]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
genhd: overlapping variable definition
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
dae739eb
VG
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
6118b70b
JA
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
b2c18e1e
JM
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
e6c5bc73 140 unsigned long seeky_start;
b2c18e1e 141
6118b70b 142 pid_t pid;
df5fe3e8 143
aa6f6a3d 144 struct cfq_rb_root *service_tree;
df5fe3e8 145 struct cfq_queue *new_cfqq;
cdb16e8f 146 struct cfq_group *cfqg;
ae30c286 147 struct cfq_group *orig_cfqg;
22084190
VG
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
5ad531db 230 int rq_in_driver[2];
3ed9a296 231 int sync_flight;
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
ae30c286 275 unsigned int cfq_group_isolation;
d9ff4187
AV
276
277 struct list_head cic_list;
1da177e4 278
6118b70b
JA
279 /*
280 * Fallback dummy cfqq for extreme OOM conditions
281 */
282 struct cfq_queue oom_cfqq;
365722bb 283
573412b2 284 unsigned long last_delayed_sync;
25fb5169
VG
285
286 /* List of cfq groups being managed on this device*/
287 struct hlist_head cfqg_list;
bb729bc9 288 struct rcu_head rcu;
1da177e4
LT
289};
290
25fb5169
VG
291static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
292
cdb16e8f
VG
293static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
294 enum wl_prio_t prio,
65b32a57 295 enum wl_type_t type)
c0324a02 296{
1fa8f6d6
VG
297 if (!cfqg)
298 return NULL;
299
c0324a02 300 if (prio == IDLE_WORKLOAD)
cdb16e8f 301 return &cfqg->service_tree_idle;
c0324a02 302
cdb16e8f 303 return &cfqg->service_trees[prio][type];
c0324a02
CZ
304}
305
3b18152c 306enum cfqq_state_flags {
b0b8d749
JA
307 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
308 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 309 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 310 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
311 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
312 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
313 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 314 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 315 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 316 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 317 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 318 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
319};
320
321#define CFQ_CFQQ_FNS(name) \
322static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
327{ \
fe094d98 328 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
329} \
330static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
331{ \
fe094d98 332 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
333}
334
335CFQ_CFQQ_FNS(on_rr);
336CFQ_CFQQ_FNS(wait_request);
b029195d 337CFQ_CFQQ_FNS(must_dispatch);
3b18152c 338CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
339CFQ_CFQQ_FNS(fifo_expire);
340CFQ_CFQQ_FNS(idle_window);
341CFQ_CFQQ_FNS(prio_changed);
44f7c160 342CFQ_CFQQ_FNS(slice_new);
91fac317 343CFQ_CFQQ_FNS(sync);
a36e71f9 344CFQ_CFQQ_FNS(coop);
76280aff 345CFQ_CFQQ_FNS(deep);
f75edf2d 346CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
347#undef CFQ_CFQQ_FNS
348
2868ef7b
VG
349#ifdef CONFIG_DEBUG_CFQ_IOSCHED
350#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
352 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
353 blkg_path(&(cfqq)->cfqg->blkg), ##args);
354
355#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
357 blkg_path(&(cfqg)->blkg), ##args); \
358
359#else
7b679138
JA
360#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
362#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
363#endif
7b679138
JA
364#define cfq_log(cfqd, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
366
615f0259
VG
367/* Traverses through cfq group service trees */
368#define for_each_cfqg_st(cfqg, i, j, st) \
369 for (i = 0; i <= IDLE_WORKLOAD; i++) \
370 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
371 : &cfqg->service_tree_idle; \
372 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
373 (i == IDLE_WORKLOAD && j == 0); \
374 j++, st = i < IDLE_WORKLOAD ? \
375 &cfqg->service_trees[i][j]: NULL) \
376
377
c0324a02
CZ
378static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
379{
380 if (cfq_class_idle(cfqq))
381 return IDLE_WORKLOAD;
382 if (cfq_class_rt(cfqq))
383 return RT_WORKLOAD;
384 return BE_WORKLOAD;
385}
386
718eee05
CZ
387
388static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
389{
390 if (!cfq_cfqq_sync(cfqq))
391 return ASYNC_WORKLOAD;
392 if (!cfq_cfqq_idle_window(cfqq))
393 return SYNC_NOIDLE_WORKLOAD;
394 return SYNC_WORKLOAD;
395}
396
58ff82f3
VG
397static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
398 struct cfq_data *cfqd,
399 struct cfq_group *cfqg)
c0324a02
CZ
400{
401 if (wl == IDLE_WORKLOAD)
cdb16e8f 402 return cfqg->service_tree_idle.count;
c0324a02 403
cdb16e8f
VG
404 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
406 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
407}
408
f26bd1f0
VG
409static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
410 struct cfq_group *cfqg)
411{
412 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
413 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
414}
415
165125e1 416static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 417static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 418 struct io_context *, gfp_t);
4ac845a2 419static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
420 struct io_context *);
421
5ad531db
JA
422static inline int rq_in_driver(struct cfq_data *cfqd)
423{
424 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
425}
426
91fac317 427static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 428 bool is_sync)
91fac317 429{
a6151c3a 430 return cic->cfqq[is_sync];
91fac317
VT
431}
432
433static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 434 struct cfq_queue *cfqq, bool is_sync)
91fac317 435{
a6151c3a 436 cic->cfqq[is_sync] = cfqq;
91fac317
VT
437}
438
439/*
440 * We regard a request as SYNC, if it's either a read or has the SYNC bit
441 * set (in which case it could also be direct WRITE).
442 */
a6151c3a 443static inline bool cfq_bio_sync(struct bio *bio)
91fac317 444{
a6151c3a 445 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 446}
1da177e4 447
99f95e52
AM
448/*
449 * scheduler run of queue, if there are requests pending and no one in the
450 * driver that will restart queueing
451 */
23e018a1 452static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 453{
7b679138
JA
454 if (cfqd->busy_queues) {
455 cfq_log(cfqd, "schedule dispatch");
23e018a1 456 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 457 }
99f95e52
AM
458}
459
165125e1 460static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
461{
462 struct cfq_data *cfqd = q->elevator->elevator_data;
463
f04a6424 464 return !cfqd->rq_queued;
99f95e52
AM
465}
466
44f7c160
JA
467/*
468 * Scale schedule slice based on io priority. Use the sync time slice only
469 * if a queue is marked sync and has sync io queued. A sync queue with async
470 * io only, should not get full sync slice length.
471 */
a6151c3a 472static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 473 unsigned short prio)
44f7c160 474{
d9e7620e 475 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 476
d9e7620e
JA
477 WARN_ON(prio >= IOPRIO_BE_NR);
478
479 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
480}
44f7c160 481
d9e7620e
JA
482static inline int
483cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
484{
485 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
486}
487
25bc6b07
VG
488static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
489{
490 u64 d = delta << CFQ_SERVICE_SHIFT;
491
492 d = d * BLKIO_WEIGHT_DEFAULT;
493 do_div(d, cfqg->weight);
494 return d;
495}
496
497static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
498{
499 s64 delta = (s64)(vdisktime - min_vdisktime);
500 if (delta > 0)
501 min_vdisktime = vdisktime;
502
503 return min_vdisktime;
504}
505
506static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
507{
508 s64 delta = (s64)(vdisktime - min_vdisktime);
509 if (delta < 0)
510 min_vdisktime = vdisktime;
511
512 return min_vdisktime;
513}
514
515static void update_min_vdisktime(struct cfq_rb_root *st)
516{
517 u64 vdisktime = st->min_vdisktime;
518 struct cfq_group *cfqg;
519
520 if (st->active) {
521 cfqg = rb_entry_cfqg(st->active);
522 vdisktime = cfqg->vdisktime;
523 }
524
525 if (st->left) {
526 cfqg = rb_entry_cfqg(st->left);
527 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
528 }
529
530 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
531}
532
5db5d642
CZ
533/*
534 * get averaged number of queues of RT/BE priority.
535 * average is updated, with a formula that gives more weight to higher numbers,
536 * to quickly follows sudden increases and decrease slowly
537 */
538
58ff82f3
VG
539static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
540 struct cfq_group *cfqg, bool rt)
5869619c 541{
5db5d642
CZ
542 unsigned min_q, max_q;
543 unsigned mult = cfq_hist_divisor - 1;
544 unsigned round = cfq_hist_divisor / 2;
58ff82f3 545 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 546
58ff82f3
VG
547 min_q = min(cfqg->busy_queues_avg[rt], busy);
548 max_q = max(cfqg->busy_queues_avg[rt], busy);
549 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 550 cfq_hist_divisor;
58ff82f3
VG
551 return cfqg->busy_queues_avg[rt];
552}
553
554static inline unsigned
555cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
556{
557 struct cfq_rb_root *st = &cfqd->grp_service_tree;
558
559 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
560}
561
44f7c160
JA
562static inline void
563cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
564{
5db5d642
CZ
565 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
566 if (cfqd->cfq_latency) {
58ff82f3
VG
567 /*
568 * interested queues (we consider only the ones with the same
569 * priority class in the cfq group)
570 */
571 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
572 cfq_class_rt(cfqq));
5db5d642
CZ
573 unsigned sync_slice = cfqd->cfq_slice[1];
574 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
575 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
576
577 if (expect_latency > group_slice) {
5db5d642
CZ
578 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
579 /* scale low_slice according to IO priority
580 * and sync vs async */
581 unsigned low_slice =
582 min(slice, base_low_slice * slice / sync_slice);
583 /* the adapted slice value is scaled to fit all iqs
584 * into the target latency */
58ff82f3 585 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
586 low_slice);
587 }
588 }
dae739eb 589 cfqq->slice_start = jiffies;
5db5d642 590 cfqq->slice_end = jiffies + slice;
f75edf2d 591 cfqq->allocated_slice = slice;
7b679138 592 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
593}
594
595/*
596 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
597 * isn't valid until the first request from the dispatch is activated
598 * and the slice time set.
599 */
a6151c3a 600static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
601{
602 if (cfq_cfqq_slice_new(cfqq))
603 return 0;
604 if (time_before(jiffies, cfqq->slice_end))
605 return 0;
606
607 return 1;
608}
609
1da177e4 610/*
5e705374 611 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 612 * We choose the request that is closest to the head right now. Distance
e8a99053 613 * behind the head is penalized and only allowed to a certain extent.
1da177e4 614 */
5e705374 615static struct request *
cf7c25cf 616cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 617{
cf7c25cf 618 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 619 unsigned long back_max;
e8a99053
AM
620#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
621#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
622 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 623
5e705374
JA
624 if (rq1 == NULL || rq1 == rq2)
625 return rq2;
626 if (rq2 == NULL)
627 return rq1;
9c2c38a1 628
5e705374
JA
629 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
630 return rq1;
631 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
632 return rq2;
374f84ac
JA
633 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
634 return rq1;
635 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
636 return rq2;
1da177e4 637
83096ebf
TH
638 s1 = blk_rq_pos(rq1);
639 s2 = blk_rq_pos(rq2);
1da177e4 640
1da177e4
LT
641 /*
642 * by definition, 1KiB is 2 sectors
643 */
644 back_max = cfqd->cfq_back_max * 2;
645
646 /*
647 * Strict one way elevator _except_ in the case where we allow
648 * short backward seeks which are biased as twice the cost of a
649 * similar forward seek.
650 */
651 if (s1 >= last)
652 d1 = s1 - last;
653 else if (s1 + back_max >= last)
654 d1 = (last - s1) * cfqd->cfq_back_penalty;
655 else
e8a99053 656 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
657
658 if (s2 >= last)
659 d2 = s2 - last;
660 else if (s2 + back_max >= last)
661 d2 = (last - s2) * cfqd->cfq_back_penalty;
662 else
e8a99053 663 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
664
665 /* Found required data */
e8a99053
AM
666
667 /*
668 * By doing switch() on the bit mask "wrap" we avoid having to
669 * check two variables for all permutations: --> faster!
670 */
671 switch (wrap) {
5e705374 672 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 673 if (d1 < d2)
5e705374 674 return rq1;
e8a99053 675 else if (d2 < d1)
5e705374 676 return rq2;
e8a99053
AM
677 else {
678 if (s1 >= s2)
5e705374 679 return rq1;
e8a99053 680 else
5e705374 681 return rq2;
e8a99053 682 }
1da177e4 683
e8a99053 684 case CFQ_RQ2_WRAP:
5e705374 685 return rq1;
e8a99053 686 case CFQ_RQ1_WRAP:
5e705374
JA
687 return rq2;
688 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
689 default:
690 /*
691 * Since both rqs are wrapped,
692 * start with the one that's further behind head
693 * (--> only *one* back seek required),
694 * since back seek takes more time than forward.
