]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
ARM: 6435/1: Fix HWCAP_TLS flag for ARM11MPCore/Cortex-A9
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1abec4fd
MS
470 if (unlikely(rl->rq_pool))
471 return 0;
472
1faa16d2
JA
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 475 rl->elvpriv = 0;
1faa16d2
JA
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 478
1946089a
CL
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486}
487
165125e1 488struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 489{
1946089a
CL
490 return blk_alloc_queue_node(gfp_mask, -1);
491}
492EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 493
165125e1 494struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 495{
165125e1 496 struct request_queue *q;
e0bf68dd 497 int err;
1946089a 498
8324aa91 499 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 500 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
501 if (!q)
502 return NULL;
503
e0bf68dd
PZ
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 510 q->backing_dev_info.name = "block";
0989a025 511
e0bf68dd
PZ
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
31373d09
MG
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 520 init_timer(&q->unplug_timer);
242f9dcb
JA
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 523 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 524
8324aa91 525 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 526
483f4afc 527 mutex_init(&q->sysfs_lock);
e7e72bf6 528 spin_lock_init(&q->__queue_lock);
483f4afc 529
1da177e4
LT
530 return q;
531}
1946089a 532EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
533
534/**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
1da177e4 558 *
710027a4 559 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
1946089a 566
165125e1 567struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 568{
1946089a
CL
569 return blk_init_queue_node(rfn, lock, -1);
570}
571EXPORT_SYMBOL(blk_init_queue);
572
165125e1 573struct request_queue *
1946089a
CL
574blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575{
c86d1b8a 576 struct request_queue *uninit_q, *q;
1da177e4 577
c86d1b8a
MS
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
01effb0d
MS
587}
588EXPORT_SYMBOL(blk_init_queue_node);
589
590struct request_queue *
591blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593{
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595}
596EXPORT_SYMBOL(blk_init_allocated_queue);
597
598struct request_queue *
599blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601{
1da177e4
LT
602 if (!q)
603 return NULL;
604
1946089a 605 q->node = node_id;
c86d1b8a 606 if (blk_init_free_list(q))
8669aafd 607 return NULL;
1da177e4
LT
608
609 q->request_fn = rfn;
1da177e4 610 q->prep_rq_fn = NULL;
28018c24 611 q->unprep_rq_fn = NULL;
1da177e4 612 q->unplug_fn = generic_unplug_device;
bc58ba94 613 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
614 q->queue_lock = lock;
615
f3b144aa
JA
616 /*
617 * This also sets hw/phys segments, boundary and size
618 */
1da177e4 619 blk_queue_make_request(q, __make_request);
1da177e4 620
44ec9542
AS
621 q->sg_reserved_size = INT_MAX;
622
1da177e4
LT
623 /*
624 * all done
625 */
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
628 return q;
629 }
630
1da177e4
LT
631 return NULL;
632}
01effb0d 633EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 634
165125e1 635int blk_get_queue(struct request_queue *q)
1da177e4 636{
fde6ad22 637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 638 kobject_get(&q->kobj);
1da177e4
LT
639 return 0;
640 }
641
642 return 1;
643}
1da177e4 644
165125e1 645static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 646{
4aff5e23 647 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 648 elv_put_request(q, rq);
1da177e4
LT
649 mempool_free(rq, q->rq.rq_pool);
650}
651
1ea25ecb 652static struct request *
42dad764 653blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
654{
655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656
657 if (!rq)
658 return NULL;
659
2a4aa30c 660 blk_rq_init(q, rq);
1afb20f3 661
42dad764 662 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 663
cb98fc8b 664 if (priv) {
cb78b285 665 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
666 mempool_free(rq, q->rq.rq_pool);
667 return NULL;
668 }
4aff5e23 669 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 670 }
1da177e4 671
cb98fc8b 672 return rq;
1da177e4
LT
673}
674
675/*
676 * ioc_batching returns true if the ioc is a valid batching request and
677 * should be given priority access to a request.
678 */
165125e1 679static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
680{
681 if (!ioc)
682 return 0;
683
684 /*
685 * Make sure the process is able to allocate at least 1 request
686 * even if the batch times out, otherwise we could theoretically
687 * lose wakeups.
688 */
689 return ioc->nr_batch_requests == q->nr_batching ||
690 (ioc->nr_batch_requests > 0
691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692}
693
694/*
695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696 * will cause the process to be a "batcher" on all queues in the system. This
697 * is the behaviour we want though - once it gets a wakeup it should be given
698 * a nice run.
699 */
165125e1 700static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
701{
702 if (!ioc || ioc_batching(q, ioc))
703 return;
704
705 ioc->nr_batch_requests = q->nr_batching;
706 ioc->last_waited = jiffies;
707}
708
1faa16d2 709static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
710{
711 struct request_list *rl = &q->rq;
712
1faa16d2
JA
713 if (rl->count[sync] < queue_congestion_off_threshold(q))
714 blk_clear_queue_congested(q, sync);
1da177e4 715
1faa16d2
JA
716 if (rl->count[sync] + 1 <= q->nr_requests) {
717 if (waitqueue_active(&rl->wait[sync]))
718 wake_up(&rl->wait[sync]);
1da177e4 719
1faa16d2 720 blk_clear_queue_full(q, sync);
1da177e4
LT
721 }
722}
723
724/*
725 * A request has just been released. Account for it, update the full and
726 * congestion status, wake up any waiters. Called under q->queue_lock.
727 */
1faa16d2 728static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
729{
730 struct request_list *rl = &q->rq;
731
1faa16d2 732 rl->count[sync]--;
cb98fc8b
TH
733 if (priv)
734 rl->elvpriv--;
1da177e4 735
1faa16d2 736 __freed_request(q, sync);
1da177e4 737
1faa16d2
JA
738 if (unlikely(rl->starved[sync ^ 1]))
739 __freed_request(q, sync ^ 1);
1da177e4
LT
740}
741
1da177e4 742/*
d6344532
NP
743 * Get a free request, queue_lock must be held.
744 * Returns NULL on failure, with queue_lock held.
745 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 746 */
165125e1 747static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 748 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
749{
750 struct request *rq = NULL;
751 struct request_list *rl = &q->rq;
88ee5ef1 752 struct io_context *ioc = NULL;
1faa16d2 753 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
754 int may_queue, priv;
755
7749a8d4 756 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
757 if (may_queue == ELV_MQUEUE_NO)
758 goto rq_starved;
759
1faa16d2
JA
760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 762 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
763 /*
764 * The queue will fill after this allocation, so set
765 * it as full, and mark this process as "batching".
766 * This process will be allowed to complete a batch of
767 * requests, others will be blocked.
768 */
1faa16d2 769 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 770 ioc_set_batching(q, ioc);
1faa16d2 771 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
772 } else {
773 if (may_queue != ELV_MQUEUE_MUST
774 && !ioc_batching(q, ioc)) {
775 /*
776 * The queue is full and the allocating
777 * process is not a "batcher", and not
778 * exempted by the IO scheduler
779 */
780 goto out;
781 }
782 }
1da177e4 783 }
1faa16d2 784 blk_set_queue_congested(q, is_sync);
1da177e4
LT
785 }
786
082cf69e
JA
787 /*
788 * Only allow batching queuers to allocate up to 50% over the defined
789 * limit of requests, otherwise we could have thousands of requests
790 * allocated with any setting of ->nr_requests
791 */
1faa16d2 792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 793 goto out;
fd782a4a 794
1faa16d2
JA
795 rl->count[is_sync]++;
796 rl->starved[is_sync] = 0;
cb98fc8b 797
64521d1a 798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
799 if (priv)
800 rl->elvpriv++;
801
42dad764
JM
802 if (blk_queue_io_stat(q))
803 rw_flags |= REQ_IO_STAT;
1da177e4
LT
804 spin_unlock_irq(q->queue_lock);
805
7749a8d4 806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 807 if (unlikely(!rq)) {
1da177e4
LT
808 /*
809 * Allocation failed presumably due to memory. Undo anything
810 * we might have messed up.
811 *
812 * Allocating task should really be put onto the front of the
813 * wait queue, but this is pretty rare.
