]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/mm/fault.c
Merge branch 'for-linus' of git://neil.brown.name/md
[net-next-2.6.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
1da177e4
LT
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
0fd0e3da 13#include <linux/mmiotrace.h>
1da177e4
LT
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
1da177e4
LT
17#include <linux/interrupt.h>
18#include <linux/init.h>
19#include <linux/tty.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/compiler.h>
c61e211d
HH
22#include <linux/highmem.h>
23#include <linux/bootmem.h> /* for max_low_pfn */
1eeb66a1 24#include <linux/vmalloc.h>
1da177e4 25#include <linux/module.h>
0f2fbdcb 26#include <linux/kprobes.h>
ab2bf0c1 27#include <linux/uaccess.h>
1eeb66a1 28#include <linux/kdebug.h>
1da177e4
LT
29
30#include <asm/system.h>
c61e211d
HH
31#include <asm/desc.h>
32#include <asm/segment.h>
1da177e4
LT
33#include <asm/pgalloc.h>
34#include <asm/smp.h>
35#include <asm/tlbflush.h>
36#include <asm/proto.h>
1da177e4 37#include <asm-generic/sections.h>
70ef5641 38#include <asm/traps.h>
1da177e4 39
33cb5243
HH
40/*
41 * Page fault error code bits
42 * bit 0 == 0 means no page found, 1 means protection fault
43 * bit 1 == 0 means read, 1 means write
44 * bit 2 == 0 means kernel, 1 means user-mode
45 * bit 3 == 1 means use of reserved bit detected
46 * bit 4 == 1 means fault was an instruction fetch
47 */
8a19da7b 48#define PF_PROT (1<<0)
66c58156 49#define PF_WRITE (1<<1)
8a19da7b
IM
50#define PF_USER (1<<2)
51#define PF_RSVD (1<<3)
66c58156
AK
52#define PF_INSTR (1<<4)
53
0fd0e3da 54static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 55{
10c43d2e 56#ifdef CONFIG_MMIOTRACE_HOOKS
0fd0e3da
PP
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
86069782 60#endif
0fd0e3da 61 return 0;
86069782
PP
62}
63
74a0b576 64static inline int notify_page_fault(struct pt_regs *regs)
1bd858a5 65{
33cb5243 66#ifdef CONFIG_KPROBES
74a0b576
CH
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
f8c2ee22 70 if (!user_mode_vm(regs)) {
74a0b576
CH
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
1bd858a5 76
74a0b576 77 return ret;
74a0b576 78#else
74a0b576 79 return 0;
74a0b576 80#endif
33cb5243 81}
1bd858a5 82
1dc85be0
HH
83/*
84 * X86_32
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
87 *
88 * X86_64
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner
93 */
94static int is_prefetch(struct pt_regs *regs, unsigned long addr,
95 unsigned long error_code)
33cb5243 96{
ab2bf0c1 97 unsigned char *instr;
1da177e4 98 int scan_more = 1;
33cb5243 99 int prefetch = 0;
f1290ec9 100 unsigned char *max_instr;
1da177e4 101
3085354d
IM
102 /*
103 * If it was a exec (instruction fetch) fault on NX page, then
104 * do not ignore the fault:
105 */
66c58156 106 if (error_code & PF_INSTR)
1da177e4 107 return 0;
1dc85be0 108
f2857ce9 109 instr = (unsigned char *)convert_ip_to_linear(current, regs);
f1290ec9 110 max_instr = instr + 15;
1da177e4 111
76381fee 112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
113 return 0;
114
33cb5243 115 while (scan_more && instr < max_instr) {
1da177e4
LT
116 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
119
ab2bf0c1 120 if (probe_kernel_address(instr, opcode))
33cb5243 121 break;
1da177e4 122
33cb5243
HH
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
1da177e4
LT
125 instr++;
126
33cb5243 127 switch (instr_hi) {
1da177e4
LT
128 case 0x20:
129 case 0x30:
33cb5243
HH
130 /*
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
135 */
1da177e4
LT
136 scan_more = ((instr_lo & 7) == 0x6);
137 break;
33cb5243 138#ifdef CONFIG_X86_64
1da177e4 139 case 0x40:
33cb5243
HH
140 /*
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
146 */
76381fee 147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
1da177e4 148 break;
33cb5243 149#endif
1da177e4
LT
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
33cb5243 153 break;
1da177e4 154 case 0xF0:
1dc85be0 155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
1da177e4 156 scan_more = !instr_lo || (instr_lo>>1) == 1;
33cb5243 157 break;
1da177e4
LT
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
f2857ce9 161
ab2bf0c1 162 if (probe_kernel_address(instr, opcode))
1da177e4
LT
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
