]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
initramfs: Fix initramfs size for 32-bit arches
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
f253b86b 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
f253b86b 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
f253b86b 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
dd4c133f 139 if (&q->flush_rq != rq) {
5bb23a68
N
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68 162 } else {
5bb23a68 163 /*
dd4c133f
TH
164 * Okay, this is the sequenced flush request in
165 * progress, just record the error;
5bb23a68 166 */
dd4c133f
TH
167 if (error && !q->flush_err)
168 q->flush_err = error;
5bb23a68 169 }
1da177e4 170}
1da177e4 171
1da177e4
LT
172void blk_dump_rq_flags(struct request *rq, char *msg)
173{
174 int bit;
175
6728cb0e 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
1da177e4 179
83096ebf
TH
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 185
33659ebb 186 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 187 printk(KERN_INFO " cdb: ");
d34c87e4 188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
191 }
192}
1da177e4
LT
193EXPORT_SYMBOL(blk_dump_rq_flags);
194
1da177e4
LT
195/*
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
199 *
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
202 */
165125e1 203void blk_plug_device(struct request_queue *q)
1da177e4
LT
204{
205 WARN_ON(!irqs_disabled());
206
207 /*
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
210 */
7daac490 211 if (blk_queue_stopped(q))
1da177e4
LT
212 return;
213
e48ec690 214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 216 trace_block_plug(q);
2056a782 217 }
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_plug_device);
220
6c5e0c4d
JA
221/**
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
224 *
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
228 **/
229void blk_plug_device_unlocked(struct request_queue *q)
230{
231 unsigned long flags;
232
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
236}
237EXPORT_SYMBOL(blk_plug_device_unlocked);
238
1da177e4
LT
239/*
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
242 */
165125e1 243int blk_remove_plug(struct request_queue *q)
1da177e4
LT
244{
245 WARN_ON(!irqs_disabled());
246
e48ec690 247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
248 return 0;
249
250 del_timer(&q->unplug_timer);
251 return 1;
252}
1da177e4
LT
253EXPORT_SYMBOL(blk_remove_plug);
254
255/*
256 * remove the plug and let it rip..
257 */
165125e1 258void __generic_unplug_device(struct request_queue *q)
1da177e4 259{
7daac490 260 if (unlikely(blk_queue_stopped(q)))
1da177e4 261 return;
a31a9738 262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
263 return;
264
22e2c507 265 q->request_fn(q);
1da177e4 266}
1da177e4
LT
267
268/**
269 * generic_unplug_device - fire a request queue
165125e1 270 * @q: The &struct request_queue in question
1da177e4
LT
271 *
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
278 **/
165125e1 279void generic_unplug_device(struct request_queue *q)
1da177e4 280{
dbaf2c00
JA
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
285 }
1da177e4
LT
286}
287EXPORT_SYMBOL(generic_unplug_device);
288
289static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
291{
165125e1 292 struct request_queue *q = bdi->unplug_io_data;
1da177e4 293
2ad8b1ef 294 blk_unplug(q);
1da177e4
LT
295}
296
86db1e29 297void blk_unplug_work(struct work_struct *work)
1da177e4 298{
165125e1
JA
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
1da177e4 301
5f3ea37c 302 trace_block_unplug_io(q);
1da177e4
LT
303 q->unplug_fn(q);
304}
305
86db1e29 306void blk_unplug_timeout(unsigned long data)
1da177e4 307{
165125e1 308 struct request_queue *q = (struct request_queue *)data;
1da177e4 309
5f3ea37c 310 trace_block_unplug_timer(q);
18887ad9 311 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
312}
313
2ad8b1ef
AB
314void blk_unplug(struct request_queue *q)
315{
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
5f3ea37c 320 trace_block_unplug_io(q);
2ad8b1ef
AB
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
1da177e4
LT
326/**
327 * blk_start_queue - restart a previously stopped queue
165125e1 328 * @q: The &struct request_queue in question
1da177e4
LT
329 *
330 * Description:
331 * blk_start_queue() will clear the stop flag on the queue, and call
332 * the request_fn for the queue if it was in a stopped state when
333 * entered. Also see blk_stop_queue(). Queue lock must be held.
334 **/
165125e1 335void blk_start_queue(struct request_queue *q)
1da177e4 336{
a038e253
PBG
337 WARN_ON(!irqs_disabled());
338
75ad23bc 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 340 __blk_run_queue(q);
1da177e4 341}
1da177e4
LT
342EXPORT_SYMBOL(blk_start_queue);
343
344/**
345 * blk_stop_queue - stop a queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * The Linux block layer assumes that a block driver will consume all
350 * entries on the request queue when the request_fn strategy is called.
351 * Often this will not happen, because of hardware limitations (queue
352 * depth settings). If a device driver gets a 'queue full' response,
353 * or if it simply chooses not to queue more I/O at one point, it can
354 * call this function to prevent the request_fn from being called until
355 * the driver has signalled it's ready to go again. This happens by calling
356 * blk_start_queue() to restart queue operations. Queue lock must be held.
357 **/
165125e1 358void blk_stop_queue(struct request_queue *q)
1da177e4
LT
359{
360 blk_remove_plug(q);
75ad23bc 361 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
362}
363EXPORT_SYMBOL(blk_stop_queue);
364
365/**
366 * blk_sync_queue - cancel any pending callbacks on a queue
367 * @q: the queue
368 *
369 * Description:
370 * The block layer may perform asynchronous callback activity
371 * on a queue, such as calling the unplug function after a timeout.
372 * A block device may call blk_sync_queue to ensure that any
373 * such activity is cancelled, thus allowing it to release resources
59c51591 374 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
375 * that its ->make_request_fn will not re-add plugging prior to calling
376 * this function.
377 *
378 */
379void blk_sync_queue(struct request_queue *q)
380{
381 del_timer_sync(&q->unplug_timer);
70ed28b9 382 del_timer_sync(&q->timeout);
64d01dc9 383 cancel_work_sync(&q->unplug_work);
e43473b7 384 throtl_shutdown_timer_wq(q);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1abec4fd
MS
470 if (unlikely(rl->rq_pool))
471 return 0;
472
1faa16d2
JA
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 475 rl->elvpriv = 0;
1faa16d2
JA
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 478
1946089a
CL
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486}
487
165125e1 488struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 489{
1946089a
CL
490 return blk_alloc_queue_node(gfp_mask, -1);
491}
492EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 493
165125e1 494struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 495{
165125e1 496 struct request_queue *q;
e0bf68dd 497 int err;
1946089a 498
8324aa91 499 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 500 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
501 if (!q)
502 return NULL;
503
e0bf68dd
PZ
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 510 q->backing_dev_info.name = "block";
0989a025 511
e0bf68dd
PZ
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
e43473b7
VG
518 if (blk_throtl_init(q)) {
519 kmem_cache_free(blk_requestq_cachep, q);
520 return NULL;
521 }
522
31373d09
MG
523 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
524 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 525 init_timer(&q->unplug_timer);
242f9dcb
JA
526 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
527 INIT_LIST_HEAD(&q->timeout_list);
dd4c133f 528 INIT_LIST_HEAD(&q->pending_flushes);
713ada9b 529 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 530
8324aa91 531 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 532
483f4afc 533 mutex_init(&q->sysfs_lock);
e7e72bf6 534 spin_lock_init(&q->__queue_lock);
483f4afc 535
1da177e4
LT
536 return q;
537}
1946089a 538EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
539
540/**
541 * blk_init_queue - prepare a request queue for use with a block device
542 * @rfn: The function to be called to process requests that have been
543 * placed on the queue.
544 * @lock: Request queue spin lock
545 *
546 * Description:
547 * If a block device wishes to use the standard request handling procedures,
548 * which sorts requests and coalesces adjacent requests, then it must
549 * call blk_init_queue(). The function @rfn will be called when there
550 * are requests on the queue that need to be processed. If the device
551 * supports plugging, then @rfn may not be called immediately when requests
552 * are available on the queue, but may be called at some time later instead.
553 * Plugged queues are generally unplugged when a buffer belonging to one
554 * of the requests on the queue is needed, or due to memory pressure.
555 *
556 * @rfn is not required, or even expected, to remove all requests off the
557 * queue, but only as many as it can handle at a time. If it does leave
558 * requests on the queue, it is responsible for arranging that the requests
559 * get dealt with eventually.
560 *
561 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
562 * request queue; this lock will be taken also from interrupt context, so irq
563 * disabling is needed for it.
1da177e4 564 *
710027a4 565 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
566 * it didn't succeed.
567 *
568 * Note:
569 * blk_init_queue() must be paired with a blk_cleanup_queue() call
570 * when the block device is deactivated (such as at module unload).