814 */
815 spin_lock_irq(q->queue_lock);
1faa16d2 816 freed_request(q, is_sync, priv);
1da177e4
LT
817
818 /*
819 * in the very unlikely event that allocation failed and no
820 * requests for this direction was pending, mark us starved
821 * so that freeing of a request in the other direction will
822 * notice us. another possible fix would be to split the
823 * rq mempool into READ and WRITE
824 */
825rq_starved:
1faa16d2
JA
826 if (unlikely(rl->count[is_sync] == 0))
827 rl->starved[is_sync] = 1;
1da177e4 828
1da177e4
LT
829 goto out;
830 }
831
88ee5ef1
JA
832 /*
833 * ioc may be NULL here, and ioc_batching will be false. That's
834 * OK, if the queue is under the request limit then requests need
835 * not count toward the nr_batch_requests limit. There will always
836 * be some limit enforced by BLK_BATCH_TIME.
837 */
1da177e4
LT
838 if (ioc_batching(q, ioc))
839 ioc->nr_batch_requests--;
6728cb0e 840
1faa16d2 841 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 842out:
1da177e4
LT
843 return rq;
844}
845
846/*
847 * No available requests for this queue, unplug the device and wait for some
848 * requests to become available.
d6344532
NP
849 *
850 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 851 */
165125e1 852static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 853 struct bio *bio)
1da177e4 854{
1faa16d2 855 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
856 struct request *rq;
857
7749a8d4 858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
859 while (!rq) {
860 DEFINE_WAIT(wait);
05caf8db 861 struct io_context *ioc;
1da177e4
LT
862 struct request_list *rl = &q->rq;
863
1faa16d2 864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
865 TASK_UNINTERRUPTIBLE);
866
1faa16d2 867 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 868
05caf8db
ZY
869 __generic_unplug_device(q);
870 spin_unlock_irq(q->queue_lock);
871 io_schedule();
1da177e4 872
05caf8db
ZY
873 /*
874 * After sleeping, we become a "batching" process and
875 * will be able to allocate at least one request, and
876 * up to a big batch of them for a small period time.
877 * See ioc_batching, ioc_set_batching
878 */
879 ioc = current_io_context(GFP_NOIO, q->node);
880 ioc_set_batching(q, ioc);
d6344532 881
05caf8db 882 spin_lock_irq(q->queue_lock);
1faa16d2 883 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
884
885 rq = get_request(q, rw_flags, bio, GFP_NOIO);
886 };
1da177e4
LT
887
888 return rq;
889}
890
165125e1 891struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
892{
893 struct request *rq;
894
895 BUG_ON(rw != READ && rw != WRITE);
896
d6344532
NP
897 spin_lock_irq(q->queue_lock);
898 if (gfp_mask & __GFP_WAIT) {
22e2c507 899 rq = get_request_wait(q, rw, NULL);
d6344532 900 } else {
22e2c507 901 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
902 if (!rq)
903 spin_unlock_irq(q->queue_lock);
904 }
905 /* q->queue_lock is unlocked at this point */
1da177e4
LT
906
907 return rq;
908}
1da177e4
LT
909EXPORT_SYMBOL(blk_get_request);
910
dc72ef4a 911/**
79eb63e9 912 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 913 * @q: target request queue
79eb63e9
BH
914 * @bio: The bio describing the memory mappings that will be submitted for IO.
915 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 916 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 917 *
79eb63e9
BH
918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919 * type commands. Where the struct request needs to be farther initialized by
920 * the caller. It is passed a &struct bio, which describes the memory info of
921 * the I/O transfer.
dc72ef4a 922 *
79eb63e9
BH
923 * The caller of blk_make_request must make sure that bi_io_vec
924 * are set to describe the memory buffers. That bio_data_dir() will return
925 * the needed direction of the request. (And all bio's in the passed bio-chain
926 * are properly set accordingly)
927 *
928 * If called under none-sleepable conditions, mapped bio buffers must not
929 * need bouncing, by calling the appropriate masked or flagged allocator,
930 * suitable for the target device. Otherwise the call to blk_queue_bounce will
931 * BUG.
53674ac5
JA
932 *
933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935 * anything but the first bio in the chain. Otherwise you risk waiting for IO
936 * completion of a bio that hasn't been submitted yet, thus resulting in a
937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938 * of bio_alloc(), as that avoids the mempool deadlock.
939 * If possible a big IO should be split into smaller parts when allocation
940 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 941 */
79eb63e9
BH
942struct request *blk_make_request(struct request_queue *q, struct bio *bio,
943 gfp_t gfp_mask)
dc72ef4a 944{
79eb63e9
BH
945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
946
947 if (unlikely(!rq))
948 return ERR_PTR(-ENOMEM);
949
950 for_each_bio(bio) {
951 struct bio *bounce_bio = bio;
952 int ret;
953
954 blk_queue_bounce(q, &bounce_bio);
955 ret = blk_rq_append_bio(q, rq, bounce_bio);
956 if (unlikely(ret)) {
957 blk_put_request(rq);
958 return ERR_PTR(ret);
959 }
960 }
961
962 return rq;
dc72ef4a 963}
79eb63e9 964EXPORT_SYMBOL(blk_make_request);
dc72ef4a 965
1da177e4
LT
966/**
967 * blk_requeue_request - put a request back on queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 *
971 * Description:
972 * Drivers often keep queueing requests until the hardware cannot accept
973 * more, when that condition happens we need to put the request back
974 * on the queue. Must be called with queue lock held.
975 */
165125e1 976void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 977{
242f9dcb
JA
978 blk_delete_timer(rq);
979 blk_clear_rq_complete(rq);
5f3ea37c 980 trace_block_rq_requeue(q, rq);
2056a782 981
1da177e4
LT
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
984
ba396a6c
JB
985 BUG_ON(blk_queued_rq(rq));
986
1da177e4
LT
987 elv_requeue_request(q, rq);
988}
1da177e4
LT
989EXPORT_SYMBOL(blk_requeue_request);
990
991/**
710027a4 992 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
993 * @q: request queue where request should be inserted
994 * @rq: request to be inserted
995 * @at_head: insert request at head or tail of queue
996 * @data: private data
1da177e4
LT
997 *
998 * Description:
999 * Many block devices need to execute commands asynchronously, so they don't
1000 * block the whole kernel from preemption during request execution. This is
1001 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003 * be scheduled for actual execution by the request queue.
1da177e4
LT
1004 *
1005 * We have the option of inserting the head or the tail of the queue.
1006 * Typically we use the tail for new ioctls and so forth. We use the head
1007 * of the queue for things like a QUEUE_FULL message from a device, or a
1008 * host that is unable to accept a particular command.
1009 */
165125e1 1010void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1011 int at_head, void *data)
1da177e4 1012{
867d1191 1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1014 unsigned long flags;
1015
1016 /*
1017 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 * must not attempt merges on this) and that it acts as a soft
1019 * barrier
1020 */
4aff5e23 1021 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1022
1023 rq->special = data;
1024
1025 spin_lock_irqsave(q->queue_lock, flags);
1026
1027 /*
1028 * If command is tagged, release the tag
1029 */
867d1191
TH
1030 if (blk_rq_tagged(rq))
1031 blk_queue_end_tag(q, rq);
1da177e4 1032
b238b3d4 1033 drive_stat_acct(rq, 1);
867d1191 1034 __elv_add_request(q, rq, where, 0);
a7f55792 1035 __blk_run_queue(q);
1da177e4
LT
1036 spin_unlock_irqrestore(q->queue_lock, flags);
1037}
1da177e4
LT
1038EXPORT_SYMBOL(blk_insert_request);
1039
1da177e4
LT
1040/*
1041 * add-request adds a request to the linked list.
1042 * queue lock is held and interrupts disabled, as we muck with the
1043 * request queue list.
1044 */
6728cb0e 1045static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1046{
b238b3d4 1047 drive_stat_acct(req, 1);
1da177e4 1048
1da177e4
LT
1049 /*
1050 * elevator indicated where it wants this request to be
1051 * inserted at elevator_merge time
1052 */
1053 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1054}
6728cb0e 1055
074a7aca
TH
1056static void part_round_stats_single(int cpu, struct hd_struct *part,
1057 unsigned long now)
1058{
1059 if (now == part->stamp)
1060 return;
1061
316d315b 1062 if (part_in_flight(part)) {
074a7aca 1063 __part_stat_add(cpu, part, time_in_queue,
316d315b 1064 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1065 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1066 }
1067 part->stamp = now;
1068}
1069
1070/**
496aa8a9
RD
1071 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1072 * @cpu: cpu number for stats access
1073 * @part: target partition
1da177e4
LT
1074 *
1075 * The average IO queue length and utilisation statistics are maintained
1076 * by observing the current state of the queue length and the amount of
1077 * time it has been in this state for.