33cb5243 166 break;
1da177e4
LT
167 default:
168 scan_more = 0;
169 break;
33cb5243 170 }
1da177e4
LT
171 }
172 return prefetch;
173}
174
c4aba4a8
HH
175static void force_sig_info_fault(int si_signo, int si_code,
176 unsigned long address, struct task_struct *tsk)
177{
178 siginfo_t info;
179
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
184 force_sig_info(si_signo, &info, tsk);
185}
186
1156e098 187#ifdef CONFIG_X86_64
33cb5243
HH
188static int bad_address(void *p)
189{
1da177e4 190 unsigned long dummy;
ab2bf0c1 191 return probe_kernel_address((unsigned long *)p, dummy);
33cb5243 192}
1156e098 193#endif
1da177e4 194
cae30f82 195static void dump_pagetable(unsigned long address)
1da177e4 196{
1156e098
HH
197#ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page;
199
200 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202#ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX;
211 }
212#else
213 printk("*pde = %08lx ", page);
214#endif
215
216 /*
217 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already.
221 */
222 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) {
225 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 }
230
231 printk("\n");
232#else /* CONFIG_X86_64 */
1da177e4
LT
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
236 pte_t *pte;
237
f51c9452 238 pgd = (pgd_t *)read_cr3();
1da177e4 239
33cb5243 240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
1da177e4 241 pgd += pgd_index(address);
1da177e4 242 if (bad_address(pgd)) goto bad;
d646bce4 243 printk("PGD %lx ", pgd_val(*pgd));
33cb5243 244 if (!pgd_present(*pgd)) goto ret;
1da177e4 245
d2ae5b5f 246 pud = pud_offset(pgd, address);
1da177e4
LT
247 if (bad_address(pud)) goto bad;
248 printk("PUD %lx ", pud_val(*pud));
b5360222
AK
249 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret;
1da177e4
LT
251
252 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad;
254 printk("PMD %lx ", pmd_val(*pmd));
b1992df3 255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
1da177e4
LT
256
257 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad;
33cb5243 259 printk("PTE %lx", pte_val(*pte));
1da177e4
LT
260ret:
261 printk("\n");
262 return;
263bad:
264 printk("BAD\n");
1156e098
HH
265#endif
266}
267
268#ifdef CONFIG_X86_32
269static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270{
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
275
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
278
279 if (!pgd_present(*pgd_k))
280 return NULL;
281
282 /*
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
286 */
287
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
292
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
1da177e4 303}
1156e098 304#endif
1da177e4 305
1dc85be0 306#ifdef CONFIG_X86_64
33cb5243 307static const char errata93_warning[] =
1da177e4
LT
308KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310KERN_ERR "******* Please consider a BIOS update.\n"
311KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
fdfe8aa8 312#endif
1da177e4
LT
313
314/* Workaround for K8 erratum #93 & buggy BIOS.
315 BIOS SMM functions are required to use a specific workaround
33cb5243
HH
316 to avoid corruption of the 64bit RIP register on C stepping K8.
317 A lot of BIOS that didn't get tested properly miss this.
1da177e4
LT
318 The OS sees this as a page fault with the upper 32bits of RIP cleared.
319 Try to work around it here.
fdfe8aa8
HH
320 Note we only handle faults in kernel here.
321 Does nothing for X86_32
322 */
33cb5243 323static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 324{
fdfe8aa8 325#ifdef CONFIG_X86_64
1da177e4 326 static int warned;
65ea5b03 327 if (address != regs->ip)
1da177e4 328 return 0;
33cb5243 329 if ((address >> 32) != 0)
1da177e4
LT
330 return 0;
331 address |= 0xffffffffUL << 32;
33cb5243
HH
332 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) {
1da177e4 334 if (!warned) {
33cb5243 335 printk(errata93_warning);
1da177e4
LT
336 warned = 1;
337 }
65ea5b03 338 regs->ip = address;
1da177e4
LT
339 return 1;
340 }
fdfe8aa8 341#endif
1da177e4 342 return 0;
33cb5243 343}
1da177e4 344
35f3266f
HH
345/*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB. We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode.
