]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/cfq-iosched.c
laptop-mode: Make flushes per-device
[net-next-2.6.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98 21/* max queue in one round of service */
abc3c744 22static const int cfq_quantum = 8;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 50#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 51#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 52#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 53
fe094d98
JA
54#define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 56#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 57
e18b890b
CL
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
1da177e4 60
245b2e70 61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 62static struct completion *ioc_gone;
9a11b4ed 63static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
cc09e299 85};
73e9ffdd
RK
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b
JA
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
ae30c286 144 struct cfq_group *orig_cfqg;
6118b70b
JA
145};
146
c0324a02 147/*
718eee05 148 * First index in the service_trees.
c0324a02
CZ
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
c0324a02 152 BE_WORKLOAD = 0,
615f0259
VG
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
c0324a02
CZ
155};
156
718eee05
CZ
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164};
165
cdb16e8f
VG
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
1fa8f6d6
VG
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
25bc6b07 173 unsigned int weight;
1fa8f6d6
VG
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
58ff82f3
VG
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
cdb16e8f
VG
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
dae739eb
VG
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
25fb5169
VG
191 struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
b1c35769 194 atomic_t ref;
25fb5169 195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
22e2c507 206
c0324a02
CZ
207 /*
208 * The priority currently being served
22e2c507 209 */
c0324a02 210 enum wl_prio_t serving_prio;
718eee05
CZ
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
cdb16e8f 213 struct cfq_group *serving_group;
8e550632 214 bool noidle_tree_requires_idle;
a36e71f9
JA
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
22e2c507
JA
223 unsigned int busy_queues;
224
53c583d2
CZ
225 int rq_in_driver;
226 int rq_in_flight[2];
45333d5a
AC
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
25776e35 232 int hw_tag;
e459dd08
CZ
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
1da177e4 241
22e2c507
JA
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
23e018a1 246 struct work_struct unplug_work;
1da177e4 247
22e2c507
JA
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
22e2c507 250
c2dea2d1
VT
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
15c31be4 256
6d048f53 257 sector_t last_position;
1da177e4 258
1da177e4
LT
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
22e2c507 263 unsigned int cfq_fifo_expire[2];
1da177e4
LT
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
22e2c507
JA
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
963b72fc 269 unsigned int cfq_latency;
ae30c286 270 unsigned int cfq_group_isolation;
d9ff4187
AV
271
272 struct list_head cic_list;
1da177e4 273
6118b70b
JA
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
365722bb 278
573412b2 279 unsigned long last_delayed_sync;
25fb5169
VG
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
bb729bc9 283 struct rcu_head rcu;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
65b32a57 290 enum wl_type_t type)
c0324a02 291{
1fa8f6d6
VG
292 if (!cfqg)
293 return NULL;
294
c0324a02 295 if (prio == IDLE_WORKLOAD)
cdb16e8f 296 return &cfqg->service_tree_idle;
c0324a02 297
cdb16e8f 298 return &cfqg->service_trees[prio][type];
c0324a02
CZ
299}
300
3b18152c 301enum cfqq_state_flags {
b0b8d749
JA
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
fe094d98 320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
fe094d98 328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
b029195d 333CFQ_CFQQ_FNS(must_dispatch);
3b18152c 334CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
44f7c160 338CFQ_CFQQ_FNS(slice_new);
91fac317 339CFQ_CFQQ_FNS(sync);
a36e71f9 340CFQ_CFQQ_FNS(coop);
ae54abed 341CFQ_CFQQ_FNS(split_coop);
76280aff 342CFQ_CFQQ_FNS(deep);
f75edf2d 343CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
f26bd1f0
VG
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408{
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
165125e1 413static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 415 struct io_context *, gfp_t);
4ac845a2 416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
417 struct io_context *);
418
419static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 420 bool is_sync)
91fac317 421{
a6151c3a 422 return cic->cfqq[is_sync];
91fac317
VT
423}
424
425static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 426 struct cfq_queue *cfqq, bool is_sync)
91fac317 427{
a6151c3a 428 cic->cfqq[is_sync] = cfqq;
91fac317
VT
429}
430
431/*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
a6151c3a 435static inline bool cfq_bio_sync(struct bio *bio)
91fac317 436{
a6151c3a 437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 438}
1da177e4 439
99f95e52
AM
440/*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
23e018a1 444static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 445{
7b679138
JA
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
23e018a1 448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 449 }
99f95e52
AM
450}
451
165125e1 452static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
453{
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
f04a6424 456 return !cfqd->rq_queued;
99f95e52
AM
457}
458
44f7c160
JA
459/*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
a6151c3a 464static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 465 unsigned short prio)
44f7c160 466{
d9e7620e 467 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 468
d9e7620e
JA
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472}
44f7c160 473
d9e7620e
JA
474static inline int
475cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476{
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
478}
479
25bc6b07
VG
480static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481{
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487}
488
489static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490{
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496}
497
498static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499{
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505}
506
507static void update_min_vdisktime(struct cfq_rb_root *st)
508{
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523}
524
5db5d642
CZ
525/*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
58ff82f3
VG
531static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
5869619c 533{
5db5d642
CZ
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
58ff82f3 537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 538
58ff82f3
VG
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 542 cfq_hist_divisor;
58ff82f3
VG
543 return cfqg->busy_queues_avg[rt];
544}
545
546static inline unsigned
547cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548{
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
552}
553
44f7c160
JA
554static inline void
555cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556{
5db5d642
CZ
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
58ff82f3
VG
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
5db5d642
CZ
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
5db5d642
CZ
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
58ff82f3 577 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
578 low_slice);
579 }
580 }
dae739eb 581 cfqq->slice_start = jiffies;
5db5d642 582 cfqq->slice_end = jiffies + slice;
f75edf2d 583 cfqq->allocated_slice = slice;
7b679138 584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
585}
586
587/*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
a6151c3a 592static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
593{
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600}
601
1da177e4 602/*
5e705374 603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 604 * We choose the request that is closest to the head right now. Distance
e8a99053 605 * behind the head is penalized and only allowed to a certain extent.
1da177e4 606 */
5e705374 607static struct request *
cf7c25cf 608cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 609{
cf7c25cf 610 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 611 unsigned long back_max;
e8a99053
AM
612#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 615
5e705374
JA
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
9c2c38a1 620
5e705374
JA
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
374f84ac
JA
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
1da177e4 629
83096ebf
TH
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
1da177e4 632
1da177e4
LT
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
e8a99053 648 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
e8a99053 655 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
656
657 /* Found required data */
e8a99053
AM
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
5e705374 664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 665 if (d1 < d2)
5e705374 666 return rq1;
e8a99053 667 else if (d2 < d1)
5e705374 668 return rq2;
e8a99053
AM
669 else {
670 if (s1 >= s2)
5e705374 671 return rq1;
e8a99053 672 else
5e705374 673 return rq2;
e8a99053 674 }
1da177e4 675
e8a99053 676 case CFQ_RQ2_WRAP:
5e705374 677 return rq1;
e8a99053 678 case CFQ_RQ1_WRAP:
5e705374
JA
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
5e705374 689 return rq1;
1da177e4 690 else
5e705374 691 return rq2;
1da177e4
LT
692 }
693}
694
498d3aa2
JA
695/*
696 * The below is leftmost cache rbtree addon
697 */
0871714e 698static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 699{
615f0259
VG
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
cc09e299
JA
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
0871714e
JA
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
cc09e299
JA
711}
712
1fa8f6d6
VG
713static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714{
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722}
723
a36e71f9
JA
724static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725{
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728}
729
cc09e299
JA
730static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731{
732 if (root->left == n)
733 root->left = NULL;
a36e71f9 734 rb_erase_init(n, &root->rb);
aa6f6a3d 735 --root->count;
cc09e299
JA
736}
737
1da177e4
LT
738/*
739 * would be nice to take fifo expire time into account as well
740 */
5e705374
JA
741static struct request *
742cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
1da177e4 744{
21183b07
JA
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 747 struct request *next = NULL, *prev = NULL;
1da177e4 748
21183b07 749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
750
751 if (rbprev)
5e705374 752 prev = rb_entry_rq(rbprev);
1da177e4 753
21183b07 754 if (rbnext)
5e705374 755 next = rb_entry_rq(rbnext);
21183b07
JA
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07 760 }
1da177e4 761
cf7c25cf 762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
763}
764
d9e7620e
JA
765static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
1da177e4 767{
d9e7620e
JA
768 /*
769 * just an approximation, should be ok.
770 */
cdb16e8f 771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
773}
774
1fa8f6d6
VG
775static inline s64
776cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777{
778 return cfqg->vdisktime - st->min_vdisktime;
779}
780
781static void
782__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783{
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807}
808
809static void
810cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811{
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
58ff82f3 834 st->total_weight += cfqg->weight;
1fa8f6d6
VG
835}
836
837static void
838cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839{
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
25bc6b07
VG
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
1fa8f6d6
VG
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
25bc6b07 847
1fa8f6d6
VG
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
2868ef7b 852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 853 cfqg->on_st = false;
58ff82f3 854 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 857 cfqg->saved_workload_slice = 0;
9195291e 858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
859}
860
861static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862{
f75edf2d 863 unsigned int slice_used;
dae739eb
VG
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
dae739eb
VG
882 }
883
9a0785b0 884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
885 return slice_used;
886}
887
888static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889 struct cfq_queue *cfqq)
890{
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 898
f26bd1f0
VG
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
dae739eb
VG
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
2868ef7b
VG
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
303a3acb 918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
1fa8f6d6
VG
919}
920
25fb5169
VG
921#ifdef CONFIG_CFQ_GROUP_IOSCHED
922static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
923{
924 if (blkg)
925 return container_of(blkg, struct cfq_group, blkg);
926 return NULL;
927}
928
f8d461d6
VG
929void
930cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
931{
932 cfqg_of_blkg(blkg)->weight = weight;
933}
934
25fb5169
VG
935static struct cfq_group *
936cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
937{
938 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
939 struct cfq_group *cfqg = NULL;
940 void *key = cfqd;
941 int i, j;
942 struct cfq_rb_root *st;
22084190
VG
943 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
944 unsigned int major, minor;
25fb5169 945
25fb5169
VG
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
958
b1c35769
VG
959 /*
960 * Take the initial reference that will be released on destroy
961 * This can be thought of a joint reference by cgroup and
962 * elevator which will be dropped by either elevator exit
963 * or cgroup deletion path depending on who is exiting first.
964 */
965 atomic_set(&cfqg->ref, 1);
966
25fb5169 967 /* Add group onto cgroup list */
22084190
VG
968 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970 MKDEV(major, minor));
25fb5169
VG
971
972 /* Add group on cfqd list */
973 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975done:
25fb5169
VG
976 return cfqg;
977}
978
979/*
980 * Search for the cfq group current task belongs to. If create = 1, then also
981 * create the cfq group if it does not exist. request_queue lock must be held.
982 */
983static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
984{
985 struct cgroup *cgroup;
986 struct cfq_group *cfqg = NULL;
987
988 rcu_read_lock();
989 cgroup = task_cgroup(current, blkio_subsys_id);
990 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
991 if (!cfqg && create)
992 cfqg = &cfqd->root_group;
993 rcu_read_unlock();
994 return cfqg;
995}
996
997static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
998{
999 /* Currently, all async queues are mapped to root group */
1000 if (!cfq_cfqq_sync(cfqq))
1001 cfqg = &cfqq->cfqd->root_group;
1002
1003 cfqq->cfqg = cfqg;
b1c35769
VG
1004 /* cfqq reference on cfqg */
1005 atomic_inc(&cfqq->cfqg->ref);
1006}
1007
1008static void cfq_put_cfqg(struct cfq_group *cfqg)
1009{
1010 struct cfq_rb_root *st;
1011 int i, j;
1012
1013 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1014 if (!atomic_dec_and_test(&cfqg->ref))
1015 return;
1016 for_each_cfqg_st(cfqg, i, j, st)
1017 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1018 kfree(cfqg);
1019}
1020
1021static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1022{
1023 /* Something wrong if we are trying to remove same group twice */
1024 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1025
1026 hlist_del_init(&cfqg->cfqd_node);
1027
1028 /*
1029 * Put the reference taken at the time of creation so that when all
1030 * queues are gone, group can be destroyed.
1031 */
1032 cfq_put_cfqg(cfqg);
1033}
1034
1035static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1036{
1037 struct hlist_node *pos, *n;
1038 struct cfq_group *cfqg;
1039
1040 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1041 /*
1042 * If cgroup removal path got to blk_group first and removed
1043 * it from cgroup list, then it will take care of destroying
1044 * cfqg also.