1078 *
1079 * Normally, that accounting is done on IO completion, but that can result
1080 * in more than a second's worth of IO being accounted for within any one
1081 * second, leading to >100% utilisation. To deal with that, we call this
1082 * function to do a round-off before returning the results when reading
1083 * /proc/diskstats. This accounts immediately for all queue usage up to
1084 * the current jiffies and restarts the counters again.
1085 */
c9959059 1086void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1087{
1088 unsigned long now = jiffies;
1089
074a7aca
TH
1090 if (part->partno)
1091 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1092 part_round_stats_single(cpu, part, now);
6f2576af 1093}
074a7aca 1094EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1095
1da177e4
LT
1096/*
1097 * queue lock must be held
1098 */
165125e1 1099void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1100{
1da177e4
LT
1101 if (unlikely(!q))
1102 return;
1103 if (unlikely(--req->ref_count))
1104 return;
1105
8922e16c
TH
1106 elv_completed_request(q, req);
1107
1cd96c24
BH
1108 /* this is a bio leak */
1109 WARN_ON(req->bio != NULL);
1110
1da177e4
LT
1111 /*
1112 * Request may not have originated from ll_rw_blk. if not,
1113 * it didn't come out of our reserved rq pools
1114 */
49171e5c 1115 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1116 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1117 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1118
1da177e4 1119 BUG_ON(!list_empty(&req->queuelist));
9817064b 1120 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1121
1122 blk_free_request(q, req);
1faa16d2 1123 freed_request(q, is_sync, priv);
1da177e4
LT
1124 }
1125}
6e39b69e
MC
1126EXPORT_SYMBOL_GPL(__blk_put_request);
1127
1da177e4
LT
1128void blk_put_request(struct request *req)
1129{
8922e16c 1130 unsigned long flags;
165125e1 1131 struct request_queue *q = req->q;
8922e16c 1132
52a93ba8
FT
1133 spin_lock_irqsave(q->queue_lock, flags);
1134 __blk_put_request(q, req);
1135 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1136}
1da177e4
LT
1137EXPORT_SYMBOL(blk_put_request);
1138
66ac0280
CH
1139/**
1140 * blk_add_request_payload - add a payload to a request
1141 * @rq: request to update
1142 * @page: page backing the payload
1143 * @len: length of the payload.
1144 *
1145 * This allows to later add a payload to an already submitted request by
1146 * a block driver. The driver needs to take care of freeing the payload
1147 * itself.
1148 *
1149 * Note that this is a quite horrible hack and nothing but handling of
1150 * discard requests should ever use it.
1151 */
1152void blk_add_request_payload(struct request *rq, struct page *page,
1153 unsigned int len)
1154{
1155 struct bio *bio = rq->bio;
1156
1157 bio->bi_io_vec->bv_page = page;
1158 bio->bi_io_vec->bv_offset = 0;
1159 bio->bi_io_vec->bv_len = len;
1160
1161 bio->bi_size = len;
1162 bio->bi_vcnt = 1;
1163 bio->bi_phys_segments = 1;
1164
1165 rq->__data_len = rq->resid_len = len;
1166 rq->nr_phys_segments = 1;
1167 rq->buffer = bio_data(bio);
1168}
1169EXPORT_SYMBOL_GPL(blk_add_request_payload);
1170
86db1e29 1171void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1172{
c7c22e4d 1173 req->cpu = bio->bi_comp_cpu;
4aff5e23 1174 req->cmd_type = REQ_TYPE_FS;
52d9e675 1175
7b6d91da
CH
1176 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1177 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1178 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1179
52d9e675 1180 req->errors = 0;
a2dec7b3 1181 req->__sector = bio->bi_sector;
52d9e675 1182 req->ioprio = bio_prio(bio);
bc1c56fd 1183 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1184}
1185
644b2d99
JA
1186/*
1187 * Only disabling plugging for non-rotational devices if it does tagging
1188 * as well, otherwise we do need the proper merging
1189 */
1190static inline bool queue_should_plug(struct request_queue *q)
1191{
79da0644 1192 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1193}
1194
165125e1 1195static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1196{
450991bc 1197 struct request *req;
2e46e8b2
TH
1198 int el_ret;
1199 unsigned int bytes = bio->bi_size;
51da90fc 1200 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1201 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1202 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1203 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1204 int rw_flags;
1da177e4 1205
7b6d91da 1206 if ((bio->bi_rw & REQ_HARDBARRIER) &&
db64f680
N
1207 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1208 bio_endio(bio, -EOPNOTSUPP);
1209 return 0;
1210 }
1da177e4
LT
1211 /*
1212 * low level driver can indicate that it wants pages above a
1213 * certain limit bounced to low memory (ie for highmem, or even
1214 * ISA dma in theory)
1215 */
1216 blk_queue_bounce(q, &bio);
1217
1da177e4
LT
1218 spin_lock_irq(q->queue_lock);
1219
7b6d91da 1220 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1da177e4
LT
1221 goto get_rq;
1222
1223 el_ret = elv_merge(q, &req, bio);
1224 switch (el_ret) {
6728cb0e
JA
1225 case ELEVATOR_BACK_MERGE:
1226 BUG_ON(!rq_mergeable(req));
1da177e4 1227
6728cb0e
JA
1228 if (!ll_back_merge_fn(q, req, bio))
1229 break;
1da177e4 1230
5f3ea37c 1231 trace_block_bio_backmerge(q, bio);
2056a782 1232
80a761fd
TH
1233 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1234 blk_rq_set_mixed_merge(req);
1235
6728cb0e
JA
1236 req->biotail->bi_next = bio;
1237 req->biotail = bio;
a2dec7b3 1238 req->__data_len += bytes;
6728cb0e 1239 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1240 if (!blk_rq_cpu_valid(req))
1241 req->cpu = bio->bi_comp_cpu;
6728cb0e 1242 drive_stat_acct(req, 0);
812d4026 1243 elv_bio_merged(q, req, bio);
6728cb0e
JA
1244 if (!attempt_back_merge(q, req))
1245 elv_merged_request(q, req, el_ret);
1246 goto out;
1da177e4 1247
6728cb0e
JA
1248 case ELEVATOR_FRONT_MERGE:
1249 BUG_ON(!rq_mergeable(req));
1da177e4 1250
6728cb0e
JA
1251 if (!ll_front_merge_fn(q, req, bio))
1252 break;
1da177e4 1253
5f3ea37c 1254 trace_block_bio_frontmerge(q, bio);
2056a782 1255
80a761fd
TH
1256 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1257 blk_rq_set_mixed_merge(req);
1258 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1259 req->cmd_flags |= ff;
1260 }
1261
6728cb0e
JA
1262 bio->bi_next = req->bio;
1263 req->bio = bio;
1da177e4 1264
6728cb0e
JA
1265 /*
1266 * may not be valid. if the low level driver said
1267 * it didn't need a bounce buffer then it better
1268 * not touch req->buffer either...
1269 */
1270 req->buffer = bio_data(bio);
a2dec7b3
TH
1271 req->__sector = bio->bi_sector;
1272 req->__data_len += bytes;
6728cb0e 1273 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1274 if (!blk_rq_cpu_valid(req))
1275 req->cpu = bio->bi_comp_cpu;
6728cb0e 1276 drive_stat_acct(req, 0);
812d4026 1277 elv_bio_merged(q, req, bio);
6728cb0e
JA
1278 if (!attempt_front_merge(q, req))
1279 elv_merged_request(q, req, el_ret);
1280 goto out;
1281
1282 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1283 default:
1284 ;
1da177e4
LT
1285 }
1286
450991bc 1287get_rq:
7749a8d4
JA
1288 /*
1289 * This sync check and mask will be re-done in init_request_from_bio(),
1290 * but we need to set it earlier to expose the sync flag to the
1291 * rq allocator and io schedulers.
1292 */
1293 rw_flags = bio_data_dir(bio);
1294 if (sync)
7b6d91da 1295 rw_flags |= REQ_SYNC;
7749a8d4 1296
1da177e4 1297 /*
450991bc 1298 * Grab a free request. This is might sleep but can not fail.
d6344532 1299 * Returns with the queue unlocked.
450991bc 1300 */
7749a8d4 1301 req = get_request_wait(q, rw_flags, bio);
d6344532 1302
450991bc
NP
1303 /*
1304 * After dropping the lock and possibly sleeping here, our request
1305 * may now be mergeable after it had proven unmergeable (above).