571 **/
1946089a 572
165125e1 573struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 574{
1946089a
CL
575 return blk_init_queue_node(rfn, lock, -1);
576}
577EXPORT_SYMBOL(blk_init_queue);
578
165125e1 579struct request_queue *
1946089a
CL
580blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
581{
c86d1b8a 582 struct request_queue *uninit_q, *q;
1da177e4 583
c86d1b8a
MS
584 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
585 if (!uninit_q)
586 return NULL;
587
588 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
589 if (!q)
590 blk_cleanup_queue(uninit_q);
591
592 return q;
01effb0d
MS
593}
594EXPORT_SYMBOL(blk_init_queue_node);
595
596struct request_queue *
597blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
598 spinlock_t *lock)
599{
600 return blk_init_allocated_queue_node(q, rfn, lock, -1);
601}
602EXPORT_SYMBOL(blk_init_allocated_queue);
603
604struct request_queue *
605blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
606 spinlock_t *lock, int node_id)
607{
1da177e4
LT
608 if (!q)
609 return NULL;
610
1946089a 611 q->node = node_id;
c86d1b8a 612 if (blk_init_free_list(q))
8669aafd 613 return NULL;
1da177e4
LT
614
615 q->request_fn = rfn;
1da177e4 616 q->prep_rq_fn = NULL;
28018c24 617 q->unprep_rq_fn = NULL;
1da177e4 618 q->unplug_fn = generic_unplug_device;
bc58ba94 619 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
620 q->queue_lock = lock;
621
f3b144aa
JA
622 /*
623 * This also sets hw/phys segments, boundary and size
624 */
1da177e4 625 blk_queue_make_request(q, __make_request);
1da177e4 626
44ec9542
AS
627 q->sg_reserved_size = INT_MAX;
628
1da177e4
LT
629 /*
630 * all done
631 */
632 if (!elevator_init(q, NULL)) {
633 blk_queue_congestion_threshold(q);
634 return q;
635 }
636
1da177e4
LT
637 return NULL;
638}
01effb0d 639EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 640
165125e1 641int blk_get_queue(struct request_queue *q)
1da177e4 642{
fde6ad22 643 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 644 kobject_get(&q->kobj);
1da177e4
LT
645 return 0;
646 }
647
648 return 1;
649}
1da177e4 650
165125e1 651static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 652{
4aff5e23 653 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 654 elv_put_request(q, rq);
1da177e4
LT
655 mempool_free(rq, q->rq.rq_pool);
656}
657
1ea25ecb 658static struct request *
42dad764 659blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
660{
661 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
662
663 if (!rq)
664 return NULL;
665
2a4aa30c 666 blk_rq_init(q, rq);
1afb20f3 667
42dad764 668 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 669
cb98fc8b 670 if (priv) {
cb78b285 671 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
672 mempool_free(rq, q->rq.rq_pool);
673 return NULL;
674 }
4aff5e23 675 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 676 }
1da177e4 677
cb98fc8b 678 return rq;
1da177e4
LT
679}
680
681/*
682 * ioc_batching returns true if the ioc is a valid batching request and
683 * should be given priority access to a request.
684 */
165125e1 685static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
686{
687 if (!ioc)
688 return 0;
689
690 /*
691 * Make sure the process is able to allocate at least 1 request
692 * even if the batch times out, otherwise we could theoretically
693 * lose wakeups.
694 */
695 return ioc->nr_batch_requests == q->nr_batching ||
696 (ioc->nr_batch_requests > 0
697 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
698}
699
700/*
701 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
702 * will cause the process to be a "batcher" on all queues in the system. This
703 * is the behaviour we want though - once it gets a wakeup it should be given
704 * a nice run.
705 */
165125e1 706static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
707{
708 if (!ioc || ioc_batching(q, ioc))
709 return;
710
711 ioc->nr_batch_requests = q->nr_batching;
712 ioc->last_waited = jiffies;
713}
714
1faa16d2 715static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
716{
717 struct request_list *rl = &q->rq;
718
1faa16d2
JA
719 if (rl->count[sync] < queue_congestion_off_threshold(q))
720 blk_clear_queue_congested(q, sync);
1da177e4 721
1faa16d2
JA
722 if (rl->count[sync] + 1 <= q->nr_requests) {
723 if (waitqueue_active(&rl->wait[sync]))
724 wake_up(&rl->wait[sync]);
1da177e4 725
1faa16d2 726 blk_clear_queue_full(q, sync);
1da177e4
LT
727 }
728}
729
730/*
731 * A request has just been released. Account for it, update the full and
732 * congestion status, wake up any waiters. Called under q->queue_lock.
733 */
1faa16d2 734static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
735{
736 struct request_list *rl = &q->rq;
737
1faa16d2 738 rl->count[sync]--;
cb98fc8b
TH
739 if (priv)
740 rl->elvpriv--;
1da177e4 741
1faa16d2 742 __freed_request(q, sync);
1da177e4 743
1faa16d2
JA
744 if (unlikely(rl->starved[sync ^ 1]))
745 __freed_request(q, sync ^ 1);
1da177e4
LT
746}
747
1da177e4 748/*
d6344532
NP
749 * Get a free request, queue_lock must be held.
750 * Returns NULL on failure, with queue_lock held.
751 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 752 */
165125e1 753static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 754 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
755{
756 struct request *rq = NULL;
757 struct request_list *rl = &q->rq;
88ee5ef1 758 struct io_context *ioc = NULL;
1faa16d2 759 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
760 int may_queue, priv;
761
7749a8d4 762 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
763 if (may_queue == ELV_MQUEUE_NO)
764 goto rq_starved;
765
1faa16d2
JA
766 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
767 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 768 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
769 /*
770 * The queue will fill after this allocation, so set
771 * it as full, and mark this process as "batching".
772 * This process will be allowed to complete a batch of
773 * requests, others will be blocked.
774 */
1faa16d2 775 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 776 ioc_set_batching(q, ioc);
1faa16d2 777 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
778 } else {
779 if (may_queue != ELV_MQUEUE_MUST
780 && !ioc_batching(q, ioc)) {
781 /*
782 * The queue is full and the allocating
783 * process is not a "batcher", and not
784 * exempted by the IO scheduler
785 */
786 goto out;
787 }
788 }
1da177e4 789 }
1faa16d2 790 blk_set_queue_congested(q, is_sync);
1da177e4
LT
791 }
792
082cf69e
JA
793 /*
794 * Only allow batching queuers to allocate up to 50% over the defined
795 * limit of requests, otherwise we could have thousands of requests
796 * allocated with any setting of ->nr_requests
797 */
1faa16d2 798 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 799 goto out;
fd782a4a 800
1faa16d2
JA
801 rl->count[is_sync]++;
802 rl->starved[is_sync] = 0;
cb98fc8b 803
64521d1a 804 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
f253b86b 805 if (priv)
cb98fc8b
TH
806 rl->elvpriv++;
807
f253b86b
JA
808 if (blk_queue_io_stat(q))
809 rw_flags |= REQ_IO_STAT;
1da177e4
LT
810 spin_unlock_irq(q->queue_lock);
811
7749a8d4 812 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 813 if (unlikely(!rq)) {
1da177e4
LT
814 /*
815 * Allocation failed presumably due to memory. Undo anything
816 * we might have messed up.
817 *
818 * Allocating task should really be put onto the front of the
819 * wait queue, but this is pretty rare.
820 */
821 spin_lock_irq(q->queue_lock);
1faa16d2 822 freed_request(q, is_sync, priv);
1da177e4
LT
823
824 /*
825 * in the very unlikely event that allocation failed and no
826 * requests for this direction was pending, mark us starved
827 * so that freeing of a request in the other direction will
828 * notice us. another possible fix would be to split the
829 * rq mempool into READ and WRITE
830 */
831rq_starved:
1faa16d2
JA
832 if (unlikely(rl->count[is_sync] == 0))
833 rl->starved[is_sync] = 1;
1da177e4 834
1da177e4
LT
835 goto out;
836 }
837
88ee5ef1
JA
838 /*
839 * ioc may be NULL here, and ioc_batching will be false. That's
840 * OK, if the queue is under the request limit then requests need
841 * not count toward the nr_batch_requests limit. There will always
842 * be some limit enforced by BLK_BATCH_TIME.
843 */
1da177e4
LT
844 if (ioc_batching(q, ioc))
845 ioc->nr_batch_requests--;
6728cb0e 846
1faa16d2 847 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 848out:
1da177e4
LT
849 return rq;
850}
851
852/*
853 * No available requests for this queue, unplug the device and wait for some
854 * requests to become available.
d6344532
NP
855 *
856 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 857 */
165125e1 858static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 859 struct bio *bio)
1da177e4 860{
1faa16d2 861 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
862 struct request *rq;
863
7749a8d4 864 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
865 while (!rq) {
866 DEFINE_WAIT(wait);
05caf8db 867 struct io_context *ioc;
1da177e4
LT
868 struct request_list *rl = &q->rq;
869
1faa16d2 870 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
871 TASK_UNINTERRUPTIBLE);
872
1faa16d2 873 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 874
05caf8db
ZY
875 __generic_unplug_device(q);
876 spin_unlock_irq(q->queue_lock);
877 io_schedule();
1da177e4 878
05caf8db
ZY
879 /*
880 * After sleeping, we become a "batching" process and
881 * will be able to allocate at least one request, and
882 * up to a big batch of them for a small period time.
883 * See ioc_batching, ioc_set_batching
884 */
885 ioc = current_io_context(GFP_NOIO, q->node);
886 ioc_set_batching(q, ioc);
d6344532 887
05caf8db 888 spin_lock_irq(q->queue_lock);
1faa16d2 889 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
890
891 rq = get_request(q, rw_flags, bio, GFP_NOIO);
892 };
1da177e4
LT
893
894 return rq;
895}
896
165125e1 897struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
898{
899 struct request *rq;
900
901 BUG_ON(rw != READ && rw != WRITE);
902
d6344532
NP
903 spin_lock_irq(q->queue_lock);
904 if (gfp_mask & __GFP_WAIT) {
22e2c507 905 rq = get_request_wait(q, rw, NULL);
d6344532 906 } else {
22e2c507 907 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
908 if (!rq)
909 spin_unlock_irq(q->queue_lock);
910 }
911 /* q->queue_lock is unlocked at this point */
1da177e4
LT
912
913 return rq;
914}
1da177e4
LT
915EXPORT_SYMBOL(blk_get_request);
916
dc72ef4a 917/**
79eb63e9 918 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 919 * @q: target request queue
79eb63e9
BH
920 * @bio: The bio describing the memory mappings that will be submitted for IO.