1045 */
1046 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1047 cfq_destroy_cfqg(cfqd, cfqg);
1048 }
25fb5169 1049}
b1c35769
VG
1050
1051/*
1052 * Blk cgroup controller notification saying that blkio_group object is being
1053 * delinked as associated cgroup object is going away. That also means that
1054 * no new IO will come in this group. So get rid of this group as soon as
1055 * any pending IO in the group is finished.
1056 *
1057 * This function is called under rcu_read_lock(). key is the rcu protected
1058 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1059 * read lock.
1060 *
1061 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1062 * it should not be NULL as even if elevator was exiting, cgroup deltion
1063 * path got to it first.
1064 */
1065void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1066{
1067 unsigned long flags;
1068 struct cfq_data *cfqd = key;
1069
1070 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1071 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1072 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1073}
1074
25fb5169
VG
1075#else /* GROUP_IOSCHED */
1076static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1077{
1078 return &cfqd->root_group;
1079}
1080static inline void
1081cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1082 cfqq->cfqg = cfqg;
1083}
1084
b1c35769
VG
1085static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1086static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1087
25fb5169
VG
1088#endif /* GROUP_IOSCHED */
1089
498d3aa2 1090/*
c0324a02 1091 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1092 * requests waiting to be processed. It is sorted in the order that
1093 * we will service the queues.
1094 */
a36e71f9 1095static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1096 bool add_front)
d9e7620e 1097{
0871714e
JA
1098 struct rb_node **p, *parent;
1099 struct cfq_queue *__cfqq;
d9e7620e 1100 unsigned long rb_key;
c0324a02 1101 struct cfq_rb_root *service_tree;
498d3aa2 1102 int left;
dae739eb 1103 int new_cfqq = 1;
ae30c286
VG
1104 int group_changed = 0;
1105
1106#ifdef CONFIG_CFQ_GROUP_IOSCHED
1107 if (!cfqd->cfq_group_isolation
1108 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1109 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1110 /* Move this cfq to root group */
1111 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1112 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1113 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1114 cfqq->orig_cfqg = cfqq->cfqg;
1115 cfqq->cfqg = &cfqd->root_group;
1116 atomic_inc(&cfqd->root_group.ref);
1117 group_changed = 1;
1118 } else if (!cfqd->cfq_group_isolation
1119 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1120 /* cfqq is sequential now needs to go to its original group */
1121 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1122 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124 cfq_put_cfqg(cfqq->cfqg);
1125 cfqq->cfqg = cfqq->orig_cfqg;
1126 cfqq->orig_cfqg = NULL;
1127 group_changed = 1;
1128 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1129 }
1130#endif
d9e7620e 1131
cdb16e8f 1132 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1133 cfqq_type(cfqq));
0871714e
JA
1134 if (cfq_class_idle(cfqq)) {
1135 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1136 parent = rb_last(&service_tree->rb);
0871714e
JA
1137 if (parent && parent != &cfqq->rb_node) {
1138 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1139 rb_key += __cfqq->rb_key;
1140 } else
1141 rb_key += jiffies;
1142 } else if (!add_front) {
b9c8946b
JA
1143 /*
1144 * Get our rb key offset. Subtract any residual slice
1145 * value carried from last service. A negative resid
1146 * count indicates slice overrun, and this should position
1147 * the next service time further away in the tree.
1148 */
edd75ffd 1149 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1150 rb_key -= cfqq->slice_resid;
edd75ffd 1151 cfqq->slice_resid = 0;
48e025e6
CZ
1152 } else {
1153 rb_key = -HZ;
aa6f6a3d 1154 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1155 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1156 }
1da177e4 1157
d9e7620e 1158 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1159 new_cfqq = 0;
99f9628a 1160 /*
d9e7620e 1161 * same position, nothing more to do
99f9628a 1162 */
c0324a02
CZ
1163 if (rb_key == cfqq->rb_key &&
1164 cfqq->service_tree == service_tree)
d9e7620e 1165 return;
1da177e4 1166
aa6f6a3d
CZ
1167 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1168 cfqq->service_tree = NULL;
1da177e4 1169 }
d9e7620e 1170
498d3aa2 1171 left = 1;
0871714e 1172 parent = NULL;
aa6f6a3d
CZ
1173 cfqq->service_tree = service_tree;
1174 p = &service_tree->rb.rb_node;
d9e7620e 1175 while (*p) {
67060e37 1176 struct rb_node **n;
cc09e299 1177
d9e7620e
JA
1178 parent = *p;
1179 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1180
0c534e0a 1181 /*
c0324a02 1182 * sort by key, that represents service time.
0c534e0a 1183 */
c0324a02 1184 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1185 n = &(*p)->rb_left;
c0324a02 1186 else {
67060e37 1187 n = &(*p)->rb_right;
cc09e299 1188 left = 0;
c0324a02 1189 }
67060e37
JA
1190
1191 p = n;
d9e7620e
JA
1192 }
1193
cc09e299 1194 if (left)
aa6f6a3d 1195 service_tree->left = &cfqq->rb_node;
cc09e299 1196
d9e7620e
JA
1197 cfqq->rb_key = rb_key;
1198 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1199 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1200 service_tree->count++;
ae30c286 1201 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1202 return;
1fa8f6d6 1203 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1204}
1205
a36e71f9 1206static struct cfq_queue *
f2d1f0ae
JA
1207cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1208 sector_t sector, struct rb_node **ret_parent,
1209 struct rb_node ***rb_link)
a36e71f9 1210{
a36e71f9
JA
1211 struct rb_node **p, *parent;
1212 struct cfq_queue *cfqq = NULL;
1213
1214 parent = NULL;
1215 p = &root->rb_node;
1216 while (*p) {
1217 struct rb_node **n;
1218
1219 parent = *p;
1220 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1221
1222 /*
1223 * Sort strictly based on sector. Smallest to the left,
1224 * largest to the right.
1225 */
2e46e8b2 1226 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1227 n = &(*p)->rb_right;
2e46e8b2 1228 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1229 n = &(*p)->rb_left;
1230 else
1231 break;
1232 p = n;
3ac6c9f8 1233 cfqq = NULL;
a36e71f9
JA
1234 }
1235
1236 *ret_parent = parent;
1237 if (rb_link)
1238 *rb_link = p;
3ac6c9f8 1239 return cfqq;
a36e71f9
JA
1240}
1241
1242static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1243{
a36e71f9
JA
1244 struct rb_node **p, *parent;
1245 struct cfq_queue *__cfqq;
1246
f2d1f0ae
JA
1247 if (cfqq->p_root) {
1248 rb_erase(&cfqq->p_node, cfqq->p_root);
1249 cfqq->p_root = NULL;
1250 }
a36e71f9
JA
1251
1252 if (cfq_class_idle(cfqq))
1253 return;
1254 if (!cfqq->next_rq)
1255 return;
1256
f2d1f0ae 1257 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1258 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1259 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1260 if (!__cfqq) {
1261 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1262 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1263 } else
1264 cfqq->p_root = NULL;
a36e71f9
JA
1265}
1266
498d3aa2
JA
1267/*
1268 * Update cfqq's position in the service tree.
1269 */
edd75ffd 1270static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1271{
6d048f53
JA
1272 /*
1273 * Resorting requires the cfqq to be on the RR list already.
1274 */
a36e71f9 1275 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1276 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1277 cfq_prio_tree_add(cfqd, cfqq);
1278 }
6d048f53
JA
1279}
1280
1da177e4
LT
1281/*
1282 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1283 * the pending list according to last request service
1da177e4 1284 */
febffd61 1285static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1286{
7b679138 1287 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1288 BUG_ON(cfq_cfqq_on_rr(cfqq));
1289 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1290 cfqd->busy_queues++;
1291
edd75ffd 1292 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1293}
1294
498d3aa2
JA
1295/*
1296 * Called when the cfqq no longer has requests pending, remove it from
1297 * the service tree.
1298 */
febffd61 1299static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1300{
7b679138 1301 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1302 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1303 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1304
aa6f6a3d
CZ
1305 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1306 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1307 cfqq->service_tree = NULL;
1308 }
f2d1f0ae
JA
1309 if (cfqq->p_root) {
1310 rb_erase(&cfqq->p_node, cfqq->p_root);
1311 cfqq->p_root = NULL;
1312 }
d9e7620e 1313
1fa8f6d6 1314 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1315 BUG_ON(!cfqd->busy_queues);
1316 cfqd->busy_queues--;
1317}
1318
1319/*
1320 * rb tree support functions
1321 */
febffd61 1322static void cfq_del_rq_rb(struct request *rq)
1da177e4 1323{
5e705374 1324 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1325 const int sync = rq_is_sync(rq);
1da177e4 1326
b4878f24
JA
1327 BUG_ON(!cfqq->queued[sync]);
1328 cfqq->queued[sync]--;
1da177e4 1329
5e705374 1330 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1331
f04a6424
VG
1332 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1333 /*
1334 * Queue will be deleted from service tree when we actually
1335 * expire it later. Right now just remove it from prio tree
1336 * as it is empty.
1337 */
1338 if (cfqq->p_root) {
1339 rb_erase(&cfqq->p_node, cfqq->p_root);
1340 cfqq->p_root = NULL;
1341 }
1342 }
1da177e4
LT
1343}
1344
5e705374 1345static void cfq_add_rq_rb(struct request *rq)
1da177e4 1346{
5e705374 1347 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1348 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1349 struct request *__alias, *prev;
1da177e4 1350
5380a101 1351 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1352
1353 /*
1354 * looks a little odd, but the first insert might return an alias.
1355 * if that happens, put the alias on the dispatch list
1356 */
21183b07 1357 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1358 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1359
1360 if (!cfq_cfqq_on_rr(cfqq))
1361 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1362
1363 /*
1364 * check if this request is a better next-serve candidate
1365 */
a36e71f9 1366 prev = cfqq->next_rq;
cf7c25cf 1367 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1368
1369 /*
1370 * adjust priority tree position, if ->next_rq changes
1371 */
1372 if (prev != cfqq->next_rq)
1373 cfq_prio_tree_add(cfqd, cfqq);
1374
5044eed4 1375 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1376}
1377
febffd61 1378static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1379{
5380a101
JA
1380 elv_rb_del(&cfqq->sort_list, rq);
1381 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1382 cfq_add_rq_rb(rq);
1da177e4
LT
1383}
1384
206dc69b
JA
1385static struct request *
1386cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1387{
206dc69b 1388 struct task_struct *tsk = current;
91fac317 1389 struct cfq_io_context *cic;
206dc69b 1390 struct cfq_queue *cfqq;
1da177e4 1391
4ac845a2 1392 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1393 if (!cic)
1394 return NULL;
1395
1396 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1397 if (cfqq) {
1398 sector_t sector = bio->bi_sector + bio_sectors(bio);
1399
21183b07 1400 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1401 }
1da177e4 1402
1da177e4
LT
1403 return NULL;
1404}
1405
165125e1 1406static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1407{
22e2c507 1408 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1409
53c583d2 1410 cfqd->rq_in_driver++;
7b679138 1411 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1412 cfqd->rq_in_driver);
25776e35 1413
5b93629b 1414 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1415}
1416
165125e1 1417static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1418{
b4878f24
JA
1419 struct cfq_data *cfqd = q->elevator->elevator_data;
1420
53c583d2
CZ
1421 WARN_ON(!cfqd->rq_in_driver);
1422 cfqd->rq_in_driver--;
7b679138 1423 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1424 cfqd->rq_in_driver);
1da177e4
LT
1425}
1426
b4878f24 1427static void cfq_remove_request(struct request *rq)
1da177e4 1428{
5e705374 1429 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1430
5e705374
JA
1431 if (cfqq->next_rq == rq)
1432 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1433
b4878f24 1434 list_del_init(&rq->queuelist);
5e705374 1435 cfq_del_rq_rb(rq);
374f84ac 1436
45333d5a 1437 cfqq->cfqd->rq_queued--;
374f84ac
JA
1438 if (rq_is_meta(rq)) {
1439 WARN_ON(!cfqq->meta_pending);
1440 cfqq->meta_pending--;
1441 }
1da177e4
LT
1442}
1443
165125e1
JA
1444static int cfq_merge(struct request_queue *q, struct request **req,
1445 struct bio *bio)
1da177e4
LT
1446{
1447 struct cfq_data *cfqd = q->elevator->elevator_data;
1448 struct request *__rq;
1da177e4 1449
206dc69b 1450 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1451 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1452 *req = __rq;
1453 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1454 }
1455
1456 return ELEVATOR_NO_MERGE;
1da177e4
LT
1457}
1458
165125e1 1459static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1460 int type)
1da177e4 1461{
21183b07 1462 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1463 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1464
5e705374 1465 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1466 }
1da177e4
LT
1467}
1468
1469static void
165125e1 1470cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1471 struct request *next)
1472{
cf7c25cf 1473 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1474 /*
1475 * reposition in fifo if next is older than rq
1476 */
1477 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1478 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1479 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1480 rq_set_fifo_time(rq, rq_fifo_time(next));
1481 }
22e2c507 1482
cf7c25cf
CZ
1483 if (cfqq->next_rq == next)
1484 cfqq->next_rq = rq;
b4878f24 1485 cfq_remove_request(next);
22e2c507
JA
1486}
1487
165125e1 1488static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1489 struct bio *bio)
1490{
1491 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1492 struct cfq_io_context *cic;
da775265 1493 struct cfq_queue *cfqq;
da775265
JA
1494
1495 /*
ec8acb69 1496 * Disallow merge of a sync bio into an async request.