1306 * We don't worry about that case for efficiency. It won't happen
1307 * often, and the elevators are able to handle it.
1da177e4 1308 */
52d9e675 1309 init_request_from_bio(req, bio);
1da177e4 1310
450991bc 1311 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1312 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1313 bio_flagged(bio, BIO_CPU_AFFINE))
1314 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1315 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1316 blk_plug_device(q);
1da177e4
LT
1317 add_request(q, req);
1318out:
644b2d99 1319 if (unplug || !queue_should_plug(q))
1da177e4 1320 __generic_unplug_device(q);
1da177e4
LT
1321 spin_unlock_irq(q->queue_lock);
1322 return 0;
1da177e4
LT
1323}
1324
1325/*
1326 * If bio->bi_dev is a partition, remap the location
1327 */
1328static inline void blk_partition_remap(struct bio *bio)
1329{
1330 struct block_device *bdev = bio->bi_bdev;
1331
bf2de6f5 1332 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1333 struct hd_struct *p = bdev->bd_part;
1334
1da177e4
LT
1335 bio->bi_sector += p->start_sect;
1336 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1337
5f3ea37c 1338 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1339 bdev->bd_dev,
c7149d6b 1340 bio->bi_sector - p->start_sect);
1da177e4
LT
1341 }
1342}
1343
1da177e4
LT
1344static void handle_bad_sector(struct bio *bio)
1345{
1346 char b[BDEVNAME_SIZE];
1347
1348 printk(KERN_INFO "attempt to access beyond end of device\n");
1349 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1350 bdevname(bio->bi_bdev, b),
1351 bio->bi_rw,
1352 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1353 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1354
1355 set_bit(BIO_EOF, &bio->bi_flags);
1356}
1357
c17bb495
AM
1358#ifdef CONFIG_FAIL_MAKE_REQUEST
1359
1360static DECLARE_FAULT_ATTR(fail_make_request);
1361
1362static int __init setup_fail_make_request(char *str)
1363{
1364 return setup_fault_attr(&fail_make_request, str);
1365}
1366__setup("fail_make_request=", setup_fail_make_request);
1367
1368static int should_fail_request(struct bio *bio)
1369{
eddb2e26
TH
1370 struct hd_struct *part = bio->bi_bdev->bd_part;
1371
1372 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1373 return should_fail(&fail_make_request, bio->bi_size);
1374
1375 return 0;
1376}
1377
1378static int __init fail_make_request_debugfs(void)
1379{
1380 return init_fault_attr_dentries(&fail_make_request,
1381 "fail_make_request");
1382}
1383
1384late_initcall(fail_make_request_debugfs);
1385
1386#else /* CONFIG_FAIL_MAKE_REQUEST */
1387
1388static inline int should_fail_request(struct bio *bio)
1389{
1390 return 0;
1391}
1392
1393#endif /* CONFIG_FAIL_MAKE_REQUEST */
1394
c07e2b41
JA
1395/*
1396 * Check whether this bio extends beyond the end of the device.
1397 */
1398static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1399{
1400 sector_t maxsector;
1401
1402 if (!nr_sectors)
1403 return 0;
1404
1405 /* Test device or partition size, when known. */
1406 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1407 if (maxsector) {
1408 sector_t sector = bio->bi_sector;
1409
1410 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1411 /*
1412 * This may well happen - the kernel calls bread()
1413 * without checking the size of the device, e.g., when
1414 * mounting a device.
1415 */
1416 handle_bad_sector(bio);
1417 return 1;
1418 }
1419 }
1420
1421 return 0;
1422}
1423
1da177e4 1424/**
710027a4 1425 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1426 * @bio: The bio describing the location in memory and on the device.
1427 *
1428 * generic_make_request() is used to make I/O requests of block
1429 * devices. It is passed a &struct bio, which describes the I/O that needs
1430 * to be done.
1431 *
1432 * generic_make_request() does not return any status. The
1433 * success/failure status of the request, along with notification of
1434 * completion, is delivered asynchronously through the bio->bi_end_io
1435 * function described (one day) else where.
1436 *
1437 * The caller of generic_make_request must make sure that bi_io_vec
1438 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1439 * set to describe the device address, and the
1440 * bi_end_io and optionally bi_private are set to describe how
1441 * completion notification should be signaled.
1442 *
1443 * generic_make_request and the drivers it calls may use bi_next if this
1444 * bio happens to be merged with someone else, and may change bi_dev and
1445 * bi_sector for remaps as it sees fit. So the values of these fields
1446 * should NOT be depended on after the call to generic_make_request.
1447 */
d89d8796 1448static inline void __generic_make_request(struct bio *bio)
1da177e4 1449{
165125e1 1450 struct request_queue *q;
5ddfe969 1451 sector_t old_sector;
1da177e4 1452 int ret, nr_sectors = bio_sectors(bio);
2056a782 1453 dev_t old_dev;
51fd77bd 1454 int err = -EIO;
1da177e4
LT
1455
1456 might_sleep();
1da177e4 1457
c07e2b41
JA
1458 if (bio_check_eod(bio, nr_sectors))
1459 goto end_io;
1da177e4
LT
1460
1461 /*
1462 * Resolve the mapping until finished. (drivers are
1463 * still free to implement/resolve their own stacking
1464 * by explicitly returning 0)
1465 *
1466 * NOTE: we don't repeat the blk_size check for each new device.
1467 * Stacking drivers are expected to know what they are doing.
1468 */
5ddfe969 1469 old_sector = -1;
2056a782 1470 old_dev = 0;
1da177e4
LT
1471 do {
1472 char b[BDEVNAME_SIZE];
1473
1474 q = bdev_get_queue(bio->bi_bdev);
a7384677 1475 if (unlikely(!q)) {
1da177e4
LT
1476 printk(KERN_ERR
1477 "generic_make_request: Trying to access "
1478 "nonexistent block-device %s (%Lu)\n",
1479 bdevname(bio->bi_bdev, b),
1480 (long long) bio->bi_sector);
a7384677 1481 goto end_io;
1da177e4
LT
1482 }
1483
7b6d91da 1484 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1485 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1486 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1487 bdevname(bio->bi_bdev, b),
1488 bio_sectors(bio),
1489 queue_max_hw_sectors(q));
1da177e4
LT
1490 goto end_io;
1491 }
1492
fde6ad22 1493 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1494 goto end_io;
1495
c17bb495
AM
1496 if (should_fail_request(bio))
1497 goto end_io;
1498
1da177e4
LT
1499 /*
1500 * If this device has partitions, remap block n
1501 * of partition p to block n+start(p) of the disk.
1502 */
1503 blk_partition_remap(bio);
1504
7ba1ba12
MP
1505 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1506 goto end_io;
1507
5ddfe969 1508 if (old_sector != -1)
22a7c31a 1509 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1510
5ddfe969 1511 old_sector = bio->bi_sector;
2056a782
JA
1512 old_dev = bio->bi_bdev->bd_dev;
1513
c07e2b41
JA
1514 if (bio_check_eod(bio, nr_sectors))
1515 goto end_io;
a7384677 1516
8d57a98c
AH
1517 if ((bio->bi_rw & REQ_DISCARD) &&
1518 (!blk_queue_discard(q) ||
1519 ((bio->bi_rw & REQ_SECURE) &&
1520 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1521 err = -EOPNOTSUPP;
1522 goto end_io;
1523 }
5ddfe969 1524
01edede4
MK
1525 trace_block_bio_queue(q, bio);
1526
1da177e4
LT
1527 ret = q->make_request_fn(q, bio);
1528 } while (ret);
a7384677
TH
1529
1530 return;
1531
1532end_io:
1533 bio_endio(bio, err);
1da177e4
LT
1534}
1535
d89d8796
NB
1536/*
1537 * We only want one ->make_request_fn to be active at a time,
1538 * else stack usage with stacked devices could be a problem.
bddd87c7 1539 * So use current->bio_list to keep a list of requests
d89d8796 1540 * submited by a make_request_fn function.
bddd87c7 1541 * current->bio_list is also used as a flag to say if
d89d8796
NB
1542 * generic_make_request is currently active in this task or not.
1543 * If it is NULL, then no make_request is active. If it is non-NULL,
1544 * then a make_request is active, and new requests should be added
1545 * at the tail
1546 */
1547void generic_make_request(struct bio *bio)
1548{
bddd87c7
AM
1549 struct bio_list bio_list_on_stack;
1550
1551 if (current->bio_list) {
d89d8796 1552 /* make_request is active */
bddd87c7 1553 bio_list_add(current->bio_list, bio);
d89d8796
NB
1554 return;
1555 }
1556 /* following loop may be a bit non-obvious, and so deserves some
1557 * explanation.
