]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
isdn: mISDN: socket: fix information leak to userland
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
7681bfee
YI
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
7681bfee
YI
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
074a7aca 73 part_round_stats(cpu, part);
316d315b 74 part_inc_in_flight(part, rw);
7681bfee 75 rq->part = part;
26b8256e 76 }
e71bf0d0 77
074a7aca 78 part_stat_unlock();
26b8256e
JA
79}
80
8324aa91 81void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
82{
83 int nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) + 1;
86 if (nr > q->nr_requests)
87 nr = q->nr_requests;
88 q->nr_congestion_on = nr;
89
90 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 if (nr < 1)
92 nr = 1;
93 q->nr_congestion_off = nr;
94}
95
1da177e4
LT
96/**
97 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * @bdev: device
99 *
100 * Locates the passed device's request queue and returns the address of its
101 * backing_dev_info
102 *
103 * Will return NULL if the request queue cannot be located.
104 */
105struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
106{
107 struct backing_dev_info *ret = NULL;
165125e1 108 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
109
110 if (q)
111 ret = &q->backing_dev_info;
112 return ret;
113}
1da177e4
LT
114EXPORT_SYMBOL(blk_get_backing_dev_info);
115
2a4aa30c 116void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 117{
1afb20f3
FT
118 memset(rq, 0, sizeof(*rq));
119
1da177e4 120 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 121 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 122 rq->cpu = -1;
63a71386 123 rq->q = q;
a2dec7b3 124 rq->__sector = (sector_t) -1;
2e662b65
JA
125 INIT_HLIST_NODE(&rq->hash);
126 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 127 rq->cmd = rq->__cmd;
e2494e1b 128 rq->cmd_len = BLK_MAX_CDB;
63a71386 129 rq->tag = -1;
1da177e4 130 rq->ref_count = 1;
b243ddcb 131 rq->start_time = jiffies;
9195291e 132 set_start_time_ns(rq);
7681bfee 133 rq->part = NULL;
1da177e4 134}
2a4aa30c 135EXPORT_SYMBOL(blk_rq_init);
1da177e4 136
5bb23a68
N
137static void req_bio_endio(struct request *rq, struct bio *bio,
138 unsigned int nbytes, int error)
1da177e4 139{
165125e1 140 struct request_queue *q = rq->q;
797e7dbb 141
dd4c133f 142 if (&q->flush_rq != rq) {
5bb23a68
N
143 if (error)
144 clear_bit(BIO_UPTODATE, &bio->bi_flags);
145 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
146 error = -EIO;
797e7dbb 147
5bb23a68 148 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 149 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 150 __func__, nbytes, bio->bi_size);
5bb23a68
N
151 nbytes = bio->bi_size;
152 }
797e7dbb 153
08bafc03
KM
154 if (unlikely(rq->cmd_flags & REQ_QUIET))
155 set_bit(BIO_QUIET, &bio->bi_flags);
156
5bb23a68
N
157 bio->bi_size -= nbytes;
158 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
159
160 if (bio_integrity(bio))
161 bio_integrity_advance(bio, nbytes);
162
5bb23a68 163 if (bio->bi_size == 0)
6712ecf8 164 bio_endio(bio, error);
5bb23a68 165 } else {
5bb23a68 166 /*
dd4c133f
TH
167 * Okay, this is the sequenced flush request in
168 * progress, just record the error;
5bb23a68 169 */
dd4c133f
TH
170 if (error && !q->flush_err)
171 q->flush_err = error;
5bb23a68 172 }
1da177e4 173}
1da177e4 174
1da177e4
LT
175void blk_dump_rq_flags(struct request *rq, char *msg)
176{
177 int bit;
178
6728cb0e 179 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
180 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
181 rq->cmd_flags);
1da177e4 182
83096ebf
TH
183 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
184 (unsigned long long)blk_rq_pos(rq),
185 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 186 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 187 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 188
33659ebb 189 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 190 printk(KERN_INFO " cdb: ");
d34c87e4 191 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
192 printk("%02x ", rq->cmd[bit]);
193 printk("\n");
194 }
195}
1da177e4
LT
196EXPORT_SYMBOL(blk_dump_rq_flags);
197
1da177e4
LT
198/*
199 * "plug" the device if there are no outstanding requests: this will
200 * force the transfer to start only after we have put all the requests
201 * on the list.
202 *
203 * This is called with interrupts off and no requests on the queue and
204 * with the queue lock held.
205 */
165125e1 206void blk_plug_device(struct request_queue *q)
1da177e4
LT
207{
208 WARN_ON(!irqs_disabled());
209
210 /*
211 * don't plug a stopped queue, it must be paired with blk_start_queue()
212 * which will restart the queueing
213 */
7daac490 214 if (blk_queue_stopped(q))
1da177e4
LT
215 return;
216
e48ec690 217 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 218 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 219 trace_block_plug(q);
2056a782 220 }
1da177e4 221}
1da177e4
LT
222EXPORT_SYMBOL(blk_plug_device);
223
6c5e0c4d
JA
224/**
225 * blk_plug_device_unlocked - plug a device without queue lock held
226 * @q: The &struct request_queue to plug
227 *
228 * Description:
229 * Like @blk_plug_device(), but grabs the queue lock and disables
230 * interrupts.
231 **/
232void blk_plug_device_unlocked(struct request_queue *q)
233{
234 unsigned long flags;
235
236 spin_lock_irqsave(q->queue_lock, flags);
237 blk_plug_device(q);
238 spin_unlock_irqrestore(q->queue_lock, flags);
239}
240EXPORT_SYMBOL(blk_plug_device_unlocked);
241
1da177e4
LT
242/*
243 * remove the queue from the plugged list, if present. called with
244 * queue lock held and interrupts disabled.
245 */
165125e1 246int blk_remove_plug(struct request_queue *q)
1da177e4
LT
247{
248 WARN_ON(!irqs_disabled());
249
e48ec690 250 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
251 return 0;
252
253 del_timer(&q->unplug_timer);
254 return 1;
255}
1da177e4
LT
256EXPORT_SYMBOL(blk_remove_plug);
257
258/*
259 * remove the plug and let it rip..
260 */
165125e1 261void __generic_unplug_device(struct request_queue *q)
1da177e4 262{
7daac490 263 if (unlikely(blk_queue_stopped(q)))
1da177e4 264 return;
a31a9738 265 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
266 return;
267
22e2c507 268 q->request_fn(q);
1da177e4 269}
1da177e4
LT
270
271/**
272 * generic_unplug_device - fire a request queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * Linux uses plugging to build bigger requests queues before letting
277 * the device have at them. If a queue is plugged, the I/O scheduler
278 * is still adding and merging requests on the queue. Once the queue
279 * gets unplugged, the request_fn defined for the queue is invoked and
280 * transfers started.
281 **/
165125e1 282void generic_unplug_device(struct request_queue *q)
1da177e4 283{
dbaf2c00
JA
284 if (blk_queue_plugged(q)) {
285 spin_lock_irq(q->queue_lock);
286 __generic_unplug_device(q);
287 spin_unlock_irq(q->queue_lock);
288 }
1da177e4
LT
289}
290EXPORT_SYMBOL(generic_unplug_device);
291
292static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
293 struct page *page)
294{
165125e1 295 struct request_queue *q = bdi->unplug_io_data;
1da177e4 296
2ad8b1ef 297 blk_unplug(q);
1da177e4
LT
298}
299
86db1e29 300void blk_unplug_work(struct work_struct *work)
1da177e4 301{
165125e1
JA
302 struct request_queue *q =
303 container_of(work, struct request_queue, unplug_work);
1da177e4 304
5f3ea37c 305 trace_block_unplug_io(q);
1da177e4
LT
306 q->unplug_fn(q);
307}
308
86db1e29 309void blk_unplug_timeout(unsigned long data)
1da177e4 310{
165125e1 311 struct request_queue *q = (struct request_queue *)data;
1da177e4 312
5f3ea37c 313 trace_block_unplug_timer(q);
18887ad9 314 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
315}
316
2ad8b1ef
AB
317void blk_unplug(struct request_queue *q)
318{
319 /*
320 * devices don't necessarily have an ->unplug_fn defined
321 */
322 if (q->unplug_fn) {
5f3ea37c 323 trace_block_unplug_io(q);
2ad8b1ef
AB
324 q->unplug_fn(q);
325 }
326}
327EXPORT_SYMBOL(blk_unplug);
328
1da177e4
LT
329/**
330 * blk_start_queue - restart a previously stopped queue
165125e1 331 * @q: The &struct request_queue in question
1da177e4
LT
332 *
333 * Description:
334 * blk_start_queue() will clear the stop flag on the queue, and call
335 * the request_fn for the queue if it was in a stopped state when
336 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 **/
165125e1 338void blk_start_queue(struct request_queue *q)
1da177e4 339{
a038e253
PBG
340 WARN_ON(!irqs_disabled());
341
75ad23bc 342 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 343 __blk_run_queue(q);
1da177e4 344}
1da177e4
LT
345EXPORT_SYMBOL(blk_start_queue);
346
347/**
348 * blk_stop_queue - stop a queue
165125e1 349 * @q: The &struct request_queue in question
1da177e4
LT
350 *
351 * Description:
352 * The Linux block layer assumes that a block driver will consume all
353 * entries on the request queue when the request_fn strategy is called.
354 * Often this will not happen, because of hardware limitations (queue
355 * depth settings). If a device driver gets a 'queue full' response,
356 * or if it simply chooses not to queue more I/O at one point, it can
357 * call this function to prevent the request_fn from being called until
358 * the driver has signalled it's ready to go again. This happens by calling
359 * blk_start_queue() to restart queue operations. Queue lock must be held.
360 **/
165125e1 361void blk_stop_queue(struct request_queue *q)
1da177e4
LT
362{
363 blk_remove_plug(q);
75ad23bc 364 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
365}
366EXPORT_SYMBOL(blk_stop_queue);
367
368/**
369 * blk_sync_queue - cancel any pending callbacks on a queue
370 * @q: the queue
371 *
372 * Description:
373 * The block layer may perform asynchronous callback activity
374 * on a queue, such as calling the unplug function after a timeout.
375 * A block device may call blk_sync_queue to ensure that any
376 * such activity is cancelled, thus allowing it to release resources
59c51591 377 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
378 * that its ->make_request_fn will not re-add plugging prior to calling
379 * this function.
