804 return 0;
a6d44e98
CZ
1805}
1806
6d048f53 1807static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1808{
1792669c 1809 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1810 struct cfq_io_context *cic;
7b14e3b5
JA
1811 unsigned long sl;
1812
a68bbddb 1813 /*
f7d7b7a7
JA
1814 * SSD device without seek penalty, disable idling. But only do so
1815 * for devices that support queuing, otherwise we still have a problem
1816 * with sync vs async workloads.
a68bbddb 1817 */
f7d7b7a7 1818 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1819 return;
1820
dd67d051 1821 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1822 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1823
1824 /*
1825 * idle is disabled, either manually or by past process history
1826 */
a6d44e98 1827 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1828 return;
1829
7b679138 1830 /*
8e550632 1831 * still active requests from this queue, don't idle
7b679138 1832 */
8e550632 1833 if (cfqq->dispatched)
7b679138
JA
1834 return;
1835
22e2c507
JA
1836 /*
1837 * task has exited, don't wait
1838 */
206dc69b 1839 cic = cfqd->active_cic;
66dac98e 1840 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1841 return;
1842
355b659c
CZ
1843 /*
1844 * If our average think time is larger than the remaining time
1845 * slice, then don't idle. This avoids overrunning the allotted
1846 * time slice.
1847 */
1848 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1849 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1850 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1851 cic->ttime_mean);
355b659c 1852 return;
b1ffe737 1853 }
355b659c 1854
3b18152c 1855 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1856
6d048f53 1857 sl = cfqd->cfq_slice_idle;
206dc69b 1858
7b14e3b5 1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1861}
1862
498d3aa2
JA
1863/*
1864 * Move request from internal lists to the request queue dispatch list.
1865 */
165125e1 1866static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1867{
3ed9a296 1868 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1870
7b679138
JA
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
06d21886 1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1874 cfq_remove_request(rq);
6d048f53 1875 cfqq->dispatched++;
5380a101 1876 elv_dispatch_sort(q, rq);
3ed9a296 1877
53c583d2 1878 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
84c124da
DS
1879 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1880 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1881}
1882
1883/*
1884 * return expired entry, or NULL to just start from scratch in rbtree
1885 */
febffd61 1886static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1887{
30996f40 1888 struct request *rq = NULL;
1da177e4 1889
3b18152c 1890 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1891 return NULL;
cb887411
JA
1892
1893 cfq_mark_cfqq_fifo_expire(cfqq);
1894
89850f7e
JA
1895 if (list_empty(&cfqq->fifo))
1896 return NULL;
1da177e4 1897
89850f7e 1898 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1899 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1900 rq = NULL;
1da177e4 1901
30996f40 1902 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1903 return rq;
1da177e4
LT
1904}
1905
22e2c507
JA
1906static inline int
1907cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1908{
1909 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1910
22e2c507 1911 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1912
22e2c507 1913 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1914}
1915
df5fe3e8
JM
1916/*
1917 * Must be called with the queue_lock held.
1918 */
1919static int cfqq_process_refs(struct cfq_queue *cfqq)
1920{
1921 int process_refs, io_refs;
1922
1923 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1924 process_refs = atomic_read(&cfqq->ref) - io_refs;
1925 BUG_ON(process_refs < 0);
1926 return process_refs;
1927}
1928
1929static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1930{
e6c5bc73 1931 int process_refs, new_process_refs;
df5fe3e8
JM
1932 struct cfq_queue *__cfqq;
1933
1934 /* Avoid a circular list and skip interim queue merges */
1935 while ((__cfqq = new_cfqq->new_cfqq)) {
1936 if (__cfqq == cfqq)
1937 return;
1938 new_cfqq = __cfqq;
1939 }
1940
1941 process_refs = cfqq_process_refs(cfqq);
1942 /*
1943 * If the process for the cfqq has gone away, there is no
1944 * sense in merging the queues.
1945 */
1946 if (process_refs == 0)
1947 return;
1948
e6c5bc73
JM
1949 /*
1950 * Merge in the direction of the lesser amount of work.
1951 */
1952 new_process_refs = cfqq_process_refs(new_cfqq);
1953 if (new_process_refs >= process_refs) {
1954 cfqq->new_cfqq = new_cfqq;
1955 atomic_add(process_refs, &new_cfqq->ref);
1956 } else {
1957 new_cfqq->new_cfqq = cfqq;
1958 atomic_add(new_process_refs, &cfqq->ref);
1959 }
df5fe3e8
JM
1960}
1961
cdb16e8f 1962static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1963 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1964{
1965 struct cfq_queue *queue;
1966 int i;
1967 bool key_valid = false;
1968 unsigned long lowest_key = 0;
1969 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1970
65b32a57
VG
1971 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1972 /* select the one with lowest rb_key */
1973 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1974 if (queue &&
1975 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1976 lowest_key = queue->rb_key;
1977 cur_best = i;
1978 key_valid = true;
1979 }
1980 }
1981
1982 return cur_best;
1983}
1984
cdb16e8f 1985static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1986{
718eee05
CZ
1987 unsigned slice;
1988 unsigned count;
cdb16e8f 1989 struct cfq_rb_root *st;
58ff82f3 1990 unsigned group_slice;
718eee05 1991
1fa8f6d6
VG
1992 if (!cfqg) {
1993 cfqd->serving_prio = IDLE_WORKLOAD;
1994 cfqd->workload_expires = jiffies + 1;
1995 return;
1996 }
1997
718eee05 1998 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1999 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2000 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2001 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2002 cfqd->serving_prio = BE_WORKLOAD;
2003 else {
2004 cfqd->serving_prio = IDLE_WORKLOAD;
2005 cfqd->workload_expires = jiffies + 1;
2006 return;
2007 }
2008
2009 /*
2010 * For RT and BE, we have to choose also the type
2011 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2012 * expiration time
2013 */
65b32a57 2014 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2015 count = st->count;
718eee05
CZ
2016
2017 /*
65b32a57 2018 * check workload expiration, and that we still have other queues ready
718eee05 2019 */
65b32a57 2020 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2021 return;
2022
2023 /* otherwise select new workload type */
2024 cfqd->serving_type =
65b32a57
VG
2025 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2026 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2027 count = st->count;
718eee05
CZ
2028
2029 /*
2030 * the workload slice is computed as a fraction of target latency
2031 * proportional to the number of queues in that workload, over
2032 * all the queues in the same priority class
2033 */
58ff82f3
VG
2034 group_slice = cfq_group_slice(cfqd, cfqg);
2035
2036 slice = group_slice * count /
2037 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2038 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2039
f26bd1f0
VG
2040 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2041 unsigned int tmp;
2042
2043 /*
2044 * Async queues are currently system wide. Just taking
2045 * proportion of queues with-in same group will lead to higher
2046 * async ratio system wide as generally root group is going
2047 * to have higher weight. A more accurate thing would be to
2048 * calculate system wide asnc/sync ratio.
2049 */
2050 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2051 tmp = tmp/cfqd->busy_queues;
2052 slice = min_t(unsigned, slice, tmp);
2053
718eee05
CZ
2054 /* async workload slice is scaled down according to
2055 * the sync/async slice ratio. */
2056 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2057 } else
718eee05
CZ
2058 /* sync workload slice is at least 2 * cfq_slice_idle */
2059 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2060
2061 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2062 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2063 cfqd->workload_expires = jiffies + slice;
8e550632 2064 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2065}
2066
1fa8f6d6
VG
2067static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2068{
2069 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2070 struct cfq_group *cfqg;
1fa8f6d6
VG
2071
2072 if (RB_EMPTY_ROOT(&st->rb))
2073 return NULL;
25bc6b07
VG
2074 cfqg = cfq_rb_first_group(st);
2075 st->active = &cfqg->rb_node;
2076 update_min_vdisktime(st);
2077 return cfqg;
1fa8f6d6
VG
2078}
2079
cdb16e8f
VG
2080static void cfq_choose_cfqg(struct cfq_data *cfqd)
2081{
1fa8f6d6
VG
2082 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2083
2084 cfqd->serving_group = cfqg;
dae739eb
VG
2085
2086 /* Restore the workload type data */
2087 if (cfqg->saved_workload_slice) {
2088 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2089 cfqd->serving_type = cfqg->saved_workload;
2090 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2091 } else
2092 cfqd->workload_expires = jiffies - 1;
2093
1fa8f6d6 2094 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2095}
2096
22e2c507 2097/*
498d3aa2
JA
2098 * Select a queue for service. If we have a current active queue,
2099 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2100 */
1b5ed5e1 2101static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2102{
a36e71f9 2103 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2104
22e2c507
JA
2105 cfqq = cfqd->active_queue;
2106 if (!cfqq)
2107 goto new_queue;
1da177e4 2108
f04a6424
VG
2109 if (!cfqd->rq_queued)
2110 return NULL;
c244bb50
VG
2111
2112 /*
2113 * We were waiting for group to get backlogged. Expire the queue
2114 */
2115 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2116 goto expire;
2117
22e2c507 2118 /*
6d048f53 2119 * The active queue has run out of time, expire it and select new.