695 */
696 if (s1 <= s2)
5e705374 697 return rq1;
1da177e4 698 else
5e705374 699 return rq2;
1da177e4
LT
700 }
701}
702
498d3aa2
JA
703/*
704 * The below is leftmost cache rbtree addon
705 */
0871714e 706static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 707{
615f0259
VG
708 /* Service tree is empty */
709 if (!root->count)
710 return NULL;
711
cc09e299
JA
712 if (!root->left)
713 root->left = rb_first(&root->rb);
714
0871714e
JA
715 if (root->left)
716 return rb_entry(root->left, struct cfq_queue, rb_node);
717
718 return NULL;
cc09e299
JA
719}
720
1fa8f6d6
VG
721static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
722{
723 if (!root->left)
724 root->left = rb_first(&root->rb);
725
726 if (root->left)
727 return rb_entry_cfqg(root->left);
728
729 return NULL;
730}
731
a36e71f9
JA
732static void rb_erase_init(struct rb_node *n, struct rb_root *root)
733{
734 rb_erase(n, root);
735 RB_CLEAR_NODE(n);
736}
737
cc09e299
JA
738static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
739{
740 if (root->left == n)
741 root->left = NULL;
a36e71f9 742 rb_erase_init(n, &root->rb);
aa6f6a3d 743 --root->count;
cc09e299
JA
744}
745
1da177e4
LT
746/*
747 * would be nice to take fifo expire time into account as well
748 */
5e705374
JA
749static struct request *
750cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
751 struct request *last)
1da177e4 752{
21183b07
JA
753 struct rb_node *rbnext = rb_next(&last->rb_node);
754 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 755 struct request *next = NULL, *prev = NULL;
1da177e4 756
21183b07 757 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
758
759 if (rbprev)
5e705374 760 prev = rb_entry_rq(rbprev);
1da177e4 761
21183b07 762 if (rbnext)
5e705374 763 next = rb_entry_rq(rbnext);
21183b07
JA
764 else {
765 rbnext = rb_first(&cfqq->sort_list);
766 if (rbnext && rbnext != &last->rb_node)
5e705374 767 next = rb_entry_rq(rbnext);
21183b07 768 }
1da177e4 769
cf7c25cf 770 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
771}
772
d9e7620e
JA
773static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
774 struct cfq_queue *cfqq)
1da177e4 775{
d9e7620e
JA
776 /*
777 * just an approximation, should be ok.
778 */
cdb16e8f 779 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 780 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
781}
782
1fa8f6d6
VG
783static inline s64
784cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
785{
786 return cfqg->vdisktime - st->min_vdisktime;
787}
788
789static void
790__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
791{
792 struct rb_node **node = &st->rb.rb_node;
793 struct rb_node *parent = NULL;
794 struct cfq_group *__cfqg;
795 s64 key = cfqg_key(st, cfqg);
796 int left = 1;
797
798 while (*node != NULL) {
799 parent = *node;
800 __cfqg = rb_entry_cfqg(parent);
801
802 if (key < cfqg_key(st, __cfqg))
803 node = &parent->rb_left;
804 else {
805 node = &parent->rb_right;
806 left = 0;
807 }
808 }
809
810 if (left)
811 st->left = &cfqg->rb_node;
812
813 rb_link_node(&cfqg->rb_node, parent, node);
814 rb_insert_color(&cfqg->rb_node, &st->rb);
815}
816
817static void
818cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
819{
820 struct cfq_rb_root *st = &cfqd->grp_service_tree;
821 struct cfq_group *__cfqg;
822 struct rb_node *n;
823
824 cfqg->nr_cfqq++;
825 if (cfqg->on_st)
826 return;
827
828 /*
829 * Currently put the group at the end. Later implement something
830 * so that groups get lesser vtime based on their weights, so that
831 * if group does not loose all if it was not continously backlogged.
832 */
833 n = rb_last(&st->rb);
834 if (n) {
835 __cfqg = rb_entry_cfqg(n);
836 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
837 } else
838 cfqg->vdisktime = st->min_vdisktime;
839
840 __cfq_group_service_tree_add(st, cfqg);
841 cfqg->on_st = true;
58ff82f3 842 st->total_weight += cfqg->weight;
1fa8f6d6
VG
843}
844
845static void
846cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
847{
848 struct cfq_rb_root *st = &cfqd->grp_service_tree;
849
25bc6b07
VG
850 if (st->active == &cfqg->rb_node)
851 st->active = NULL;
852
1fa8f6d6
VG
853 BUG_ON(cfqg->nr_cfqq < 1);
854 cfqg->nr_cfqq--;
25bc6b07 855
1fa8f6d6
VG
856 /* If there are other cfq queues under this group, don't delete it */
857 if (cfqg->nr_cfqq)
858 return;
859
2868ef7b 860 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 861 cfqg->on_st = false;
58ff82f3 862 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
863 if (!RB_EMPTY_NODE(&cfqg->rb_node))
864 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 865 cfqg->saved_workload_slice = 0;
22084190 866 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
867}
868
869static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
870{
f75edf2d 871 unsigned int slice_used;
dae739eb
VG
872
873 /*
874 * Queue got expired before even a single request completed or
875 * got expired immediately after first request completion.
876 */
877 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
878 /*
879 * Also charge the seek time incurred to the group, otherwise
880 * if there are mutiple queues in the group, each can dispatch
881 * a single request on seeky media and cause lots of seek time
882 * and group will never know it.
883 */
884 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
885 1);
886 } else {
887 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
888 if (slice_used > cfqq->allocated_slice)
889 slice_used = cfqq->allocated_slice;
dae739eb
VG
890 }
891
22084190
VG
892 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
893 cfqq->nr_sectors);
dae739eb
VG
894 return slice_used;
895}
896
897static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
898 struct cfq_queue *cfqq)
899{
900 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
901 unsigned int used_sl, charge_sl;
902 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
903 - cfqg->service_tree_idle.count;
904
905 BUG_ON(nr_sync < 0);
906 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 907
f26bd1f0
VG
908 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
909 charge_sl = cfqq->allocated_slice;
dae739eb
VG
910
911 /* Can't update vdisktime while group is on service tree */
912 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 913 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
914 __cfq_group_service_tree_add(st, cfqg);
915
916 /* This group is being expired. Save the context */
917 if (time_after(cfqd->workload_expires, jiffies)) {
918 cfqg->saved_workload_slice = cfqd->workload_expires
919 - jiffies;
920 cfqg->saved_workload = cfqd->serving_type;
921 cfqg->saved_serving_prio = cfqd->serving_prio;
922 } else
923 cfqg->saved_workload_slice = 0;
2868ef7b
VG
924
925 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
926 st->min_vdisktime);
22084190
VG
927 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
928 cfqq->nr_sectors);
1fa8f6d6
VG
929}
930
25fb5169
VG
931#ifdef CONFIG_CFQ_GROUP_IOSCHED
932static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
933{
934 if (blkg)
935 return container_of(blkg, struct cfq_group, blkg);
936 return NULL;
937}
938
f8d461d6
VG
939void
940cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
941{
942 cfqg_of_blkg(blkg)->weight = weight;
943}
944
25fb5169
VG
945static struct cfq_group *
946cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
947{
948 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
949 struct cfq_group *cfqg = NULL;
950 void *key = cfqd;
951 int i, j;
952 struct cfq_rb_root *st;
22084190
VG
953 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
954 unsigned int major, minor;
25fb5169
VG
955
956 /* Do we need to take this reference */
9d6a986c 957 if (!blkiocg_css_tryget(blkcg))
25fb5169
VG
958 return NULL;;
959
960 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
961 if (cfqg || !create)
962 goto done;
963
964 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
965 if (!cfqg)
966 goto done;
967
968 cfqg->weight = blkcg->weight;
969 for_each_cfqg_st(cfqg, i, j, st)
970 *st = CFQ_RB_ROOT;
971 RB_CLEAR_NODE(&cfqg->rb_node);
972
b1c35769
VG
973 /*
974 * Take the initial reference that will be released on destroy
975 * This can be thought of a joint reference by cgroup and
976 * elevator which will be dropped by either elevator exit
977 * or cgroup deletion path depending on who is exiting first.
978 */
979 atomic_set(&cfqg->ref, 1);
980
25fb5169 981 /* Add group onto cgroup list */
22084190
VG
982 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
983 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
984 MKDEV(major, minor));
25fb5169
VG
985
986 /* Add group on cfqd list */
987 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
988
989done:
9d6a986c 990 blkiocg_css_put(blkcg);
25fb5169
VG
991 return cfqg;
992}
993
994/*
995 * Search for the cfq group current task belongs to. If create = 1, then also
996 * create the cfq group if it does not exist. request_queue lock must be held.
997 */
998static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
999{
1000 struct cgroup *cgroup;
1001 struct cfq_group *cfqg = NULL;
1002
1003 rcu_read_lock();
1004 cgroup = task_cgroup(current, blkio_subsys_id);
1005 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1006 if (!cfqg && create)
1007 cfqg = &cfqd->root_group;
1008 rcu_read_unlock();
1009 return cfqg;
1010}
1011
1012static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1013{
1014 /* Currently, all async queues are mapped to root group */
1015 if (!cfq_cfqq_sync(cfqq))
1016 cfqg = &cfqq->cfqd->root_group;
1017
1018 cfqq->cfqg = cfqg;
b1c35769
VG
1019 /* cfqq reference on cfqg */
1020 atomic_inc(&cfqq->cfqg->ref);
1021}
1022
1023static void cfq_put_cfqg(struct cfq_group *cfqg)
1024{
1025 struct cfq_rb_root *st;
1026 int i, j;
1027
1028 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1029 if (!atomic_dec_and_test(&cfqg->ref))
1030 return;
1031 for_each_cfqg_st(cfqg, i, j, st)
1032 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1033 kfree(cfqg);
1034}
1035
1036static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1037{
1038 /* Something wrong if we are trying to remove same group twice */
1039 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1040
1041 hlist_del_init(&cfqg->cfqd_node);
1042
1043 /*
1044 * Put the reference taken at the time of creation so that when all
1045 * queues are gone, group can be destroyed.
1046 */
1047 cfq_put_cfqg(cfqg);
1048}
1049
1050static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1051{
1052 struct hlist_node *pos, *n;
1053 struct cfq_group *cfqg;
1054
1055 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1056 /*
1057 * If cgroup removal path got to blk_group first and removed
1058 * it from cgroup list, then it will take care of destroying
1059 * cfqg also.
1060 */
1061 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1062 cfq_destroy_cfqg(cfqd, cfqg);
1063 }
25fb5169 1064}
b1c35769
VG
1065
1066/*
1067 * Blk cgroup controller notification saying that blkio_group object is being
1068 * delinked as associated cgroup object is going away. That also means that
1069 * no new IO will come in this group. So get rid of this group as soon as
1070 * any pending IO in the group is finished.
1071 *
1072 * This function is called under rcu_read_lock(). key is the rcu protected
1073 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1074 * read lock.
1075 *
1076 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1077 * it should not be NULL as even if elevator was exiting, cgroup deltion
1078 * path got to it first.
1079 */
1080void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1081{
1082 unsigned long flags;
1083 struct cfq_data *cfqd = key;
1084
1085 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1086 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1087 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1088}
1089
25fb5169
VG
1090#else /* GROUP_IOSCHED */
1091static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1092{
1093 return &cfqd->root_group;
1094}
1095static inline void
1096cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1097 cfqq->cfqg = cfqg;
1098}
1099
b1c35769
VG
1100static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1101static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1102
25fb5169
VG
1103#endif /* GROUP_IOSCHED */
1104
498d3aa2 1105/*
c0324a02 1106 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1107 * requests waiting to be processed. It is sorted in the order that
1108 * we will service the queues.
1109 */
a36e71f9 1110static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1111 bool add_front)
d9e7620e 1112{
0871714e
JA
1113 struct rb_node **p, *parent;
1114 struct cfq_queue *__cfqq;
d9e7620e 1115 unsigned long rb_key;
c0324a02 1116 struct cfq_rb_root *service_tree;
498d3aa2 1117 int left;
dae739eb 1118 int new_cfqq = 1;
ae30c286
VG
1119 int group_changed = 0;
1120
1121#ifdef CONFIG_CFQ_GROUP_IOSCHED
1122 if (!cfqd->cfq_group_isolation
1123 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1124 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1125 /* Move this cfq to root group */
1126 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1127 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1128 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1129 cfqq->orig_cfqg = cfqq->cfqg;
1130 cfqq->cfqg = &cfqd->root_group;
1131 atomic_inc(&cfqd->root_group.ref);
1132 group_changed = 1;
1133 } else if (!cfqd->cfq_group_isolation
1134 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1135 /* cfqq is sequential now needs to go to its original group */
1136 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1137 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1138 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1139 cfq_put_cfqg(cfqq->cfqg);
1140 cfqq->cfqg = cfqq->orig_cfqg;
1141 cfqq->orig_cfqg = NULL;
1142 group_changed = 1;
1143 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1144 }
1145#endif
d9e7620e 1146
cdb16e8f 1147 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1148 cfqq_type(cfqq));
0871714e
JA
1149 if (cfq_class_idle(cfqq)) {
1150 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1151 parent = rb_last(&service_tree->rb);
0871714e
JA
1152 if (parent && parent != &cfqq->rb_node) {
1153 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1154 rb_key += __cfqq->rb_key;
1155 } else
1156 rb_key += jiffies;
1157 } else if (!add_front) {
b9c8946b
JA
1158 /*
1159 * Get our rb key offset. Subtract any residual slice
1160 * value carried from last service. A negative resid
1161 * count indicates slice overrun, and this should position
1162 * the next service time further away in the tree.
1163 */
edd75ffd 1164 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1165 rb_key -= cfqq->slice_resid;
edd75ffd 1166 cfqq->slice_resid = 0;
48e025e6
CZ
1167 } else {
1168 rb_key = -HZ;
aa6f6a3d 1169 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1170 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1171 }
1da177e4 1172
d9e7620e 1173 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1174 new_cfqq = 0;
99f9628a 1175 /*
d9e7620e 1176 * same position, nothing more to do
99f9628a 1177 */
c0324a02
CZ
1178 if (rb_key == cfqq->rb_key &&
1179 cfqq->service_tree == service_tree)
d9e7620e 1180 return;
1da177e4 1181
aa6f6a3d
CZ
1182 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1183 cfqq->service_tree = NULL;
1da177e4 1184 }
d9e7620e 1185
498d3aa2 1186 left = 1;
0871714e 1187 parent = NULL;
aa6f6a3d
CZ
1188 cfqq->service_tree = service_tree;
1189 p = &service_tree->rb.rb_node;
d9e7620e 1190 while (*p) {
67060e37 1191 struct rb_node **n;
cc09e299 1192
d9e7620e
JA
1193 parent = *p;
1194 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1195
0c534e0a 1196 /*
c0324a02 1197 * sort by key, that represents service time.