380 *
381 */
382void blk_sync_queue(struct request_queue *q)
383{
384 del_timer_sync(&q->unplug_timer);
70ed28b9 385 del_timer_sync(&q->timeout);
64d01dc9 386 cancel_work_sync(&q->unplug_work);
e43473b7 387 throtl_shutdown_timer_wq(q);
1da177e4
LT
388}
389EXPORT_SYMBOL(blk_sync_queue);
390
391/**
80a4b58e 392 * __blk_run_queue - run a single device queue
1da177e4 393 * @q: The queue to run
80a4b58e
JA
394 *
395 * Description:
396 * See @blk_run_queue. This variant must be called with the queue lock
397 * held and interrupts disabled.
398 *
1da177e4 399 */
75ad23bc 400void __blk_run_queue(struct request_queue *q)
1da177e4 401{
1da177e4 402 blk_remove_plug(q);
dac07ec1 403
a538cd03
TH
404 if (unlikely(blk_queue_stopped(q)))
405 return;
406
407 if (elv_queue_empty(q))
408 return;
409
dac07ec1
JA
410 /*
411 * Only recurse once to avoid overrunning the stack, let the unplug
412 * handling reinvoke the handler shortly if we already got there.
413 */
a538cd03
TH
414 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
415 q->request_fn(q);
416 queue_flag_clear(QUEUE_FLAG_REENTER, q);
417 } else {
418 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
419 kblockd_schedule_work(q, &q->unplug_work);
420 }
75ad23bc
NP
421}
422EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 423
75ad23bc
NP
424/**
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
80a4b58e
JA
427 *
428 * Description:
429 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 430 * May be used to restart queueing when a request has completed.
75ad23bc
NP
431 */
432void blk_run_queue(struct request_queue *q)
433{
434 unsigned long flags;
435
436 spin_lock_irqsave(q->queue_lock, flags);
437 __blk_run_queue(q);
1da177e4
LT
438 spin_unlock_irqrestore(q->queue_lock, flags);
439}
440EXPORT_SYMBOL(blk_run_queue);
441
165125e1 442void blk_put_queue(struct request_queue *q)
483f4afc
AV
443{
444 kobject_put(&q->kobj);
445}
483f4afc 446
6728cb0e 447void blk_cleanup_queue(struct request_queue *q)
483f4afc 448{
e3335de9
JA
449 /*
450 * We know we have process context here, so we can be a little
451 * cautious and ensure that pending block actions on this device
452 * are done before moving on. Going into this function, we should
453 * not have processes doing IO to this device.
454 */
455 blk_sync_queue(q);
456
31373d09 457 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 458 mutex_lock(&q->sysfs_lock);
75ad23bc 459 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
460 mutex_unlock(&q->sysfs_lock);
461
462 if (q->elevator)
463 elevator_exit(q->elevator);
464
465 blk_put_queue(q);
466}
1da177e4
LT
467EXPORT_SYMBOL(blk_cleanup_queue);
468
165125e1 469static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
470{
471 struct request_list *rl = &q->rq;
472
1abec4fd
MS
473 if (unlikely(rl->rq_pool))
474 return 0;
475
1faa16d2
JA
476 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
477 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 478 rl->elvpriv = 0;
1faa16d2
JA
479 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
480 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 481
1946089a
CL
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
484
485 if (!rl->rq_pool)
486 return -ENOMEM;
487
488 return 0;
489}
490
165125e1 491struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 492{
1946089a
CL
493 return blk_alloc_queue_node(gfp_mask, -1);
494}
495EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 496
165125e1 497struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 498{
165125e1 499 struct request_queue *q;
e0bf68dd 500 int err;
1946089a 501
8324aa91 502 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 503 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
504 if (!q)
505 return NULL;
506
e0bf68dd
PZ
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
509 q->backing_dev_info.ra_pages =
510 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
511 q->backing_dev_info.state = 0;
512 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 513 q->backing_dev_info.name = "block";
0989a025 514
e0bf68dd
PZ
515 err = bdi_init(&q->backing_dev_info);
516 if (err) {
8324aa91 517 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
518 return NULL;
519 }
520
e43473b7
VG
521 if (blk_throtl_init(q)) {
522 kmem_cache_free(blk_requestq_cachep, q);
523 return NULL;
524 }
525
31373d09
MG
526 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
527 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 528 init_timer(&q->unplug_timer);
242f9dcb
JA
529 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
530 INIT_LIST_HEAD(&q->timeout_list);
dd4c133f 531 INIT_LIST_HEAD(&q->pending_flushes);
713ada9b 532 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 533
8324aa91 534 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 535
483f4afc 536 mutex_init(&q->sysfs_lock);
e7e72bf6 537 spin_lock_init(&q->__queue_lock);
483f4afc 538
1da177e4
LT
539 return q;
540}
1946089a 541EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
542
543/**
544 * blk_init_queue - prepare a request queue for use with a block device
545 * @rfn: The function to be called to process requests that have been
546 * placed on the queue.
547 * @lock: Request queue spin lock
548 *
549 * Description:
550 * If a block device wishes to use the standard request handling procedures,
551 * which sorts requests and coalesces adjacent requests, then it must
552 * call blk_init_queue(). The function @rfn will be called when there
553 * are requests on the queue that need to be processed. If the device
554 * supports plugging, then @rfn may not be called immediately when requests
555 * are available on the queue, but may be called at some time later instead.
556 * Plugged queues are generally unplugged when a buffer belonging to one
557 * of the requests on the queue is needed, or due to memory pressure.
558 *
559 * @rfn is not required, or even expected, to remove all requests off the
560 * queue, but only as many as it can handle at a time. If it does leave
561 * requests on the queue, it is responsible for arranging that the requests
562 * get dealt with eventually.
563 *
564 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
565 * request queue; this lock will be taken also from interrupt context, so irq
566 * disabling is needed for it.
1da177e4 567 *
710027a4 568 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
569 * it didn't succeed.
570 *
571 * Note:
572 * blk_init_queue() must be paired with a blk_cleanup_queue() call
573 * when the block device is deactivated (such as at module unload).
574 **/
1946089a 575
165125e1 576struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 577{
1946089a
CL
578 return blk_init_queue_node(rfn, lock, -1);
579}
580EXPORT_SYMBOL(blk_init_queue);
581
165125e1 582struct request_queue *
1946089a
CL
583blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
584{
c86d1b8a 585 struct request_queue *uninit_q, *q;
1da177e4 586
c86d1b8a
MS
587 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
588 if (!uninit_q)
589 return NULL;
590
591 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
592 if (!q)
593 blk_cleanup_queue(uninit_q);
594
595 return q;
01effb0d
MS
596}
597EXPORT_SYMBOL(blk_init_queue_node);
598
599struct request_queue *
600blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
601 spinlock_t *lock)
602{
603 return blk_init_allocated_queue_node(q, rfn, lock, -1);
604}
605EXPORT_SYMBOL(blk_init_allocated_queue);
606
607struct request_queue *
608blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
609 spinlock_t *lock, int node_id)
610{
1da177e4
LT
611 if (!q)
612 return NULL;
613
1946089a 614 q->node = node_id;
c86d1b8a 615 if (blk_init_free_list(q))
8669aafd 616 return NULL;
1da177e4
LT
617
618 q->request_fn = rfn;
1da177e4 619 q->prep_rq_fn = NULL;
28018c24 620 q->unprep_rq_fn = NULL;
1da177e4 621 q->unplug_fn = generic_unplug_device;
bc58ba94 622 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
623 q->queue_lock = lock;
624
f3b144aa
JA
625 /*
626 * This also sets hw/phys segments, boundary and size
627 */
1da177e4 628 blk_queue_make_request(q, __make_request);
1da177e4 629
44ec9542
AS
630 q->sg_reserved_size = INT_MAX;
631
1da177e4
LT
632 /*
633 * all done
634 */
635 if (!elevator_init(q, NULL)) {
636 blk_queue_congestion_threshold(q);
637 return q;
638 }
639
1da177e4
LT
640 return NULL;
641}
01effb0d 642EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 643
165125e1 644int blk_get_queue(struct request_queue *q)
1da177e4 645{
fde6ad22 646 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 647 kobject_get(&q->kobj);
1da177e4
LT
648 return 0;
649 }
650
651 return 1;
652}
1da177e4 653
165125e1 654static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 655{
4aff5e23 656 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 657 elv_put_request(q, rq);
1da177e4
LT
658 mempool_free(rq, q->rq.rq_pool);
659}
660
1ea25ecb 661static struct request *
42dad764 662blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
663{
664 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
665
666 if (!rq)
667 return NULL;
668
2a4aa30c 669 blk_rq_init(q, rq);
1afb20f3 670
42dad764 671 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 672
cb98fc8b 673 if (priv) {
cb78b285 674 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
675 mempool_free(rq, q->rq.rq_pool);
676 return NULL;
677 }
4aff5e23 678 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 679 }
1da177e4 680
cb98fc8b 681 return rq;
1da177e4
LT
682}
683
684/*
685 * ioc_batching returns true if the ioc is a valid batching request and
686 * should be given priority access to a request.
687 */
165125e1 688static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
689{
690 if (!ioc)
691 return 0;
692
693 /*
694 * Make sure the process is able to allocate at least 1 request
695 * even if the batch times out, otherwise we could theoretically
696 * lose wakeups.
697 */
698 return ioc->nr_batch_requests == q->nr_batching ||
699 (ioc->nr_batch_requests > 0
700 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
701}
702
703/*
704 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
705 * will cause the process to be a "batcher" on all queues in the system. This
706 * is the behaviour we want though - once it gets a wakeup it should be given
707 * a nice run.
708 */
165125e1 709static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
710{
711 if (!ioc || ioc_batching(q, ioc))
712 return;
713
714 ioc->nr_batch_requests = q->nr_batching;
715 ioc->last_waited = jiffies;
716}
717
1faa16d2 718static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
719{
720 struct request_list *rl = &q->rq;
721
1faa16d2
JA
722 if (rl->count[sync] < queue_congestion_off_threshold(q))
723 blk_clear_queue_congested(q, sync);
1da177e4 724
1faa16d2
JA
725 if (rl->count[sync] + 1 <= q->nr_requests) {
726 if (waitqueue_active(&rl->wait[sync]))
727 wake_up(&rl->wait[sync]);
1da177e4 728
1faa16d2 729 blk_clear_queue_full(q, sync);
1da177e4
LT
730 }
731}
732
733/*
734 * A request has just been released. Account for it, update the full and
735 * congestion status, wake up any waiters. Called under q->queue_lock.