22e2c507 2120 */
7667aa06
VG
2121 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2122 /*
2123 * If slice had not expired at the completion of last request
2124 * we might not have turned on wait_busy flag. Don't expire
2125 * the queue yet. Allow the group to get backlogged.
2126 *
2127 * The very fact that we have used the slice, that means we
2128 * have been idling all along on this queue and it should be
2129 * ok to wait for this request to complete.
2130 */
82bbbf28
VG
2131 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2132 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2133 cfqq = NULL;
7667aa06 2134 goto keep_queue;
82bbbf28 2135 } else
7667aa06
VG
2136 goto expire;
2137 }
1da177e4 2138
22e2c507 2139 /*
6d048f53
JA
2140 * The active queue has requests and isn't expired, allow it to
2141 * dispatch.
22e2c507 2142 */
dd67d051 2143 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2144 goto keep_queue;
6d048f53 2145
a36e71f9
JA
2146 /*
2147 * If another queue has a request waiting within our mean seek
2148 * distance, let it run. The expire code will check for close
2149 * cooperators and put the close queue at the front of the service
df5fe3e8 2150 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2151 */
b3b6d040 2152 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2153 if (new_cfqq) {
2154 if (!cfqq->new_cfqq)
2155 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2156 goto expire;
df5fe3e8 2157 }
a36e71f9 2158
6d048f53
JA
2159 /*
2160 * No requests pending. If the active queue still has requests in
2161 * flight or is idling for a new request, allow either of these
2162 * conditions to happen (or time out) before selecting a new queue.
2163 */
cc197479 2164 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2165 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2166 cfqq = NULL;
2167 goto keep_queue;
22e2c507
JA
2168 }
2169
3b18152c 2170expire:
6084cdda 2171 cfq_slice_expired(cfqd, 0);
3b18152c 2172new_queue:
718eee05
CZ
2173 /*
2174 * Current queue expired. Check if we have to switch to a new
2175 * service tree
2176 */
2177 if (!new_cfqq)
cdb16e8f 2178 cfq_choose_cfqg(cfqd);
718eee05 2179
a36e71f9 2180 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2181keep_queue:
3b18152c 2182 return cfqq;
22e2c507
JA
2183}
2184
febffd61 2185static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2186{
2187 int dispatched = 0;
2188
2189 while (cfqq->next_rq) {
2190 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2191 dispatched++;
2192 }
2193
2194 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2195
2196 /* By default cfqq is not expired if it is empty. Do it explicitly */
2197 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2198 return dispatched;
2199}
2200
498d3aa2
JA
2201/*
2202 * Drain our current requests. Used for barriers and when switching
2203 * io schedulers on-the-fly.
2204 */
d9e7620e 2205static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2206{
0871714e 2207 struct cfq_queue *cfqq;
d9e7620e 2208 int dispatched = 0;
cdb16e8f 2209
f04a6424
VG
2210 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2211 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2212
6084cdda 2213 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2214 BUG_ON(cfqd->busy_queues);
2215
6923715a 2216 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2217 return dispatched;
2218}
2219
abc3c744
SL
2220static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2221 struct cfq_queue *cfqq)
2222{
2223 /* the queue hasn't finished any request, can't estimate */
2224 if (cfq_cfqq_slice_new(cfqq))
2225 return 1;
2226 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2227 cfqq->slice_end))
2228 return 1;
2229
2230 return 0;
2231}
2232
0b182d61 2233static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2234{
2f5cb738 2235 unsigned int max_dispatch;
22e2c507 2236
5ad531db
JA
2237 /*
2238 * Drain async requests before we start sync IO
2239 */
53c583d2 2240 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2241 return false;
5ad531db 2242
2f5cb738
JA
2243 /*
2244 * If this is an async queue and we have sync IO in flight, let it wait
2245 */
53c583d2 2246 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2247 return false;
2f5cb738 2248
abc3c744 2249 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2250 if (cfq_class_idle(cfqq))
2251 max_dispatch = 1;
b4878f24 2252
2f5cb738
JA
2253 /*
2254 * Does this cfqq already have too much IO in flight?
2255 */
2256 if (cfqq->dispatched >= max_dispatch) {
2257 /*
2258 * idle queue must always only have a single IO in flight
2259 */
3ed9a296 2260 if (cfq_class_idle(cfqq))
0b182d61 2261 return false;
3ed9a296 2262
2f5cb738
JA
2263 /*
2264 * We have other queues, don't allow more IO from this one
2265 */
abc3c744 2266 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2267 return false;
9ede209e 2268
365722bb 2269 /*
474b18cc 2270 * Sole queue user, no limit
365722bb 2271 */
abc3c744
SL
2272 if (cfqd->busy_queues == 1)
2273 max_dispatch = -1;
2274 else
2275 /*
2276 * Normally we start throttling cfqq when cfq_quantum/2
2277 * requests have been dispatched. But we can drive
2278 * deeper queue depths at the beginning of slice
2279 * subjected to upper limit of cfq_quantum.
2280 * */
2281 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2282 }
2283
2284 /*
2285 * Async queues must wait a bit before being allowed dispatch.
2286 * We also ramp up the dispatch depth gradually for async IO,
2287 * based on the last sync IO we serviced
2288 */
963b72fc 2289 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2290 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2291 unsigned int depth;
365722bb 2292
61f0c1dc 2293 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2294 if (!depth && !cfqq->dispatched)
2295 depth = 1;
8e296755
JA
2296 if (depth < max_dispatch)
2297 max_dispatch = depth;
2f5cb738 2298 }
3ed9a296 2299
0b182d61
JA
2300 /*
2301 * If we're below the current max, allow a dispatch
2302 */
2303 return cfqq->dispatched < max_dispatch;
2304}
2305
2306/*
2307 * Dispatch a request from cfqq, moving them to the request queue
2308 * dispatch list.
2309 */
2310static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311{
2312 struct request *rq;
2313
2314 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2315
2316 if (!cfq_may_dispatch(cfqd, cfqq))
2317 return false;
2318
2319 /*
2320 * follow expired path, else get first next available
2321 */
2322 rq = cfq_check_fifo(cfqq);
2323 if (!rq)
2324 rq = cfqq->next_rq;
2325
2326 /*
2327 * insert request into driver dispatch list
2328 */
2329 cfq_dispatch_insert(cfqd->queue, rq);
2330
2331 if (!cfqd->active_cic) {
2332 struct cfq_io_context *cic = RQ_CIC(rq);
2333
2334 atomic_long_inc(&cic->ioc->refcount);
2335 cfqd->active_cic = cic;
2336 }
2337
2338 return true;
2339}
2340
2341/*
2342 * Find the cfqq that we need to service and move a request from that to the
2343 * dispatch list
2344 */
2345static int cfq_dispatch_requests(struct request_queue *q, int force)
2346{
2347 struct cfq_data *cfqd = q->elevator->elevator_data;
2348 struct cfq_queue *cfqq;
2349
2350 if (!cfqd->busy_queues)
2351 return 0;
2352
2353 if (unlikely(force))
2354 return cfq_forced_dispatch(cfqd);
2355
2356 cfqq = cfq_select_queue(cfqd);
2357 if (!cfqq)
8e296755
JA
2358 return 0;
2359
2f5cb738 2360 /*
0b182d61 2361 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2362 */
0b182d61
JA
2363 if (!cfq_dispatch_request(cfqd, cfqq))
2364 return 0;
2365
2f5cb738 2366 cfqq->slice_dispatch++;
b029195d 2367 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2368
2f5cb738
JA
2369 /*
2370 * expire an async queue immediately if it has used up its slice. idle
2371 * queue always expire after 1 dispatch round.