350 */
351static int is_errata100(struct pt_regs *regs, unsigned long address)
352{
353#ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 (address >> 32))
356 return 1;
357#endif
358 return 0;
359}
360
29caf2f9
HH
361static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{
363#ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
365 /*
366 * Pentium F0 0F C7 C8 bug workaround.
367 */
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
370
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
374 }
375 }
376#endif
377 return 0;
378}
379
b3279c7f
HH
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
382{
1156e098
HH
383#ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
fd40d6e3 386#endif
1156e098
HH
387
388#ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) {
93809be8 390 unsigned int level;
1156e098
HH
391 pte_t *pte = lookup_address(address, &level);
392
393 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute "
395 "NX-protected page - exploit attempt? "
396 "(uid: %d)\n", current->uid);
397 }
398#endif
1156e098 399
19f0dda9 400 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 401 if (address < PAGE_SIZE)
19f0dda9 402 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 403 else
19f0dda9 404 printk(KERN_CONT "paging request");
f294a8ce 405 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 406 printk(KERN_ALERT "IP:");
b3279c7f
HH
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
409}
410
1156e098 411#ifdef CONFIG_X86_64
1da177e4
LT
412static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 unsigned long error_code)
414{
1209140c 415 unsigned long flags = oops_begin();
6e3f3617 416 struct task_struct *tsk;
1209140c 417
1da177e4
LT
418 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
419 current->comm, address);
420 dump_pagetable(address);
6e3f3617
JB
421 tsk = current;
422 tsk->thread.cr2 = address;
423 tsk->thread.trap_no = 14;
424 tsk->thread.error_code = error_code;
22f5991c
JB
425 if (__die("Bad pagetable", regs, error_code))
426 regs = NULL;
427 oops_end(flags, regs, SIGKILL);
1da177e4 428}
1156e098 429#endif
1da177e4 430
d8b57bb7
TG
431static int spurious_fault_check(unsigned long error_code, pte_t *pte)
432{
433 if ((error_code & PF_WRITE) && !pte_write(*pte))
434 return 0;
435 if ((error_code & PF_INSTR) && !pte_exec(*pte))
436 return 0;
437
438 return 1;
439}
440
5b727a3b
JF
441/*
442 * Handle a spurious fault caused by a stale TLB entry. This allows
443 * us to lazily refresh the TLB when increasing the permissions of a
444 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
445 * expensive since that implies doing a full cross-processor TLB
446 * flush, even if no stale TLB entries exist on other processors.
447 * There are no security implications to leaving a stale TLB when
448 * increasing the permissions on a page.
449 */
450static int spurious_fault(unsigned long address,
451 unsigned long error_code)
452{
453 pgd_t *pgd;
454 pud_t *pud;
455 pmd_t *pmd;
456 pte_t *pte;
457
458 /* Reserved-bit violation or user access to kernel space? */
459 if (error_code & (PF_USER | PF_RSVD))
460 return 0;
461
462 pgd = init_mm.pgd + pgd_index(address);
463 if (!pgd_present(*pgd))
464 return 0;
465
466 pud = pud_offset(pgd, address);
467 if (!pud_present(*pud))
468 return 0;
469
d8b57bb7
TG
470 if (pud_large(*pud))
471 return spurious_fault_check(error_code, (pte_t *) pud);
472
5b727a3b
JF
473 pmd = pmd_offset(pud, address);
474 if (!pmd_present(*pmd))
475 return 0;
476
d8b57bb7
TG
477 if (pmd_large(*pmd))
478 return spurious_fault_check(error_code, (pte_t *) pmd);
479
5b727a3b
JF
480 pte = pte_offset_kernel(pmd, address);
481 if (!pte_present(*pte))
482 return 0;
483
d8b57bb7 484 return spurious_fault_check(error_code, pte);
5b727a3b
JF
485}
486
1da177e4 487/*
f8c2ee22
HH
488 * X86_32
489 * Handle a fault on the vmalloc or module mapping area
490 *
491 * X86_64
f95190b2 492 * Handle a fault on the vmalloc area
3b9ba4d5
AK
493 *
494 * This assumes no large pages in there.