0c534e0a 1198 */
c0324a02 1199 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1200 n = &(*p)->rb_left;
c0324a02 1201 else {
67060e37 1202 n = &(*p)->rb_right;
cc09e299 1203 left = 0;
c0324a02 1204 }
67060e37
JA
1205
1206 p = n;
d9e7620e
JA
1207 }
1208
cc09e299 1209 if (left)
aa6f6a3d 1210 service_tree->left = &cfqq->rb_node;
cc09e299 1211
d9e7620e
JA
1212 cfqq->rb_key = rb_key;
1213 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1214 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1215 service_tree->count++;
ae30c286 1216 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1217 return;
1fa8f6d6 1218 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1219}
1220
a36e71f9 1221static struct cfq_queue *
f2d1f0ae
JA
1222cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1223 sector_t sector, struct rb_node **ret_parent,
1224 struct rb_node ***rb_link)
a36e71f9 1225{
a36e71f9
JA
1226 struct rb_node **p, *parent;
1227 struct cfq_queue *cfqq = NULL;
1228
1229 parent = NULL;
1230 p = &root->rb_node;
1231 while (*p) {
1232 struct rb_node **n;
1233
1234 parent = *p;
1235 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1236
1237 /*
1238 * Sort strictly based on sector. Smallest to the left,
1239 * largest to the right.
1240 */
2e46e8b2 1241 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1242 n = &(*p)->rb_right;
2e46e8b2 1243 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1244 n = &(*p)->rb_left;
1245 else
1246 break;
1247 p = n;
3ac6c9f8 1248 cfqq = NULL;
a36e71f9
JA
1249 }
1250
1251 *ret_parent = parent;
1252 if (rb_link)
1253 *rb_link = p;
3ac6c9f8 1254 return cfqq;
a36e71f9
JA
1255}
1256
1257static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1258{
a36e71f9
JA
1259 struct rb_node **p, *parent;
1260 struct cfq_queue *__cfqq;
1261
f2d1f0ae
JA
1262 if (cfqq->p_root) {
1263 rb_erase(&cfqq->p_node, cfqq->p_root);
1264 cfqq->p_root = NULL;
1265 }
a36e71f9
JA
1266
1267 if (cfq_class_idle(cfqq))
1268 return;
1269 if (!cfqq->next_rq)
1270 return;
1271
f2d1f0ae 1272 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1273 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1274 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1275 if (!__cfqq) {
1276 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1277 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1278 } else
1279 cfqq->p_root = NULL;
a36e71f9
JA
1280}
1281
498d3aa2
JA
1282/*
1283 * Update cfqq's position in the service tree.
1284 */
edd75ffd 1285static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1286{
6d048f53
JA
1287 /*
1288 * Resorting requires the cfqq to be on the RR list already.
1289 */
a36e71f9 1290 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1291 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1292 cfq_prio_tree_add(cfqd, cfqq);
1293 }
6d048f53
JA
1294}
1295
1da177e4
LT
1296/*
1297 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1298 * the pending list according to last request service
1da177e4 1299 */
febffd61 1300static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1301{
7b679138 1302 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1303 BUG_ON(cfq_cfqq_on_rr(cfqq));
1304 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1305 cfqd->busy_queues++;
1306
edd75ffd 1307 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1308}
1309
498d3aa2
JA
1310/*
1311 * Called when the cfqq no longer has requests pending, remove it from
1312 * the service tree.
1313 */
febffd61 1314static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1315{
7b679138 1316 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1317 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1318 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1319
aa6f6a3d
CZ
1320 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1321 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1322 cfqq->service_tree = NULL;
1323 }
f2d1f0ae
JA
1324 if (cfqq->p_root) {
1325 rb_erase(&cfqq->p_node, cfqq->p_root);
1326 cfqq->p_root = NULL;
1327 }
d9e7620e 1328
1fa8f6d6 1329 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1330 BUG_ON(!cfqd->busy_queues);
1331 cfqd->busy_queues--;
1332}
1333
1334/*
1335 * rb tree support functions
1336 */
febffd61 1337static void cfq_del_rq_rb(struct request *rq)
1da177e4 1338{
5e705374 1339 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1340 const int sync = rq_is_sync(rq);
1da177e4 1341
b4878f24
JA
1342 BUG_ON(!cfqq->queued[sync]);
1343 cfqq->queued[sync]--;
1da177e4 1344
5e705374 1345 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1346
f04a6424
VG
1347 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1348 /*
1349 * Queue will be deleted from service tree when we actually
1350 * expire it later. Right now just remove it from prio tree
1351 * as it is empty.
1352 */
1353 if (cfqq->p_root) {
1354 rb_erase(&cfqq->p_node, cfqq->p_root);
1355 cfqq->p_root = NULL;
1356 }
1357 }
1da177e4
LT
1358}
1359
5e705374 1360static void cfq_add_rq_rb(struct request *rq)
1da177e4 1361{
5e705374 1362 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1363 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1364 struct request *__alias, *prev;
1da177e4 1365
5380a101 1366 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1367
1368 /*
1369 * looks a little odd, but the first insert might return an alias.
1370 * if that happens, put the alias on the dispatch list
1371 */
21183b07 1372 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1373 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1374
1375 if (!cfq_cfqq_on_rr(cfqq))
1376 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1377
1378 /*
1379 * check if this request is a better next-serve candidate
1380 */
a36e71f9 1381 prev = cfqq->next_rq;
cf7c25cf 1382 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1383
1384 /*
1385 * adjust priority tree position, if ->next_rq changes
1386 */
1387 if (prev != cfqq->next_rq)
1388 cfq_prio_tree_add(cfqd, cfqq);
1389
5044eed4 1390 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1391}
1392
febffd61 1393static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1394{
5380a101
JA
1395 elv_rb_del(&cfqq->sort_list, rq);
1396 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1397 cfq_add_rq_rb(rq);
1da177e4
LT
1398}
1399
206dc69b
JA
1400static struct request *
1401cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1402{
206dc69b 1403 struct task_struct *tsk = current;
91fac317 1404 struct cfq_io_context *cic;
206dc69b 1405 struct cfq_queue *cfqq;
1da177e4 1406
4ac845a2 1407 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1408 if (!cic)
1409 return NULL;
1410
1411 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1412 if (cfqq) {
1413 sector_t sector = bio->bi_sector + bio_sectors(bio);
1414
21183b07 1415 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1416 }
1da177e4 1417
1da177e4
LT
1418 return NULL;
1419}
1420
165125e1 1421static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1422{
22e2c507 1423 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1424
5ad531db 1425 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1426 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1427 rq_in_driver(cfqd));
25776e35 1428
5b93629b 1429 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1430}
1431
165125e1 1432static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1433{
b4878f24 1434 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1435 const int sync = rq_is_sync(rq);
b4878f24 1436
5ad531db
JA
1437 WARN_ON(!cfqd->rq_in_driver[sync]);
1438 cfqd->rq_in_driver[sync]--;
7b679138 1439 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1440 rq_in_driver(cfqd));
1da177e4
LT
1441}
1442
b4878f24 1443static void cfq_remove_request(struct request *rq)
1da177e4 1444{
5e705374 1445 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1446
5e705374
JA
1447 if (cfqq->next_rq == rq)
1448 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1449
b4878f24 1450 list_del_init(&rq->queuelist);
5e705374 1451 cfq_del_rq_rb(rq);
374f84ac 1452
45333d5a 1453 cfqq->cfqd->rq_queued--;
374f84ac
JA
1454 if (rq_is_meta(rq)) {
1455 WARN_ON(!cfqq->meta_pending);
1456 cfqq->meta_pending--;
1457 }
1da177e4
LT
1458}
1459
165125e1
JA
1460static int cfq_merge(struct request_queue *q, struct request **req,
1461 struct bio *bio)
1da177e4
LT
1462{
1463 struct cfq_data *cfqd = q->elevator->elevator_data;
1464 struct request *__rq;
1da177e4 1465
206dc69b 1466 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1467 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1468 *req = __rq;
1469 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1470 }
1471
1472 return ELEVATOR_NO_MERGE;
1da177e4
LT
1473}
1474
165125e1 1475static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1476 int type)
1da177e4 1477{
21183b07 1478 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1479 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1480
5e705374 1481 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1482 }
1da177e4
LT
1483}
1484
1485static void
165125e1 1486cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1487 struct request *next)
1488{
cf7c25cf 1489 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1490 /*
1491 * reposition in fifo if next is older than rq
1492 */
1493 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1494 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1495 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1496 rq_set_fifo_time(rq, rq_fifo_time(next));
1497 }
22e2c507 1498
cf7c25cf
CZ
1499 if (cfqq->next_rq == next)
1500 cfqq->next_rq = rq;
b4878f24 1501 cfq_remove_request(next);
22e2c507
JA
1502}
1503
165125e1 1504static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1505 struct bio *bio)
1506{
1507 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1508 struct cfq_io_context *cic;
da775265 1509 struct cfq_queue *cfqq;
da775265
JA
1510
1511 /*
ec8acb69 1512 * Disallow merge of a sync bio into an async request.
da775265 1513 */
91fac317 1514 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1515 return false;
da775265
JA
1516
1517 /*
719d3402
JA
1518 * Lookup the cfqq that this bio will be queued with. Allow
1519 * merge only if rq is queued there.
da775265 1520 */
4ac845a2 1521 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1522 if (!cic)
a6151c3a 1523 return false;
719d3402 1524
91fac317 1525 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1526 return cfqq == RQ_CFQQ(rq);
da775265
JA
1527}
1528
febffd61
JA
1529static void __cfq_set_active_queue(struct cfq_data *cfqd,
1530 struct cfq_queue *cfqq)
22e2c507
JA
1531{
1532 if (cfqq) {
7b679138 1533 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1534 cfqq->slice_start = 0;
1535 cfqq->dispatch_start = jiffies;
f75edf2d 1536 cfqq->allocated_slice = 0;
22e2c507 1537 cfqq->slice_end = 0;
2f5cb738 1538 cfqq->slice_dispatch = 0;
22084190 1539 cfqq->nr_sectors = 0;
2f5cb738 1540
2f5cb738 1541 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1542 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1543 cfq_clear_cfqq_must_alloc_slice(cfqq);
1544 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1545 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1546
1547 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1548 }
1549
1550 cfqd->active_queue = cfqq;
1551}
1552
7b14e3b5
JA
1553/*
1554 * current cfqq expired its slice (or was too idle), select new one
1555 */
1556static void
1557__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1558 bool timed_out)
7b14e3b5 1559{
7b679138
JA
1560 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1561
7b14e3b5
JA
1562 if (cfq_cfqq_wait_request(cfqq))
1563 del_timer(&cfqd->idle_slice_timer);
1564
7b14e3b5 1565 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1566 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5
JA
1567
1568 /*
6084cdda 1569 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1570 */
7b679138 1571 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1572 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1573 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1574 }
7b14e3b5 1575
dae739eb
VG
1576 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1577
f04a6424
VG
1578 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1579 cfq_del_cfqq_rr(cfqd, cfqq);
1580
edd75ffd 1581 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1582
1583 if (cfqq == cfqd->active_queue)
1584 cfqd->active_queue = NULL;
1585
dae739eb
VG
1586 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1587 cfqd->grp_service_tree.active = NULL;
1588
7b14e3b5
JA
1589 if (cfqd->active_cic) {
1590 put_io_context(cfqd->active_cic->ioc);
1591 cfqd->active_cic = NULL;
1592 }
7b14e3b5
JA
1593}
1594
a6151c3a 1595static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1596{
1597 struct cfq_queue *cfqq = cfqd->active_queue;
1598
1599 if (cfqq)
6084cdda 1600 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1601}
1602
498d3aa2
JA
1603/*
1604 * Get next queue for service. Unless we have a queue preemption,
1605 * we'll simply select the first cfqq in the service tree.
1606 */
6d048f53 1607static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1608{
c0324a02 1609 struct cfq_rb_root *service_tree =
cdb16e8f 1610 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1611 cfqd->serving_type);
d9e7620e 1612
f04a6424
VG
1613 if (!cfqd->rq_queued)
1614 return NULL;
1615
1fa8f6d6
VG
1616 /* There is nothing to dispatch */
1617 if (!service_tree)
1618 return NULL;
c0324a02
CZ
1619 if (RB_EMPTY_ROOT(&service_tree->rb))
1620 return NULL;
1621 return cfq_rb_first(service_tree);
6d048f53
JA
1622}
1623
f04a6424
VG
1624static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1625{
25fb5169 1626 struct cfq_group *cfqg;
f04a6424
VG
1627 struct cfq_queue *cfqq;
1628 int i, j;
1629 struct cfq_rb_root *st;
1630
1631 if (!cfqd->rq_queued)
1632 return NULL;
1633
25fb5169
VG
1634 cfqg = cfq_get_next_cfqg(cfqd);
1635 if (!cfqg)
1636 return NULL;
1637
f04a6424
VG
1638 for_each_cfqg_st(cfqg, i, j, st)
1639 if ((cfqq = cfq_rb_first(st)) != NULL)
1640 return cfqq;
1641 return NULL;
1642}
1643
498d3aa2
JA
1644/*
1645 * Get and set a new active queue for service.