2372 */
2373 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2374 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2375 cfq_class_idle(cfqq))) {
2376 cfqq->slice_end = jiffies + 1;
2377 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2378 }
2379
b217a903 2380 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2381 return 1;
1da177e4
LT
2382}
2383
1da177e4 2384/*
5e705374
JA
2385 * task holds one reference to the queue, dropped when task exits. each rq
2386 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2387 *
b1c35769 2388 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2389 * queue lock must be held here.
2390 */
2391static void cfq_put_queue(struct cfq_queue *cfqq)
2392{
22e2c507 2393 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2394 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2395
2396 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2397
2398 if (!atomic_dec_and_test(&cfqq->ref))
2399 return;
2400
7b679138 2401 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2402 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2403 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2404 cfqg = cfqq->cfqg;
878eaddd 2405 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2406
28f95cbc 2407 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2408 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2409 cfq_schedule_dispatch(cfqd);
28f95cbc 2410 }
22e2c507 2411
f04a6424 2412 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2413 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2414 cfq_put_cfqg(cfqg);
878eaddd
VG
2415 if (orig_cfqg)
2416 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2417}
2418
d6de8be7
JA
2419/*
2420 * Must always be called with the rcu_read_lock() held
2421 */
07416d29
JA
2422static void
2423__call_for_each_cic(struct io_context *ioc,
2424 void (*func)(struct io_context *, struct cfq_io_context *))
2425{
2426 struct cfq_io_context *cic;
2427 struct hlist_node *n;
2428
2429 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2430 func(ioc, cic);
2431}
2432
4ac845a2 2433/*
34e6bbf2 2434 * Call func for each cic attached to this ioc.
4ac845a2 2435 */
34e6bbf2 2436static void
4ac845a2
JA
2437call_for_each_cic(struct io_context *ioc,
2438 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2439{
4ac845a2 2440 rcu_read_lock();
07416d29 2441 __call_for_each_cic(ioc, func);
4ac845a2 2442 rcu_read_unlock();
34e6bbf2
FC
2443}
2444
2445static void cfq_cic_free_rcu(struct rcu_head *head)
2446{
2447 struct cfq_io_context *cic;
2448
2449 cic = container_of(head, struct cfq_io_context, rcu_head);
2450
2451 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2452 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2453
9a11b4ed
JA
2454 if (ioc_gone) {
2455 /*
2456 * CFQ scheduler is exiting, grab exit lock and check
2457 * the pending io context count. If it hits zero,
2458 * complete ioc_gone and set it back to NULL
2459 */
2460 spin_lock(&ioc_gone_lock);
245b2e70 2461 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2462 complete(ioc_gone);
2463 ioc_gone = NULL;
2464 }
2465 spin_unlock(&ioc_gone_lock);
2466 }
34e6bbf2 2467}
4ac845a2 2468
34e6bbf2
FC
2469static void cfq_cic_free(struct cfq_io_context *cic)
2470{
2471 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2472}
2473
2474static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2475{
2476 unsigned long flags;
2477
2478 BUG_ON(!cic->dead_key);
2479
2480 spin_lock_irqsave(&ioc->lock, flags);
2481 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2482 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2483 spin_unlock_irqrestore(&ioc->lock, flags);
2484
34e6bbf2 2485 cfq_cic_free(cic);
4ac845a2
JA
2486}
2487
d6de8be7
JA
2488/*
2489 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2490 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2491 * and ->trim() which is called with the task lock held
2492 */
4ac845a2
JA
2493static void cfq_free_io_context(struct io_context *ioc)
2494{
4ac845a2 2495 /*
34e6bbf2
FC
2496 * ioc->refcount is zero here, or we are called from elv_unregister(),
2497 * so no more cic's are allowed to be linked into this ioc. So it
2498 * should be ok to iterate over the known list, we will see all cic's
2499 * since no new ones are added.
4ac845a2 2500 */
07416d29 2501 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2502}
2503
89850f7e 2504static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2505{
df5fe3e8
JM
2506 struct cfq_queue *__cfqq, *next;
2507
28f95cbc 2508 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2509 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2510 cfq_schedule_dispatch(cfqd);
28f95cbc 2511 }
22e2c507 2512
df5fe3e8
JM
2513 /*
2514 * If this queue was scheduled to merge with another queue, be
2515 * sure to drop the reference taken on that queue (and others in
2516 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2517 */
2518 __cfqq = cfqq->new_cfqq;
2519 while (__cfqq) {
2520 if (__cfqq == cfqq) {
2521 WARN(1, "cfqq->new_cfqq loop detected\n");
2522 break;
2523 }
2524 next = __cfqq->new_cfqq;
2525 cfq_put_queue(__cfqq);
2526 __cfqq = next;
2527 }
2528
89850f7e
JA
2529 cfq_put_queue(cfqq);
2530}
22e2c507 2531
89850f7e
JA
2532static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2533 struct cfq_io_context *cic)
2534{
4faa3c81
FC
2535 struct io_context *ioc = cic->ioc;
2536
fc46379d 2537 list_del_init(&cic->queue_list);
4ac845a2
JA
2538
2539 /*
2540 * Make sure key == NULL is seen for dead queues
2541 */
fc46379d 2542 smp_wmb();
4ac845a2 2543 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2544 cic->key = NULL;
2545
4faa3c81
FC
2546 if (ioc->ioc_data == cic)
2547 rcu_assign_pointer(ioc->ioc_data, NULL);
2548
ff6657c6
JA
2549 if (cic->cfqq[BLK_RW_ASYNC]) {
2550 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2551 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2552 }
2553
ff6657c6
JA
2554 if (cic->cfqq[BLK_RW_SYNC]) {
2555 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2556 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2557 }
89850f7e
JA
2558}
2559
4ac845a2
JA
2560static void cfq_exit_single_io_context(struct io_context *ioc,
2561 struct cfq_io_context *cic)
89850f7e
JA
2562{
2563 struct cfq_data *cfqd = cic->key;
2564
89850f7e 2565 if (cfqd) {
165125e1 2566 struct request_queue *q = cfqd->queue;
4ac845a2 2567 unsigned long flags;
89850f7e 2568
4ac845a2 2569 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2570
2571 /*
2572 * Ensure we get a fresh copy of the ->key to prevent
2573 * race between exiting task and queue
2574 */
2575 smp_read_barrier_depends();
2576 if (cic->key)
2577 __cfq_exit_single_io_context(cfqd, cic);
2578
4ac845a2 2579 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2580 }
1da177e4
LT
2581}
2582
498d3aa2
JA
2583/*
2584 * The process that ioc belongs to has exited, we need to clean up
2585 * and put the internal structures we have that belongs to that process.