1da177e4
LT
495 */
496static int vmalloc_fault(unsigned long address)
497{
fdfe8aa8
HH
498#ifdef CONFIG_X86_32
499 unsigned long pgd_paddr;
500 pmd_t *pmd_k;
501 pte_t *pte_k;
b29c701d
HN
502
503 /* Make sure we are in vmalloc area */
504 if (!(address >= VMALLOC_START && address < VMALLOC_END))
505 return -1;
506
fdfe8aa8
HH
507 /*
508 * Synchronize this task's top level page-table
509 * with the 'reference' page table.
510 *
511 * Do _not_ use "current" here. We might be inside
512 * an interrupt in the middle of a task switch..
513 */
514 pgd_paddr = read_cr3();
515 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
516 if (!pmd_k)
517 return -1;
518 pte_k = pte_offset_kernel(pmd_k, address);
519 if (!pte_present(*pte_k))
520 return -1;
521 return 0;
522#else
1da177e4
LT
523 pgd_t *pgd, *pgd_ref;
524 pud_t *pud, *pud_ref;
525 pmd_t *pmd, *pmd_ref;
526 pte_t *pte, *pte_ref;
527
cf89ec92
HH
528 /* Make sure we are in vmalloc area */
529 if (!(address >= VMALLOC_START && address < VMALLOC_END))
530 return -1;
531
1da177e4
LT
532 /* Copy kernel mappings over when needed. This can also
533 happen within a race in page table update. In the later
534 case just flush. */
535
536 pgd = pgd_offset(current->mm ?: &init_mm, address);
537 pgd_ref = pgd_offset_k(address);
538 if (pgd_none(*pgd_ref))
539 return -1;
540 if (pgd_none(*pgd))
541 set_pgd(pgd, *pgd_ref);
8c914cb7 542 else
46a82b2d 543 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1da177e4
LT
544
545 /* Below here mismatches are bugs because these lower tables
546 are shared */
547
548 pud = pud_offset(pgd, address);
549 pud_ref = pud_offset(pgd_ref, address);
550 if (pud_none(*pud_ref))
551 return -1;
46a82b2d 552 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
1da177e4
LT
553 BUG();
554 pmd = pmd_offset(pud, address);
555 pmd_ref = pmd_offset(pud_ref, address);
556 if (pmd_none(*pmd_ref))
557 return -1;
558 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
559 BUG();
560 pte_ref = pte_offset_kernel(pmd_ref, address);
561 if (!pte_present(*pte_ref))
562 return -1;
563 pte = pte_offset_kernel(pmd, address);
3b9ba4d5
AK
564 /* Don't use pte_page here, because the mappings can point
565 outside mem_map, and the NUMA hash lookup cannot handle
566 that. */
567 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
1da177e4 568 BUG();
1da177e4 569 return 0;
fdfe8aa8 570#endif
1da177e4
LT
571}
572
abd4f750 573int show_unhandled_signals = 1;
1da177e4
LT
574
575/*
576 * This routine handles page faults. It determines the address,
577 * and the problem, and then passes it off to one of the appropriate
578 * routines.
1da177e4 579 */
f8c2ee22
HH
580#ifdef CONFIG_X86_64
581asmlinkage
582#endif
583void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4
LT
584{
585 struct task_struct *tsk;
586 struct mm_struct *mm;
33cb5243 587 struct vm_area_struct *vma;
1da177e4 588 unsigned long address;
f8c2ee22
HH
589 int write, si_code;
590 int fault;
591#ifdef CONFIG_X86_64
1209140c 592 unsigned long flags;
f8c2ee22 593#endif
1da177e4 594
a9ba9a3b
AV
595 tsk = current;
596 mm = tsk->mm;
597 prefetchw(&mm->mmap_sem);
598
1da177e4 599 /* get the address */
f51c9452 600 address = read_cr2();
1da177e4 601
c4aba4a8 602 si_code = SEGV_MAPERR;
1da177e4 603
608566b4
HH
604 if (notify_page_fault(regs))
605 return;
0fd0e3da 606 if (unlikely(kmmio_fault(regs, address)))
86069782 607 return;
1da177e4
LT
608
609 /*
610 * We fault-in kernel-space virtual memory on-demand. The
611 * 'reference' page table is init_mm.pgd.