1646 */
a36e71f9
JA
1647static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1648 struct cfq_queue *cfqq)
6d048f53 1649{
e00ef799 1650 if (!cfqq)
a36e71f9 1651 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1652
22e2c507 1653 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1654 return cfqq;
22e2c507
JA
1655}
1656
d9e7620e
JA
1657static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1658 struct request *rq)
1659{
83096ebf
TH
1660 if (blk_rq_pos(rq) >= cfqd->last_position)
1661 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1662 else
83096ebf 1663 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1664}
1665
b2c18e1e
JM
1666#define CFQQ_SEEK_THR 8 * 1024
1667#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1668
b2c18e1e 1669static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2f7a2d89 1670 struct request *rq, bool for_preempt)
6d048f53 1671{
b2c18e1e 1672 sector_t sdist = cfqq->seek_mean;
6d048f53 1673
b2c18e1e
JM
1674 if (!sample_valid(cfqq->seek_samples))
1675 sdist = CFQQ_SEEK_THR;
6d048f53 1676
2f7a2d89
SL
1677 /* if seek_mean is big, using it as close criteria is meaningless */
1678 if (sdist > CFQQ_SEEK_THR && !for_preempt)
1679 sdist = CFQQ_SEEK_THR;
1680
04dc6e71 1681 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1682}
1683
a36e71f9
JA
1684static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1685 struct cfq_queue *cur_cfqq)
1686{
f2d1f0ae 1687 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1688 struct rb_node *parent, *node;
1689 struct cfq_queue *__cfqq;
1690 sector_t sector = cfqd->last_position;
1691
1692 if (RB_EMPTY_ROOT(root))
1693 return NULL;
1694
1695 /*
1696 * First, if we find a request starting at the end of the last
1697 * request, choose it.
1698 */
f2d1f0ae 1699 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1700 if (__cfqq)
1701 return __cfqq;
1702
1703 /*
1704 * If the exact sector wasn't found, the parent of the NULL leaf
1705 * will contain the closest sector.
1706 */
1707 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2f7a2d89 1708 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1709 return __cfqq;
1710
2e46e8b2 1711 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1712 node = rb_next(&__cfqq->p_node);
1713 else
1714 node = rb_prev(&__cfqq->p_node);
1715 if (!node)
1716 return NULL;
1717
1718 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2f7a2d89 1719 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1720 return __cfqq;
1721
1722 return NULL;
1723}
1724
1725/*
1726 * cfqd - obvious
1727 * cur_cfqq - passed in so that we don't decide that the current queue is
1728 * closely cooperating with itself.
1729 *
1730 * So, basically we're assuming that that cur_cfqq has dispatched at least
1731 * one request, and that cfqd->last_position reflects a position on the disk
1732 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1733 * assumption.
1734 */
1735static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1736 struct cfq_queue *cur_cfqq)
6d048f53 1737{
a36e71f9
JA
1738 struct cfq_queue *cfqq;
1739
e6c5bc73
JM
1740 if (!cfq_cfqq_sync(cur_cfqq))
1741 return NULL;
1742 if (CFQQ_SEEKY(cur_cfqq))
1743 return NULL;
1744
b9d8f4c7
GJ
1745 /*
1746 * Don't search priority tree if it's the only queue in the group.
1747 */
1748 if (cur_cfqq->cfqg->nr_cfqq == 1)
1749 return NULL;
1750
6d048f53 1751 /*
d9e7620e
JA
1752 * We should notice if some of the queues are cooperating, eg
1753 * working closely on the same area of the disk. In that case,
1754 * we can group them together and don't waste time idling.
6d048f53 1755 */
a36e71f9
JA
1756 cfqq = cfqq_close(cfqd, cur_cfqq);
1757 if (!cfqq)
1758 return NULL;
1759
8682e1f1
VG
1760 /* If new queue belongs to different cfq_group, don't choose it */
1761 if (cur_cfqq->cfqg != cfqq->cfqg)
1762 return NULL;
1763
df5fe3e8
JM
1764 /*
1765 * It only makes sense to merge sync queues.
1766 */
1767 if (!cfq_cfqq_sync(cfqq))
1768 return NULL;
e6c5bc73
JM
1769 if (CFQQ_SEEKY(cfqq))
1770 return NULL;
df5fe3e8 1771
c0324a02
CZ
1772 /*
1773 * Do not merge queues of different priority classes
1774 */
1775 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1776 return NULL;
1777
a36e71f9 1778 return cfqq;
6d048f53
JA
1779}
1780
a6d44e98
CZ
1781/*
1782 * Determine whether we should enforce idle window for this queue.
1783 */
1784
1785static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1786{
1787 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1788 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1789
f04a6424
VG
1790 BUG_ON(!service_tree);
1791 BUG_ON(!service_tree->count);
1792
a6d44e98
CZ
1793 /* We never do for idle class queues. */
1794 if (prio == IDLE_WORKLOAD)
1795 return false;
1796
1797 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1798 if (cfq_cfqq_idle_window(cfqq) &&
1799 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1800 return true;
1801
1802 /*
1803 * Otherwise, we do only if they are the last ones
1804 * in their service tree.
1805 */
f04a6424 1806 return service_tree->count == 1;
a6d44e98
CZ
1807}
1808
6d048f53 1809static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1810{
1792669c 1811 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1812 struct cfq_io_context *cic;
7b14e3b5
JA
1813 unsigned long sl;
1814
a68bbddb 1815 /*
f7d7b7a7
JA
1816 * SSD device without seek penalty, disable idling. But only do so
1817 * for devices that support queuing, otherwise we still have a problem
1818 * with sync vs async workloads.
a68bbddb 1819 */
f7d7b7a7 1820 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1821 return;
1822
dd67d051 1823 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1824 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1825
1826 /*
1827 * idle is disabled, either manually or by past process history
1828 */
a6d44e98 1829 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1830 return;
1831
7b679138 1832 /*
8e550632 1833 * still active requests from this queue, don't idle
7b679138 1834 */
8e550632 1835 if (cfqq->dispatched)
7b679138
JA
1836 return;
1837
22e2c507
JA
1838 /*
1839 * task has exited, don't wait
1840 */
206dc69b 1841 cic = cfqd->active_cic;
66dac98e 1842 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1843 return;
1844
355b659c
CZ
1845 /*
1846 * If our average think time is larger than the remaining time
1847 * slice, then don't idle. This avoids overrunning the allotted
1848 * time slice.
1849 */
1850 if (sample_valid(cic->ttime_samples) &&
1851 (cfqq->slice_end - jiffies < cic->ttime_mean))
1852 return;
1853
3b18152c 1854 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1855
6d048f53 1856 sl = cfqd->cfq_slice_idle;
206dc69b 1857
7b14e3b5 1858 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1859 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1860}
1861
498d3aa2
JA
1862/*
1863 * Move request from internal lists to the request queue dispatch list.
1864 */
165125e1 1865static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1866{
3ed9a296 1867 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1868 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1869
7b679138
JA
1870 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1871
06d21886 1872 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1873 cfq_remove_request(rq);
6d048f53 1874 cfqq->dispatched++;
5380a101 1875 elv_dispatch_sort(q, rq);
3ed9a296
JA
1876
1877 if (cfq_cfqq_sync(cfqq))
1878 cfqd->sync_flight++;
22084190 1879 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1880}
1881
1882/*
1883 * return expired entry, or NULL to just start from scratch in rbtree
1884 */
febffd61 1885static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1886{
30996f40 1887 struct request *rq = NULL;
1da177e4 1888
3b18152c 1889 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1890 return NULL;
cb887411
JA
1891
1892 cfq_mark_cfqq_fifo_expire(cfqq);
1893
89850f7e
JA
1894 if (list_empty(&cfqq->fifo))
1895 return NULL;
1da177e4 1896
89850f7e 1897 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1898 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1899 rq = NULL;
1da177e4 1900
30996f40 1901 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1902 return rq;
1da177e4
LT
1903}
1904
22e2c507
JA
1905static inline int
1906cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1907{
1908 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1909
22e2c507 1910 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1911
22e2c507 1912 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1913}
1914
df5fe3e8
JM
1915/*
1916 * Must be called with the queue_lock held.
1917 */
1918static int cfqq_process_refs(struct cfq_queue *cfqq)
1919{
1920 int process_refs, io_refs;
1921
1922 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923 process_refs = atomic_read(&cfqq->ref) - io_refs;
1924 BUG_ON(process_refs < 0);
1925 return process_refs;
1926}
1927
1928static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1929{
e6c5bc73 1930 int process_refs, new_process_refs;
df5fe3e8
JM
1931 struct cfq_queue *__cfqq;
1932
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq = new_cfqq->new_cfqq)) {
1935 if (__cfqq == cfqq)
1936 return;
1937 new_cfqq = __cfqq;
1938 }
1939
1940 process_refs = cfqq_process_refs(cfqq);
1941 /*
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1944 */
1945 if (process_refs == 0)
1946 return;
1947
e6c5bc73
JM
1948 /*
1949 * Merge in the direction of the lesser amount of work.
1950 */
1951 new_process_refs = cfqq_process_refs(new_cfqq);
1952 if (new_process_refs >= process_refs) {
1953 cfqq->new_cfqq = new_cfqq;
1954 atomic_add(process_refs, &new_cfqq->ref);
1955 } else {
1956 new_cfqq->new_cfqq = cfqq;
1957 atomic_add(new_process_refs, &cfqq->ref);
1958 }
df5fe3e8
JM
1959}
1960
cdb16e8f 1961static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1962 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1963{
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
65b32a57
VG
1970 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1971 /* select the one with lowest rb_key */
1972 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1973 if (queue &&
1974 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1975 lowest_key = queue->rb_key;
1976 cur_best = i;
1977 key_valid = true;
1978 }
1979 }
1980
1981 return cur_best;
1982}
1983
cdb16e8f 1984static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1985{
718eee05
CZ
1986 unsigned slice;
1987 unsigned count;
cdb16e8f 1988 struct cfq_rb_root *st;
58ff82f3 1989 unsigned group_slice;
718eee05 1990
1fa8f6d6
VG
1991 if (!cfqg) {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1995 }
1996
718eee05 1997 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1998 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1999 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2000 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2001 cfqd->serving_prio = BE_WORKLOAD;
2002 else {
2003 cfqd->serving_prio = IDLE_WORKLOAD;
2004 cfqd->workload_expires = jiffies + 1;
2005 return;
2006 }
2007
2008 /*
2009 * For RT and BE, we have to choose also the type
2010 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2011 * expiration time
2012 */
65b32a57 2013 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2014 count = st->count;
718eee05
CZ
2015
2016 /*
65b32a57 2017 * check workload expiration, and that we still have other queues ready
718eee05 2018 */
65b32a57 2019 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2020 return;
2021
2022 /* otherwise select new workload type */
2023 cfqd->serving_type =
65b32a57
VG
2024 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2025 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2026 count = st->count;
718eee05
CZ
2027
2028 /*
2029 * the workload slice is computed as a fraction of target latency
2030 * proportional to the number of queues in that workload, over
2031 * all the queues in the same priority class
2032 */
58ff82f3
VG
2033 group_slice = cfq_group_slice(cfqd, cfqg);
2034
2035 slice = group_slice * count /
2036 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2037 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2038
f26bd1f0
VG
2039 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2040 unsigned int tmp;
2041
2042 /*
2043 * Async queues are currently system wide. Just taking
2044 * proportion of queues with-in same group will lead to higher
2045 * async ratio system wide as generally root group is going
2046 * to have higher weight. A more accurate thing would be to
2047 * calculate system wide asnc/sync ratio.
2048 */
2049 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2050 tmp = tmp/cfqd->busy_queues;
2051 slice = min_t(unsigned, slice, tmp);
2052
718eee05
CZ
2053 /* async workload slice is scaled down according to
2054 * the sync/async slice ratio. */
2055 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2056 } else
718eee05
CZ
2057 /* sync workload slice is at least 2 * cfq_slice_idle */
2058 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2059
2060 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2061 cfqd->workload_expires = jiffies + slice;
8e550632 2062 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2063}
2064
1fa8f6d6
VG
2065static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2066{
2067 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2068 struct cfq_group *cfqg;
1fa8f6d6
VG
2069
2070 if (RB_EMPTY_ROOT(&st->rb))
2071 return NULL;
25bc6b07
VG
2072 cfqg = cfq_rb_first_group(st);
2073 st->active = &cfqg->rb_node;
2074 update_min_vdisktime(st);
2075 return cfqg;
1fa8f6d6
VG
2076}
2077
cdb16e8f
VG
2078static void cfq_choose_cfqg(struct cfq_data *cfqd)
2079{
1fa8f6d6
VG
2080 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2081
2082 cfqd->serving_group = cfqg;
dae739eb
VG
2083
2084 /* Restore the workload type data */
2085 if (cfqg->saved_workload_slice) {
2086 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2087 cfqd->serving_type = cfqg->saved_workload;
2088 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2089 } else
2090 cfqd->workload_expires = jiffies - 1;
2091
1fa8f6d6 2092 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2093}
2094
22e2c507 2095/*
498d3aa2
JA
2096 * Select a queue for service. If we have a current active queue,
2097 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2098 */
1b5ed5e1 2099static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2100{
a36e71f9 2101 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2102
22e2c507
JA
2103 cfqq = cfqd->active_queue;
2104 if (!cfqq)
2105 goto new_queue;
1da177e4 2106
f04a6424
VG
2107 if (!cfqd->rq_queued)
2108 return NULL;
c244bb50
VG
2109
2110 /*
2111 * We were waiting for group to get backlogged. Expire the queue
2112 */
2113 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2114 goto expire;
2115
22e2c507 2116 /*
6d048f53 2117 * The active queue has run out of time, expire it and select new.
22e2c507 2118 */
7667aa06
VG
2119 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2120 /*
2121 * If slice had not expired at the completion of last request
2122 * we might not have turned on wait_busy flag. Don't expire
2123 * the queue yet. Allow the group to get backlogged.
2124 *
2125 * The very fact that we have used the slice, that means we
2126 * have been idling all along on this queue and it should be
2127 * ok to wait for this request to complete.
2128 */
82bbbf28
VG
2129 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2130 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2131 cfqq = NULL;
7667aa06 2132 goto keep_queue;
82bbbf28 2133 } else
7667aa06
VG
2134 goto expire;
2135 }
1da177e4 2136
22e2c507 2137 /*
6d048f53
JA
2138 * The active queue has requests and isn't expired, allow it to
2139 * dispatch.