921 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 922 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 923 *
79eb63e9
BH
924 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
925 * type commands. Where the struct request needs to be farther initialized by
926 * the caller. It is passed a &struct bio, which describes the memory info of
927 * the I/O transfer.
dc72ef4a 928 *
79eb63e9
BH
929 * The caller of blk_make_request must make sure that bi_io_vec
930 * are set to describe the memory buffers. That bio_data_dir() will return
931 * the needed direction of the request. (And all bio's in the passed bio-chain
932 * are properly set accordingly)
933 *
934 * If called under none-sleepable conditions, mapped bio buffers must not
935 * need bouncing, by calling the appropriate masked or flagged allocator,
936 * suitable for the target device. Otherwise the call to blk_queue_bounce will
937 * BUG.
53674ac5
JA
938 *
939 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
940 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
941 * anything but the first bio in the chain. Otherwise you risk waiting for IO
942 * completion of a bio that hasn't been submitted yet, thus resulting in a
943 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
944 * of bio_alloc(), as that avoids the mempool deadlock.
945 * If possible a big IO should be split into smaller parts when allocation
946 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 947 */
79eb63e9
BH
948struct request *blk_make_request(struct request_queue *q, struct bio *bio,
949 gfp_t gfp_mask)
dc72ef4a 950{
79eb63e9
BH
951 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
952
953 if (unlikely(!rq))
954 return ERR_PTR(-ENOMEM);
955
956 for_each_bio(bio) {
957 struct bio *bounce_bio = bio;
958 int ret;
959
960 blk_queue_bounce(q, &bounce_bio);
961 ret = blk_rq_append_bio(q, rq, bounce_bio);
962 if (unlikely(ret)) {
963 blk_put_request(rq);
964 return ERR_PTR(ret);
965 }
966 }
967
968 return rq;
dc72ef4a 969}
79eb63e9 970EXPORT_SYMBOL(blk_make_request);
dc72ef4a 971
1da177e4
LT
972/**
973 * blk_requeue_request - put a request back on queue
974 * @q: request queue where request should be inserted
975 * @rq: request to be inserted
976 *
977 * Description:
978 * Drivers often keep queueing requests until the hardware cannot accept
979 * more, when that condition happens we need to put the request back
980 * on the queue. Must be called with queue lock held.
981 */
165125e1 982void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 983{
242f9dcb
JA
984 blk_delete_timer(rq);
985 blk_clear_rq_complete(rq);
5f3ea37c 986 trace_block_rq_requeue(q, rq);
2056a782 987
1da177e4
LT
988 if (blk_rq_tagged(rq))
989 blk_queue_end_tag(q, rq);
990
ba396a6c
JB
991 BUG_ON(blk_queued_rq(rq));
992
1da177e4
LT
993 elv_requeue_request(q, rq);
994}
1da177e4
LT
995EXPORT_SYMBOL(blk_requeue_request);
996
997/**
710027a4 998 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
999 * @q: request queue where request should be inserted
1000 * @rq: request to be inserted
1001 * @at_head: insert request at head or tail of queue
1002 * @data: private data
1da177e4
LT
1003 *
1004 * Description:
1005 * Many block devices need to execute commands asynchronously, so they don't
1006 * block the whole kernel from preemption during request execution. This is
1007 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1008 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1009 * be scheduled for actual execution by the request queue.
1da177e4
LT
1010 *
1011 * We have the option of inserting the head or the tail of the queue.
1012 * Typically we use the tail for new ioctls and so forth. We use the head
1013 * of the queue for things like a QUEUE_FULL message from a device, or a
1014 * host that is unable to accept a particular command.
1015 */
165125e1 1016void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1017 int at_head, void *data)
1da177e4 1018{
867d1191 1019 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1020 unsigned long flags;
1021
1022 /*
1023 * tell I/O scheduler that this isn't a regular read/write (ie it
1024 * must not attempt merges on this) and that it acts as a soft
1025 * barrier
1026 */
4aff5e23 1027 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1028
1029 rq->special = data;
1030
1031 spin_lock_irqsave(q->queue_lock, flags);
1032
1033 /*
1034 * If command is tagged, release the tag
1035 */
867d1191
TH
1036 if (blk_rq_tagged(rq))
1037 blk_queue_end_tag(q, rq);
1da177e4 1038
b238b3d4 1039 drive_stat_acct(rq, 1);
867d1191 1040 __elv_add_request(q, rq, where, 0);
a7f55792 1041 __blk_run_queue(q);
1da177e4
LT
1042 spin_unlock_irqrestore(q->queue_lock, flags);
1043}
1da177e4
LT
1044EXPORT_SYMBOL(blk_insert_request);
1045
074a7aca
TH
1046static void part_round_stats_single(int cpu, struct hd_struct *part,
1047 unsigned long now)
1048{
1049 if (now == part->stamp)
1050 return;
1051
316d315b 1052 if (part_in_flight(part)) {
074a7aca 1053 __part_stat_add(cpu, part, time_in_queue,
316d315b 1054 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1055 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1056 }
1057 part->stamp = now;
1058}
1059
1060/**
496aa8a9
RD
1061 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1062 * @cpu: cpu number for stats access
1063 * @part: target partition
1da177e4
LT
1064 *
1065 * The average IO queue length and utilisation statistics are maintained
1066 * by observing the current state of the queue length and the amount of
1067 * time it has been in this state for.
1068 *
1069 * Normally, that accounting is done on IO completion, but that can result
1070 * in more than a second's worth of IO being accounted for within any one
1071 * second, leading to >100% utilisation. To deal with that, we call this
1072 * function to do a round-off before returning the results when reading
1073 * /proc/diskstats. This accounts immediately for all queue usage up to
1074 * the current jiffies and restarts the counters again.
1075 */
c9959059 1076void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1077{
1078 unsigned long now = jiffies;
1079
074a7aca
TH
1080 if (part->partno)
1081 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1082 part_round_stats_single(cpu, part, now);
6f2576af 1083}
074a7aca 1084EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1085
1da177e4
LT
1086/*
1087 * queue lock must be held
1088 */
165125e1 1089void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1090{
1da177e4
LT
1091 if (unlikely(!q))
1092 return;
1093 if (unlikely(--req->ref_count))
1094 return;
1095
8922e16c
TH
1096 elv_completed_request(q, req);
1097
1cd96c24
BH
1098 /* this is a bio leak */
1099 WARN_ON(req->bio != NULL);
1100
1da177e4
LT
1101 /*
1102 * Request may not have originated from ll_rw_blk. if not,
1103 * it didn't come out of our reserved rq pools
1104 */
49171e5c 1105 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1106 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1107 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1108
1da177e4 1109 BUG_ON(!list_empty(&req->queuelist));
9817064b 1110 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1111
1112 blk_free_request(q, req);
1faa16d2 1113 freed_request(q, is_sync, priv);
1da177e4
LT
1114 }
1115}
6e39b69e
MC
1116EXPORT_SYMBOL_GPL(__blk_put_request);
1117
1da177e4
LT
1118void blk_put_request(struct request *req)
1119{
8922e16c 1120 unsigned long flags;
165125e1 1121 struct request_queue *q = req->q;
8922e16c 1122
52a93ba8
FT
1123 spin_lock_irqsave(q->queue_lock, flags);
1124 __blk_put_request(q, req);
1125 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1126}
1da177e4
LT
1127EXPORT_SYMBOL(blk_put_request);
1128
66ac0280
CH
1129/**
1130 * blk_add_request_payload - add a payload to a request
1131 * @rq: request to update
1132 * @page: page backing the payload
1133 * @len: length of the payload.
1134 *
1135 * This allows to later add a payload to an already submitted request by
1136 * a block driver. The driver needs to take care of freeing the payload
1137 * itself.
1138 *
1139 * Note that this is a quite horrible hack and nothing but handling of
1140 * discard requests should ever use it.