da775265 1497 */
91fac317 1498 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1499 return false;
da775265
JA
1500
1501 /*
719d3402
JA
1502 * Lookup the cfqq that this bio will be queued with. Allow
1503 * merge only if rq is queued there.
da775265 1504 */
4ac845a2 1505 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1506 if (!cic)
a6151c3a 1507 return false;
719d3402 1508
91fac317 1509 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1510 return cfqq == RQ_CFQQ(rq);
da775265
JA
1511}
1512
febffd61
JA
1513static void __cfq_set_active_queue(struct cfq_data *cfqd,
1514 struct cfq_queue *cfqq)
22e2c507
JA
1515{
1516 if (cfqq) {
b1ffe737
DS
1517 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1518 cfqd->serving_prio, cfqd->serving_type);
dae739eb
VG
1519 cfqq->slice_start = 0;
1520 cfqq->dispatch_start = jiffies;
f75edf2d 1521 cfqq->allocated_slice = 0;
22e2c507 1522 cfqq->slice_end = 0;
2f5cb738
JA
1523 cfqq->slice_dispatch = 0;
1524
2f5cb738 1525 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1526 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1527 cfq_clear_cfqq_must_alloc_slice(cfqq);
1528 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1529 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1530
1531 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1532 }
1533
1534 cfqd->active_queue = cfqq;
1535}
1536
7b14e3b5
JA
1537/*
1538 * current cfqq expired its slice (or was too idle), select new one
1539 */
1540static void
1541__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1542 bool timed_out)
7b14e3b5 1543{
7b679138
JA
1544 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1545
7b14e3b5
JA
1546 if (cfq_cfqq_wait_request(cfqq))
1547 del_timer(&cfqd->idle_slice_timer);
1548
7b14e3b5 1549 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1550 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1551
ae54abed
SL
1552 /*
1553 * If this cfqq is shared between multiple processes, check to
1554 * make sure that those processes are still issuing I/Os within
1555 * the mean seek distance. If not, it may be time to break the
1556 * queues apart again.
1557 */
1558 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1559 cfq_mark_cfqq_split_coop(cfqq);
1560
7b14e3b5 1561 /*
6084cdda 1562 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1563 */
7b679138 1564 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1565 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1566 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1567 }
7b14e3b5 1568
dae739eb
VG
1569 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1570
f04a6424
VG
1571 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1572 cfq_del_cfqq_rr(cfqd, cfqq);
1573
edd75ffd 1574 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1575
1576 if (cfqq == cfqd->active_queue)
1577 cfqd->active_queue = NULL;
1578
dae739eb
VG
1579 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1580 cfqd->grp_service_tree.active = NULL;
1581
7b14e3b5
JA
1582 if (cfqd->active_cic) {
1583 put_io_context(cfqd->active_cic->ioc);
1584 cfqd->active_cic = NULL;
1585 }
7b14e3b5
JA
1586}
1587
a6151c3a 1588static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1589{
1590 struct cfq_queue *cfqq = cfqd->active_queue;
1591
1592 if (cfqq)
6084cdda 1593 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1594}
1595
498d3aa2
JA
1596/*
1597 * Get next queue for service. Unless we have a queue preemption,
1598 * we'll simply select the first cfqq in the service tree.
1599 */
6d048f53 1600static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1601{
c0324a02 1602 struct cfq_rb_root *service_tree =
cdb16e8f 1603 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1604 cfqd->serving_type);
d9e7620e 1605
f04a6424
VG
1606 if (!cfqd->rq_queued)
1607 return NULL;
1608
1fa8f6d6
VG
1609 /* There is nothing to dispatch */
1610 if (!service_tree)
1611 return NULL;
c0324a02
CZ
1612 if (RB_EMPTY_ROOT(&service_tree->rb))
1613 return NULL;
1614 return cfq_rb_first(service_tree);
6d048f53
JA
1615}
1616
f04a6424
VG
1617static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1618{
25fb5169 1619 struct cfq_group *cfqg;
f04a6424
VG
1620 struct cfq_queue *cfqq;
1621 int i, j;
1622 struct cfq_rb_root *st;
1623
1624 if (!cfqd->rq_queued)
1625 return NULL;
1626
25fb5169
VG
1627 cfqg = cfq_get_next_cfqg(cfqd);
1628 if (!cfqg)
1629 return NULL;
1630
f04a6424
VG
1631 for_each_cfqg_st(cfqg, i, j, st)
1632 if ((cfqq = cfq_rb_first(st)) != NULL)
1633 return cfqq;
1634 return NULL;
1635}
1636
498d3aa2
JA
1637/*
1638 * Get and set a new active queue for service.
1639 */
a36e71f9
JA
1640static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1641 struct cfq_queue *cfqq)
6d048f53 1642{
e00ef799 1643 if (!cfqq)
a36e71f9 1644 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1645
22e2c507 1646 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1647 return cfqq;
22e2c507
JA
1648}
1649
d9e7620e
JA
1650static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1651 struct request *rq)
1652{
83096ebf
TH
1653 if (blk_rq_pos(rq) >= cfqd->last_position)
1654 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1655 else
83096ebf 1656 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1657}
1658
b2c18e1e 1659static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1660 struct request *rq)
6d048f53 1661{
e9ce335d 1662 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1663}
1664
a36e71f9
JA
1665static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1666 struct cfq_queue *cur_cfqq)
1667{
f2d1f0ae 1668 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1669 struct rb_node *parent, *node;
1670 struct cfq_queue *__cfqq;
1671 sector_t sector = cfqd->last_position;
1672
1673 if (RB_EMPTY_ROOT(root))
1674 return NULL;
1675
1676 /*
1677 * First, if we find a request starting at the end of the last
1678 * request, choose it.
1679 */
f2d1f0ae 1680 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1681 if (__cfqq)
1682 return __cfqq;
1683
1684 /*
1685 * If the exact sector wasn't found, the parent of the NULL leaf
1686 * will contain the closest sector.
1687 */
1688 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1689 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1690 return __cfqq;
1691
2e46e8b2 1692 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1693 node = rb_next(&__cfqq->p_node);
1694 else
1695 node = rb_prev(&__cfqq->p_node);
1696 if (!node)
1697 return NULL;
1698
1699 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1701 return __cfqq;
1702
1703 return NULL;
1704}
1705
1706/*
1707 * cfqd - obvious
1708 * cur_cfqq - passed in so that we don't decide that the current queue is
1709 * closely cooperating with itself.
1710 *
1711 * So, basically we're assuming that that cur_cfqq has dispatched at least
1712 * one request, and that cfqd->last_position reflects a position on the disk
1713 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1714 * assumption.
1715 */
1716static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1717 struct cfq_queue *cur_cfqq)
6d048f53 1718{
a36e71f9
JA
1719 struct cfq_queue *cfqq;
1720
39c01b21
DS
1721 if (cfq_class_idle(cur_cfqq))
1722 return NULL;
e6c5bc73
JM
1723 if (!cfq_cfqq_sync(cur_cfqq))
1724 return NULL;
1725 if (CFQQ_SEEKY(cur_cfqq))
1726 return NULL;
1727
b9d8f4c7
GJ
1728 /*
1729 * Don't search priority tree if it's the only queue in the group.
1730 */
1731 if (cur_cfqq->cfqg->nr_cfqq == 1)
1732 return NULL;
1733
6d048f53 1734 /*
d9e7620e
JA
1735 * We should notice if some of the queues are cooperating, eg
1736 * working closely on the same area of the disk. In that case,
1737 * we can group them together and don't waste time idling.
6d048f53 1738 */
a36e71f9
JA
1739 cfqq = cfqq_close(cfqd, cur_cfqq);
1740 if (!cfqq)
1741 return NULL;
1742
8682e1f1
VG
1743 /* If new queue belongs to different cfq_group, don't choose it */
1744 if (cur_cfqq->cfqg != cfqq->cfqg)
1745 return NULL;
1746
df5fe3e8
JM
1747 /*
1748 * It only makes sense to merge sync queues.
1749 */
1750 if (!cfq_cfqq_sync(cfqq))
1751 return NULL;
e6c5bc73
JM
1752 if (CFQQ_SEEKY(cfqq))
1753 return NULL;
df5fe3e8 1754
c0324a02
CZ
1755 /*
1756 * Do not merge queues of different priority classes
1757 */
1758 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1759 return NULL;
1760
a36e71f9 1761 return cfqq;
6d048f53
JA
1762}
1763
a6d44e98
CZ
1764/*
1765 * Determine whether we should enforce idle window for this queue.
1766 */
1767
1768static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1769{
1770 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1771 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1772
f04a6424
VG
1773 BUG_ON(!service_tree);
1774 BUG_ON(!service_tree->count);
1775
a6d44e98
CZ
1776 /* We never do for idle class queues. */
1777 if (prio == IDLE_WORKLOAD)
1778 return false;
1779
1780 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1781 if (cfq_cfqq_idle_window(cfqq) &&
1782 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1783 return true;
1784
1785 /*
1786 * Otherwise, we do only if they are the last ones
1787 * in their service tree.
1788 */
b1ffe737
DS
1789 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1790 return 1;
1791 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1792 service_tree->count);
1793 return 0;
a6d44e98
CZ
1794}
1795
6d048f53 1796static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1797{
1792669c 1798 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1799 struct cfq_io_context *cic;
7b14e3b5
JA
1800 unsigned long sl;
1801
a68bbddb 1802 /*
f7d7b7a7
JA
1803 * SSD device without seek penalty, disable idling. But only do so
1804 * for devices that support queuing, otherwise we still have a problem
1805 * with sync vs async workloads.
a68bbddb 1806 */
f7d7b7a7 1807 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1808 return;
1809
dd67d051 1810 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1811 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1812
1813 /*
1814 * idle is disabled, either manually or by past process history
1815 */
a6d44e98 1816 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1817 return;
1818
7b679138 1819 /*
8e550632 1820 * still active requests from this queue, don't idle
7b679138 1821 */
8e550632 1822 if (cfqq->dispatched)
7b679138
JA
1823 return;
1824
22e2c507
JA
1825 /*
1826 * task has exited, don't wait
1827 */
206dc69b 1828 cic = cfqd->active_cic;
66dac98e 1829 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1830 return;
1831
355b659c
CZ
1832 /*
1833 * If our average think time is larger than the remaining time
1834 * slice, then don't idle. This avoids overrunning the allotted
1835 * time slice.
1836 */
1837 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1838 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1839 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1840 cic->ttime_mean);
355b659c 1841 return;
b1ffe737 1842 }
355b659c 1843
3b18152c 1844 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1845
6d048f53 1846 sl = cfqd->cfq_slice_idle;
206dc69b 1847
7b14e3b5 1848 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1849 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1850}
1851
498d3aa2
JA
1852/*
1853 * Move request from internal lists to the request queue dispatch list.
