]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/xen/time.c
Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[net-next-2.6.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
5a0e3ad6 16#include <linux/gfp.h>
15c84731 17
1c7b67f7 18#include <asm/pvclock.h>
15c84731
JF
19#include <asm/xen/hypervisor.h>
20#include <asm/xen/hypercall.h>
21
22#include <xen/events.h>
409771d2 23#include <xen/features.h>
15c84731
JF
24#include <xen/interface/xen.h>
25#include <xen/interface/vcpu.h>
26
27#include "xen-ops.h"
28
29#define XEN_SHIFT 22
30
31/* Xen may fire a timer up to this many ns early */
32#define TIMER_SLOP 100000
f91a8b44 33#define NS_PER_TICK (1000000000LL / HZ)
15c84731 34
f91a8b44 35/* runstate info updated by Xen */
c6e22f9e 36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
f91a8b44
JF
37
38/* snapshots of runstate info */
c6e22f9e 39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
f91a8b44
JF
40
41/* unused ns of stolen and blocked time */
c6e22f9e
TH
42static DEFINE_PER_CPU(u64, xen_residual_stolen);
43static DEFINE_PER_CPU(u64, xen_residual_blocked);
f91a8b44
JF
44
45/* return an consistent snapshot of 64-bit time/counter value */
46static u64 get64(const u64 *p)
47{
48 u64 ret;
49
50 if (BITS_PER_LONG < 64) {
51 u32 *p32 = (u32 *)p;
52 u32 h, l;
53
54 /*
55 * Read high then low, and then make sure high is
56 * still the same; this will only loop if low wraps
57 * and carries into high.
58 * XXX some clean way to make this endian-proof?
59 */
60 do {
61 h = p32[1];
62 barrier();
63 l = p32[0];
64 barrier();
65 } while (p32[1] != h);
66
67 ret = (((u64)h) << 32) | l;
68 } else
69 ret = *p;
70
71 return ret;
72}
73
74/*
75 * Runstate accounting
76 */
77static void get_runstate_snapshot(struct vcpu_runstate_info *res)
78{
79 u64 state_time;
80 struct vcpu_runstate_info *state;
81
f120f13e 82 BUG_ON(preemptible());
f91a8b44 83
c6e22f9e 84 state = &__get_cpu_var(xen_runstate);
f91a8b44
JF
85
86 /*
87 * The runstate info is always updated by the hypervisor on
88 * the current CPU, so there's no need to use anything
89 * stronger than a compiler barrier when fetching it.
90 */
91 do {
92 state_time = get64(&state->state_entry_time);
93 barrier();
94 *res = *state;
95 barrier();
96 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
97}
98
f0d73394
JF
99/* return true when a vcpu could run but has no real cpu to run on */
100bool xen_vcpu_stolen(int vcpu)
101{
c6e22f9e 102 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
f0d73394
JF
103}
104
be012920 105void xen_setup_runstate_info(int cpu)
f91a8b44
JF
106{
107 struct vcpu_register_runstate_memory_area area;
108
c6e22f9e 109 area.addr.v = &per_cpu(xen_runstate, cpu);
f91a8b44
JF
110
111 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
112 cpu, &area))
113 BUG();
114}
115
116static void do_stolen_accounting(void)
117{
118 struct vcpu_runstate_info state;
119 struct vcpu_runstate_info *snap;
120 s64 blocked, runnable, offline, stolen;
121 cputime_t ticks;
122
123 get_runstate_snapshot(&state);
124
125 WARN_ON(state.state != RUNSTATE_running);
126
c6e22f9e 127 snap = &__get_cpu_var(xen_runstate_snapshot);
f91a8b44
JF
128
129 /* work out how much time the VCPU has not been runn*ing* */
130 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
131 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
132 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
133
134 *snap = state;
135
136 /* Add the appropriate number of ticks of stolen time,
79741dd3 137 including any left-overs from last time. */
c6e22f9e 138 stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
f91a8b44
JF
139
140 if (stolen < 0)
141 stolen = 0;
142
f595ec96 143 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