2586 */
e2d74ac0 2587static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2588{
4ac845a2 2589 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2590}
2591
22e2c507 2592static struct cfq_io_context *
8267e268 2593cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2594{
b5deef90 2595 struct cfq_io_context *cic;
1da177e4 2596
94f6030c
CL
2597 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2598 cfqd->queue->node);
1da177e4 2599 if (cic) {
22e2c507 2600 cic->last_end_request = jiffies;
553698f9 2601 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2602 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2603 cic->dtor = cfq_free_io_context;
2604 cic->exit = cfq_exit_io_context;
245b2e70 2605 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2606 }
2607
2608 return cic;
2609}
2610
fd0928df 2611static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2612{
2613 struct task_struct *tsk = current;
2614 int ioprio_class;
2615
3b18152c 2616 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2617 return;
2618
fd0928df 2619 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2620 switch (ioprio_class) {
fe094d98
JA
2621 default:
2622 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2623 case IOPRIO_CLASS_NONE:
2624 /*
6d63c275 2625 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2626 */
2627 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2628 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2629 break;
2630 case IOPRIO_CLASS_RT:
2631 cfqq->ioprio = task_ioprio(ioc);
2632 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2633 break;
2634 case IOPRIO_CLASS_BE:
2635 cfqq->ioprio = task_ioprio(ioc);
2636 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2637 break;
2638 case IOPRIO_CLASS_IDLE:
2639 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2640 cfqq->ioprio = 7;
2641 cfq_clear_cfqq_idle_window(cfqq);
2642 break;
22e2c507
JA
2643 }
2644
2645 /*
2646 * keep track of original prio settings in case we have to temporarily
2647 * elevate the priority of this queue
2648 */
2649 cfqq->org_ioprio = cfqq->ioprio;
2650 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2651 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2652}
2653
febffd61 2654static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2655{
478a82b0
AV
2656 struct cfq_data *cfqd = cic->key;
2657 struct cfq_queue *cfqq;
c1b707d2 2658 unsigned long flags;
35e6077c 2659
caaa5f9f
JA
2660 if (unlikely(!cfqd))
2661 return;
2662
c1b707d2 2663 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2664
ff6657c6 2665 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2666 if (cfqq) {
2667 struct cfq_queue *new_cfqq;
ff6657c6
JA
2668 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2669 GFP_ATOMIC);
caaa5f9f 2670 if (new_cfqq) {
ff6657c6 2671 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2672 cfq_put_queue(cfqq);
2673 }
22e2c507 2674 }
caaa5f9f 2675
ff6657c6 2676 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2677 if (cfqq)
2678 cfq_mark_cfqq_prio_changed(cfqq);
2679
c1b707d2 2680 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2681}
2682
fc46379d 2683static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2684{
4ac845a2 2685 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2686 ioc->ioprio_changed = 0;
22e2c507
JA
2687}
2688
d5036d77 2689static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2690 pid_t pid, bool is_sync)
d5036d77
JA
2691{
2692 RB_CLEAR_NODE(&cfqq->rb_node);
2693 RB_CLEAR_NODE(&cfqq->p_node);
2694 INIT_LIST_HEAD(&cfqq->fifo);
2695
2696 atomic_set(&cfqq->ref, 0);
2697 cfqq->cfqd = cfqd;
2698
2699 cfq_mark_cfqq_prio_changed(cfqq);
2700
2701 if (is_sync) {
2702 if (!cfq_class_idle(cfqq))
2703 cfq_mark_cfqq_idle_window(cfqq);
2704 cfq_mark_cfqq_sync(cfqq);
2705 }
2706 cfqq->pid = pid;
2707}
2708
24610333
VG
2709#ifdef CONFIG_CFQ_GROUP_IOSCHED
2710static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2711{
2712 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2713 struct cfq_data *cfqd = cic->key;
2714 unsigned long flags;
2715 struct request_queue *q;
2716
2717 if (unlikely(!cfqd))
2718 return;
2719
2720 q = cfqd->queue;
2721
2722 spin_lock_irqsave(q->queue_lock, flags);
2723
2724 if (sync_cfqq) {
2725 /*
2726 * Drop reference to sync queue. A new sync queue will be
2727 * assigned in new group upon arrival of a fresh request.
2728 */
2729 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2730 cic_set_cfqq(cic, NULL, 1);
2731 cfq_put_queue(sync_cfqq);
2732 }
2733
2734 spin_unlock_irqrestore(q->queue_lock, flags);
2735}
2736
2737static void cfq_ioc_set_cgroup(struct io_context *ioc)
2738{
2739 call_for_each_cic(ioc, changed_cgroup);
2740 ioc->cgroup_changed = 0;
2741}
2742#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2743
22e2c507 2744static struct cfq_queue *
a6151c3a 2745cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2746 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2747{
22e2c507 2748 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2749 struct cfq_io_context *cic;
cdb16e8f 2750 struct cfq_group *cfqg;
22e2c507
JA
2751
2752retry:
cdb16e8f 2753 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2754 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2755 /* cic always exists here */
2756 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2757
6118b70b
JA
2758 /*
2759 * Always try a new alloc if we fell back to the OOM cfqq
2760 * originally, since it should just be a temporary situation.
2761 */
2762 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2763 cfqq = NULL;
22e2c507
JA
2764 if (new_cfqq) {
2765 cfqq = new_cfqq;
2766 new_cfqq = NULL;
2767 } else if (gfp_mask & __GFP_WAIT) {
2768 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2769 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2770 gfp_mask | __GFP_ZERO,
94f6030c 2771 cfqd->queue->node);
22e2c507 2772 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2773 if (new_cfqq)
2774 goto retry;
22e2c507 2775 } else {
94f6030c
CL
2776 cfqq = kmem_cache_alloc_node(cfq_pool,
2777 gfp_mask | __GFP_ZERO,
2778 cfqd->queue->node);
22e2c507
JA
2779 }
2780
6118b70b
JA
2781 if (cfqq) {
2782 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2783 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2784 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2785 cfq_log_cfqq(cfqd, cfqq, "alloced");
2786 } else
2787 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2788 }
2789
2790 if (new_cfqq)
2791 kmem_cache_free(cfq_pool, new_cfqq);
2792
22e2c507
JA
2793 return cfqq;
2794}
2795
c2dea2d1
VT
2796static struct cfq_queue **
2797cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2798{
fe094d98 2799 switch (ioprio_class) {
c2dea2d1
VT
2800 case IOPRIO_CLASS_RT:
2801 return &cfqd->async_cfqq[0][ioprio];
2802 case IOPRIO_CLASS_BE:
2803 return &cfqd->async_cfqq[1][ioprio];
2804 case IOPRIO_CLASS_IDLE:
2805 return &cfqd->async_idle_cfqq;
2806 default:
2807 BUG();
2808 }
2809}
2810
15c31be4 2811static struct cfq_queue *
a6151c3a 2812cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2813 gfp_t gfp_mask)
2814{
fd0928df
JA
2815 const int ioprio = task_ioprio(ioc);
2816 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2817 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2818 struct cfq_queue *cfqq = NULL;
2819
c2dea2d1
VT
2820 if (!is_sync) {
2821 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2822 cfqq = *async_cfqq;
2823 }
2824
6118b70b 2825 if (!cfqq)
fd0928df 2826 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2827
2828 /*
2829 * pin the queue now that it's allocated, scheduler exit will prune it
2830 */
c2dea2d1 2831 if (!is_sync && !(*async_cfqq)) {
15c31be4 2832 atomic_inc(&cfqq->ref);
c2dea2d1 2833 *async_cfqq = cfqq;
15c31be4
JA
2834 }
2835
2836 atomic_inc(&cfqq->ref);
2837 return cfqq;
2838}
2839
498d3aa2
JA
2840/*
2841 * We drop cfq io contexts lazily, so we may find a dead one.
2842 */
dbecf3ab 2843static void
4ac845a2
JA
2844cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2845 struct cfq_io_context *cic)
dbecf3ab 2846{
4ac845a2
JA
2847 unsigned long flags;
2848
fc46379d 2849 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2850
4ac845a2
JA
2851 spin_lock_irqsave(&ioc->lock, flags);
2852
4faa3c81 2853 BUG_ON(ioc->ioc_data == cic);
597bc485 2854
4ac845a2 2855 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2856 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2857 spin_unlock_irqrestore(&ioc->lock, flags);
2858
2859 cfq_cic_free(cic);
dbecf3ab
OH
2860}
2861
e2d74ac0 2862static struct cfq_io_context *
4ac845a2 2863cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2864{
e2d74ac0 2865 struct cfq_io_context *cic;
d6de8be7 2866 unsigned long flags;
4ac845a2 2867 void *k;
e2d74ac0 2868
91fac317
VT
2869 if (unlikely(!ioc))
2870 return NULL;
2871
d6de8be7
JA
2872 rcu_read_lock();
2873
597bc485
JA
2874 /*
2875 * we maintain a last-hit cache, to avoid browsing over the tree
2876 */
4ac845a2 2877 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2878 if (cic && cic->key == cfqd) {
2879 rcu_read_unlock();
597bc485 2880 return cic;
d6de8be7 2881 }
597bc485 2882
4ac845a2 2883 do {
4ac845a2
JA
2884 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2885 rcu_read_unlock();
2886 if (!cic)
2887 break;
be3b0753
OH
2888 /* ->key must be copied to avoid race with cfq_exit_queue() */
2889 k = cic->key;
2890 if (unlikely(!k)) {
4ac845a2 2891 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2892 rcu_read_lock();
4ac845a2 2893 continue;
dbecf3ab 2894 }
e2d74ac0 2895
d6de8be7 2896 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2897 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2898 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2899 break;
2900 } while (1);
e2d74ac0 2901
4ac845a2 2902 return cic;
e2d74ac0
JA
2903}
2904
4ac845a2
JA
2905/*
2906 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2907 * the process specific cfq io context when entered from the block layer.