1558 * Before entering the loop, bio->bi_next is NULL (as all callers
1559 * ensure that) so we have a list with a single bio.
1560 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1561 * we assign bio_list to a pointer to the bio_list_on_stack,
1562 * thus initialising the bio_list of new bios to be
d89d8796
NB
1563 * added. __generic_make_request may indeed add some more bios
1564 * through a recursive call to generic_make_request. If it
1565 * did, we find a non-NULL value in bio_list and re-enter the loop
1566 * from the top. In this case we really did just take the bio
bddd87c7
AM
1567 * of the top of the list (no pretending) and so remove it from
1568 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1569 *
1570 * The loop was structured like this to make only one call to
1571 * __generic_make_request (which is important as it is large and
1572 * inlined) and to keep the structure simple.
1573 */
1574 BUG_ON(bio->bi_next);
bddd87c7
AM
1575 bio_list_init(&bio_list_on_stack);
1576 current->bio_list = &bio_list_on_stack;
d89d8796 1577 do {
d89d8796 1578 __generic_make_request(bio);
bddd87c7 1579 bio = bio_list_pop(current->bio_list);
d89d8796 1580 } while (bio);
bddd87c7 1581 current->bio_list = NULL; /* deactivate */
d89d8796 1582}
1da177e4
LT
1583EXPORT_SYMBOL(generic_make_request);
1584
1585/**
710027a4 1586 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1587 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1588 * @bio: The &struct bio which describes the I/O
1589 *
1590 * submit_bio() is very similar in purpose to generic_make_request(), and
1591 * uses that function to do most of the work. Both are fairly rough
710027a4 1592 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1593 *
1594 */
1595void submit_bio(int rw, struct bio *bio)
1596{
1597 int count = bio_sectors(bio);
1598
22e2c507 1599 bio->bi_rw |= rw;
1da177e4 1600
bf2de6f5
JA
1601 /*
1602 * If it's a regular read/write or a barrier with data attached,
1603 * go through the normal accounting stuff before submission.
1604 */
3ffb52e7 1605 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1606 if (rw & WRITE) {
1607 count_vm_events(PGPGOUT, count);
1608 } else {
1609 task_io_account_read(bio->bi_size);
1610 count_vm_events(PGPGIN, count);
1611 }
1612
1613 if (unlikely(block_dump)) {
1614 char b[BDEVNAME_SIZE];
1615 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1616 current->comm, task_pid_nr(current),
bf2de6f5
JA
1617 (rw & WRITE) ? "WRITE" : "READ",
1618 (unsigned long long)bio->bi_sector,
6728cb0e 1619 bdevname(bio->bi_bdev, b));
bf2de6f5 1620 }
1da177e4
LT
1621 }
1622
1623 generic_make_request(bio);
1624}
1da177e4
LT
1625EXPORT_SYMBOL(submit_bio);
1626
82124d60
KU
1627/**
1628 * blk_rq_check_limits - Helper function to check a request for the queue limit
1629 * @q: the queue
1630 * @rq: the request being checked
1631 *
1632 * Description:
1633 * @rq may have been made based on weaker limitations of upper-level queues
1634 * in request stacking drivers, and it may violate the limitation of @q.
1635 * Since the block layer and the underlying device driver trust @rq
1636 * after it is inserted to @q, it should be checked against @q before
1637 * the insertion using this generic function.
1638 *
1639 * This function should also be useful for request stacking drivers
1640 * in some cases below, so export this fuction.
1641 * Request stacking drivers like request-based dm may change the queue
1642 * limits while requests are in the queue (e.g. dm's table swapping).
1643 * Such request stacking drivers should check those requests agaist
1644 * the new queue limits again when they dispatch those requests,
1645 * although such checkings are also done against the old queue limits
1646 * when submitting requests.
1647 */
1648int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1649{
3383977f
S
1650 if (rq->cmd_flags & REQ_DISCARD)
1651 return 0;
1652
ae03bf63
MP
1653 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1654 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1655 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1656 return -EIO;
1657 }
1658
1659 /*
1660 * queue's settings related to segment counting like q->bounce_pfn
1661 * may differ from that of other stacking queues.
1662 * Recalculate it to check the request correctly on this queue's
1663 * limitation.
1664 */
1665 blk_recalc_rq_segments(rq);
8a78362c 1666 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1667 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1668 return -EIO;
1669 }
1670
1671 return 0;
1672}
1673EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1674
1675/**
1676 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1677 * @q: the queue to submit the request
1678 * @rq: the request being queued
1679 */
1680int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1681{
1682 unsigned long flags;
1683
1684 if (blk_rq_check_limits(q, rq))
1685 return -EIO;
1686
1687#ifdef CONFIG_FAIL_MAKE_REQUEST
1688 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1689 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1690 return -EIO;
1691#endif
1692
1693 spin_lock_irqsave(q->queue_lock, flags);
1694
1695 /*
1696 * Submitting request must be dequeued before calling this function
1697 * because it will be linked to another request_queue
1698 */
1699 BUG_ON(blk_queued_rq(rq));
1700
1701 drive_stat_acct(rq, 1);
1702 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1703
1704 spin_unlock_irqrestore(q->queue_lock, flags);
1705
1706 return 0;
1707}
1708EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1709
80a761fd
TH
1710/**
1711 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1712 * @rq: request to examine
1713 *
1714 * Description:
1715 * A request could be merge of IOs which require different failure
1716 * handling. This function determines the number of bytes which
1717 * can be failed from the beginning of the request without
1718 * crossing into area which need to be retried further.
1719 *
1720 * Return:
1721 * The number of bytes to fail.
1722 *
1723 * Context:
1724 * queue_lock must be held.
1725 */
1726unsigned int blk_rq_err_bytes(const struct request *rq)
1727{
1728 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1729 unsigned int bytes = 0;
1730 struct bio *bio;
1731
1732 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1733 return blk_rq_bytes(rq);
1734
1735 /*
1736 * Currently the only 'mixing' which can happen is between
1737 * different fastfail types. We can safely fail portions
1738 * which have all the failfast bits that the first one has -
1739 * the ones which are at least as eager to fail as the first
1740 * one.
1741 */
1742 for (bio = rq->bio; bio; bio = bio->bi_next) {
1743 if ((bio->bi_rw & ff) != ff)
1744 break;
1745 bytes += bio->bi_size;
1746 }
1747
1748 /* this could lead to infinite loop */
1749 BUG_ON(blk_rq_bytes(rq) && !bytes);
1750 return bytes;
1751}
1752EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1753
bc58ba94
JA
1754static void blk_account_io_completion(struct request *req, unsigned int bytes)
1755{
c2553b58 1756 if (blk_do_io_stat(req)) {
bc58ba94
JA
1757 const int rw = rq_data_dir(req);
1758 struct hd_struct *part;
1759 int cpu;
1760
1761 cpu = part_stat_lock();
83096ebf 1762 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1763 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1764 part_stat_unlock();
1765 }
1766}
1767
1768static void blk_account_io_done(struct request *req)
1769{
bc58ba94
JA
1770 /*
1771 * Account IO completion. bar_rq isn't accounted as a normal
1772 * IO on queueing nor completion. Accounting the containing
1773 * request is enough.
1774 */
c2553b58 1775 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1776 unsigned long duration = jiffies - req->start_time;
1777 const int rw = rq_data_dir(req);
1778 struct hd_struct *part;
1779 int cpu;
1780
1781 cpu = part_stat_lock();
83096ebf 1782 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1783
1784 part_stat_inc(cpu, part, ios[rw]);
1785 part_stat_add(cpu, part, ticks[rw], duration);
1786 part_round_stats(cpu, part);
316d315b 1787 part_dec_in_flight(part, rw);
bc58ba94
JA
1788
1789 part_stat_unlock();
1790 }
1791}
1792
3bcddeac 1793/**
9934c8c0
TH
1794 * blk_peek_request - peek at the top of a request queue
1795 * @q: request queue to peek at
1796 *
1797 * Description:
1798 * Return the request at the top of @q. The returned request
1799 * should be started using blk_start_request() before LLD starts
1800 * processing it.
1801 *
1802 * Return:
1803 * Pointer to the request at the top of @q if available. Null
1804 * otherwise.
1805 *
1806 * Context:
1807 * queue_lock must be held.