c6e22f9e 144 __get_cpu_var(xen_residual_stolen) = stolen;
79741dd3 145 account_steal_ticks(ticks);
f91a8b44
JF
146
147 /* Add the appropriate number of ticks of blocked time,
79741dd3 148 including any left-overs from last time. */
c6e22f9e 149 blocked += __get_cpu_var(xen_residual_blocked);
f91a8b44
JF
150
151 if (blocked < 0)
152 blocked = 0;
153
f595ec96 154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
c6e22f9e 155 __get_cpu_var(xen_residual_blocked) = blocked;
79741dd3 156 account_idle_ticks(ticks);
f91a8b44
JF
157}
158
e93ef949 159/* Get the TSC speed from Xen */
409771d2 160static unsigned long xen_tsc_khz(void)
15c84731 161{
3807f345 162 struct pvclock_vcpu_time_info *info =
15c84731
JF
163 &HYPERVISOR_shared_info->vcpu_info[0].time;
164
3807f345 165 return pvclock_tsc_khz(info);
15c84731
JF
166}
167
ee7686bc 168cycle_t xen_clocksource_read(void)
15c84731 169{
1c7b67f7 170 struct pvclock_vcpu_time_info *src;
15c84731 171 cycle_t ret;
15c84731 172
1c7b67f7
GH
173 src = &get_cpu_var(xen_vcpu)->time;
174 ret = pvclock_clocksource_read(src);
175 put_cpu_var(xen_vcpu);
15c84731
JF
176 return ret;
177}
178
8e19608e
MD
179static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
180{
181 return xen_clocksource_read();
182}
183
15c84731
JF
184static void xen_read_wallclock(struct timespec *ts)
185{
1c7b67f7
GH
186 struct shared_info *s = HYPERVISOR_shared_info;
187 struct pvclock_wall_clock *wall_clock = &(s->wc);
188 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 189
1c7b67f7
GH
190 vcpu_time = &get_cpu_var(xen_vcpu)->time;
191 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
192 put_cpu_var(xen_vcpu);
15c84731
JF
193}
194
409771d2 195static unsigned long xen_get_wallclock(void)
15c84731
JF
196{
197 struct timespec ts;
198
199 xen_read_wallclock(&ts);
15c84731
JF
200 return ts.tv_sec;
201}
202
409771d2 203static int xen_set_wallclock(unsigned long now)
15c84731
JF
204{
205 /* do nothing for domU */
206 return -1;
207}
208
209static struct clocksource xen_clocksource __read_mostly = {
210 .name = "xen",
211 .rating = 400,
8e19608e 212 .read = xen_clocksource_get_cycles,
15c84731
JF
213 .mask = ~0,
214 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
215 .shift = XEN_SHIFT,
216 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
217};
218
219/*
220 Xen clockevent implementation
221
222 Xen has two clockevent implementations:
223
224 The old timer_op one works with all released versions of Xen prior
225 to version 3.0.4. This version of the hypervisor provides a
226 single-shot timer with nanosecond resolution. However, sharing the
227 same event channel is a 100Hz tick which is delivered while the
228 vcpu is running. We don't care about or use this tick, but it will
229 cause the core time code to think the timer fired too soon, and
230 will end up resetting it each time. It could be filtered, but
231 doing so has complications when the ktime clocksource is not yet
232 the xen clocksource (ie, at boot time).
233
234 The new vcpu_op-based timer interface allows the tick timer period
235 to be changed or turned off. The tick timer is not useful as a
236 periodic timer because events are only delivered to running vcpus.
237 The one-shot timer can report when a timeout is in the past, so
238 set_next_event is capable of returning -ETIME when appropriate.
239 This interface is used when available.
240*/
241
242
243/*
244 Get a hypervisor absolute time. In theory we could maintain an
245 offset between the kernel's time and the hypervisor's time, and
246 apply that to a kernel's absolute timeout. Unfortunately the
247 hypervisor and kernel times can drift even if the kernel is using
248 the Xen clocksource, because ntp can warp the kernel's clocksource.