22e2c507 2140 */
dd67d051 2141 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2142 goto keep_queue;
6d048f53 2143
a36e71f9
JA
2144 /*
2145 * If another queue has a request waiting within our mean seek
2146 * distance, let it run. The expire code will check for close
2147 * cooperators and put the close queue at the front of the service
df5fe3e8 2148 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2149 */
b3b6d040 2150 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2151 if (new_cfqq) {
2152 if (!cfqq->new_cfqq)
2153 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2154 goto expire;
df5fe3e8 2155 }
a36e71f9 2156
6d048f53
JA
2157 /*
2158 * No requests pending. If the active queue still has requests in
2159 * flight or is idling for a new request, allow either of these
2160 * conditions to happen (or time out) before selecting a new queue.
2161 */
cc197479 2162 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2163 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2164 cfqq = NULL;
2165 goto keep_queue;
22e2c507
JA
2166 }
2167
3b18152c 2168expire:
6084cdda 2169 cfq_slice_expired(cfqd, 0);
3b18152c 2170new_queue:
718eee05
CZ
2171 /*
2172 * Current queue expired. Check if we have to switch to a new
2173 * service tree
2174 */
2175 if (!new_cfqq)
cdb16e8f 2176 cfq_choose_cfqg(cfqd);
718eee05 2177
a36e71f9 2178 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2179keep_queue:
3b18152c 2180 return cfqq;
22e2c507
JA
2181}
2182
febffd61 2183static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2184{
2185 int dispatched = 0;
2186
2187 while (cfqq->next_rq) {
2188 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2189 dispatched++;
2190 }
2191
2192 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2193
2194 /* By default cfqq is not expired if it is empty. Do it explicitly */
2195 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2196 return dispatched;
2197}
2198
498d3aa2
JA
2199/*
2200 * Drain our current requests. Used for barriers and when switching
2201 * io schedulers on-the-fly.
2202 */
d9e7620e 2203static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2204{
0871714e 2205 struct cfq_queue *cfqq;
d9e7620e 2206 int dispatched = 0;
cdb16e8f 2207
f04a6424
VG
2208 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2209 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2210
6084cdda 2211 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2212 BUG_ON(cfqd->busy_queues);
2213
6923715a 2214 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2215 return dispatched;
2216}
2217
0b182d61 2218static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2219{
2f5cb738 2220 unsigned int max_dispatch;
22e2c507 2221
5ad531db
JA
2222 /*
2223 * Drain async requests before we start sync IO
2224 */
a6d44e98 2225 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2226 return false;
5ad531db 2227
2f5cb738
JA
2228 /*
2229 * If this is an async queue and we have sync IO in flight, let it wait
2230 */
2231 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2232 return false;
2f5cb738
JA
2233
2234 max_dispatch = cfqd->cfq_quantum;
2235 if (cfq_class_idle(cfqq))
2236 max_dispatch = 1;
b4878f24 2237
2f5cb738
JA
2238 /*
2239 * Does this cfqq already have too much IO in flight?
2240 */
2241 if (cfqq->dispatched >= max_dispatch) {
2242 /*
2243 * idle queue must always only have a single IO in flight
2244 */
3ed9a296 2245 if (cfq_class_idle(cfqq))
0b182d61 2246 return false;
3ed9a296 2247
2f5cb738
JA
2248 /*
2249 * We have other queues, don't allow more IO from this one
2250 */
2251 if (cfqd->busy_queues > 1)
0b182d61 2252 return false;
9ede209e 2253
365722bb 2254 /*
474b18cc 2255 * Sole queue user, no limit
365722bb 2256 */
474b18cc 2257 max_dispatch = -1;
8e296755
JA
2258 }
2259
2260 /*
2261 * Async queues must wait a bit before being allowed dispatch.
2262 * We also ramp up the dispatch depth gradually for async IO,
2263 * based on the last sync IO we serviced
2264 */
963b72fc 2265 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2266 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2267 unsigned int depth;
365722bb 2268
61f0c1dc 2269 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2270 if (!depth && !cfqq->dispatched)
2271 depth = 1;
8e296755
JA
2272 if (depth < max_dispatch)
2273 max_dispatch = depth;
2f5cb738 2274 }
3ed9a296 2275
0b182d61
JA
2276 /*
2277 * If we're below the current max, allow a dispatch
2278 */
2279 return cfqq->dispatched < max_dispatch;
2280}
2281
2282/*
2283 * Dispatch a request from cfqq, moving them to the request queue
2284 * dispatch list.
2285 */
2286static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2287{
2288 struct request *rq;
2289
2290 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2291
2292 if (!cfq_may_dispatch(cfqd, cfqq))
2293 return false;
2294
2295 /*
2296 * follow expired path, else get first next available
2297 */
2298 rq = cfq_check_fifo(cfqq);
2299 if (!rq)
2300 rq = cfqq->next_rq;
2301
2302 /*
2303 * insert request into driver dispatch list
2304 */
2305 cfq_dispatch_insert(cfqd->queue, rq);
2306
2307 if (!cfqd->active_cic) {
2308 struct cfq_io_context *cic = RQ_CIC(rq);
2309
2310 atomic_long_inc(&cic->ioc->refcount);
2311 cfqd->active_cic = cic;
2312 }
2313
2314 return true;
2315}
2316
2317/*
2318 * Find the cfqq that we need to service and move a request from that to the
2319 * dispatch list
2320 */
2321static int cfq_dispatch_requests(struct request_queue *q, int force)
2322{
2323 struct cfq_data *cfqd = q->elevator->elevator_data;
2324 struct cfq_queue *cfqq;
2325
2326 if (!cfqd->busy_queues)
2327 return 0;
2328
2329 if (unlikely(force))
2330 return cfq_forced_dispatch(cfqd);
2331
2332 cfqq = cfq_select_queue(cfqd);
2333 if (!cfqq)
8e296755
JA
2334 return 0;
2335
2f5cb738 2336 /*
0b182d61 2337 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2338 */
0b182d61
JA
2339 if (!cfq_dispatch_request(cfqd, cfqq))
2340 return 0;
2341
2f5cb738 2342 cfqq->slice_dispatch++;
b029195d 2343 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2344
2f5cb738
JA
2345 /*
2346 * expire an async queue immediately if it has used up its slice. idle
2347 * queue always expire after 1 dispatch round.
2348 */
2349 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2350 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2351 cfq_class_idle(cfqq))) {
2352 cfqq->slice_end = jiffies + 1;
2353 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2354 }
2355
b217a903 2356 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2357 return 1;
1da177e4
LT
2358}
2359
1da177e4 2360/*
5e705374
JA
2361 * task holds one reference to the queue, dropped when task exits. each rq
2362 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2363 *
b1c35769 2364 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2365 * queue lock must be held here.
2366 */
2367static void cfq_put_queue(struct cfq_queue *cfqq)
2368{
22e2c507 2369 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2370 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2371
2372 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2373
2374 if (!atomic_dec_and_test(&cfqq->ref))
2375 return;
2376
7b679138 2377 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2378 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2379 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2380 cfqg = cfqq->cfqg;
878eaddd 2381 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2382
28f95cbc 2383 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2384 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2385 cfq_schedule_dispatch(cfqd);
28f95cbc 2386 }
22e2c507 2387
f04a6424 2388 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2389 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2390 cfq_put_cfqg(cfqg);
878eaddd
VG
2391 if (orig_cfqg)
2392 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2393}
2394
d6de8be7
JA
2395/*
2396 * Must always be called with the rcu_read_lock() held
2397 */
07416d29
JA
2398static void
2399__call_for_each_cic(struct io_context *ioc,
2400 void (*func)(struct io_context *, struct cfq_io_context *))
2401{
2402 struct cfq_io_context *cic;
2403 struct hlist_node *n;
2404
2405 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2406 func(ioc, cic);
2407}
2408
4ac845a2 2409/*
34e6bbf2 2410 * Call func for each cic attached to this ioc.
4ac845a2 2411 */
34e6bbf2 2412static void
4ac845a2
JA
2413call_for_each_cic(struct io_context *ioc,
2414 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2415{
4ac845a2 2416 rcu_read_lock();
07416d29 2417 __call_for_each_cic(ioc, func);
4ac845a2 2418 rcu_read_unlock();
34e6bbf2
FC
2419}
2420
2421static void cfq_cic_free_rcu(struct rcu_head *head)
2422{
2423 struct cfq_io_context *cic;
2424
2425 cic = container_of(head, struct cfq_io_context, rcu_head);
2426
2427 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2428 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2429
9a11b4ed
JA
2430 if (ioc_gone) {
2431 /*
2432 * CFQ scheduler is exiting, grab exit lock and check
2433 * the pending io context count. If it hits zero,
2434 * complete ioc_gone and set it back to NULL
2435 */
2436 spin_lock(&ioc_gone_lock);
245b2e70 2437 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2438 complete(ioc_gone);
2439 ioc_gone = NULL;
2440 }
2441 spin_unlock(&ioc_gone_lock);
2442 }
34e6bbf2 2443}
4ac845a2 2444
34e6bbf2
FC
2445static void cfq_cic_free(struct cfq_io_context *cic)
2446{
2447 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2448}
2449
2450static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2451{
2452 unsigned long flags;
2453
2454 BUG_ON(!cic->dead_key);
2455
2456 spin_lock_irqsave(&ioc->lock, flags);
2457 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2458 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2459 spin_unlock_irqrestore(&ioc->lock, flags);
2460
34e6bbf2 2461 cfq_cic_free(cic);
4ac845a2
JA
2462}
2463
d6de8be7
JA
2464/*
2465 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2466 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2467 * and ->trim() which is called with the task lock held
2468 */
4ac845a2
JA
2469static void cfq_free_io_context(struct io_context *ioc)
2470{
4ac845a2 2471 /*
34e6bbf2
FC
2472 * ioc->refcount is zero here, or we are called from elv_unregister(),
2473 * so no more cic's are allowed to be linked into this ioc. So it
2474 * should be ok to iterate over the known list, we will see all cic's
2475 * since no new ones are added.
4ac845a2 2476 */
07416d29 2477 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2478}
2479
89850f7e 2480static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2481{
df5fe3e8
JM
2482 struct cfq_queue *__cfqq, *next;
2483
28f95cbc 2484 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2485 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2486 cfq_schedule_dispatch(cfqd);
28f95cbc 2487 }
22e2c507 2488
df5fe3e8
JM
2489 /*
2490 * If this queue was scheduled to merge with another queue, be
2491 * sure to drop the reference taken on that queue (and others in
2492 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2493 */
2494 __cfqq = cfqq->new_cfqq;
2495 while (__cfqq) {
2496 if (__cfqq == cfqq) {
2497 WARN(1, "cfqq->new_cfqq loop detected\n");
2498 break;
2499 }
2500 next = __cfqq->new_cfqq;
2501 cfq_put_queue(__cfqq);
2502 __cfqq = next;
2503 }
2504
89850f7e
JA
2505 cfq_put_queue(cfqq);
2506}
22e2c507 2507
89850f7e
JA
2508static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2509 struct cfq_io_context *cic)
2510{
4faa3c81
FC
2511 struct io_context *ioc = cic->ioc;
2512
fc46379d 2513 list_del_init(&cic->queue_list);
4ac845a2
JA
2514
2515 /*
2516 * Make sure key == NULL is seen for dead queues
2517 */
fc46379d 2518 smp_wmb();
4ac845a2 2519 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2520 cic->key = NULL;
2521
4faa3c81
FC
2522 if (ioc->ioc_data == cic)
2523 rcu_assign_pointer(ioc->ioc_data, NULL);
2524
ff6657c6
JA
2525 if (cic->cfqq[BLK_RW_ASYNC]) {
2526 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2527 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2528 }
2529
ff6657c6
JA
2530 if (cic->cfqq[BLK_RW_SYNC]) {
2531 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2532 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2533 }
89850f7e
JA
2534}
2535
4ac845a2
JA
2536static void cfq_exit_single_io_context(struct io_context *ioc,
2537 struct cfq_io_context *cic)
89850f7e
JA
2538{
2539 struct cfq_data *cfqd = cic->key;
2540
89850f7e 2541 if (cfqd) {
165125e1 2542 struct request_queue *q = cfqd->queue;
4ac845a2 2543 unsigned long flags;
89850f7e 2544
4ac845a2 2545 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2546
2547 /*
2548 * Ensure we get a fresh copy of the ->key to prevent
2549 * race between exiting task and queue
2550 */
2551 smp_read_barrier_depends();
2552 if (cic->key)
2553 __cfq_exit_single_io_context(cfqd, cic);
2554
4ac845a2 2555 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2556 }
1da177e4
LT
2557}
2558
498d3aa2
JA
2559/*
2560 * The process that ioc belongs to has exited, we need to clean up
2561 * and put the internal structures we have that belongs to that process.