1141 */
1142void blk_add_request_payload(struct request *rq, struct page *page,
1143 unsigned int len)
1144{
1145 struct bio *bio = rq->bio;
1146
1147 bio->bi_io_vec->bv_page = page;
1148 bio->bi_io_vec->bv_offset = 0;
1149 bio->bi_io_vec->bv_len = len;
1150
1151 bio->bi_size = len;
1152 bio->bi_vcnt = 1;
1153 bio->bi_phys_segments = 1;
1154
1155 rq->__data_len = rq->resid_len = len;
1156 rq->nr_phys_segments = 1;
1157 rq->buffer = bio_data(bio);
1158}
1159EXPORT_SYMBOL_GPL(blk_add_request_payload);
1160
86db1e29 1161void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1162{
c7c22e4d 1163 req->cpu = bio->bi_comp_cpu;
4aff5e23 1164 req->cmd_type = REQ_TYPE_FS;
52d9e675 1165
7b6d91da
CH
1166 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1167 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1168 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1169
52d9e675 1170 req->errors = 0;
a2dec7b3 1171 req->__sector = bio->bi_sector;
52d9e675 1172 req->ioprio = bio_prio(bio);
bc1c56fd 1173 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1174}
1175
644b2d99
JA
1176/*
1177 * Only disabling plugging for non-rotational devices if it does tagging
1178 * as well, otherwise we do need the proper merging
1179 */
1180static inline bool queue_should_plug(struct request_queue *q)
1181{
79da0644 1182 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1183}
1184
165125e1 1185static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1186{
450991bc 1187 struct request *req;
2e46e8b2
TH
1188 int el_ret;
1189 unsigned int bytes = bio->bi_size;
51da90fc 1190 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1191 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1192 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1193 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1194 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1195 int rw_flags;
1da177e4 1196
4913efe4
TH
1197 /* REQ_HARDBARRIER is no more */
1198 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1199 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
db64f680
N
1200 bio_endio(bio, -EOPNOTSUPP);
1201 return 0;
1202 }
4913efe4 1203
1da177e4
LT
1204 /*
1205 * low level driver can indicate that it wants pages above a
1206 * certain limit bounced to low memory (ie for highmem, or even
1207 * ISA dma in theory)
1208 */
1209 blk_queue_bounce(q, &bio);
1210
1da177e4
LT
1211 spin_lock_irq(q->queue_lock);
1212
4fed947c 1213 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
28e7d184
TH
1214 where = ELEVATOR_INSERT_FRONT;
1215 goto get_rq;
1216 }
1217
1218 if (elv_queue_empty(q))
1da177e4
LT
1219 goto get_rq;
1220
1221 el_ret = elv_merge(q, &req, bio);
1222 switch (el_ret) {
6728cb0e
JA
1223 case ELEVATOR_BACK_MERGE:
1224 BUG_ON(!rq_mergeable(req));
1da177e4 1225
6728cb0e
JA
1226 if (!ll_back_merge_fn(q, req, bio))
1227 break;
1da177e4 1228
5f3ea37c 1229 trace_block_bio_backmerge(q, bio);
2056a782 1230
80a761fd
TH
1231 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1232 blk_rq_set_mixed_merge(req);
1233
6728cb0e
JA
1234 req->biotail->bi_next = bio;
1235 req->biotail = bio;
a2dec7b3 1236 req->__data_len += bytes;
6728cb0e 1237 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1238 if (!blk_rq_cpu_valid(req))
1239 req->cpu = bio->bi_comp_cpu;
6728cb0e 1240 drive_stat_acct(req, 0);
812d4026 1241 elv_bio_merged(q, req, bio);
6728cb0e
JA
1242 if (!attempt_back_merge(q, req))
1243 elv_merged_request(q, req, el_ret);
1244 goto out;
1da177e4 1245
6728cb0e
JA
1246 case ELEVATOR_FRONT_MERGE:
1247 BUG_ON(!rq_mergeable(req));
1da177e4 1248
6728cb0e
JA
1249 if (!ll_front_merge_fn(q, req, bio))
1250 break;
1da177e4 1251
5f3ea37c 1252 trace_block_bio_frontmerge(q, bio);
2056a782 1253
80a761fd
TH
1254 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1255 blk_rq_set_mixed_merge(req);
1256 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1257 req->cmd_flags |= ff;
1258 }
1259
6728cb0e
JA
1260 bio->bi_next = req->bio;
1261 req->bio = bio;
1da177e4 1262
6728cb0e
JA
1263 /*
1264 * may not be valid. if the low level driver said
1265 * it didn't need a bounce buffer then it better
1266 * not touch req->buffer either...
1267 */
1268 req->buffer = bio_data(bio);
a2dec7b3
TH
1269 req->__sector = bio->bi_sector;
1270 req->__data_len += bytes;
6728cb0e 1271 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1272 if (!blk_rq_cpu_valid(req))
1273 req->cpu = bio->bi_comp_cpu;
6728cb0e 1274 drive_stat_acct(req, 0);
812d4026 1275 elv_bio_merged(q, req, bio);
6728cb0e
JA
1276 if (!attempt_front_merge(q, req))
1277 elv_merged_request(q, req, el_ret);
1278 goto out;
1279
1280 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1281 default:
1282 ;
1da177e4
LT
1283 }
1284
450991bc 1285get_rq:
7749a8d4
JA
1286 /*
1287 * This sync check and mask will be re-done in init_request_from_bio(),
1288 * but we need to set it earlier to expose the sync flag to the
1289 * rq allocator and io schedulers.
1290 */
1291 rw_flags = bio_data_dir(bio);
1292 if (sync)
7b6d91da 1293 rw_flags |= REQ_SYNC;
7749a8d4 1294
1da177e4 1295 /*
450991bc 1296 * Grab a free request. This is might sleep but can not fail.
d6344532 1297 * Returns with the queue unlocked.
450991bc 1298 */
7749a8d4 1299 req = get_request_wait(q, rw_flags, bio);
d6344532 1300
450991bc
NP
1301 /*
1302 * After dropping the lock and possibly sleeping here, our request
1303 * may now be mergeable after it had proven unmergeable (above).
1304 * We don't worry about that case for efficiency. It won't happen
1305 * often, and the elevators are able to handle it.
1da177e4 1306 */
52d9e675 1307 init_request_from_bio(req, bio);
1da177e4 1308
450991bc 1309 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1310 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1311 bio_flagged(bio, BIO_CPU_AFFINE))
1312 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1313 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1314 blk_plug_device(q);
dd831006
TH
1315
1316 /* insert the request into the elevator */
1317 drive_stat_acct(req, 1);
28e7d184 1318 __elv_add_request(q, req, where, 0);
1da177e4 1319out:
644b2d99 1320 if (unplug || !queue_should_plug(q))
1da177e4 1321 __generic_unplug_device(q);
1da177e4
LT
1322 spin_unlock_irq(q->queue_lock);
1323 return 0;
1da177e4
LT
1324}
1325
1326/*
1327 * If bio->bi_dev is a partition, remap the location
1328 */
1329static inline void blk_partition_remap(struct bio *bio)
1330{
1331 struct block_device *bdev = bio->bi_bdev;
1332
bf2de6f5 1333 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1334 struct hd_struct *p = bdev->bd_part;
1335
1da177e4
LT
1336 bio->bi_sector += p->start_sect;
1337 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1338
5f3ea37c 1339 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1340 bdev->bd_dev,
c7149d6b 1341 bio->bi_sector - p->start_sect);
1da177e4
LT
1342 }
1343}
1344
1da177e4
LT
1345static void handle_bad_sector(struct bio *bio)
1346{
1347 char b[BDEVNAME_SIZE];
1348
1349 printk(KERN_INFO "attempt to access beyond end of device\n");
1350 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1351 bdevname(bio->bi_bdev, b),
1352 bio->bi_rw,
1353 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1354 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1355
1356 set_bit(BIO_EOF, &bio->bi_flags);
1357}
1358
c17bb495
AM
1359#ifdef CONFIG_FAIL_MAKE_REQUEST
1360
1361static DECLARE_FAULT_ATTR(fail_make_request);
1362
1363static int __init setup_fail_make_request(char *str)
1364{
1365 return setup_fault_attr(&fail_make_request, str);
1366}
1367__setup("fail_make_request=", setup_fail_make_request);
1368
1369static int should_fail_request(struct bio *bio)
1370{
eddb2e26
TH
1371 struct hd_struct *part = bio->bi_bdev->bd_part;
1372
1373 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1374 return should_fail(&fail_make_request, bio->bi_size);
1375
1376 return 0;
1377}
1378
1379static int __init fail_make_request_debugfs(void)
1380{
1381 return init_fault_attr_dentries(&fail_make_request,
1382 "fail_make_request");
1383}
1384
1385late_initcall(fail_make_request_debugfs);
1386
1387#else /* CONFIG_FAIL_MAKE_REQUEST */
1388
1389static inline int should_fail_request(struct bio *bio)
1390{
1391 return 0;
1392}
1393
1394#endif /* CONFIG_FAIL_MAKE_REQUEST */
1395
c07e2b41
JA
1396/*
1397 * Check whether this bio extends beyond the end of the device.
1398 */
1399static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1400{
1401 sector_t maxsector;
1402
1403 if (!nr_sectors)
1404 return 0;
1405
1406 /* Test device or partition size, when known. */
1407 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1408 if (maxsector) {
1409 sector_t sector = bio->bi_sector;
1410
1411 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1412 /*
1413 * This may well happen - the kernel calls bread()
1414 * without checking the size of the device, e.g., when
1415 * mounting a device.
1416 */
1417 handle_bad_sector(bio);
1418 return 1;
1419 }
1420 }
1421
1422 return 0;
1423}
1424
1da177e4 1425/**
710027a4 1426 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1427 * @bio: The bio describing the location in memory and on the device.
1428 *
1429 * generic_make_request() is used to make I/O requests of block
1430 * devices. It is passed a &struct bio, which describes the I/O that needs
1431 * to be done.
1432 *
1433 * generic_make_request() does not return any status. The
1434 * success/failure status of the request, along with notification of
1435 * completion, is delivered asynchronously through the bio->bi_end_io
1436 * function described (one day) else where.
1437 *
1438 * The caller of generic_make_request must make sure that bi_io_vec
1439 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1440 * set to describe the device address, and the
1441 * bi_end_io and optionally bi_private are set to describe how
1442 * completion notification should be signaled.
1443 *
1444 * generic_make_request and the drivers it calls may use bi_next if this
1445 * bio happens to be merged with someone else, and may change bi_dev and
1446 * bi_sector for remaps as it sees fit. So the values of these fields
1447 * should NOT be depended on after the call to generic_make_request.