612 *
613 * NOTE! We MUST NOT take any locks for this case. We may
614 * be in an interrupt or a critical region, and should
615 * only copy the information from the master page table,
616 * nothing more.
617 *
618 * This verifies that the fault happens in kernel space
619 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 620 * protection error (error_code & 9) == 0.
1da177e4 621 */
f8c2ee22
HH
622#ifdef CONFIG_X86_32
623 if (unlikely(address >= TASK_SIZE)) {
cf89ec92
HH
624#else
625 if (unlikely(address >= TASK_SIZE64)) {
626#endif
f8c2ee22
HH
627 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
628 vmalloc_fault(address) >= 0)
629 return;
5b727a3b
JF
630
631 /* Can handle a stale RO->RW TLB */
632 if (spurious_fault(address, error_code))
633 return;
634
f8c2ee22
HH
635 /*
636 * Don't take the mm semaphore here. If we fixup a prefetch
637 * fault we could otherwise deadlock.
638 */
639 goto bad_area_nosemaphore;
640 }
641
cf89ec92 642
f8c2ee22 643 /*
891cffbd
LT
644 * It's safe to allow irq's after cr2 has been saved and the
645 * vmalloc fault has been handled.
646 *
647 * User-mode registers count as a user access even for any
648 * potential system fault or CPU buglet.
f8c2ee22 649 */
891cffbd
LT
650 if (user_mode_vm(regs)) {
651 local_irq_enable();
652 error_code |= PF_USER;
653 } else if (regs->flags & X86_EFLAGS_IF)
8c914cb7
JB
654 local_irq_enable();
655
891cffbd 656#ifdef CONFIG_X86_64
66c58156 657 if (unlikely(error_code & PF_RSVD))
1da177e4 658 pgtable_bad(address, regs, error_code);
891cffbd 659#endif
1da177e4
LT
660
661 /*
33cb5243
HH
662 * If we're in an interrupt, have no user context or are running in an
663 * atomic region then we must not take the fault.
1da177e4
LT
664 */
665 if (unlikely(in_atomic() || !mm))
666 goto bad_area_nosemaphore;
667
f8c2ee22 668again:
3a1dfe6e
IM
669 /*
670 * When running in the kernel we expect faults to occur only to
1da177e4 671 * addresses in user space. All other faults represent errors in the
676b1855 672 * kernel and should generate an OOPS. Unfortunately, in the case of an
80f7228b 673 * erroneous fault occurring in a code path which already holds mmap_sem
1da177e4
LT
674 * we will deadlock attempting to validate the fault against the
675 * address space. Luckily the kernel only validly references user
676 * space from well defined areas of code, which are listed in the
677 * exceptions table.
678 *
679 * As the vast majority of faults will be valid we will only perform
676b1855 680 * the source reference check when there is a possibility of a deadlock.
1da177e4
LT
681 * Attempt to lock the address space, if we cannot we then validate the
682 * source. If this is invalid we can skip the address space check,
683 * thus avoiding the deadlock.
684 */
685 if (!down_read_trylock(&mm->mmap_sem)) {
66c58156 686 if ((error_code & PF_USER) == 0 &&
65ea5b03 687 !search_exception_tables(regs->ip))
1da177e4
LT
688 goto bad_area_nosemaphore;
689 down_read(&mm->mmap_sem);
690 }
691
692 vma = find_vma(mm, address);
693 if (!vma)
694 goto bad_area;
f8c2ee22 695 if (vma->vm_start <= address)
1da177e4
LT
696 goto good_area;
697 if (!(vma->vm_flags & VM_GROWSDOWN))
698 goto bad_area;
33cb5243 699 if (error_code & PF_USER) {
6f4d368e
HH
700 /*
701 * Accessing the stack below %sp is always a bug.
702 * The large cushion allows instructions like enter
703 * and pusha to work. ("enter $65535,$31" pushes
704 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 705 */
65ea5b03 706 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
1da177e4
LT
707 goto bad_area;
708 }
709 if (expand_stack(vma, address))
710 goto bad_area;
711/*
712 * Ok, we have a good vm_area for this memory access, so
713 * we can handle it..