2562 */
e2d74ac0 2563static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2564{
4ac845a2 2565 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2566}
2567
22e2c507 2568static struct cfq_io_context *
8267e268 2569cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2570{
b5deef90 2571 struct cfq_io_context *cic;
1da177e4 2572
94f6030c
CL
2573 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2574 cfqd->queue->node);
1da177e4 2575 if (cic) {
22e2c507 2576 cic->last_end_request = jiffies;
553698f9 2577 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2578 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2579 cic->dtor = cfq_free_io_context;
2580 cic->exit = cfq_exit_io_context;
245b2e70 2581 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2582 }
2583
2584 return cic;
2585}
2586
fd0928df 2587static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2588{
2589 struct task_struct *tsk = current;
2590 int ioprio_class;
2591
3b18152c 2592 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2593 return;
2594
fd0928df 2595 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2596 switch (ioprio_class) {
fe094d98
JA
2597 default:
2598 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2599 case IOPRIO_CLASS_NONE:
2600 /*
6d63c275 2601 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2602 */
2603 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2604 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2605 break;
2606 case IOPRIO_CLASS_RT:
2607 cfqq->ioprio = task_ioprio(ioc);
2608 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2609 break;
2610 case IOPRIO_CLASS_BE:
2611 cfqq->ioprio = task_ioprio(ioc);
2612 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2613 break;
2614 case IOPRIO_CLASS_IDLE:
2615 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2616 cfqq->ioprio = 7;
2617 cfq_clear_cfqq_idle_window(cfqq);
2618 break;
22e2c507
JA
2619 }
2620
2621 /*
2622 * keep track of original prio settings in case we have to temporarily
2623 * elevate the priority of this queue
2624 */
2625 cfqq->org_ioprio = cfqq->ioprio;
2626 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2627 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2628}
2629
febffd61 2630static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2631{
478a82b0
AV
2632 struct cfq_data *cfqd = cic->key;
2633 struct cfq_queue *cfqq;
c1b707d2 2634 unsigned long flags;
35e6077c 2635
caaa5f9f
JA
2636 if (unlikely(!cfqd))
2637 return;
2638
c1b707d2 2639 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2640
ff6657c6 2641 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2642 if (cfqq) {
2643 struct cfq_queue *new_cfqq;
ff6657c6
JA
2644 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2645 GFP_ATOMIC);
caaa5f9f 2646 if (new_cfqq) {
ff6657c6 2647 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2648 cfq_put_queue(cfqq);
2649 }
22e2c507 2650 }
caaa5f9f 2651
ff6657c6 2652 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2653 if (cfqq)
2654 cfq_mark_cfqq_prio_changed(cfqq);
2655
c1b707d2 2656 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2657}
2658
fc46379d 2659static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2660{
4ac845a2 2661 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2662 ioc->ioprio_changed = 0;
22e2c507
JA
2663}
2664
d5036d77 2665static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2666 pid_t pid, bool is_sync)
d5036d77
JA
2667{
2668 RB_CLEAR_NODE(&cfqq->rb_node);
2669 RB_CLEAR_NODE(&cfqq->p_node);
2670 INIT_LIST_HEAD(&cfqq->fifo);
2671
2672 atomic_set(&cfqq->ref, 0);
2673 cfqq->cfqd = cfqd;
2674
2675 cfq_mark_cfqq_prio_changed(cfqq);
2676
2677 if (is_sync) {
2678 if (!cfq_class_idle(cfqq))
2679 cfq_mark_cfqq_idle_window(cfqq);
2680 cfq_mark_cfqq_sync(cfqq);
2681 }
2682 cfqq->pid = pid;
2683}
2684
24610333
VG
2685#ifdef CONFIG_CFQ_GROUP_IOSCHED
2686static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2687{
2688 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2689 struct cfq_data *cfqd = cic->key;
2690 unsigned long flags;
2691 struct request_queue *q;
2692
2693 if (unlikely(!cfqd))
2694 return;
2695
2696 q = cfqd->queue;
2697
2698 spin_lock_irqsave(q->queue_lock, flags);
2699
2700 if (sync_cfqq) {
2701 /*
2702 * Drop reference to sync queue. A new sync queue will be
2703 * assigned in new group upon arrival of a fresh request.
2704 */
2705 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2706 cic_set_cfqq(cic, NULL, 1);
2707 cfq_put_queue(sync_cfqq);
2708 }
2709
2710 spin_unlock_irqrestore(q->queue_lock, flags);
2711}
2712
2713static void cfq_ioc_set_cgroup(struct io_context *ioc)
2714{
2715 call_for_each_cic(ioc, changed_cgroup);
2716 ioc->cgroup_changed = 0;
2717}
2718#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2719
22e2c507 2720static struct cfq_queue *
a6151c3a 2721cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2722 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2723{
22e2c507 2724 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2725 struct cfq_io_context *cic;
cdb16e8f 2726 struct cfq_group *cfqg;
22e2c507
JA
2727
2728retry:
cdb16e8f 2729 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2730 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2731 /* cic always exists here */
2732 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2733
6118b70b
JA
2734 /*
2735 * Always try a new alloc if we fell back to the OOM cfqq
2736 * originally, since it should just be a temporary situation.
2737 */
2738 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2739 cfqq = NULL;
22e2c507
JA
2740 if (new_cfqq) {
2741 cfqq = new_cfqq;
2742 new_cfqq = NULL;
2743 } else if (gfp_mask & __GFP_WAIT) {
2744 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2745 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2746 gfp_mask | __GFP_ZERO,
94f6030c 2747 cfqd->queue->node);
22e2c507 2748 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2749 if (new_cfqq)
2750 goto retry;
22e2c507 2751 } else {
94f6030c
CL
2752 cfqq = kmem_cache_alloc_node(cfq_pool,
2753 gfp_mask | __GFP_ZERO,
2754 cfqd->queue->node);
22e2c507
JA
2755 }
2756
6118b70b
JA
2757 if (cfqq) {
2758 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2759 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2760 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2761 cfq_log_cfqq(cfqd, cfqq, "alloced");
2762 } else
2763 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2764 }
2765
2766 if (new_cfqq)
2767 kmem_cache_free(cfq_pool, new_cfqq);
2768
22e2c507
JA
2769 return cfqq;
2770}
2771
c2dea2d1
VT
2772static struct cfq_queue **
2773cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2774{
fe094d98 2775 switch (ioprio_class) {
c2dea2d1
VT
2776 case IOPRIO_CLASS_RT:
2777 return &cfqd->async_cfqq[0][ioprio];
2778 case IOPRIO_CLASS_BE:
2779 return &cfqd->async_cfqq[1][ioprio];
2780 case IOPRIO_CLASS_IDLE:
2781 return &cfqd->async_idle_cfqq;
2782 default:
2783 BUG();
2784 }
2785}
2786
15c31be4 2787static struct cfq_queue *
a6151c3a 2788cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2789 gfp_t gfp_mask)
2790{
fd0928df
JA
2791 const int ioprio = task_ioprio(ioc);
2792 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2793 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2794 struct cfq_queue *cfqq = NULL;
2795
c2dea2d1
VT
2796 if (!is_sync) {
2797 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2798 cfqq = *async_cfqq;
2799 }
2800
6118b70b 2801 if (!cfqq)
fd0928df 2802 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2803
2804 /*
2805 * pin the queue now that it's allocated, scheduler exit will prune it
2806 */
c2dea2d1 2807 if (!is_sync && !(*async_cfqq)) {
15c31be4 2808 atomic_inc(&cfqq->ref);
c2dea2d1 2809 *async_cfqq = cfqq;
15c31be4
JA
2810 }
2811
2812 atomic_inc(&cfqq->ref);
2813 return cfqq;
2814}
2815
498d3aa2
JA
2816/*
2817 * We drop cfq io contexts lazily, so we may find a dead one.
2818 */
dbecf3ab 2819static void
4ac845a2
JA
2820cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2821 struct cfq_io_context *cic)
dbecf3ab 2822{
4ac845a2
JA
2823 unsigned long flags;
2824
fc46379d 2825 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2826
4ac845a2
JA
2827 spin_lock_irqsave(&ioc->lock, flags);
2828
4faa3c81 2829 BUG_ON(ioc->ioc_data == cic);
597bc485 2830
4ac845a2 2831 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2832 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2833 spin_unlock_irqrestore(&ioc->lock, flags);
2834
2835 cfq_cic_free(cic);
dbecf3ab
OH
2836}
2837
e2d74ac0 2838static struct cfq_io_context *
4ac845a2 2839cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2840{
e2d74ac0 2841 struct cfq_io_context *cic;
d6de8be7 2842 unsigned long flags;
4ac845a2 2843 void *k;
e2d74ac0 2844
91fac317
VT
2845 if (unlikely(!ioc))
2846 return NULL;
2847
d6de8be7
JA
2848 rcu_read_lock();
2849
597bc485
JA
2850 /*
2851 * we maintain a last-hit cache, to avoid browsing over the tree
2852 */
4ac845a2 2853 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2854 if (cic && cic->key == cfqd) {
2855 rcu_read_unlock();
597bc485 2856 return cic;
d6de8be7 2857 }
597bc485 2858
4ac845a2 2859 do {
4ac845a2
JA
2860 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2861 rcu_read_unlock();
2862 if (!cic)
2863 break;
be3b0753
OH
2864 /* ->key must be copied to avoid race with cfq_exit_queue() */
2865 k = cic->key;
2866 if (unlikely(!k)) {
4ac845a2 2867 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2868 rcu_read_lock();
4ac845a2 2869 continue;
dbecf3ab 2870 }
e2d74ac0 2871
d6de8be7 2872 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2873 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2874 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2875 break;
2876 } while (1);
e2d74ac0 2877
4ac845a2 2878 return cic;
e2d74ac0
JA
2879}
2880
4ac845a2
JA
2881/*
2882 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2883 * the process specific cfq io context when entered from the block layer.
2884 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2885 */
febffd61
JA
2886static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2887 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2888{
0261d688 2889 unsigned long flags;
4ac845a2 2890 int ret;
e2d74ac0 2891
4ac845a2
JA
2892 ret = radix_tree_preload(gfp_mask);
2893 if (!ret) {
2894 cic->ioc = ioc;
2895 cic->key = cfqd;
e2d74ac0 2896
4ac845a2
JA
2897 spin_lock_irqsave(&ioc->lock, flags);
2898 ret = radix_tree_insert(&ioc->radix_root,
2899 (unsigned long) cfqd, cic);
ffc4e759
JA
2900 if (!ret)
2901 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2902 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2903
4ac845a2
JA
2904 radix_tree_preload_end();
2905
2906 if (!ret) {
2907 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2908 list_add(&cic->queue_list, &cfqd->cic_list);
2909 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2910 }
e2d74ac0
JA
2911 }
2912
4ac845a2
JA
2913 if (ret)
2914 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2915
4ac845a2 2916 return ret;
e2d74ac0
JA
2917}
2918
1da177e4
LT
2919/*
2920 * Setup general io context and cfq io context. There can be several cfq
2921 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2922 * than one device managed by cfq.
1da177e4
LT
2923 */
2924static struct cfq_io_context *
e2d74ac0 2925cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2926{
22e2c507 2927 struct io_context *ioc = NULL;
1da177e4 2928 struct cfq_io_context *cic;
1da177e4 2929
22e2c507 2930 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2931
b5deef90 2932 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2933 if (!ioc)
2934 return NULL;
2935
4ac845a2 2936 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2937 if (cic)
2938 goto out;
1da177e4 2939
e2d74ac0
JA
2940 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2941 if (cic == NULL)
2942 goto err;
1da177e4 2943
4ac845a2
JA
2944 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2945 goto err_free;
2946
1da177e4 2947out:
fc46379d
JA
2948 smp_read_barrier_depends();
2949 if (unlikely(ioc->ioprio_changed))
2950 cfq_ioc_set_ioprio(ioc);
2951
24610333
VG
2952#ifdef CONFIG_CFQ_GROUP_IOSCHED
2953 if (unlikely(ioc->cgroup_changed))
2954 cfq_ioc_set_cgroup(ioc);
2955#endif
1da177e4 2956 return cic;
4ac845a2
JA
2957err_free:
2958 cfq_cic_free(cic);
1da177e4
LT
2959err:
2960 put_io_context(ioc);
2961 return NULL;
2962}
2963
22e2c507
JA
2964static void
2965cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2966{
aaf1228d
JA
2967 unsigned long elapsed = jiffies - cic->last_end_request;
2968 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2969
22e2c507
JA
2970 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2971 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2972 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2973}
1da177e4 2974
206dc69b 2975static void
b2c18e1e 2976cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2977 struct request *rq)
206dc69b
JA
2978{
2979 sector_t sdist;
2980 u64 total;
2981
b2c18e1e 2982 if (!cfqq->last_request_pos)
4d00aa47 2983 sdist = 0;
b2c18e1e
JM
2984 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2985 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2986 else
b2c18e1e 2987 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2988
2989 /*
2990 * Don't allow the seek distance to get too large from the
2991 * odd fragment, pagein, etc
2992 */
b2c18e1e
JM
2993 if (cfqq->seek_samples <= 60) /* second&third seek */
2994 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2995 else
b2c18e1e 2996 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2997
b2c18e1e
JM
2998 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2999 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3000 total = cfqq->seek_total + (cfqq->seek_samples/2);
3001 do_div(total, cfqq->seek_samples);
3002 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
3003
3004 /*
3005 * If this cfqq is shared between multiple processes, check to
3006 * make sure that those processes are still issuing I/Os within
3007 * the mean seek distance. If not, it may be time to break the
3008 * queues apart again.
3009 */
3010 if (cfq_cfqq_coop(cfqq)) {
3011 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3012 cfqq->seeky_start = jiffies;
3013 else if (!CFQQ_SEEKY(cfqq))
3014 cfqq->seeky_start = 0;
3015 }
206dc69b 3016}
1da177e4 3017
22e2c507
JA
3018/*
3019 * Disable idle window if the process thinks too long or seeks so much that
3020 * it doesn't matter
3021 */
3022static void
3023cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3024 struct cfq_io_context *cic)
3025{
7b679138 3026 int old_idle, enable_idle;
1be92f2f 3027
0871714e
JA
3028 /*
3029 * Don't idle for async or idle io prio class
3030 */
3031 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3032 return;
3033
c265a7f4 3034 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3035
76280aff
CZ
3036 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3037 cfq_mark_cfqq_deep(cfqq);
3038
66dac98e 3039 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
3040 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3041 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3042 enable_idle = 0;
3043 else if (sample_valid(cic->ttime_samples)) {
718eee05 3044 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3045 enable_idle = 0;
3046 else
3047 enable_idle = 1;
1da177e4
LT
3048 }
3049
7b679138
JA
3050 if (old_idle != enable_idle) {
3051 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3052 if (enable_idle)
3053 cfq_mark_cfqq_idle_window(cfqq);
3054 else
3055 cfq_clear_cfqq_idle_window(cfqq);
3056 }
22e2c507 3057}
1da177e4 3058
22e2c507
JA
3059/*
3060 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3061 * no or if we aren't sure, a 1 will cause a preempt.