1808 */
1809struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1810{
1811 struct request *rq;
1812 int ret;
1813
1814 while ((rq = __elv_next_request(q)) != NULL) {
1815 if (!(rq->cmd_flags & REQ_STARTED)) {
1816 /*
1817 * This is the first time the device driver
1818 * sees this request (possibly after
1819 * requeueing). Notify IO scheduler.
1820 */
33659ebb 1821 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1822 elv_activate_rq(q, rq);
1823
1824 /*
1825 * just mark as started even if we don't start
1826 * it, a request that has been delayed should
1827 * not be passed by new incoming requests
1828 */
1829 rq->cmd_flags |= REQ_STARTED;
1830 trace_block_rq_issue(q, rq);
1831 }
1832
1833 if (!q->boundary_rq || q->boundary_rq == rq) {
1834 q->end_sector = rq_end_sector(rq);
1835 q->boundary_rq = NULL;
1836 }
1837
1838 if (rq->cmd_flags & REQ_DONTPREP)
1839 break;
1840
2e46e8b2 1841 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1842 /*
1843 * make sure space for the drain appears we
1844 * know we can do this because max_hw_segments
1845 * has been adjusted to be one fewer than the
1846 * device can handle
1847 */
1848 rq->nr_phys_segments++;
1849 }
1850
1851 if (!q->prep_rq_fn)
1852 break;
1853
1854 ret = q->prep_rq_fn(q, rq);
1855 if (ret == BLKPREP_OK) {
1856 break;
1857 } else if (ret == BLKPREP_DEFER) {
1858 /*
1859 * the request may have been (partially) prepped.
1860 * we need to keep this request in the front to
1861 * avoid resource deadlock. REQ_STARTED will
1862 * prevent other fs requests from passing this one.
1863 */
2e46e8b2 1864 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1865 !(rq->cmd_flags & REQ_DONTPREP)) {
1866 /*
1867 * remove the space for the drain we added
1868 * so that we don't add it again
1869 */
1870 --rq->nr_phys_segments;
1871 }
1872
1873 rq = NULL;
1874 break;
1875 } else if (ret == BLKPREP_KILL) {
1876 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1877 /*
1878 * Mark this request as started so we don't trigger
1879 * any debug logic in the end I/O path.
1880 */
1881 blk_start_request(rq);
40cbbb78 1882 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1883 } else {
1884 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1885 break;
1886 }
1887 }
1888
1889 return rq;
1890}
9934c8c0 1891EXPORT_SYMBOL(blk_peek_request);
158dbda0 1892
9934c8c0 1893void blk_dequeue_request(struct request *rq)
158dbda0 1894{
9934c8c0
TH
1895 struct request_queue *q = rq->q;
1896
158dbda0
TH
1897 BUG_ON(list_empty(&rq->queuelist));
1898 BUG_ON(ELV_ON_HASH(rq));
1899
1900 list_del_init(&rq->queuelist);
1901
1902 /*
1903 * the time frame between a request being removed from the lists
1904 * and to it is freed is accounted as io that is in progress at
1905 * the driver side.
1906 */
9195291e 1907 if (blk_account_rq(rq)) {
0a7ae2ff 1908 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1909 set_io_start_time_ns(rq);
1910 }
158dbda0
TH
1911}
1912
9934c8c0
TH
1913/**
1914 * blk_start_request - start request processing on the driver
1915 * @req: request to dequeue
1916 *
1917 * Description:
1918 * Dequeue @req and start timeout timer on it. This hands off the
1919 * request to the driver.
1920 *
1921 * Block internal functions which don't want to start timer should
1922 * call blk_dequeue_request().
1923 *
1924 * Context:
1925 * queue_lock must be held.
1926 */
1927void blk_start_request(struct request *req)
1928{
1929 blk_dequeue_request(req);
1930
1931 /*
5f49f631
TH
1932 * We are now handing the request to the hardware, initialize
1933 * resid_len to full count and add the timeout handler.
9934c8c0 1934 */
5f49f631 1935 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1936 if (unlikely(blk_bidi_rq(req)))
1937 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1938
9934c8c0
TH
1939 blk_add_timer(req);
1940}
1941EXPORT_SYMBOL(blk_start_request);
1942
1943/**
1944 * blk_fetch_request - fetch a request from a request queue
1945 * @q: request queue to fetch a request from
1946 *
1947 * Description:
1948 * Return the request at the top of @q. The request is started on
1949 * return and LLD can start processing it immediately.
1950 *
1951 * Return:
1952 * Pointer to the request at the top of @q if available. Null
1953 * otherwise.
1954 *
1955 * Context:
1956 * queue_lock must be held.
1957 */
1958struct request *blk_fetch_request(struct request_queue *q)
1959{
1960 struct request *rq;
1961
1962 rq = blk_peek_request(q);
1963 if (rq)
1964 blk_start_request(rq);
1965 return rq;
1966}
1967EXPORT_SYMBOL(blk_fetch_request);
1968
3bcddeac 1969/**
2e60e022 1970 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1971 * @req: the request being processed
710027a4 1972 * @error: %0 for success, < %0 for error
8ebf9756 1973 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1974 *
1975 * Description:
8ebf9756
RD
1976 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1977 * the request structure even if @req doesn't have leftover.
1978 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1979 *
1980 * This special helper function is only for request stacking drivers
1981 * (e.g. request-based dm) so that they can handle partial completion.
1982 * Actual device drivers should use blk_end_request instead.
1983 *
1984 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1985 * %false return from this function.
3bcddeac
KU
1986 *
1987 * Return:
2e60e022
TH
1988 * %false - this request doesn't have any more data
1989 * %true - this request has more data
3bcddeac 1990 **/
2e60e022 1991bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1992{
5450d3e1 1993 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1994 struct bio *bio;
1995
2e60e022
TH
1996 if (!req->bio)
1997 return false;
1998
5f3ea37c 1999 trace_block_rq_complete(req->q, req);
2056a782 2000
1da177e4 2001 /*
6f41469c
TH
2002 * For fs requests, rq is just carrier of independent bio's
2003 * and each partial completion should be handled separately.
2004 * Reset per-request error on each partial completion.
2005 *
2006 * TODO: tj: This is too subtle. It would be better to let
2007 * low level drivers do what they see fit.
1da177e4 2008 */
33659ebb 2009 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2010 req->errors = 0;
2011
33659ebb
CH
2012 if (error && req->cmd_type == REQ_TYPE_FS &&
2013 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2014 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2015 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2016 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2017 }
2018
bc58ba94 2019 blk_account_io_completion(req, nr_bytes);
d72d904a 2020
1da177e4
LT
2021 total_bytes = bio_nbytes = 0;
2022 while ((bio = req->bio) != NULL) {
2023 int nbytes;
2024
2025 if (nr_bytes >= bio->bi_size) {
2026 req->bio = bio->bi_next;
2027 nbytes = bio->bi_size;
5bb23a68 2028 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2029 next_idx = 0;
2030 bio_nbytes = 0;
2031 } else {
2032 int idx = bio->bi_idx + next_idx;
2033
af498d7f 2034 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2035 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2036 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2037 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2038 break;
2039 }
2040
2041 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2042 BIO_BUG_ON(nbytes > bio->bi_size);
2043
2044 /*
2045 * not a complete bvec done
2046 */
2047 if (unlikely(nbytes > nr_bytes)) {
2048 bio_nbytes += nr_bytes;
2049 total_bytes += nr_bytes;
2050 break;
2051 }
2052
2053 /*
2054 * advance to the next vector
2055 */
2056 next_idx++;
2057 bio_nbytes += nbytes;
2058 }
2059
2060 total_bytes += nbytes;
2061 nr_bytes -= nbytes;
2062
6728cb0e
JA
2063 bio = req->bio;
2064 if (bio) {
1da177e4
LT
2065 /*
2066 * end more in this run, or just return 'not-done'
2067 */
2068 if (unlikely(nr_bytes <= 0))
2069 break;
2070 }
2071 }
2072
2073 /*
2074 * completely done
2075 */
2e60e022
TH
2076 if (!req->bio) {
2077 /*
2078 * Reset counters so that the request stacking driver
2079 * can find how many bytes remain in the request
2080 * later.