1854 */
165125e1 1855static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1856{
3ed9a296 1857 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1858 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1859
7b679138
JA
1860 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1861
06d21886 1862 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1863 cfq_remove_request(rq);
6d048f53 1864 cfqq->dispatched++;
5380a101 1865 elv_dispatch_sort(q, rq);
3ed9a296 1866
53c583d2 1867 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
9195291e 1868 blkiocg_update_request_dispatch_stats(&cfqq->cfqg->blkg, rq);
1da177e4
LT
1869}
1870
1871/*
1872 * return expired entry, or NULL to just start from scratch in rbtree
1873 */
febffd61 1874static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1875{
30996f40 1876 struct request *rq = NULL;
1da177e4 1877
3b18152c 1878 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1879 return NULL;
cb887411
JA
1880
1881 cfq_mark_cfqq_fifo_expire(cfqq);
1882
89850f7e
JA
1883 if (list_empty(&cfqq->fifo))
1884 return NULL;
1da177e4 1885
89850f7e 1886 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1887 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1888 rq = NULL;
1da177e4 1889
30996f40 1890 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1891 return rq;
1da177e4
LT
1892}
1893
22e2c507
JA
1894static inline int
1895cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1896{
1897 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1898
22e2c507 1899 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1900
22e2c507 1901 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1902}
1903
df5fe3e8
JM
1904/*
1905 * Must be called with the queue_lock held.
1906 */
1907static int cfqq_process_refs(struct cfq_queue *cfqq)
1908{
1909 int process_refs, io_refs;
1910
1911 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1912 process_refs = atomic_read(&cfqq->ref) - io_refs;
1913 BUG_ON(process_refs < 0);
1914 return process_refs;
1915}
1916
1917static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1918{
e6c5bc73 1919 int process_refs, new_process_refs;
df5fe3e8
JM
1920 struct cfq_queue *__cfqq;
1921
1922 /* Avoid a circular list and skip interim queue merges */
1923 while ((__cfqq = new_cfqq->new_cfqq)) {
1924 if (__cfqq == cfqq)
1925 return;
1926 new_cfqq = __cfqq;
1927 }
1928
1929 process_refs = cfqq_process_refs(cfqq);
1930 /*
1931 * If the process for the cfqq has gone away, there is no
1932 * sense in merging the queues.
1933 */
1934 if (process_refs == 0)
1935 return;
1936
e6c5bc73
JM
1937 /*
1938 * Merge in the direction of the lesser amount of work.
1939 */
1940 new_process_refs = cfqq_process_refs(new_cfqq);
1941 if (new_process_refs >= process_refs) {
1942 cfqq->new_cfqq = new_cfqq;
1943 atomic_add(process_refs, &new_cfqq->ref);
1944 } else {
1945 new_cfqq->new_cfqq = cfqq;
1946 atomic_add(new_process_refs, &cfqq->ref);
1947 }
df5fe3e8
JM
1948}
1949
cdb16e8f 1950static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1951 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1952{
1953 struct cfq_queue *queue;
1954 int i;
1955 bool key_valid = false;
1956 unsigned long lowest_key = 0;
1957 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1958
65b32a57
VG
1959 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1960 /* select the one with lowest rb_key */
1961 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1962 if (queue &&
1963 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1964 lowest_key = queue->rb_key;
1965 cur_best = i;
1966 key_valid = true;
1967 }
1968 }
1969
1970 return cur_best;
1971}
1972
cdb16e8f 1973static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1974{
718eee05
CZ
1975 unsigned slice;
1976 unsigned count;
cdb16e8f 1977 struct cfq_rb_root *st;
58ff82f3 1978 unsigned group_slice;
718eee05 1979
1fa8f6d6
VG
1980 if (!cfqg) {
1981 cfqd->serving_prio = IDLE_WORKLOAD;
1982 cfqd->workload_expires = jiffies + 1;
1983 return;
1984 }
1985
718eee05 1986 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1987 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1988 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1989 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1990 cfqd->serving_prio = BE_WORKLOAD;
1991 else {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1995 }
1996
1997 /*
1998 * For RT and BE, we have to choose also the type
1999 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2000 * expiration time
2001 */
65b32a57 2002 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2003 count = st->count;
718eee05
CZ
2004
2005 /*
65b32a57 2006 * check workload expiration, and that we still have other queues ready
718eee05 2007 */
65b32a57 2008 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2009 return;
2010
2011 /* otherwise select new workload type */
2012 cfqd->serving_type =
65b32a57
VG
2013 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2014 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2015 count = st->count;
718eee05
CZ
2016
2017 /*
2018 * the workload slice is computed as a fraction of target latency
2019 * proportional to the number of queues in that workload, over
2020 * all the queues in the same priority class
2021 */
58ff82f3
VG
2022 group_slice = cfq_group_slice(cfqd, cfqg);
2023
2024 slice = group_slice * count /
2025 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2026 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2027
f26bd1f0
VG
2028 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2029 unsigned int tmp;
2030
2031 /*
2032 * Async queues are currently system wide. Just taking
2033 * proportion of queues with-in same group will lead to higher
2034 * async ratio system wide as generally root group is going
2035 * to have higher weight. A more accurate thing would be to
2036 * calculate system wide asnc/sync ratio.
2037 */
2038 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2039 tmp = tmp/cfqd->busy_queues;
2040 slice = min_t(unsigned, slice, tmp);
2041
718eee05
CZ
2042 /* async workload slice is scaled down according to
2043 * the sync/async slice ratio. */
2044 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2045 } else
718eee05
CZ
2046 /* sync workload slice is at least 2 * cfq_slice_idle */
2047 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2048
2049 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2050 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2051 cfqd->workload_expires = jiffies + slice;
8e550632 2052 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2053}
2054
1fa8f6d6
VG
2055static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2056{
2057 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2058 struct cfq_group *cfqg;
1fa8f6d6
VG
2059
2060 if (RB_EMPTY_ROOT(&st->rb))
2061 return NULL;
25bc6b07
VG
2062 cfqg = cfq_rb_first_group(st);
2063 st->active = &cfqg->rb_node;
2064 update_min_vdisktime(st);
2065 return cfqg;
1fa8f6d6
VG
2066}
2067
cdb16e8f
VG
2068static void cfq_choose_cfqg(struct cfq_data *cfqd)
2069{
1fa8f6d6
VG
2070 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2071
2072 cfqd->serving_group = cfqg;
dae739eb
VG
2073
2074 /* Restore the workload type data */
2075 if (cfqg->saved_workload_slice) {
2076 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2077 cfqd->serving_type = cfqg->saved_workload;
2078 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2079 } else
2080 cfqd->workload_expires = jiffies - 1;
2081
1fa8f6d6 2082 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2083}
2084
22e2c507 2085/*
498d3aa2
JA
2086 * Select a queue for service. If we have a current active queue,
2087 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2088 */
1b5ed5e1 2089static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2090{
a36e71f9 2091 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2092
22e2c507
JA
2093 cfqq = cfqd->active_queue;
2094 if (!cfqq)
2095 goto new_queue;
1da177e4 2096
f04a6424
VG
2097 if (!cfqd->rq_queued)
2098 return NULL;
c244bb50
VG
2099
2100 /*
2101 * We were waiting for group to get backlogged. Expire the queue
2102 */
2103 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2104 goto expire;
2105
22e2c507 2106 /*
6d048f53 2107 * The active queue has run out of time, expire it and select new.
22e2c507 2108 */
7667aa06
VG
2109 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2110 /*
2111 * If slice had not expired at the completion of last request
2112 * we might not have turned on wait_busy flag. Don't expire
2113 * the queue yet. Allow the group to get backlogged.
2114 *
2115 * The very fact that we have used the slice, that means we
2116 * have been idling all along on this queue and it should be
2117 * ok to wait for this request to complete.
2118 */
82bbbf28
VG
2119 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2120 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2121 cfqq = NULL;
7667aa06 2122 goto keep_queue;
82bbbf28 2123 } else
7667aa06
VG
2124 goto expire;
2125 }
1da177e4 2126
22e2c507 2127 /*
6d048f53
JA
2128 * The active queue has requests and isn't expired, allow it to
2129 * dispatch.
22e2c507 2130 */
dd67d051 2131 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2132 goto keep_queue;
6d048f53 2133
a36e71f9
JA
2134 /*
2135 * If another queue has a request waiting within our mean seek
2136 * distance, let it run. The expire code will check for close
2137 * cooperators and put the close queue at the front of the service
df5fe3e8 2138 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2139 */
b3b6d040 2140 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2141 if (new_cfqq) {
2142 if (!cfqq->new_cfqq)
2143 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2144 goto expire;
df5fe3e8 2145 }
a36e71f9 2146
6d048f53
JA
2147 /*
2148 * No requests pending. If the active queue still has requests in
2149 * flight or is idling for a new request, allow either of these
2150 * conditions to happen (or time out) before selecting a new queue.
2151 */
cc197479 2152 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2153 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2154 cfqq = NULL;
2155 goto keep_queue;
22e2c507
JA
2156 }
2157
3b18152c 2158expire:
6084cdda 2159 cfq_slice_expired(cfqd, 0);
3b18152c 2160new_queue:
718eee05
CZ
2161 /*
2162 * Current queue expired. Check if we have to switch to a new
2163 * service tree
2164 */
2165 if (!new_cfqq)
cdb16e8f 2166 cfq_choose_cfqg(cfqd);
718eee05 2167
a36e71f9 2168 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2169keep_queue:
3b18152c 2170 return cfqq;
22e2c507
JA
2171}
2172
febffd61 2173static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2174{
2175 int dispatched = 0;
2176
2177 while (cfqq->next_rq) {
2178 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2179 dispatched++;
2180 }
2181
2182 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2183
2184 /* By default cfqq is not expired if it is empty. Do it explicitly */
2185 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2186 return dispatched;
2187}
2188
498d3aa2
JA
2189/*
2190 * Drain our current requests. Used for barriers and when switching
2191 * io schedulers on-the-fly.
2192 */
d9e7620e 2193static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2194{
0871714e 2195 struct cfq_queue *cfqq;
d9e7620e 2196 int dispatched = 0;
cdb16e8f 2197
f04a6424
VG
2198 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2199 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2200
6084cdda 2201 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2202 BUG_ON(cfqd->busy_queues);
2203
6923715a 2204 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2205 return dispatched;
2206}
2207
abc3c744
SL
2208static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2209 struct cfq_queue *cfqq)
2210{
2211 /* the queue hasn't finished any request, can't estimate */
2212 if (cfq_cfqq_slice_new(cfqq))
2213 return 1;
2214 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2215 cfqq->slice_end))
2216 return 1;
2217
2218 return 0;
2219}
2220
0b182d61 2221static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2222{
2f5cb738 2223 unsigned int max_dispatch;
22e2c507 2224
5ad531db
JA
2225 /*
2226 * Drain async requests before we start sync IO
2227 */
53c583d2 2228 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2229 return false;
5ad531db 2230
2f5cb738
JA
2231 /*
2232 * If this is an async queue and we have sync IO in flight, let it wait
2233 */
53c583d2 2234 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2235 return false;
2f5cb738 2236
abc3c744 2237 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2238 if (cfq_class_idle(cfqq))
2239 max_dispatch = 1;
b4878f24 2240
2f5cb738
JA
2241 /*
2242 * Does this cfqq already have too much IO in flight?
2243 */
2244 if (cfqq->dispatched >= max_dispatch) {
2245 /*
2246 * idle queue must always only have a single IO in flight
2247 */
3ed9a296 2248 if (cfq_class_idle(cfqq))
0b182d61 2249 return false;
3ed9a296 2250
2f5cb738
JA
2251 /*
2252 * We have other queues, don't allow more IO from this one
2253 */
abc3c744 2254 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2255 return false;
9ede209e 2256
365722bb 2257 /*
474b18cc 2258 * Sole queue user, no limit
365722bb 2259 */
abc3c744
SL
2260 if (cfqd->busy_queues == 1)
2261 max_dispatch = -1;
2262 else
2263 /*
2264 * Normally we start throttling cfqq when cfq_quantum/2
2265 * requests have been dispatched. But we can drive
2266 * deeper queue depths at the beginning of slice
2267 * subjected to upper limit of cfq_quantum.
2268 * */
2269 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2270 }
2271
2272 /*
2273 * Async queues must wait a bit before being allowed dispatch.
2274 * We also ramp up the dispatch depth gradually for async IO,
2275 * based on the last sync IO we serviced
2276 */
963b72fc 2277 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2278 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2279 unsigned int depth;
365722bb 2280
61f0c1dc 2281 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2282 if (!depth && !cfqq->dispatched)
2283 depth = 1;
8e296755
JA
2284 if (depth < max_dispatch)
2285 max_dispatch = depth;
2f5cb738 2286 }
3ed9a296 2287
0b182d61
JA
2288 /*
2289 * If we're below the current max, allow a dispatch
2290 */
2291 return cfqq->dispatched < max_dispatch;
2292}
2293
2294/*
2295 * Dispatch a request from cfqq, moving them to the request queue
2296 * dispatch list.