2908 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2909 */
febffd61
JA
2910static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2911 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2912{
0261d688 2913 unsigned long flags;
4ac845a2 2914 int ret;
e2d74ac0 2915
4ac845a2
JA
2916 ret = radix_tree_preload(gfp_mask);
2917 if (!ret) {
2918 cic->ioc = ioc;
2919 cic->key = cfqd;
e2d74ac0 2920
4ac845a2
JA
2921 spin_lock_irqsave(&ioc->lock, flags);
2922 ret = radix_tree_insert(&ioc->radix_root,
2923 (unsigned long) cfqd, cic);
ffc4e759
JA
2924 if (!ret)
2925 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2926 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2927
4ac845a2
JA
2928 radix_tree_preload_end();
2929
2930 if (!ret) {
2931 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2932 list_add(&cic->queue_list, &cfqd->cic_list);
2933 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2934 }
e2d74ac0
JA
2935 }
2936
4ac845a2
JA
2937 if (ret)
2938 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2939
4ac845a2 2940 return ret;
e2d74ac0
JA
2941}
2942
1da177e4
LT
2943/*
2944 * Setup general io context and cfq io context. There can be several cfq
2945 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2946 * than one device managed by cfq.
1da177e4
LT
2947 */
2948static struct cfq_io_context *
e2d74ac0 2949cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2950{
22e2c507 2951 struct io_context *ioc = NULL;
1da177e4 2952 struct cfq_io_context *cic;
1da177e4 2953
22e2c507 2954 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2955
b5deef90 2956 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2957 if (!ioc)
2958 return NULL;
2959
4ac845a2 2960 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2961 if (cic)
2962 goto out;
1da177e4 2963
e2d74ac0
JA
2964 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2965 if (cic == NULL)
2966 goto err;
1da177e4 2967
4ac845a2
JA
2968 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2969 goto err_free;
2970
1da177e4 2971out:
fc46379d
JA
2972 smp_read_barrier_depends();
2973 if (unlikely(ioc->ioprio_changed))
2974 cfq_ioc_set_ioprio(ioc);
2975
24610333
VG
2976#ifdef CONFIG_CFQ_GROUP_IOSCHED
2977 if (unlikely(ioc->cgroup_changed))
2978 cfq_ioc_set_cgroup(ioc);
2979#endif
1da177e4 2980 return cic;
4ac845a2
JA
2981err_free:
2982 cfq_cic_free(cic);
1da177e4
LT
2983err:
2984 put_io_context(ioc);
2985 return NULL;
2986}
2987
22e2c507
JA
2988static void
2989cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2990{
aaf1228d
JA
2991 unsigned long elapsed = jiffies - cic->last_end_request;
2992 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2993
22e2c507
JA
2994 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2995 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2996 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2997}
1da177e4 2998
206dc69b 2999static void
b2c18e1e 3000cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3001 struct request *rq)
206dc69b 3002{
3dde36dd 3003 sector_t sdist = 0;
41647e7a 3004 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3005 if (cfqq->last_request_pos) {
3006 if (cfqq->last_request_pos < blk_rq_pos(rq))
3007 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3008 else
3009 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3010 }
206dc69b 3011
3dde36dd 3012 cfqq->seek_history <<= 1;
41647e7a
CZ
3013 if (blk_queue_nonrot(cfqd->queue))
3014 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3015 else
3016 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3017}
1da177e4 3018
22e2c507
JA
3019/*
3020 * Disable idle window if the process thinks too long or seeks so much that
3021 * it doesn't matter
3022 */
3023static void
3024cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3025 struct cfq_io_context *cic)
3026{
7b679138 3027 int old_idle, enable_idle;
1be92f2f 3028
0871714e
JA
3029 /*
3030 * Don't idle for async or idle io prio class
3031 */
3032 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3033 return;
3034
c265a7f4 3035 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3036
76280aff
CZ
3037 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3038 cfq_mark_cfqq_deep(cfqq);
3039
66dac98e 3040 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3041 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3042 enable_idle = 0;
3043 else if (sample_valid(cic->ttime_samples)) {
718eee05 3044 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3045 enable_idle = 0;
3046 else
3047 enable_idle = 1;
1da177e4
LT
3048 }
3049
7b679138
JA
3050 if (old_idle != enable_idle) {
3051 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3052 if (enable_idle)
3053 cfq_mark_cfqq_idle_window(cfqq);
3054 else
3055 cfq_clear_cfqq_idle_window(cfqq);
3056 }
22e2c507 3057}
1da177e4 3058
22e2c507
JA
3059/*
3060 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3061 * no or if we aren't sure, a 1 will cause a preempt.
3062 */
a6151c3a 3063static bool
22e2c507 3064cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3065 struct request *rq)
22e2c507 3066{
6d048f53 3067 struct cfq_queue *cfqq;
22e2c507 3068
6d048f53
JA
3069 cfqq = cfqd->active_queue;
3070 if (!cfqq)
a6151c3a 3071 return false;
22e2c507 3072
6d048f53 3073 if (cfq_class_idle(new_cfqq))
a6151c3a 3074 return false;
22e2c507
JA
3075
3076 if (cfq_class_idle(cfqq))
a6151c3a 3077 return true;
1e3335de 3078
875feb63
DS
3079 /*
3080 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3081 */
3082 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3083 return false;
3084
374f84ac
JA
3085 /*
3086 * if the new request is sync, but the currently running queue is
3087 * not, let the sync request have priority.
3088 */
5e705374 3089 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3090 return true;
1e3335de 3091
8682e1f1
VG
3092 if (new_cfqq->cfqg != cfqq->cfqg)
3093 return false;
3094
3095 if (cfq_slice_used(cfqq))
3096 return true;
3097
3098 /* Allow preemption only if we are idling on sync-noidle tree */
3099 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3100 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3101 new_cfqq->service_tree->count == 2 &&
3102 RB_EMPTY_ROOT(&cfqq->sort_list))
3103 return true;
3104
374f84ac
JA
3105 /*
3106 * So both queues are sync. Let the new request get disk time if
3107 * it's a metadata request and the current queue is doing regular IO.
3108 */
3109 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3110 return true;
22e2c507 3111
3a9a3f6c
DS
3112 /*
3113 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3114 */
3115 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3116 return true;
3a9a3f6c 3117
1e3335de 3118 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3119 return false;
1e3335de
JA
3120
3121 /*
3122 * if this request is as-good as one we would expect from the
3123 * current cfqq, let it preempt
3124 */
e9ce335d 3125 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3126 return true;
1e3335de 3127
a6151c3a 3128 return false;
22e2c507
JA
3129}
3130
3131/*
3132 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3133 * let it have half of its nominal slice.
3134 */
3135static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3136{
7b679138 3137 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3138 cfq_slice_expired(cfqd, 1);
22e2c507 3139
bf572256
JA
3140 /*
3141 * Put the new queue at the front of the of the current list,
3142 * so we know that it will be selected next.
3143 */
3144 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3145
3146 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3147
44f7c160
JA
3148 cfqq->slice_end = 0;
3149 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3150}
3151
22e2c507 3152/*
5e705374 3153 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3154 * something we should do about it
3155 */
3156static void
5e705374
JA
3157cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3158 struct request *rq)
22e2c507 3159{
5e705374 3160 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3161
45333d5a 3162 cfqd->rq_queued++;
374f84ac
JA
3163 if (rq_is_meta(rq))
3164 cfqq->meta_pending++;
3165
9c2c38a1 3166 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3167 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3168 cfq_update_idle_window(cfqd, cfqq, cic);
3169
b2c18e1e 3170 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3171
3172 if (cfqq == cfqd->active_queue) {
3173 /*
b029195d
JA
3174 * Remember that we saw a request from this process, but
3175 * don't start queuing just yet. Otherwise we risk seeing lots
3176 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3177 * and merging. If the request is already larger than a single
3178 * page, let it rip immediately. For that case we assume that
2d870722
JA
3179 * merging is already done. Ditto for a busy system that
3180 * has other work pending, don't risk delaying until the
3181 * idle timer unplug to continue working.