3062 */
a6151c3a 3063static bool
22e2c507 3064cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3065 struct request *rq)
22e2c507 3066{
6d048f53 3067 struct cfq_queue *cfqq;
22e2c507 3068
6d048f53
JA
3069 cfqq = cfqd->active_queue;
3070 if (!cfqq)
a6151c3a 3071 return false;
22e2c507 3072
6d048f53 3073 if (cfq_class_idle(new_cfqq))
a6151c3a 3074 return false;
22e2c507
JA
3075
3076 if (cfq_class_idle(cfqq))
a6151c3a 3077 return true;
1e3335de 3078
374f84ac
JA
3079 /*
3080 * if the new request is sync, but the currently running queue is
3081 * not, let the sync request have priority.
3082 */
5e705374 3083 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3084 return true;
1e3335de 3085
8682e1f1
VG
3086 if (new_cfqq->cfqg != cfqq->cfqg)
3087 return false;
3088
3089 if (cfq_slice_used(cfqq))
3090 return true;
3091
3092 /* Allow preemption only if we are idling on sync-noidle tree */
3093 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3094 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3095 new_cfqq->service_tree->count == 2 &&
3096 RB_EMPTY_ROOT(&cfqq->sort_list))
3097 return true;
3098
374f84ac
JA
3099 /*
3100 * So both queues are sync. Let the new request get disk time if
3101 * it's a metadata request and the current queue is doing regular IO.
3102 */
3103 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3104 return true;
22e2c507 3105
3a9a3f6c
DS
3106 /*
3107 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3108 */
3109 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3110 return true;
3a9a3f6c 3111
1e3335de 3112 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3113 return false;
1e3335de
JA
3114
3115 /*
3116 * if this request is as-good as one we would expect from the
3117 * current cfqq, let it preempt
3118 */
2f7a2d89 3119 if (cfq_rq_close(cfqd, cfqq, rq, true))
a6151c3a 3120 return true;
1e3335de 3121
a6151c3a 3122 return false;
22e2c507
JA
3123}
3124
3125/*
3126 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3127 * let it have half of its nominal slice.
3128 */
3129static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3130{
7b679138 3131 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3132 cfq_slice_expired(cfqd, 1);
22e2c507 3133
bf572256
JA
3134 /*
3135 * Put the new queue at the front of the of the current list,
3136 * so we know that it will be selected next.
3137 */
3138 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3139
3140 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3141
44f7c160
JA
3142 cfqq->slice_end = 0;
3143 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3144}
3145
22e2c507 3146/*
5e705374 3147 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3148 * something we should do about it
3149 */
3150static void
5e705374
JA
3151cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3152 struct request *rq)
22e2c507 3153{
5e705374 3154 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3155
45333d5a 3156 cfqd->rq_queued++;
374f84ac
JA
3157 if (rq_is_meta(rq))
3158 cfqq->meta_pending++;
3159
9c2c38a1 3160 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3161 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3162 cfq_update_idle_window(cfqd, cfqq, cic);
3163
b2c18e1e 3164 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3165
3166 if (cfqq == cfqd->active_queue) {
3167 /*
b029195d
JA
3168 * Remember that we saw a request from this process, but
3169 * don't start queuing just yet. Otherwise we risk seeing lots
3170 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3171 * and merging. If the request is already larger than a single
3172 * page, let it rip immediately. For that case we assume that
2d870722
JA
3173 * merging is already done. Ditto for a busy system that
3174 * has other work pending, don't risk delaying until the
3175 * idle timer unplug to continue working.
22e2c507 3176 */
d6ceb25e 3177 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3178 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3179 cfqd->busy_queues > 1) {
d6ceb25e 3180 del_timer(&cfqd->idle_slice_timer);
554554f6 3181 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3182 __blk_run_queue(cfqd->queue);
3183 } else
3184 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3185 }
5e705374 3186 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3187 /*
3188 * not the active queue - expire current slice if it is
3189 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3190 * has some old slice time left and is of higher priority or
3191 * this new queue is RT and the current one is BE
22e2c507
JA
3192 */
3193 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3194 __blk_run_queue(cfqd->queue);
22e2c507 3195 }
1da177e4
LT
3196}
3197
165125e1 3198static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3199{
b4878f24 3200 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3201 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3202
7b679138 3203 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3204 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3205
30996f40 3206 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3207 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3208 cfq_add_rq_rb(rq);
22e2c507 3209
5e705374 3210 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3211}
3212
45333d5a
AC
3213/*
3214 * Update hw_tag based on peak queue depth over 50 samples under
3215 * sufficient load.
3216 */
3217static void cfq_update_hw_tag(struct cfq_data *cfqd)
3218{
1a1238a7
SL
3219 struct cfq_queue *cfqq = cfqd->active_queue;
3220
e459dd08
CZ
3221 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3222 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3223
3224 if (cfqd->hw_tag == 1)
3225 return;
45333d5a
AC
3226
3227 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3228 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3229 return;
3230
1a1238a7
SL
3231 /*
3232 * If active queue hasn't enough requests and can idle, cfq might not
3233 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3234 * case
3235 */
3236 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3237 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3238 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3239 return;
3240
45333d5a
AC
3241 if (cfqd->hw_tag_samples++ < 50)
3242 return;
3243
e459dd08 3244 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3245 cfqd->hw_tag = 1;
3246 else
3247 cfqd->hw_tag = 0;
45333d5a
AC
3248}
3249
7667aa06
VG
3250static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3251{
3252 struct cfq_io_context *cic = cfqd->active_cic;
3253
3254 /* If there are other queues in the group, don't wait */
3255 if (cfqq->cfqg->nr_cfqq > 1)
3256 return false;
3257
3258 if (cfq_slice_used(cfqq))
3259 return true;
3260
3261 /* if slice left is less than think time, wait busy */
3262 if (cic && sample_valid(cic->ttime_samples)
3263 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3264 return true;
3265
3266 /*
3267 * If think times is less than a jiffy than ttime_mean=0 and above
3268 * will not be true. It might happen that slice has not expired yet
3269 * but will expire soon (4-5 ns) during select_queue(). To cover the
3270 * case where think time is less than a jiffy, mark the queue wait
3271 * busy if only 1 jiffy is left in the slice.
3272 */
3273 if (cfqq->slice_end - jiffies == 1)
3274 return true;
3275
3276 return false;
3277}
3278
165125e1 3279static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3280{
5e705374 3281 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3282 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3283 const int sync = rq_is_sync(rq);
b4878f24 3284 unsigned long now;
1da177e4 3285
b4878f24 3286 now = jiffies;
2868ef7b 3287 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3288
45333d5a
AC
3289 cfq_update_hw_tag(cfqd);
3290
5ad531db 3291 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3292 WARN_ON(!cfqq->dispatched);
5ad531db 3293 cfqd->rq_in_driver[sync]--;
6d048f53 3294 cfqq->dispatched--;
1da177e4 3295
3ed9a296
JA
3296 if (cfq_cfqq_sync(cfqq))
3297 cfqd->sync_flight--;
3298
365722bb 3299 if (sync) {
5e705374 3300 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3301 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3302 cfqd->last_delayed_sync = now;
365722bb 3303 }
caaa5f9f
JA
3304
3305 /*
3306 * If this is the active queue, check if it needs to be expired,
3307 * or if we want to idle in case it has no pending requests.
3308 */
3309 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3310 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3311
44f7c160
JA
3312 if (cfq_cfqq_slice_new(cfqq)) {
3313 cfq_set_prio_slice(cfqd, cfqq);
3314 cfq_clear_cfqq_slice_new(cfqq);
3315 }
f75edf2d
VG
3316
3317 /*
7667aa06
VG
3318 * Should we wait for next request to come in before we expire
3319 * the queue.
f75edf2d 3320 */
7667aa06 3321 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3322 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3323 cfq_mark_cfqq_wait_busy(cfqq);
3324 }
3325
a36e71f9 3326 /*
8e550632
CZ
3327 * Idling is not enabled on:
3328 * - expired queues
3329 * - idle-priority queues
3330 * - async queues
3331 * - queues with still some requests queued
3332 * - when there is a close cooperator
a36e71f9 3333 */
0871714e 3334 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3335 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3336 else if (sync && cfqq_empty &&
3337 !cfq_close_cooperator(cfqd, cfqq)) {
3338 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3339 /*
3340 * Idling is enabled for SYNC_WORKLOAD.
3341 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3342 * only if we processed at least one !rq_noidle request
3343 */
3344 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3345 || cfqd->noidle_tree_requires_idle
3346 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3347 cfq_arm_slice_timer(cfqd);
3348 }
caaa5f9f 3349 }
6d048f53 3350
5ad531db 3351 if (!rq_in_driver(cfqd))
23e018a1 3352 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3353}
3354
22e2c507
JA
3355/*
3356 * we temporarily boost lower priority queues if they are holding fs exclusive
3357 * resources. they are boosted to normal prio (CLASS_BE/4)
3358 */
3359static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3360{
22e2c507
JA
3361 if (has_fs_excl()) {
3362 /*
3363 * boost idle prio on transactions that would lock out other
3364 * users of the filesystem
3365 */
3366 if (cfq_class_idle(cfqq))
3367 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3368 if (cfqq->ioprio > IOPRIO_NORM)
3369 cfqq->ioprio = IOPRIO_NORM;
3370 } else {
3371 /*
dddb7451 3372 * unboost the queue (if needed)
22e2c507 3373 */
dddb7451
CZ
3374 cfqq->ioprio_class = cfqq->org_ioprio_class;
3375 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3376 }
22e2c507 3377}
1da177e4 3378
89850f7e 3379static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3380{
1b379d8d 3381 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3382 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3383 return ELV_MQUEUE_MUST;
3b18152c 3384 }
1da177e4 3385
22e2c507 3386 return ELV_MQUEUE_MAY;
22e2c507
JA
3387}
3388
165125e1 3389static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3390{
3391 struct cfq_data *cfqd = q->elevator->elevator_data;
3392 struct task_struct *tsk = current;
91fac317 3393 struct cfq_io_context *cic;
22e2c507
JA
3394 struct cfq_queue *cfqq;
3395
3396 /*
3397 * don't force setup of a queue from here, as a call to may_queue
3398 * does not necessarily imply that a request actually will be queued.
3399 * so just lookup a possibly existing queue, or return 'may queue'
3400 * if that fails
3401 */
4ac845a2 3402 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3403 if (!cic)
3404 return ELV_MQUEUE_MAY;
3405
b0b78f81 3406 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3407 if (cfqq) {
fd0928df 3408 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3409 cfq_prio_boost(cfqq);
3410
89850f7e 3411 return __cfq_may_queue(cfqq);
22e2c507
JA
3412 }
3413
3414 return ELV_MQUEUE_MAY;
1da177e4
LT
3415}
3416
1da177e4
LT
3417/*
3418 * queue lock held here
3419 */
bb37b94c 3420static void cfq_put_request(struct request *rq)
1da177e4 3421{
5e705374 3422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3423
5e705374 3424 if (cfqq) {
22e2c507 3425 const int rw = rq_data_dir(rq);
1da177e4 3426
22e2c507
JA
3427 BUG_ON(!cfqq->allocated[rw]);
3428 cfqq->allocated[rw]--;
1da177e4 3429
5e705374 3430 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3431
1da177e4 3432 rq->elevator_private = NULL;
5e705374 3433 rq->elevator_private2 = NULL;
1da177e4 3434
1da177e4
LT
3435 cfq_put_queue(cfqq);
3436 }
3437}
3438
df5fe3e8
JM
3439static struct cfq_queue *
3440cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3441 struct cfq_queue *cfqq)
3442{
3443 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3444 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3445 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3446 cfq_put_queue(cfqq);
3447 return cic_to_cfqq(cic, 1);
3448}
3449
e6c5bc73
JM
3450static int should_split_cfqq(struct cfq_queue *cfqq)
3451{
3452 if (cfqq->seeky_start &&
3453 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3454 return 1;
3455 return 0;
3456}
3457
3458/*
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3461 */
3462static struct cfq_queue *
3463split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3464{
3465 if (cfqq_process_refs(cfqq) == 1) {
3466 cfqq->seeky_start = 0;
3467 cfqq->pid = current->pid;
3468 cfq_clear_cfqq_coop(cfqq);
3469 return cfqq;
3470 }
3471
3472 cic_set_cfqq(cic, NULL, 1);
3473 cfq_put_queue(cfqq);
3474 return NULL;
3475}
1da177e4 3476/*
22e2c507 3477 * Allocate cfq data structures associated with this request.
1da177e4 3478 */
22e2c507 3479static int
165125e1 3480cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3481{
3482 struct cfq_data *cfqd = q->elevator->elevator_data;
3483 struct cfq_io_context *cic;
3484 const int rw = rq_data_dir(rq);
a6151c3a 3485 const bool is_sync = rq_is_sync(rq);
22e2c507 3486 struct cfq_queue *cfqq;
1da177e4
LT
3487 unsigned long flags;
3488
3489 might_sleep_if(gfp_mask & __GFP_WAIT);
3490
e2d74ac0 3491 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3492
1da177e4
LT
3493 spin_lock_irqsave(q->queue_lock, flags);
3494
22e2c507
JA
3495 if (!cic)
3496 goto queue_fail;
3497
e6c5bc73 3498new_queue:
91fac317 3499 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3500 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3501 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3502 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3503 } else {
e6c5bc73
JM
3504 /*
3505 * If the queue was seeky for too long, break it apart.