1448 */
d89d8796 1449static inline void __generic_make_request(struct bio *bio)
1da177e4 1450{
165125e1 1451 struct request_queue *q;
5ddfe969 1452 sector_t old_sector;
1da177e4 1453 int ret, nr_sectors = bio_sectors(bio);
2056a782 1454 dev_t old_dev;
51fd77bd 1455 int err = -EIO;
1da177e4
LT
1456
1457 might_sleep();
1da177e4 1458
c07e2b41
JA
1459 if (bio_check_eod(bio, nr_sectors))
1460 goto end_io;
1da177e4
LT
1461
1462 /*
1463 * Resolve the mapping until finished. (drivers are
1464 * still free to implement/resolve their own stacking
1465 * by explicitly returning 0)
1466 *
1467 * NOTE: we don't repeat the blk_size check for each new device.
1468 * Stacking drivers are expected to know what they are doing.
1469 */
5ddfe969 1470 old_sector = -1;
2056a782 1471 old_dev = 0;
1da177e4
LT
1472 do {
1473 char b[BDEVNAME_SIZE];
1474
1475 q = bdev_get_queue(bio->bi_bdev);
a7384677 1476 if (unlikely(!q)) {
1da177e4
LT
1477 printk(KERN_ERR
1478 "generic_make_request: Trying to access "
1479 "nonexistent block-device %s (%Lu)\n",
1480 bdevname(bio->bi_bdev, b),
1481 (long long) bio->bi_sector);
a7384677 1482 goto end_io;
1da177e4
LT
1483 }
1484
7b6d91da 1485 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1486 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1487 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1488 bdevname(bio->bi_bdev, b),
1489 bio_sectors(bio),
1490 queue_max_hw_sectors(q));
1da177e4
LT
1491 goto end_io;
1492 }
1493
fde6ad22 1494 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1495 goto end_io;
1496
c17bb495
AM
1497 if (should_fail_request(bio))
1498 goto end_io;
1499
1da177e4
LT
1500 /*
1501 * If this device has partitions, remap block n
1502 * of partition p to block n+start(p) of the disk.
1503 */
1504 blk_partition_remap(bio);
1505
7ba1ba12
MP
1506 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1507 goto end_io;
1508
5ddfe969 1509 if (old_sector != -1)
22a7c31a 1510 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1511
5ddfe969 1512 old_sector = bio->bi_sector;
2056a782
JA
1513 old_dev = bio->bi_bdev->bd_dev;
1514
c07e2b41
JA
1515 if (bio_check_eod(bio, nr_sectors))
1516 goto end_io;
a7384677 1517
1e87901e
TH
1518 /*
1519 * Filter flush bio's early so that make_request based
1520 * drivers without flush support don't have to worry
1521 * about them.
1522 */
1523 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1524 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1525 if (!nr_sectors) {
1526 err = 0;
1527 goto end_io;
1528 }
1529 }
1530
8d57a98c
AH
1531 if ((bio->bi_rw & REQ_DISCARD) &&
1532 (!blk_queue_discard(q) ||
1533 ((bio->bi_rw & REQ_SECURE) &&
1534 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1535 err = -EOPNOTSUPP;
1536 goto end_io;
1537 }
5ddfe969 1538
e43473b7
VG
1539 blk_throtl_bio(q, &bio);
1540
1541 /*
1542 * If bio = NULL, bio has been throttled and will be submitted
1543 * later.
1544 */
1545 if (!bio)
1546 break;
1547
01edede4
MK
1548 trace_block_bio_queue(q, bio);
1549
1da177e4
LT
1550 ret = q->make_request_fn(q, bio);
1551 } while (ret);
a7384677
TH
1552
1553 return;
1554
1555end_io:
1556 bio_endio(bio, err);
1da177e4
LT
1557}
1558
d89d8796
NB
1559/*
1560 * We only want one ->make_request_fn to be active at a time,
1561 * else stack usage with stacked devices could be a problem.
bddd87c7 1562 * So use current->bio_list to keep a list of requests
d89d8796 1563 * submited by a make_request_fn function.
bddd87c7 1564 * current->bio_list is also used as a flag to say if
d89d8796
NB
1565 * generic_make_request is currently active in this task or not.
1566 * If it is NULL, then no make_request is active. If it is non-NULL,
1567 * then a make_request is active, and new requests should be added
1568 * at the tail
1569 */
1570void generic_make_request(struct bio *bio)
1571{
bddd87c7
AM
1572 struct bio_list bio_list_on_stack;
1573
1574 if (current->bio_list) {
d89d8796 1575 /* make_request is active */
bddd87c7 1576 bio_list_add(current->bio_list, bio);
d89d8796
NB
1577 return;
1578 }
1579 /* following loop may be a bit non-obvious, and so deserves some
1580 * explanation.
1581 * Before entering the loop, bio->bi_next is NULL (as all callers
1582 * ensure that) so we have a list with a single bio.
1583 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1584 * we assign bio_list to a pointer to the bio_list_on_stack,
1585 * thus initialising the bio_list of new bios to be
d89d8796
NB
1586 * added. __generic_make_request may indeed add some more bios
1587 * through a recursive call to generic_make_request. If it
1588 * did, we find a non-NULL value in bio_list and re-enter the loop
1589 * from the top. In this case we really did just take the bio
bddd87c7
AM
1590 * of the top of the list (no pretending) and so remove it from
1591 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1592 *
1593 * The loop was structured like this to make only one call to
1594 * __generic_make_request (which is important as it is large and
1595 * inlined) and to keep the structure simple.
1596 */
1597 BUG_ON(bio->bi_next);
bddd87c7
AM
1598 bio_list_init(&bio_list_on_stack);
1599 current->bio_list = &bio_list_on_stack;
d89d8796 1600 do {
d89d8796 1601 __generic_make_request(bio);
bddd87c7 1602 bio = bio_list_pop(current->bio_list);
d89d8796 1603 } while (bio);
bddd87c7 1604 current->bio_list = NULL; /* deactivate */
d89d8796 1605}
1da177e4
LT
1606EXPORT_SYMBOL(generic_make_request);
1607
1608/**
710027a4 1609 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1610 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1611 * @bio: The &struct bio which describes the I/O
1612 *
1613 * submit_bio() is very similar in purpose to generic_make_request(), and
1614 * uses that function to do most of the work. Both are fairly rough
710027a4 1615 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1616 *
1617 */
1618void submit_bio(int rw, struct bio *bio)
1619{
1620 int count = bio_sectors(bio);
1621
22e2c507 1622 bio->bi_rw |= rw;
1da177e4 1623
bf2de6f5
JA
1624 /*
1625 * If it's a regular read/write or a barrier with data attached,
1626 * go through the normal accounting stuff before submission.
1627 */
3ffb52e7 1628 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1629 if (rw & WRITE) {
1630 count_vm_events(PGPGOUT, count);
1631 } else {
1632 task_io_account_read(bio->bi_size);
1633 count_vm_events(PGPGIN, count);
1634 }
1635
1636 if (unlikely(block_dump)) {
1637 char b[BDEVNAME_SIZE];
8dcbdc74 1638 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1639 current->comm, task_pid_nr(current),
bf2de6f5
JA
1640 (rw & WRITE) ? "WRITE" : "READ",
1641 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1642 bdevname(bio->bi_bdev, b),
1643 count);
bf2de6f5 1644 }
1da177e4
LT
1645 }
1646
1647 generic_make_request(bio);
1648}
1da177e4
LT
1649EXPORT_SYMBOL(submit_bio);
1650
82124d60
KU
1651/**
1652 * blk_rq_check_limits - Helper function to check a request for the queue limit
1653 * @q: the queue
1654 * @rq: the request being checked
1655 *
1656 * Description:
1657 * @rq may have been made based on weaker limitations of upper-level queues
1658 * in request stacking drivers, and it may violate the limitation of @q.
1659 * Since the block layer and the underlying device driver trust @rq
1660 * after it is inserted to @q, it should be checked against @q before
1661 * the insertion using this generic function.
1662 *
1663 * This function should also be useful for request stacking drivers
eef35c2d 1664 * in some cases below, so export this function.
82124d60
KU
1665 * Request stacking drivers like request-based dm may change the queue
1666 * limits while requests are in the queue (e.g. dm's table swapping).
1667 * Such request stacking drivers should check those requests agaist
1668 * the new queue limits again when they dispatch those requests,
1669 * although such checkings are also done against the old queue limits
1670 * when submitting requests.
1671 */
1672int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1673{
3383977f
S
1674 if (rq->cmd_flags & REQ_DISCARD)
1675 return 0;
1676
ae03bf63
MP
1677 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1678 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1679 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1680 return -EIO;
1681 }
1682
1683 /*
1684 * queue's settings related to segment counting like q->bounce_pfn
1685 * may differ from that of other stacking queues.
1686 * Recalculate it to check the request correctly on this queue's
1687 * limitation.
1688 */
1689 blk_recalc_rq_segments(rq);
8a78362c 1690 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1691 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1692 return -EIO;
1693 }
1694
1695 return 0;
1696}
1697EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1698
1699/**
1700 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1701 * @q: the queue to submit the request
1702 * @rq: the request being queued
1703 */
1704int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1705{
1706 unsigned long flags;
1707
1708 if (blk_rq_check_limits(q, rq))
1709 return -EIO;
1710
1711#ifdef CONFIG_FAIL_MAKE_REQUEST
1712 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1713 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1714 return -EIO;
1715#endif
1716
1717 spin_lock_irqsave(q->queue_lock, flags);
1718
1719 /*
1720 * Submitting request must be dequeued before calling this function
1721 * because it will be linked to another request_queue
1722 */
1723 BUG_ON(blk_queued_rq(rq));
1724
1725 drive_stat_acct(rq, 1);
1726 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1727
1728 spin_unlock_irqrestore(q->queue_lock, flags);
1729
1730 return 0;
1731}
1732EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1733
80a761fd
TH
1734/**
1735 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1736 * @rq: request to examine
1737 *
1738 * Description:
1739 * A request could be merge of IOs which require different failure
1740 * handling. This function determines the number of bytes which
1741 * can be failed from the beginning of the request without
1742 * crossing into area which need to be retried further.