22e2c507 3182 */
d6ceb25e 3183 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3184 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3185 cfqd->busy_queues > 1) {
d6ceb25e 3186 del_timer(&cfqd->idle_slice_timer);
554554f6 3187 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3188 __blk_run_queue(cfqd->queue);
3189 } else
3190 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3191 }
5e705374 3192 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3193 /*
3194 * not the active queue - expire current slice if it is
3195 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3196 * has some old slice time left and is of higher priority or
3197 * this new queue is RT and the current one is BE
22e2c507
JA
3198 */
3199 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3200 __blk_run_queue(cfqd->queue);
22e2c507 3201 }
1da177e4
LT
3202}
3203
165125e1 3204static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3205{
b4878f24 3206 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3207 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3208
7b679138 3209 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3210 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3211
30996f40 3212 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3213 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3214 cfq_add_rq_rb(rq);
22e2c507 3215
5e705374 3216 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3217}
3218
45333d5a
AC
3219/*
3220 * Update hw_tag based on peak queue depth over 50 samples under
3221 * sufficient load.
3222 */
3223static void cfq_update_hw_tag(struct cfq_data *cfqd)
3224{
1a1238a7
SL
3225 struct cfq_queue *cfqq = cfqd->active_queue;
3226
53c583d2
CZ
3227 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3228 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3229
3230 if (cfqd->hw_tag == 1)
3231 return;
45333d5a
AC
3232
3233 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3234 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3235 return;
3236
1a1238a7
SL
3237 /*
3238 * If active queue hasn't enough requests and can idle, cfq might not
3239 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3240 * case
3241 */
3242 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3243 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3244 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3245 return;
3246
45333d5a
AC
3247 if (cfqd->hw_tag_samples++ < 50)
3248 return;
3249
e459dd08 3250 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3251 cfqd->hw_tag = 1;
3252 else
3253 cfqd->hw_tag = 0;
45333d5a
AC
3254}
3255
7667aa06
VG
3256static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3257{
3258 struct cfq_io_context *cic = cfqd->active_cic;
3259
3260 /* If there are other queues in the group, don't wait */
3261 if (cfqq->cfqg->nr_cfqq > 1)
3262 return false;
3263
3264 if (cfq_slice_used(cfqq))
3265 return true;
3266
3267 /* if slice left is less than think time, wait busy */
3268 if (cic && sample_valid(cic->ttime_samples)
3269 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3270 return true;
3271
3272 /*
3273 * If think times is less than a jiffy than ttime_mean=0 and above
3274 * will not be true. It might happen that slice has not expired yet
3275 * but will expire soon (4-5 ns) during select_queue(). To cover the
3276 * case where think time is less than a jiffy, mark the queue wait
3277 * busy if only 1 jiffy is left in the slice.
3278 */
3279 if (cfqq->slice_end - jiffies == 1)
3280 return true;
3281
3282 return false;
3283}
3284
165125e1 3285static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3286{
5e705374 3287 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3288 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3289 const int sync = rq_is_sync(rq);
b4878f24 3290 unsigned long now;
1da177e4 3291
b4878f24 3292 now = jiffies;
2868ef7b 3293 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3294
45333d5a
AC
3295 cfq_update_hw_tag(cfqd);
3296
53c583d2 3297 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3298 WARN_ON(!cfqq->dispatched);
53c583d2 3299 cfqd->rq_in_driver--;
6d048f53 3300 cfqq->dispatched--;
84c124da
DS
3301 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3302 rq_io_start_time_ns(rq), rq_data_dir(rq),
3303 rq_is_sync(rq));
1da177e4 3304
53c583d2 3305 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3306
365722bb 3307 if (sync) {
5e705374 3308 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3309 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3310 cfqd->last_delayed_sync = now;
365722bb 3311 }
caaa5f9f
JA
3312
3313 /*
3314 * If this is the active queue, check if it needs to be expired,
3315 * or if we want to idle in case it has no pending requests.
3316 */
3317 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3318 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3319
44f7c160
JA
3320 if (cfq_cfqq_slice_new(cfqq)) {
3321 cfq_set_prio_slice(cfqd, cfqq);
3322 cfq_clear_cfqq_slice_new(cfqq);
3323 }
f75edf2d
VG
3324
3325 /*
7667aa06
VG
3326 * Should we wait for next request to come in before we expire
3327 * the queue.
f75edf2d 3328 */
7667aa06 3329 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3330 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3331 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3332 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3333 }
3334
a36e71f9 3335 /*
8e550632
CZ
3336 * Idling is not enabled on:
3337 * - expired queues
3338 * - idle-priority queues
3339 * - async queues
3340 * - queues with still some requests queued
3341 * - when there is a close cooperator
a36e71f9 3342 */
0871714e 3343 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3344 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3345 else if (sync && cfqq_empty &&
3346 !cfq_close_cooperator(cfqd, cfqq)) {
3347 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3348 /*
3349 * Idling is enabled for SYNC_WORKLOAD.
3350 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3351 * only if we processed at least one !rq_noidle request
3352 */
3353 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3354 || cfqd->noidle_tree_requires_idle
3355 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3356 cfq_arm_slice_timer(cfqd);
3357 }
caaa5f9f 3358 }
6d048f53 3359
53c583d2 3360 if (!cfqd->rq_in_driver)
23e018a1 3361 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3362}
3363
22e2c507
JA
3364/*
3365 * we temporarily boost lower priority queues if they are holding fs exclusive
3366 * resources. they are boosted to normal prio (CLASS_BE/4)
3367 */
3368static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3369{
22e2c507
JA
3370 if (has_fs_excl()) {
3371 /*
3372 * boost idle prio on transactions that would lock out other
3373 * users of the filesystem
3374 */
3375 if (cfq_class_idle(cfqq))
3376 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3377 if (cfqq->ioprio > IOPRIO_NORM)
3378 cfqq->ioprio = IOPRIO_NORM;
3379 } else {
3380 /*
dddb7451 3381 * unboost the queue (if needed)
22e2c507 3382 */
dddb7451
CZ
3383 cfqq->ioprio_class = cfqq->org_ioprio_class;
3384 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3385 }
22e2c507 3386}
1da177e4 3387
89850f7e 3388static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3389{
1b379d8d 3390 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3391 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3392 return ELV_MQUEUE_MUST;
3b18152c 3393 }
1da177e4 3394
22e2c507 3395 return ELV_MQUEUE_MAY;
22e2c507
JA
3396}
3397
165125e1 3398static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3399{
3400 struct cfq_data *cfqd = q->elevator->elevator_data;
3401 struct task_struct *tsk = current;
91fac317 3402 struct cfq_io_context *cic;
22e2c507
JA
3403 struct cfq_queue *cfqq;
3404
3405 /*
3406 * don't force setup of a queue from here, as a call to may_queue
3407 * does not necessarily imply that a request actually will be queued.