736 */
1faa16d2 737static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
738{
739 struct request_list *rl = &q->rq;
740
1faa16d2 741 rl->count[sync]--;
cb98fc8b
TH
742 if (priv)
743 rl->elvpriv--;
1da177e4 744
1faa16d2 745 __freed_request(q, sync);
1da177e4 746
1faa16d2
JA
747 if (unlikely(rl->starved[sync ^ 1]))
748 __freed_request(q, sync ^ 1);
1da177e4
LT
749}
750
1da177e4 751/*
d6344532
NP
752 * Get a free request, queue_lock must be held.
753 * Returns NULL on failure, with queue_lock held.
754 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 755 */
165125e1 756static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 757 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
758{
759 struct request *rq = NULL;
760 struct request_list *rl = &q->rq;
88ee5ef1 761 struct io_context *ioc = NULL;
1faa16d2 762 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
763 int may_queue, priv;
764
7749a8d4 765 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
766 if (may_queue == ELV_MQUEUE_NO)
767 goto rq_starved;
768
1faa16d2
JA
769 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
770 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 771 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
772 /*
773 * The queue will fill after this allocation, so set
774 * it as full, and mark this process as "batching".
775 * This process will be allowed to complete a batch of
776 * requests, others will be blocked.
777 */
1faa16d2 778 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 779 ioc_set_batching(q, ioc);
1faa16d2 780 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
781 } else {
782 if (may_queue != ELV_MQUEUE_MUST
783 && !ioc_batching(q, ioc)) {
784 /*
785 * The queue is full and the allocating
786 * process is not a "batcher", and not
787 * exempted by the IO scheduler
788 */
789 goto out;
790 }
791 }
1da177e4 792 }
1faa16d2 793 blk_set_queue_congested(q, is_sync);
1da177e4
LT
794 }
795
082cf69e
JA
796 /*
797 * Only allow batching queuers to allocate up to 50% over the defined
798 * limit of requests, otherwise we could have thousands of requests
799 * allocated with any setting of ->nr_requests
800 */
1faa16d2 801 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 802 goto out;
fd782a4a 803
1faa16d2
JA
804 rl->count[is_sync]++;
805 rl->starved[is_sync] = 0;
cb98fc8b 806
64521d1a 807 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
7681bfee 808 if (priv) {
cb98fc8b
TH
809 rl->elvpriv++;
810
7681bfee
YI
811 /*
812 * Don't do stats for non-priv requests
813 */
814 if (blk_queue_io_stat(q))
815 rw_flags |= REQ_IO_STAT;
816 }
817
1da177e4
LT
818 spin_unlock_irq(q->queue_lock);
819
7749a8d4 820 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 821 if (unlikely(!rq)) {
1da177e4
LT
822 /*
823 * Allocation failed presumably due to memory. Undo anything
824 * we might have messed up.
825 *
826 * Allocating task should really be put onto the front of the
827 * wait queue, but this is pretty rare.
828 */
829 spin_lock_irq(q->queue_lock);
1faa16d2 830 freed_request(q, is_sync, priv);
1da177e4
LT
831
832 /*
833 * in the very unlikely event that allocation failed and no
834 * requests for this direction was pending, mark us starved
835 * so that freeing of a request in the other direction will
836 * notice us. another possible fix would be to split the
837 * rq mempool into READ and WRITE
838 */
839rq_starved:
1faa16d2
JA
840 if (unlikely(rl->count[is_sync] == 0))
841 rl->starved[is_sync] = 1;
1da177e4 842
1da177e4
LT
843 goto out;
844 }
845
88ee5ef1
JA
846 /*
847 * ioc may be NULL here, and ioc_batching will be false. That's
848 * OK, if the queue is under the request limit then requests need
849 * not count toward the nr_batch_requests limit. There will always
850 * be some limit enforced by BLK_BATCH_TIME.
851 */
1da177e4
LT
852 if (ioc_batching(q, ioc))
853 ioc->nr_batch_requests--;
6728cb0e 854
1faa16d2 855 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 856out:
1da177e4
LT
857 return rq;
858}
859
860/*
861 * No available requests for this queue, unplug the device and wait for some
862 * requests to become available.
d6344532
NP
863 *
864 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 865 */
165125e1 866static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 867 struct bio *bio)
1da177e4 868{
1faa16d2 869 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
870 struct request *rq;
871
7749a8d4 872 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
873 while (!rq) {
874 DEFINE_WAIT(wait);
05caf8db 875 struct io_context *ioc;
1da177e4
LT
876 struct request_list *rl = &q->rq;
877
1faa16d2 878 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
879 TASK_UNINTERRUPTIBLE);
880
1faa16d2 881 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 882
05caf8db
ZY
883 __generic_unplug_device(q);
884 spin_unlock_irq(q->queue_lock);
885 io_schedule();
1da177e4 886
05caf8db
ZY
887 /*
888 * After sleeping, we become a "batching" process and
889 * will be able to allocate at least one request, and
890 * up to a big batch of them for a small period time.
891 * See ioc_batching, ioc_set_batching
892 */
893 ioc = current_io_context(GFP_NOIO, q->node);
894 ioc_set_batching(q, ioc);
d6344532 895
05caf8db 896 spin_lock_irq(q->queue_lock);
1faa16d2 897 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
898
899 rq = get_request(q, rw_flags, bio, GFP_NOIO);
900 };
1da177e4
LT
901
902 return rq;
903}
904
165125e1 905struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
906{
907 struct request *rq;
908
909 BUG_ON(rw != READ && rw != WRITE);
910
d6344532
NP
911 spin_lock_irq(q->queue_lock);
912 if (gfp_mask & __GFP_WAIT) {
22e2c507 913 rq = get_request_wait(q, rw, NULL);
d6344532 914 } else {
22e2c507 915 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
916 if (!rq)
917 spin_unlock_irq(q->queue_lock);
918 }
919 /* q->queue_lock is unlocked at this point */
1da177e4
LT
920
921 return rq;
922}
1da177e4
LT
923EXPORT_SYMBOL(blk_get_request);
924
dc72ef4a 925/**
79eb63e9 926 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 927 * @q: target request queue
79eb63e9
BH
928 * @bio: The bio describing the memory mappings that will be submitted for IO.
929 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 930 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 931 *
79eb63e9
BH
932 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
933 * type commands. Where the struct request needs to be farther initialized by
934 * the caller. It is passed a &struct bio, which describes the memory info of
935 * the I/O transfer.
dc72ef4a 936 *
79eb63e9
BH
937 * The caller of blk_make_request must make sure that bi_io_vec
938 * are set to describe the memory buffers. That bio_data_dir() will return
939 * the needed direction of the request. (And all bio's in the passed bio-chain
940 * are properly set accordingly)
941 *
942 * If called under none-sleepable conditions, mapped bio buffers must not
943 * need bouncing, by calling the appropriate masked or flagged allocator,
944 * suitable for the target device. Otherwise the call to blk_queue_bounce will
945 * BUG.
53674ac5
JA
946 *
947 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
948 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
949 * anything but the first bio in the chain. Otherwise you risk waiting for IO
950 * completion of a bio that hasn't been submitted yet, thus resulting in a
951 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
952 * of bio_alloc(), as that avoids the mempool deadlock.
953 * If possible a big IO should be split into smaller parts when allocation
954 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 955 */
79eb63e9
BH
956struct request *blk_make_request(struct request_queue *q, struct bio *bio,
957 gfp_t gfp_mask)
dc72ef4a 958{
79eb63e9
BH
959 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
960
961 if (unlikely(!rq))
962 return ERR_PTR(-ENOMEM);
963
964 for_each_bio(bio) {
965 struct bio *bounce_bio = bio;
966 int ret;
967
968 blk_queue_bounce(q, &bounce_bio);
969 ret = blk_rq_append_bio(q, rq, bounce_bio);
970 if (unlikely(ret)) {
971 blk_put_request(rq);
972 return ERR_PTR(ret);
973 }
974 }
975
976 return rq;
dc72ef4a 977}
79eb63e9 978EXPORT_SYMBOL(blk_make_request);
dc72ef4a 979
1da177e4
LT
980/**
981 * blk_requeue_request - put a request back on queue
982 * @q: request queue where request should be inserted
983 * @rq: request to be inserted
984 *
985 * Description:
986 * Drivers often keep queueing requests until the hardware cannot accept
987 * more, when that condition happens we need to put the request back
988 * on the queue. Must be called with queue lock held.
989 */
165125e1 990void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 991{
242f9dcb
JA
992 blk_delete_timer(rq);
993 blk_clear_rq_complete(rq);
5f3ea37c 994 trace_block_rq_requeue(q, rq);
2056a782 995
1da177e4
LT
996 if (blk_rq_tagged(rq))
997 blk_queue_end_tag(q, rq);
998
ba396a6c
JB
999 BUG_ON(blk_queued_rq(rq));
1000
1da177e4
LT
1001 elv_requeue_request(q, rq);
1002}
1da177e4
LT
1003EXPORT_SYMBOL(blk_requeue_request);
1004
1005/**
710027a4 1006 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1007 * @q: request queue where request should be inserted
1008 * @rq: request to be inserted
1009 * @at_head: insert request at head or tail of queue
1010 * @data: private data
1da177e4
LT
1011 *
1012 * Description:
1013 * Many block devices need to execute commands asynchronously, so they don't
1014 * block the whole kernel from preemption during request execution. This is
1015 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1016 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1017 * be scheduled for actual execution by the request queue.
1da177e4
LT
1018 *
1019 * We have the option of inserting the head or the tail of the queue.
1020 * Typically we use the tail for new ioctls and so forth. We use the head
1021 * of the queue for things like a QUEUE_FULL message from a device, or a
1022 * host that is unable to accept a particular command.