2297 */
2298static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2299{
2300 struct request *rq;
2301
2302 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2303
2304 if (!cfq_may_dispatch(cfqd, cfqq))
2305 return false;
2306
2307 /*
2308 * follow expired path, else get first next available
2309 */
2310 rq = cfq_check_fifo(cfqq);
2311 if (!rq)
2312 rq = cfqq->next_rq;
2313
2314 /*
2315 * insert request into driver dispatch list
2316 */
2317 cfq_dispatch_insert(cfqd->queue, rq);
2318
2319 if (!cfqd->active_cic) {
2320 struct cfq_io_context *cic = RQ_CIC(rq);
2321
2322 atomic_long_inc(&cic->ioc->refcount);
2323 cfqd->active_cic = cic;
2324 }
2325
2326 return true;
2327}
2328
2329/*
2330 * Find the cfqq that we need to service and move a request from that to the
2331 * dispatch list
2332 */
2333static int cfq_dispatch_requests(struct request_queue *q, int force)
2334{
2335 struct cfq_data *cfqd = q->elevator->elevator_data;
2336 struct cfq_queue *cfqq;
2337
2338 if (!cfqd->busy_queues)
2339 return 0;
2340
2341 if (unlikely(force))
2342 return cfq_forced_dispatch(cfqd);
2343
2344 cfqq = cfq_select_queue(cfqd);
2345 if (!cfqq)
8e296755
JA
2346 return 0;
2347
2f5cb738 2348 /*
0b182d61 2349 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2350 */
0b182d61
JA
2351 if (!cfq_dispatch_request(cfqd, cfqq))
2352 return 0;
2353
2f5cb738 2354 cfqq->slice_dispatch++;
b029195d 2355 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2356
2f5cb738
JA
2357 /*
2358 * expire an async queue immediately if it has used up its slice. idle
2359 * queue always expire after 1 dispatch round.
2360 */
2361 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2362 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2363 cfq_class_idle(cfqq))) {
2364 cfqq->slice_end = jiffies + 1;
2365 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2366 }
2367
b217a903 2368 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2369 return 1;
1da177e4
LT
2370}
2371
1da177e4 2372/*
5e705374
JA
2373 * task holds one reference to the queue, dropped when task exits. each rq
2374 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2375 *
b1c35769 2376 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2377 * queue lock must be held here.
2378 */
2379static void cfq_put_queue(struct cfq_queue *cfqq)
2380{
22e2c507 2381 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2382 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2383
2384 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2385
2386 if (!atomic_dec_and_test(&cfqq->ref))
2387 return;
2388
7b679138 2389 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2390 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2391 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2392 cfqg = cfqq->cfqg;
878eaddd 2393 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2394
28f95cbc 2395 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2396 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2397 cfq_schedule_dispatch(cfqd);
28f95cbc 2398 }
22e2c507 2399
f04a6424 2400 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2401 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2402 cfq_put_cfqg(cfqg);
878eaddd
VG
2403 if (orig_cfqg)
2404 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2405}
2406
d6de8be7
JA
2407/*
2408 * Must always be called with the rcu_read_lock() held
2409 */
07416d29
JA
2410static void
2411__call_for_each_cic(struct io_context *ioc,
2412 void (*func)(struct io_context *, struct cfq_io_context *))
2413{
2414 struct cfq_io_context *cic;
2415 struct hlist_node *n;
2416
2417 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2418 func(ioc, cic);
2419}
2420
4ac845a2 2421/*
34e6bbf2 2422 * Call func for each cic attached to this ioc.
4ac845a2 2423 */
34e6bbf2 2424static void
4ac845a2
JA
2425call_for_each_cic(struct io_context *ioc,
2426 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2427{
4ac845a2 2428 rcu_read_lock();
07416d29 2429 __call_for_each_cic(ioc, func);
4ac845a2 2430 rcu_read_unlock();
34e6bbf2
FC
2431}
2432
2433static void cfq_cic_free_rcu(struct rcu_head *head)
2434{
2435 struct cfq_io_context *cic;
2436
2437 cic = container_of(head, struct cfq_io_context, rcu_head);
2438
2439 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2440 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2441
9a11b4ed
JA
2442 if (ioc_gone) {
2443 /*
2444 * CFQ scheduler is exiting, grab exit lock and check
2445 * the pending io context count. If it hits zero,
2446 * complete ioc_gone and set it back to NULL
2447 */
2448 spin_lock(&ioc_gone_lock);
245b2e70 2449 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2450 complete(ioc_gone);
2451 ioc_gone = NULL;
2452 }
2453 spin_unlock(&ioc_gone_lock);
2454 }
34e6bbf2 2455}
4ac845a2 2456
34e6bbf2
FC
2457static void cfq_cic_free(struct cfq_io_context *cic)
2458{
2459 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2460}
2461
2462static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2463{
2464 unsigned long flags;
2465
2466 BUG_ON(!cic->dead_key);
2467
2468 spin_lock_irqsave(&ioc->lock, flags);
2469 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2470 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2471 spin_unlock_irqrestore(&ioc->lock, flags);
2472
34e6bbf2 2473 cfq_cic_free(cic);
4ac845a2
JA
2474}
2475
d6de8be7
JA
2476/*
2477 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2478 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2479 * and ->trim() which is called with the task lock held
2480 */
4ac845a2
JA
2481static void cfq_free_io_context(struct io_context *ioc)
2482{
4ac845a2 2483 /*
34e6bbf2
FC
2484 * ioc->refcount is zero here, or we are called from elv_unregister(),
2485 * so no more cic's are allowed to be linked into this ioc. So it
2486 * should be ok to iterate over the known list, we will see all cic's
2487 * since no new ones are added.
4ac845a2 2488 */
07416d29 2489 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2490}
2491
89850f7e 2492static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2493{
df5fe3e8
JM
2494 struct cfq_queue *__cfqq, *next;
2495
28f95cbc 2496 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2497 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2498 cfq_schedule_dispatch(cfqd);
28f95cbc 2499 }
22e2c507 2500
df5fe3e8
JM
2501 /*
2502 * If this queue was scheduled to merge with another queue, be
2503 * sure to drop the reference taken on that queue (and others in
2504 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2505 */
2506 __cfqq = cfqq->new_cfqq;
2507 while (__cfqq) {
2508 if (__cfqq == cfqq) {
2509 WARN(1, "cfqq->new_cfqq loop detected\n");
2510 break;
2511 }
2512 next = __cfqq->new_cfqq;
2513 cfq_put_queue(__cfqq);
2514 __cfqq = next;
2515 }
2516
89850f7e
JA
2517 cfq_put_queue(cfqq);
2518}
22e2c507 2519
89850f7e
JA
2520static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2521 struct cfq_io_context *cic)
2522{
4faa3c81
FC
2523 struct io_context *ioc = cic->ioc;
2524
fc46379d 2525 list_del_init(&cic->queue_list);
4ac845a2
JA
2526
2527 /*
2528 * Make sure key == NULL is seen for dead queues
2529 */
fc46379d 2530 smp_wmb();
4ac845a2 2531 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2532 cic->key = NULL;
2533
4faa3c81
FC
2534 if (ioc->ioc_data == cic)
2535 rcu_assign_pointer(ioc->ioc_data, NULL);
2536
ff6657c6
JA
2537 if (cic->cfqq[BLK_RW_ASYNC]) {
2538 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2539 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2540 }
2541
ff6657c6
JA
2542 if (cic->cfqq[BLK_RW_SYNC]) {
2543 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2544 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2545 }
89850f7e
JA
2546}
2547
4ac845a2
JA
2548static void cfq_exit_single_io_context(struct io_context *ioc,
2549 struct cfq_io_context *cic)
89850f7e
JA
2550{
2551 struct cfq_data *cfqd = cic->key;
2552
89850f7e 2553 if (cfqd) {
165125e1 2554 struct request_queue *q = cfqd->queue;
4ac845a2 2555 unsigned long flags;
89850f7e 2556
4ac845a2 2557 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2558
2559 /*
2560 * Ensure we get a fresh copy of the ->key to prevent
2561 * race between exiting task and queue
2562 */
2563 smp_read_barrier_depends();
2564 if (cic->key)
2565 __cfq_exit_single_io_context(cfqd, cic);
2566
4ac845a2 2567 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2568 }
1da177e4
LT
2569}
2570
498d3aa2
JA
2571/*
2572 * The process that ioc belongs to has exited, we need to clean up
2573 * and put the internal structures we have that belongs to that process.
2574 */
e2d74ac0 2575static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2576{
4ac845a2 2577 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2578}
2579
22e2c507 2580static struct cfq_io_context *
8267e268 2581cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2582{
b5deef90 2583 struct cfq_io_context *cic;
1da177e4 2584
94f6030c
CL
2585 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2586 cfqd->queue->node);
1da177e4 2587 if (cic) {
22e2c507 2588 cic->last_end_request = jiffies;
553698f9 2589 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2590 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2591 cic->dtor = cfq_free_io_context;
2592 cic->exit = cfq_exit_io_context;
245b2e70 2593 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2594 }
2595
2596 return cic;
2597}
2598
fd0928df 2599static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2600{
2601 struct task_struct *tsk = current;
2602 int ioprio_class;
2603
3b18152c 2604 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2605 return;
2606
fd0928df 2607 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2608 switch (ioprio_class) {
fe094d98
JA
2609 default:
2610 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2611 case IOPRIO_CLASS_NONE:
2612 /*
6d63c275 2613 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2614 */
2615 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2616 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2617 break;
2618 case IOPRIO_CLASS_RT:
2619 cfqq->ioprio = task_ioprio(ioc);
2620 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2621 break;
2622 case IOPRIO_CLASS_BE:
2623 cfqq->ioprio = task_ioprio(ioc);
2624 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2625 break;
2626 case IOPRIO_CLASS_IDLE:
2627 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2628 cfqq->ioprio = 7;
2629 cfq_clear_cfqq_idle_window(cfqq);
2630 break;
22e2c507
JA
2631 }
2632
2633 /*
2634 * keep track of original prio settings in case we have to temporarily
2635 * elevate the priority of this queue
2636 */
2637 cfqq->org_ioprio = cfqq->ioprio;
2638 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2639 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2640}
2641
febffd61 2642static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2643{
478a82b0
AV
2644 struct cfq_data *cfqd = cic->key;
2645 struct cfq_queue *cfqq;
c1b707d2 2646 unsigned long flags;
35e6077c 2647
caaa5f9f
JA
2648 if (unlikely(!cfqd))
2649 return;
2650
c1b707d2 2651 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2652
ff6657c6 2653 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2654 if (cfqq) {
2655 struct cfq_queue *new_cfqq;
ff6657c6
JA
2656 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2657 GFP_ATOMIC);
caaa5f9f 2658 if (new_cfqq) {
ff6657c6 2659 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2660 cfq_put_queue(cfqq);
2661 }
22e2c507 2662 }
caaa5f9f 2663
ff6657c6 2664 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2665 if (cfqq)
2666 cfq_mark_cfqq_prio_changed(cfqq);
2667
c1b707d2 2668 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2669}
2670
fc46379d 2671static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2672{
4ac845a2 2673 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2674 ioc->ioprio_changed = 0;
22e2c507
JA
2675}
2676
d5036d77 2677static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2678 pid_t pid, bool is_sync)
d5036d77
JA
2679{
2680 RB_CLEAR_NODE(&cfqq->rb_node);
2681 RB_CLEAR_NODE(&cfqq->p_node);
2682 INIT_LIST_HEAD(&cfqq->fifo);
2683
2684 atomic_set(&cfqq->ref, 0);
2685 cfqq->cfqd = cfqd;
2686
2687 cfq_mark_cfqq_prio_changed(cfqq);
2688
2689 if (is_sync) {
2690 if (!cfq_class_idle(cfqq))
2691 cfq_mark_cfqq_idle_window(cfqq);
2692 cfq_mark_cfqq_sync(cfqq);
2693 }
2694 cfqq->pid = pid;
2695}
2696
24610333
VG
2697#ifdef CONFIG_CFQ_GROUP_IOSCHED
2698static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2699{
2700 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2701 struct cfq_data *cfqd = cic->key;
2702 unsigned long flags;
2703 struct request_queue *q;
2704
2705 if (unlikely(!cfqd))
2706 return;
2707
2708 q = cfqd->queue;
2709
2710 spin_lock_irqsave(q->queue_lock, flags);
2711
2712 if (sync_cfqq) {
2713 /*
2714 * Drop reference to sync queue. A new sync queue will be
2715 * assigned in new group upon arrival of a fresh request.