3408 * so just lookup a possibly existing queue, or return 'may queue'
3409 * if that fails
3410 */
4ac845a2 3411 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3412 if (!cic)
3413 return ELV_MQUEUE_MAY;
3414
b0b78f81 3415 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3416 if (cfqq) {
fd0928df 3417 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3418 cfq_prio_boost(cfqq);
3419
89850f7e 3420 return __cfq_may_queue(cfqq);
22e2c507
JA
3421 }
3422
3423 return ELV_MQUEUE_MAY;
1da177e4
LT
3424}
3425
1da177e4
LT
3426/*
3427 * queue lock held here
3428 */
bb37b94c 3429static void cfq_put_request(struct request *rq)
1da177e4 3430{
5e705374 3431 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3432
5e705374 3433 if (cfqq) {
22e2c507 3434 const int rw = rq_data_dir(rq);
1da177e4 3435
22e2c507
JA
3436 BUG_ON(!cfqq->allocated[rw]);
3437 cfqq->allocated[rw]--;
1da177e4 3438
5e705374 3439 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3440
1da177e4 3441 rq->elevator_private = NULL;
5e705374 3442 rq->elevator_private2 = NULL;
1da177e4 3443
1da177e4
LT
3444 cfq_put_queue(cfqq);
3445 }
3446}
3447
df5fe3e8
JM
3448static struct cfq_queue *
3449cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3450 struct cfq_queue *cfqq)
3451{
3452 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3453 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3454 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3455 cfq_put_queue(cfqq);
3456 return cic_to_cfqq(cic, 1);
3457}
3458
e6c5bc73
JM
3459/*
3460 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3461 * was the last process referring to said cfqq.
3462 */
3463static struct cfq_queue *
3464split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3465{
3466 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3467 cfqq->pid = current->pid;
3468 cfq_clear_cfqq_coop(cfqq);
ae54abed 3469 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3470 return cfqq;
3471 }
3472
3473 cic_set_cfqq(cic, NULL, 1);
3474 cfq_put_queue(cfqq);
3475 return NULL;
3476}
1da177e4 3477/*
22e2c507 3478 * Allocate cfq data structures associated with this request.
1da177e4 3479 */
22e2c507 3480static int
165125e1 3481cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3482{
3483 struct cfq_data *cfqd = q->elevator->elevator_data;
3484 struct cfq_io_context *cic;
3485 const int rw = rq_data_dir(rq);
a6151c3a 3486 const bool is_sync = rq_is_sync(rq);
22e2c507 3487 struct cfq_queue *cfqq;
1da177e4
LT
3488 unsigned long flags;
3489
3490 might_sleep_if(gfp_mask & __GFP_WAIT);
3491
e2d74ac0 3492 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3493
1da177e4
LT
3494 spin_lock_irqsave(q->queue_lock, flags);
3495
22e2c507
JA
3496 if (!cic)
3497 goto queue_fail;
3498
e6c5bc73 3499new_queue:
91fac317 3500 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3501 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3502 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3503 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3504 } else {
e6c5bc73
JM
3505 /*
3506 * If the queue was seeky for too long, break it apart.
3507 */
ae54abed 3508 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3509 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3510 cfqq = split_cfqq(cic, cfqq);
3511 if (!cfqq)
3512 goto new_queue;
3513 }
3514
df5fe3e8
JM
3515 /*
3516 * Check to see if this queue is scheduled to merge with
3517 * another, closely cooperating queue. The merging of
3518 * queues happens here as it must be done in process context.
3519 * The reference on new_cfqq was taken in merge_cfqqs.
3520 */
3521 if (cfqq->new_cfqq)
3522 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3523 }
1da177e4
LT
3524
3525 cfqq->allocated[rw]++;
22e2c507 3526 atomic_inc(&cfqq->ref);
1da177e4 3527
5e705374 3528 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3529
5e705374
JA
3530 rq->elevator_private = cic;
3531 rq->elevator_private2 = cfqq;
3532 return 0;
1da177e4 3533
22e2c507
JA
3534queue_fail:
3535 if (cic)
3536 put_io_context(cic->ioc);
89850f7e 3537
23e018a1 3538 cfq_schedule_dispatch(cfqd);
1da177e4 3539 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3540 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3541 return 1;
3542}
3543
65f27f38 3544static void cfq_kick_queue(struct work_struct *work)
22e2c507 3545{
65f27f38 3546 struct cfq_data *cfqd =
23e018a1 3547 container_of(work, struct cfq_data, unplug_work);
165125e1 3548 struct request_queue *q = cfqd->queue;
22e2c507 3549
40bb54d1 3550 spin_lock_irq(q->queue_lock);
a7f55792 3551 __blk_run_queue(cfqd->queue);
40bb54d1 3552 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3553}
3554
3555/*
3556 * Timer running if the active_queue is currently idling inside its time slice
3557 */
3558static void cfq_idle_slice_timer(unsigned long data)
3559{
3560 struct cfq_data *cfqd = (struct cfq_data *) data;
3561 struct cfq_queue *cfqq;
3562 unsigned long flags;
3c6bd2f8 3563 int timed_out = 1;
22e2c507 3564
7b679138
JA
3565 cfq_log(cfqd, "idle timer fired");
3566
22e2c507
JA
3567 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3568
fe094d98
JA
3569 cfqq = cfqd->active_queue;
3570 if (cfqq) {
3c6bd2f8
JA
3571 timed_out = 0;
3572
b029195d
JA
3573 /*
3574 * We saw a request before the queue expired, let it through
3575 */
3576 if (cfq_cfqq_must_dispatch(cfqq))
3577 goto out_kick;
3578
22e2c507
JA
3579 /*
3580 * expired
3581 */
44f7c160 3582 if (cfq_slice_used(cfqq))
22e2c507
JA
3583 goto expire;
3584
3585 /*
3586 * only expire and reinvoke request handler, if there are
3587 * other queues with pending requests
3588 */
caaa5f9f 3589 if (!cfqd->busy_queues)
22e2c507 3590 goto out_cont;
22e2c507
JA
3591
3592 /*
3593 * not expired and it has a request pending, let it dispatch
3594 */
75e50984 3595 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3596 goto out_kick;
76280aff
CZ
3597
3598 /*
3599 * Queue depth flag is reset only when the idle didn't succeed
3600 */
3601 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3602 }
3603expire:
6084cdda 3604 cfq_slice_expired(cfqd, timed_out);
22e2c507 3605out_kick:
23e018a1 3606 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3607out_cont:
3608 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3609}
3610
3b18152c
JA
3611static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3612{
3613 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3614 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3615}
22e2c507 3616
c2dea2d1
VT
3617static void cfq_put_async_queues(struct cfq_data *cfqd)
3618{
3619 int i;
3620
3621 for (i = 0; i < IOPRIO_BE_NR; i++) {
3622 if (cfqd->async_cfqq[0][i])
3623 cfq_put_queue(cfqd->async_cfqq[0][i]);
3624 if (cfqd->async_cfqq[1][i])
3625 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3626 }
2389d1ef
ON
3627
3628 if (cfqd->async_idle_cfqq)
3629 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3630}
3631
bb729bc9
JA
3632static void cfq_cfqd_free(struct rcu_head *head)
3633{
3634 kfree(container_of(head, struct cfq_data, rcu));
3635}
3636
b374d18a 3637static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3638{
22e2c507 3639 struct cfq_data *cfqd = e->elevator_data;
165125e1 3640 struct request_queue *q = cfqd->queue;
22e2c507 3641
3b18152c 3642 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3643
d9ff4187 3644 spin_lock_irq(q->queue_lock);
e2d74ac0 3645
d9ff4187 3646 if (cfqd->active_queue)
6084cdda 3647 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3648
3649 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3650 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3651 struct cfq_io_context,
3652 queue_list);
89850f7e
JA
3653
3654 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3655 }
e2d74ac0 3656
c2dea2d1 3657 cfq_put_async_queues(cfqd);
b1c35769
VG
3658 cfq_release_cfq_groups(cfqd);
3659 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3660
d9ff4187 3661 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3662
3663 cfq_shutdown_timer_wq(cfqd);
3664
b1c35769 3665 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3666 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3667}
3668
165125e1 3669static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3670{
3671 struct cfq_data *cfqd;
718eee05 3672 int i, j;
cdb16e8f 3673 struct cfq_group *cfqg;
615f0259 3674 struct cfq_rb_root *st;
1da177e4 3675
94f6030c 3676 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3677 if (!cfqd)
bc1c1169 3678 return NULL;
1da177e4 3679
1fa8f6d6
VG
3680 /* Init root service tree */
3681 cfqd->grp_service_tree = CFQ_RB_ROOT;
3682
cdb16e8f
VG
3683 /* Init root group */
3684 cfqg = &cfqd->root_group;
615f0259
VG
3685 for_each_cfqg_st(cfqg, i, j, st)
3686 *st = CFQ_RB_ROOT;
1fa8f6d6 3687 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3688
25bc6b07
VG
3689 /* Give preference to root group over other groups */
3690 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3691
25fb5169 3692#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3693 /*
3694 * Take a reference to root group which we never drop. This is just
3695 * to make sure that cfq_put_cfqg() does not try to kfree root group
3696 */
3697 atomic_set(&cfqg->ref, 1);
22084190
VG
3698 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3699 0);
25fb5169 3700#endif
26a2ac00
JA
3701 /*
3702 * Not strictly needed (since RB_ROOT just clears the node and we
3703 * zeroed cfqd on alloc), but better be safe in case someone decides
3704 * to add magic to the rb code
3705 */
3706 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3707 cfqd->prio_trees[i] = RB_ROOT;
3708
6118b70b
JA
3709 /*
3710 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3711 * Grab a permanent reference to it, so that the normal code flow
3712 * will not attempt to free it.