1023 */
165125e1 1024void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1025 int at_head, void *data)
1da177e4 1026{
867d1191 1027 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1028 unsigned long flags;
1029
1030 /*
1031 * tell I/O scheduler that this isn't a regular read/write (ie it
1032 * must not attempt merges on this) and that it acts as a soft
1033 * barrier
1034 */
4aff5e23 1035 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1036
1037 rq->special = data;
1038
1039 spin_lock_irqsave(q->queue_lock, flags);
1040
1041 /*
1042 * If command is tagged, release the tag
1043 */
867d1191
TH
1044 if (blk_rq_tagged(rq))
1045 blk_queue_end_tag(q, rq);
1da177e4 1046
b238b3d4 1047 drive_stat_acct(rq, 1);
867d1191 1048 __elv_add_request(q, rq, where, 0);
a7f55792 1049 __blk_run_queue(q);
1da177e4
LT
1050 spin_unlock_irqrestore(q->queue_lock, flags);
1051}
1da177e4
LT
1052EXPORT_SYMBOL(blk_insert_request);
1053
074a7aca
TH
1054static void part_round_stats_single(int cpu, struct hd_struct *part,
1055 unsigned long now)
1056{
1057 if (now == part->stamp)
1058 return;
1059
316d315b 1060 if (part_in_flight(part)) {
074a7aca 1061 __part_stat_add(cpu, part, time_in_queue,
316d315b 1062 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1063 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1064 }
1065 part->stamp = now;
1066}
1067
1068/**
496aa8a9
RD
1069 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1070 * @cpu: cpu number for stats access
1071 * @part: target partition
1da177e4
LT
1072 *
1073 * The average IO queue length and utilisation statistics are maintained
1074 * by observing the current state of the queue length and the amount of
1075 * time it has been in this state for.
1076 *
1077 * Normally, that accounting is done on IO completion, but that can result
1078 * in more than a second's worth of IO being accounted for within any one
1079 * second, leading to >100% utilisation. To deal with that, we call this
1080 * function to do a round-off before returning the results when reading
1081 * /proc/diskstats. This accounts immediately for all queue usage up to
1082 * the current jiffies and restarts the counters again.
1083 */
c9959059 1084void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1085{
1086 unsigned long now = jiffies;
1087
074a7aca
TH
1088 if (part->partno)
1089 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1090 part_round_stats_single(cpu, part, now);
6f2576af 1091}
074a7aca 1092EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1093
1da177e4
LT
1094/*
1095 * queue lock must be held
1096 */
165125e1 1097void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1098{
1da177e4
LT
1099 if (unlikely(!q))
1100 return;
1101 if (unlikely(--req->ref_count))
1102 return;
1103
8922e16c
TH
1104 elv_completed_request(q, req);
1105
1cd96c24
BH
1106 /* this is a bio leak */
1107 WARN_ON(req->bio != NULL);
1108
1da177e4
LT
1109 /*
1110 * Request may not have originated from ll_rw_blk. if not,
1111 * it didn't come out of our reserved rq pools
1112 */
49171e5c 1113 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1114 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1115 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1116
1da177e4 1117 BUG_ON(!list_empty(&req->queuelist));
9817064b 1118 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1119
1120 blk_free_request(q, req);
1faa16d2 1121 freed_request(q, is_sync, priv);
1da177e4
LT
1122 }
1123}
6e39b69e
MC
1124EXPORT_SYMBOL_GPL(__blk_put_request);
1125
1da177e4
LT
1126void blk_put_request(struct request *req)
1127{
8922e16c 1128 unsigned long flags;
165125e1 1129 struct request_queue *q = req->q;
8922e16c 1130
52a93ba8
FT
1131 spin_lock_irqsave(q->queue_lock, flags);
1132 __blk_put_request(q, req);
1133 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1134}
1da177e4
LT
1135EXPORT_SYMBOL(blk_put_request);
1136
66ac0280
CH
1137/**
1138 * blk_add_request_payload - add a payload to a request
1139 * @rq: request to update
1140 * @page: page backing the payload
1141 * @len: length of the payload.
1142 *
1143 * This allows to later add a payload to an already submitted request by
1144 * a block driver. The driver needs to take care of freeing the payload
1145 * itself.
1146 *
1147 * Note that this is a quite horrible hack and nothing but handling of
1148 * discard requests should ever use it.
1149 */
1150void blk_add_request_payload(struct request *rq, struct page *page,
1151 unsigned int len)
1152{
1153 struct bio *bio = rq->bio;
1154
1155 bio->bi_io_vec->bv_page = page;
1156 bio->bi_io_vec->bv_offset = 0;
1157 bio->bi_io_vec->bv_len = len;
1158
1159 bio->bi_size = len;
1160 bio->bi_vcnt = 1;
1161 bio->bi_phys_segments = 1;
1162
1163 rq->__data_len = rq->resid_len = len;
1164 rq->nr_phys_segments = 1;
1165 rq->buffer = bio_data(bio);
1166}
1167EXPORT_SYMBOL_GPL(blk_add_request_payload);
1168
86db1e29 1169void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1170{
c7c22e4d 1171 req->cpu = bio->bi_comp_cpu;
4aff5e23 1172 req->cmd_type = REQ_TYPE_FS;
52d9e675 1173
7b6d91da
CH
1174 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1175 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1176 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1177
52d9e675 1178 req->errors = 0;
a2dec7b3 1179 req->__sector = bio->bi_sector;
52d9e675 1180 req->ioprio = bio_prio(bio);
bc1c56fd 1181 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1182}
1183
644b2d99
JA
1184/*
1185 * Only disabling plugging for non-rotational devices if it does tagging
1186 * as well, otherwise we do need the proper merging
1187 */
1188static inline bool queue_should_plug(struct request_queue *q)
1189{
79da0644 1190 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1191}
1192
165125e1 1193static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1194{
450991bc 1195 struct request *req;
2e46e8b2
TH
1196 int el_ret;
1197 unsigned int bytes = bio->bi_size;
51da90fc 1198 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1199 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1200 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1201 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1202 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1203 int rw_flags;
1da177e4 1204
4913efe4
TH
1205 /* REQ_HARDBARRIER is no more */
1206 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1207 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
db64f680
N
1208 bio_endio(bio, -EOPNOTSUPP);
1209 return 0;
1210 }
4913efe4 1211
1da177e4
LT
1212 /*
1213 * low level driver can indicate that it wants pages above a
1214 * certain limit bounced to low memory (ie for highmem, or even
1215 * ISA dma in theory)
1216 */
1217 blk_queue_bounce(q, &bio);
1218
1da177e4
LT
1219 spin_lock_irq(q->queue_lock);
1220
4fed947c 1221 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
28e7d184
TH
1222 where = ELEVATOR_INSERT_FRONT;
1223 goto get_rq;
1224 }
1225
1226 if (elv_queue_empty(q))
1da177e4
LT
1227 goto get_rq;
1228
1229 el_ret = elv_merge(q, &req, bio);
1230 switch (el_ret) {
6728cb0e
JA
1231 case ELEVATOR_BACK_MERGE:
1232 BUG_ON(!rq_mergeable(req));
1da177e4 1233
6728cb0e
JA
1234 if (!ll_back_merge_fn(q, req, bio))
1235 break;
1da177e4 1236
5f3ea37c 1237 trace_block_bio_backmerge(q, bio);
2056a782 1238
80a761fd
TH
1239 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1240 blk_rq_set_mixed_merge(req);
1241
6728cb0e
JA
1242 req->biotail->bi_next = bio;
1243 req->biotail = bio;
a2dec7b3 1244 req->__data_len += bytes;
6728cb0e 1245 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1246 if (!blk_rq_cpu_valid(req))
1247 req->cpu = bio->bi_comp_cpu;
6728cb0e 1248 drive_stat_acct(req, 0);
812d4026 1249 elv_bio_merged(q, req, bio);
6728cb0e
JA
1250 if (!attempt_back_merge(q, req))
1251 elv_merged_request(q, req, el_ret);
1252 goto out;
1da177e4 1253
6728cb0e
JA
1254 case ELEVATOR_FRONT_MERGE:
1255 BUG_ON(!rq_mergeable(req));
1da177e4 1256
6728cb0e
JA
1257 if (!ll_front_merge_fn(q, req, bio))
1258 break;
1da177e4 1259
5f3ea37c 1260 trace_block_bio_frontmerge(q, bio);
2056a782 1261
80a761fd
TH
1262 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1263 blk_rq_set_mixed_merge(req);
1264 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1265 req->cmd_flags |= ff;
1266 }
1267
6728cb0e
JA
1268 bio->bi_next = req->bio;
1269 req->bio = bio;
1da177e4 1270
6728cb0e
JA
1271 /*
1272 * may not be valid. if the low level driver said
1273 * it didn't need a bounce buffer then it better
1274 * not touch req->buffer either...
1275 */
1276 req->buffer = bio_data(bio);
a2dec7b3
TH
1277 req->__sector = bio->bi_sector;
1278 req->__data_len += bytes;
6728cb0e 1279 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1280 if (!blk_rq_cpu_valid(req))
1281 req->cpu = bio->bi_comp_cpu;
6728cb0e 1282 drive_stat_acct(req, 0);
812d4026 1283 elv_bio_merged(q, req, bio);
6728cb0e
JA
1284 if (!attempt_front_merge(q, req))
1285 elv_merged_request(q, req, el_ret);
1286 goto out;
1287
1288 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1289 default:
1290 ;
1da177e4
LT
1291 }
1292
450991bc 1293get_rq:
7749a8d4
JA
1294 /*
1295 * This sync check and mask will be re-done in init_request_from_bio(),
1296 * but we need to set it earlier to expose the sync flag to the
1297 * rq allocator and io schedulers.
1298 */
1299 rw_flags = bio_data_dir(bio);
1300 if (sync)
7b6d91da 1301 rw_flags |= REQ_SYNC;
7749a8d4 1302
1da177e4 1303 /*
450991bc 1304 * Grab a free request. This is might sleep but can not fail.
d6344532 1305 * Returns with the queue unlocked.
450991bc 1306 */
7749a8d4 1307 req = get_request_wait(q, rw_flags, bio);
d6344532 1308
450991bc
NP
1309 /*
1310 * After dropping the lock and possibly sleeping here, our request
1311 * may now be mergeable after it had proven unmergeable (above).
1312 * We don't worry about that case for efficiency. It won't happen
1313 * often, and the elevators are able to handle it.