714 */
715good_area:
c4aba4a8 716 si_code = SEGV_ACCERR;
1da177e4 717 write = 0;
66c58156 718 switch (error_code & (PF_PROT|PF_WRITE)) {
33cb5243
HH
719 default: /* 3: write, present */
720 /* fall through */
721 case PF_WRITE: /* write, not present */
722 if (!(vma->vm_flags & VM_WRITE))
723 goto bad_area;
724 write++;
725 break;
726 case PF_PROT: /* read, present */
727 goto bad_area;
728 case 0: /* read, not present */
729 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1da177e4 730 goto bad_area;
1da177e4
LT
731 }
732
733 /*
734 * If for any reason at all we couldn't handle the fault,
735 * make sure we exit gracefully rather than endlessly redo
736 * the fault.
737 */
83c54070
NP
738 fault = handle_mm_fault(mm, vma, address, write);
739 if (unlikely(fault & VM_FAULT_ERROR)) {
740 if (fault & VM_FAULT_OOM)
741 goto out_of_memory;
742 else if (fault & VM_FAULT_SIGBUS)
743 goto do_sigbus;
744 BUG();
1da177e4 745 }
83c54070
NP
746 if (fault & VM_FAULT_MAJOR)
747 tsk->maj_flt++;
748 else
749 tsk->min_flt++;
d729ab35
HH
750
751#ifdef CONFIG_X86_32
752 /*
753 * Did it hit the DOS screen memory VA from vm86 mode?
754 */
755 if (v8086_mode(regs)) {
756 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
757 if (bit < 32)
758 tsk->thread.screen_bitmap |= 1 << bit;
759 }
760#endif
1da177e4
LT
761 up_read(&mm->mmap_sem);
762 return;
763
764/*
765 * Something tried to access memory that isn't in our memory map..
766 * Fix it, but check if it's kernel or user first..
767 */
768bad_area:
769 up_read(&mm->mmap_sem);
770
771bad_area_nosemaphore:
1da177e4 772 /* User mode accesses just cause a SIGSEGV */
66c58156 773 if (error_code & PF_USER) {
e5e3c84b
SR
774 /*
775 * It's possible to have interrupts off here.
776 */
777 local_irq_enable();
778
1156e098
HH
779 /*
780 * Valid to do another page fault here because this one came
781 * from user space.
782 */
1da177e4
LT
783 if (is_prefetch(regs, address, error_code))
784 return;
785
35f3266f 786 if (is_errata100(regs, address))
1da177e4
LT
787 return;
788
abd4f750
MAS
789 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
790 printk_ratelimit()) {
1da177e4 791 printk(
f294a8ce 792 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
6f4d368e 793 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
f294a8ce
VN
794 tsk->comm, task_pid_nr(tsk), address,
795 (void *) regs->ip, (void *) regs->sp, error_code);
03252919
AK
796 print_vma_addr(" in ", regs->ip);
797 printk("\n");
1da177e4 798 }
33cb5243 799
1da177e4
LT
800 tsk->thread.cr2 = address;
801 /* Kernel addresses are always protection faults */
802 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
803 tsk->thread.trap_no = 14;
c4aba4a8 804 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
1da177e4
LT
805 return;
806 }
807
29caf2f9
HH
808 if (is_f00f_bug(regs, address))
809 return;
810
1da177e4 811no_context:
1da177e4 812 /* Are we prepared to handle this kernel fault? */
33cb5243 813 if (fixup_exception(regs))
1da177e4 814 return;
1da177e4 815
33cb5243 816 /*
f8c2ee22
HH
817 * X86_32
818 * Valid to do another page fault here, because if this fault
819 * had been triggered by is_prefetch fixup_exception would have
820 * handled it.
821 *
822 * X86_64
1da177e4
LT
823 * Hall of shame of CPU/BIOS bugs.
824 */
33cb5243
HH
825 if (is_prefetch(regs, address, error_code))
826 return;
1da177e4
LT
827
828 if (is_errata93(regs, address))
33cb5243 829 return;
1da177e4
LT
830
831/*
832 * Oops. The kernel tried to access some bad page. We'll have to
833 * terminate things with extreme prejudice.