249*/
250static s64 get_abs_timeout(unsigned long delta)
251{
252 return xen_clocksource_read() + delta;
253}
254
255static void xen_timerop_set_mode(enum clock_event_mode mode,
256 struct clock_event_device *evt)
257{
258 switch (mode) {
259 case CLOCK_EVT_MODE_PERIODIC:
260 /* unsupported */
261 WARN_ON(1);
262 break;
263
264 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 265 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
266 break;
267
268 case CLOCK_EVT_MODE_UNUSED:
269 case CLOCK_EVT_MODE_SHUTDOWN:
270 HYPERVISOR_set_timer_op(0); /* cancel timeout */
271 break;
272 }
273}
274
275static int xen_timerop_set_next_event(unsigned long delta,
276 struct clock_event_device *evt)
277{
278 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
279
280 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
281 BUG();
282
283 /* We may have missed the deadline, but there's no real way of
284 knowing for sure. If the event was in the past, then we'll
285 get an immediate interrupt. */
286
287 return 0;
288}
289
290static const struct clock_event_device xen_timerop_clockevent = {
291 .name = "xen",
292 .features = CLOCK_EVT_FEAT_ONESHOT,
293
294 .max_delta_ns = 0xffffffff,
295 .min_delta_ns = TIMER_SLOP,
296
297 .mult = 1,
298 .shift = 0,
299 .rating = 500,
300
301 .set_mode = xen_timerop_set_mode,
302 .set_next_event = xen_timerop_set_next_event,
303};
304
305
306
307static void xen_vcpuop_set_mode(enum clock_event_mode mode,
308 struct clock_event_device *evt)
309{
310 int cpu = smp_processor_id();
311
312 switch (mode) {
313 case CLOCK_EVT_MODE_PERIODIC:
314 WARN_ON(1); /* unsupported */
315 break;
316
317 case CLOCK_EVT_MODE_ONESHOT:
318 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
319 BUG();
320 break;
321
322 case CLOCK_EVT_MODE_UNUSED:
323 case CLOCK_EVT_MODE_SHUTDOWN:
324 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
325 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
326 BUG();
327 break;
18de5bc4
TG
328 case CLOCK_EVT_MODE_RESUME:
329 break;
15c84731
JF
330 }
331}
332
333static int xen_vcpuop_set_next_event(unsigned long delta,
334 struct clock_event_device *evt)
335{
336 int cpu = smp_processor_id();
337 struct vcpu_set_singleshot_timer single;
338 int ret;
339
340 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
341
342 single.timeout_abs_ns = get_abs_timeout(delta);
343 single.flags = VCPU_SSHOTTMR_future;
344
345 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
346
347 BUG_ON(ret != 0 && ret != -ETIME);
348
349 return ret;
350}
351
352static const struct clock_event_device xen_vcpuop_clockevent = {
353 .name = "xen",
354 .features = CLOCK_EVT_FEAT_ONESHOT,
355
356 .max_delta_ns = 0xffffffff,
357 .min_delta_ns = TIMER_SLOP,
358
359 .mult = 1,
360 .shift = 0,
361 .rating = 500,
362
363 .set_mode = xen_vcpuop_set_mode,
364 .set_next_event = xen_vcpuop_set_next_event,
365};
366
367static const struct clock_event_device *xen_clockevent =
368 &xen_timerop_clockevent;
369static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
370
371static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
372{
373 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
374 irqreturn_t ret;
375
376 ret = IRQ_NONE;
377 if (evt->event_handler) {
378 evt->event_handler(evt);
379 ret = IRQ_HANDLED;
380 }
381
f91a8b44
JF
382 do_stolen_accounting();
383
15c84731
JF
384 return ret;
385}
386
f87e4cac 387void xen_setup_timer(int cpu)
15c84731
JF
388{
389 const char *name;
390 struct clock_event_device *evt;
391 int irq;
392
393 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