2716 */
2717 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2718 cic_set_cfqq(cic, NULL, 1);
2719 cfq_put_queue(sync_cfqq);
2720 }
2721
2722 spin_unlock_irqrestore(q->queue_lock, flags);
2723}
2724
2725static void cfq_ioc_set_cgroup(struct io_context *ioc)
2726{
2727 call_for_each_cic(ioc, changed_cgroup);
2728 ioc->cgroup_changed = 0;
2729}
2730#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2731
22e2c507 2732static struct cfq_queue *
a6151c3a 2733cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2734 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2735{
22e2c507 2736 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2737 struct cfq_io_context *cic;
cdb16e8f 2738 struct cfq_group *cfqg;
22e2c507
JA
2739
2740retry:
cdb16e8f 2741 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2742 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2743 /* cic always exists here */
2744 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2745
6118b70b
JA
2746 /*
2747 * Always try a new alloc if we fell back to the OOM cfqq
2748 * originally, since it should just be a temporary situation.
2749 */
2750 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2751 cfqq = NULL;
22e2c507
JA
2752 if (new_cfqq) {
2753 cfqq = new_cfqq;
2754 new_cfqq = NULL;
2755 } else if (gfp_mask & __GFP_WAIT) {
2756 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2757 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2758 gfp_mask | __GFP_ZERO,
94f6030c 2759 cfqd->queue->node);
22e2c507 2760 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2761 if (new_cfqq)
2762 goto retry;
22e2c507 2763 } else {
94f6030c
CL
2764 cfqq = kmem_cache_alloc_node(cfq_pool,
2765 gfp_mask | __GFP_ZERO,
2766 cfqd->queue->node);
22e2c507
JA
2767 }
2768
6118b70b
JA
2769 if (cfqq) {
2770 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2771 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2772 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2773 cfq_log_cfqq(cfqd, cfqq, "alloced");
2774 } else
2775 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2776 }
2777
2778 if (new_cfqq)
2779 kmem_cache_free(cfq_pool, new_cfqq);
2780
22e2c507
JA
2781 return cfqq;
2782}
2783
c2dea2d1
VT
2784static struct cfq_queue **
2785cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2786{
fe094d98 2787 switch (ioprio_class) {
c2dea2d1
VT
2788 case IOPRIO_CLASS_RT:
2789 return &cfqd->async_cfqq[0][ioprio];
2790 case IOPRIO_CLASS_BE:
2791 return &cfqd->async_cfqq[1][ioprio];
2792 case IOPRIO_CLASS_IDLE:
2793 return &cfqd->async_idle_cfqq;
2794 default:
2795 BUG();
2796 }
2797}
2798
15c31be4 2799static struct cfq_queue *
a6151c3a 2800cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2801 gfp_t gfp_mask)
2802{
fd0928df
JA
2803 const int ioprio = task_ioprio(ioc);
2804 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2805 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2806 struct cfq_queue *cfqq = NULL;
2807
c2dea2d1
VT
2808 if (!is_sync) {
2809 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2810 cfqq = *async_cfqq;
2811 }
2812
6118b70b 2813 if (!cfqq)
fd0928df 2814 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2815
2816 /*
2817 * pin the queue now that it's allocated, scheduler exit will prune it
2818 */
c2dea2d1 2819 if (!is_sync && !(*async_cfqq)) {
15c31be4 2820 atomic_inc(&cfqq->ref);
c2dea2d1 2821 *async_cfqq = cfqq;
15c31be4
JA
2822 }
2823
2824 atomic_inc(&cfqq->ref);
2825 return cfqq;
2826}
2827
498d3aa2
JA
2828/*
2829 * We drop cfq io contexts lazily, so we may find a dead one.
2830 */
dbecf3ab 2831static void
4ac845a2
JA
2832cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2833 struct cfq_io_context *cic)
dbecf3ab 2834{
4ac845a2
JA
2835 unsigned long flags;
2836
fc46379d 2837 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2838
4ac845a2
JA
2839 spin_lock_irqsave(&ioc->lock, flags);
2840
4faa3c81 2841 BUG_ON(ioc->ioc_data == cic);
597bc485 2842
4ac845a2 2843 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2844 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2845 spin_unlock_irqrestore(&ioc->lock, flags);
2846
2847 cfq_cic_free(cic);
dbecf3ab
OH
2848}
2849
e2d74ac0 2850static struct cfq_io_context *
4ac845a2 2851cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2852{
e2d74ac0 2853 struct cfq_io_context *cic;
d6de8be7 2854 unsigned long flags;
4ac845a2 2855 void *k;
e2d74ac0 2856
91fac317
VT
2857 if (unlikely(!ioc))
2858 return NULL;
2859
d6de8be7
JA
2860 rcu_read_lock();
2861
597bc485
JA
2862 /*
2863 * we maintain a last-hit cache, to avoid browsing over the tree
2864 */
4ac845a2 2865 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2866 if (cic && cic->key == cfqd) {
2867 rcu_read_unlock();
597bc485 2868 return cic;
d6de8be7 2869 }
597bc485 2870
4ac845a2 2871 do {
4ac845a2
JA
2872 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2873 rcu_read_unlock();
2874 if (!cic)
2875 break;
be3b0753
OH
2876 /* ->key must be copied to avoid race with cfq_exit_queue() */
2877 k = cic->key;
2878 if (unlikely(!k)) {
4ac845a2 2879 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2880 rcu_read_lock();
4ac845a2 2881 continue;
dbecf3ab 2882 }
e2d74ac0 2883
d6de8be7 2884 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2885 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2886 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2887 break;
2888 } while (1);
e2d74ac0 2889
4ac845a2 2890 return cic;
e2d74ac0
JA
2891}
2892
4ac845a2
JA
2893/*
2894 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2895 * the process specific cfq io context when entered from the block layer.
2896 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2897 */
febffd61
JA
2898static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2899 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2900{
0261d688 2901 unsigned long flags;
4ac845a2 2902 int ret;
e2d74ac0 2903
4ac845a2
JA
2904 ret = radix_tree_preload(gfp_mask);
2905 if (!ret) {
2906 cic->ioc = ioc;
2907 cic->key = cfqd;
e2d74ac0 2908
4ac845a2
JA
2909 spin_lock_irqsave(&ioc->lock, flags);
2910 ret = radix_tree_insert(&ioc->radix_root,
2911 (unsigned long) cfqd, cic);
ffc4e759
JA
2912 if (!ret)
2913 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2914 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2915
4ac845a2
JA
2916 radix_tree_preload_end();
2917
2918 if (!ret) {
2919 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2920 list_add(&cic->queue_list, &cfqd->cic_list);
2921 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2922 }
e2d74ac0
JA
2923 }
2924
4ac845a2
JA
2925 if (ret)
2926 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2927
4ac845a2 2928 return ret;
e2d74ac0
JA
2929}
2930
1da177e4
LT
2931/*
2932 * Setup general io context and cfq io context. There can be several cfq
2933 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2934 * than one device managed by cfq.
1da177e4
LT
2935 */
2936static struct cfq_io_context *
e2d74ac0 2937cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2938{
22e2c507 2939 struct io_context *ioc = NULL;
1da177e4 2940 struct cfq_io_context *cic;
1da177e4 2941
22e2c507 2942 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2943
b5deef90 2944 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2945 if (!ioc)
2946 return NULL;
2947
4ac845a2 2948 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2949 if (cic)
2950 goto out;
1da177e4 2951
e2d74ac0
JA
2952 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2953 if (cic == NULL)
2954 goto err;
1da177e4 2955
4ac845a2
JA
2956 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2957 goto err_free;
2958
1da177e4 2959out:
fc46379d
JA
2960 smp_read_barrier_depends();
2961 if (unlikely(ioc->ioprio_changed))
2962 cfq_ioc_set_ioprio(ioc);
2963
24610333
VG
2964#ifdef CONFIG_CFQ_GROUP_IOSCHED
2965 if (unlikely(ioc->cgroup_changed))
2966 cfq_ioc_set_cgroup(ioc);
2967#endif
1da177e4 2968 return cic;
4ac845a2
JA
2969err_free:
2970 cfq_cic_free(cic);
1da177e4
LT
2971err:
2972 put_io_context(ioc);
2973 return NULL;
2974}
2975
22e2c507
JA
2976static void
2977cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2978{
aaf1228d
JA
2979 unsigned long elapsed = jiffies - cic->last_end_request;
2980 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2981
22e2c507
JA
2982 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2983 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2984 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2985}
1da177e4 2986
206dc69b 2987static void
b2c18e1e 2988cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2989 struct request *rq)
206dc69b 2990{
3dde36dd 2991 sector_t sdist = 0;
41647e7a 2992 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
2993 if (cfqq->last_request_pos) {
2994 if (cfqq->last_request_pos < blk_rq_pos(rq))
2995 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2996 else
2997 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2998 }
206dc69b 2999
3dde36dd 3000 cfqq->seek_history <<= 1;
41647e7a
CZ
3001 if (blk_queue_nonrot(cfqd->queue))
3002 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3003 else
3004 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3005}
1da177e4 3006
22e2c507
JA
3007/*
3008 * Disable idle window if the process thinks too long or seeks so much that
3009 * it doesn't matter
3010 */
3011static void
3012cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3013 struct cfq_io_context *cic)
3014{
7b679138 3015 int old_idle, enable_idle;
1be92f2f 3016
0871714e
JA
3017 /*
3018 * Don't idle for async or idle io prio class
3019 */
3020 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3021 return;
3022
c265a7f4 3023 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3024
76280aff
CZ
3025 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3026 cfq_mark_cfqq_deep(cfqq);
3027
66dac98e 3028 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3029 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3030 enable_idle = 0;
3031 else if (sample_valid(cic->ttime_samples)) {
718eee05 3032 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3033 enable_idle = 0;
3034 else
3035 enable_idle = 1;
1da177e4
LT
3036 }
3037
7b679138
JA
3038 if (old_idle != enable_idle) {
3039 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3040 if (enable_idle)
3041 cfq_mark_cfqq_idle_window(cfqq);
3042 else
3043 cfq_clear_cfqq_idle_window(cfqq);
3044 }
22e2c507 3045}
1da177e4 3046
22e2c507
JA
3047/*
3048 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3049 * no or if we aren't sure, a 1 will cause a preempt.
3050 */
a6151c3a 3051static bool
22e2c507 3052cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3053 struct request *rq)
22e2c507 3054{
6d048f53 3055 struct cfq_queue *cfqq;
22e2c507 3056
6d048f53
JA
3057 cfqq = cfqd->active_queue;
3058 if (!cfqq)
a6151c3a 3059 return false;
22e2c507 3060
6d048f53 3061 if (cfq_class_idle(new_cfqq))
a6151c3a 3062 return false;
22e2c507
JA
3063
3064 if (cfq_class_idle(cfqq))
a6151c3a 3065 return true;
1e3335de 3066
875feb63
DS
3067 /*
3068 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3069 */
3070 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3071 return false;
3072
374f84ac
JA
3073 /*
3074 * if the new request is sync, but the currently running queue is
3075 * not, let the sync request have priority.
3076 */
5e705374 3077 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3078 return true;
1e3335de 3079
8682e1f1
VG
3080 if (new_cfqq->cfqg != cfqq->cfqg)
3081 return false;
3082
3083 if (cfq_slice_used(cfqq))
3084 return true;
3085
3086 /* Allow preemption only if we are idling on sync-noidle tree */
3087 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3088 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3089 new_cfqq->service_tree->count == 2 &&
3090 RB_EMPTY_ROOT(&cfqq->sort_list))
3091 return true;
3092
374f84ac
JA
3093 /*
3094 * So both queues are sync. Let the new request get disk time if
3095 * it's a metadata request and the current queue is doing regular IO.
3096 */
3097 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3098 return true;
22e2c507 3099
3a9a3f6c
DS
3100 /*
3101 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3102 */
3103 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3104 return true;
3a9a3f6c 3105
1e3335de 3106 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3107 return false;
1e3335de
JA
3108
3109 /*
3110 * if this request is as-good as one we would expect from the
3111 * current cfqq, let it preempt
3112 */
e9ce335d 3113 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3114 return true;
1e3335de 3115
a6151c3a 3116 return false;
22e2c507
JA
3117}
3118
3119/*
3120 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3121 * let it have half of its nominal slice.