1da177e4 1314 */
52d9e675 1315 init_request_from_bio(req, bio);
1da177e4 1316
450991bc 1317 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1318 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1319 bio_flagged(bio, BIO_CPU_AFFINE))
1320 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1321 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1322 blk_plug_device(q);
dd831006
TH
1323
1324 /* insert the request into the elevator */
1325 drive_stat_acct(req, 1);
28e7d184 1326 __elv_add_request(q, req, where, 0);
1da177e4 1327out:
644b2d99 1328 if (unplug || !queue_should_plug(q))
1da177e4 1329 __generic_unplug_device(q);
1da177e4
LT
1330 spin_unlock_irq(q->queue_lock);
1331 return 0;
1da177e4
LT
1332}
1333
1334/*
1335 * If bio->bi_dev is a partition, remap the location
1336 */
1337static inline void blk_partition_remap(struct bio *bio)
1338{
1339 struct block_device *bdev = bio->bi_bdev;
1340
bf2de6f5 1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1342 struct hd_struct *p = bdev->bd_part;
1343
1da177e4
LT
1344 bio->bi_sector += p->start_sect;
1345 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1346
5f3ea37c 1347 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1348 bdev->bd_dev,
c7149d6b 1349 bio->bi_sector - p->start_sect);
1da177e4
LT
1350 }
1351}
1352
1da177e4
LT
1353static void handle_bad_sector(struct bio *bio)
1354{
1355 char b[BDEVNAME_SIZE];
1356
1357 printk(KERN_INFO "attempt to access beyond end of device\n");
1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 bdevname(bio->bi_bdev, b),
1360 bio->bi_rw,
1361 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1362 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1363
1364 set_bit(BIO_EOF, &bio->bi_flags);
1365}
1366
c17bb495
AM
1367#ifdef CONFIG_FAIL_MAKE_REQUEST
1368
1369static DECLARE_FAULT_ATTR(fail_make_request);
1370
1371static int __init setup_fail_make_request(char *str)
1372{
1373 return setup_fault_attr(&fail_make_request, str);
1374}
1375__setup("fail_make_request=", setup_fail_make_request);
1376
1377static int should_fail_request(struct bio *bio)
1378{
eddb2e26
TH
1379 struct hd_struct *part = bio->bi_bdev->bd_part;
1380
1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1382 return should_fail(&fail_make_request, bio->bi_size);
1383
1384 return 0;
1385}
1386
1387static int __init fail_make_request_debugfs(void)
1388{
1389 return init_fault_attr_dentries(&fail_make_request,
1390 "fail_make_request");
1391}
1392
1393late_initcall(fail_make_request_debugfs);
1394
1395#else /* CONFIG_FAIL_MAKE_REQUEST */
1396
1397static inline int should_fail_request(struct bio *bio)
1398{
1399 return 0;
1400}
1401
1402#endif /* CONFIG_FAIL_MAKE_REQUEST */
1403
c07e2b41
JA
1404/*
1405 * Check whether this bio extends beyond the end of the device.
1406 */
1407static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1408{
1409 sector_t maxsector;
1410
1411 if (!nr_sectors)
1412 return 0;
1413
1414 /* Test device or partition size, when known. */
1415 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1416 if (maxsector) {
1417 sector_t sector = bio->bi_sector;
1418
1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1420 /*
1421 * This may well happen - the kernel calls bread()
1422 * without checking the size of the device, e.g., when
1423 * mounting a device.
1424 */
1425 handle_bad_sector(bio);
1426 return 1;
1427 }
1428 }
1429
1430 return 0;
1431}
1432
1da177e4 1433/**
710027a4 1434 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1435 * @bio: The bio describing the location in memory and on the device.
1436 *
1437 * generic_make_request() is used to make I/O requests of block
1438 * devices. It is passed a &struct bio, which describes the I/O that needs
1439 * to be done.
1440 *
1441 * generic_make_request() does not return any status. The
1442 * success/failure status of the request, along with notification of
1443 * completion, is delivered asynchronously through the bio->bi_end_io
1444 * function described (one day) else where.
1445 *
1446 * The caller of generic_make_request must make sure that bi_io_vec
1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448 * set to describe the device address, and the
1449 * bi_end_io and optionally bi_private are set to describe how
1450 * completion notification should be signaled.
1451 *
1452 * generic_make_request and the drivers it calls may use bi_next if this
1453 * bio happens to be merged with someone else, and may change bi_dev and
1454 * bi_sector for remaps as it sees fit. So the values of these fields
1455 * should NOT be depended on after the call to generic_make_request.
1456 */
d89d8796 1457static inline void __generic_make_request(struct bio *bio)
1da177e4 1458{
165125e1 1459 struct request_queue *q;
5ddfe969 1460 sector_t old_sector;
1da177e4 1461 int ret, nr_sectors = bio_sectors(bio);
2056a782 1462 dev_t old_dev;
51fd77bd 1463 int err = -EIO;
1da177e4
LT
1464
1465 might_sleep();
1da177e4 1466
c07e2b41
JA
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1da177e4
LT
1469
1470 /*
1471 * Resolve the mapping until finished. (drivers are
1472 * still free to implement/resolve their own stacking
1473 * by explicitly returning 0)
1474 *
1475 * NOTE: we don't repeat the blk_size check for each new device.
1476 * Stacking drivers are expected to know what they are doing.
1477 */
5ddfe969 1478 old_sector = -1;
2056a782 1479 old_dev = 0;
1da177e4
LT
1480 do {
1481 char b[BDEVNAME_SIZE];
1482
1483 q = bdev_get_queue(bio->bi_bdev);
a7384677 1484 if (unlikely(!q)) {
1da177e4
LT
1485 printk(KERN_ERR
1486 "generic_make_request: Trying to access "
1487 "nonexistent block-device %s (%Lu)\n",
1488 bdevname(bio->bi_bdev, b),
1489 (long long) bio->bi_sector);
a7384677 1490 goto end_io;
1da177e4
LT
1491 }
1492
7b6d91da 1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1494 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1496 bdevname(bio->bi_bdev, b),
1497 bio_sectors(bio),
1498 queue_max_hw_sectors(q));
1da177e4
LT
1499 goto end_io;
1500 }
1501
fde6ad22 1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1503 goto end_io;
1504
c17bb495
AM
1505 if (should_fail_request(bio))
1506 goto end_io;
1507
1da177e4
LT
1508 /*
1509 * If this device has partitions, remap block n
1510 * of partition p to block n+start(p) of the disk.
1511 */
1512 blk_partition_remap(bio);
1513
7ba1ba12
MP
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 goto end_io;
1516
5ddfe969 1517 if (old_sector != -1)
22a7c31a 1518 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1519
5ddfe969 1520 old_sector = bio->bi_sector;
2056a782
JA
1521 old_dev = bio->bi_bdev->bd_dev;
1522
c07e2b41
JA
1523 if (bio_check_eod(bio, nr_sectors))
1524 goto end_io;
a7384677 1525
1e87901e
TH
1526 /*
1527 * Filter flush bio's early so that make_request based
1528 * drivers without flush support don't have to worry
1529 * about them.
1530 */
1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 if (!nr_sectors) {
1534 err = 0;
1535 goto end_io;
1536 }
1537 }
1538
8d57a98c
AH
1539 if ((bio->bi_rw & REQ_DISCARD) &&
1540 (!blk_queue_discard(q) ||
1541 ((bio->bi_rw & REQ_SECURE) &&
1542 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1543 err = -EOPNOTSUPP;
1544 goto end_io;
1545 }
5ddfe969 1546
e43473b7
VG
1547 blk_throtl_bio(q, &bio);
1548
1549 /*
1550 * If bio = NULL, bio has been throttled and will be submitted
1551 * later.
1552 */
1553 if (!bio)
1554 break;
1555
01edede4
MK
1556 trace_block_bio_queue(q, bio);
1557
1da177e4
LT
1558 ret = q->make_request_fn(q, bio);
1559 } while (ret);
a7384677
TH
1560
1561 return;
1562
1563end_io:
1564 bio_endio(bio, err);
1da177e4
LT
1565}
1566
d89d8796
NB
1567/*
1568 * We only want one ->make_request_fn to be active at a time,
1569 * else stack usage with stacked devices could be a problem.
bddd87c7 1570 * So use current->bio_list to keep a list of requests
d89d8796 1571 * submited by a make_request_fn function.
bddd87c7 1572 * current->bio_list is also used as a flag to say if
d89d8796
NB
1573 * generic_make_request is currently active in this task or not.
1574 * If it is NULL, then no make_request is active. If it is non-NULL,
1575 * then a make_request is active, and new requests should be added
1576 * at the tail
1577 */
1578void generic_make_request(struct bio *bio)
1579{
bddd87c7
AM
1580 struct bio_list bio_list_on_stack;
1581
1582 if (current->bio_list) {
d89d8796 1583 /* make_request is active */
bddd87c7 1584 bio_list_add(current->bio_list, bio);
d89d8796
NB
1585 return;
1586 }
1587 /* following loop may be a bit non-obvious, and so deserves some
1588 * explanation.
1589 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 * ensure that) so we have a list with a single bio.
1591 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1592 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 * thus initialising the bio_list of new bios to be
d89d8796
NB
1594 * added. __generic_make_request may indeed add some more bios
1595 * through a recursive call to generic_make_request. If it
1596 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 * from the top. In this case we really did just take the bio
bddd87c7
AM
1598 * of the top of the list (no pretending) and so remove it from
1599 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1600 *
1601 * The loop was structured like this to make only one call to
1602 * __generic_make_request (which is important as it is large and
1603 * inlined) and to keep the structure simple.
1604 */
1605 BUG_ON(bio->bi_next);
bddd87c7
AM
1606 bio_list_init(&bio_list_on_stack);
1607 current->bio_list = &bio_list_on_stack;
d89d8796 1608 do {
d89d8796 1609 __generic_make_request(bio);
bddd87c7 1610 bio = bio_list_pop(current->bio_list);
d89d8796 1611 } while (bio);
bddd87c7 1612 current->bio_list = NULL; /* deactivate */
d89d8796 1613}
1da177e4
LT
1614EXPORT_SYMBOL(generic_make_request);
1615
1616/**
710027a4 1617 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619 * @bio: The &struct bio which describes the I/O
1620 *
1621 * submit_bio() is very similar in purpose to generic_make_request(), and
1622 * uses that function to do most of the work. Both are fairly rough
710027a4 1623 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1624 *
1625 */
1626void submit_bio(int rw, struct bio *bio)
1627{
1628 int count = bio_sectors(bio);
1629
22e2c507 1630 bio->bi_rw |= rw;
1da177e4 1631
bf2de6f5
JA
1632 /*
1633 * If it's a regular read/write or a barrier with data attached,
1634 * go through the normal accounting stuff before submission.