1743 *
1744 * Return:
1745 * The number of bytes to fail.
1746 *
1747 * Context:
1748 * queue_lock must be held.
1749 */
1750unsigned int blk_rq_err_bytes(const struct request *rq)
1751{
1752 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1753 unsigned int bytes = 0;
1754 struct bio *bio;
1755
1756 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1757 return blk_rq_bytes(rq);
1758
1759 /*
1760 * Currently the only 'mixing' which can happen is between
1761 * different fastfail types. We can safely fail portions
1762 * which have all the failfast bits that the first one has -
1763 * the ones which are at least as eager to fail as the first
1764 * one.
1765 */
1766 for (bio = rq->bio; bio; bio = bio->bi_next) {
1767 if ((bio->bi_rw & ff) != ff)
1768 break;
1769 bytes += bio->bi_size;
1770 }
1771
1772 /* this could lead to infinite loop */
1773 BUG_ON(blk_rq_bytes(rq) && !bytes);
1774 return bytes;
1775}
1776EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1777
bc58ba94
JA
1778static void blk_account_io_completion(struct request *req, unsigned int bytes)
1779{
c2553b58 1780 if (blk_do_io_stat(req)) {
bc58ba94
JA
1781 const int rw = rq_data_dir(req);
1782 struct hd_struct *part;
1783 int cpu;
1784
1785 cpu = part_stat_lock();
f253b86b 1786 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1787 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1788 part_stat_unlock();
1789 }
1790}
1791
1792static void blk_account_io_done(struct request *req)
1793{
bc58ba94 1794 /*
dd4c133f
TH
1795 * Account IO completion. flush_rq isn't accounted as a
1796 * normal IO on queueing nor completion. Accounting the
1797 * containing request is enough.
bc58ba94 1798 */
dd4c133f 1799 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
bc58ba94
JA
1800 unsigned long duration = jiffies - req->start_time;
1801 const int rw = rq_data_dir(req);
1802 struct hd_struct *part;
1803 int cpu;
1804
1805 cpu = part_stat_lock();
f253b86b 1806 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1807
1808 part_stat_inc(cpu, part, ios[rw]);
1809 part_stat_add(cpu, part, ticks[rw], duration);
1810 part_round_stats(cpu, part);
316d315b 1811 part_dec_in_flight(part, rw);
bc58ba94
JA
1812
1813 part_stat_unlock();
1814 }
1815}
1816
3bcddeac 1817/**
9934c8c0
TH
1818 * blk_peek_request - peek at the top of a request queue
1819 * @q: request queue to peek at
1820 *
1821 * Description:
1822 * Return the request at the top of @q. The returned request
1823 * should be started using blk_start_request() before LLD starts
1824 * processing it.
1825 *
1826 * Return:
1827 * Pointer to the request at the top of @q if available. Null
1828 * otherwise.
1829 *
1830 * Context:
1831 * queue_lock must be held.
1832 */
1833struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1834{
1835 struct request *rq;
1836 int ret;
1837
1838 while ((rq = __elv_next_request(q)) != NULL) {
1839 if (!(rq->cmd_flags & REQ_STARTED)) {
1840 /*
1841 * This is the first time the device driver
1842 * sees this request (possibly after
1843 * requeueing). Notify IO scheduler.
1844 */
33659ebb 1845 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1846 elv_activate_rq(q, rq);
1847
1848 /*
1849 * just mark as started even if we don't start
1850 * it, a request that has been delayed should
1851 * not be passed by new incoming requests
1852 */
1853 rq->cmd_flags |= REQ_STARTED;
1854 trace_block_rq_issue(q, rq);
1855 }
1856
1857 if (!q->boundary_rq || q->boundary_rq == rq) {
1858 q->end_sector = rq_end_sector(rq);
1859 q->boundary_rq = NULL;
1860 }
1861
1862 if (rq->cmd_flags & REQ_DONTPREP)
1863 break;
1864
2e46e8b2 1865 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1866 /*
1867 * make sure space for the drain appears we
1868 * know we can do this because max_hw_segments
1869 * has been adjusted to be one fewer than the
1870 * device can handle
1871 */
1872 rq->nr_phys_segments++;
1873 }
1874
1875 if (!q->prep_rq_fn)
1876 break;
1877
1878 ret = q->prep_rq_fn(q, rq);
1879 if (ret == BLKPREP_OK) {
1880 break;
1881 } else if (ret == BLKPREP_DEFER) {
1882 /*
1883 * the request may have been (partially) prepped.
1884 * we need to keep this request in the front to
1885 * avoid resource deadlock. REQ_STARTED will
1886 * prevent other fs requests from passing this one.
1887 */
2e46e8b2 1888 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1889 !(rq->cmd_flags & REQ_DONTPREP)) {
1890 /*
1891 * remove the space for the drain we added
1892 * so that we don't add it again
1893 */
1894 --rq->nr_phys_segments;
1895 }
1896
1897 rq = NULL;
1898 break;
1899 } else if (ret == BLKPREP_KILL) {
1900 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1901 /*
1902 * Mark this request as started so we don't trigger
1903 * any debug logic in the end I/O path.
1904 */
1905 blk_start_request(rq);
40cbbb78 1906 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1907 } else {
1908 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1909 break;
1910 }
1911 }
1912
1913 return rq;
1914}
9934c8c0 1915EXPORT_SYMBOL(blk_peek_request);
158dbda0 1916
9934c8c0 1917void blk_dequeue_request(struct request *rq)
158dbda0 1918{
9934c8c0
TH
1919 struct request_queue *q = rq->q;
1920
158dbda0
TH
1921 BUG_ON(list_empty(&rq->queuelist));
1922 BUG_ON(ELV_ON_HASH(rq));
1923
1924 list_del_init(&rq->queuelist);
1925
1926 /*
1927 * the time frame between a request being removed from the lists
1928 * and to it is freed is accounted as io that is in progress at
1929 * the driver side.
1930 */
9195291e 1931 if (blk_account_rq(rq)) {
0a7ae2ff 1932 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1933 set_io_start_time_ns(rq);
1934 }
158dbda0
TH
1935}
1936
9934c8c0
TH
1937/**
1938 * blk_start_request - start request processing on the driver
1939 * @req: request to dequeue
1940 *
1941 * Description:
1942 * Dequeue @req and start timeout timer on it. This hands off the
1943 * request to the driver.
1944 *
1945 * Block internal functions which don't want to start timer should
1946 * call blk_dequeue_request().
1947 *
1948 * Context:
1949 * queue_lock must be held.
1950 */
1951void blk_start_request(struct request *req)
1952{
1953 blk_dequeue_request(req);
1954
1955 /*
5f49f631
TH
1956 * We are now handing the request to the hardware, initialize
1957 * resid_len to full count and add the timeout handler.
9934c8c0 1958 */
5f49f631 1959 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1960 if (unlikely(blk_bidi_rq(req)))
1961 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1962
9934c8c0
TH
1963 blk_add_timer(req);
1964}
1965EXPORT_SYMBOL(blk_start_request);
1966
1967/**
1968 * blk_fetch_request - fetch a request from a request queue
1969 * @q: request queue to fetch a request from
1970 *
1971 * Description:
1972 * Return the request at the top of @q. The request is started on
1973 * return and LLD can start processing it immediately.
1974 *
1975 * Return:
1976 * Pointer to the request at the top of @q if available. Null
1977 * otherwise.
1978 *
1979 * Context:
1980 * queue_lock must be held.
1981 */
1982struct request *blk_fetch_request(struct request_queue *q)
1983{
1984 struct request *rq;
1985
1986 rq = blk_peek_request(q);
1987 if (rq)
1988 blk_start_request(rq);
1989 return rq;
1990}
1991EXPORT_SYMBOL(blk_fetch_request);
1992
3bcddeac 1993/**
2e60e022 1994 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1995 * @req: the request being processed
710027a4 1996 * @error: %0 for success, < %0 for error
8ebf9756 1997 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1998 *
1999 * Description:
8ebf9756
RD
2000 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2001 * the request structure even if @req doesn't have leftover.
2002 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2003 *
2004 * This special helper function is only for request stacking drivers
2005 * (e.g. request-based dm) so that they can handle partial completion.
2006 * Actual device drivers should use blk_end_request instead.
2007 *
2008 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2009 * %false return from this function.
3bcddeac
KU
2010 *
2011 * Return:
2e60e022
TH
2012 * %false - this request doesn't have any more data
2013 * %true - this request has more data
3bcddeac 2014 **/
2e60e022 2015bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2016{
5450d3e1 2017 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2018 struct bio *bio;
2019
2e60e022
TH
2020 if (!req->bio)
2021 return false;
2022
5f3ea37c 2023 trace_block_rq_complete(req->q, req);
2056a782 2024
1da177e4 2025 /*
6f41469c
TH
2026 * For fs requests, rq is just carrier of independent bio's
2027 * and each partial completion should be handled separately.
2028 * Reset per-request error on each partial completion.
2029 *
2030 * TODO: tj: This is too subtle. It would be better to let
2031 * low level drivers do what they see fit.