3122 */
3123static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3124{
7b679138 3125 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3126 cfq_slice_expired(cfqd, 1);
22e2c507 3127
bf572256
JA
3128 /*
3129 * Put the new queue at the front of the of the current list,
3130 * so we know that it will be selected next.
3131 */
3132 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3133
3134 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3135
44f7c160
JA
3136 cfqq->slice_end = 0;
3137 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3138}
3139
22e2c507 3140/*
5e705374 3141 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3142 * something we should do about it
3143 */
3144static void
5e705374
JA
3145cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3146 struct request *rq)
22e2c507 3147{
5e705374 3148 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3149
45333d5a 3150 cfqd->rq_queued++;
374f84ac
JA
3151 if (rq_is_meta(rq))
3152 cfqq->meta_pending++;
3153
9c2c38a1 3154 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3155 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3156 cfq_update_idle_window(cfqd, cfqq, cic);
3157
b2c18e1e 3158 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3159
3160 if (cfqq == cfqd->active_queue) {
3161 /*
b029195d
JA
3162 * Remember that we saw a request from this process, but
3163 * don't start queuing just yet. Otherwise we risk seeing lots
3164 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3165 * and merging. If the request is already larger than a single
3166 * page, let it rip immediately. For that case we assume that
2d870722
JA
3167 * merging is already done. Ditto for a busy system that
3168 * has other work pending, don't risk delaying until the
3169 * idle timer unplug to continue working.
22e2c507 3170 */
d6ceb25e 3171 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3172 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3173 cfqd->busy_queues > 1) {
d6ceb25e 3174 del_timer(&cfqd->idle_slice_timer);
554554f6 3175 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3176 __blk_run_queue(cfqd->queue);
3177 } else
3178 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3179 }
5e705374 3180 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3181 /*
3182 * not the active queue - expire current slice if it is
3183 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3184 * has some old slice time left and is of higher priority or
3185 * this new queue is RT and the current one is BE
22e2c507
JA
3186 */
3187 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3188 __blk_run_queue(cfqd->queue);
22e2c507 3189 }
1da177e4
LT
3190}
3191
165125e1 3192static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3193{
b4878f24 3194 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3195 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3196
7b679138 3197 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3198 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3199
30996f40 3200 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3201 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3202 cfq_add_rq_rb(rq);
22e2c507 3203
5e705374 3204 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3205}
3206
45333d5a
AC
3207/*
3208 * Update hw_tag based on peak queue depth over 50 samples under
3209 * sufficient load.
3210 */
3211static void cfq_update_hw_tag(struct cfq_data *cfqd)
3212{
1a1238a7
SL
3213 struct cfq_queue *cfqq = cfqd->active_queue;
3214
53c583d2
CZ
3215 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3216 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3217
3218 if (cfqd->hw_tag == 1)
3219 return;
45333d5a
AC
3220
3221 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3222 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3223 return;
3224
1a1238a7
SL
3225 /*
3226 * If active queue hasn't enough requests and can idle, cfq might not
3227 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3228 * case
3229 */
3230 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3231 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3232 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3233 return;
3234
45333d5a
AC
3235 if (cfqd->hw_tag_samples++ < 50)
3236 return;
3237
e459dd08 3238 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3239 cfqd->hw_tag = 1;
3240 else
3241 cfqd->hw_tag = 0;
45333d5a
AC
3242}
3243
7667aa06
VG
3244static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3245{
3246 struct cfq_io_context *cic = cfqd->active_cic;
3247
3248 /* If there are other queues in the group, don't wait */
3249 if (cfqq->cfqg->nr_cfqq > 1)
3250 return false;
3251
3252 if (cfq_slice_used(cfqq))
3253 return true;
3254
3255 /* if slice left is less than think time, wait busy */
3256 if (cic && sample_valid(cic->ttime_samples)
3257 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3258 return true;
3259
3260 /*
3261 * If think times is less than a jiffy than ttime_mean=0 and above
3262 * will not be true. It might happen that slice has not expired yet
3263 * but will expire soon (4-5 ns) during select_queue(). To cover the
3264 * case where think time is less than a jiffy, mark the queue wait
3265 * busy if only 1 jiffy is left in the slice.
3266 */
3267 if (cfqq->slice_end - jiffies == 1)
3268 return true;
3269
3270 return false;
3271}
3272
165125e1 3273static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3274{
5e705374 3275 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3276 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3277 const int sync = rq_is_sync(rq);
b4878f24 3278 unsigned long now;
1da177e4 3279
b4878f24 3280 now = jiffies;
2868ef7b 3281 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3282
45333d5a
AC
3283 cfq_update_hw_tag(cfqd);
3284
53c583d2 3285 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3286 WARN_ON(!cfqq->dispatched);
53c583d2 3287 cfqd->rq_in_driver--;
6d048f53 3288 cfqq->dispatched--;
9195291e 3289 blkiocg_update_request_completion_stats(&cfqq->cfqg->blkg, rq);
1da177e4 3290
53c583d2 3291 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3292
365722bb 3293 if (sync) {
5e705374 3294 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3295 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3296 cfqd->last_delayed_sync = now;
365722bb 3297 }
caaa5f9f
JA
3298
3299 /*
3300 * If this is the active queue, check if it needs to be expired,
3301 * or if we want to idle in case it has no pending requests.
3302 */
3303 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3304 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3305
44f7c160
JA
3306 if (cfq_cfqq_slice_new(cfqq)) {
3307 cfq_set_prio_slice(cfqd, cfqq);
3308 cfq_clear_cfqq_slice_new(cfqq);
3309 }
f75edf2d
VG
3310
3311 /*
7667aa06
VG
3312 * Should we wait for next request to come in before we expire
3313 * the queue.
f75edf2d 3314 */
7667aa06 3315 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3316 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3317 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3318 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3319 }
3320
a36e71f9 3321 /*
8e550632
CZ
3322 * Idling is not enabled on:
3323 * - expired queues
3324 * - idle-priority queues
3325 * - async queues
3326 * - queues with still some requests queued
3327 * - when there is a close cooperator
a36e71f9 3328 */
0871714e 3329 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3330 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3331 else if (sync && cfqq_empty &&
3332 !cfq_close_cooperator(cfqd, cfqq)) {
3333 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3334 /*
3335 * Idling is enabled for SYNC_WORKLOAD.
3336 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3337 * only if we processed at least one !rq_noidle request
3338 */
3339 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3340 || cfqd->noidle_tree_requires_idle
3341 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3342 cfq_arm_slice_timer(cfqd);
3343 }
caaa5f9f 3344 }
6d048f53 3345
53c583d2 3346 if (!cfqd->rq_in_driver)
23e018a1 3347 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3348}
3349
22e2c507
JA
3350/*
3351 * we temporarily boost lower priority queues if they are holding fs exclusive
3352 * resources. they are boosted to normal prio (CLASS_BE/4)
3353 */
3354static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3355{
22e2c507
JA
3356 if (has_fs_excl()) {
3357 /*
3358 * boost idle prio on transactions that would lock out other
3359 * users of the filesystem
3360 */
3361 if (cfq_class_idle(cfqq))
3362 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3363 if (cfqq->ioprio > IOPRIO_NORM)
3364 cfqq->ioprio = IOPRIO_NORM;
3365 } else {
3366 /*
dddb7451 3367 * unboost the queue (if needed)
22e2c507 3368 */
dddb7451
CZ
3369 cfqq->ioprio_class = cfqq->org_ioprio_class;
3370 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3371 }
22e2c507 3372}
1da177e4 3373
89850f7e 3374static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3375{
1b379d8d 3376 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3377 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3378 return ELV_MQUEUE_MUST;
3b18152c 3379 }
1da177e4 3380
22e2c507 3381 return ELV_MQUEUE_MAY;
22e2c507
JA
3382}
3383
165125e1 3384static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3385{
3386 struct cfq_data *cfqd = q->elevator->elevator_data;
3387 struct task_struct *tsk = current;
91fac317 3388 struct cfq_io_context *cic;
22e2c507
JA
3389 struct cfq_queue *cfqq;
3390
3391 /*
3392 * don't force setup of a queue from here, as a call to may_queue
3393 * does not necessarily imply that a request actually will be queued.
3394 * so just lookup a possibly existing queue, or return 'may queue'
3395 * if that fails
3396 */
4ac845a2 3397 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3398 if (!cic)
3399 return ELV_MQUEUE_MAY;
3400
b0b78f81 3401 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3402 if (cfqq) {
fd0928df 3403 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3404 cfq_prio_boost(cfqq);
3405
89850f7e 3406 return __cfq_may_queue(cfqq);
22e2c507
JA
3407 }
3408
3409 return ELV_MQUEUE_MAY;
1da177e4
LT
3410}
3411
1da177e4
LT
3412/*
3413 * queue lock held here
3414 */
bb37b94c 3415static void cfq_put_request(struct request *rq)
1da177e4 3416{
5e705374 3417 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3418
5e705374 3419 if (cfqq) {
22e2c507 3420 const int rw = rq_data_dir(rq);
1da177e4 3421
22e2c507
JA
3422 BUG_ON(!cfqq->allocated[rw]);
3423 cfqq->allocated[rw]--;
1da177e4 3424
5e705374 3425 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3426
1da177e4 3427 rq->elevator_private = NULL;
5e705374 3428 rq->elevator_private2 = NULL;
1da177e4 3429
1da177e4
LT
3430 cfq_put_queue(cfqq);
3431 }
3432}
3433
df5fe3e8
JM
3434static struct cfq_queue *
3435cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3436 struct cfq_queue *cfqq)
3437{
3438 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3439 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3440 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3441 cfq_put_queue(cfqq);
3442 return cic_to_cfqq(cic, 1);
3443}
3444
e6c5bc73
JM
3445/*
3446 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3447 * was the last process referring to said cfqq.
3448 */
3449static struct cfq_queue *
3450split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3451{
3452 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3453 cfqq->pid = current->pid;
3454 cfq_clear_cfqq_coop(cfqq);
ae54abed 3455 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3456 return cfqq;
3457 }
3458
3459 cic_set_cfqq(cic, NULL, 1);
3460 cfq_put_queue(cfqq);
3461 return NULL;
3462}
1da177e4 3463/*
22e2c507 3464 * Allocate cfq data structures associated with this request.
1da177e4 3465 */
22e2c507 3466static int
165125e1 3467cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3468{
3469 struct cfq_data *cfqd = q->elevator->elevator_data;
3470 struct cfq_io_context *cic;
3471 const int rw = rq_data_dir(rq);
a6151c3a 3472 const bool is_sync = rq_is_sync(rq);
22e2c507 3473 struct cfq_queue *cfqq;
1da177e4
LT
3474 unsigned long flags;
3475
3476 might_sleep_if(gfp_mask & __GFP_WAIT);
3477
e2d74ac0 3478 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3479
1da177e4
LT
3480 spin_lock_irqsave(q->queue_lock, flags);
3481
22e2c507
JA
3482 if (!cic)
3483 goto queue_fail;
3484
e6c5bc73 3485new_queue:
91fac317 3486 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3487 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3488 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3489 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3490 } else {
e6c5bc73
JM
3491 /*
3492 * If the queue was seeky for too long, break it apart.
3493 */
ae54abed 3494 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3495 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3496 cfqq = split_cfqq(cic, cfqq);
3497 if (!cfqq)
3498 goto new_queue;
3499 }
3500
df5fe3e8
JM
3501 /*
3502 * Check to see if this queue is scheduled to merge with
3503 * another, closely cooperating queue. The merging of
3504 * queues happens here as it must be done in process context.
3505 * The reference on new_cfqq was taken in merge_cfqqs.