1635 */
3ffb52e7 1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1637 if (rw & WRITE) {
1638 count_vm_events(PGPGOUT, count);
1639 } else {
1640 task_io_account_read(bio->bi_size);
1641 count_vm_events(PGPGIN, count);
1642 }
1643
1644 if (unlikely(block_dump)) {
1645 char b[BDEVNAME_SIZE];
8dcbdc74 1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1647 current->comm, task_pid_nr(current),
bf2de6f5
JA
1648 (rw & WRITE) ? "WRITE" : "READ",
1649 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1650 bdevname(bio->bi_bdev, b),
1651 count);
bf2de6f5 1652 }
1da177e4
LT
1653 }
1654
1655 generic_make_request(bio);
1656}
1da177e4
LT
1657EXPORT_SYMBOL(submit_bio);
1658
82124d60
KU
1659/**
1660 * blk_rq_check_limits - Helper function to check a request for the queue limit
1661 * @q: the queue
1662 * @rq: the request being checked
1663 *
1664 * Description:
1665 * @rq may have been made based on weaker limitations of upper-level queues
1666 * in request stacking drivers, and it may violate the limitation of @q.
1667 * Since the block layer and the underlying device driver trust @rq
1668 * after it is inserted to @q, it should be checked against @q before
1669 * the insertion using this generic function.
1670 *
1671 * This function should also be useful for request stacking drivers
eef35c2d 1672 * in some cases below, so export this function.
82124d60
KU
1673 * Request stacking drivers like request-based dm may change the queue
1674 * limits while requests are in the queue (e.g. dm's table swapping).
1675 * Such request stacking drivers should check those requests agaist
1676 * the new queue limits again when they dispatch those requests,
1677 * although such checkings are also done against the old queue limits
1678 * when submitting requests.
1679 */
1680int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1681{
3383977f
S
1682 if (rq->cmd_flags & REQ_DISCARD)
1683 return 0;
1684
ae03bf63
MP
1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1687 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 return -EIO;
1689 }
1690
1691 /*
1692 * queue's settings related to segment counting like q->bounce_pfn
1693 * may differ from that of other stacking queues.
1694 * Recalculate it to check the request correctly on this queue's
1695 * limitation.
1696 */
1697 blk_recalc_rq_segments(rq);
8a78362c 1698 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 return -EIO;
1701 }
1702
1703 return 0;
1704}
1705EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1706
1707/**
1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709 * @q: the queue to submit the request
1710 * @rq: the request being queued
1711 */
1712int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1713{
1714 unsigned long flags;
1715
1716 if (blk_rq_check_limits(q, rq))
1717 return -EIO;
1718
1719#ifdef CONFIG_FAIL_MAKE_REQUEST
1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 return -EIO;
1723#endif
1724
1725 spin_lock_irqsave(q->queue_lock, flags);
1726
1727 /*
1728 * Submitting request must be dequeued before calling this function
1729 * because it will be linked to another request_queue
1730 */
1731 BUG_ON(blk_queued_rq(rq));
1732
1733 drive_stat_acct(rq, 1);
1734 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1735
1736 spin_unlock_irqrestore(q->queue_lock, flags);
1737
1738 return 0;
1739}
1740EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1741
80a761fd
TH
1742/**
1743 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1744 * @rq: request to examine
1745 *
1746 * Description:
1747 * A request could be merge of IOs which require different failure
1748 * handling. This function determines the number of bytes which
1749 * can be failed from the beginning of the request without
1750 * crossing into area which need to be retried further.
1751 *
1752 * Return:
1753 * The number of bytes to fail.
1754 *
1755 * Context:
1756 * queue_lock must be held.
1757 */
1758unsigned int blk_rq_err_bytes(const struct request *rq)
1759{
1760 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1761 unsigned int bytes = 0;
1762 struct bio *bio;
1763
1764 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1765 return blk_rq_bytes(rq);
1766
1767 /*
1768 * Currently the only 'mixing' which can happen is between
1769 * different fastfail types. We can safely fail portions
1770 * which have all the failfast bits that the first one has -
1771 * the ones which are at least as eager to fail as the first
1772 * one.
1773 */
1774 for (bio = rq->bio; bio; bio = bio->bi_next) {
1775 if ((bio->bi_rw & ff) != ff)
1776 break;
1777 bytes += bio->bi_size;
1778 }
1779
1780 /* this could lead to infinite loop */
1781 BUG_ON(blk_rq_bytes(rq) && !bytes);
1782 return bytes;
1783}
1784EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1785
bc58ba94
JA
1786static void blk_account_io_completion(struct request *req, unsigned int bytes)
1787{
c2553b58 1788 if (blk_do_io_stat(req)) {
bc58ba94
JA
1789 const int rw = rq_data_dir(req);
1790 struct hd_struct *part;
1791 int cpu;
1792
1793 cpu = part_stat_lock();
7681bfee 1794 part = req->part;
bc58ba94
JA
1795 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1796 part_stat_unlock();
1797 }
1798}
1799
1800static void blk_account_io_done(struct request *req)
1801{
bc58ba94 1802 /*
dd4c133f
TH
1803 * Account IO completion. flush_rq isn't accounted as a
1804 * normal IO on queueing nor completion. Accounting the
1805 * containing request is enough.
bc58ba94 1806 */
dd4c133f 1807 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
bc58ba94
JA
1808 unsigned long duration = jiffies - req->start_time;
1809 const int rw = rq_data_dir(req);
1810 struct hd_struct *part;
1811 int cpu;
1812
1813 cpu = part_stat_lock();
7681bfee 1814 part = req->part;
bc58ba94
JA
1815
1816 part_stat_inc(cpu, part, ios[rw]);
1817 part_stat_add(cpu, part, ticks[rw], duration);
1818 part_round_stats(cpu, part);
316d315b 1819 part_dec_in_flight(part, rw);
bc58ba94
JA
1820
1821 part_stat_unlock();
1822 }
1823}
1824
3bcddeac 1825/**
9934c8c0
TH
1826 * blk_peek_request - peek at the top of a request queue
1827 * @q: request queue to peek at
1828 *
1829 * Description:
1830 * Return the request at the top of @q. The returned request
1831 * should be started using blk_start_request() before LLD starts
1832 * processing it.
1833 *
1834 * Return:
1835 * Pointer to the request at the top of @q if available. Null
1836 * otherwise.
1837 *
1838 * Context:
1839 * queue_lock must be held.
1840 */
1841struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1842{
1843 struct request *rq;
1844 int ret;
1845
1846 while ((rq = __elv_next_request(q)) != NULL) {
1847 if (!(rq->cmd_flags & REQ_STARTED)) {
1848 /*
1849 * This is the first time the device driver
1850 * sees this request (possibly after
1851 * requeueing). Notify IO scheduler.
1852 */
33659ebb 1853 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1854 elv_activate_rq(q, rq);
1855
1856 /*
1857 * just mark as started even if we don't start
1858 * it, a request that has been delayed should
1859 * not be passed by new incoming requests
1860 */
1861 rq->cmd_flags |= REQ_STARTED;
1862 trace_block_rq_issue(q, rq);
1863 }
1864
1865 if (!q->boundary_rq || q->boundary_rq == rq) {
1866 q->end_sector = rq_end_sector(rq);
1867 q->boundary_rq = NULL;
1868 }
1869
1870 if (rq->cmd_flags & REQ_DONTPREP)
1871 break;
1872
2e46e8b2 1873 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1874 /*
1875 * make sure space for the drain appears we
1876 * know we can do this because max_hw_segments
1877 * has been adjusted to be one fewer than the
1878 * device can handle
1879 */
1880 rq->nr_phys_segments++;
1881 }
1882
1883 if (!q->prep_rq_fn)
1884 break;
1885
1886 ret = q->prep_rq_fn(q, rq);
1887 if (ret == BLKPREP_OK) {
1888 break;
1889 } else if (ret == BLKPREP_DEFER) {
1890 /*
1891 * the request may have been (partially) prepped.
1892 * we need to keep this request in the front to
1893 * avoid resource deadlock. REQ_STARTED will
1894 * prevent other fs requests from passing this one.
1895 */
2e46e8b2 1896 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1897 !(rq->cmd_flags & REQ_DONTPREP)) {
1898 /*
1899 * remove the space for the drain we added
1900 * so that we don't add it again
1901 */
1902 --rq->nr_phys_segments;
1903 }
1904
1905 rq = NULL;
1906 break;
1907 } else if (ret == BLKPREP_KILL) {
1908 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1909 /*
1910 * Mark this request as started so we don't trigger
1911 * any debug logic in the end I/O path.
1912 */
1913 blk_start_request(rq);
40cbbb78 1914 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1915 } else {
1916 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1917 break;
1918 }
1919 }
1920
1921 return rq;
1922}
9934c8c0 1923EXPORT_SYMBOL(blk_peek_request);
158dbda0 1924
9934c8c0 1925void blk_dequeue_request(struct request *rq)
158dbda0 1926{
9934c8c0
TH
1927 struct request_queue *q = rq->q;
1928
158dbda0
TH
1929 BUG_ON(list_empty(&rq->queuelist));
1930 BUG_ON(ELV_ON_HASH(rq));
1931
1932 list_del_init(&rq->queuelist);
1933
1934 /*
1935 * the time frame between a request being removed from the lists
1936 * and to it is freed is accounted as io that is in progress at
1937 * the driver side.
1938 */
9195291e 1939 if (blk_account_rq(rq)) {
0a7ae2ff 1940 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1941 set_io_start_time_ns(rq);
1942 }
158dbda0
TH
1943}
1944
9934c8c0
TH
1945/**
1946 * blk_start_request - start request processing on the driver
1947 * @req: request to dequeue
1948 *
1949 * Description:
1950 * Dequeue @req and start timeout timer on it. This hands off the
1951 * request to the driver.
1952 *
1953 * Block internal functions which don't want to start timer should
1954 * call blk_dequeue_request().
1955 *
1956 * Context:
1957 * queue_lock must be held.
1958 */
1959void blk_start_request(struct request *req)
1960{
1961 blk_dequeue_request(req);
1962
1963 /*
5f49f631
TH
1964 * We are now handing the request to the hardware, initialize
1965 * resid_len to full count and add the timeout handler.
9934c8c0 1966 */
5f49f631 1967 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1968 if (unlikely(blk_bidi_rq(req)))
1969 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1970
9934c8c0
TH
1971 blk_add_timer(req);
1972}
1973EXPORT_SYMBOL(blk_start_request);
1974
1975/**
1976 * blk_fetch_request - fetch a request from a request queue
1977 * @q: request queue to fetch a request from
1978 *
1979 * Description:
1980 * Return the request at the top of @q. The request is started on
1981 * return and LLD can start processing it immediately.