1da177e4 2032 */
33659ebb 2033 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2034 req->errors = 0;
2035
33659ebb
CH
2036 if (error && req->cmd_type == REQ_TYPE_FS &&
2037 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2038 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2039 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2040 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2041 }
2042
bc58ba94 2043 blk_account_io_completion(req, nr_bytes);
d72d904a 2044
1da177e4
LT
2045 total_bytes = bio_nbytes = 0;
2046 while ((bio = req->bio) != NULL) {
2047 int nbytes;
2048
2049 if (nr_bytes >= bio->bi_size) {
2050 req->bio = bio->bi_next;
2051 nbytes = bio->bi_size;
5bb23a68 2052 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2053 next_idx = 0;
2054 bio_nbytes = 0;
2055 } else {
2056 int idx = bio->bi_idx + next_idx;
2057
af498d7f 2058 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2059 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2060 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2061 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2062 break;
2063 }
2064
2065 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2066 BIO_BUG_ON(nbytes > bio->bi_size);
2067
2068 /*
2069 * not a complete bvec done
2070 */
2071 if (unlikely(nbytes > nr_bytes)) {
2072 bio_nbytes += nr_bytes;
2073 total_bytes += nr_bytes;
2074 break;
2075 }
2076
2077 /*
2078 * advance to the next vector
2079 */
2080 next_idx++;
2081 bio_nbytes += nbytes;
2082 }
2083
2084 total_bytes += nbytes;
2085 nr_bytes -= nbytes;
2086
6728cb0e
JA
2087 bio = req->bio;
2088 if (bio) {
1da177e4
LT
2089 /*
2090 * end more in this run, or just return 'not-done'
2091 */
2092 if (unlikely(nr_bytes <= 0))
2093 break;
2094 }
2095 }
2096
2097 /*
2098 * completely done
2099 */
2e60e022
TH
2100 if (!req->bio) {
2101 /*
2102 * Reset counters so that the request stacking driver
2103 * can find how many bytes remain in the request
2104 * later.
2105 */
a2dec7b3 2106 req->__data_len = 0;
2e60e022
TH
2107 return false;
2108 }
1da177e4
LT
2109
2110 /*
2111 * if the request wasn't completed, update state
2112 */
2113 if (bio_nbytes) {
5bb23a68 2114 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2115 bio->bi_idx += next_idx;
2116 bio_iovec(bio)->bv_offset += nr_bytes;
2117 bio_iovec(bio)->bv_len -= nr_bytes;
2118 }
2119
a2dec7b3 2120 req->__data_len -= total_bytes;
2e46e8b2
TH
2121 req->buffer = bio_data(req->bio);
2122
2123 /* update sector only for requests with clear definition of sector */
33659ebb 2124 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2125 req->__sector += total_bytes >> 9;
2e46e8b2 2126
80a761fd
TH
2127 /* mixed attributes always follow the first bio */
2128 if (req->cmd_flags & REQ_MIXED_MERGE) {
2129 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2130 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2131 }
2132
2e46e8b2
TH
2133 /*
2134 * If total number of sectors is less than the first segment
2135 * size, something has gone terribly wrong.
2136 */
2137 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2138 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2139 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2140 }
2141
2142 /* recalculate the number of segments */
1da177e4 2143 blk_recalc_rq_segments(req);
2e46e8b2 2144
2e60e022 2145 return true;
1da177e4 2146}
2e60e022 2147EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2148
2e60e022
TH
2149static bool blk_update_bidi_request(struct request *rq, int error,
2150 unsigned int nr_bytes,
2151 unsigned int bidi_bytes)
5efccd17 2152{
2e60e022
TH
2153 if (blk_update_request(rq, error, nr_bytes))
2154 return true;
5efccd17 2155
2e60e022
TH
2156 /* Bidi request must be completed as a whole */
2157 if (unlikely(blk_bidi_rq(rq)) &&
2158 blk_update_request(rq->next_rq, error, bidi_bytes))
2159 return true;
5efccd17 2160
e2e1a148
JA
2161 if (blk_queue_add_random(rq->q))
2162 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2163
2164 return false;
1da177e4
LT
2165}
2166
28018c24
JB
2167/**
2168 * blk_unprep_request - unprepare a request
2169 * @req: the request
2170 *
2171 * This function makes a request ready for complete resubmission (or
2172 * completion). It happens only after all error handling is complete,
2173 * so represents the appropriate moment to deallocate any resources
2174 * that were allocated to the request in the prep_rq_fn. The queue
2175 * lock is held when calling this.
2176 */
2177void blk_unprep_request(struct request *req)
2178{
2179 struct request_queue *q = req->q;
2180
2181 req->cmd_flags &= ~REQ_DONTPREP;
2182 if (q->unprep_rq_fn)
2183 q->unprep_rq_fn(q, req);
2184}
2185EXPORT_SYMBOL_GPL(blk_unprep_request);
2186
1da177e4
LT
2187/*
2188 * queue lock must be held
2189 */
2e60e022 2190static void blk_finish_request(struct request *req, int error)
1da177e4 2191{
b8286239
KU
2192 if (blk_rq_tagged(req))
2193 blk_queue_end_tag(req->q, req);
2194
ba396a6c 2195 BUG_ON(blk_queued_rq(req));
1da177e4 2196
33659ebb 2197 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2198 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2199
e78042e5
MA
2200 blk_delete_timer(req);
2201
28018c24
JB
2202 if (req->cmd_flags & REQ_DONTPREP)
2203 blk_unprep_request(req);
2204
2205
bc58ba94 2206 blk_account_io_done(req);
b8286239 2207
1da177e4 2208 if (req->end_io)
8ffdc655 2209 req->end_io(req, error);
b8286239
KU
2210 else {
2211 if (blk_bidi_rq(req))
2212 __blk_put_request(req->next_rq->q, req->next_rq);
2213
1da177e4 2214 __blk_put_request(req->q, req);
b8286239 2215 }
1da177e4
LT
2216}
2217
3b11313a 2218/**
2e60e022
TH
2219 * blk_end_bidi_request - Complete a bidi request
2220 * @rq: the request to complete
2221 * @error: %0 for success, < %0 for error
2222 * @nr_bytes: number of bytes to complete @rq
2223 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2224 *
2225 * Description:
e3a04fe3 2226 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2227 * Drivers that supports bidi can safely call this member for any
2228 * type of request, bidi or uni. In the later case @bidi_bytes is
2229 * just ignored.
336cdb40
KU
2230 *
2231 * Return:
2e60e022
TH
2232 * %false - we are done with this request
2233 * %true - still buffers pending for this request
a0cd1285 2234 **/
b1f74493 2235static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2236 unsigned int nr_bytes, unsigned int bidi_bytes)
2237{
336cdb40 2238 struct request_queue *q = rq->q;
2e60e022 2239 unsigned long flags;
32fab448 2240
2e60e022
TH
2241 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2242 return true;
32fab448 2243
336cdb40 2244 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2245 blk_finish_request(rq, error);
336cdb40
KU
2246 spin_unlock_irqrestore(q->queue_lock, flags);
2247
2e60e022 2248 return false;
32fab448
KU
2249}
2250
336cdb40 2251/**
2e60e022
TH
2252 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2253 * @rq: the request to complete
710027a4 2254 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2255 * @nr_bytes: number of bytes to complete @rq
2256 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2257 *
2258 * Description:
2e60e022
TH
2259 * Identical to blk_end_bidi_request() except that queue lock is
2260 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2261 *
2262 * Return:
2e60e022
TH
2263 * %false - we are done with this request
2264 * %true - still buffers pending for this request
336cdb40 2265 **/
b1f74493
FT
2266static bool __blk_end_bidi_request(struct request *rq, int error,
2267 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2268{
2e60e022
TH
2269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2270 return true;
336cdb40 2271
2e60e022 2272 blk_finish_request(rq, error);
336cdb40 2273
2e60e022 2274 return false;
336cdb40 2275}
e19a3ab0
KU
2276
2277/**
2278 * blk_end_request - Helper function for drivers to complete the request.
2279 * @rq: the request being processed
710027a4 2280 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2281 * @nr_bytes: number of bytes to complete
2282 *
2283 * Description:
2284 * Ends I/O on a number of bytes attached to @rq.
2285 * If @rq has leftover, sets it up for the next range of segments.
2286 *
2287 * Return:
b1f74493
FT
2288 * %false - we are done with this request
2289 * %true - still buffers pending for this request
e19a3ab0 2290 **/
b1f74493 2291bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2292{
b1f74493 2293 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2294}
56ad1740 2295EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2296
2297/**
b1f74493
FT
2298 * blk_end_request_all - Helper function for drives to finish the request.
2299 * @rq: the request to finish
8ebf9756 2300 * @error: %0 for success, < %0 for error
336cdb40
KU
2301 *
2302 * Description:
b1f74493
FT
2303 * Completely finish @rq.
2304 */
2305void blk_end_request_all(struct request *rq, int error)
336cdb40 2306{
b1f74493
FT
2307 bool pending;
2308 unsigned int bidi_bytes = 0;
336cdb40 2309
b1f74493
FT
2310 if (unlikely(blk_bidi_rq(rq)))
2311 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2312
b1f74493
FT
2313 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2314 BUG_ON(pending);
2315}
56ad1740 2316EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2317
b1f74493
FT
2318/**
2319 * blk_end_request_cur - Helper function to finish the current request chunk.
2320 * @rq: the request to finish the current chunk for
8ebf9756 2321 * @error: %0 for success, < %0 for error
b1f74493
FT
2322 *
2323 * Description:
2324 * Complete the current consecutively mapped chunk from @rq.