2081 */
a2dec7b3 2082 req->__data_len = 0;
2e60e022
TH
2083 return false;
2084 }
1da177e4
LT
2085
2086 /*
2087 * if the request wasn't completed, update state
2088 */
2089 if (bio_nbytes) {
5bb23a68 2090 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2091 bio->bi_idx += next_idx;
2092 bio_iovec(bio)->bv_offset += nr_bytes;
2093 bio_iovec(bio)->bv_len -= nr_bytes;
2094 }
2095
a2dec7b3 2096 req->__data_len -= total_bytes;
2e46e8b2
TH
2097 req->buffer = bio_data(req->bio);
2098
2099 /* update sector only for requests with clear definition of sector */
33659ebb 2100 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2101 req->__sector += total_bytes >> 9;
2e46e8b2 2102
80a761fd
TH
2103 /* mixed attributes always follow the first bio */
2104 if (req->cmd_flags & REQ_MIXED_MERGE) {
2105 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2106 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2107 }
2108
2e46e8b2
TH
2109 /*
2110 * If total number of sectors is less than the first segment
2111 * size, something has gone terribly wrong.
2112 */
2113 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2114 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2115 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2116 }
2117
2118 /* recalculate the number of segments */
1da177e4 2119 blk_recalc_rq_segments(req);
2e46e8b2 2120
2e60e022 2121 return true;
1da177e4 2122}
2e60e022 2123EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2124
2e60e022
TH
2125static bool blk_update_bidi_request(struct request *rq, int error,
2126 unsigned int nr_bytes,
2127 unsigned int bidi_bytes)
5efccd17 2128{
2e60e022
TH
2129 if (blk_update_request(rq, error, nr_bytes))
2130 return true;
5efccd17 2131
2e60e022
TH
2132 /* Bidi request must be completed as a whole */
2133 if (unlikely(blk_bidi_rq(rq)) &&
2134 blk_update_request(rq->next_rq, error, bidi_bytes))
2135 return true;
5efccd17 2136
e2e1a148
JA
2137 if (blk_queue_add_random(rq->q))
2138 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2139
2140 return false;
1da177e4
LT
2141}
2142
28018c24
JB
2143/**
2144 * blk_unprep_request - unprepare a request
2145 * @req: the request
2146 *
2147 * This function makes a request ready for complete resubmission (or
2148 * completion). It happens only after all error handling is complete,
2149 * so represents the appropriate moment to deallocate any resources
2150 * that were allocated to the request in the prep_rq_fn. The queue
2151 * lock is held when calling this.
2152 */
2153void blk_unprep_request(struct request *req)
2154{
2155 struct request_queue *q = req->q;
2156
2157 req->cmd_flags &= ~REQ_DONTPREP;
2158 if (q->unprep_rq_fn)
2159 q->unprep_rq_fn(q, req);
2160}
2161EXPORT_SYMBOL_GPL(blk_unprep_request);
2162
1da177e4
LT
2163/*
2164 * queue lock must be held
2165 */
2e60e022 2166static void blk_finish_request(struct request *req, int error)
1da177e4 2167{
b8286239
KU
2168 if (blk_rq_tagged(req))
2169 blk_queue_end_tag(req->q, req);
2170
ba396a6c 2171 BUG_ON(blk_queued_rq(req));
1da177e4 2172
33659ebb 2173 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2174 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2175
e78042e5
MA
2176 blk_delete_timer(req);
2177
28018c24
JB
2178 if (req->cmd_flags & REQ_DONTPREP)
2179 blk_unprep_request(req);
2180
2181
bc58ba94 2182 blk_account_io_done(req);
b8286239 2183
1da177e4 2184 if (req->end_io)
8ffdc655 2185 req->end_io(req, error);
b8286239
KU
2186 else {
2187 if (blk_bidi_rq(req))
2188 __blk_put_request(req->next_rq->q, req->next_rq);
2189
1da177e4 2190 __blk_put_request(req->q, req);
b8286239 2191 }
1da177e4
LT
2192}
2193
3b11313a 2194/**
2e60e022
TH
2195 * blk_end_bidi_request - Complete a bidi request
2196 * @rq: the request to complete
2197 * @error: %0 for success, < %0 for error
2198 * @nr_bytes: number of bytes to complete @rq
2199 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2200 *
2201 * Description:
e3a04fe3 2202 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2203 * Drivers that supports bidi can safely call this member for any
2204 * type of request, bidi or uni. In the later case @bidi_bytes is
2205 * just ignored.
336cdb40
KU
2206 *
2207 * Return:
2e60e022
TH
2208 * %false - we are done with this request
2209 * %true - still buffers pending for this request
a0cd1285 2210 **/
b1f74493 2211static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2212 unsigned int nr_bytes, unsigned int bidi_bytes)
2213{
336cdb40 2214 struct request_queue *q = rq->q;
2e60e022 2215 unsigned long flags;
32fab448 2216
2e60e022
TH
2217 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2218 return true;
32fab448 2219
336cdb40 2220 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2221 blk_finish_request(rq, error);
336cdb40
KU
2222 spin_unlock_irqrestore(q->queue_lock, flags);
2223
2e60e022 2224 return false;
32fab448
KU
2225}
2226
336cdb40 2227/**
2e60e022
TH
2228 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2229 * @rq: the request to complete
710027a4 2230 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2231 * @nr_bytes: number of bytes to complete @rq
2232 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2233 *
2234 * Description:
2e60e022
TH
2235 * Identical to blk_end_bidi_request() except that queue lock is
2236 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2237 *
2238 * Return:
2e60e022
TH
2239 * %false - we are done with this request
2240 * %true - still buffers pending for this request
336cdb40 2241 **/
b1f74493
FT
2242static bool __blk_end_bidi_request(struct request *rq, int error,
2243 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2244{
2e60e022
TH
2245 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2246 return true;
336cdb40 2247
2e60e022 2248 blk_finish_request(rq, error);
336cdb40 2249
2e60e022 2250 return false;
336cdb40 2251}
e19a3ab0
KU
2252
2253/**
2254 * blk_end_request - Helper function for drivers to complete the request.
2255 * @rq: the request being processed
710027a4 2256 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2257 * @nr_bytes: number of bytes to complete
2258 *
2259 * Description:
2260 * Ends I/O on a number of bytes attached to @rq.
2261 * If @rq has leftover, sets it up for the next range of segments.
2262 *
2263 * Return:
b1f74493
FT
2264 * %false - we are done with this request
2265 * %true - still buffers pending for this request
e19a3ab0 2266 **/
b1f74493 2267bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2268{
b1f74493 2269 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2270}
56ad1740 2271EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2272
2273/**
b1f74493
FT
2274 * blk_end_request_all - Helper function for drives to finish the request.
2275 * @rq: the request to finish
8ebf9756 2276 * @error: %0 for success, < %0 for error
336cdb40
KU
2277 *
2278 * Description:
b1f74493
FT
2279 * Completely finish @rq.
2280 */
2281void blk_end_request_all(struct request *rq, int error)
336cdb40 2282{
b1f74493
FT
2283 bool pending;
2284 unsigned int bidi_bytes = 0;
336cdb40 2285
b1f74493
FT
2286 if (unlikely(blk_bidi_rq(rq)))
2287 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2288
b1f74493
FT
2289 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2290 BUG_ON(pending);
2291}
56ad1740 2292EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2293
b1f74493
FT
2294/**
2295 * blk_end_request_cur - Helper function to finish the current request chunk.
2296 * @rq: the request to finish the current chunk for
8ebf9756 2297 * @error: %0 for success, < %0 for error
b1f74493
FT
2298 *
2299 * Description:
2300 * Complete the current consecutively mapped chunk from @rq.
2301 *
2302 * Return:
2303 * %false - we are done with this request
2304 * %true - still buffers pending for this request
2305 */
2306bool blk_end_request_cur(struct request *rq, int error)
2307{
2308 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2309}
56ad1740 2310EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2311
80a761fd
TH
2312/**
2313 * blk_end_request_err - Finish a request till the next failure boundary.
2314 * @rq: the request to finish till the next failure boundary for
2315 * @error: must be negative errno
2316 *
2317 * Description:
2318 * Complete @rq till the next failure boundary.
2319 *
2320 * Return:
2321 * %false - we are done with this request
2322 * %true - still buffers pending for this request
2323 */
2324bool blk_end_request_err(struct request *rq, int error)
2325{
2326 WARN_ON(error >= 0);
2327 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2328}
2329EXPORT_SYMBOL_GPL(blk_end_request_err);
2330
e3a04fe3 2331/**
b1f74493
FT
2332 * __blk_end_request - Helper function for drivers to complete the request.