834 */
f8c2ee22
HH
835#ifdef CONFIG_X86_32
836 bust_spinlocks(1);
fd40d6e3
HH
837#else
838 flags = oops_begin();
839#endif
f8c2ee22
HH
840
841 show_fault_oops(regs, error_code, address);
1da177e4 842
f8c2ee22
HH
843 tsk->thread.cr2 = address;
844 tsk->thread.trap_no = 14;
845 tsk->thread.error_code = error_code;
fd40d6e3
HH
846
847#ifdef CONFIG_X86_32
f8c2ee22
HH
848 die("Oops", regs, error_code);
849 bust_spinlocks(0);
850 do_exit(SIGKILL);
fd40d6e3 851#else
22f5991c
JB
852 if (__die("Oops", regs, error_code))
853 regs = NULL;
1da177e4
LT
854 /* Executive summary in case the body of the oops scrolled away */
855 printk(KERN_EMERG "CR2: %016lx\n", address);
22f5991c 856 oops_end(flags, regs, SIGKILL);
f8c2ee22 857#endif
1da177e4
LT
858
859/*
860 * We ran out of memory, or some other thing happened to us that made
861 * us unable to handle the page fault gracefully.
862 */
863out_of_memory:
864 up_read(&mm->mmap_sem);
f8c2ee22
HH
865 if (is_global_init(tsk)) {
866 yield();
3a1dfe6e
IM
867 /*
868 * Re-lookup the vma - in theory the vma tree might
869 * have changed:
870 */
1da177e4 871 goto again;
fd40d6e3
HH
872 }
873
1da177e4 874 printk("VM: killing process %s\n", tsk->comm);
318aa296 875 if (error_code & PF_USER)
021daae2 876 do_group_exit(SIGKILL);
1da177e4
LT
877 goto no_context;
878
879do_sigbus:
880 up_read(&mm->mmap_sem);
881
882 /* Kernel mode? Handle exceptions or die */
66c58156 883 if (!(error_code & PF_USER))
1da177e4 884 goto no_context;
f8c2ee22
HH
885#ifdef CONFIG_X86_32
886 /* User space => ok to do another page fault */
887 if (is_prefetch(regs, address, error_code))
888 return;
889#endif
1da177e4
LT
890 tsk->thread.cr2 = address;
891 tsk->thread.error_code = error_code;
892 tsk->thread.trap_no = 14;
c4aba4a8 893 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
1da177e4 894}
9e43e1b7 895
8c914cb7 896DEFINE_SPINLOCK(pgd_lock);
2bff7383 897LIST_HEAD(pgd_list);
8c914cb7
JB
898
899void vmalloc_sync_all(void)
900{
1156e098
HH
901 unsigned long address;
902
cc643d46 903#ifdef CONFIG_X86_32
1156e098
HH
904 if (SHARED_KERNEL_PMD)
905 return;
906
cc643d46
JB
907 for (address = VMALLOC_START & PMD_MASK;
908 address >= TASK_SIZE && address < FIXADDR_TOP;
909 address += PMD_SIZE) {
67350a5c
JF
910 unsigned long flags;
911 struct page *page;
912
913 spin_lock_irqsave(&pgd_lock, flags);
914 list_for_each_entry(page, &pgd_list, lru) {
915 if (!vmalloc_sync_one(page_address(page),
916 address))
917 break;
1156e098 918 }
67350a5c 919 spin_unlock_irqrestore(&pgd_lock, flags);
1156e098
HH
920 }
921#else /* CONFIG_X86_64 */
cc643d46
JB
922 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
923 address += PGDIR_SIZE) {
67350a5c
JF
924 const pgd_t *pgd_ref = pgd_offset_k(address);
925 unsigned long flags;
926 struct page *page;
927
928 if (pgd_none(*pgd_ref))
929 continue;
930 spin_lock_irqsave(&pgd_lock, flags);
931 list_for_each_entry(page, &pgd_list, lru) {
932 pgd_t *pgd;
933 pgd = (pgd_t *)page_address(page) + pgd_index(address);
934 if (pgd_none(*pgd))
935 set_pgd(pgd, *pgd_ref);
936 else
937 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
8c914cb7 938 }
67350a5c 939 spin_unlock_irqrestore(&pgd_lock, flags);
8c914cb7 940 }
1156e098 941#endif
8c914cb7 942}