1982 *
1983 * Return:
1984 * Pointer to the request at the top of @q if available. Null
1985 * otherwise.
1986 *
1987 * Context:
1988 * queue_lock must be held.
1989 */
1990struct request *blk_fetch_request(struct request_queue *q)
1991{
1992 struct request *rq;
1993
1994 rq = blk_peek_request(q);
1995 if (rq)
1996 blk_start_request(rq);
1997 return rq;
1998}
1999EXPORT_SYMBOL(blk_fetch_request);
2000
3bcddeac 2001/**
2e60e022 2002 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2003 * @req: the request being processed
710027a4 2004 * @error: %0 for success, < %0 for error
8ebf9756 2005 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2006 *
2007 * Description:
8ebf9756
RD
2008 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2009 * the request structure even if @req doesn't have leftover.
2010 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2011 *
2012 * This special helper function is only for request stacking drivers
2013 * (e.g. request-based dm) so that they can handle partial completion.
2014 * Actual device drivers should use blk_end_request instead.
2015 *
2016 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2017 * %false return from this function.
3bcddeac
KU
2018 *
2019 * Return:
2e60e022
TH
2020 * %false - this request doesn't have any more data
2021 * %true - this request has more data
3bcddeac 2022 **/
2e60e022 2023bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2024{
5450d3e1 2025 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2026 struct bio *bio;
2027
2e60e022
TH
2028 if (!req->bio)
2029 return false;
2030
5f3ea37c 2031 trace_block_rq_complete(req->q, req);
2056a782 2032
1da177e4 2033 /*
6f41469c
TH
2034 * For fs requests, rq is just carrier of independent bio's
2035 * and each partial completion should be handled separately.
2036 * Reset per-request error on each partial completion.
2037 *
2038 * TODO: tj: This is too subtle. It would be better to let
2039 * low level drivers do what they see fit.
1da177e4 2040 */
33659ebb 2041 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2042 req->errors = 0;
2043
33659ebb
CH
2044 if (error && req->cmd_type == REQ_TYPE_FS &&
2045 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2046 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2047 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2048 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2049 }
2050
bc58ba94 2051 blk_account_io_completion(req, nr_bytes);
d72d904a 2052
1da177e4
LT
2053 total_bytes = bio_nbytes = 0;
2054 while ((bio = req->bio) != NULL) {
2055 int nbytes;
2056
2057 if (nr_bytes >= bio->bi_size) {
2058 req->bio = bio->bi_next;
2059 nbytes = bio->bi_size;
5bb23a68 2060 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2061 next_idx = 0;
2062 bio_nbytes = 0;
2063 } else {
2064 int idx = bio->bi_idx + next_idx;
2065
af498d7f 2066 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2067 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2068 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2069 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2070 break;
2071 }
2072
2073 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2074 BIO_BUG_ON(nbytes > bio->bi_size);
2075
2076 /*
2077 * not a complete bvec done
2078 */
2079 if (unlikely(nbytes > nr_bytes)) {
2080 bio_nbytes += nr_bytes;
2081 total_bytes += nr_bytes;
2082 break;
2083 }
2084
2085 /*
2086 * advance to the next vector
2087 */
2088 next_idx++;
2089 bio_nbytes += nbytes;
2090 }
2091
2092 total_bytes += nbytes;
2093 nr_bytes -= nbytes;
2094
6728cb0e
JA
2095 bio = req->bio;
2096 if (bio) {
1da177e4
LT
2097 /*
2098 * end more in this run, or just return 'not-done'
2099 */
2100 if (unlikely(nr_bytes <= 0))
2101 break;
2102 }
2103 }
2104
2105 /*
2106 * completely done
2107 */
2e60e022
TH
2108 if (!req->bio) {
2109 /*
2110 * Reset counters so that the request stacking driver
2111 * can find how many bytes remain in the request
2112 * later.
2113 */
a2dec7b3 2114 req->__data_len = 0;
2e60e022
TH
2115 return false;
2116 }
1da177e4
LT
2117
2118 /*
2119 * if the request wasn't completed, update state
2120 */
2121 if (bio_nbytes) {
5bb23a68 2122 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2123 bio->bi_idx += next_idx;
2124 bio_iovec(bio)->bv_offset += nr_bytes;
2125 bio_iovec(bio)->bv_len -= nr_bytes;
2126 }
2127
a2dec7b3 2128 req->__data_len -= total_bytes;
2e46e8b2
TH
2129 req->buffer = bio_data(req->bio);
2130
2131 /* update sector only for requests with clear definition of sector */
33659ebb 2132 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2133 req->__sector += total_bytes >> 9;
2e46e8b2 2134
80a761fd
TH
2135 /* mixed attributes always follow the first bio */
2136 if (req->cmd_flags & REQ_MIXED_MERGE) {
2137 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2138 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2139 }
2140
2e46e8b2
TH
2141 /*
2142 * If total number of sectors is less than the first segment
2143 * size, something has gone terribly wrong.
2144 */
2145 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2146 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2147 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2148 }
2149
2150 /* recalculate the number of segments */
1da177e4 2151 blk_recalc_rq_segments(req);
2e46e8b2 2152
2e60e022 2153 return true;
1da177e4 2154}
2e60e022 2155EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2156
2e60e022
TH
2157static bool blk_update_bidi_request(struct request *rq, int error,
2158 unsigned int nr_bytes,
2159 unsigned int bidi_bytes)
5efccd17 2160{
2e60e022
TH
2161 if (blk_update_request(rq, error, nr_bytes))
2162 return true;
5efccd17 2163
2e60e022
TH
2164 /* Bidi request must be completed as a whole */
2165 if (unlikely(blk_bidi_rq(rq)) &&
2166 blk_update_request(rq->next_rq, error, bidi_bytes))
2167 return true;
5efccd17 2168
e2e1a148
JA
2169 if (blk_queue_add_random(rq->q))
2170 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2171
2172 return false;
1da177e4
LT
2173}
2174
28018c24
JB
2175/**
2176 * blk_unprep_request - unprepare a request
2177 * @req: the request
2178 *
2179 * This function makes a request ready for complete resubmission (or
2180 * completion). It happens only after all error handling is complete,
2181 * so represents the appropriate moment to deallocate any resources
2182 * that were allocated to the request in the prep_rq_fn. The queue
2183 * lock is held when calling this.
2184 */
2185void blk_unprep_request(struct request *req)
2186{
2187 struct request_queue *q = req->q;
2188
2189 req->cmd_flags &= ~REQ_DONTPREP;
2190 if (q->unprep_rq_fn)
2191 q->unprep_rq_fn(q, req);
2192}
2193EXPORT_SYMBOL_GPL(blk_unprep_request);
2194
1da177e4
LT
2195/*
2196 * queue lock must be held
2197 */
2e60e022 2198static void blk_finish_request(struct request *req, int error)
1da177e4 2199{
b8286239
KU
2200 if (blk_rq_tagged(req))
2201 blk_queue_end_tag(req->q, req);
2202
ba396a6c 2203 BUG_ON(blk_queued_rq(req));
1da177e4 2204
33659ebb 2205 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2206 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2207
e78042e5
MA
2208 blk_delete_timer(req);
2209
28018c24
JB
2210 if (req->cmd_flags & REQ_DONTPREP)
2211 blk_unprep_request(req);
2212
2213
bc58ba94 2214 blk_account_io_done(req);
b8286239 2215
1da177e4 2216 if (req->end_io)
8ffdc655 2217 req->end_io(req, error);
b8286239
KU
2218 else {
2219 if (blk_bidi_rq(req))
2220 __blk_put_request(req->next_rq->q, req->next_rq);
2221
1da177e4 2222 __blk_put_request(req->q, req);
b8286239 2223 }
1da177e4
LT
2224}
2225
3b11313a 2226/**
2e60e022
TH
2227 * blk_end_bidi_request - Complete a bidi request
2228 * @rq: the request to complete
2229 * @error: %0 for success, < %0 for error
2230 * @nr_bytes: number of bytes to complete @rq
2231 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2232 *
2233 * Description:
e3a04fe3 2234 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2235 * Drivers that supports bidi can safely call this member for any
2236 * type of request, bidi or uni. In the later case @bidi_bytes is
2237 * just ignored.
336cdb40
KU
2238 *
2239 * Return:
2e60e022
TH
2240 * %false - we are done with this request
2241 * %true - still buffers pending for this request
a0cd1285 2242 **/
b1f74493 2243static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2244 unsigned int nr_bytes, unsigned int bidi_bytes)
2245{
336cdb40 2246 struct request_queue *q = rq->q;
2e60e022 2247 unsigned long flags;
32fab448 2248
2e60e022
TH
2249 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2250 return true;
32fab448 2251
336cdb40 2252 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2253 blk_finish_request(rq, error);
336cdb40
KU
2254 spin_unlock_irqrestore(q->queue_lock, flags);
2255
2e60e022 2256 return false;
32fab448
KU
2257}
2258
336cdb40 2259/**
2e60e022
TH
2260 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2261 * @rq: the request to complete
710027a4 2262 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2263 * @nr_bytes: number of bytes to complete @rq
2264 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2265 *
2266 * Description:
2e60e022
TH
2267 * Identical to blk_end_bidi_request() except that queue lock is
2268 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2269 *
2270 * Return:
2e60e022
TH
2271 * %false - we are done with this request
2272 * %true - still buffers pending for this request
336cdb40 2273 **/
b1f74493
FT
2274static bool __blk_end_bidi_request(struct request *rq, int error,
2275 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2276{
2e60e022
TH
2277 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2278 return true;
336cdb40 2279
2e60e022 2280 blk_finish_request(rq, error);
336cdb40 2281
2e60e022 2282 return false;
336cdb40 2283}
e19a3ab0
KU
2284
2285/**
2286 * blk_end_request - Helper function for drivers to complete the request.
2287 * @rq: the request being processed
710027a4 2288 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2289 * @nr_bytes: number of bytes to complete
2290 *
2291 * Description:
2292 * Ends I/O on a number of bytes attached to @rq.
2293 * If @rq has leftover, sets it up for the next range of segments.
2294 *
2295 * Return:
b1f74493
FT
2296 * %false - we are done with this request
2297 * %true - still buffers pending for this request
e19a3ab0 2298 **/
b1f74493 2299bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2300{
b1f74493 2301 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2302}
56ad1740 2303EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2304
2305/**
b1f74493
FT
2306 * blk_end_request_all - Helper function for drives to finish the request.