2325 *
2326 * Return:
2327 * %false - we are done with this request
2328 * %true - still buffers pending for this request
2329 */
2330bool blk_end_request_cur(struct request *rq, int error)
2331{
2332 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2333}
56ad1740 2334EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2335
80a761fd
TH
2336/**
2337 * blk_end_request_err - Finish a request till the next failure boundary.
2338 * @rq: the request to finish till the next failure boundary for
2339 * @error: must be negative errno
2340 *
2341 * Description:
2342 * Complete @rq till the next failure boundary.
2343 *
2344 * Return:
2345 * %false - we are done with this request
2346 * %true - still buffers pending for this request
2347 */
2348bool blk_end_request_err(struct request *rq, int error)
2349{
2350 WARN_ON(error >= 0);
2351 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2352}
2353EXPORT_SYMBOL_GPL(blk_end_request_err);
2354
e3a04fe3 2355/**
b1f74493
FT
2356 * __blk_end_request - Helper function for drivers to complete the request.
2357 * @rq: the request being processed
2358 * @error: %0 for success, < %0 for error
2359 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2360 *
2361 * Description:
b1f74493 2362 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2363 *
2364 * Return:
b1f74493
FT
2365 * %false - we are done with this request
2366 * %true - still buffers pending for this request
e3a04fe3 2367 **/
b1f74493 2368bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2369{
b1f74493 2370 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2371}
56ad1740 2372EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2373
32fab448 2374/**
b1f74493
FT
2375 * __blk_end_request_all - Helper function for drives to finish the request.
2376 * @rq: the request to finish
8ebf9756 2377 * @error: %0 for success, < %0 for error
32fab448
KU
2378 *
2379 * Description:
b1f74493 2380 * Completely finish @rq. Must be called with queue lock held.
32fab448 2381 */
b1f74493 2382void __blk_end_request_all(struct request *rq, int error)
32fab448 2383{
b1f74493
FT
2384 bool pending;
2385 unsigned int bidi_bytes = 0;
2386
2387 if (unlikely(blk_bidi_rq(rq)))
2388 bidi_bytes = blk_rq_bytes(rq->next_rq);
2389
2390 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2391 BUG_ON(pending);
32fab448 2392}
56ad1740 2393EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2394
e19a3ab0 2395/**
b1f74493
FT
2396 * __blk_end_request_cur - Helper function to finish the current request chunk.
2397 * @rq: the request to finish the current chunk for
8ebf9756 2398 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2399 *
2400 * Description:
b1f74493
FT
2401 * Complete the current consecutively mapped chunk from @rq. Must
2402 * be called with queue lock held.
e19a3ab0
KU
2403 *
2404 * Return:
b1f74493
FT
2405 * %false - we are done with this request
2406 * %true - still buffers pending for this request
2407 */
2408bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2409{
b1f74493 2410 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2411}
56ad1740 2412EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2413
80a761fd
TH
2414/**
2415 * __blk_end_request_err - Finish a request till the next failure boundary.
2416 * @rq: the request to finish till the next failure boundary for
2417 * @error: must be negative errno
2418 *
2419 * Description:
2420 * Complete @rq till the next failure boundary. Must be called
2421 * with queue lock held.
2422 *
2423 * Return:
2424 * %false - we are done with this request
2425 * %true - still buffers pending for this request
2426 */
2427bool __blk_end_request_err(struct request *rq, int error)
2428{
2429 WARN_ON(error >= 0);
2430 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2431}
2432EXPORT_SYMBOL_GPL(__blk_end_request_err);
2433
86db1e29
JA
2434void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2435 struct bio *bio)
1da177e4 2436{
a82afdfc 2437 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2438 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2439
fb2dce86
DW
2440 if (bio_has_data(bio)) {
2441 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2442 rq->buffer = bio_data(bio);
2443 }
a2dec7b3 2444 rq->__data_len = bio->bi_size;
1da177e4 2445 rq->bio = rq->biotail = bio;
1da177e4 2446
66846572
N
2447 if (bio->bi_bdev)
2448 rq->rq_disk = bio->bi_bdev->bd_disk;
2449}
1da177e4 2450
2d4dc890
IL
2451#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2452/**
2453 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2454 * @rq: the request to be flushed
2455 *
2456 * Description:
2457 * Flush all pages in @rq.
2458 */
2459void rq_flush_dcache_pages(struct request *rq)
2460{
2461 struct req_iterator iter;
2462 struct bio_vec *bvec;
2463
2464 rq_for_each_segment(bvec, rq, iter)
2465 flush_dcache_page(bvec->bv_page);
2466}
2467EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2468#endif
2469
ef9e3fac
KU
2470/**
2471 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2472 * @q : the queue of the device being checked
2473 *
2474 * Description:
2475 * Check if underlying low-level drivers of a device are busy.
2476 * If the drivers want to export their busy state, they must set own
2477 * exporting function using blk_queue_lld_busy() first.
2478 *
2479 * Basically, this function is used only by request stacking drivers
2480 * to stop dispatching requests to underlying devices when underlying
2481 * devices are busy. This behavior helps more I/O merging on the queue
2482 * of the request stacking driver and prevents I/O throughput regression
2483 * on burst I/O load.
2484 *
2485 * Return:
2486 * 0 - Not busy (The request stacking driver should dispatch request)
2487 * 1 - Busy (The request stacking driver should stop dispatching request)
2488 */
2489int blk_lld_busy(struct request_queue *q)
2490{
2491 if (q->lld_busy_fn)
2492 return q->lld_busy_fn(q);
2493
2494 return 0;
2495}
2496EXPORT_SYMBOL_GPL(blk_lld_busy);
2497
b0fd271d
KU
2498/**
2499 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2500 * @rq: the clone request to be cleaned up
2501 *
2502 * Description:
2503 * Free all bios in @rq for a cloned request.
2504 */
2505void blk_rq_unprep_clone(struct request *rq)
2506{
2507 struct bio *bio;
2508
2509 while ((bio = rq->bio) != NULL) {
2510 rq->bio = bio->bi_next;
2511
2512 bio_put(bio);
2513 }
2514}
2515EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2516
2517/*
2518 * Copy attributes of the original request to the clone request.
2519 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2520 */
2521static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2522{
2523 dst->cpu = src->cpu;
3a2edd0d 2524 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2525 dst->cmd_type = src->cmd_type;
2526 dst->__sector = blk_rq_pos(src);
2527 dst->__data_len = blk_rq_bytes(src);
2528 dst->nr_phys_segments = src->nr_phys_segments;
2529 dst->ioprio = src->ioprio;
2530 dst->extra_len = src->extra_len;
2531}
2532
2533/**
2534 * blk_rq_prep_clone - Helper function to setup clone request
2535 * @rq: the request to be setup
2536 * @rq_src: original request to be cloned
2537 * @bs: bio_set that bios for clone are allocated from
2538 * @gfp_mask: memory allocation mask for bio
2539 * @bio_ctr: setup function to be called for each clone bio.
2540 * Returns %0 for success, non %0 for failure.
2541 * @data: private data to be passed to @bio_ctr
2542 *
2543 * Description:
2544 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2545 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2546 * are not copied, and copying such parts is the caller's responsibility.
2547 * Also, pages which the original bios are pointing to are not copied
2548 * and the cloned bios just point same pages.
2549 * So cloned bios must be completed before original bios, which means
2550 * the caller must complete @rq before @rq_src.
2551 */
2552int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2553 struct bio_set *bs, gfp_t gfp_mask,
2554 int (*bio_ctr)(struct bio *, struct bio *, void *),
2555 void *data)
2556{
2557 struct bio *bio, *bio_src;
2558
2559 if (!bs)
2560 bs = fs_bio_set;
2561
2562 blk_rq_init(NULL, rq);
2563
2564 __rq_for_each_bio(bio_src, rq_src) {
2565 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2566 if (!bio)
2567 goto free_and_out;
2568
2569 __bio_clone(bio, bio_src);
2570
2571 if (bio_integrity(bio_src) &&
7878cba9 2572 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2573 goto free_and_out;
2574
2575 if (bio_ctr && bio_ctr(bio, bio_src, data))
2576 goto free_and_out;
2577
2578 if (rq->bio) {
2579 rq->biotail->bi_next = bio;
2580 rq->biotail = bio;
2581 } else
2582 rq->bio = rq->biotail = bio;
2583 }
2584
2585 __blk_rq_prep_clone(rq, rq_src);
2586
2587 return 0;
2588
2589free_and_out:
2590 if (bio)
2591 bio_free(bio, bs);
2592 blk_rq_unprep_clone(rq);
2593
2594 return -ENOMEM;
2595}
2596EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2597
18887ad9 2598int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2599{
2600 return queue_work(kblockd_workqueue, work);
2601}
1da177e4
LT
2602EXPORT_SYMBOL(kblockd_schedule_work);
2603
e43473b7
VG
2604int kblockd_schedule_delayed_work(struct request_queue *q,
2605 struct delayed_work *dwork, unsigned long delay)
2606{
2607 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2608}
2609EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2610
1da177e4
LT
2611int __init blk_dev_init(void)
2612{
9eb55b03
NK
2613 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2614 sizeof(((struct request *)0)->cmd_flags));
2615
1da177e4
LT
2616 kblockd_workqueue = create_workqueue("kblockd");
2617 if (!kblockd_workqueue)
2618 panic("Failed to create kblockd\n");
2619
2620 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2621 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2622
8324aa91 2623 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2624 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2625
d38ecf93 2626 return 0;
1da177e4 2627}