3713 */
3714 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3715 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3716 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3717
d9ff4187 3718 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3719
1da177e4 3720 cfqd->queue = q;
1da177e4 3721
22e2c507
JA
3722 init_timer(&cfqd->idle_slice_timer);
3723 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3724 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3725
23e018a1 3726 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3727
1da177e4 3728 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3729 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3730 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3731 cfqd->cfq_back_max = cfq_back_max;
3732 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3733 cfqd->cfq_slice[0] = cfq_slice_async;
3734 cfqd->cfq_slice[1] = cfq_slice_sync;
3735 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3736 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3737 cfqd->cfq_latency = 1;
ae30c286 3738 cfqd->cfq_group_isolation = 0;
e459dd08 3739 cfqd->hw_tag = -1;
edc71131
CZ
3740 /*
3741 * we optimistically start assuming sync ops weren't delayed in last
3742 * second, in order to have larger depth for async operations.
3743 */
573412b2 3744 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3745 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3746 return cfqd;
1da177e4
LT
3747}
3748
3749static void cfq_slab_kill(void)
3750{
d6de8be7
JA
3751 /*
3752 * Caller already ensured that pending RCU callbacks are completed,
3753 * so we should have no busy allocations at this point.
3754 */
1da177e4
LT
3755 if (cfq_pool)
3756 kmem_cache_destroy(cfq_pool);
3757 if (cfq_ioc_pool)
3758 kmem_cache_destroy(cfq_ioc_pool);
3759}
3760
3761static int __init cfq_slab_setup(void)
3762{
0a31bd5f 3763 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3764 if (!cfq_pool)
3765 goto fail;
3766
34e6bbf2 3767 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3768 if (!cfq_ioc_pool)
3769 goto fail;
3770
3771 return 0;
3772fail:
3773 cfq_slab_kill();
3774 return -ENOMEM;
3775}
3776
1da177e4
LT
3777/*
3778 * sysfs parts below -->
3779 */
1da177e4
LT
3780static ssize_t
3781cfq_var_show(unsigned int var, char *page)
3782{
3783 return sprintf(page, "%d\n", var);
3784}
3785
3786static ssize_t
3787cfq_var_store(unsigned int *var, const char *page, size_t count)
3788{
3789 char *p = (char *) page;
3790
3791 *var = simple_strtoul(p, &p, 10);
3792 return count;
3793}
3794
1da177e4 3795#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3796static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3797{ \
3d1ab40f 3798 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3799 unsigned int __data = __VAR; \
3800 if (__CONV) \
3801 __data = jiffies_to_msecs(__data); \
3802 return cfq_var_show(__data, (page)); \
3803}
3804SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3805SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3806SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3807SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3808SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3809SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3810SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3811SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3812SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3813SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3814SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3815#undef SHOW_FUNCTION
3816
3817#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3818static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3819{ \
3d1ab40f 3820 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3821 unsigned int __data; \
3822 int ret = cfq_var_store(&__data, (page), count); \
3823 if (__data < (MIN)) \
3824 __data = (MIN); \
3825 else if (__data > (MAX)) \
3826 __data = (MAX); \
3827 if (__CONV) \
3828 *(__PTR) = msecs_to_jiffies(__data); \
3829 else \
3830 *(__PTR) = __data; \
3831 return ret; \
3832}
3833STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3834STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3835 UINT_MAX, 1);
3836STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3837 UINT_MAX, 1);
e572ec7e 3838STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3839STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3840 UINT_MAX, 0);
22e2c507
JA
3841STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3842STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3843STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3844STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3845 UINT_MAX, 0);
963b72fc 3846STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3847STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3848#undef STORE_FUNCTION
3849
e572ec7e
AV
3850#define CFQ_ATTR(name) \
3851 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3852
3853static struct elv_fs_entry cfq_attrs[] = {
3854 CFQ_ATTR(quantum),
e572ec7e
AV
3855 CFQ_ATTR(fifo_expire_sync),
3856 CFQ_ATTR(fifo_expire_async),
3857 CFQ_ATTR(back_seek_max),
3858 CFQ_ATTR(back_seek_penalty),
3859 CFQ_ATTR(slice_sync),
3860 CFQ_ATTR(slice_async),
3861 CFQ_ATTR(slice_async_rq),
3862 CFQ_ATTR(slice_idle),
963b72fc 3863 CFQ_ATTR(low_latency),
ae30c286 3864 CFQ_ATTR(group_isolation),
e572ec7e 3865 __ATTR_NULL
1da177e4
LT
3866};
3867
1da177e4
LT
3868static struct elevator_type iosched_cfq = {
3869 .ops = {
3870 .elevator_merge_fn = cfq_merge,
3871 .elevator_merged_fn = cfq_merged_request,
3872 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3873 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3874 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3875 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3876 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3877 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3878 .elevator_deactivate_req_fn = cfq_deactivate_request,
3879 .elevator_queue_empty_fn = cfq_queue_empty,
3880 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3881 .elevator_former_req_fn = elv_rb_former_request,
3882 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3883 .elevator_set_req_fn = cfq_set_request,
3884 .elevator_put_req_fn = cfq_put_request,
3885 .elevator_may_queue_fn = cfq_may_queue,
3886 .elevator_init_fn = cfq_init_queue,
3887 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3888 .trim = cfq_free_io_context,
1da177e4 3889 },
3d1ab40f 3890 .elevator_attrs = cfq_attrs,
1da177e4
LT
3891 .elevator_name = "cfq",
3892 .elevator_owner = THIS_MODULE,
3893};
3894
3e252066
VG
3895#ifdef CONFIG_CFQ_GROUP_IOSCHED
3896static struct blkio_policy_type blkio_policy_cfq = {
3897 .ops = {
3898 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3899 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3900 },
3901};
3902#else
3903static struct blkio_policy_type blkio_policy_cfq;
3904#endif
3905
1da177e4
LT
3906static int __init cfq_init(void)
3907{
22e2c507
JA
3908 /*
3909 * could be 0 on HZ < 1000 setups
3910 */
3911 if (!cfq_slice_async)
3912 cfq_slice_async = 1;
3913 if (!cfq_slice_idle)
3914 cfq_slice_idle = 1;
3915
1da177e4
LT
3916 if (cfq_slab_setup())
3917 return -ENOMEM;
3918
2fdd82bd 3919 elv_register(&iosched_cfq);
3e252066 3920 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3921
2fdd82bd 3922 return 0;
1da177e4
LT
3923}
3924
3925static void __exit cfq_exit(void)
3926{
6e9a4738 3927 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3928 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3929 elv_unregister(&iosched_cfq);
334e94de 3930 ioc_gone = &all_gone;
fba82272
OH
3931 /* ioc_gone's update must be visible before reading ioc_count */
3932 smp_wmb();
d6de8be7
JA
3933
3934 /*
3935 * this also protects us from entering cfq_slab_kill() with
3936 * pending RCU callbacks
3937 */
245b2e70 3938 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3939 wait_for_completion(&all_gone);
83521d3e 3940 cfq_slab_kill();
1da177e4
LT
3941}
3942
3943module_init(cfq_init);
3944module_exit(cfq_exit);
3945
3946MODULE_AUTHOR("Jens Axboe");
3947MODULE_LICENSE("GPL");
3948MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");