2307 * @rq: the request to finish
8ebf9756 2308 * @error: %0 for success, < %0 for error
336cdb40
KU
2309 *
2310 * Description:
b1f74493
FT
2311 * Completely finish @rq.
2312 */
2313void blk_end_request_all(struct request *rq, int error)
336cdb40 2314{
b1f74493
FT
2315 bool pending;
2316 unsigned int bidi_bytes = 0;
336cdb40 2317
b1f74493
FT
2318 if (unlikely(blk_bidi_rq(rq)))
2319 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2320
b1f74493
FT
2321 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2322 BUG_ON(pending);
2323}
56ad1740 2324EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2325
b1f74493
FT
2326/**
2327 * blk_end_request_cur - Helper function to finish the current request chunk.
2328 * @rq: the request to finish the current chunk for
8ebf9756 2329 * @error: %0 for success, < %0 for error
b1f74493
FT
2330 *
2331 * Description:
2332 * Complete the current consecutively mapped chunk from @rq.
2333 *
2334 * Return:
2335 * %false - we are done with this request
2336 * %true - still buffers pending for this request
2337 */
2338bool blk_end_request_cur(struct request *rq, int error)
2339{
2340 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2341}
56ad1740 2342EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2343
80a761fd
TH
2344/**
2345 * blk_end_request_err - Finish a request till the next failure boundary.
2346 * @rq: the request to finish till the next failure boundary for
2347 * @error: must be negative errno
2348 *
2349 * Description:
2350 * Complete @rq till the next failure boundary.
2351 *
2352 * Return:
2353 * %false - we are done with this request
2354 * %true - still buffers pending for this request
2355 */
2356bool blk_end_request_err(struct request *rq, int error)
2357{
2358 WARN_ON(error >= 0);
2359 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2360}
2361EXPORT_SYMBOL_GPL(blk_end_request_err);
2362
e3a04fe3 2363/**
b1f74493
FT
2364 * __blk_end_request - Helper function for drivers to complete the request.
2365 * @rq: the request being processed
2366 * @error: %0 for success, < %0 for error
2367 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2368 *
2369 * Description:
b1f74493 2370 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2371 *
2372 * Return:
b1f74493
FT
2373 * %false - we are done with this request
2374 * %true - still buffers pending for this request
e3a04fe3 2375 **/
b1f74493 2376bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2377{
b1f74493 2378 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2379}
56ad1740 2380EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2381
32fab448 2382/**
b1f74493
FT
2383 * __blk_end_request_all - Helper function for drives to finish the request.
2384 * @rq: the request to finish
8ebf9756 2385 * @error: %0 for success, < %0 for error
32fab448
KU
2386 *
2387 * Description:
b1f74493 2388 * Completely finish @rq. Must be called with queue lock held.
32fab448 2389 */
b1f74493 2390void __blk_end_request_all(struct request *rq, int error)
32fab448 2391{
b1f74493
FT
2392 bool pending;
2393 unsigned int bidi_bytes = 0;
2394
2395 if (unlikely(blk_bidi_rq(rq)))
2396 bidi_bytes = blk_rq_bytes(rq->next_rq);
2397
2398 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2399 BUG_ON(pending);
32fab448 2400}
56ad1740 2401EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2402
e19a3ab0 2403/**
b1f74493
FT
2404 * __blk_end_request_cur - Helper function to finish the current request chunk.
2405 * @rq: the request to finish the current chunk for
8ebf9756 2406 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2407 *
2408 * Description:
b1f74493
FT
2409 * Complete the current consecutively mapped chunk from @rq. Must
2410 * be called with queue lock held.
e19a3ab0
KU
2411 *
2412 * Return:
b1f74493
FT
2413 * %false - we are done with this request
2414 * %true - still buffers pending for this request
2415 */
2416bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2417{
b1f74493 2418 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2419}
56ad1740 2420EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2421
80a761fd
TH
2422/**
2423 * __blk_end_request_err - Finish a request till the next failure boundary.
2424 * @rq: the request to finish till the next failure boundary for
2425 * @error: must be negative errno
2426 *
2427 * Description:
2428 * Complete @rq till the next failure boundary. Must be called
2429 * with queue lock held.
2430 *
2431 * Return:
2432 * %false - we are done with this request
2433 * %true - still buffers pending for this request
2434 */
2435bool __blk_end_request_err(struct request *rq, int error)
2436{
2437 WARN_ON(error >= 0);
2438 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2439}
2440EXPORT_SYMBOL_GPL(__blk_end_request_err);
2441
86db1e29
JA
2442void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2443 struct bio *bio)
1da177e4 2444{
a82afdfc 2445 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2446 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2447
fb2dce86
DW
2448 if (bio_has_data(bio)) {
2449 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2450 rq->buffer = bio_data(bio);
2451 }
a2dec7b3 2452 rq->__data_len = bio->bi_size;
1da177e4 2453 rq->bio = rq->biotail = bio;
1da177e4 2454
66846572
N
2455 if (bio->bi_bdev)
2456 rq->rq_disk = bio->bi_bdev->bd_disk;
2457}
1da177e4 2458
2d4dc890
IL
2459#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2460/**
2461 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2462 * @rq: the request to be flushed
2463 *
2464 * Description:
2465 * Flush all pages in @rq.
2466 */
2467void rq_flush_dcache_pages(struct request *rq)
2468{
2469 struct req_iterator iter;
2470 struct bio_vec *bvec;
2471
2472 rq_for_each_segment(bvec, rq, iter)
2473 flush_dcache_page(bvec->bv_page);
2474}
2475EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2476#endif
2477
ef9e3fac
KU
2478/**
2479 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2480 * @q : the queue of the device being checked
2481 *
2482 * Description:
2483 * Check if underlying low-level drivers of a device are busy.
2484 * If the drivers want to export their busy state, they must set own
2485 * exporting function using blk_queue_lld_busy() first.
2486 *
2487 * Basically, this function is used only by request stacking drivers
2488 * to stop dispatching requests to underlying devices when underlying
2489 * devices are busy. This behavior helps more I/O merging on the queue
2490 * of the request stacking driver and prevents I/O throughput regression
2491 * on burst I/O load.
2492 *
2493 * Return:
2494 * 0 - Not busy (The request stacking driver should dispatch request)
2495 * 1 - Busy (The request stacking driver should stop dispatching request)
2496 */
2497int blk_lld_busy(struct request_queue *q)
2498{
2499 if (q->lld_busy_fn)
2500 return q->lld_busy_fn(q);
2501
2502 return 0;
2503}
2504EXPORT_SYMBOL_GPL(blk_lld_busy);
2505
b0fd271d
KU
2506/**
2507 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2508 * @rq: the clone request to be cleaned up
2509 *
2510 * Description:
2511 * Free all bios in @rq for a cloned request.
2512 */
2513void blk_rq_unprep_clone(struct request *rq)
2514{
2515 struct bio *bio;
2516
2517 while ((bio = rq->bio) != NULL) {
2518 rq->bio = bio->bi_next;
2519
2520 bio_put(bio);
2521 }
2522}
2523EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2524
2525/*
2526 * Copy attributes of the original request to the clone request.
2527 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2528 */
2529static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2530{
2531 dst->cpu = src->cpu;
3a2edd0d 2532 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2533 dst->cmd_type = src->cmd_type;
2534 dst->__sector = blk_rq_pos(src);
2535 dst->__data_len = blk_rq_bytes(src);
2536 dst->nr_phys_segments = src->nr_phys_segments;
2537 dst->ioprio = src->ioprio;
2538 dst->extra_len = src->extra_len;
2539}
2540
2541/**
2542 * blk_rq_prep_clone - Helper function to setup clone request
2543 * @rq: the request to be setup
2544 * @rq_src: original request to be cloned
2545 * @bs: bio_set that bios for clone are allocated from
2546 * @gfp_mask: memory allocation mask for bio
2547 * @bio_ctr: setup function to be called for each clone bio.
2548 * Returns %0 for success, non %0 for failure.
2549 * @data: private data to be passed to @bio_ctr
2550 *
2551 * Description:
2552 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2553 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2554 * are not copied, and copying such parts is the caller's responsibility.
2555 * Also, pages which the original bios are pointing to are not copied
2556 * and the cloned bios just point same pages.
2557 * So cloned bios must be completed before original bios, which means
2558 * the caller must complete @rq before @rq_src.
2559 */
2560int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2561 struct bio_set *bs, gfp_t gfp_mask,
2562 int (*bio_ctr)(struct bio *, struct bio *, void *),
2563 void *data)
2564{
2565 struct bio *bio, *bio_src;
2566
2567 if (!bs)
2568 bs = fs_bio_set;
2569
2570 blk_rq_init(NULL, rq);
2571
2572 __rq_for_each_bio(bio_src, rq_src) {
2573 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2574 if (!bio)
2575 goto free_and_out;
2576
2577 __bio_clone(bio, bio_src);
2578
2579 if (bio_integrity(bio_src) &&
7878cba9 2580 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2581 goto free_and_out;
2582
2583 if (bio_ctr && bio_ctr(bio, bio_src, data))
2584 goto free_and_out;
2585
2586 if (rq->bio) {
2587 rq->biotail->bi_next = bio;
2588 rq->biotail = bio;
2589 } else
2590 rq->bio = rq->biotail = bio;
2591 }
2592
2593 __blk_rq_prep_clone(rq, rq_src);
2594
2595 return 0;
2596
2597free_and_out:
2598 if (bio)
2599 bio_free(bio, bs);
2600 blk_rq_unprep_clone(rq);
2601
2602 return -ENOMEM;
2603}
2604EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2605
18887ad9 2606int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2607{
2608 return queue_work(kblockd_workqueue, work);
2609}
1da177e4
LT
2610EXPORT_SYMBOL(kblockd_schedule_work);
2611
e43473b7
VG
2612int kblockd_schedule_delayed_work(struct request_queue *q,
2613 struct delayed_work *dwork, unsigned long delay)
2614{
2615 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2616}
2617EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2618
1da177e4
LT
2619int __init blk_dev_init(void)
2620{
9eb55b03
NK
2621 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2622 sizeof(((struct request *)0)->cmd_flags));
2623
1da177e4
LT
2624 kblockd_workqueue = create_workqueue("kblockd");
2625 if (!kblockd_workqueue)
2626 panic("Failed to create kblockd\n");
2627
2628 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2629 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2630
8324aa91 2631 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2632 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2633
d38ecf93 2634 return 0;
1da177e4 2635}