3506 */
3507 if (cfqq->new_cfqq)
3508 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3509 }
1da177e4
LT
3510
3511 cfqq->allocated[rw]++;
22e2c507 3512 atomic_inc(&cfqq->ref);
1da177e4 3513
5e705374 3514 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3515
5e705374
JA
3516 rq->elevator_private = cic;
3517 rq->elevator_private2 = cfqq;
3518 return 0;
1da177e4 3519
22e2c507
JA
3520queue_fail:
3521 if (cic)
3522 put_io_context(cic->ioc);
89850f7e 3523
23e018a1 3524 cfq_schedule_dispatch(cfqd);
1da177e4 3525 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3526 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3527 return 1;
3528}
3529
65f27f38 3530static void cfq_kick_queue(struct work_struct *work)
22e2c507 3531{
65f27f38 3532 struct cfq_data *cfqd =
23e018a1 3533 container_of(work, struct cfq_data, unplug_work);
165125e1 3534 struct request_queue *q = cfqd->queue;
22e2c507 3535
40bb54d1 3536 spin_lock_irq(q->queue_lock);
a7f55792 3537 __blk_run_queue(cfqd->queue);
40bb54d1 3538 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3539}
3540
3541/*
3542 * Timer running if the active_queue is currently idling inside its time slice
3543 */
3544static void cfq_idle_slice_timer(unsigned long data)
3545{
3546 struct cfq_data *cfqd = (struct cfq_data *) data;
3547 struct cfq_queue *cfqq;
3548 unsigned long flags;
3c6bd2f8 3549 int timed_out = 1;
22e2c507 3550
7b679138
JA
3551 cfq_log(cfqd, "idle timer fired");
3552
22e2c507
JA
3553 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3554
fe094d98
JA
3555 cfqq = cfqd->active_queue;
3556 if (cfqq) {
3c6bd2f8
JA
3557 timed_out = 0;
3558
b029195d
JA
3559 /*
3560 * We saw a request before the queue expired, let it through
3561 */
3562 if (cfq_cfqq_must_dispatch(cfqq))
3563 goto out_kick;
3564
22e2c507
JA
3565 /*
3566 * expired
3567 */
44f7c160 3568 if (cfq_slice_used(cfqq))
22e2c507
JA
3569 goto expire;
3570
3571 /*
3572 * only expire and reinvoke request handler, if there are
3573 * other queues with pending requests
3574 */
caaa5f9f 3575 if (!cfqd->busy_queues)
22e2c507 3576 goto out_cont;
22e2c507
JA
3577
3578 /*
3579 * not expired and it has a request pending, let it dispatch
3580 */
75e50984 3581 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3582 goto out_kick;
76280aff
CZ
3583
3584 /*
3585 * Queue depth flag is reset only when the idle didn't succeed
3586 */
3587 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3588 }
3589expire:
6084cdda 3590 cfq_slice_expired(cfqd, timed_out);
22e2c507 3591out_kick:
23e018a1 3592 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3593out_cont:
3594 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3595}
3596
3b18152c
JA
3597static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3598{
3599 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3600 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3601}
22e2c507 3602
c2dea2d1
VT
3603static void cfq_put_async_queues(struct cfq_data *cfqd)
3604{
3605 int i;
3606
3607 for (i = 0; i < IOPRIO_BE_NR; i++) {
3608 if (cfqd->async_cfqq[0][i])
3609 cfq_put_queue(cfqd->async_cfqq[0][i]);
3610 if (cfqd->async_cfqq[1][i])
3611 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3612 }
2389d1ef
ON
3613
3614 if (cfqd->async_idle_cfqq)
3615 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3616}
3617
bb729bc9
JA
3618static void cfq_cfqd_free(struct rcu_head *head)
3619{
3620 kfree(container_of(head, struct cfq_data, rcu));
3621}
3622
b374d18a 3623static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3624{
22e2c507 3625 struct cfq_data *cfqd = e->elevator_data;
165125e1 3626 struct request_queue *q = cfqd->queue;
22e2c507 3627
3b18152c 3628 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3629
d9ff4187 3630 spin_lock_irq(q->queue_lock);
e2d74ac0 3631
d9ff4187 3632 if (cfqd->active_queue)
6084cdda 3633 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3634
3635 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3636 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3637 struct cfq_io_context,
3638 queue_list);
89850f7e
JA
3639
3640 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3641 }
e2d74ac0 3642
c2dea2d1 3643 cfq_put_async_queues(cfqd);
b1c35769
VG
3644 cfq_release_cfq_groups(cfqd);
3645 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3646
d9ff4187 3647 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3648
3649 cfq_shutdown_timer_wq(cfqd);
3650
b1c35769 3651 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3652 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3653}
3654
165125e1 3655static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3656{
3657 struct cfq_data *cfqd;
718eee05 3658 int i, j;
cdb16e8f 3659 struct cfq_group *cfqg;
615f0259 3660 struct cfq_rb_root *st;
1da177e4 3661
94f6030c 3662 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3663 if (!cfqd)
bc1c1169 3664 return NULL;
1da177e4 3665
1fa8f6d6
VG
3666 /* Init root service tree */
3667 cfqd->grp_service_tree = CFQ_RB_ROOT;
3668
cdb16e8f
VG
3669 /* Init root group */
3670 cfqg = &cfqd->root_group;
615f0259
VG
3671 for_each_cfqg_st(cfqg, i, j, st)
3672 *st = CFQ_RB_ROOT;
1fa8f6d6 3673 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3674
25bc6b07
VG
3675 /* Give preference to root group over other groups */
3676 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3677
25fb5169 3678#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3679 /*
3680 * Take a reference to root group which we never drop. This is just
3681 * to make sure that cfq_put_cfqg() does not try to kfree root group
3682 */
3683 atomic_set(&cfqg->ref, 1);
22084190
VG
3684 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3685 0);
25fb5169 3686#endif
26a2ac00
JA
3687 /*
3688 * Not strictly needed (since RB_ROOT just clears the node and we
3689 * zeroed cfqd on alloc), but better be safe in case someone decides
3690 * to add magic to the rb code
3691 */
3692 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3693 cfqd->prio_trees[i] = RB_ROOT;
3694
6118b70b
JA
3695 /*
3696 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3697 * Grab a permanent reference to it, so that the normal code flow
3698 * will not attempt to free it.
3699 */
3700 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3701 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3702 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3703
d9ff4187 3704 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3705
1da177e4 3706 cfqd->queue = q;
1da177e4 3707
22e2c507
JA
3708 init_timer(&cfqd->idle_slice_timer);
3709 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3710 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3711
23e018a1 3712 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3713
1da177e4 3714 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3715 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3716 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3717 cfqd->cfq_back_max = cfq_back_max;
3718 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3719 cfqd->cfq_slice[0] = cfq_slice_async;
3720 cfqd->cfq_slice[1] = cfq_slice_sync;
3721 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3722 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3723 cfqd->cfq_latency = 1;
ae30c286 3724 cfqd->cfq_group_isolation = 0;
e459dd08 3725 cfqd->hw_tag = -1;
edc71131
CZ
3726 /*
3727 * we optimistically start assuming sync ops weren't delayed in last
3728 * second, in order to have larger depth for async operations.
3729 */
573412b2 3730 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3731 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3732 return cfqd;
1da177e4
LT
3733}
3734
3735static void cfq_slab_kill(void)
3736{
d6de8be7
JA
3737 /*
3738 * Caller already ensured that pending RCU callbacks are completed,
3739 * so we should have no busy allocations at this point.
3740 */
1da177e4
LT
3741 if (cfq_pool)
3742 kmem_cache_destroy(cfq_pool);
3743 if (cfq_ioc_pool)
3744 kmem_cache_destroy(cfq_ioc_pool);
3745}
3746
3747static int __init cfq_slab_setup(void)
3748{
0a31bd5f 3749 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3750 if (!cfq_pool)
3751 goto fail;
3752
34e6bbf2 3753 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3754 if (!cfq_ioc_pool)
3755 goto fail;
3756
3757 return 0;
3758fail:
3759 cfq_slab_kill();
3760 return -ENOMEM;
3761}
3762
1da177e4
LT
3763/*
3764 * sysfs parts below -->
3765 */
1da177e4
LT
3766static ssize_t
3767cfq_var_show(unsigned int var, char *page)
3768{
3769 return sprintf(page, "%d\n", var);
3770}
3771
3772static ssize_t
3773cfq_var_store(unsigned int *var, const char *page, size_t count)
3774{
3775 char *p = (char *) page;
3776
3777 *var = simple_strtoul(p, &p, 10);
3778 return count;
3779}
3780
1da177e4 3781#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3782static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3783{ \
3d1ab40f 3784 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3785 unsigned int __data = __VAR; \
3786 if (__CONV) \
3787 __data = jiffies_to_msecs(__data); \
3788 return cfq_var_show(__data, (page)); \
3789}
3790SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3791SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3792SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3793SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3794SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3795SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3796SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3797SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3798SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3799SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3800SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3801#undef SHOW_FUNCTION
3802
3803#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3804static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3805{ \
3d1ab40f 3806 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3807 unsigned int __data; \
3808 int ret = cfq_var_store(&__data, (page), count); \
3809 if (__data < (MIN)) \
3810 __data = (MIN); \
3811 else if (__data > (MAX)) \
3812 __data = (MAX); \
3813 if (__CONV) \
3814 *(__PTR) = msecs_to_jiffies(__data); \
3815 else \
3816 *(__PTR) = __data; \
3817 return ret; \
3818}
3819STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3820STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3821 UINT_MAX, 1);
3822STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3823 UINT_MAX, 1);
e572ec7e 3824STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3825STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3826 UINT_MAX, 0);
22e2c507
JA
3827STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3828STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3829STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3830STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3831 UINT_MAX, 0);
963b72fc 3832STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3833STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3834#undef STORE_FUNCTION
3835
e572ec7e
AV
3836#define CFQ_ATTR(name) \
3837 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3838
3839static struct elv_fs_entry cfq_attrs[] = {
3840 CFQ_ATTR(quantum),
e572ec7e
AV
3841 CFQ_ATTR(fifo_expire_sync),
3842 CFQ_ATTR(fifo_expire_async),
3843 CFQ_ATTR(back_seek_max),
3844 CFQ_ATTR(back_seek_penalty),
3845 CFQ_ATTR(slice_sync),
3846 CFQ_ATTR(slice_async),
3847 CFQ_ATTR(slice_async_rq),
3848 CFQ_ATTR(slice_idle),
963b72fc 3849 CFQ_ATTR(low_latency),
ae30c286 3850 CFQ_ATTR(group_isolation),
e572ec7e 3851 __ATTR_NULL
1da177e4
LT
3852};
3853
1da177e4
LT
3854static struct elevator_type iosched_cfq = {
3855 .ops = {
3856 .elevator_merge_fn = cfq_merge,
3857 .elevator_merged_fn = cfq_merged_request,
3858 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3859 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3860 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3861 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3862 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3863 .elevator_deactivate_req_fn = cfq_deactivate_request,
3864 .elevator_queue_empty_fn = cfq_queue_empty,
3865 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3866 .elevator_former_req_fn = elv_rb_former_request,
3867 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3868 .elevator_set_req_fn = cfq_set_request,
3869 .elevator_put_req_fn = cfq_put_request,
3870 .elevator_may_queue_fn = cfq_may_queue,
3871 .elevator_init_fn = cfq_init_queue,
3872 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3873 .trim = cfq_free_io_context,
1da177e4 3874 },
3d1ab40f 3875 .elevator_attrs = cfq_attrs,
1da177e4
LT
3876 .elevator_name = "cfq",
3877 .elevator_owner = THIS_MODULE,
3878};
3879
3e252066
VG
3880#ifdef CONFIG_CFQ_GROUP_IOSCHED
3881static struct blkio_policy_type blkio_policy_cfq = {
3882 .ops = {
3883 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3884 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3885 },
3886};
3887#else
3888static struct blkio_policy_type blkio_policy_cfq;
3889#endif
3890
1da177e4
LT
3891static int __init cfq_init(void)
3892{
22e2c507
JA
3893 /*
3894 * could be 0 on HZ < 1000 setups
3895 */
3896 if (!cfq_slice_async)
3897 cfq_slice_async = 1;
3898 if (!cfq_slice_idle)
3899 cfq_slice_idle = 1;
3900
1da177e4
LT
3901 if (cfq_slab_setup())
3902 return -ENOMEM;
3903
2fdd82bd 3904 elv_register(&iosched_cfq);
3e252066 3905 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3906
2fdd82bd 3907 return 0;
1da177e4
LT
3908}
3909
3910static void __exit cfq_exit(void)
3911{
6e9a4738 3912 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3913 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3914 elv_unregister(&iosched_cfq);
334e94de 3915 ioc_gone = &all_gone;
fba82272
OH
3916 /* ioc_gone's update must be visible before reading ioc_count */
3917 smp_wmb();
d6de8be7
JA
3918
3919 /*
3920 * this also protects us from entering cfq_slab_kill() with
3921 * pending RCU callbacks
3922 */
245b2e70 3923 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3924 wait_for_completion(&all_gone);
83521d3e 3925 cfq_slab_kill();
1da177e4
LT
3926}
3927
3928module_init(cfq_init);
3929module_exit(cfq_exit);
3930
3931MODULE_AUTHOR("Jens Axboe");
3932MODULE_LICENSE("GPL");
3933MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");