2333 * @rq: the request being processed
2334 * @error: %0 for success, < %0 for error
2335 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2336 *
2337 * Description:
b1f74493 2338 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2339 *
2340 * Return:
b1f74493
FT
2341 * %false - we are done with this request
2342 * %true - still buffers pending for this request
e3a04fe3 2343 **/
b1f74493 2344bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2345{
b1f74493 2346 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2347}
56ad1740 2348EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2349
32fab448 2350/**
b1f74493
FT
2351 * __blk_end_request_all - Helper function for drives to finish the request.
2352 * @rq: the request to finish
8ebf9756 2353 * @error: %0 for success, < %0 for error
32fab448
KU
2354 *
2355 * Description:
b1f74493 2356 * Completely finish @rq. Must be called with queue lock held.
32fab448 2357 */
b1f74493 2358void __blk_end_request_all(struct request *rq, int error)
32fab448 2359{
b1f74493
FT
2360 bool pending;
2361 unsigned int bidi_bytes = 0;
2362
2363 if (unlikely(blk_bidi_rq(rq)))
2364 bidi_bytes = blk_rq_bytes(rq->next_rq);
2365
2366 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2367 BUG_ON(pending);
32fab448 2368}
56ad1740 2369EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2370
e19a3ab0 2371/**
b1f74493
FT
2372 * __blk_end_request_cur - Helper function to finish the current request chunk.
2373 * @rq: the request to finish the current chunk for
8ebf9756 2374 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2375 *
2376 * Description:
b1f74493
FT
2377 * Complete the current consecutively mapped chunk from @rq. Must
2378 * be called with queue lock held.
e19a3ab0
KU
2379 *
2380 * Return:
b1f74493
FT
2381 * %false - we are done with this request
2382 * %true - still buffers pending for this request
2383 */
2384bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2385{
b1f74493 2386 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2387}
56ad1740 2388EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2389
80a761fd
TH
2390/**
2391 * __blk_end_request_err - Finish a request till the next failure boundary.
2392 * @rq: the request to finish till the next failure boundary for
2393 * @error: must be negative errno
2394 *
2395 * Description:
2396 * Complete @rq till the next failure boundary. Must be called
2397 * with queue lock held.
2398 *
2399 * Return:
2400 * %false - we are done with this request
2401 * %true - still buffers pending for this request
2402 */
2403bool __blk_end_request_err(struct request *rq, int error)
2404{
2405 WARN_ON(error >= 0);
2406 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2407}
2408EXPORT_SYMBOL_GPL(__blk_end_request_err);
2409
86db1e29
JA
2410void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2411 struct bio *bio)
1da177e4 2412{
a82afdfc 2413 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2414 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2415
fb2dce86
DW
2416 if (bio_has_data(bio)) {
2417 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2418 rq->buffer = bio_data(bio);
2419 }
a2dec7b3 2420 rq->__data_len = bio->bi_size;
1da177e4 2421 rq->bio = rq->biotail = bio;
1da177e4 2422
66846572
N
2423 if (bio->bi_bdev)
2424 rq->rq_disk = bio->bi_bdev->bd_disk;
2425}
1da177e4 2426
2d4dc890
IL
2427#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2428/**
2429 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2430 * @rq: the request to be flushed
2431 *
2432 * Description:
2433 * Flush all pages in @rq.
2434 */
2435void rq_flush_dcache_pages(struct request *rq)
2436{
2437 struct req_iterator iter;
2438 struct bio_vec *bvec;
2439
2440 rq_for_each_segment(bvec, rq, iter)
2441 flush_dcache_page(bvec->bv_page);
2442}
2443EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2444#endif
2445
ef9e3fac
KU
2446/**
2447 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2448 * @q : the queue of the device being checked
2449 *
2450 * Description:
2451 * Check if underlying low-level drivers of a device are busy.
2452 * If the drivers want to export their busy state, they must set own
2453 * exporting function using blk_queue_lld_busy() first.
2454 *
2455 * Basically, this function is used only by request stacking drivers
2456 * to stop dispatching requests to underlying devices when underlying
2457 * devices are busy. This behavior helps more I/O merging on the queue
2458 * of the request stacking driver and prevents I/O throughput regression
2459 * on burst I/O load.
2460 *
2461 * Return:
2462 * 0 - Not busy (The request stacking driver should dispatch request)
2463 * 1 - Busy (The request stacking driver should stop dispatching request)
2464 */
2465int blk_lld_busy(struct request_queue *q)
2466{
2467 if (q->lld_busy_fn)
2468 return q->lld_busy_fn(q);
2469
2470 return 0;
2471}
2472EXPORT_SYMBOL_GPL(blk_lld_busy);
2473
b0fd271d
KU
2474/**
2475 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2476 * @rq: the clone request to be cleaned up
2477 *
2478 * Description:
2479 * Free all bios in @rq for a cloned request.
2480 */
2481void blk_rq_unprep_clone(struct request *rq)
2482{
2483 struct bio *bio;
2484
2485 while ((bio = rq->bio) != NULL) {
2486 rq->bio = bio->bi_next;
2487
2488 bio_put(bio);
2489 }
2490}
2491EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2492
2493/*
2494 * Copy attributes of the original request to the clone request.
2495 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2496 */
2497static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2498{
2499 dst->cpu = src->cpu;
2500 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
3383977f
S
2501 if (src->cmd_flags & REQ_DISCARD)
2502 dst->cmd_flags |= REQ_DISCARD;
b0fd271d
KU
2503 dst->cmd_type = src->cmd_type;
2504 dst->__sector = blk_rq_pos(src);
2505 dst->__data_len = blk_rq_bytes(src);
2506 dst->nr_phys_segments = src->nr_phys_segments;
2507 dst->ioprio = src->ioprio;
2508 dst->extra_len = src->extra_len;
2509}
2510
2511/**
2512 * blk_rq_prep_clone - Helper function to setup clone request
2513 * @rq: the request to be setup
2514 * @rq_src: original request to be cloned
2515 * @bs: bio_set that bios for clone are allocated from
2516 * @gfp_mask: memory allocation mask for bio
2517 * @bio_ctr: setup function to be called for each clone bio.
2518 * Returns %0 for success, non %0 for failure.
2519 * @data: private data to be passed to @bio_ctr
2520 *
2521 * Description:
2522 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2523 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2524 * are not copied, and copying such parts is the caller's responsibility.
2525 * Also, pages which the original bios are pointing to are not copied
2526 * and the cloned bios just point same pages.
2527 * So cloned bios must be completed before original bios, which means
2528 * the caller must complete @rq before @rq_src.
2529 */
2530int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2531 struct bio_set *bs, gfp_t gfp_mask,
2532 int (*bio_ctr)(struct bio *, struct bio *, void *),
2533 void *data)
2534{
2535 struct bio *bio, *bio_src;
2536
2537 if (!bs)
2538 bs = fs_bio_set;
2539
2540 blk_rq_init(NULL, rq);
2541
2542 __rq_for_each_bio(bio_src, rq_src) {
2543 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2544 if (!bio)
2545 goto free_and_out;
2546
2547 __bio_clone(bio, bio_src);
2548
2549 if (bio_integrity(bio_src) &&
7878cba9 2550 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2551 goto free_and_out;
2552
2553 if (bio_ctr && bio_ctr(bio, bio_src, data))
2554 goto free_and_out;
2555
2556 if (rq->bio) {
2557 rq->biotail->bi_next = bio;
2558 rq->biotail = bio;
2559 } else
2560 rq->bio = rq->biotail = bio;
2561 }
2562
2563 __blk_rq_prep_clone(rq, rq_src);
2564
2565 return 0;
2566
2567free_and_out:
2568 if (bio)
2569 bio_free(bio, bs);
2570 blk_rq_unprep_clone(rq);
2571
2572 return -ENOMEM;
2573}
2574EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2575
18887ad9 2576int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2577{
2578 return queue_work(kblockd_workqueue, work);
2579}
1da177e4
LT
2580EXPORT_SYMBOL(kblockd_schedule_work);
2581
1da177e4
LT
2582int __init blk_dev_init(void)
2583{
9eb55b03
NK
2584 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2585 sizeof(((struct request *)0)->cmd_flags));
2586
1da177e4
LT
2587 kblockd_workqueue = create_workqueue("kblockd");
2588 if (!kblockd_workqueue)
2589 panic("Failed to create kblockd\n");
2590
2591 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2592 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2593
8324aa91 2594 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2595 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2596
d38ecf93 2597 return 0;
1da177e4 2598}