394
395 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
396 if (!name)
397 name = "<timer kasprintf failed>";
398
399 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
f350c792 400 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER,
15c84731
JF
401 name, NULL);
402
f87e4cac 403 evt = &per_cpu(xen_clock_events, cpu);
15c84731
JF
404 memcpy(evt, xen_clockevent, sizeof(*evt));
405
320ab2b0 406 evt->cpumask = cpumask_of(cpu);
15c84731 407 evt->irq = irq;
f87e4cac
JF
408}
409
d68d82af
AN
410void xen_teardown_timer(int cpu)
411{
412 struct clock_event_device *evt;
413 BUG_ON(cpu == 0);
414 evt = &per_cpu(xen_clock_events, cpu);
415 unbind_from_irqhandler(evt->irq, NULL);
416}
417
f87e4cac
JF
418void xen_setup_cpu_clockevents(void)
419{
420 BUG_ON(preemptible());
f91a8b44 421
f87e4cac 422 clockevents_register_device(&__get_cpu_var(xen_clock_events));
15c84731
JF
423}
424
d07af1f0
JF
425void xen_timer_resume(void)
426{
427 int cpu;
428
429 if (xen_clockevent != &xen_vcpuop_clockevent)
430 return;
431
432 for_each_online_cpu(cpu) {
433 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
434 BUG();
435 }
436}
437
409771d2 438static const struct pv_time_ops xen_time_ops __initdata = {
ca50a5f3 439 .sched_clock = xen_clocksource_read,
409771d2
SS
440};
441
442static __init void xen_time_init(void)
15c84731
JF
443{
444 int cpu = smp_processor_id();
c4507257 445 struct timespec tp;
15c84731 446
15c84731
JF
447 clocksource_register(&xen_clocksource);
448
449 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 450 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
451 vcpuop-based timer interface */
452 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
453 xen_clockevent = &xen_vcpuop_clockevent;
454 }
455
456 /* Set initial system time with full resolution */
c4507257
JS
457 xen_read_wallclock(&tp);
458 do_settimeofday(&tp);
15c84731 459
404ee5b1 460 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731 461
be012920 462 xen_setup_runstate_info(cpu);
15c84731 463 xen_setup_timer(cpu);
f87e4cac 464 xen_setup_cpu_clockevents();
15c84731 465}
409771d2
SS
466
467__init void xen_init_time_ops(void)
468{
469 pv_time_ops = xen_time_ops;
470
471 x86_init.timers.timer_init = xen_time_init;
472 x86_init.timers.setup_percpu_clockev = x86_init_noop;
473 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
474
475 x86_platform.calibrate_tsc = xen_tsc_khz;
476 x86_platform.get_wallclock = xen_get_wallclock;
477 x86_platform.set_wallclock = xen_set_wallclock;
478}
479
ca65f9fc 480#ifdef CONFIG_XEN_PVHVM
409771d2
SS
481static void xen_hvm_setup_cpu_clockevents(void)
482{
483 int cpu = smp_processor_id();
484 xen_setup_runstate_info(cpu);
485 xen_setup_timer(cpu);
486 xen_setup_cpu_clockevents();
487}
488
489__init void xen_hvm_init_time_ops(void)
490{
491 /* vector callback is needed otherwise we cannot receive interrupts
31e7e931
SS
492 * on cpu > 0 and at this point we don't know how many cpus are
493 * available */
494 if (!xen_have_vector_callback)
409771d2
SS
495 return;
496 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
497 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
498 "disable pv timer\n");
499 return;
500 }
501
502 pv_time_ops = xen_time_ops;
503 x86_init.timers.setup_percpu_clockev = xen_time_init;
504 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
505
506 x86_platform.calibrate_tsc = xen_tsc_khz;
507 x86_platform.get_wallclock = xen_get_wallclock;
508 x86_platform.set_wallclock = xen_set_wallclock;
509}
ca65f9fc 510#endif