3506 */
3507 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3508 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3509 cfqq = split_cfqq(cic, cfqq);
3510 if (!cfqq)
3511 goto new_queue;
3512 }
3513
df5fe3e8
JM
3514 /*
3515 * Check to see if this queue is scheduled to merge with
3516 * another, closely cooperating queue. The merging of
3517 * queues happens here as it must be done in process context.
3518 * The reference on new_cfqq was taken in merge_cfqqs.
3519 */
3520 if (cfqq->new_cfqq)
3521 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3522 }
1da177e4
LT
3523
3524 cfqq->allocated[rw]++;
22e2c507 3525 atomic_inc(&cfqq->ref);
1da177e4 3526
5e705374 3527 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3528
5e705374
JA
3529 rq->elevator_private = cic;
3530 rq->elevator_private2 = cfqq;
3531 return 0;
1da177e4 3532
22e2c507
JA
3533queue_fail:
3534 if (cic)
3535 put_io_context(cic->ioc);
89850f7e 3536
23e018a1 3537 cfq_schedule_dispatch(cfqd);
1da177e4 3538 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3539 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3540 return 1;
3541}
3542
65f27f38 3543static void cfq_kick_queue(struct work_struct *work)
22e2c507 3544{
65f27f38 3545 struct cfq_data *cfqd =
23e018a1 3546 container_of(work, struct cfq_data, unplug_work);
165125e1 3547 struct request_queue *q = cfqd->queue;
22e2c507 3548
40bb54d1 3549 spin_lock_irq(q->queue_lock);
a7f55792 3550 __blk_run_queue(cfqd->queue);
40bb54d1 3551 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3552}
3553
3554/*
3555 * Timer running if the active_queue is currently idling inside its time slice
3556 */
3557static void cfq_idle_slice_timer(unsigned long data)
3558{
3559 struct cfq_data *cfqd = (struct cfq_data *) data;
3560 struct cfq_queue *cfqq;
3561 unsigned long flags;
3c6bd2f8 3562 int timed_out = 1;
22e2c507 3563
7b679138
JA
3564 cfq_log(cfqd, "idle timer fired");
3565
22e2c507
JA
3566 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3567
fe094d98
JA
3568 cfqq = cfqd->active_queue;
3569 if (cfqq) {
3c6bd2f8
JA
3570 timed_out = 0;
3571
b029195d
JA
3572 /*
3573 * We saw a request before the queue expired, let it through
3574 */
3575 if (cfq_cfqq_must_dispatch(cfqq))
3576 goto out_kick;
3577
22e2c507
JA
3578 /*
3579 * expired
3580 */
44f7c160 3581 if (cfq_slice_used(cfqq))
22e2c507
JA
3582 goto expire;
3583
3584 /*
3585 * only expire and reinvoke request handler, if there are
3586 * other queues with pending requests
3587 */
caaa5f9f 3588 if (!cfqd->busy_queues)
22e2c507 3589 goto out_cont;
22e2c507
JA
3590
3591 /*
3592 * not expired and it has a request pending, let it dispatch
3593 */
75e50984 3594 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3595 goto out_kick;
76280aff
CZ
3596
3597 /*
3598 * Queue depth flag is reset only when the idle didn't succeed
3599 */
3600 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3601 }
3602expire:
6084cdda 3603 cfq_slice_expired(cfqd, timed_out);
22e2c507 3604out_kick:
23e018a1 3605 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3606out_cont:
3607 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3608}
3609
3b18152c
JA
3610static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3611{
3612 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3613 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3614}
22e2c507 3615
c2dea2d1
VT
3616static void cfq_put_async_queues(struct cfq_data *cfqd)
3617{
3618 int i;
3619
3620 for (i = 0; i < IOPRIO_BE_NR; i++) {
3621 if (cfqd->async_cfqq[0][i])
3622 cfq_put_queue(cfqd->async_cfqq[0][i]);
3623 if (cfqd->async_cfqq[1][i])
3624 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3625 }
2389d1ef
ON
3626
3627 if (cfqd->async_idle_cfqq)
3628 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3629}
3630
bb729bc9
JA
3631static void cfq_cfqd_free(struct rcu_head *head)
3632{
3633 kfree(container_of(head, struct cfq_data, rcu));
3634}
3635
b374d18a 3636static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3637{
22e2c507 3638 struct cfq_data *cfqd = e->elevator_data;
165125e1 3639 struct request_queue *q = cfqd->queue;
22e2c507 3640
3b18152c 3641 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3642
d9ff4187 3643 spin_lock_irq(q->queue_lock);
e2d74ac0 3644
d9ff4187 3645 if (cfqd->active_queue)
6084cdda 3646 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3647
3648 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3649 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3650 struct cfq_io_context,
3651 queue_list);
89850f7e
JA
3652
3653 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3654 }
e2d74ac0 3655
c2dea2d1 3656 cfq_put_async_queues(cfqd);
b1c35769
VG
3657 cfq_release_cfq_groups(cfqd);
3658 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3659
d9ff4187 3660 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3661
3662 cfq_shutdown_timer_wq(cfqd);
3663
b1c35769 3664 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3665 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3666}
3667
165125e1 3668static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3669{
3670 struct cfq_data *cfqd;
718eee05 3671 int i, j;
cdb16e8f 3672 struct cfq_group *cfqg;
615f0259 3673 struct cfq_rb_root *st;
1da177e4 3674
94f6030c 3675 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3676 if (!cfqd)
bc1c1169 3677 return NULL;
1da177e4 3678
1fa8f6d6
VG
3679 /* Init root service tree */
3680 cfqd->grp_service_tree = CFQ_RB_ROOT;
3681
cdb16e8f
VG
3682 /* Init root group */
3683 cfqg = &cfqd->root_group;
615f0259
VG
3684 for_each_cfqg_st(cfqg, i, j, st)
3685 *st = CFQ_RB_ROOT;
1fa8f6d6 3686 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3687
25bc6b07
VG
3688 /* Give preference to root group over other groups */
3689 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3690
25fb5169 3691#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3692 /*
3693 * Take a reference to root group which we never drop. This is just
3694 * to make sure that cfq_put_cfqg() does not try to kfree root group
3695 */
3696 atomic_set(&cfqg->ref, 1);
22084190
VG
3697 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3698 0);
25fb5169 3699#endif
26a2ac00
JA
3700 /*
3701 * Not strictly needed (since RB_ROOT just clears the node and we
3702 * zeroed cfqd on alloc), but better be safe in case someone decides
3703 * to add magic to the rb code
3704 */
3705 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3706 cfqd->prio_trees[i] = RB_ROOT;
3707
6118b70b
JA
3708 /*
3709 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3710 * Grab a permanent reference to it, so that the normal code flow
3711 * will not attempt to free it.
3712 */
3713 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3714 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3715 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3716
d9ff4187 3717 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3718
1da177e4 3719 cfqd->queue = q;
1da177e4 3720
22e2c507
JA
3721 init_timer(&cfqd->idle_slice_timer);
3722 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3723 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3724
23e018a1 3725 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3726
1da177e4 3727 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3728 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3729 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3730 cfqd->cfq_back_max = cfq_back_max;
3731 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3732 cfqd->cfq_slice[0] = cfq_slice_async;
3733 cfqd->cfq_slice[1] = cfq_slice_sync;
3734 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3735 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3736 cfqd->cfq_latency = 1;
ae30c286 3737 cfqd->cfq_group_isolation = 0;
e459dd08 3738 cfqd->hw_tag = -1;
edc71131
CZ
3739 /*
3740 * we optimistically start assuming sync ops weren't delayed in last
3741 * second, in order to have larger depth for async operations.
3742 */
573412b2 3743 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3744 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3745 return cfqd;
1da177e4
LT
3746}
3747
3748static void cfq_slab_kill(void)
3749{
d6de8be7
JA
3750 /*
3751 * Caller already ensured that pending RCU callbacks are completed,
3752 * so we should have no busy allocations at this point.
3753 */
1da177e4
LT
3754 if (cfq_pool)
3755 kmem_cache_destroy(cfq_pool);
3756 if (cfq_ioc_pool)
3757 kmem_cache_destroy(cfq_ioc_pool);
3758}
3759
3760static int __init cfq_slab_setup(void)
3761{
0a31bd5f 3762 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3763 if (!cfq_pool)
3764 goto fail;
3765
34e6bbf2 3766 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3767 if (!cfq_ioc_pool)
3768 goto fail;
3769
3770 return 0;
3771fail:
3772 cfq_slab_kill();
3773 return -ENOMEM;
3774}
3775
1da177e4
LT
3776/*
3777 * sysfs parts below -->
3778 */
1da177e4
LT
3779static ssize_t
3780cfq_var_show(unsigned int var, char *page)
3781{
3782 return sprintf(page, "%d\n", var);
3783}
3784
3785static ssize_t
3786cfq_var_store(unsigned int *var, const char *page, size_t count)
3787{
3788 char *p = (char *) page;
3789
3790 *var = simple_strtoul(p, &p, 10);
3791 return count;
3792}
3793
1da177e4 3794#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3795static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3796{ \
3d1ab40f 3797 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3798 unsigned int __data = __VAR; \
3799 if (__CONV) \
3800 __data = jiffies_to_msecs(__data); \
3801 return cfq_var_show(__data, (page)); \
3802}
3803SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3804SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3805SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3806SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3807SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3808SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3809SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3810SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3811SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3812SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3813SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3814#undef SHOW_FUNCTION
3815
3816#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3817static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3818{ \
3d1ab40f 3819 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3820 unsigned int __data; \
3821 int ret = cfq_var_store(&__data, (page), count); \
3822 if (__data < (MIN)) \
3823 __data = (MIN); \
3824 else if (__data > (MAX)) \
3825 __data = (MAX); \
3826 if (__CONV) \
3827 *(__PTR) = msecs_to_jiffies(__data); \
3828 else \
3829 *(__PTR) = __data; \
3830 return ret; \
3831}
3832STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3833STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3834 UINT_MAX, 1);
3835STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3836 UINT_MAX, 1);
e572ec7e 3837STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3838STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3839 UINT_MAX, 0);
22e2c507
JA
3840STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3841STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3842STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3843STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3844 UINT_MAX, 0);
963b72fc 3845STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3846STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3847#undef STORE_FUNCTION
3848
e572ec7e
AV
3849#define CFQ_ATTR(name) \
3850 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3851
3852static struct elv_fs_entry cfq_attrs[] = {
3853 CFQ_ATTR(quantum),
e572ec7e
AV
3854 CFQ_ATTR(fifo_expire_sync),
3855 CFQ_ATTR(fifo_expire_async),
3856 CFQ_ATTR(back_seek_max),
3857 CFQ_ATTR(back_seek_penalty),
3858 CFQ_ATTR(slice_sync),
3859 CFQ_ATTR(slice_async),
3860 CFQ_ATTR(slice_async_rq),
3861 CFQ_ATTR(slice_idle),
963b72fc 3862 CFQ_ATTR(low_latency),
ae30c286 3863 CFQ_ATTR(group_isolation),
e572ec7e 3864 __ATTR_NULL
1da177e4
LT
3865};
3866
1da177e4
LT
3867static struct elevator_type iosched_cfq = {
3868 .ops = {
3869 .elevator_merge_fn = cfq_merge,
3870 .elevator_merged_fn = cfq_merged_request,
3871 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3872 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3873 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3874 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3875 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3876 .elevator_deactivate_req_fn = cfq_deactivate_request,
3877 .elevator_queue_empty_fn = cfq_queue_empty,
3878 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3879 .elevator_former_req_fn = elv_rb_former_request,
3880 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3881 .elevator_set_req_fn = cfq_set_request,
3882 .elevator_put_req_fn = cfq_put_request,
3883 .elevator_may_queue_fn = cfq_may_queue,
3884 .elevator_init_fn = cfq_init_queue,
3885 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3886 .trim = cfq_free_io_context,
1da177e4 3887 },
3d1ab40f 3888 .elevator_attrs = cfq_attrs,
1da177e4
LT
3889 .elevator_name = "cfq",
3890 .elevator_owner = THIS_MODULE,
3891};
3892
3e252066
VG
3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
3894static struct blkio_policy_type blkio_policy_cfq = {
3895 .ops = {
3896 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3897 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3898 },
3899};
3900#else
3901static struct blkio_policy_type blkio_policy_cfq;
3902#endif
3903
1da177e4
LT
3904static int __init cfq_init(void)
3905{
22e2c507
JA
3906 /*
3907 * could be 0 on HZ < 1000 setups
3908 */
3909 if (!cfq_slice_async)
3910 cfq_slice_async = 1;
3911 if (!cfq_slice_idle)
3912 cfq_slice_idle = 1;
3913
1da177e4
LT
3914 if (cfq_slab_setup())
3915 return -ENOMEM;
3916
2fdd82bd 3917 elv_register(&iosched_cfq);
3e252066 3918 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3919
2fdd82bd 3920 return 0;
1da177e4
LT
3921}
3922
3923static void __exit cfq_exit(void)
3924{
6e9a4738 3925 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3926 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3927 elv_unregister(&iosched_cfq);
334e94de 3928 ioc_gone = &all_gone;
fba82272
OH
3929 /* ioc_gone's update must be visible before reading ioc_count */
3930 smp_wmb();
d6de8be7
JA
3931
3932 /*
3933 * this also protects us from entering cfq_slab_kill() with
3934 * pending RCU callbacks
3935 */
245b2e70 3936 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3937 wait_for_completion(&all_gone);
83521d3e 3938 cfq_slab_kill();
1da177e4
LT
3939}
3940
3941module_init(cfq_init);
3942module_exit(cfq_exit);
3943
3944MODULE_AUTHOR("Jens Axboe");
3945MODULE_LICENSE("GPL");
3946MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");